Science.gov

Sample records for barbadensis leaf polysaccharides

  1. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    PubMed

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  2. Evaluation of in vitro and in vivo antioxidant potential of polysaccharides from Aloe vera (Aloe barbadensis Miller) gel.

    PubMed

    Kaithwas, Gaurav; Singh, Prashant; Bhatia, Daksh

    2014-04-01

    In the present study, the antioxidant activity of the polysaccharides from aloe vera (Aloe barbadensis Miller) gel was evaluated, in vitro by five established methods, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)) radical scavenging, nitric oxide (NO) scavenging, hydrogen peroxide scavenging, superoxide radical (O(-2)) scavenging and reducing power assay, and in vivo against doxorubicin (DOX)-induced myocardial oxidative stress (OS) in albino wistar rats. The polysaccharides exhibited significant inhibitory activity against DPPH(-), superoxide, NO and hydrogen peroxide scavenging assay with significant reducing activity at all concentrations used. DOX-induced (7.5 mg/kg, intravenously) cardiotoxicity manifested biochemically by a significant decrease in blood and tissue glutathione (GSH) along with elevated levels of serum lactate dehydrogenase and creatine phosphokinase. In addition, cardiotoxicity was further confirmed by the significant increase in lipid peroxidation expressed as thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD). Administration of aloe vera polysaccharides for 14 days produced a marked protection against cardiotoxicity induced by DOX evidenced by significant reductions in serum lactate dehydrogenase, serum creatine phosphokinase, cardiac TBARS, CAT and SOD along with increased levels of blood and tissue GSH in a dose-dependent manner. The present investigation is the first to establish the antioxidant potency of the polysaccharides from aloe vera against DOX-induced myocardial OS.

  3. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel.

    PubMed

    Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin

    2014-01-01

    The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications.

  4. Clear evidence of carcinogenic activity by a whole-leaf extract of Aloe barbadensis miller (aloe vera) in F344/N rats.

    PubMed

    Boudreau, Mary D; Mellick, Paul W; Olson, Greg R; Felton, Robert P; Thorn, Brett T; Beland, Frederick A

    2013-01-01

    Aloe barbadensis Miller (Aloe vera) is an herbal remedy promoted to treat a variety of illnesses; however, only limited data are available on the safety of this dietary supplement. Drinking water exposure of F344/N rats and B6C3F1 mice to an Aloe vera whole-leaf extract (1, 2, and 3%) for 13 weeks resulted in goblet cell hyperplasia of the large intestine in both species. Based upon this observation, 2-year drinking water studies were conducted to assess the carcinogenic potential of an Aloe vera whole-leaf extract when administered to F344/N rats (48 per sex per group) at 0.5, 1, and 1.5%, and B6C3F1 mice (48 per sex per group) at 1, 2, and 3%. Compared with controls, survival was decreased in the 1.5% dose group of female rats. Treatment-related neoplasms and nonneoplastic lesions in both species were confined primarily to the large intestine. Incidences of adenomas and/or carcinomas of the ileo-cecal and cecal-colic junction, cecum, and ascending and transverse colon were significantly higher than controls in male and female rats in the 1 and 1.5% dose groups. There were no neoplasms of the large intestine in mice or in the 0 or 0.5% dose groups of rats. Increased incidences of mucosa hyperplasia of the large intestine were observed in F344/N rats, and increased incidences of goblet cell hyperplasia of the large intestine occurred in B6C3F1 mice. These results indicate that Aloe vera whole-leaf extract is an intestinal irritant in F344/N rats and B6C3F1 mice and a carcinogen of the large intestine in F344/N rats.

  5. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells.

    PubMed

    de Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; de Lourdes Lúcio Ferrarese, Maria; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; de Oliveira Petkowicz, Carmen Lúcia

    2014-11-04

    Coffea arabica is the most important agricultural commodity in the world, and salinity is a major threat to its sustainable irrigation. Coffee leaf polysaccharides from plants subjected to salt stress were extracted and the leaves visualized through optical and electron microscopy. Alterations were detected in the monosaccharide composition of the pectin and hemicelluloses, with increases in uronic acid in all fractions. Changes in the polysaccharides were confirmed by HPSEC and FTIR. Moreover, the monolignol content was increased in the final residue, which suggests increased lignin content. The cytoplasm was altered, and the chloroplasts appeared irregular in shape. The arrangement of the stroma lamellae was disordered, and no starch granules were present. It was concluded that leaves of C. arabica under salt stress showed alterations in cell wall polysaccharides, increased monolignol content and structural damage to the cells of the mesophyll.

  6. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    SciTech Connect

    Thappily, Praveen E-mail: shiiuvenus@gmail.com; Shiju, K. E-mail: shiiuvenus@gmail.com

    2014-10-15

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  7. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    NASA Astrophysics Data System (ADS)

    Thappily, Praveen; Shiju, K.

    2014-10-01

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  8. Dodonaea viscosa var. angustifolia leaf: new source of polysaccharide and its anti-oxidant activity.

    PubMed

    Samavati, Vahid; Manoochehrizade, Amir

    2013-10-15

    Ultrasonic technology was applied for polysaccharide extraction from the leaves of Dodonaea viscosa and response surface methodology (RSM) was used to optimize the effects of processing parameters on polysaccharide extraction yield. Three independent variables were extraction time (X1), extraction temperature (X2) and ultrasonic power (X3), respectively. The statistical analysis indicated the independent variables (X1, X2, X3), the quadratic terms (X11 and X33) and the interaction terms (X1X2, X1X3, X2X3) had significant effects on the yield of polysaccharides (P<0.05). The optimal extraction conditions of D. viscosa leaf were determined as follows: extraction time 50.54 min, extraction temperature 85 °C and ultrasonic power 400 W. Under these conditions, the experimental yield of polysaccharides was 9.455±0.24%, which was agreed closely with the predicted value (9.398%). The evaluation of anti-oxidant activity suggested that the polysaccharide exhibited significant protection against DPPH and hydroxyl radicals and could be explored as a nutraceutical agent.

  9. The biosynthesis of l-rhamnose of plum-leaf polysaccharides

    PubMed Central

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of d-[1-14C]- and d-[6-14C]-glucose in the biosynthesis of l-rhamnose units of plum-leaf polysaccharides has been studied. 2. After the precursors had been metabolized in the leaves, polysaccharide fractions were prepared therefrom and the constituent l-rhamnose was isolated and purified. 3. Both the specific activity and the distribution of 14C along the carbon chain of l-rhamnose from two polysaccharide fractions from each experiment were determined. 4. The results indicated a close affinity between l-rhamnose and pectin, and show that biosynthesis of the 6-deoxyhexose from d-glucose occurs in the main without scission or inversion of the carbon chain. 5. A degradation scheme for l-rhamnose via l-rhamnitol was described which gives the labelling at C-1, C-2+C-3+C-4,C-5 and C-6 on a 0·3millimole scale. PMID:16749113

  10. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens.

    PubMed

    Moller, Isabel E; De Fine Licht, Henrik H; Harholt, Jesper; Willats, William G T; Boomsma, Jacobus J

    2011-03-10

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants.

  11. Antidiabetic Activity of a Lotus Leaf Selenium (Se)-Polysaccharide in Rats with Gestational Diabetes Mellitus.

    PubMed

    Zeng, Zhaohui; Xu, Yun; Zhang, Bin

    2017-04-01

    A selenium (Se)-containing polysaccharide, lotus leaf selenium (Se)-polysaccharide (LLP), was isolated from a lotus leaf. The effects of LLP on antioxidant enzyme activities and insulin resistance in pregnant rats with gestational diabetes mellitus (GDM) were investigated. LLP administered orally at two doses (50 and 100 mg/kg) could significantly reverse the weight loss of pregnant rats before the delivery, fetal rats, and placentas in GDM rats (P < 0.05). Furthermore, LLP treatment induced a decrease of fasting blood glucose (FBG) and fasting blood insulin (FINS) levels in GDM rats, but an increase of hepatic glycogen content, when compared with those in GDM rats (P < 0.05). Also, oral administrations of LLP markedly improved the lipid profile of GDM rats, as evidenced by a reduction of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) cholesterol levels except for the high-density lipoprotein (HDL) cholesterol level. Additionally, antioxidant enzyme levels, such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH), in liver tissues of the GDM group were lower than those of the other groups, and following treatment of LLP, these indexes in liver tissues were equivalent to those of the control group (P > 0.05). All the data indicated that LLP may be a promising drug candidate or a healthcare food for GDM therapy or protection.

  12. Antibacterial activities of crude extract of Aloe barbadensis to clinically isolated bacterial pathogens.

    PubMed

    Pandey, Ruchi; Mishra, Avinash

    2010-03-01

    The antibacterial activity of Aloe barbadensis was tested on clinically isolated bacterial pathogens i.e. Enterococcus bovis, Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa, Morganella morganii, and Klebsiella pneumoniae causing infection in human being. Ethanolic and aqueous extracts were used for the antibacterial effect, which was measured by the appearance of zone of inhibition. Relatively higher MIC concentrations were obtained for gram negative bacteria E. coli and K. pneumoniae, with ethanol extract; however, no inhibitory effect was noted for aqueous extract. Ethanolic extract possesses great inhibitory activity for gram positive bacteria, E. bovis followed by S. aureus. Among gram negative bacteria, highest inhibitory effect was observed with P. aeruginosa, followed by M. morganii, P. mirabilis, and P. vulgaris, which was significant (p < 0.01) than E. coli and K. pneumoniae. Antimicrobial activity tests of crude extract of A. barbadensis were carried out to validate the use of traditional medicinal herbal and results of this study tend to give credence to the common use of A. barbadensis gel and leaf.

  13. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf.

    PubMed

    Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad

    2015-03-01

    The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals.

  14. Protective effects of Ginkgo biloba leaf polysaccharide on nonalcoholic fatty liver disease and its mechanisms.

    PubMed

    Yan, Zhengui; Fan, Ruifeng; Yin, Shaojie; Zhao, Xiaona; Liu, Jianzhu; Li, Liuhui; Zhang, Wenqi; Ge, Lijiang

    2015-09-01

    A water-soluble polysaccharide fraction extracted from the leaf of Ginkgo biloba was named GBLP. The protective effect of GBLP on nonalcoholic fatty liver disease (NAFLD) was observed and underlying mechanism was explored. Wistar male rats were randomly divided into five groups, namely, normal control group, model control group and GBLP groups (100, 200 and 400 mg/kg/d). A rat model of NAFLD was established in male Wistar rats by feeding with high-fat diet (HFD) for 8 weeks. On day 57, the intragastric administration of GBLP started once daily for 4 weeks. The results showed that GBLP supplementation significantly and dose-dependently lowered the weight gain of body, liver index and serum lipid parameters in HFD-fed rat. Meanwhile, GBLP attenuated HFD-induced liver injury through reducing hepatic steatosis, TG accumulation, serum ALT, AST and ALP levels. GBLP had a positive effect on obesity-associated insulin resistance (IR) via reducing serum glucose and insulin levels. Furthermore, GBLP enhanced the activities of antioxidant enzymes and reduced MDA levels in serum and liver. These results indicate that GBLP can play a certain protective role against HFD-induced NAFLD, and the protective effects may be associated with attenuating IR, preserving liver function, enhancing antioxidant defense system, and reducing lipid peroxidation.

  15. Constituents of Agave americana and Agave barbadensis.

    PubMed

    Tinto, W F; Simmons-Boyce, J L; McLean, S; Reynolds, W F

    2005-09-01

    An investigation of Agave americana and Agave barbadensis resulted in the isolation of a new homoisoflavanoid, 7-hydroxy-3-(4-methoxybenzyl)-chroman (3), together with known compounds 7-hydroxy-3-(4-methoxybenzyl)-chroman-4-one (1), 5,7-dihydroxy-3-(4-methoxybenzyl)-chroman-4-one (2), cantalasaponin-1 (4), and 2-hydroxy-butanedioic acid-1-methyl ester (5).

  16. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  17. Optimization of polysaccharides from Zagros oak leaf using RSM: antioxidant and antimicrobial activities.

    PubMed

    Tahmouzi, Saeed

    2014-06-15

    Ultrasonic assisted-extraction technique was applied to extract the polysaccharide from Zagros oak (Quercus brantii Lindl). The effects of four independent factors (ultrasonic power (X1: 150-300 W), extraction temperature (X2: 50-90°C), extraction time (X3: 30-90 min), and the ratio of water to raw material (X4: 15-45)) on the extraction yield of polysaccharide from the leaves of Q. brantii Lindl (QBLP) were optimized using response surface methodology. The experimental data obtained were fitted to a second-order polynomial equation. The optimal extraction conditions for QBLP were determined as follows: X1: 205.8 W, X2: 81.9°C, X3: 55.6 min and X4: 23.4. Under these optimal conditions, the experimental yield was 19.42 ± 0.53%, which was well matched with the value predicted by the model 19.61%. The results indicated that polysaccharide has strong scavenging activities in vitro on DPPH and hydroxyl radicals. In addition, the QBLP showed good antimicrobial activity at 1.5-2.5mg/mL.

  18. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  19. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    PubMed

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  20. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress

    PubMed Central

    Salinas, Carlos; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported. PMID:27454873

  1. Comparative evaluation of the effect of chlorhexidine and Aloe barbadensis Miller (Aloe vera) on dentin stabilization using shear bond testing

    PubMed Central

    Sinha, Dakshita Joy; Jaiswal, Natasha; Vasudeva, Agrima; Garg, Paridhi; Tyagi, Shashi Prabha; Chandra, Priyanka

    2016-01-01

    Introduction: The main objective of adhesive dentistry is to create an effective, durable union between the tooth structure and restorative material. However, degradation of adhesive dentine interface remains largely responsible for the relatively short lifetime of tooth colored resin restoration. Aim: The aim of the study is to compare the dentin collagen stabilization property of Chlorhexidine (CHX) and Aloe barbadensis Miller using shear bond strength testing. Materials and Methods: Occlusal reduction was done in sixty extracted human mandibular molars to expose the mid coronal dentin and divided into three groups n = 20. Following the surface pretreatment (Group 1 = control, Group 2 = CHX, Group 3 = Aloevera), dentine bonding agent and composite resin were applied and cured. The specimens were then subjected to shear bond strength testing. Results: From the results analyzed, it was noted that there was statistically significant difference between the groups Control and CHX and Control and A. barbadensis Miller (P < 0.05), specifically the values of Control < CHX and Control < A. barbadensis Miller (P < 0.05). However, there was no statistically significant difference between CHX and A. barbadensis Miller (P > 0.05). Hence, the following result for the shear bond strengths to dentin was obtained: Control < CHX ≈ A. barbadensis Miller. Conclusion: CHX and A. barbadensis Miller, as pretreatment agents of acid demineralized dentin collagen, has no adverse effect on the immediate shear bond strength of a two-step etch and rinse adhesive to dentin. PMID:27656056

  2. Nephroprotective Effect of the Leaves of Aloe barbadensis (Aloe Vera) against Toxicity Induced by Diclofenac Sodium in Albino Rabbits

    PubMed Central

    Iftikhar, A; Hasan, IJ; Sarfraz, M; Jafri, L; Ashraf, MA

    2015-01-01

    ABSTRACT Background: The present study was designed to evaluate the nephroprotective effect of the leaves of Aloe barbadensis against toxicity induced by diclofenac sodium in albino rabbits. Subjects and Method: Thirty-six healthy albino rabbits were randomly divided into six groups each with six animals. Group 1 served as the untreated control, group 2 was treated only with diclofenac sodium, group 3 with the nephroprotective drug silymarin and groups 4, 5, and 6 were treated with different doses of Aloe barbadensis, ie 200 mg/kg, 400 mg/kg and 600 mg/kg, respectively after being treated with diclofenac sodium. Blood samples were collected after every five days up to fifteen days. Haematological and histopathological parameters were determined by using diagnostic kits. Results: Results of haematological studies showed that use of the powder of Aloe barbadensis normalized the level of different factors eg, white blood cells (WBCs), red blood cells (RBCs), platelet count, packed cell volume (PCV), mean cell volume (MCV) and haemoglobin (Hb) values. Histopathological studies showed that Aloe barbadensis ameliorated pyknotic nuclei in the renal epithelial cells and reduced oxidative stress by increasing the level of catalase and decreasing malondialdehyde (MDA) level. Conclusion: These results have shown that Aloe barbadensis can normalize oxidative stress and can be used as an effective nephroprotective agent against drug-induced nephrotoxicity. PMID:27398602

  3. An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera.

    PubMed

    Boudreau, Mary D; Beland, Frederick A

    2006-04-01

    Aloe barbadensis (Miller), Aloe vera, has a long history of use as a topical and oral therapeutic. The plant is the source of two products, gel and latex, which are obtained from its fleshy leaves. Aloe vera products contain multiple constituents with potential biological and toxicological activities, yet the active components elude definition. Ingestion of Aloe vera is associated with diarrhea, electrolyte imbalance, kidney dysfunction, and conventional drug interactions; episodes of contact dermatitis, erythema, and phototoxicity have been reported from topical applications. This review examines the botany, physical and chemical properties, and biological activities of the Aloe vera plant.

  4. Antibiofilm polysaccharides

    PubMed Central

    Rendueles, Olaya; Kaplan, Jeffrey B.; Ghigo, Jean-Marc

    2012-01-01

    Summary Bacterial extracellular polysaccharides have been shown to mediate many of the cell-to cell and cell-to-surface interactions that are required for the formation, cohesion and stabilization of bacterial biofilms. However, recent studies have identified several bacterial polysaccharides that inhibit biofilm formation by a wide-spectrum of bacteria and fungi both in vitro and in vivo. This review discusses the composition, modes of action, and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukaria. Some of these molecules may have technological applications as antibiofilm agents in industry and medicine. PMID:22730907

  5. Fungal polysaccharides.

    PubMed

    San-Blas, G; Suzuki, S; Hearn, V; Pinel, C; Kobayashi, H; Mendez, C; Niño, G; Nishikawa, A; San-Blas, F; Shibata, N

    1994-01-01

    Fungal polysaccharides are cell wall components which may act as antigens or as structural substrates. As antigens, the role of mannans in Saccharomyces cerevisiae and Candida albicans, and of glycoproteins in Aspergillus fumigatus are discussed. Analyses on beta-glucan synthetase in Paracoccidioides brasiliensis and the inhibitory effect of Hansenula mrakii killer toxin on beta-glucan biosynthesis are also considered.

  6. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  7. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu.

    PubMed

    Zhang, Tian-Tian; Lu, Chuan-Li; Jiang, Jian-Guo; Wang, Min; Wang, Dong-Mei; Zhu, Wei

    2015-10-05

    Polysaccharides of Rubus chingii Hu fruit and leaf were extracted to compare their antioxidant, anti-inflammatory, and anticancer activities against breast cancer cells MCF-7 and liver cancer cells Bel-7402. Results showed that all the tested bioactivities of polysaccharides from leaf (L-Ps) were better than those of polysaccharides from fruit (F-Ps). Response surface methodology was then used to optimize the extraction conditions of polysaccharides from leaf. Additionally, polysaccharides from fruit and leaf were characterized and their contents of total sugars, proteins and uronic acid were compared. It was found that polysaccharides from fruit and leaf were similar in IR and UV absorption, but significantly different in contents of total sugars, protein and uronic acid. Their elution profiles of DEAE-Sepharose fast flow column were different too. The main peak of polysaccharides from fruit was eluted with 0.3 mol/l NaCl solution and the main peak of polysaccharides from leaf was eluted with deionized water. The differences between the two polysaccharides may be responsible for their differences in bioactivities. Further studies are required to explore their complete structural characteristics, structure-activity relationship and the mechanism of their activities.

  8. Topical Aloe Vera (Aloe barbadensis Miller) Extract Does Not Accelerate the Oral Wound Healing in Rats.

    PubMed

    Coelho, Fernanda Hack; Salvadori, Gabriela; Rados, Pantelis Varvaki; Magnusson, Alessandra; Danilevicz, Chris Krebs; Meurer, Luise; Martins, Manoela Domingues

    2015-07-01

    The effect of topical application of Aloe Vera (Aloe barbadensis Miller) extract was assessed on the healing of rat oral wounds in an in vivo model using 72 male Wistar rats divided into three groups (n = 24): control, placebo and Aloe Vera (0.5% extract hydroalcoholic). Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The Aloe Vera and placebo group received two daily applications. The animals were sacrificed after 1, 5, 10 and 14 days. Clinical analysis (ulcer area and percentage of repair) and histopathological analysis (degree of re-epithelialization and inflammation) were performed. The comparison of the differences between scores based on group and experimental period, both in quantitative and semi-quantitative analyses, was performed using the Kruskal-Wallis test. The significance level was 5%. On day 1, all groups showed predominantly acute inflammatory infiltrate. On day 5, there was partial epithelialization and chronic inflammatory infiltrate. On the days 10 and 14 total repair of ulcers was observed. There was no significant difference between groups in the repair of mouth ulcers. It is concluded that treatment using Aloe Vera as an herbal formulation did not accelerate oral wound healing in rats.

  9. Phenolic constituents in dried flowers of aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity.

    PubMed

    Keyhanian, Shirin; Stahl-Biskup, Elisabeth

    2007-06-01

    The dried flowers from Aloe vera (L.) Burm. f. (Aloe barbadensis Mill.) (Asphodelaceae) were analysed by means of HPLC-DAD and HPLC-MS/MS, verifying chlorogenic, caffeic, 5-P-coumaroylquinic, caffeoylshikimic, 5-feruloylquinic, 5-P-CIS-coumaroylquinic, P-coumaric and ferulic acid as well as luteolin, apigenin, quercetin, kaempferol, isoorientin, isovitexin and their 7-O-glucosides, saponarin and lutonarin. On searching for anthranoids in the flower extract, aloe-emodin as well as the glycosylchromone aloeresin B could be identified. Aloin A and B, the laxative principle of the drug Curaçao-Aloes, are not accumulated in the dried flowers. The polyphenol content of three different batches was 0.73 - 1.01% (+/- 0.05%) and the flavonoid content 0.24 - 0.34% (+/- 0.01%). The hydrophilic antioxidative capacity amounted to 85.7 - 94.9 (+/- 0.5) micromol TEAC/g dried Aloe vera flower and was directly correlated with the polyphenol and flavonoid contents.

  10. In vivo tracing of organophosphorus pesticides in cabbage (Brassica parachinensis) and aloe (Barbadensis).

    PubMed

    Qiu, Junlang; Chen, Guosheng; Zhou, Hong; Xu, Jianqiao; Wang, Fuxin; Zhu, Fang; Ouyang, Gangfeng

    2016-04-15

    In vivo solid-phase microextraction (SPME) sampling method coupled with gas chromatography-mass spectrometry (GC-MS) analysis was employed to trace the uptake and elimination of organophosphorus pesticides (OPPs) in two kinds of edible plants, cabbage (Brassica parachinensis) and aloe (Barbadensis). The metabolism of fenthion in aloe was also investigated by the liquid chromatography tandem mass spectrometry analysis (LC-MS/MS) to understand the fate of OPPs in living plants better. Transpiration stream concentration factor (TSCF) and depuration rate constants of the OPPs in living plants were obtained therein. The health risk of the OPPs treated aloe was estimated by the maximum residue limit (MRL) approach, and it revealed that the OPPs were rather safe for their fast degradable property. However, peak concentration of fenthion-sulfoxide was found to exceed the MRL and was higher than that of the parent fenthion, which indicated the potential risk of pesticide metabolites. This study highlighted the application of in vivo SPME for contaminant tracing in different living edible plants. The in vivo tracing method is very convenient and can provide more data to evaluate the risk of different pesticides, which are very important for the safety of agriculture production.

  11. Enzymatic Modifications of Polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  12. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  13. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  14. Phylogeny of Amazona barbadensis and the Yellow-headed Amazon complex (Aves: Psittacidae): a new look at South American parrot evolution.

    PubMed

    Urantówka, Adam Dawid; Mackiewicz, Paweł; Strzała, Tomasz

    2014-01-01

    The Yellow-shouldered Amazon (Amazona barbadensis) is the sole parrot of the genus Amazona that inhabits only dry forests. Its population has been dropping; therefore it has been the topic of many studies and conservation efforts. However, the phylogenetic relationship of this species to potential relatives classified within the Yellow-Headed Amazon (YHA) complex are still not clear. Therefore, we used more extensive data sets, including the newly sequenced mitochondrial genome of A. barbadensis, to conduct phylogenetic analyses. Various combinations of genes and many phylogenetic approaches showed that A. barbadensis clustered significantly with A. ochrocephala ochrocephala from Colombia and Venezuela, which created the Northern South American (NSA) lineage, clearly separated from two other lineages within the YHA complex, the Central (CA) and South American (SA). Tree topology tests and exclusion of rapidly evolving sites provided support for a NSA+SA grouping. We propose an evolutionary scenario for the YHA complex and its colonization of the American mainland. The NSA lineage likely represents the most ancestral lineage, which derived from Lesser Antillean Amazons and colonized the northern coast of Venezuela about a million years ago. Then, Central America was colonized through the Isthmus of Panama, which led to the emergence of the CA lineage. The southward expansion to South America and the origin of the SA lineage happened almost simultaneously. However, more intensive or prolonged gene flow or migrations have led to much weaker geographic differentiation of genetic markers in the SA than in the CA lineage.

  15. Phylogeny of Amazona barbadensis and the Yellow-Headed Amazon Complex (Aves: Psittacidae): A New Look at South American Parrot Evolution

    PubMed Central

    Strzała, Tomasz

    2014-01-01

    The Yellow-shouldered Amazon (Amazona barbadensis) is the sole parrot of the genus Amazona that inhabits only dry forests. Its population has been dropping; therefore it has been the topic of many studies and conservation efforts. However, the phylogenetic relationship of this species to potential relatives classified within the Yellow-Headed Amazon (YHA) complex are still not clear. Therefore, we used more extensive data sets, including the newly sequenced mitochondrial genome of A. barbadensis, to conduct phylogenetic analyses. Various combinations of genes and many phylogenetic approaches showed that A. barbadensis clustered significantly with A. ochrocephala ochrocephala from Colombia and Venezuela, which created the Northern South American (NSA) lineage, clearly separated from two other lineages within the YHA complex, the Central (CA) and South American (SA). Tree topology tests and exclusion of rapidly evolving sites provided support for a NSA+SA grouping. We propose an evolutionary scenario for the YHA complex and its colonization of the American mainland. The NSA lineage likely represents the most ancestral lineage, which derived from Lesser Antillean Amazons and colonized the northern coast of Venezuela about a million years ago. Then, Central America was colonized through the Isthmus of Panama, which led to the emergence of the CA lineage. The southward expansion to South America and the origin of the SA lineage happened almost simultaneously. However, more intensive or prolonged gene flow or migrations have led to much weaker geographic differentiation of genetic markers in the SA than in the CA lineage. PMID:24823658

  16. Polysaccharide-Based Vaccines

    NASA Astrophysics Data System (ADS)

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  17. Simultaneous qualitative and quantitative determination of phenolic compounds in Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight and high performance liquid chromatography-diode array detector.

    PubMed

    Wu, Xiaofang; Ding, Wenjing; Zhong, Jiasheng; Wan, Jinzhi; Xie, Zhiyong

    2013-06-01

    An effective and comprehensive method was developed for the simultaneous analysis of phenolic compounds in the dried exudate of Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight (LCMS-IT-TOF) and high performance liquid chromatography-diode array detector (HPLC-DAD). Qualitative analysis of all the compounds presented in A. barbadensis Mill was performed on LCMS-IT-TOF, and the diagnostic fragmentation patterns of different types of phenolic compounds (chromones, phenyl pyrones, naphthalene derivative, anthrones and anthraquinones) were discussed on the basis of ESI-IT-TOF MS of components in A. barbadensis Mill and eleven authentic standards. Under the optimal HPLC-DAD chromatographic conditions, quantification of 11 typical phenolic compounds in 15 batches of A. barbadensis Mill was achieved on an Agilent TC-C18 column using gradient elution with a solvent system of methanol and water at a flow rate of 1.0mLmin(-1) and detected at 230nm. All calibration curves exhibited good linear relationship (r(2)>0.9991). The relative standard deviation values for intraday precision were less than 2% with accuracies between 98.21% and 104.57%. The recoveries of the eleven analytes ranged from 97.53 to 105.00% with RSDs less than 2%. This is the first simultaneous characterization and quantitative determination of multiple phenolic compounds in A. barbadensis Mill from locally grown cultivars in China by LCMS-IT-TOF and HPLC-DAD, which can be applied to standardize the quality of A. barbadensis Mill and the future design of nutraceutical and cosmetic preparations.

  18. Hepatoprotective Activity of Herbal Composition SAL, a Standardize Blend Comprised of Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis.

    PubMed

    Yimam, Mesfin; Jiao, Ping; Moore, Breanna; Hong, Mei; Cleveland, Sabrina; Chu, Min; Jia, Qi; Lee, Young-Chul; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Hyun, Eu-Jin; Jung, Gayoung; Do, Seon Gil

    2016-01-01

    Some botanicals have been reported to possess antioxidative activities acting as scavengers of free radicals rendering their usage in herbal medicine. Here we describe the potential use of "SAL," a standardized blend comprised of three extracts from Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis, in mitigating chemically induced acute liver toxicities. Acetaminophen and carbon tetrachloride induced acute liver toxicity models in mice were utilized. Hepatic functional tests from serum collected at T24 and hepatic glutathione and superoxide dismutases from liver homogenates were evaluated. Histopathology analysis and merit of blending 3 standardized extracts were also confirmed. Statistically significant and dose-correlated inhibitions in serum ALT ranging from 52.5% (p = 0.004) to 34.6% (p = 0.05) in the APAP and 46.3% (p < 0.001) to 29.9% (p = 0.02) in the CCl4 models were observed for SAL administered at doses of 400-250 mg/kg. Moreover, SAL resulted in up to 60.6% and 80.2% reductions in serums AST and bile acid, respectively. The composition replenished depleted hepatic glutathione in association with an increase of hepatic superoxide dismutase. Unexpected synergistic protection from liver damage was also observed. Therefore, the composition SAL could be potentially utilized as an effective hepatic-detoxification agent for the protection from liver damage.

  19. Hepatoprotective Activity of Herbal Composition SAL, a Standardize Blend Comprised of Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis

    PubMed Central

    Yimam, Mesfin; Jiao, Ping; Moore, Breanna; Hong, Mei; Cleveland, Sabrina; Chu, Min; Jia, Qi; Lee, Young-Chul; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Hyun, Eu-Jin; Jung, Gayoung; Do, Seon Gil

    2016-01-01

    Some botanicals have been reported to possess antioxidative activities acting as scavengers of free radicals rendering their usage in herbal medicine. Here we describe the potential use of “SAL,” a standardized blend comprised of three extracts from Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis, in mitigating chemically induced acute liver toxicities. Acetaminophen and carbon tetrachloride induced acute liver toxicity models in mice were utilized. Hepatic functional tests from serum collected at T24 and hepatic glutathione and superoxide dismutases from liver homogenates were evaluated. Histopathology analysis and merit of blending 3 standardized extracts were also confirmed. Statistically significant and dose-correlated inhibitions in serum ALT ranging from 52.5% (p = 0.004) to 34.6% (p = 0.05) in the APAP and 46.3% (p < 0.001) to 29.9% (p = 0.02) in the CCl4 models were observed for SAL administered at doses of 400–250 mg/kg. Moreover, SAL resulted in up to 60.6% and 80.2% reductions in serums AST and bile acid, respectively. The composition replenished depleted hepatic glutathione in association with an increase of hepatic superoxide dismutase. Unexpected synergistic protection from liver damage was also observed. Therefore, the composition SAL could be potentially utilized as an effective hepatic-detoxification agent for the protection from liver damage. PMID:27066270

  20. Antimutagenicity and antigenotoxicity of Aloe arborescens Miller and Aloe barbadensis Miller in Aspergillus nidulans and Wistar rats.

    PubMed

    Berti, A P; Palioto, G F; Rocha, C L M S C

    2016-09-02

    Medicinal plants such as Aloe arborescens Miller and Aloe barbadensis Miller are used by the general population to treat various diseases. Therefore, the aim of this study was to evaluate the antimutagenicity of these two species using a methG1 system in Aspergillus nidulans and the comet assay in rats. The animals were treated with the plants at concentrations of 360 and 720 mg/kg body weight (1 and 2, respectively) by gavage for 14 days, followed by the administration of etoposide on treatment day 8. Blood samples were prepared for analysis of DNA damage. For the test in A. nidulans, the biA1methG1 lineage conidia were treated for 4 h with both plant species at concentrations of 4 and 8% (w/v). Then, they were washed and plated on a selective medium for frequency analysis of survival and mutation. The results of the comet assay showed that both plants were antigenotoxic compared to etoposide, which was not a typical response of methG1 systems, where only the highest concentration of plant extracts usually exhibit beneficial effects. This study demonstrates the potential antigenotoxicity and antimutagenicity of the Aloe plants tested and, therefore, supports their use as a form of preventive therapy and for health maintenance by the population.

  1. Acute inflammation and hematological response in Nile tilapia fed supplemented diet with natural extracts of propolis and Aloe barbadensis.

    PubMed

    Dotta, G; Ledic-Neto, J; Gonçalves, E L T; Brum, A; Maraschin, M; Martins, M L

    2015-05-01

    This study evaluated the acute inflammatory response induced by carrageenin in the swim bladder of Nile tilapia supplemented with the mixture of natural extracts of propolis and Aloe barbadensis (1:1) at a concentration of 0.5%, 1% and 2% in diet during 15 days. Thirty-six fish were distributed into four treatments with three replicates: fish supplemented with 0.5% of admix of extracts of propolis and Aloe (1:1) injected with 500 µg carrageenin; fish supplemented with 1% of admix of extracts of propolis and Aloe (1:1) injected with 500 µg carrageenin; fish supplemented with 2% of admix of extracts of propolis and Aloe (1:1), injected with 500 µg carrageenin and unsupplemented fish injected with 500 µg carrageenin. Six hours after injection, samples of blood and exudate from the swim bladder of fish were collected. It was observed an increase in the leukocyte count in the swim bladder exudate of fish supplemented with extracts of propolis and Aloe injected with carrageenin. The most frequent cells were macrophages followed by granular leukocytes, thrombocytes and lymphocytes. Supplementation with propolis and Aloe to 0.5% caused a significant increase in the number of cells on the inflammatory focus mainly macrophages, cells responsible for the phagocytic activity in tissues, agent of innate fish immune response.

  2. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.

  3. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  4. Aloe barbadensis Mill. formulation restores lipid profile to normal in a letrozole-induced polycystic ovarian syndrome rat model

    PubMed Central

    Desai, Bhavna N.; Maharjan, Radha H.; Nampoothiri, Laxmipriya P.

    2012-01-01

    Background: Polycystic ovarian syndrome (PCOS), characterized by ovulatory infertility and hyperandrogenism, is associated with metabolic complications such as dyslipidemia, insulin resistance and endothelial dysfunction. Almost 70% PCOS women have abnormal serum lipid levels (dyslipidemia) and 50% of these women are obese. Several classes of pharmacological agents have been used to manage dyslipidemia. However, studies have shown adverse effects associated with these drugs. In the light of alternate therapy, many medicinal herbs have been reported to show hypoglycemic, anti-hyperlipidemic potential. Aloe barbadensis Mill. or Aloe vera is reported as one such herb. This study was to evaluate the lipid correcting effect of Aloe vera gel (AVG) in a PCOS rat model. Materials and Methods: PCOS was induced in Charles Foster female rats by oral administration of non-steroidal aromatase inhibitor letrozole (0.5 mg/kg body weight, 21 days). All rats were hyperglycemic and 90% rats also showed elevated plasma triglycerides, elevated LDL cholesterol levels, and lowered plasma HDL cholesterol levels indicative of a dyslipidemic profile. PCOS positive rats with an aberrant lipid profile were selected for treatment. An AVG formulation (1 ml (10 mg)/day, 30 days) was administered orally. Results and Conclusion: AVG treated PCOS rats exhibited significant reduction in plasma triglyceride and LDL cholesterol levels, with an increase in HDL cholesterol. The gel treatment also caused reversion of abnormal estrous cyclicity, glucose intolerance, and lipid metabolizing enzyme activities, bringing them to normal. In conclusion, AVG has phyto components with anti-hyperlipidemic effects and it has shown efficacy in management of not only PCOS but also the associated metabolic complication : dyslipidemia. PMID:22518083

  5. Project LEAF

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  6. Leaf Development

    PubMed Central

    Tsukaya, Hirokazu

    2002-01-01

    The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants. The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy. Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the

  7. [Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale].

    PubMed

    Zhou, Gui-Fen; Pang, Min-Xia; Chen, Su-Hong; Lv, Gui-Yuan; Yan, Mei-Qiu

    2014-03-01

    In order to provide scientific basics for exploitation and sufficient application of Dendrobium officinale leaves resources, the phenol-sulfuric acid method was applied to determine the polysaccharide content. The monosaccharides were derivated by PMP and the derivatives were identified by HPLC-DAD-ESI-MS(n) and the contents of mannose and glucose were determined simultaneously. Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004A) was employed to generate the mean chromatogram and similarity analysis of the samples was carried out. The results demonstrated that polysaccharide content, monosaccharide compositions and composition ratio had an obvious difference between stems and leaves. The polysaccharide content of stems was higher than that of leaves. Monosaccharide composition in leaf was significantly different from that in stem. The polysaccharide from stems was composed of mannose and glucose, however the polysaccharide of leaves was acid heteropolysaccharide and was mainly composed of five monosaccharides, including mannose, galacturonic acid, glucose, galactose and arabinose. The similarity value of the 14 batches was above 0.9, indicating that similarity of fingerprints among different samples was high. The study can provide evidence for expanding the medicinal parts of D. officinale.

  8. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  9. CAPSULAR POLYSACCHARIDE OF AZOTOBACTER AGILIS.

    PubMed

    COHEN, G H; JOHNSTONE, D B

    1964-12-01

    Cohen, Gary H. (University of Vermont, Burlington), and Donald B. Johnstone. Capsular polysaccharide of Azotobacter agilis. J. Bacteriol. 88:1695-1699. 1964.-Capsular polysaccharide from Azotobacter agilis strain 132 was recovered from washed cells by alkaline digestion. The polysaccharide was purified by centrifugation, repeated alcohol precipitation, Sevag deproteinization, and treatment with ribonuclease and charcoal-cellulose. Methods of isolation and purification appeared to provide a polymer showing no evidence of heterogeneity when examined by chemical and physical methods. Colorimetric, paper chromatographic, and enzymatic analyses on both intact and acid-hydrolyzed polysaccharide indicated that the polymer contained galactose and rhamnose at a molar ratio of approximately 1.0:0.7. A sialic acid-like component was also present in the polysaccharide. The study shows significant differences in the chemical composition of the extra-cellular polysaccharide of A. agilis and that of A. vinelandii. This adds further biochemical evidence for the right of these species to independent status.

  10. Complete mitochondrial genome of endangered Yellow-shouldered Amazon (Amazona barbadensis): two control region copies in parrot species of the Amazona genus.

    PubMed

    Urantowka, Adam Dawid; Hajduk, Kacper; Kosowska, Barbara

    2013-08-01

    Amazona barbadensis is an endangered species of parrot living in northern coastal Venezuela and in several Caribbean islands. In this study, we sequenced full mitochondrial genome of the considered species. The total length of the mitogenome was 18,983 bp and contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, duplicated control region, and degenerate copies of ND6 and tRNA (Glu) genes. High degree of identity between two copies of control region suggests their coincident evolution and functionality. Comparative analysis of both the control region sequences from four Amazona species revealed their 89.1% identity over a region of 1300 bp and indicates the presence of distinctive parts of two control region copies.

  11. [Effects of plant polysaccharide compound agents on the photosynthetic characteristics and dry matter of soybean].

    PubMed

    Bai, Wen-Bo; Song, Ji-Qing; Guo, Jin-Yi; Liu, Xing-Hai; Li, Ji-Hui

    2012-07-01

    A field experiment was conducted to study the effects of foliar spraying three compound agents [plant polysaccharides (P1), plant polysaccharides and 5-aminolevulinic acid (P2), and plant polysaccharides and 5-aminolevulinic acid and dimethylpiperidinium chloride (P3)] at the initial flowering stage of soybean on its leaf chlorophyll content, photosynthesis and transpiration, dry matter accumulation and allocation, and grain yield. Within 35 days after spraying the three compound agents, the leaf chlorophyll content had obvious increase, and its decreasing trend with plant growth had somewhat delay. Compared with the control, spraying P1 and P3 increased the leaf photosynthetic rate and water use efficiency by more than 13.2% and 10.3%, respectively. With the spraying of the three compound agents, the dry matter accumulation in aerial part increased, and the allocation of dry matter from leaf to pod was also enhanced, with the contribution of post-anthesis assimilates to grain yield increased by more than 17.1%. The 100-grain mass and the pods and seeds per plant increased significantly after spraying P1 and P3, but had no significant increase after spraying P2. The grain yield of soybean treated with the three compound agents increased by more than 5.9%, compared with the control. This study showed that the three plant polysaccharide compound agents could increase the leaf chlorophyll content, delay the leaf-senescence, improve the leaf photosynthetic capacity and water status, effectively control the dry matter accumulation and post-anthesis assimilates allocation, and increase the grain yield of soybean.

  12. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  13. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  14. Why were polysaccharides necessary?

    PubMed

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, 'compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  15. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  16. Polysaccharides and bacterial plugging

    SciTech Connect

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  17. Polysaccharides from Extremophilic Microorganisms

    NASA Astrophysics Data System (ADS)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  18. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases

    PubMed Central

    Frandsen, Kristian E. H.; Simmons, Thomas J.; Dupree, Paul; Poulsen, Jens-Christian N.; Hemsworth, Glyn R.; Ciano, Luisa; Johnston, Esther M.; Tovborg, Morten; Johansen, Katja S.; von Freiesleben, Pernille; Marmuse, Laurence; Fort, Sébastien; Cottaz, Sylvain; Driguez, Hugues; Henrissat, Bernard; Lenfant, Nicolas; Tuna, Floriana; Baldansuren, Amgalanbaatar; Davies, Gideon J.; Leggio, Leila Lo; Walton, Paul H.

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes which oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here the first structural determination of an LPMO–oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains. PMID:26928935

  19. A threading receptor for polysaccharides

    NASA Astrophysics Data System (ADS)

    Mooibroek, Tiddo J.; Casas-Solvas, Juan M.; Harniman, Robert L.; Renney, Charles M.; Carter, Tom S.; Crump, Matthew P.; Davis, Anthony P.

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M-1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

  20. Influence of high hydrostatic pressure on quality parameters and structural properties of aloe vera gel (Aloe barbadensis Miller).

    PubMed

    Vega-Gálvez, Antonio; Miranda, Margarita; Nuñez-Mancilla, Yissleen; Garcia-Segovia, Purificación; Ah-Hen, Kong; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario

    2014-10-01

    The aim of this work was to study the effect of high hydrostatic pressure (HHP) on colour, dietary fibre, vitamin C content, polysaccharides content, physico-chemical and structural properties of aloe vera gel at three pressure levels (300, 400 and 500 MPa for 3 min) after 35 days of storage at 4 ± 1 °C. The results showed that HHP exerted a clear influence on most of the quality parameters studied. Moisture, protein and fat contents did not show changes with an increasing pressure. Ash, crude fibre and carbohydrates content increased with increasing pressure. Vitamin C content did not show significant differences after 35 days of storage. The variation of colour in the samples increased at 500 MPa. Total dietary fibre, water holding capacity and firmness increased with pressure. However, all HHP-treated samples presented a decrease in hydration ratio and polysaccharides content; and also minor alterations in the structural properties were produced at HHP of 300-500 MPa, resulting in a high quality gel.

  1. Preparation of polysaccharides from wax gourd.

    PubMed

    Huang, Gangliang; Tan, Jiantao; Tan, Xianchun; Peng, Daquan

    2011-08-01

    Preparation of polysaccharides from the wax gourd was studied. The crude polysaccharides were extracted by ethanol precipitation, and deproteinized by the hydrochloric acid method. The deproteinized polysaccharides were separated by column chromatography to obtain the pure polysaccharides. The pure polysaccharides have a β-D-pyranosidic bond, and their molecular weight distribution is about 22,500. It was indicated that the final product had much more purity by IR spectrum analysis, UV absorption spectrum analysis, and phenol-sulfuric acid method, respectively. It was proved that wax gourd polysaccharides were composed of rhamnose, xylose, arabinose, mannose, glucose, and galactose by thin layer chromatography.

  2. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  3. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  4. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  5. Polysaccharides templates for assembly of nanosilver.

    PubMed

    Emam, Hossam E; Ahmed, Hanan B

    2016-01-01

    Polysaccharides are particularly attractive in biomedical applications due to its biodegradability and biocompatibility. In addition to its ecofriendly effects and easy processing into different hydrogel shapes, made polysaccharides used on a large scale as suitable media for preparation of silver nanoparticles (AgNPs). In spite of, most of polysaccharides are water insoluble, but it has shown to be quite efficient capping agents and/or nanoreactor matrices for production of AgNPs. Several methods have been developed to get the benefit of multi-functionality for polysaccharides' macromolecules in preparation of AgNPs. Therefore, recently, preparation of nanosilver using different polysaccharides have been the focus of an exponentially increasing number of works devoted to develop nanocomposites by blending AgNPs with different polysaccharides matrices. The current review represents a wide survey for the published studies which interested in using of polysaccharides in nanosilver preparations.

  6. Chitosan effects on physiochemical indicators of drought-induced leaf stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit stress in crops is associated with leaf senescence, a damaging oxidative process that is irreversible once it is initiated. This study was conducted to assess the effect of chitosan, a marine polysaccharide with unique bioactive properties that scavenges for reactive oxygen species; h...

  7. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  8. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  9. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  10. Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions.

    PubMed

    Huerta, Claudia; Freire, Matías; Cardemil, Liliana

    2013-02-01

    KEY MESSAGE : The study determined the tolerance of Aloe vera to high temperature, focusing on the expression of hsp70 , hsp100 and ubiquitin genes. These were highly expressed in plants acclimated at 35 °C prior to a heat shock of 45 °C. Aloe barbadensis Miller (Aloe vera), a CAM plant, was introduced into Chile in the semiarid IV and III Regions, which has summer diurnal temperature fluctuations of 25 to 40 °C and annual precipitation of 40 mm (dry years) to 170 mm (rainy years). The aim of this study was to investigate how Aloe vera responds to water and heat stress, focusing on the expression of heat shock genes (hsp70, hsp100) and ubiquitin, which not studied before in Aloe vera. The LT(50) of Aloe vera was determined as 53.2 °C. To study gene expression by semi-quantitative RT-PCR, primers were designed against conserved regions of these genes. Sequencing the cDNA fragments for hsp70 and ubiquitin showed a high identity, over 95 %, with the genes from cereals. The protein sequence of hsp70 deduced from the sequence of the cDNA encloses partial domains for binding ATP and the substrate. The protein sequence of ubiquitin deduced from the cDNA encloses a domain for interaction with the enzymes E2, UCH and CUE. The expression increased with temperature and water deficit. Hsp70 expression at 40-45 °C increased 50 % over the controls, while the expression increased by 150 % over the controls under a water deficit of 50 % FC. The expression of all three genes was also studied under 2 h of acclimation at 35 or 40 °C prior to a heat shock at 45 °C. Under these conditions, the plants showed greater expression of all genes than when they were subjected to direct heat stress.

  11. Bioactive polysaccharides and gut microbiome (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  12. Polysaccharide Based Hydrogels for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Leone, Gemma; Barbucci, Rolando

    Polysaccharide based hydrogels for their physico-chemical and biological properties can be used as scaffolds for soft tissue regneration and as vehicles for drug controlled release. For both these applications, Hyaluronan shows optimal characteristics even though its quick enzymatic degradability makes this natural polysaccharide unsuitable for applications which require prolonged presence in the human organism.

  13. Solution NMR spectroscopy of food polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  14. [Infrared spectroscopic study on leaf senescence of evergreen tree].

    PubMed

    Li, Lun; Zhou, Xiang-Ping; Liu, Gang; Zhang, Li; Ou, Quan-Hong; Hao, Jian-Ming

    2013-02-01

    In order to investigate plant physiological process of leaf senescence and aging, Fourier transform infrared (FTIR) spectroscopy was used to study the young, mature, and old yellow leaves from seven species of evergreen trees. The spectra of the leaves from different growing period are different in the region of 1 800-700 cm(-1). The absorption ratios A1 070/A2 927, A1 070/A1 160 were used to evaluate the relative changes of polysaccharides, and A1 318/A2 922 was used to estimate the change of calcium oxalate during leaf senescence. Decomposition and curve-fitting analysis was performed in the region of 1 800 -1 500 cm(-1). The sub-band absorption ratio H1 650/H1 740 was used to evaluate the relative changes of protein in the leaves. The results show that the accumulation and mobilization of polysaccharides, protein, and calcium oxalate during leaf growing period were different in different plant species. This study demonstrates the potential of mid-infrared spectroscopy for investigation of plants senescence, as well as physiological and biochemical changes of plants.

  15. Polysaccharides in colon-specific drug delivery.

    PubMed

    Sinha, V R; Kumria, R

    2001-08-14

    Natural polysaccharides are now extensively used for the development of solid dosage forms for delivery of drug to the colon. The rationale for the development of a polysaccharide based delivery system for colon is the presence of large amounts of polysaccharidases in the human colon as the colon is inhabited by a large number and variety of bacteria which secrete many enzymes e.g. beta-D-glucosidase, beta-D-galactosidase, amylase, pectinase, xylanase, beta-D-xylosidase, dextranase, etc. Various major approaches utilizing polysaccharides for colon-specific delivery are fermentable coating of the drug core, embedding of the drug in biodegradable matrix, formulation of drug-saccharide conjugate (prodrugs). A large number of polysaccharides have already been studied for their potential as colon-specific drug carrier systems, such as chitosan, pectin, chondroitin sulphate, cyclodextrin, dextrans, guar gum, inulin, amylose and locust bean gum. Recent efforts and approaches exploiting these polysaccharides in colon-specific drug delivery are discussed.

  16. Unexplored possibilities of all-polysaccharide composites.

    PubMed

    Simkovic, Ivan

    2013-06-20

    Composites made solely from polysaccharides are mostly ecological because they can degrade without leaving behind ecologically harmful residues, in contrast to composites which contain synthetic polymers. Herein, the following groups of all-polysaccharide composites (APCs) are discussed: an all-cellulose group that includes cotton composites, cellulose combined with other polysaccharides, as well as those based on chitin/chitosan, heparin, hyaluronan, xylan, glucomannan, pectin, xyloglucan, arabinan, starch, carrageenan, alginate, galactan as one of the components in combination with other polysaccharides. They can be used in medical, paper, food, packing, textile, electronic, mechanical engineering and other applications. The composites were tested for absorptivity, biodegradability, crystallinity, rheology, and mechanical, optical, separation, gelling, pasting, film-forming, adhesive, antimicrobial properties, as well as water vapor permeability, water repellency, dye uptake, and fire-retardancy. Except for food applications, composites based on more than two types of polysaccharides have rarely been used and many possible combinations remain unexplored.

  17. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study.

    PubMed

    Corbin, Kendall R; Byrt, Caitlin S; Bauer, Stefan; DeBolt, Seth; Chambers, Don; Holtum, Joseph A M; Karem, Ghazwan; Henderson, Marilyn; Lahnstein, Jelle; Beahan, Cherie T; Bacic, Antony; Fincher, Geoffrey B; Betts, Natalie S; Burton, Rachel A

    2015-01-01

    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.

  18. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study

    PubMed Central

    Corbin, Kendall R.; Byrt, Caitlin S.; Bauer, Stefan; DeBolt, Seth; Chambers, Don; Holtum, Joseph A. M.; Karem, Ghazwan; Henderson, Marilyn; Lahnstein, Jelle; Beahan, Cherie T.; Bacic, Antony; Fincher, Geoffrey B.; Betts, Natalie S.; Burton, Rachel A.

    2015-01-01

    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like—rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47–50% w/w) and non-cellulosic polysaccharides (16–22% w/w), and whole leaves were low in lignin (9–13% w/w). Of the dry mass of whole Agave leaves, 85–95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41–48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition. PMID:26305101

  19. Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium

    PubMed Central

    Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian

    2017-01-01

    Objectives Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. Methods This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). Results For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans. The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. Conclusions The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger (p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger. PMID:28042402

  20. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  1. Vacuum Ultraviolet Action Spectroscopy of Polysaccharides

    NASA Astrophysics Data System (ADS)

    Enjalbert, Quentin; Brunet, Claire; Vernier, Arnaud; Allouche, Abdul-Rahman; Antoine, Rodolphe; Dugourd, Philippe; Lemoine, Jérôme; Giuliani, Alexandre; Nahon, Laurent

    2013-08-01

    We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.

  2. Leaf growth is conformal

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki

    2016-10-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.

  3. Serogroup quantitation of multivalent polysaccharide and polysaccharide-conjugate meningococcal vaccines from China.

    PubMed

    Cook, Matthew C; Gibeault, Sabrina; Filippenko, Vasilisa; Ye, Qiang; Wang, Junzhi; Kunkel, Jeremy P

    2013-07-01

    The active components of most meningococcal vaccines are four antigenic serogroup capsular polysaccharides (A, C, Y, W135). The vaccines, monovalent or multivalent mixtures of either free polysaccharides or polysaccharides conjugated to antigenic carrier proteins, may be in liquid or lyophilised formulations, with or without excipients. Acid hydrolysis and chromatographic methods for serogroup quantitation, which were previously optimised and qualified using polysaccharide-based standards and a narrow range of real vaccines, are here challenged with multiple lots of a broad assortment of additional multivalent polysaccharide-based meningococcal vaccine products. Centrifugal filtration successfully removed all interfering lactose excipient without loss of polysaccharides to allow for the determination of Y and W135 serogroups. Replicate operations by three different analysts indicated high method reproducibility. Results indicated some lot-to-lot and product-to-product variations. However, all vaccines were within general specifications for each serogroup polysaccharide, with the exception of all lots of one polysaccharide vaccine - which by these methods were found to be deficient in the serogroup A component only. These robust techniques are very useful for the evaluation of antigen content and consistency of manufacture. The deformulation, hydrolysis and chromatographic methods may be adaptable for the evaluation of other types of polysaccharide-based vaccines.

  4. Project LEAF Documents

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  5. Polysaccharide-based Nanoparticles for Gene Delivery.

    PubMed

    Huh, Myung Sook; Lee, Eun Jung; Koo, Heebeom; Yhee, Ji Young; Oh, Keun Sang; Son, Sohee; Lee, Sojin; Kim, Sun Hwa; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-04-01

    Nanoparticles based on nanotechnology and biotechnology have emerged as efficient carriers for various biopharmaceutical agents including proteins and genes. In particular, polysaccharides have attracted interest of many researchers in the drug delivery field due to their advantages such as biocompatibility, biodegradability, low toxicity, and ease of modification. A number of polysaccharides including chitosan, hyaluronic acid, and dextran, and their derivatives have been widely used as polymeric backbones for the formation of nanoparticles, which can be provided as valuable gene delivery carriers. In this review, we introduce the chemical and physical natures of different polysaccharides particularly used in biomedical applications, and then discuss recent progress in the development of polysaccharide-based nanoparticles for gene delivery.

  6. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  7. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  8. Deer predation on leaf miners via leaf abscission.

    PubMed

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer (Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  9. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides.

  10. Damped leaf flexure hinge

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Chen, Guisheng; Zhang, Xianmin

    2015-05-01

    Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism's design stage.

  11. Mycoplasma polysaccharide protects against complement

    PubMed Central

    Bolland, Jeffrey R.; Simmons, Warren L.; Daubenspeck, James M.

    2012-01-01

    Although they lack a cell wall, mycoplasmas do possess a glycocalyx. The interactions between the glycocalyx, mycoplasmal surface proteins and host complement were explored using the murine pathogen Mycoplasma pulmonis as a model. It was previously shown that the length of the tandem repeat region of the surface lipoprotein Vsa is associated with susceptibility to complement-mediated killing. Cells producing a long Vsa containing about 40 repeats are resistant to complement, whereas strains that produce a short Vsa of five or fewer repeats are susceptible. We show here that the length of the Vsa protein modulates the affinity of the M. pulmonis EPS-I polysaccharide for the mycoplasma cell surface, with more EPS-I being associated with mycoplasmas producing a short Vsa protein. An examination of mutants that lack EPS-I revealed that planktonic mycoplasmas were highly susceptible to complement killing even when the Vsa protein was long, demonstrating that both EPS-I and Vsa length contribute to resistance. In contrast, the mycoplasmas were resistant to complement even in the absence of EPS-I when the cells were encased in a biofilm. PMID:22504437

  12. Viscoelastic properties of levan polysaccharides

    NASA Astrophysics Data System (ADS)

    Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru

    2014-03-01

    Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.

  13. EXTRACELLULAR POLYSACCHARIDES OF AZOTOBACTER VINELANDII1

    PubMed Central

    Cohen, Gary H.; Johnstone, Donald B.

    1964-01-01

    Cohen, Gary H. (University of Vermont, Burlington), and Donald B. Johnstone. Extracellular polysaccharides of Azotobacter vinelandii. J. Bacteriol. 88:329–338. 1964.—Extracellular polysaccharides synthetized by Azotobacter vinelandii strains 155, 102, and 3A were shown to be carboxylic acid heteropolysaccharides of apparent high molecular weight. Cells were grown in a nitrogen-free, mineral broth medium with 2% sucrose. Extracellular slime was recovered by centrifugation and purified by repeated alcohol precipitation and Sevag deproteinization. Capsular polysaccharide was recovered from washed cells by mild alkaline digestion. Methods of isolation and purification appeared to provide polysaccharide showing no evidence of heterogeneity when examined by chemical and physical methods. Infrared analysis of purified slime from the three strains suggested fundamental structural similarities. Colorimetric, paper chromatographic, and enzymatic analyses on both intact and acid-hydrolyzed slime polysaccharide indicated that the polymers contained in common galacturonic acid, [α] d-glucose, and rhamnose at a ratio of approximately 43:2:1, as well as a hexuronic acid lactone, probably mannurono-lactone. However, as shown by chemical and infrared analysis, minor differences did exist; namely, slime from strain 155 and 102 contained o-acetyl groups, whereas slime from strain 3A contained none. A sialic acid-like component (1.5% of dry weight of the polysaccharide, calculated as N-acetyl neuraminic acid), was found only in the slime of strain 155. Capsular polysaccharide composition closely resembled that for slime. It is of interest that the major slime components were identical whether the energy source provided for the cells was sucrose, glucose, fructose, or ethanol. PMID:14203348

  14. Freshwater Plants Synthesize Sulfated Polysaccharides: Heterogalactans from Water Hyacinth (Eicchornia crassipes)

    PubMed Central

    Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway. PMID:22312297

  15. Freshwater plants synthesize sulfated polysaccharides: heterogalactans from Water Hyacinth (Eicchornia crassipes).

    PubMed

    Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway.

  16. Anticoagulant Activity of Polyphenolic-Polysaccharides Isolated from Melastoma malabathricum L.

    PubMed Central

    Abas, Faridah; Abdullah, Janna Ong; Mohd Tohit, Eusni Rahayu; Hamid, Muhajir

    2014-01-01

    Melastoma malabathricum Linn. is a perennial traditional medicine plants that grows abundantly throughout Asian countries. In this study, M. malabathricum Linn. leaf hot water crude extract with anticoagulant activity was purified through solid phase extraction cartridge and examined for the bioactive chemical constituents on blood coagulation reaction. The SPE purified fractions were, respectively, designated as F1, F2, F3, and F4, and each was subjected to the activated partial thromboplastin time (APTT) anticoagulant assay. Active anticoagulant fractions (F1, F2, and F3) were subjected to chemical characterisation evaluation. Besides, neutral sugar for carbohydrate part was also examined. F1, F2, and F3 were found to significantly prolong the anticoagulant activities in the following order, F1 > F2 > F3, in a dose dependent manner. In addition, carbohydrate, hexuronic acid, and polyphenolic moiety were measured for the active anticoagulant fractions (F1, F2, and F3). The characterisation of chemical constituents revealed that all these three fractions contained acidic polysaccharides (rhamnogalacturonan, homogalacturonan, and rhamnose hexose-pectic type polysaccharide) and polyphenolics. Hence, it was concluded that the presence of high hexuronic acids and polysaccharides, as well as polyphenolics in traditional medicinal plant, M. malabathricum, played a role in prolonging blood clotting in the intrinsic pathway. PMID:24987430

  17. Biochemical properties of polysaccharides from black pepper.

    PubMed

    Chun, Hyug; Shin, Dong Hoon; Hong, Bum Shik; Cho, Won Dai; Cho, Hong Yon; Yang, Han Chul

    2002-09-01

    The purified polysaccharides from Piper nigrum were prepared as follows: a hot water extract of pepper seeds was fractionated by ultrafiltration with a 5-kDa-membrane cartridge. A fraction with 5 kDa or bigger molecules was successively purified by open column chromatography on DEAE-Toyopearl 650C and Bio-gel P-60 with each active fraction, resulting in PN-Ib and PN-IIa, purified anti-complementary polysaccharides. None of the anti-complementary activity of any polysaccharide was changed by pronase digestion or polymyxin B treatment, but they were decreased by periodate oxidation. Analysis of component sugar and molecular mass determination of the anti-complementary polysaccharides indicated that PN-Ib with an average molecular mass of 21 kDa contained 88.5% glucose and other negligible minor monosaccharides, while PN-IIa showed a different monosaccharide composition, which contained a significant proportion of galactose, arabinose, galacturonic acid and rhamnose. The molar ratio of galactose and arabinose of PN-IIa (48 kDa) was 1.93:1. PN-1 did not react with beta-glucosyl Yariv reagent, however, PN-IIa did react, which indicated that PN-IIa might be an arabinogalactan. Based upon these results, the usefulness of purified anti-complementary polysaccharides from Piper nigrum is suggested as a supplement for immune enhancement.

  18. Inhibitory effect of polysaccharide peptide (PSP) against Tobacco mosaic virus (TMV).

    PubMed

    Zhao, Lei; Hao, Xingan; Wu, Yunfeng

    2015-04-01

    Polysaccharides are essential macromolecules present in all living organisms, and have many kinds of biological activities, such as anti-oxidation, hypoglycemic, enhancing immunity, anti-aging, anti-rheumatism, anti-cancer and so on. In this study, the antiviral activity of polysaccharide peptide (PSP) was tested, compared with Ningnanmycin, and firstly found it has a stronger antiviral activity by using half-leaf method and leaf disk method. Subsequently, the mechanism of antiviral activity of PSP was preliminarily studied. As a result, its antiviral effect was better than the commercial agent Ningnanmycin, despite of protective effect, curative effect and inactivation effect. On the other hand, PSP as a commercial anti-cancer drug could easily and rapidly get in large quantities by liquid fermentation, which makes the industrialized production feasible. Also PSP is less toxic, easily biodegradable and ecofriendly. All the results are suggesting that PSP has potential as a pesticide to be used for the control of plant virus in the future.

  19. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    DOEpatents

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  20. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  1. Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves.

    PubMed

    Mensi, Imene; Daugrois, Jean-Heinrich; Pieretti, Isabelle; Gargani, Daniel; Fleites, Laura A; Noell, Julie; Bonnot, Francois; Gabriel, Dean W; Rott, Philippe

    2016-02-01

    Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-β-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.

  2. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  3. Depolymerization of sulfated polysaccharides under hydrothermal conditions.

    PubMed

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

    2014-01-30

    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  4. Learning from microbial strategies for polysaccharide degradation.

    PubMed

    Hemsworth, Glyn R; Déjean, Guillaume; Davies, Gideon J; Brumer, Harry

    2016-02-01

    Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits.

  5. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine.

  6. Cellular immunity to Bacteroides fragilis capsular polysaccharide

    PubMed Central

    1982-01-01

    The polysaccharide capsule of Bacteroides fragilis has been shown to be important in the virulence of the organism. The capsular polysaccharide (CP) of B. fragilis has been extensively purified. Using a murine model of intraabdominal abscess formation, we have been able to demonstrate cellular immunity to the capsular polysaccharide of B. fragilis. Immunization of C57BL/10J mice with the CP over 5 wk prevents abscess formation when the mice are challenged with B. fragilis intraperitoneally. This immunity can be transferred to naive mice with spleen cells from immune animals. The immune cells bear Thy-1.2 and Ly- 2.2 antigens. The immune response has been shown to be antigen specific, but not H-2 restricted. The possibility that these immune cells are suppressor T cells is discussed. The experimental system presented provides a model for the examination of the cellular interactions responsible for abscess formation and the cellular response to bacterial pathogens. PMID:6174672

  7. Comparative leaf development in angiosperms.

    PubMed

    Tsukaya, Hirokazu

    2014-02-01

    Recent accumulation of our knowledge on basic leaf development mechanisms in model angiosperm species has allowed us to pursue evolutionary development (evo/devo) studies of various kinds of leaf development. As a result, unexpected findings and clues have been unearthed aiding our understanding of the mechanisms involved in the diversity of leaf morphology, although the covered remain limited. In this review, we highlight recent findings of diversified leaf development in angiosperms.

  8. Bacterial leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial leaf spot has been reported in Australia (Queensland), Egypt, El Salvador, India, Japan, Nicaragua, Sudan, and the United States (Florida, Iowa, Kansas, Maryland, and Wisconsin). It occasionally causes locally severe defoliation and post-emergence damping-off and stunting. The disease is...

  9. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  10. [Component analysis on polysaccharides in exocarp of Ginkgo biloba].

    PubMed

    Song, G; Xu, A; Chen, H; Wang, X

    1997-09-01

    This paper reports the content and component analysis on polysaccharides in exocarp of Ginkgo biloba. The results show that the content of total saccharides is 89.7%; content of polysaccharides is 84.6%; content of reductic saccharides is 5.1%; the polysaccharides are composed of glucose, fructose, galactose and rhamnose.

  11. Polysaccharide-based strategies for heart tissue engineering.

    PubMed

    Silva, Amanda K A; Juenet, Maya; Meddahi-Pellé, Anne; Letourneur, Didier

    2015-02-13

    Polysaccharides are abundant biomolecules in nature presenting important roles in a wide variety of living systems processes. Considering the structural and biological functions of polysaccharides, their properties have raised interest for tissue engineering. Herein, we described the latest advances in cardiac tissue engineering mediated by polysaccharides. We reviewed the data already obtained in vitro and in vivo in this field with several types of polysaccharides. Cardiac injection, intramyocardial in situ polymerization strategies, and scaffold-based approaches involving polysaccharides for heart tissue engineering are thus discussed.

  12. Extraction and characterization of sugar beet polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar Beet Pulp (SBP), contains 65 to 80% (dry weight) of potentially valuable polysaccharides. We separated SBP into three fractions. The first fraction, extracted under acid conditions, was labeled pectin, the second was comprised of two sub fractions solubilized under alkaline conditions and wa...

  13. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  14. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  15. Bacillus subtilis biofilm induction by plant polysaccharides

    PubMed Central

    Beauregard, Pascale B.; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-01-01

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant. PMID:23569226

  16. Anticorrosive Microbial Polysaccharides: Structure-Function Relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...

  17. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  18. Sulfated polysaccharides and immune response: promoter or inhibitor?

    PubMed

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  19. Structure-function relationships of immunostimulatory polysaccharides: A review.

    PubMed

    Ferreira, Sónia S; Passos, Cláudia P; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A

    2015-11-05

    Immunostimulatory polysaccharides are compounds capable of interacting with the immune system and enhance specific mechanisms of the host response. Glucans, mannans, pectic polysaccharides, arabinogalactans, fucoidans, galactans, hyaluronans, fructans, and xylans are polysaccharides with reported immunostimulatory activity. The structural features that have been related with such activity are the monosaccharide and glycosidic-linkage composition, conformation, molecular weight, functional groups, and branching characteristics. However, the establishment of structure-function relationships is possible only if purified and characterized polysaccharides are used and selective structural modifications performed. Aiming at contributing to the definition of the structure-function relationships necessary to design immunostimulatory polysaccharides with potential for preventive or therapeutical purposes or to be recognized as health-improving ingredients in functional foods, this review introduces basic immunological concepts required to understand the mechanisms that rule the potential claimed immunostimulatory activity of polysaccharides and critically presents a literature survey on the structural features of the polysaccharides and reported immunostimulatory activity.

  20. Polysaccharide-producing bacteria isolated from paper machine slime deposits.

    PubMed

    Rättö, M; Suihko, M-L; Siika-aho, M

    2005-03-01

    Development of novel enzymatic methods for slime deposit control in paper mills requires knowledge of polysaccharide-producing organisms and the polysaccharide structures present in deposits. In this work, 27 polysaccharide-producing bacteria were isolated from slime samples collected from different parts of a paper machine. Most of the isolates produced polysaccharides in liquid culture and nine of them were selected for production of polysaccharides for characterisation. The selected isolates belonged to seven different genera: Bacillus, Brevundimonas, Cytophaga, Enterobacter, Klebsiella, Paenibacillus and Starkeya. Using ribotyping, partial 16S rDNA sequencing, physiological tests and fatty acid analysis, four of the nine isolates: Bacillus cereus, Brevundimonas vesicularis, K. pneumoniae and P. stellifer were identified to the species level. Production of polysaccharides by the selected isolates varied between 0.07 and 1.20 g L(-1), the highest amount being produced by B. vesicularis. The polysaccharides were heteropolysaccharides with varying proportions of galactose, glucose mannose, rhamnose fucose and uronic acids.

  1. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  2. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age1[OPEN

    PubMed Central

    Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. PMID:24913938

  3. Effects of segregation and impact of specific feeding behaviour and additional fruit on voluntary nutrient and energy intake in yellow-shouldered amazons (Amazona barbadensis) when fed a multi-component seed diet ad libitum.

    PubMed

    Kalmar, I D; Veys, A C; Geeroms, B; Reinschmidt, M; Waugh, D; Werquin, G; Janssens, G P J

    2010-12-01

    Parrots are commonly fed multi-component seed diets; however, both segregation and feeding behaviour might alter ingredient and nutrient composition of the offered diet. First, the nutritional impact of segregation was assessed as it occurs when multi-component diets are temporarily stored in food containers that are replenished before completely emptied and birds being fed from the upper layer. The most detrimental effect hereof was a vast decrease in mineral supplements, leading to a decrease in Ca:P ratio in the offered food in relation to the formulated diet. Next, caloric distribution shifted towards more EE energy at the expense of NFE energy, as proportion of oilseeds increased and NFE-rich seeds decreased. Next, a feeding trial was performed on six yellow-shouldered amazons (Amazona Barbadensis) in which nutritional impact of parrot-specific feeding behaviour was assessed as well as the influence of additional provision of fruit next to the seed mixture. Profound selective feeding behaviour and dehusking of seeds resulted in a vast increase in energetic density by up to 64% in the ingested fraction in relation to the offered mixture in toto. Furthermore, the already suboptimal Ca:P ratio further deteriorated and caloric distribution shifted by over twofold towards EE energy accompanied with a vast decline in NFE energy, CP energy remaining similar. Finally, provision of fruit next to the seed diet significantly lowered voluntary energy intake from 936 ± 71 to 809 ± 109 kJ ME/kg(0.75)/day, without compromising adequate protein intake. In conclusion, notwithstanding efforts of nutritionists to formulate diets to approximate estimated, species-specific requirements, nutritional composition of the actually consumed fraction of multi-component seed diets can be vastly deteriorated by both animal and management factors. Furthermore, offering of fruit next to a seed-based diet effectively reduces voluntary energy intake and can hence be applied to abate obesity.

  4. The worldwide leaf economics spectrum.

    PubMed

    Wright, Ian J; Reich, Peter B; Westoby, Mark; Ackerly, David D; Baruch, Zdravko; Bongers, Frans; Cavender-Bares, Jeannine; Chapin, Terry; Cornelissen, Johannes H C; Diemer, Matthias; Flexas, Jaume; Garnier, Eric; Groom, Philip K; Gulias, Javier; Hikosaka, Kouki; Lamont, Byron B; Lee, Tali; Lee, William; Lusk, Christopher; Midgley, Jeremy J; Navas, Marie-Laure; Niinemets, Ulo; Oleksyn, Jacek; Osada, Noriyuki; Poorter, Hendrik; Poot, Pieter; Prior, Lynda; Pyankov, Vladimir I; Roumet, Catherine; Thomas, Sean C; Tjoelker, Mark G; Veneklaas, Erik J; Villar, Rafael

    2004-04-22

    Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

  5. Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus.

    PubMed

    Byankina Barabanova, A O; Sokolova, E V; Anastyuk, S D; Isakov, V V; Glazunov, V P; Volod'ko, A V; Yakovleva, I M; Solov'eva, T F; Yermak, I M

    2013-10-15

    Sulfated polysaccharide isolated from tetrasporic plants of Tichocarpus crinitus was investigated. The polysaccharide was isolated by two methods: with water extraction at 80 °C (HT) and with a mild alkaline extraction (AE). The extracted polysaccharides were presented by non-gelling ones only, while galactose and 3,6-AG were the main monosaccharides, at the same time amount of 3,6-AG in AE polysaccharides was the similar to that of HT. According to methods of spectroscopy and mass spectrometry, the polysaccharide from tetrasporic T. crinitus contains main blocks of 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl while 6-sulfated 4-linked galactopyranosyl resudies are randomly distributed along the polysaccharide chain. The alkaline treatment of HT polysaccharide results in obtaining polysaccharide with regular structure that composed of alternating 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl residues. Native polysaccharide (HT) possessed both high anticoagulant and antiplatelet activity measured by fibrin clotting and platelet aggregation induced by collagen. This activity could be connected with peculiar chemical structure of HT polysaccharide which has high sulfation degree and contains also 3,6-anhydrogalactose in the polymer chain.

  6. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    PubMed

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology.

  7. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator.

  8. Immunogenic properties of Klebsiella pneumoniae type 2 capsular polysaccharide.

    PubMed Central

    Robert, A; Jouin, H; Fournier, J M

    1986-01-01

    The immunoprotective activity of Klebsiella pneumoniae K2 cell surface preparations and purified capsular polysaccharide was tested in mice. The 50% protective dose (PD50), expressed as capsular polysaccharide content, was 2 ng for cell surface preparations and 50 ng for purified capsular polysaccharide. Both preparations lost their immunoprotective activity after alkali treatment. Immune sera were raised in rabbits immunized with cell surface preparations. The precipitating and hemagglutinating capacity of these antisera was tested against either purified capsular polysaccharide or alkali-treated capsular polysaccharide. No difference was observed between the reactivity of the antisera against each antigen. The protective activity of these sera was tested on mice in passive transfer experiments, before and after absorption with either purified capsular polysaccharide or alkali-treated capsular polysaccharide. The sera lost their protective activity after absorption with purified capsular polysaccharide and after absorption with alkali-treated capsular polysaccharide. These experiments show that the difference in immunoprotective activity of cell surface preparations, purified capsular polysaccharide, and alkali-treated capsular polysaccharide is not due to a difference in their antigenic determinants. Cell surface preparations and purified capsular polysaccharide were fractionated by gel filtration on Sepharose 4B and by ultracentrifugation on cesium chloride density gradients. Three forms of capsular polysaccharide have been characterized. (i) A form of capsular polysaccharide with a very high protective activity (PD50 = 2 ng) that copurified with protein and lipopolysaccharide and was characterized by a low coefficient of distribution (Kd = 0.20) and a low density (1.5 to 1.6 g/cm3). (ii) A form of capsular polysaccharide with an intermediate protective activity (PD50 = 50 ng), contamined by less than 3% protein and 1% lipopolysaccharide, with a Kd of 0.35, and

  9. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    SciTech Connect

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  10. Microbial extracellular polysaccharides and plagioclase dissolution

    SciTech Connect

    Welch, S.A.; Barker, W.W.; Banfield, J.F.

    1999-05-01

    Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution. At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH {approx} 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH {approx} 3, below the pK{sub a} of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten. Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.

  11. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies

    PubMed Central

    Silva, Amanda Karine Andriola; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Natural polysaccharides have received a lot of attention in the biomedical field. Indeed, sources of polysaccharides, extracted or produced from plants, bacteria, fungi or algae, are diverse and renewable. Moreover, recent progresses in polysaccharide chemistry and nanotechnologies allow elaborating new dedicated nanosystems. Polysaccharide-based nanosystems may be designed for interacting in several biological processes. In particular, the atherothrombotic pathology is highly concerned by polysaccharide-mediated recognition. Atherothrombotic diseases, regardless of the anatomical localization, remain the main causes of morbidity and mortality in the industrialized world. This review intends to provide an overview on polysaccharide-based nanosystems as drug delivery systems and targeted contrast agents for molecular imaging with an emphasis on the treatment and imaging of cardiovascular pathologies. PMID:24723980

  12. Rheological studies of polysaccharides for skin scaffolds.

    PubMed

    Almeida, Nalinda; Mueller, Anja; Hirschi, Stanley; Rakesh, Leela

    2014-05-01

    Polysaccharide hydrogels are good candidates for skin scaffolds because of their inherent biocompatibility and water transport properties. In the current study, hydrogels were made from a mixture of four polysaccharides: xanthan gum, konjac gum, iota-carrageenan, and kappa-carrageenan. Gel formation, strength, and structure of these polysaccharides were studied using rheological and thermal techniques. All gel samples studied were strong gels at all times because of the gradual water loss. However, after 12 h of storage, elastic (G') and loss (G'') moduli of hydrogel mixture containing all the ingredients is of one to two orders of magnitude greater than that of mixtures not containing either xanthan gum or iota-carrageenan, which confirmed the varied levels of gel strength. This is mainly due to the rate of water loss in each of these mixtures, resulting in gels of varying structures and dynamic moduli over a period of time. Iota-carrageenan and xanthan gum differ in their effect on gel strength and stability in combination with konjac gum and kappa-carrageenan.

  13. The diversity of Klebsiella pneumoniae surface polysaccharides

    PubMed Central

    Heinz, Eva; Wyres, Kelly L.; Ellington, Matthew J.; Kowarik, Michael; Holt, Kathryn E.; Thomson, Nicholas R.

    2016-01-01

    Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes. PMID:28348868

  14. Marine Origin Polysaccharides in Drug Delivery Systems

    PubMed Central

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  15. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  16. Marine Origin Polysaccharides in Drug Delivery Systems.

    PubMed

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  17. Nanofiltration of polysaccharides from Agaricus subrufescens.

    PubMed

    Camelini, C M; Rezzadori, K; Benedetti, S; Proner, M C; Fogaça, L; Azambuja, A A; Giachini, A J; Rossi, M J; Petrus, J C C

    2013-12-01

    A simplified submerged airlift cultivation was established for the production of biomass from Agaricus subrufescens. In this work, soluble polysaccharides extracted from fungal mycelium, fruiting bodies, and the residual culture media were concentrated by nanofiltration. Total and high molar mass polysaccharides and soluble solids were determined in the concentrate for the three extracts. Additionally, the permeate flow, the influences of temperature and pressure, and the resistance to the permeate flow during filtration were also evaluated. Ayield of 5.5 g/L of biomass with 35%glucose conversion was obtained when 0.5 g/L of initial inoculum was employed. Average specific speed of growth was 0.4/day, with biomass productivity of about 0.76 g/(L day). Nanofiltration has yielded polysaccharide increases of 85, 82, and 92% in the extracts from fruiting bodies, mycelium, and liquid media, respectively. A reduction in the permeate flow was observed during filtration, and it was compensated by higher pressures and temperatures. The higher resistance to the permeate flux was caused by polarization due to concentration (polarized gel layer), reaching values of 88% for the culture media. Maximal resistance caused by the membrane reached values of 40% for the extract from the fruiting bodies. On the other hand, resistance caused by fouling was responsible for less than 3.5%. In conclusion, nanofiltration is efficient to concentrate these functional compounds extracted from A. subrufescens and can, therefore, be applied in different biotechnological areas.

  18. Evaluation of Phosphorylated Psyllium Seed Polysaccharide as a Release Retardant

    PubMed Central

    Rao, Monica R. P.; Warrier, Deepa U.; Rao, Shivani H.

    2015-01-01

    The aim of the present study was to modify psyllium seed polysaccharide and evaluate the modified polysaccharide as release retardant in tablets employing ciprofloxacin hydrochloride as model drug. Studies on polysaccharide from psyllium husk has been reported but no work has been reported on characterization and modification of the polysaccharide present in the psyllium (Plantago ovata) seed and the use of the modified polysaccharide as a release retardant in tablets. In this study, the seed gum was modified using sodium trimetaphosphate as crosslinking agent. Sustained release matrix tablets of ciprofloxacin hydrochloride were prepared by wet granulation using various drug-polymer ratios. The polymers investigated were psyllium polysaccharide, phosphorylated psyllium polysaccharide and widely used release retardant hydroxypropyl methylcellulose K100M. The tablets were evaluated for hardness, friability, drug content, swelling profile and in vitro dissolution studies. The matrix tablets containing 1:3 proportion of drug-phosphorylated psyllium polysaccharide was found to have higher hardness as compared to tablets containing 1:1 and 1:2 proportions. The results of swelling behavior in water showed that the tablets containing 1:3 drug:phosphorylated psyllium polysaccharide ratio had swelling comparable to that of tablets containing 1:3 drug:hydroxypropyl methylcellulose ratio. The in vitro dissolution studies shows that the dissolution rate was retarded from 98.41 to 37.6% in 6 h with increase in concentration of phosphorylated psyllium polysaccharide from 100 to 300 mg. Formulations containing psyllium polysaccharide showed complete drug release in 8 h whereas those formulated with phosphorylated psyllium polysaccharide exhibited extended drug release over the 12 h period. Drug release kinetic studies revealed that drug release followed Korsmeyer-Peppas model. PMID:26798177

  19. [Improvement on microwave technology of extracting polysaccharide from yacon leaves].

    PubMed

    Li, Jing-wei; Liu, Jian; Yang, Yong; Zheng, Ming-min; Rong, Ting-zhao

    2007-11-01

    According to the extraction ratio of polysaccharide in yacon leaves, the comparison between microwave extraction and traditional hot water extraction was conducted, and the two-factor and three-level experiment on the microwave extraction of polysaccharide from yacon leaves was investigated. The result showed that the extraction ratio of polysaccharide by using microwave extraction was better than that by using traditional hot water extraction. Moreover, according to the result of variance analysis and multiple comparison, the optimum conditions for extraction of polysaccharide by using microwave technology from yacon leaves were as follows: 280W microwave power for 2 times and 15 minutes at every time.

  20. Antibacterial and antiviral study of dialdehyde polysaccharides

    NASA Astrophysics Data System (ADS)

    Song, Le

    Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was

  1. How to pattern a leaf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, an...

  2. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    PubMed Central

    2010-01-01

    Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and

  3. Isolation and characterization of structural components of Aloe vera L. leaf pulp.

    PubMed

    Ni, Y; Turner, D; Yates, K M; Tizard, I

    2004-12-20

    The clear pulp, also known as inner gel, of Aloe vera L. leaf is widely used in various medical, cosmetic and nutraceutical applications. Many beneficial effects of this plant have been attributed to the polysaccharides present in the pulp. However, discrepancies exist regarding the composition of pulp polysaccharide species and an understanding of pulp structure in relation to its chemical composition has been lacking. Thus, we examined pulp structure, isolated structural components and determined their carbohydrate compositions along with analyzing a partially purified pulp-based product (Acemannan hydrogel) used to make Carrisyn hydrogel wound dressing. Light and electron microscopy showed that the pulp consisted of large clear mesophyll cells with a diameter as large as 1000 microm. These cells were composed of cell walls and cell membranes along with a very limited number of degenerated cellular organelles. No intact cellular organelles were found in mesophyll cells. Following disruption of pulp by homogenization, three components were isolated by sequential centrifugation. They were thin clear sheets, microparticles and a viscous liquid gel, which corresponded to cell wall, degenerated cellular organelles and liquid content of mesophyll cells based on morphological and chemical analysis. These three components accounted for 16.2% (+/-3.8), 0.70% (+/-0) and 83.1% of the pulp on a dry weight basis. The carbohydrate composition of each component was distinct; liquid gel contained mannan, microparticles contained galactose-rich polysaccharide(s) and cell walls contained an unusually high level of galacturonic acid (34%, w/w; Gal A). The same three components were also found in Acemannan Hydrogel with mannan as the predominant component. Thus, different pulp structural components are associated with different polysaccharides and thus may potentially be different functionally. These findings may help lay a basis for further studies and development of better

  4. Solomonseal Polysaccharide and Sulfated Codonopsis pilosula Polysaccharide Synergistically Resist Newcastle Disease Virus

    PubMed Central

    Liu, Cui; Chen, Jin; Li, Entao; Fan, Qiang; Wang, Deyun; Zhang, Cunshuai; Li, Peng; Li, Xiuping; Chen, Xingying; Qiu, Shulei; Gao, Zhenzhen; Li, Hongquan; Hu, Yuanliang

    2015-01-01

    Five combinations of three ratios (PS9-sPS1, PS7-sPS3 and PS6-sPS4) were prepared with polysaccharide (PS) and sulfated polysaccharide (sPS). The antiviral activities of these compounds were subsequently compared in vitro using the MTT assay, observation of the virus structure and immunofluorescence. The results demonstrated that SP9-sCP1, CP7-sCA3, EP7-sAP3, CA9-sEP1 and EP7-sCA3 presented higher activities, and SP9-sCP1 displayed the highest virus inhibition rate and clearly killed the virus and inhibited viral antigen expression. In an in vivo test, 28-day-old chickens were challenged with Newcastle disease virus (NDV) and were administered the five drug combinations. On day 14 after the challenge, the morbidity, mortality and cure rate in each group were calculated. The results indicated that SP9-sCP1 presented the lowest morbidity and mortality and the highest cure rate. These results indicate that Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharide synergistically resist NDV. Moreover, SP9-sCP1 had the highest efficacy and may be used as a new antiviral drug. PMID:25692886

  5. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements.

  6. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  7. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  8. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  9. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha.

    PubMed

    Schepetkin, Igor A; Xie, Gang; Kirpotina, Liliya N; Klein, Robyn A; Jutila, Mark A; Quinn, Mark T

    2008-10-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average M(r) of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor alpha, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor kappaB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant.

  10. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    USGS Publications Warehouse

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  11. Structural modification of polysaccharides: A biochemical-genetic approach

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  12. Methods of saccharification of polysaccharides in plants

    DOEpatents

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  13. (Lipo)polysaccharide interactions of antimicrobial peptides.

    PubMed

    Schmidtchen, Artur; Malmsten, Martin

    2015-07-01

    Due to rapidly increasing resistance development against conventional antibiotics, as well as problems associated with diseases either triggered or deteriorated by infection, antimicrobial and anti-inflammatory peptides have attracted considerable interest during the last few years. While there is an emerging understanding of the direct antimicrobial function of such peptides through bacterial membrane destabilization, the mechanisms of their anti-inflammatory function are less clear. We here summarize some recent results obtained from our own research on anti-inflammatory peptides, with focus on peptide-(lipo)polysaccharide interactions.

  14. Gut microbiota, host health, and polysaccharides.

    PubMed

    Xu, Xiaofei; Xu, Pingping; Ma, Chungwah; Tang, Jian; Zhang, Xuewu

    2013-01-01

    The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.

  15. Sulfation of tea polysaccharides: synthesis, characterization and hypoglycemic activity.

    PubMed

    Wang, Yuanfeng; Peng, Yonghua; Wei, Xinlin; Yang, Zhiwei; Xiao, Jianbo; Jin, Zhengyu

    2010-03-01

    Neutral polysaccharides (NTPS) and acid polysaccharides (ATPS) from tea leaves were obtained on a D315 macroporous anion-exchange resin column chromatography. NTPS and ATPS were sulfated by the pyridine-sulfonic acid method to obtain NTPS-S and ATPS-S. It was found that NTPS was easier sulfated than ATPS. There are strong characteristic absorption peaks located in 1258 cm(-1), 1146 cm(-1), 832 cm(-1) and 617 cm(-1) in the FTIR spectra of sulfated polysaccharides. Sulfation of polysaccharides also affected the endothermic and exothermic peaks via the DSC scan analysis. The appearance of exothermic peaks in both NTPS-S and ATPS-S indicated that the redox reaction might happen. The comparative study of hypoglycemic effect on mice showed that the sulfation of polysaccharides significantly improved hypoglycemic activity.

  16. Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal.

    PubMed

    Pustjens, Annemieke M; Schols, Henk A; Kabel, Mirjam A; Gruppen, Harry

    2013-11-06

    To enable structural characteristics of individual cell wall polysaccharides from rapeseed (Brassica napus) meal (RSM) to be studied, polysaccharide fractions were sequentially extracted. Fractions were analysed for their carbohydrate (linkage) composition and polysaccharide structures were also studied by enzymatic fingerprinting. The RSM fractions analysed contained pectic polysaccharides: homogalacturonan in which 60% of the galacturonic acid residues are methyl-esterified, arabinan branched at the O-2 position and arabinogalactan mainly type II. This differs from characteristics previously reported for Brassica campestris meal, another rapeseed cultivar. Also, in the alkali extracts hemicelluloses were analysed as xyloglucan both of the XXGG- and XXXG-type decorated with galactosyl, fucosyl and arabinosyl residues, and as xylan with O-methyl-uronic acid attached. The final residue after extraction still contained xyloglucan and remaining (pectic) polysaccharides next to cellulose, showing that the cell wall matrix of RSM is very strongly interconnected.

  17. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  18. Diffuse and specular characteristics of leaf reflectance

    NASA Technical Reports Server (NTRS)

    Grant, Lois

    1987-01-01

    In this paper, the evolution of current understanding of the mechanisms of leaf reflectance is reviewed. The use of measurements of polarized reflectance to separate leaf reflectance into diffuse and specular components is discussed. A section on the factors influencing leaf reflectance - leaf structure and physiological disturbances - is included along with discussion on the manner in which these influences are manifested.

  19. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface...

  20. Near infrared leaf reflectance modeling

    NASA Technical Reports Server (NTRS)

    Parrish, J. B.

    1985-01-01

    Near infrared leaf reflectance modeling using Fresnel's equation (Kumar and Silva, 1973) and Snell's Law successfully approximated the spectral curve for a 0.25-mm turgid oak leaf lying on a Halon background. Calculations were made for ten interfaces, air-wax, wax-cellulose, cellulose-water, cellulose-air, air-water, and their inverses. A water path of 0.5 mm yielded acceptable results, and it was found that assignment of more weight to those interfaces involving air versus water or cellulose, and less to those involving wax, decreased the standard deviation of the error for all wavelengths. Data suggest that the air-cell interface is not the only important contributor to the overall reflectance of a leaf. Results also argue against the assertion that the near infrared plateau is a function of cell structure within the leaf.

  1. Experiments in Whole Leaf Photosynthesis

    ERIC Educational Resources Information Center

    Stewart, J. C.; And Others

    1974-01-01

    Described is a simple experimental system, which uses radioactive carbon dioxide to study whole leaf photosynthesis under a variety of conditions. Other experiments and simple apparatus for the experiments are also described. (Author/RH)

  2. Why do leaf-tying caterpillars abandon their leaf ties?

    PubMed Central

    Sliwinski, Michelle

    2013-01-01

    Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats), but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently abandon their leaf

  3. Why do leaf-tying caterpillars abandon their leaf ties?

    PubMed

    Sliwinski, Michelle; Sigmon, Elisha

    2013-01-01

    Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats), but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm(2) leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently abandon their leaf

  4. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  5. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand.

  6. Structural characterization of polysaccharides from bamboo

    NASA Astrophysics Data System (ADS)

    Kamil, Ruzaimah Nik Mohamad; Yusuf, Nur'aini Raman; Yunus, Normawati M.; Yusup, Suzana

    2014-10-01

    The alkaline and water soluble polysaccharides were isolate by sequential extractions with distilled water, 60% ethanol containing 1%, 5% and 8% NaOH. The samples were prepared at 60 °C for 3 h from local bamboo. The functional group of the sample were examined using FTIR analysis. The most precipitate obtained is from using 60% ethanol containing 8% NaOH with yield of 2.6%. The former 3 residues isolated by sequential extractions with distilled water, 60% ethanol containing 1% and 5% NaOH are barely visible after filtering with cellulose filter paper. The FTIR result showed that the water-soluble polysaccharides consisted mainly of OH group, CH group, CO indicates the carbohydrate and sugar chain. The sample weight loss was slightly decreased with increasing of temperature.

  7. Nanoengineering of vaccines using natural polysaccharides.

    PubMed

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers.

  8. Polysaccharide based edible coating on sapota fruit

    NASA Astrophysics Data System (ADS)

    Menezes, Joslin; Athmaselvi, K. A.

    2016-10-01

    Sapota fruits are highly perishable and have short shelf life at the ambient conditions. The edible coatings have been used on different agricultural products in order to extend their post harvest life. In the present study, the polysaccharide based edible coating made up of sodium alginate and pectin (2%) was studied on the shelf life of sapota fruits. The coating of the fruits is done by dipping method with two dipping time (2 and 4 min). The both control and coated sapota fruits were stored at refrigerated temperature (4±1°C). The physico-chemical analysis including acidity, total soluble solids, ascorbic acid, pH, weight loss, colour and firmness were measured on 1, 8, 15, 23 and 30th day of storage. There was significant difference (p≤0.05) in these physico-chemical parameters between control and coated sapota fruits with 2 and 4 min dipping time. The sensory analysis of control and coated sapota fruits showed that, the polysaccharide coating with 2 minutes dipping time was effective in maintaining the organoleptic properties of the fruits.

  9. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    PubMed

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  10. Polysaccharide Responsiveness Is Not Biased by Prior Pneumococcal-Conjugate Vaccination

    PubMed Central

    Bernth-Jensen, Jens Magnus; Søgaard, Ole Schmeltz

    2013-01-01

    Polysaccharide responsiveness is tested by measuring antibody responses to polysaccharide vaccines to diagnose for humoral immunodeficiency. A common assumption is that this responsiveness is biased by any previous exposure to the polysaccharides in the form of protein-coupled polysaccharide vaccines, such as those used in many childhood vaccination programmes. To examine this assumption, we investigated the effect of protein-coupled polysaccharide vaccination on subsequent polysaccharide responsiveness. HIV-infected adults (n = 47) were vaccinated twice with protein-coupled polysaccharides and six months later with pure polysaccharides. We measured immunoglobulin G responses against three polysaccharides present in only the polysaccharide vaccine (non-memory polysaccharides) and seven recurring polysaccharides (memory polysaccharides). Responsiveness was evaluated according to the consensus guidelines published by the American immunology societies. Impaired responsiveness to non-memory polysaccharides was more frequent than to memory polysaccharides (51% versus 28%, P = 0.015), but the individual polysaccharides did not differ in triggering sufficient responses (74% versus 77%, P = 0.53). Closer analysis revealed important shortcomings of the current evaluation guidelines. The interpreted responseś number and their specificities influenced the likelihood of impaired responsiveness in a complex manor. This influence was propelled by the dichotomous approaches inherent to the American guidelines. We therefore define a novel more robust polysaccharide responsiveness measure, the Z-score, which condenses multiple, uniformly weighted responses into one continuous variable. Using the Z-score, responsiveness to non-memory polysaccharides and memory-polysaccharides were found to correlate (R2 = 0.59, P<0.0001). We found that polysaccharide responsiveness was not biased by prior protein-coupled polysaccharide vaccination in HIV-infected adults. Studies in

  11. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1beta mRNA expression in skin of burn wound-treated rats.

    PubMed

    Sui, ZhiFu; Yang, RongYa; Liu, Biao; Gu, TingMin; Zhao, Zhili; Shi, Dongfang; Chang, DongQing

    2010-08-01

    Agaricus blazei polysaccharides were analyzed by GC-MS. Results indicated that the polysaccharides contained glucose (93.87%), mannose (3.54%), and arabinose (2.25%). The compositional analysis was completed by the methylation data. These data indicated that Agaricus blazei polysaccharides are glucans. Compared to model rats, rats fed with Agaricus blazei polysaccharides showed a decrease of ratio of IL-1beta/beta-actin and IL-1beta level in skin of burn wound. Recovery rate of wound skin increased with increasing dose of polysaccharides. The results indicated that Agaricus blazei polysaccharides could be useful in promote burn wound healing.

  12. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    DOEpatents

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  13. The immunostimulating role of lichen polysaccharides: a review.

    PubMed

    Shrestha, Gajendra; St Clair, Larry L; O'Neill, Kim L

    2015-03-01

    The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1β, TNF-α, and IFN-α/β) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents.

  14. Effects of polysaccharides from Silene vulgaris on phagocytes.

    PubMed

    Popov, S V; Popova, G Y; Ovodova, R G; Bushneva, O A; Ovodov, Y S

    1999-09-01

    The effects of the polysaccharides isolated from the intact plant (pectic polysaccharides P1, P2 and P3) and from the callus (acidic arabinogalactan C1 and pectin C2) of Silene vulgaris on phagocytic activity were studied in relation to an uptaking capacity and a myeloperoxidase activity of the peripheral human neutrophils and monocytes and rat peritoneal macrophages in vitro. Both intact plant and callus polysaccharides were shown to increase uptaking capacity of peripheral phagocytes. The callus acidic arabinogalactan C1 was only found to stimulate lysosomal activity of the peripheral phagocytes. Some polysaccharides studied were established to effect on peritoneal resident macrophages. Pectins P1, P3 and C2 failed to enhance myeloperoxidase activity of the macrophages in calcium-free solution, whereas the effect of callus arabinogalactan C1 was established to be independent of extracellular calcium. Polysaccharides studied failed to influence neither complement receptor CR3- nor scavenger receptor SR-mediated adhesion of the macrophages. The data obtained demonstrate that the intact S. vulgaris and its callus may be used as sources of immunoactive polysaccharides and that pectins and weakly acidic arabinogalactan seemed to stimulate macrophages through different mechanisms. Complement receptor type 3 and scavenger receptor failed to mediate the cell activation induced by plant polysaccharides.

  15. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy.

  16. Polymethylated Polysaccharides from Mycobacterium Species Revisited*S⃞

    PubMed Central

    Jackson, Mary; Brennan, Patrick J.

    2009-01-01

    Mycobacteria produce two sets of unusual polymethylated polysaccharides, the 3-O-methylmannose polysaccharides and the 6-O-methylglucose lipopolysaccharides. Both polysaccharides localize to the cytoplasm, where they have been postulated to regulate fatty acid metabolism due to their ability to form stable 1:1 complexes with fatty acyl chains. Physiological evidence for this assumption is lacking, however. Recent advances in our knowledge of the processes underlying sugar transfer in mycobacteria, together with the availability of genome sequences and tools for the genetic manipulation of these microorganisms, have opened the way to the elucidation of the biosynthetic pathways and biological functions of these unique carbohydrates. PMID:18786916

  17. Isolation and partial characterization of immunostimulating polysaccharides from Imperata cylindrica.

    PubMed

    Pinilla, V; Luu, B

    1999-08-01

    The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.

  18. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  19. Structural diversity of lytic polysaccharide monooxygenases.

    PubMed

    Vaaje-Kolstad, Gustav; Forsberg, Zarah; Loose, Jennifer Sm; Bissaro, Bastien; Eijsink, Vincent Gh

    2017-01-10

    Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds and represent a promising resource for development of industrial enzyme cocktails for biomass processing. LPMOs show high sequence and modular diversity and are known, so far, to cleave insoluble substrates such as cellulose, chitin and starch, as well as hemicelluloses such as beta-glucan, xyloglucan and xylan. All LPMOs share a catalytic histidine brace motif to bind copper, but differ strongly when it comes to the nature and arrangement of residues on the substrate-binding surface. In recent years, the number of available LPMO structures has increased rapidly, including the first structure of an enzyme-substrate complex. The insights gained from these structures is reviewed below.

  20. Functional relationships of leafing intensity to plant height, growth form and leaf habit

    NASA Astrophysics Data System (ADS)

    Yan, En-Rong; Milla, Rubén; Aarssen, Lonnie W.; Wang, Xi-Hua

    2012-05-01

    Leafing intensity, i.e. the number of leaves per unit of stem volume or mass, is a common developmental correlate of leaf size. However, the ecological significance and the functional implications of variation in leafing intensity, other than its relation to leaf size, are unknown. Here, we explore its relationships with plant height, growth form, leaf size, and leaf habit to test a series of corollaries derived from the leafing intensity premium hypothesis. Volume-based leafing intensities and plant heights were recorded for 109 woody species from the subtropical evergreen broadleaf forests of eastern China. In addition, we compiled leafing intensity data from published literature, and combined it with our data to form a 398 species dataset, to test for differences of leafing intensity between plant growth forms (i.e. herbaceous and woody) and leaf habits (i.e. deciduous and evergreens). Leafing intensity was negatively correlated with plant height and individual leaf mass. Volume-based leafing intensities were significantly higher in herbaceous species than in woody species, and also higher in deciduous than in evergreen woody species. In conclusion, leafing intensity relates strongly to plant height, growth form, leaf size, and leaf habit in directions generally in accordance to the leafing intensity premium hypothesis. These results can be interpreted in terms of the evolution of adaptive strategies involving response to herbivory, competitive ability for light and reproductive economy.

  1. Antiobesity properties of mushroom polysaccharides – A Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms are widely consumed for their nutritional and health benefits. To stimulate broader interest in the reported health-promoting properties of bioactive mushroom polysaccharides, this presentation will survey the chemistry (isolation and structural characterization) and reported antiobesity ...

  2. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  3. SPECIFIC AND NON-SPECIFIC POLYSACCHARIDES OF TYPE IV PNEUMOCOCCUS

    PubMed Central

    Heidelberger, Michael; Kendall, Forrest E.

    1931-01-01

    1. Three nitrogen-containing polysaccharides have been isolated from autolyzed cultures of Type IV pneumococcus: (1) a type-specific carbohydrate differing markedly from those of Type I, II, and III pneumococcus, and representing a type of substance hitherto not observed among specific polysaccharides, (2) a chemically similar carbohydrate without specific function, and (3) the "C" substance, or species-specific polysaccharide of Tillett, Goebel, and Avery. 2. The chemical differences between the specific polysaccharides of Pneumococcus are discussed, and the relationship of the new examples to chitin is pointed out and its bearing indicated on the unsettled controversy as to whether or not chitin occurs in bacteria. 3. The data of Tillett, Goebel, and Avery on the "C" substance have been extended. PMID:19869869

  4. Active suppression of a leaf meristem orchestrates determinate leaf growth

    PubMed Central

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-01-01

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI: http://dx.doi.org/10.7554/eLife.15023.001 PMID:27710768

  5. Structural and functional comparison of polysaccharide-degrading enzymes.

    PubMed

    Jedrzejas, M J

    2000-01-01

    Sugar molecules as well as enzymes degrading them are ubiquitously present in physiological systems, especially for vertebrates. Polysaccharides have at least two aspects to their function, one due to their mechanical properties and the second one involves multiple regulatory processes or interactions between molecules, cells, or extracellular space. Various bacteria exert exogenous pressures on their host organism to diversity glycans and their structures in order for the host organism to evade the destructive function of such microbes. Many bacterial organism produce glycan-degrading enzymes in order to facilitate their invasion of host tissues. Such polysaccharide degrading enzymes utilize mainly two modes of polysaccharide-degradation, a hydrolysis and a beta-elimination process. The three-dimensional structures of several of these enzymes have been elucidated recently using X-ray crystallography. There are many common structural motifs among these enzymes, mainly the presence of an elongated cleft transversing these molecules which functions as a polysaccharide substrate binding site as well as the catalytic site for these enzymes. The detailed structural information obtained about these enzymes allowed formulation of proposed mechanisms of their action. The polysaccharide lyases utilize a proton acceptance and donation mechanism (PAD), whereas polysaccharide hydrolases use a direct double displacement (DD) mechanism to degrade their substrates.

  6. Health benefits of algal polysaccharides in human nutrition.

    PubMed

    Mišurcová, Ladislava; Škrovánková, Soňa; Samek, Dušan; Ambrožová, Jarmila; Machů, Ludmila

    2012-01-01

    The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health.

  7. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  8. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides

    NASA Astrophysics Data System (ADS)

    Grossutti, Michael; Dutcher, John

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly important example of confined water, with differences in polysaccharide structure providing different spatially confined environments for water adsorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, monodisperse phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA) and chitosan. We find similarities between water structuring in the two linear polysaccharides, and significant differences for phytoglycogen. In particular, the phytoglycogen nanoparticles exhibited high network water connectivity, and a large increase in the fraction of multimer water clusters with increasing RH, whereas the water structure for HA and chitosan was found to be insensitive to changes in RH. These measurements provide unique insight into the relationship between the chain architecture and hydration of polysaccharides.

  9. Antitussive activity of polysaccharides isolated from the Malian medicinal plants.

    PubMed

    Sutovská, M; Franová, S; Priseznaková, L; Nosálová, G; Togola, A; Diallo, D; Paulsen, B S; Capek, P

    2009-04-01

    From the leaves of popular Malian medicinal plants Trichilia emetica (TE) and Opilia celtidifolia (OC), and fruits of Crossopteryx febrifuga (CF) water and water-ethanol soluble polysaccharide materials were isolated. The results of chemical analysis of the crude polysaccharides showed the dominance of the arabinogalactan ( approximately 54%) and the rhamnogalacturonan ( approximately 30%) in T. emetica leaves, the arabinogalactan ( approximately 60%), the rhamnogalacturonan ( approximately 14%) and the glucuronoxylan ( approximately 14%) in O. celtidifolia leaves, and pectic type of polysaccharides ( approximately 75%) with a lower content of the arabinogalactan ( approximately 17%) in C. febrifuga fruits. The plant polysaccharides showed various biological effects on the citric acid-induced cough reflex and reactivity of airways smooth muscle in vivo conditions. T. emetica and O. celtidifolia polysaccharides possessed significant cough-suppressive effect on chemically induced cough. Furthermore, values of specific airways resistance pointed on bronchodilatory property of polysaccharides isolated from O. celtidifolia. However, the crude extract from C. febrifuga in the same dose as T. emetica and O. celtidifolia did not influence the experimentally induced cough as well as reactivity of airways smooth muscle despite of the fact that the water-ethanol extract is recommended for cough therapy in Mali in the form of syrup.

  10. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure.

    PubMed

    Wang, Junlong; Yang, Wen; Wang, Jiancheng; Wang, Xia; Wu, Fang; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-11-20

    The biological activities of sulfated polysaccharides are related to the substitution positions of functional groups. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharides (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) showed that SO(3-) group (S(6+), high binding energy of 168.7eV) was widely present in sulfated polysaccharides. (13)C NMR spectroscopy showed that C-2 and C-3 substitution was occurred but not fully sulfation. Meanwhile, C-6 substituted signals near 65ppm were not observed. The degree of substitution varied from 0.44 to 0.63 in SRSASP which could be attributed to the low reactivity at secondary hydroxyl. Monosaccharide composition result showed a decrease in the ratio of mannose/glucose, indicating the change of chemical composition in sulfated polysaccharides. In size-exclusion chromatograph analysis, a decrease in molecular weight and broadening of molecular weight distribution of sulfated polysaccharides was also observed. It could be attributed to the hydrolysis of polysaccharide in the sulfated reaction.

  11. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus.

    PubMed

    Bao, HongHui; Choi, Won-Seok; You, SangGuan

    2010-01-01

    The effect of sulfated modification on polysaccharides from Hypsizigus marmoreus was examined by determining their molecular structures and bioactivities. The sulfation, which was implemented by using an orthogonal array design, produced polysaccharides with varying degrees of substitution (DS) ranging from 0.11 to 1.06. The sulfated polysaccharides exhibited a lower average molecular weight (M(w)) and considerably higher radius of gyration (R(g)) than those of native polysaccharide, suggesting that the conformation of the sulfated polysaccharides had been changed towards a more extended type. The inhibitory activity toward cancer cell growth was enhanced by treating with the sulfated polysaccharides by up to 34%, as compared to the native polysaccharide. In addition, treating with the sulfated polysaccharides increased the nitric oxide (NO) and cytokine (IL-1beta and TNF-alpha) release to levels comparable to those detected in the positive control, lipopolysaccharide (LPS), suggesting that the sulfated polysaccharides might have strong immunomodulatory activity.

  12. Behavior of Leaf Meristems and Their Modification

    PubMed Central

    Ichihashi, Yasunori; Tsukaya, Hirokazu

    2015-01-01

    A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution. PMID:26648955

  13. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2278 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.)...

  14. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2278 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.)...

  15. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2278 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.)...

  16. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2278 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.)...

  17. Spectral reflectance relationships to leaf water stress

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  18. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap...

  19. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See...

  20. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity....

  1. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by...

  2. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity....

  3. Comparison of half and full-leaf shape feature extraction for leaf classification

    NASA Astrophysics Data System (ADS)

    Sainin, Mohd Shamrie; Ahmad, Faudziah; Alfred, Rayner

    2016-08-01

    Shape is the main information for leaf feature that most of the current literatures in leaf identification utilize the whole leaf for feature extraction and to be used in the leaf identification process. In this paper, study of half-leaf features extraction for leaf identification is carried out and the results are compared with the results obtained from the leaf identification based on a full-leaf features extraction. Identification and classification is based on shape features that are represented as cosines and sinus angles. Six single classifiers obtained from WEKA and seven ensemble methods are used to compare their performance accuracies over this data. The classifiers were trained using 65 leaves in order to classify 5 different species of preliminary collection of Malaysian medicinal plants. The result shows that half-leaf features extraction can be used for leaf identification without decreasing the predictive accuracy.

  4. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil... tolerance. C4F Fair Quality Medium-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  5. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, moderate color... may be waste. H5F—Low Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean...

  6. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil... tolerance. C4F Fair Quality Medium-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  7. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil... tolerance. C4F Fair Quality Medium-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  8. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil... tolerance. C4F Fair Quality Medium-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  9. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil... tolerance. C4F Fair Quality Medium-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in...

  10. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  11. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  12. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  13. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  14. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color...

  15. Leafing patterns and leaf traits of four evergreen shrubs in the Patagonian Monte, Argentina

    NASA Astrophysics Data System (ADS)

    Campanella, María Victoria; Bertiller, Mónica B.

    2009-11-01

    We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5-48 days) while new leaves of Larrea species emerged gradually (128-258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October-late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.

  16. Leaf area dynamics of conifer forests

    SciTech Connect

    Margolis, H.; Oren, R.; Whitehead, D.; Kaufmann, M.R.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which can have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.

  17. Immunomodulatory Polysaccharide from Chlorophytum borivilianum Roots

    PubMed Central

    Thakur, Mayank; Connellan, Paul; Deseo, Myrna A.; Morris, Carol; Dixit, Vinod K.

    2011-01-01

    Chlorophytum borivilianum Santapau & Fernandes (Liliaceae) is an ayurvedic Rasayana herb with immunostimulating properties. The polysaccharide fraction (CBP) derived from hot water extraction of C. borivilianum (CB), comprising of ∼31% inulin-type fructans and ∼25% acetylated mannans (of hot water-soluble extract), was evaluated for its effect on natural killer (NK) cell activity (in vitro). Human peripheral blood mononuclear cells (PBMCs), isolated from whole blood on a Ficoll-Hypaque density gradient, were tested in the presence or absence of varying concentrations of each C. borivilianum fraction for modulation of NK cell cytotoxic activity toward K562 cells. Preliminary cytotoxicity evaluation against P388 cells was performed to establish non-cytotoxic concentrations of the different fractions. Testing showed the observed significant stimulation of NK cell activity to be due to the CBP of C. borivilianum. Furthermore, in vivo evaluation carried out on Wistar strain albino rats for humoral response to sheep red blood cells (SRBCs) and immunoglobulin-level determination using enzyme-linked immunosorbent assay (ELISA), exhibited an effectiveness of C. borivilianum aqueous extract in improving immune function. Present results provide useful information for understanding the role of CBP in modulating immune function. PMID:21792363

  18. Filtration Behaviour and Fouling Mechanisms of Polysaccharides

    PubMed Central

    Jamal, Sondus; Chang, Sheng; Zhou, Hongde

    2014-01-01

    This study investigated filtration behaviors of polysaccharides solutions, both alone and in mixture with proteins, in the short-time constant flux filtration with the focus on factors affecting the transmembrane pressure (TMP) increase rate, the irreversible filtration resistance, and the membrane rejection behavior. The results showed that the TMP increase rates in the short-time constant flux filtration of alginate solutions were significantly affected by the calcium addition, alginate concentration, and flux. Although the addition of calcium resulted in a decrease in the TMP increase rate, it was found that the irreversible fouling developed during the filtration increased with the calcium addition, implying that the double-sided effect of calcium on membrane filtration and that the TMP increase rate observed in the filtration does not always reflect the irreversible membrane fouling development. It was also found that for the filtration of solutions containing mixed alginate and BSA, alginate exerted a dominant effect on the TMP increase rate and the membrane exhibited a reduced rejection to both alginate and BSA molecules compared to that in the filtration of the pure alginate or BSA. PMID:25007243

  19. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    PubMed Central

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a molar ratio of 223:48:1. Although starch was also found, its content was less than 10%. This result indicated that the major polysaccharides in D. officinale stems were non-starch polysaccharides, which might be mannan polysaccharides. The polysaccharides formed granules and were stored in plastids similar to starch grains, were localized in D. officinale stems by semi-thin and ultrathin sections. CELLULOSE SYNTHASE-LIKE A (CSLA) family members encode mannan synthases that catalyze the formation of mannan polysaccharides. To determine whether the CSLA gene from D. officinale was responsible for the synthesis of mannan polysaccharides, 35S:DoCSLA6 transgenic lines were generated and characterized. Our results suggest that the CSLA family genes from D. officinale play an important role in the biosynthesis of mannan polysaccharides. PMID:28261235

  20. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides.

    PubMed

    Jiao, Rui; Liu, Yingxia; Gao, Hao; Xiao, Jia; So, Kwok Fai

    2016-01-01

    Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current

  1. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics

    PubMed Central

    Xiong, Dongliang; Chen, Jia; Yu, Tingting; Gao, Wanlin; Ling, Xiaoxia; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-01-01

    Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple environments. There were similar relationships between SPAD readings and chlorophyll content per leaf area for the species groups, but the relationship between chlorophyll content and leaf N content per leaf area, and the relationship between SPAD readings and leaf N content per leaf area varied widely among the species groups. A significant impact of light-dependent chloroplast movement on SPAD readings was observed under low leaf N supplementation in both rice and soybean but not under high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was strongly influenced by short-term changes in growth light. We demonstrate that the relationship between SPAD readings and leaf N content per leaf area is profoundly affected by environmental factors and leaf features of crop species, which should be accounted for when using a chlorophyll meter to guide N management in agricultural systems. PMID:26303807

  2. Habitat Complexity of Stream Leaf Packs: Effects on Benthic Macroinvertebrates and Leaf Litter Breakdown

    NASA Astrophysics Data System (ADS)

    Ruetz, C. R.; Vanhaitsma, D. L.; Breen, M. J.

    2005-05-01

    We investigated two attributes of leaf-pack complexity (i.e., leaf-pack mass and leaf surface area) on fish predation, colonization of benthic macroinvertebrates, and leaf breakdown rates in a coldwater Michigan stream. We manipulated three factors using a factorial design: fish (exclusion or control cage), leaf-pack mass (1, 3, or 5 g dry mass), and leaf surface area (<7, 7-10, or >10 cm leaf width). Acer leaves were fastened into leaf packs. Exclusion cages had mesh on all sides; control cages lacked mesh on two sides to provide access to fishes. Two replicate leaf packs were randomly collected after 25-31 d from two sections of the stream (n = 4). Common shredders were Gammarus, Pycnopsyche, and Lepidostoma. We did not detect a significant effect of fish predation on benthic macroinvertebrates or leaf breakdown (i.e., mass loss). Colonization of benthic macroinvertebrates appeared proportional to leaf-pack mass but was unaffected by the surface area of leaves. Leaf breakdown was more rapid among leaf packs with fewer leaves (i.e., leaves with large surface area and leaf packs with low mass) and greater numbers of shredders. We suspect that physical fragmentation is the primary mechanism for higher breakdown rates among leaf packs with fewer leaves.

  3. Leaf physiognomy and climate: A multivariate analysis

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; Taylor, S. E.

    1980-11-01

    Research has demonstrated that leaf physiognomy is representative of the local or microclimate conditions under which plants grow. The physiognomy of leaf samples from Oregon, Michigan, Missouri, Tennessee, and the Panama Canal Zone has been related to the microclimate using Walter diagrams and Thornthwaite water-budget data. A technique to aid paleoclimatologists in identifying the nature of the microclimate from leaf physiognomy utilizes statistical procedures to classify leaf samples into one of six microclimate regimes based on leaf physiognomy information available from fossilized samples.

  4. Hormonal regulation of leaf senescence in Lilium.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-10-15

    In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers.

  5. Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado.

    PubMed

    Souza, H A V; Muller, L A C; Brandão, R L; Lovato, M B

    2012-03-22

    Dimorphandra mollis (Leguminosae), known as faveiro and fava d'anta, is a tree that is widely distributed throughout the Brazilian Cerrado (a savanna-like biome). This species is economically valuable and has been extensively exploited because its fruits contain the flavonoid rutin, which is used to produce medications for human circulatory diseases. Knowledge about its genetic diversity is needed to guide decisions about the conservation and rational use of this species in order to maintain its diversity. DNA extraction is an essential step for obtaining good results in a molecular analysis. However, DNA isolation from plants is usually compromised by excessive contamination by secondary metabolites. DNA extraction of D. mollis, mainly from mature leaves, results in a highly viscous mass that is difficult to handle and use in techniques that require pure DNA. We tested four protocols for plant DNA extraction that can be used to minimize problems such as contamination by polysaccharides, which is more pronounced in material from mature leaves. The protocol that produced the best DNA quality initially utilizes a sorbitol buffer to remove mucilaginous polysaccharides. The macerated leaf material is washed with this buffer until there is no visible mucilage in the sample. This protocol is adequate for DNA extraction both from young and mature leaves, and could be useful not only for D. mollis but also for other species that have high levels of polysaccharide contamination during the extraction process.

  6. Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization

    PubMed Central

    Yang, Dongmei; Niklas, Karl J.; Xiang, Shuang; Sun, Shucun

    2010-01-01

    Background and Aims Although many hypotheses have been proposed to explain variation in leaf size, the mechanism underlying the variation remains not fully understood. To help understand leaf size variation, the cost/benefit of twig size was analysed, since, according to Corner's rule, twig size is positively correlated with the size of appendages the twig bears. Methods An extensive survey of twig functional traits, including twig (current-year shoots including one stem and few leaves) and leaf size (individual leaf area and mass), was conducted for 234 species from four broadleaved forests. The scaling relationship between twig mass and leaf area was determined using standardized major axis regression and phylogenetic independent comparative analyses. Key Results Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1·0, independent of life form and habitat type. Thus, the leaf area ratio (the ratio of total leaf area to stem or twig mass) decreases with increasing twig size. Moreover, the leaf area ratio correlated negatively with individual leaf mass. The results of phylogenetic independent comparativeanalyses were consistent with the correlations. Based on the above results, a simple model for twig size optimization was constructed, from which it is postulated that large leaf size–twig size may be favoured when leaf photosynthetic capacity is high and/or when leaf life span and/or stem longevity are long. The model's predictions are consistent with leaf size variation among habitats, in which leaf size tends to be small in poor habitats with a low primary productivity. The model also explains large variations in leaf size within habitats for which leaf longevity and stem longevity serve as important determinants. Conclusions The diminishing returns in the scaling of total leaf area with twig size can be explained in terms of a very simple model on twig size

  7. The relationship of leaf photosynthetic traits - V cmax and J max - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study.

    PubMed

    Walker, Anthony P; Beckerman, Andrew P; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A; Domingues, Tomas F; Scales, Joanna C; Wohlfahrt, Georg; Wullschleger, Stan D; Woodward, F Ian

    2014-08-01

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V cmax and J max and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V cmax and J max and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V cmax and J max with leaf N, P, and SLA. V cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V cmax to leaf N. J max was strongly related to V cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm(-2)), increasing leaf P from 0.05 to 0.22 gm(-2) nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J max to V cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

  8. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    DOE PAGES

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less

  9. The relationship of leaf photosynthetic traits V cmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

    SciTech Connect

    Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; Kattge, Jens; Cernusak, Lucas A.; Domingues, Tomas F.; Scales, Joanna C.; Wohlfahrt, Georg; Wullschleger, Stan D.; Woodward, F. Ian

    2014-07-25

    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

  10. An overview on natural polysaccharides with antioxidant properties.

    PubMed

    Wang, H; Liu, Y M; Qi, Z M; Wang, S Y; Liu, S X; Li, X; Wang, H J; Xia, X C

    2013-01-01

    Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. With the rapid development of biotechnologies and analytical techniques, a great number of methods have been developed for the identification and quantification of the material, extracts, and products of natural ingredients. The advances available today. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. As an example, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. During the last several years, we have witnessed a steady expansion in the number of publications that focus in antioxidant polysaccharides. This review presents current findings on the latest advancements and trends in antioxidant polysaccharides isolated from the following: plants, fungi, bacteria, animal sources, and algae. Some interesting studies focus on investigation of the relationship between their structure and antioxidant activity, elucidation of their antioxidant mechanism at the molecular level, and improvement of their various biological activities by chemical modifications. Although the mechanism of their antioxidant action is still not completely clear, these polysaccharides are suggested to enhance cell-mediated immune responses in vivo and in vitro and act as biological response modifiers.

  11. Masquerading microbial pathogens: Capsular polysaccharides mimic host-tissue molecules

    PubMed Central

    Cress, Brady F.; Englaender, Jacob A.; He, Wenqin; Kasper, Dennis; Linhardt, Robert J.; Koffas, Mattheos A. G.

    2014-01-01

    Summary Bacterial pathogens bearing capsular polysaccharides identical to mammalian glycans benefit from an additional level of protection from host immune response. The increasing prevalence of antibiotic resistant bacteria portends an impending post-antibiotic age, characterized by diminishing efficacy of common antibiotics and routine application of multifaceted, complementary therapeutic approaches to treat bacterial infections, particularly multidrug-resistant organisms. The first line of defense for most bacterial pathogens consists of a physical and immunological barrier known as the capsule, commonly composed of a viscous layer of carbohydrates that are covalently bound to the cell wall in Gram-positive bacteria or often to lipids of the outer membrane in many Gram-negative bacteria. Bacterial capsular polysaccharides are a diverse class of high molecular weight polysaccharides contributing to virulence of many human pathogens in the gut, respiratory tree, urinary tract, and other host tissues, by hiding cell-surface components that might otherwise elicit host immune response. This review highlights capsular polysaccharides that are structurally identical or similar to polysaccharides found in mammalian tissues, including polysialic acid and glycosaminoglycan capsules hyaluronan, heparosan, and chondroitin. Such non-immunogenic coatings render pathogens insensitive to certain immune responses, effectively increasing residence time in host tissues and enabling pathologically relevant population densities to be reached. Biosynthetic pathways and capsular involvement in immune system evasion are described providing a basis for potential therapies aimed at supplementing or replacing antibiotic treatment. PMID:24372337

  12. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    PubMed

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems.

  13. New developments of polysaccharide synthesis via enzymatic polymerization

    PubMed Central

    Kobayashi, Shiro

    2007-01-01

    This review focuses on the in vitro synthesis of polysaccharides, the method of which is “enzymatic polymerization” mainly developed by our group. Polysaccharides are formed by repeated glycosylation reactions between a glycosyl donor and a glycosyl acceptor. A hydrolysis enzyme was found very efficient as catalyst, where the monomer is designed based on the new concept of a “transition-state analogue substrate” (TSAS); sugar fluoride monomers for polycondensation and sugar oxazoline monomers for ring-opening polyaddition. Enzymatic polymerization enabled the first in vitro synthesis of natural polysaccharides such as cellulose, xylan, chitin, hyaluronan and chondroitin, and also of unnatural polysaccharides such as a cellulose–chitin hybrid, a hyaluronan–chondroitin hybrid, and others. Supercatalysis of hyaluronidase was disclosed as unusual enzymatic multi-catalyst functions. Mutant enzymes were very useful for synthetic and mechanistic studies. In situ observations of enzymatic polymerization by SEM, TEM, and combined SAS methods revealed mechanisms of the polymerization and of the self-assembling of high-order molecular structure formed by elongating polysaccharide molecules. PMID:24367148

  14. Marine Polysaccharide Networks and Diatoms at the Nanometric Scale

    PubMed Central

    Svetličić, Vesna; Žutić, Vera; Pletikapić, Galja; Radić, Tea Mišić

    2013-01-01

    Despite many advances in research on photosynthetic carbon fixation in marine diatoms, the biophysical and biochemical mechanisms of extracellular polysaccharide production remain significant challenges to be resolved at the molecular scale in order to proceed toward an understanding of their functions at the cellular level, as well as their interactions and fate in the ocean. This review covers studies of diatom extracellular polysaccharides using atomic force microscopy (AFM) imaging and the quantification of physical forces. Following a brief summary of the basic principle of the AFM experiment and the first AFM studies of diatom extracellular polymeric substance (EPS), we focus on the detection of supramolecular structures in polysaccharide systems produced by marine diatoms. Extracellular polysaccharide fibrils, attached to the diatom cell wall or released into the surrounding seawater, form distinct supramolecular assemblies best described as gel networks. AFM makes characterization of the diatom polysaccharide networks at the micro and nanometric scales and a clear distinction between the self-assembly and self-organization of these complex systems in marine environments possible. PMID:24113585

  15. Hot-compressed water extraction of polysaccharides from soy hulls.

    PubMed

    Liu, Hua-Min; Wang, Fei-Yun; Liu, Yu-Lan

    2016-07-01

    The polysaccharides of soy hulls were extracted by hot-compressed water at temperatures of 110 from 180°C and various treatment times (10-150min) in a batch system. It was determined that a moderate temperature and short time are suitable for the preparation of polysaccharides. The structure of xylan and the inter- and intra-chain hydrogen bonding of cellulose fibrils in the soy hulls were not significantly broken down. The polysaccharides obtained were primarily composed of α-L-arabinofuranosyl units, 4-O-methyl-glucuronic acid units and α-D-galactose units attached with substituted units. A sugar analysis indicated that arabinose was the major component, constituting 35.6-46.9% of the polysaccharide products extracted at 130°C, 140°C, and 150°C. This investigation contributes to the knowledge of the polysaccharides of soy by-products, which can reduce the environmental impact of waste from the food industries.

  16. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    PubMed

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer.

  17. Endpoint fragmentation index: a method for monitoring the evolution of microbial degradation of polysaccharide feedstocks.

    PubMed

    Green, Terrence R; Popa, Radu

    2011-02-01

    We describe a simple method for tracking the course of microbial degradation of polysaccharide-rich feedstocks. The method involves determining total polysaccharides present in the feedstock, measured in glucose equivalents, relative to the fractional component of polysaccharides exhibiting 2,3-dinitrosalycylic acid aldehyde activity. The ratio of total polysaccharide to aldehyde activity, defined as the end-point fragmentation (EPF) index, is then calculated and tracked as it shifts as microbial degradation of polysaccharide-rich feedstock progresses. While degradation occurs, the EPF index falls. It bottoms out at an asymptotic limit marking the point in time where further degradation of the polysaccharide-rich feedstock has ceased. The EPF index can be used to follow the progressive breakdown of composting polysaccharide-rich waste. It may also have applicability as a means of tracking the turnover of polysaccharides in other complex environments including soil, sediments, wetlands, and peat bogs.

  18. Roles of Lipooligosaccharide and Capsular Polysaccharide in Antimicrobial Resistance and Natural Transformation of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To investigate the roles of surface polysaccharides, such as capsular polysaccharide (CPS) and lipooligosaccharide (LOS), in modulating natural transformation and antimicrobial resistance in Campylobacter jejuni. Methods: A series of C. jejuni mutants, which are defective in either CPS ...

  19. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza.

    PubMed

    Xiong, Dongliang; Yu, Tingting; Zhang, Tong; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-02-01

    Leaf hydraulic conductance (K leaf) is a major determinant of photosynthetic rate in plants. Previous work has assessed the relationships between leaf morpho-anatomical traits and K leaf with woody species, but there has been very little focus on cereal crops. The genus Oryza, which includes rice (Oryza sativa) and wild species (such as O. rufipogon cv. Griff), is ideal material for identifying leaf features associated with K leaf and gas exchange. Leaf morpho-anatomical traits, K leaf, leaf N content per leaf area, and CO2 diffusion efficiency were investigated in 11 Oryza cultivars. K leaf was positively correlated with leaf thickness and related traits, and therefore positively correlated with leaf mass per area and leaf N content per leaf area, and negatively with inter-veinal distance. K leaf was also positively correlated with leaf area and its related traits, and therefore negatively correlated with the proportion of minor vein length per area. In addition, coordination between K leaf and CO2 diffusion conductance in leaves was observed. We conclude that leaf morpho-anatomical traits and N content per leaf area strongly influence K leaf. Our results suggest that more detailed anatomical and structural studies are needed to elucidate the impacts of leaf feature traits on K leaf and gas exchange in grasses.

  20. Yeasts colonizing the leaf surfaces.

    PubMed

    Sláviková, Elena; Vadkertiová, Renata; Vránová, Dana

    2007-08-01

    The yeasts were isolated from the leaf surfaces of ten species of trees. The study site was a forest park (Zelezná Studnicka) of the Small Carpathians mountain range. One hundred and thirty seven yeast strains belonging to 13 genera were isolated from 320 samples of leaves and needles. Seventeen yeast species were isolated, but only seven occurred regularly: Aureobasidium pullulans, Cryptococcus laurentii, Pichia anomala, Metschnikowia pulcherrima, Saccharomyces sp., Lachancea thermotolerans, and Rhodotorula glutinis. The remaining species were isolated from the leaves and needles of three or less tree species. A. pullulans, Cr. laurentii, and P. anomala were the most frequently found species and they occurred on leaves and needles of all ten tree species. Saccharomyces sp. occurred in leaf samples collected from eight kinds of trees. M. pulcherrima and L. thermotolerans were found in samples collected from six species of trees. Both these species occurred almost always on the leaves of deciduous trees. Rh. glutinis was the most frequently isolated carotenoids producing species. We have found out that the ascomycetous and basidiomycetous species were present in the leaf samples in approximately equal frequency, contrary to the soil samples taken from this forest park, where the ascomycetous species were found rarely.

  1. Leaf Senescence by Magnesium Deficiency

    PubMed Central

    Tanoi, Keitaro; Kobayashi, Natsuko I.

    2015-01-01

    Magnesium ions (Mg2+) are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency. PMID:27135350

  2. The Influence of Leaf Angle and Leaf Surface Characteristics on the Process of Rainfall Interception

    NASA Astrophysics Data System (ADS)

    Holder, C.; Ginebra, R.; Webb, R.

    2015-12-01

    Individual choice in plant selection for household landscaping influences differences in runoff from urban watersheds because the variation in plant canopy architecture results in rainfall interception differences. Understanding the variables that influence rainfall interception and understanding the mechanism of rainfall interception are important concepts for sustainable watershed management. The broad objective of this study was to explore the influence of leaf hydrophobicity, water droplet retention, and leaf angle on the mechanism and process of rainfall interception and raindrop impaction on leaf surfaces of common tree species from the semi-arid regions of the western United States. Leaf hydrophobicity is determined by the cohesive forces of the water molecules among themselves and the adhesive forces that result from the molecular interactions between the water droplet and the leaf surface. Water droplet retention is a measure of how easily a water droplet drains off a leaf surface. The specific hypotheses examined were 1) larger raindrops falling on leaf surfaces will deflect the leaf to an angle greater than the water droplet retention angle; 2) an increased leaf angle, whether from natural position or deflection due to droplet impact and retention, reduces interception from raindrop impaction on hydrophobic and hydrophilic leaf surfaces; and 3) increased droplet size and frequency decrease rainfall interception more significantly in the hydrophilic case. These hypotheses were addressed in a laboratory experiment by 1) measuring leaf hydrophobicity and water droplet retention using a goniometer with a tilting base; 2) measuring leaf traits such as leaf area, leaf surface roughness, trichome density, and specific storage capacity; 3) examining raindrop splash on leaf surfaces with varying leaf hydrophobicity, water droplet retention, and leaf angle with a raindrop generator and high-speed video camera; and 4) modeling the impact of raindrop splash on leaf

  3. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels.

    PubMed

    Le, Xuan T; Rioux, Laurie-Eve; Turgeon, Sylvie L

    2017-01-01

    Protein and polysaccharide mixed systems have been actively studied for at least 50years as they can be assembled into functional particles or gels. This article reviews the properties of electrostatic gels, a recently discovered particular case of associative protein-polysaccharide mixtures formed through associative electrostatic interaction under appropriate solution conditions (coupled gel). This review highlights the factors influencing gel formation such as protein-polysaccharide ratio, biopolymer structural characteristics, final pH, ionic strength and total solid concentration. For the first time, the functional properties of protein-polysaccharide coupled gels are presented and discussed in relationship to individual protein and polysaccharide hydrogels. One of their outstanding characteristics is their gel water retention. Up to 600g of water per g of biopolymer may be retained in the electrostatic gel network compared to a protein gel (3-9g of water per g of protein). Potential applications of the gels are proposed to enable the food and non-food industries to develop new functional products with desirable attributes or new interesting materials to incorporate bioactive molecules.

  4. Polysaccharides, mimotopes and vaccines for fungal and encapsulated pathogens.

    PubMed

    Pirofski, L A

    2001-09-01

    Vaccination is a rational alternative to treatment for Cryptococcus neoformans infections, as these infections are currently intractable in immunocompromised (including HIV-infected) individuals. Vaccines composed of the cryptococcal capsular polysaccharide glucuronoxylomannan (GXM), the key C. neoformans virulence factor, elicit protective antibodies in mice, although deleterious antibodies can also be induced. By contrast, polysaccharides are poor immunogens in HIV-infected humans and others with B-cell defects. Peptide mimotopes of GXM can induce protective immunity to C. neoformans in mice, however, our knowledge of the mechanisms of mimotope-induced protection is incomplete and further work is needed if polysaccharide- or mimotope-based vaccines are to be used to manage C. neoformans infection.

  5. Polysaccharide-Based Membranes in Food Packaging Applications

    PubMed Central

    Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372

  6. EPS-I Polysaccharide Protects Mycoplasma pulmonis from Phagocytosis

    PubMed Central

    Shaw, Brandon M.; Daubenspeck, James M.; Simmons, Warren L.; Dybvig, Kevin

    2012-01-01

    Few mycoplasmal polysaccharides have been described and little is known about their role in pathogenesis. The infection of mice with Mycoplasma pulmonis has been utilized in many in vivo and in vitro studies to gain a better understanding of host-pathogen interactions during chronic respiratory infection. Although alveolar macrophages have a primary role in host defense, M. pulmonis is killed inefficiently in vitro. One antiphagocytic factor produced by the mycoplasma is the family of phase- and size-variable Vsa lipoproteins. However, bacteria generally employ multiple strategies for combating host defenses, with capsular polysaccharide often having a key role. We show here that mutants lacking the EPS-I polysaccharide of M. pulmonis exhibit increased susceptibility to binding and subsequent killing by alveolar macrophages. These results give further insight into how mycoplasmas are able to avoid the host immune system and sustain a chronic infection. PMID:23190331

  7. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides

    PubMed Central

    Wang, Junqiao; Hu, Shuzhen; Nie, Shaoping; Yu, Qiang; Xie, Mingyong

    2016-01-01

    It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms. PMID:26682009

  8. Bioactivity and applications of sulphated polysaccharides from marine microalgae.

    PubMed

    Raposo, Maria Filomena de Jesus; de Morais, Rui Manuel Santos Costa; Bernardo de Morais, Alcina Maria Miranda

    2013-01-23

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  9. Carrageenan: a natural seaweed polysaccharide and its applications.

    PubMed

    Prajapati, Vipul D; Maheriya, Pankaj M; Jani, Girish K; Solanki, Himanshu K

    2014-05-25

    Polysaccharides have been gaining interesting and valuable applications in the food and pharmaceutical fields. As they are derived from the natural source, they are easily available, non-toxic, cheap, biodegradable and biocompatible. Carrageenan is one among them, which fulfills the criteria of polysaccharide; it is a natural carbohydrate (polysaccharide) obtained from edible red seaweeds. The name Carrageenan is derived from the Chondrus crispus species of seaweed (Rhodophyceace) known as Carrageen Moss or Irish Moss, and Carraigin. A demand based on its application has been widely increasing in food and pharmaceutical sectors. Carrageenan has gained wide applications in experimental medicine, pharmaceutical formulations, cosmetics, and food industries. Through keen references of the reported literature on carrageenan, in this review, we have described about carrageenan, its properties, extraction and refining, and its food and pharmaceutical applications.

  10. Marine polysaccharides from algae with potential biomedical applications.

    PubMed

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  11. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Rui Manuel Santos Costa; de Morais, Alcina Maria Miranda Bernardo

    2013-01-01

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review. PMID:23344113

  12. Gelation of soybean protein and polysaccharides delays digestion.

    PubMed

    Hu, Bing; Chen, Qing; Cai, Qimeng; Fan, Yun; Wilde, Peter J; Rong, Zhen; Zeng, Xiaoxiong

    2017-04-15

    Xanthan gum and carrageenan, representing the medium and highly negatively charged polysaccharides, were heated respectively together with soybean protein isolate (SPI) at different biopolymer ratios. Upon mixing with simulated stomach juice (SSJ), the xanthan-SPI and carrageenan-SPI at biopolymer ratios higher than 0.01 leads to self-assembled gelation immediately. Stronger gel is formed under higher biopolymer ratios. Highly negatively charged carrageenan forms a stronger gel than that composed with xanthan gum. SDS-PAGE results show the digestibility of SPI is delayed after incorporation with the polysaccharides, which is enhanced with the increase of the biopolymer mass ratios. And the polysaccharide with higher negative charge has stronger potential in delaying the digestion of SPI. Furthermore, the microstructure of the xanthan-SPI and carrageenan-SPI gel before and after simulated stomach digestion was characterized by scanning electron microscope (SEM), which also confirms that the gel delays the digestion of soybean protein.

  13. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    PubMed

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  14. Preparation and characterization of mucilage polysaccharide for biomedical applications.

    PubMed

    Archana, G; Sabina, K; Babuskin, S; Radhakrishnan, K; Fayidh, Mohammed A; Babu, P Azhagu Saravana; Sivarajan, M; Sukumar, M

    2013-10-15

    In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC%=52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC%=50%) (PH=7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels.

  15. Designing Whey Protein-Polysaccharide Particles for Colloidal Stability.

    PubMed

    Wagoner, Ty; Vardhanabhuti, Bongkosh; Foegeding, E Allen

    2016-01-01

    Interactions between whey proteins and polysaccharides, in particular the formation of food-grade soluble complexes, are of interest because of potential functional and health benefits. A specific application that has not received much attention is the use of complexes for enhanced colloidal stability of protein sols, such as protein-containing beverages. In beverages, the primary goal is the formation of complexes that remain dispersed after thermal processing and extended storage. This review highlights recent progress in the area of forming whey protein-polysaccharide soluble complexes that would be appropriate for beverage applications. Research in this area indicates that soluble complexes can be formed and stabilized that are reasonably small in size and possess a large surface charge that would predict colloidal stability. Selection of specific proteins and polysaccharides can be tailored to desired conditions. The principal challenges involve overcoming restrictions on protein concentration and ensuring that protein remains bioavailable.

  16. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides.

    PubMed

    Wang, Junqiao; Hu, Shuzhen; Nie, Shaoping; Yu, Qiang; Xie, Mingyong

    2016-01-01

    It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms.

  17. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides

    NASA Astrophysics Data System (ADS)

    Ruiz-Perez, Begonia; Chung, Doo R.; Sharpe, Arlene H.; Yagita, Hideo; Kalka-Moll, Wiltrud M.; Sayegh, Mohamed H.; Kasper, Dennis L.; Tzianabos, Arthur O.

    2005-11-01

    Bacterial carbohydrates have long been considered T cell-independent antigens that primarily induce humoral immune responses. Recently, it has been demonstrated that bacterial capsules that possess a zwitterionic charge motif can activate CD4+ T cells after processing and presentation by antigen-presenting cells. Here we show that these zwitterionic polysaccharides can prevent T helper 1-mediated fibrosis by signaling for the release of IL-10 from CD4+ T cells in vivo. IL-10 production by these T cells and their ability to prevent fibrosis is controlled by the inducible costimulator (ICOS)-ICOS ligand pathway. These data demonstrate that the interaction of the zwitterionic polysaccharides with T cells results in modulation of surgical fibrosis in vivo and suggest a previously undescribed approach to "harnessing" T cell function to prevent inflammatory tissue disorders in humans. IL-10 | microbial polysaccharides | inducible costimulator

  18. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  19. TEMPO-mediated oxidation of polysaccharides: An ongoing story.

    PubMed

    Pierre, Guillaume; Punta, Carlo; Delattre, Cédric; Melone, Lucio; Dubessay, Pascal; Fiorati, Andrea; Pastori, Nadia; Galante, Yves M; Michaud, Philippe

    2017-06-01

    The oxidation of natural polysaccharides by TEMPO has become by now an "old chemical reaction" which led to numerous studies mainly conducted on cellulose. This regioselective oxidation of primary alcohol groups of neutral polysaccharides has generated a new class of polyuronides not identified before in nature, even if the discovery of enzymes promoting an analogous oxidation has been more recently reported. Around the same time, the scientific community discovered the surprising biological and techno-functional properties of these anionic macromolecules with a high potential of application in numerous industrial fields. The objective of this review is to establish the state of the art of TEMPO chemistry applied to polysaccharide oxidation, its history, the resulting products, their applications and the associated modifying enzymes.

  20. Leaf drop affects herbivory in oaks.

    PubMed

    Pearse, Ian S; Karban, Richard

    2013-11-01

    Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.

  1. Characterization of the Kingella kingae Polysaccharide Capsule and Exopolysaccharide

    PubMed Central

    Starr, Kimberly F.; Porsch, Eric A.; Heiss, Christian; Black, Ian; Azadi, Parastoo; St. Geme, Joseph W.

    2013-01-01

    Recent evidence indicates that Kingella kingae produces a polysaccharide capsule. In an effort to determine the composition and structure of this polysaccharide capsule, in the current study we purified capsular material from the surface of K. kingae strain 269–492 variant KK01 using acidic conditions to release the capsule and a series of steps to remove DNA, RNA, and protein. Analysis of the resulting material by gas chromatography and mass spectrometry revealed N-acetyl galactosamine (GalNAc), 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), and galactose (Gal). Further analysis by NMR demonstrated two distinct polysaccharides, one consisting of GalNAc and Kdo with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and the other containing galactose alone with the structure →5)-β-Galf-(1→. Disruption of the ctrA gene required for surface localization of the K. kingae polysaccharide capsule resulted in elimination of GalNAc and Kdo but had no effect on the presence of Gal in bacterial surface extracts. In contrast, deletion of the pamABCDE locus involved in production of a reported galactan exopolysaccharide eliminated Gal but had no effect on the presence of GalNAc and Kdo in surface extracts. Disruption of ctrA and deletion of pamABCDE resulted in a loss of all carbohydrates in surface extracts. These results establish that K. kingae strain KK01 produces a polysaccharide capsule with the structure →3)-β-GalpNAc-(1→5)-β-Kdop-(2→ and a separate exopolysaccharide with the structure →5)-β-Galf-(1→. The polysaccharide capsule and the exopolysaccharide require distinct genetic loci for surface localization. PMID:24098695

  2. Chitosan: A Promising Marine Polysaccharide for Biomedical Research

    PubMed Central

    Periayah, Mercy Halleluyah; Halim, Ahmad Sukari; Saad, Arman Zaharil Mat

    2016-01-01

    Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins—which are extracted from the shells of arthropods such as crab, shrimp, and lobster—is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field. PMID:27041872

  3. Role of polysaccharides in food, digestion, and health

    PubMed Central

    Lovegrove, A.; Edwards, C. H.; De Noni, I.; Patel, H.; El, S. N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P. J.; Ellis, P. R; Shewry, P. R.

    2017-01-01

    ABSTRACT Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets. PMID:25921546

  4. Role of polysaccharides in food, digestion, and health.

    PubMed

    Lovegrove, A; Edwards, C H; De Noni, I; Patel, H; El, S N; Grassby, T; Zielke, C; Ulmius, M; Nilsson, L; Butterworth, P J; Ellis, P R; Shewry, P R

    2017-01-22

    Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets.

  5. Structural characteristics of a bioactive polysaccharide from Sorghum arundinaceum.

    PubMed

    da Silva, Bernadete P; Silva, Graziela M; Mendes, Tatiana P; Parente, José P

    2003-01-01

    A polysaccharide, an alpha-D-glucan with an apparent molecular weight of 6.85 x 10(4), called PSa glucan, was isolated from fresh seeds of Sorghum arundinaceum by fractionation on Sephacryl S-300 HR and Sephadex G-25. Chemical and spectroscopic studies indicated that it has a highly branched glucan type structure composed of alpha-(1-->4) linked D-glucopyranose residues with (1-->3), (1-->6) branching points, and a significant amount of alpha-(1-->6) branching to alpha-(1-->3) linked D-glucopyranose residues. The anti-inflammatory activity of the polysaccharide was performed using the capillary permeability assay.

  6. Hypolipidemic effect of the polysaccharides from Porphyra yezoensis.

    PubMed

    Qian, Li; Zhou, Yan; Ma, Jian-Xin

    2014-07-01

    This study was performed to investigate the hypolipidemic effect of the polysaccharides extracted from Porphyra yezoensis. Male Sprague-Dawley rats were divided into three groups and orally treated with diets containing either high fat, P. yezoensis polysaccharides (PPs), or normal fat. Treatment of male Sprague-Dawley rats with PPs led not only to significant decreases in plasma triacylglycerol, total cholesterol, and plasma low-density lipoprotein cholesterol and an increase in plasma high-density lipoprotein cholesterol, but also to significant decreases in liver weight, triacylglycerol and cholesterol. Therefore, the results suggest that PPs had a high hypolipidemic activity and could be used as a potential therapeutic agent for hyperlipidemia.

  7. Composition and Partial Structure Characterization of Tremella Polysaccharides

    PubMed Central

    2009-01-01

    Heteropolysaccharides isolated from liquid cultures of nine Tremella species contained 0.3 to 1.2% protein, 2.7 to 5% ash, 0.9 to 3.4% acetyl groups, 76.5 to 84.2% carbohydrates and trace amounts of starch. The polysaccharides in aqueous solution were slightly acidic (pH 5.1 to 5.6). They consisted of the following monomeric sugars: fucose, ribose, xylose, arabinose, mannose, galactose, glucose and glucuronic acid. The backbones of the polysaccharide structures consisted of α-(1→3)-links while the side chains were β-linked. PMID:23983549

  8. Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation.

    PubMed

    Oikawa, Ai; Rahman, Abidur; Yamashita, Tetsuro; Taira, Hideharu; Kidou, Shin-Ichiro

    2007-01-01

    P23k is a monocot-unique protein that is highly expressed in the scutellum of germinating barley seed. Previous expression analyses suggested that P23k is involved in sugar translocation and/or sugar metabolism. However, the role of P23k in barley physiology remains unclear. Here, to elucidate its physiological function, BSMV-based virus-induced gene silencing (VIGS) of P23k in barley leaves was performed. Expression and localization analyses of P23k mRNA in barley leaves showed up-regulation of P23k transcript with increased photosynthetic activity and the localization of these transcripts to the vascular bundles and sclerenchyma, where secondary wall formation is most active. VIGS of the P23k gene led to abnormal leaf development, asymmetric orientation of main veins, and cracked leaf edges caused by mechanical weakness. In addition, histochemical analyses indicated that the distribution of P23k in leaves coincides with the distribution of cell wall polysaccharides. Considering these results together, it is proposed that P23k is involved in the synthesis of cell wall polysaccharides and contributes to secondary wall formation in barley leaves.

  9. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  10. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  11. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  12. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf tobacco does not include any manufactured or semimanufactured tobacco, stems which have been removed...

  13. Transcriptional networks in leaf senescence.

    PubMed

    Schippers, Jos H M

    2015-10-01

    Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize nutrients from source leaves to developing tissues. While during the past decades, molecular components underlying the onset of senescence have been intensively studied, knowledge remains scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating that early and late leaf developmental phases are highly connected.

  14. Extracellular acidic polysaccharide production by a two-membered bacterial coculture.

    PubMed

    Kurata, Shinya; Yamada, Kazutaka; Takatsu, Kyoko; Hanada, Satoshi; Koyama, Osamu; Yokomaku, Toyokazu; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    2003-01-01

    A two-membered coculture of strains KYM-7 and KYM-8, identified as Cellulomonas cellulans and Agrobacterium tumefaciens, respectively, produced a large amount of an extracellular polysaccharide, designated APK-78, from starch. Each strain in pure culture produced only very little amount of polysaccharide from starch; the coexistence of the two strains from the early stage of cultivation was indispensable for a large amount of polysaccharide to be produced. The polysaccharide APK-78 was acidic and composed of glucose, galactose, succinic acid, and pyruvic acid with a molar ratio of 8.1:1.0:1.7:1.0, indicating that it is a succinoglycan type of polysaccharide.

  15. Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta).

    PubMed

    Mao, Wenjun; Li, Hongyan; Li, Yi; Zhang, Huijuan; Qi, Xiaohui; Sun, Haihong; Chen, Yin; Guo, Shoudong

    2009-01-01

    A polysaccharide was isolated from marine green algae Monostroma latissimum, and its chemical characteristic and anticoagulant activity were investigated. The results demonstrated that the polysaccharide was high rhamnose-containing sulfated polysaccharide, and was mainly composed of 1,2-linked l-rhamnose residues with sulfate groups substituted at positions C-3 and/or C-4. The sulfated polysaccharide exhibited high anticoagulant activities by assays of the activated partial thromboplastin time (APTT) and thrombin time (TT). The anticoagulant property of the sulfated polysaccharide was mainly attributed to powerful potentiation thrombin by heparin cofactor II.

  16. Nonencapsulated Variant of Cryptococcus neoformans I. Virulence Studies and Characterization of Soluble Polysaccharide

    PubMed Central

    Kozel, Thomas R.; Cazin, John

    1971-01-01

    A weakly virulent nonencapsulated variant of Cryptococcus neoformans is described. The chemical structure and antigenicity of the soluble polysaccharides produced by the variant strain and a typical virulent strain were compared. The soluble polysaccharides produced by both strains were composed of the same constituent monosaccharides; however, the virulent strain produced a polysaccharide having a greater uronic acid content and a larger molecular size than that of the variant strain. Soluble polysaccharides from the two strains are not closely related immunologically. Soluble polysaccharide obtained from the virulent strain did not affect persistence of the variant strain in mice. PMID:16557967

  17. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  18. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  19. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  20. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  1. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than...

  2. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure... percent injury tolerance. B2F Fine Quality Medium-brown Heavy Leaf. Ripe, medium body, open leaf structure... percent injury tolerance. B3F Good Quality Medium-brown Heavy Leaf. Mature, medium body, firm...

  3. Pivotal Roles of the Outer Membrane Polysaccharide Export and Polysaccharide Copolymerase Protein Families in Export of Extracellular Polysaccharides in Gram-Negative Bacteria

    PubMed Central

    Cuthbertson, Leslie; Mainprize, Iain L.; Naismith, James H.; Whitfield, Chris

    2009-01-01

    Summary: Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology. PMID:19258536

  4. Viscofying properties of corn fiber gum with various polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of corn fiber gum (CFG) on the aqueous solutions of a series of widely-used commercial polysaccharides has been studied by rheological techniques using stress synergism index to evaluate its viscosifying action. Though CFG solution exhibited Newtonian fluid behaviour with a very low vis...

  5. Construction of Electrochemical Chiral Interfaces with Integrated Polysaccharides via Amidation.

    PubMed

    Bao, Liping; Chen, Xiaohui; Yang, Baozhu; Tao, Yongxin; Kong, Yong

    2016-08-24

    Polysaccharides of sodium carboxymethyl cellulose (CMC) and chitosan (CS) were integrated together via amidation reactions between the carboxyl groups on sodium CMC and the amino groups on CS. Compared with individual sodium CMC and CS, the integrated polysaccharides with a mass ratio of 1:1, CMC-CS (1:1), exhibited a three-dimensional (3D) porous network structure, resulting in a significantly enhanced hydrophility due to the exposed polar functional groups in the CMC-CS (1:1). Chiral interfaces were constructed with the integrated polysaccharides and used for electrochemical enantiorecognition of tryptophan (Trp) isomers. The CMC-CS (1:1) chiral interfaces exhibited excellent selectivity toward the Trp isomers owing to the highly hydrophilic feature of CMC-CS (1:1) and the different steric hindrance during the formation of H bonds between Trp isomers and CMC-CS (1:1). Also, the optimization in the preparation of integrated polysaccharides such as mass ratio and combination mode (amidation or electrostatic interactions) was investigated. The CMC-CS (1:1) presented the ability of determining the percentage of d-Trp in racemic mixtures, and thus, the proposed electrochemical chiral interfaces could be regarded as a potential biosensing platform for enantiorecognition of chiral compounds.

  6. Catalytic synthesis of sulfated polysaccharides I: Characterization of chemical structure.

    PubMed

    Wang, Junlong; Yang, Wen; Yang, Ting; Zhang, Xiaonuo; Zuo, Yuan; Tian, Jia; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-03-01

    In the present study, sulfated derivatives of Artemisia sphaerocephala polysaccharide (SASP) with high degree of substitution (DS) were synthesized by using 4-dimethylaminopyridine (DMAP)/dimethylcyclohexylcarbodiimide (DCC) as catalyst in homogeneous conditions. It was found that DMAP/DCC showed marked improvement in DS of sulfated samples. Compared to sulfated derivatives without catalyst, the DS of SASP increased from 0.91 to 1.28 with an increment in dosage of DMAP from 0 to 10 mg. The influence of DMAP/DCC on the DS of sulfated derivatives was depended on the content of DMAP. The effect of DMAP might be due to its strong coordination to the hydroxy group. The results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3- group (S6+, binding energy of 172.3 eV) was widely present in sulfated polysaccharide molecules. 13C NMR results indicated that C-6 substitution was predominant for sulfated polysaccharide when compared with other positions. In the sulfation reaction, a sharp decrease in MW was observed. DMAP/DCC was an effective catalyst system in sulfated modification of polysaccharide.

  7. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  8. Extraction, Characterization and Immunological Activity of Polysaccharides from Rhizoma gastrodiae

    PubMed Central

    Chen, Juncheng; Tian, Shan; Shu, Xiaoying; Du, Hongtao; Li, Na; Wang, Junru

    2016-01-01

    A response surface and Box-Behnken design approach was applied to augment polysaccharide extraction from the residue of Rhizoma gastrodiae. Statistical analysis revealed that the linear and quadratic terms for three variables during extraction exhibited obvious effects on extraction yield. The optimum conditions were determined to be a liquid-to-solid ratio of 54 mL/g, an extraction temperature of 74 °C, an extraction time of 66 min, and three extractions. These conditions resulted in a maximum Rhizoma gastrodiae polysaccharide (RGP) extraction yield of 6.11% ± 0.13%. Two homogeneous polysaccharides (RGP-1a and RGP-1b) were obtained using DEAE cellulose-52 and Sephadex G-100 columns. The preliminary characterization of RGP-1a and RGP-1b was performed using HPLC-RID, HPGPC, and FTIR. Tests of the immunological activity in vitro showed that the two polysaccharides could significantly stimulate macrophages to release NO and enhance phagocytosis in a dose-dependent manner. In particular, RGP-1b (200 μg/mL) and LPS (2 μg/mL) had almost the same influence on the NO production and phagocytic activity of RAW 264.7 macrophages (p > 0.05). All the data obtained indicate that RGP-1a and RGP-1b have the potential to be developed as a health food. PMID:27347944

  9. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.

  10. [Molecular nature of the Brucella polysaccharide antigen (poly-B)].

    PubMed

    L'vov, V L; Pluzhnikova, G N; Lapina, E B; Shashkov, A S; Askerova, S A

    1987-08-01

    Cyclic (1----2)-beta-D-glucan was isolated from killed cells of pathogenic Brucella melitensis 16M. Its structure was deduced mainly from the acid hydrolysis, methylation analysis and 13C-NMR spectroscopy data. The cycloglucan and demicellated lipopolysaccharide of B. melitensis 16M form a stable complex identical, by immunodiffusion test, to the earlier described polysaccharide B antigen.

  11. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    PubMed

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.

  12. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  13. Structure of pectic polysaccharides from sunflower salts-soluble fraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The manuscript discusses the structural features of pectin polysaccharides extracted from seedless sunflower head residues. The analysis using 1H, 13C and two-dimensional gHSQC NMR showed various numbers of methyl and hydroxyl groups attached to the anomeric carbons in the pectin backbone at differe...

  14. Sweet substrate: a polysaccharide nanocomposite for conformal electronic decals.

    PubMed

    Daniele, Michael A; Knight, Adrian J; Roberts, Steven A; Radom, Kathryn; Erickson, Jeffrey S

    2015-03-04

    A conformal electronic decal based on a polysaccharide circuit board (PCB) is fabricated and characterized. The PCBs are laminates composed of bioderived sugars - nanocellulose and pullulan. The PCB and decal transfer are a bioactive material system for supporting electronic devices capable of conforming to bio-logical surfaces.

  15. Polysaccharides as Alternative Moisture Retention Agents for Shrimp.

    PubMed

    Torti, Michael J; Sims, Charles A; Adams, Charles M; Sarnoski, Paul J

    2016-03-01

    Phosphates are used as moisture retention agents (MRAs) by the shrimp industry. Although they are effective, phosphates are expensive, need to be listed on a food label, and overuse can often lead to a higher product cost for consumers. Polysaccharides were researched as alternative MRAs. Polysaccharides are usually inexpensive, are considered natural, and can have nutritional benefits. Research was conducted to determine whether polysaccharides yielded similar functional impacts as phosphates. Treatments included a 0.5% fibercolloid solution isolated from citrus peel, an 8% pectin solution, a 0.5% xanthan gum (XG) solution, a 1% carboxymethyl cellulose solution, and conventionally used 4% sodium tripolyphosphate (STP). Experimental treatments were compared to a distilled water control to gauge effectiveness. Freezing, boiling, and oven drying studies were performed to determine how moisture retention in shrimp differed using these different treatments. Water activity was measured to determine any potential differences in shelf life. Solution uptake was also determined to understand how well the treatments enhanced water binding. For moisture loss by freezing, 4% STP and the 0.5% fibercolloid solution functioned the best. The 4% STP treated shrimp lost the least amount of moisture during boiling. The 0.5% fibercolloid and 0.5% XG treatment outperformed phosphates in respect to moisture uptake ability. None of the treatments had a major effect on water activity. All treatments were rated similar in consumer sensory acceptability tests except for pectin, which was rated lower by the sensory panel. Overall, polysaccharides were found to be viable alternatives to phosphates.

  16. Microwave superheated water extraction of polysaccharides from spent coffee grounds.

    PubMed

    Passos, Cláudia P; Coimbra, Manuel A

    2013-04-15

    The spent coffee grounds (SCG) are a food industry by-product that can be used as a rich source of polysaccharides. In the present work, the feasibility of microwave superheated water extraction of polysaccharides from SCG was studied. Different ratios of mass of SCG to water, from 1:30 to 1:5 (g:mL) were used for a total volume of 80 mL. Although the amount of material extracted/batch (MAE1) increased with the increase of the concentration of the sample, the amount of polysaccharides achieved a maximum of 0.57 g/batch for 1:10. Glycosidic-linkage composition showed that all extraction conditions allowed to obtain mainly arabinogalactans. When the unextracted insoluble material was re-extracted under the same conditions (MAE2), a further extraction of polysaccharides was observed (0.34 g/batch for 1:10), mainly galactomannans. Also, a high amount of oligosaccharides, mainly derived from galactomannans, can be obtained in MAE2 (0.96 g/batch for 1:10). This technology allows to obtain galactomannans and arabinogalactans in proportions that are dependent on the operating conditions.

  17. [Optimum of polysaccharide distillation on scrap Cordyceps militaris medium].

    PubMed

    Ren, Shu-Yu; Zhao, Chun-Yan; Song, Hui-Yi; Zhao, Hao-Lu; Sun, Jun-De

    2008-03-01

    A mass of scrap Cordyceps militaris solid culture medium could not be utilized better. In this test, using orthogonal design the optimal technique parmeter of extracting polysaccharide was 80 degrees C, two times, in twenty times of water, and 120 minutes each time. Temperature was the most important factor. The referenced data could be provided to depurative production of Cordyceps militaris and resource utilization.

  18. Ultrasound assisted extraction of polysaccharides from hazelnut skin.

    PubMed

    Yılmaz, Tuncay; Tavman, Şebnem

    2016-03-01

    In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values.

  19. Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus

    PubMed Central

    Simenel, Catherine; Coddeville, Bernadette; van Vliet, Sandra J.; van Kooyk, Yvette; Bozza, Silvia; Moretti, Silvia; Schwarz, Flavio; Trichot, Coline; Aebi, Markus; Delepierre, Muriel; Elbim, Carole; Romani, Luigina; Latgé, Jean-Paul

    2011-01-01

    A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, 1H and 13C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates. PMID:22102815

  20. Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms.

    PubMed

    Chen, Peiying; Yong, Yangyang; Gu, Yifan; Wang, Zeliang; Zhang, Shizhu; Lu, Ling

    2015-01-01

    Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum.

  1. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods.

    PubMed

    Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong

    2015-11-01

    Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost.

  2. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    PubMed Central

    Huang, Hui-Yu; Korivi, Mallikarjuna; Chaing, Ying-Ying; Chien, Ting-Yi; Tsai, Ying-Chieh

    2012-01-01

    Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P < 0.01) lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P < 0.01) the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats. PMID:22973406

  3. ACTIVE IMMUNIZATION OF MICE WITH THE POLYSACCHARIDES OF PNEUMOCOCCI TYPES I, II AND III

    PubMed Central

    Zozaya, José; Clark, Janet

    1933-01-01

    1. Pneumococcus polysaccharides Types I, II and III adsorbed on collodion particles, and Types I and III adsorbed on carbon (norit) are antigenic in mice. 2. Unadsorbed pneumococcus polysaccharide of Type I is antigenic in mice in proper dilution. One preparation of Type II polysaccharide was not antigenic, while another one immunized against Types I and II. Type III polysaccharide was only slightly antigenic against Type III but immunized against Type I. 3. The antigenicity of pneumococcus polysaccharide in optimal dosage is tentatively explained by an adsorption phenomenon taking place in the body in instances in which the polysaccharides had not been adsorbed before injection. 4. The aggressin-like action of large doses of pneumococcus polysaccharides Types I, II and III is further established. PMID:19870119

  4. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii).

    PubMed

    Zha, Shenghua; Zhao, Qingsheng; Chen, Jinjin; Wang, Liwei; Zhang, Guifeng; Zhang, Hong; Zhao, Bing

    2014-10-13

    Water-soluble polysaccharides were separated from maca (Lepidium meyenii) aqueous extract (MAE). The crude polysaccharides were deproteinized by Sevag method. During the preparation process of maca polysaccharides, amylase and glucoamylase effectively removed starch in maca polysaccharides. Four Lepidium meyenii polysaccharides (LMPs) were obtained by changing the concentration of ethanol in the process of polysaccharide precipitation. All of the LMPs were composed of rhamnose, arabinose, glucose and galactose. Antioxidant activity tests revealed that LMP-60 showed good capability of scavenging hydroxyl free radical and superoxide radical at 2.0mg/mL, the scavenging rate was 52.9% and 85.8%, respectively. Therefore, the results showed that maca polysaccharides had a high antioxidant activity and could be explored as the source of bioactive compounds.

  5. Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion

    PubMed Central

    Lyu, Qianqian; Jiao, Wenqian; Zhang, Keke; Bao, Zhenmin; Wang, Shi; Liu, Weizhi

    2016-01-01

    Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancreatic proteins of the Zhikong scallop (Chlamys farreri). We identified 435 proteins, the majority of which were lysosomal enzymes and carbohydrate and protein metabolism enzymes. However, several new enzymes related to polysaccharide metabolism were also identified. Phylogenetic and structural analyses of these enzymes suggest that these polysaccharide-degrading enzymes may have a variety of potential substrate specificities. Taken together, our study characterizes several novel polysaccharide-degrading enzymes in the scallop hepatopancreas and provides an enhanced view of these enzymes and a greater understanding of marine polysaccharide digestion. PMID:27982037

  6. [Saccharide mapping and its application in quality control of polysaccharides from Chinese medicines].

    PubMed

    Li, Shao-ping; Wu, Ding-tao; Zhao, Jing

    2015-09-01

    Polysaccharides with multiple biological activities are usually considered as one of the major bioactive compounds in Chinese medicines (CMs). At present, the development of drug and functional foods related to polysaccharides have attracted a great deal of attention due to their great potential effects and diverse action mechanisms. However, quality control of polysaccharides is the bottleneck and a challenge due to their complexity and chemical diversity. Actually, the bioactivities of polysaccharides are closely related to their molecular structures. In order to ensure their safety and efficacy, the development of novel approaches based on the molecular structures for the improvement of quality control of polysaccharides is significantly important. Therefore, in this article, the relationship between biological activities and chemical structures, as well as the action mechanisms of polysaccharides from CMs were summarized first. Furthermore, saccharide mapping, a novel strategy for quality control of bioactive polysaccharides from CMs, was introduced and the application and perspectives were also discussed.

  7. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    PubMed

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  8. “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness

    PubMed Central

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    “Microscopic leaf wetness” means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past. PMID:24167510

  9. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE PAGES

    Yang, Xi; Tang, Jianwu; Mustard, John F.; ...

    2016-04-02

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R2 = 0.6–0.8 for temporal variability; R2 = 0.3–0.7 for cross-site variability; R2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of Nmass, Cmass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future

  10. Leaf Histology--Two Modern Methods.

    ERIC Educational Resources Information Center

    Freeman, H. E.

    1984-01-01

    Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)

  11. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2...

  12. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development...

  13. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.)...

  14. [Study on pharmacognosy of Ginkgo leaf].

    PubMed

    Geng, Guo-Ping; Ma, Zhi-Gang; Mao, Chong-Wu

    2007-05-01

    The primary study of Ginkgo leaf such as crude drug macroscopic and powder characteristics were carried out, and the flavonoids content in the leaf of Ginkgo in different areas of Gansu province was determined by HPLC, in order to provide scientific references for the exploitation of Ginkgo in Gansu province.

  15. Possible Roles of Strigolactones during Leaf Senescence.

    PubMed

    Yamada, Yusuke; Umehara, Mikihisa

    2015-09-11

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  16. [Photoprotective mechanisms of leaf anthocyanins: research progress].

    PubMed

    Wang, Liang-Zai; Hu, Yan-Bo; Zhang, Hui-Hui; Xu, Nan; Zhang, Xiu-Li; Sun, Guang-Yu

    2012-03-01

    Anthocyanin is widely distributed in plant organs such as root, stem, leaf, flower and fruit, being a kind of secondary metabolites generated in plant morphogenesis or for stress response. Leaf anthocyanin has special chemical structure and spectral properties, playing important roles in plant photoprotection, and becomes a hotspot in plant photosynthetic physiological ecology. This paper summarized the recent research progress in the effects of leaf anthocyanin on plant photosynthesis, including the distribution of leaf anthocyanin, its spectral properties, and its relationships with photosynthetic pigments, with the focus on the potential mechanisms of anthocyanins photoprotection, including light absorption, antioxidation, and osmotic regulation. The further research directions on the effects of leaf anthocyanin on photoprotection were proposed.

  17. Inferring climate from angiosperm leaf venation networks.

    PubMed

    Blonder, Benjamin; Enquist, Brian J

    2014-10-01

    Leaf venation networks provide an integrative linkage between plant form, function and climate niche, because leaf water transport underlies variation in plant performance. Here, we develop theory based on leaf physiology that uses community-mean vein density to predict growing season temperature and atmospheric CO2 concentration. The key assumption is that leaf water supply is matched to water demand in the local environment. We test model predictions using leaves from 17 temperate and tropical sites that span broad climatic gradients. We find quantitative agreement between predicted and observed climate values. We also highlight additional leaf traits that may improve predictions. Our study provides a novel approach for understanding the functional linkages between functional traits and climate that may improve the reconstruction of paleoclimate from fossil assemblages.

  18. Leaf movement in Calathea lutea (Marantaceae).

    PubMed

    Herbert, Thomas J; Larsen, Parry B

    1985-09-01

    Calathea lutea is a broad-leaved, secondary successional plant which shows complex leaf movements involving both elevation and folding of the leaf surface about the pulvinus. In the plants studied, mean leaf elevation increased from approximately 34 degrees in the early morning to 70 degrees at noon while the angle of leaf folding increased from 13 degrees to 50 degrees over the same time period. During the period from early morning to noon, these movements resulted in a significant decrease in the cosine of the angle of incidence, a measure of the direct solar radiation intercepted. The observed changes in elevational angle significantly reduce the cosine of angle of incidence while folding does not significantly reduce the fraction of direct solar radiation intercepted during the period of direct exposure of the leaf surface to the solar beam. Since elevational changes seem to account for the reduction in exposure to direct solar radiation, the role of folding remains unclear.

  19. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area1

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2014-01-01

    • Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images. PMID:25202639

  20. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  1. Relating Stomatal Conductance to Leaf Functional Traits

    PubMed Central

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-01-01

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES

  2. [FTIR Spectroscopic Characterization of Material Composition in Functional Leaf of Cotton under Stress of Potassium and Boron].

    PubMed

    Wu, Xiu-wen; Hao, Yan-shu; Lei, Jing; Jiang, Cun-cang

    2016-03-01

    Potassium (K) and boron (B) are essential nutrient elements for plants, and the elements play an important role for plant growth, development and physiological metabolism. Cotton has a higher demand for K and B; K deficiency or B deficiency often occurs in cotton though. To reveal the component changes in functional leaf of cotton under K and B stress and investigate effects on material composition from K and B. A pot experiment was conducted at Huazhong Agricultural University. (1) the characteristic peaks at 1 546.86, 1 438.85, 1 153.39 and 1 024.17 cm(-1) disappeared due to B deficiency, and relative absorbance of other characteristic peaks was decreased compared with normal, which suggested that the structures of protein, fiber, soluble sugar and ribosome in cotton functional leaf changed and decreased in cotent when lack of K. (2) the relative absorbance of all characteristic peaks was increased in the B-deficient cotton leaves compared with normal, suggesting B deficiency leads to the accumulation in leaves of protein, and fiber, soluble sugar and other carbohydrates because of the hindered transportation. (3) lack of both potassium and boron, induced significant changes to both the locations and relative absorbance of characteristic peaks, and the content of protein, and soluble sugar and other carbohydrates increased, while the content of nucleic acids and polysaccharides dropped. K deficiency led to the structures of protein, fiber, soluble sugar and ribosome in cotton functional leaf changed and decreased in content; B deficiency gave rise to the accumulation in leaves of protein, and fiber, soluble sugar and other carbohydrates; the content of protein and soluble sugar and other carbohydrates increased, while the content of nucleic acids and polysaccharides dropped when K and B were all in short supply.

  3. Antioxidant Activity of Water-soluble Polysaccharides from Brasenia schreberi

    PubMed Central

    Xiao, Huiwen; Cai, Xueru; Fan, Yijun; Luo, Aoxue

    2016-01-01

    Objective: In order to investigate the antioxidant activities of polysaccharides (BPL-1 and BPL-2), one of the most important functional constituents in Brasenia schreberi was isolated from the external mucilage of B. schreberi (BPL-1) and the plant in vivo (BPL-2). This paper examines the relationship between the content of sulfuric radicals and uronic acid in BPL and the antioxidant activity of BPL. Materials and Methods: The free radicals, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and 1,1-diphnyl-2-picrylhydrazyl (DPPH-), were used to determine the antioxidant activity of BPL. The Fourier-transform infrared spectroscopy of BPL-1 and BPL-2 revealed typical characteristics of polysaccharides. Results: The two sample types had different contents. This was proved by their different adsorption peak intensities. The IC50 values of BPL-1 (31.189 mg/ml) and BPL-2 (1.863 mg/ml) showed significant DPPH radical scavenging activity. Based on the quantification of ABTS radical scavenging, the IC50 value of BPL-1 (5.460 mg/ml) was higher than that of BPL-2 (0.239 mg/ml). Therefore, in terms of the reducing power, the IC50 value of BPL-1 was too high to determine, and the IC50 value of BPL-2 was found to be 50.557 mg/ml. Hence, the antioxidant activity and total reducing power were high, and they were greater in BPL-2 than in BPL-1. In addition, BPL-2 was found to have more sulfuric radicals and uronic acid than BPL-1. Conclusion: The contents of sulfuric radicals and uronic acid are significantly correlated to the antioxidant activity and reducing power of BPL; the more sulfuric radicals and uronic acid, the more antioxidant activity and reducing power BPL has. SUMMARY The water-soluble crude polysaccharides obtained from the external mucilage and the Brasenia schreberi plant in vivo were confirmed to have high contents of sulfuric radicals and uronic acidBoth BPL-1 and BPL-2 exhibited antioxidative activity and reducing power, and their antioxidative

  4. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway

    PubMed Central

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Background: Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. Methods: To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. Results: The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Conclusion: Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment. PMID:26605009

  5. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications.

    PubMed

    Hu, Yang; Li, Yang; Xu, Fu-Jian

    2017-02-21

    Because of their biocompatibility, biodegradability, and unique bioactive properties, polysaccharides have been recognized and directly applied as excellent candidates for various biomedical applications. In order to introduce more functionalities onto polysaccharides, various modification methods were applied to improve the physical-chemical and biochemical properties. Grafting polysaccharides with functional polymers with limited reaction sites maximizes the structural integrity. To the best of our knowledge, great efforts have been made by scientists across the world, including our research group, to explore different strategies for the synthesis and design of controllable polymer-grafted polysaccharides. By the application of some reasonable strategies, a series of polymer-grafted polysaccharides with satisfactory biocharacteristics were obtained. The first strategy involves facile modification of polysaccharides with living radical polymerization (LRP). Functionalized polysaccharides with diverse grafts can be flexibly and effectively achieved. The introduced grafts include cationic components for nuclei acid delivery, PEGylated and zwitterionic moieties for shielding effects, and functional species for bioimaging applications as well as bioresponsive drug release applications. The second synthetic model refers to biodegradable polymer-grafted polysaccharides prepared by ring-opening polymerization (ROP). Inspired by pathways to introduce initiation sites onto polysaccharides, the use of amine-functionalized polysaccharides was explored in-depth to trigger ROP of amino acids. A series of poly(amino acid)-grafted polysaccharides with advanced structures (including linear, star-shaped, and comb-shaped copolymers) were developed to study and optimize the structural effects. In addition, biodegradable polyester-grafted polysaccharides were prepared and utilized for drug delivery. Another emerging strategy was to design polysaccharide-based assemblies with

  6. Leaf dynamics and profitability in wild strawberries.

    PubMed

    Jurik, Thomas W; Chabot, Brian F

    1986-05-01

    Leaf dynamics and carbon gain were evaluated for two species of wild strawberry, Fragaria virginiana and F. vesca. Five populations on sites representing a gradient of successional regrowth near Ithaca, N.Y., U.S.A., were studied for two or three years each. A computer-based model of plant growth and CO2 exchange combined field studies of leaf biomass dynamics with previously-determined gas exchange rates to estimate carbon balances of leaves and whole plants in different environments.Leaves were produced throughout the growing season, although there was usually a decline in rate of leaf-production in mid-summer. Leaves produced in late spring had the largest area and longest lifespan (except for overwintering leaves produced in the fall). Specific Leaf Weight (SLW) varied little with time of leaf production, but differed greatly among populations; SLW increased with amount of light received in each habitat. The population in the most open habitat had the least seasonal variation in all leaf characters. F. vesca produced lighter, longer-lived leaves than F. virginiana.Simulations showed that age had the largest effect on leaf carbon gain in high-light environments; water stress and temperature had lesser effects. Leaf carbon gain in lowlight environments was relatively unaffected by age and environmental factors other than light. Leaves in high-light environments had the greatest lifetime profit and the greatest ratio of profit to cost. Increasing lifespan by 1/3 increased profit by 80% in low-light leaves and 50% in high-light leaves. Increasing the number of days during which the leaf had the potential to exhibit high photosynthetic rate in response to high light led to little change in profit of low-light leaves while increasing profit of high-light leaves by 49%.

  7. An Apparent Anomaly in Peanut Leaf Conductance

    PubMed Central

    Pallas, James E.

    1980-01-01

    Conductance to gaseous transfer is normally considered to be greater from the abaxial than from the adaxial side of a leaf. Measurements of the conductance to water vapor of peanut leaves (Arachis hypogaea L.) under well watered and stress conditions in a controlled environment, however, indicated a 2-fold higher conductance from the adaxial side of the leaf than from the abaxial. Studies of conductance as light level was varied showed an increase in conductance from either surface with increasing light level, but conductance was always greater from the adaxial surface at any given light level. In contrast, measurements of soybean (Glycine max [L.] Merr.) and snapbean (Phaseolus vulgaris L.) leaf conductance showed an approximate 2-fold greater conductance from the abaxial surface than from the adaxial. Approximately the same number of stomata were present on both peanut leaf surfaces and stomatal size was similar. Electron microscopic examination of peanut leaves did not reveal any major structural differences between stomata on the two surfaces that would account for the differences in conductance. Light microscope studies of leaf sections revealed an extensive network of bundle sheaths with achloraplastic bundle sheath extensions; the lower epidermis was lined with a single layer of large achloraplastic parenchyma cells. Measurements of net photosynthesis made on upper and lower leaf surfaces collectively and individually indicated that two-thirds of the peanut leaf's total net photosynthesis can be attributed to diffusion of CO2 through the adaxial leaf surface. Possibly the high photosynthetic efficiency of peanut cultivars as compared with certain other C3 species is associated with the greater conductance of CO2 through their upper leaf surfaces. Images PMID:16661294

  8. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  9. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure

    PubMed Central

    Villares, Ana; Moreau, Céline; Bennati-Granier, Chloé; Garajova, Sona; Foucat, Loïc; Falourd, Xavier; Saake, Bodo; Berrin, Jean-Guy; Cathala, Bernard

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that breakdown recalcitrant polysaccharides such as cellulose. Here we investigate the action of LPMOs on cellulose fibers. After enzymatic treatment and dispersion, LPMO-treated fibers show intense fibrillation. Cellulose structure modifications visualized at different scales indicate that LPMO creates nicking points that trigger the disintegration of the cellulose fibrillar structure with rupture of chains and release of elementary nanofibrils. Investigation of LPMO action using solid-state NMR provides direct evidence of modification of accessible and inaccessible surfaces surrounding the crystalline core of the fibrils. The chains breakage likely induces modifications of the cellulose network and weakens fibers cohesion promoting their disruption. Besides the formation of new initiation sites for conventional cellulases, this work provides the first evidence of the direct oxidative action of LPMOs with the mechanical weakening of the cellulose ultrastructure. LPMOs can be viewed as promising biocatalysts for enzymatic modification or degradation of cellulose fibers. PMID:28071716

  10. Rheological characterization of levan polysaccharides from Microbacterium laevaniformans.

    PubMed

    Bae, In Young; Oh, Im-Kyung; Lee, Suyong; Yoo, Sang-Ho; Lee, Hyeon Gyu

    2008-01-01

    Levan polysaccharides were produced from Microbacterium laevaniformans and its rheological behaviors were characterized as a function of concentration and temperature. The intrinsic viscosity of the purified levan was determined to be 0.38dL/g at 25 degrees C which was relatively higher than that of levans from other microbial sources. The flow behaviors of the levan solutions were characterized by the increase in the shear stress, giving more increments in the shear rate. Thus, the levan solutions exhibited the pseudoplastic behavior, which was characterized by the power law model. In addition, the flow behaviors of the levans were satisfactorily fitted to the Arrhenius equation where the activation energy of flow (Ea) decreased from 24.07 to 13.53kJ/mol (R2=0.98-0.99) with increasing concentrations. Moreover, the exponential equation was favorably applied to describe the effect of concentration on the apparent viscosity of the levan polysaccharides.

  11. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  12. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure.

    PubMed

    Villares, Ana; Moreau, Céline; Bennati-Granier, Chloé; Garajova, Sona; Foucat, Loïc; Falourd, Xavier; Saake, Bodo; Berrin, Jean-Guy; Cathala, Bernard

    2017-01-10

    Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that breakdown recalcitrant polysaccharides such as cellulose. Here we investigate the action of LPMOs on cellulose fibers. After enzymatic treatment and dispersion, LPMO-treated fibers show intense fibrillation. Cellulose structure modifications visualized at different scales indicate that LPMO creates nicking points that trigger the disintegration of the cellulose fibrillar structure with rupture of chains and release of elementary nanofibrils. Investigation of LPMO action using solid-state NMR provides direct evidence of modification of accessible and inaccessible surfaces surrounding the crystalline core of the fibrils. The chains breakage likely induces modifications of the cellulose network and weakens fibers cohesion promoting their disruption. Besides the formation of new initiation sites for conventional cellulases, this work provides the first evidence of the direct oxidative action of LPMOs with the mechanical weakening of the cellulose ultrastructure. LPMOs can be viewed as promising biocatalysts for enzymatic modification or degradation of cellulose fibers.

  13. The pretreatment effects on the antioxidant activity of jujube polysaccharides

    NASA Astrophysics Data System (ADS)

    Qu, Chenling; Yu, Songcheng; Jin, Huali; Wang, Jinshui; Luo, Li

    2013-10-01

    Pretreatment is vital to keep the bioactivities of polysaccharides. In this paper, the effects of hot water, ultrasonic and microwave extraction, as well as the effects of protein and pigment removal steps, on the antioxidant activity of water soluble polysaccharides in jujube (WSPJ) were studied. Hydroxyl free radical (rad OH) scavenging activity was adopted to determine the antioxidant activity of WSPJ. The results showed that rad OH scavenging activity of WSPJ extracted by ultrasonic wave was higher than that extracted by hot water and by microwave. Furthermore, power parameter in both ultrasonic and microwave extraction affected the rad OH scavenging activity dramatically. On the other hand, Sevag reagent was better than trichloroacetic acid (TCA), TCA with 1-butanol (TCA-B) and hydrochloric acid for protein removal, and H2O2 was better than active carbon for pigment removal to keep the antioxidant activity of WSPJ.

  14. Fermentation of polysaccharides by Klebsielleae and other facultative bacilli.

    PubMed

    Ochuba, G U; von Riesen, V L

    1980-05-01

    Fermentations of 10 polysaccharides by species of the family Enterobacteriaceae were examined. Algin, guar, karaya, xanthan, and xylan were not fermented by any of the strains tested. Most of the activity was found in the tribe Klebsielleae. Klebsiella oxytoca fermented amylopectin (97% of the strains studied), carrageenan (100%), inulin (68%), polypectate (100%), and tragacanth (100%). Klebsiella pneumoniae fermented amylopectin (91%), carrageenan (100%), and tragacanth (86%). Carrageenan was also fermented by Enterobacter aerogenes (100%), Enterobacter agglomerans (63%), Enterobacter cloacae (95%), and Pectobacterium (38%). Pectobacterium shared polypectate fermentation (100%) with K. oxytoca. With one exception, Serratia strains were negative on all polysaccharides. These results, along with other evidence, indicate that (i) the genus Klebsiella is biochemically the most versatile genus of the tribe, (ii) because of its distinct characteristics, K. oxytoca warrants species designation separate from K. pneumoniae, and (iii) some food additives generally considered indigestible can be metabolized by a few species of facultative bacilli, whereas others appear to be resistant.

  15. Fermentation of polysaccharides by Klebsiella and other facultative bacilli

    SciTech Connect

    Ochuba, G.U.; Von Riesen, V.L.

    1980-05-01

    Fermentations of 10 polysaccharides by species of the family Enterobacteriaceae were examined. Algin, guar, karaya, xanthan, and xylan were not fermented by any of the strains tested. Most of the activity was found in the tribe Klebsielleae. Klebseilla oxytoca fermented amylopectin (97% of the strains studied), carrageenan (100%), inulin (68%), polypectate (100%), and tragacanth (100%). Klebsiella pneumoniae fermented amylopectin (91%), carrageenan (100%), and tragacanth (86%). Carraggeenan was also fermented by Enterobacter aerogenes (100%), Enterobacter agglomerans (63%), Enterobacter cloacae (95%), and pectobacterium (38%). pectobacterium shared polypectate fermentation (100%) with K. oxytoca. With one exception, Serratia strains were negative on all polysaccharides. These results, along with other evidence, indicate that (i) the genus Klebsiella is biochemically the most versatile genus of the tribe, (ii) because of its distinct characteristics, K. oxytoca warrants species designation separate from K. pneumoniae, and (iii) some food additives generally considered indigestible can be metabolized by a few species of facultative bacilli, whereas others appear to be resistant.

  16. Carbohydrase Systems of Saccharophagus degradans Degrading Marine Complex Polysaccharides

    PubMed Central

    Hutcheson, Steven W.; Zhang, Haitao; Suvorov, Maxim

    2011-01-01

    Saccharophagus degradans 2–40 is a γ-subgroup proteobacterium capable of using many of the complex polysaccharides found in the marine environment for growth. To utilize these complex polysaccharides, this bacterium produces a plethora of carbohydrases dedicated to the processing of a carbohydrate class. Aiding in the identification of the contributing genes and enzymes is the known genome sequence for this bacterium. This review catalogs the genes and enzymes of the S. degradans genome that are likely to function in the systems for the utilization of agar, alginate, α- and β-glucans, chitin, mannans, pectins, and xylans and discusses the cell biology and genetics of each system as it functions to transfer carbon back to the bacterium. PMID:21731555

  17. The pretreatment effects on the antioxidant activity of jujube polysaccharides.

    PubMed

    Qu, Chenling; Yu, Songcheng; Jin, Huali; Wang, Jinshui; Luo, Li

    2013-10-01

    Pretreatment is vital to keep the bioactivities of polysaccharides. In this paper, the effects of hot water, ultrasonic and microwave extraction, as well as the effects of protein and pigment removal steps, on the antioxidant activity of water soluble polysaccharides in jujube (WSPJ) were studied. Hydroxyl free radical (OH) scavenging activity was adopted to determine the antioxidant activity of WSPJ. The results showed that OH scavenging activity of WSPJ extracted by ultrasonic wave was higher than that extracted by hot water and by microwave. Furthermore, power parameter in both ultrasonic and microwave extraction affected the OH scavenging activity dramatically. On the other hand, Sevag reagent was better than trichloroacetic acid (TCA), TCA with 1-butanol (TCA-B) and hydrochloric acid for protein removal, and H2O2 was better than active carbon for pigment removal to keep the antioxidant activity of WSPJ.

  18. Melissotarsus ants are likely able to digest plant polysaccharides.

    PubMed

    Mony, Ruth; Dejean, Alain; Bilong, Charles Félix Bilong; Kenne, Martin; Rouland-Lefèvre, Corinne

    2013-10-01

    Melissotarsus ants have an extremely specialized set of behaviours. Both workers and gynes tunnel galleries in their host tree bark. Workers walk with their mesothoracic legs pointing upwards and tend Diaspididae hemiptera for their flesh. The ants use their forelegs to plug the galleries with silk that they secrete themselves. We hypothesised that the ants' energetic needs for nearly constant gallery digging could be satisfied through the absorption of host tree tissues; so, using basic techniques, we examined the digestive capacities of workers from two species. We show that workers are able to degrade oligosaccharides and heterosides as well as, to a lesser degree, polysaccharides. This is one of the rare reports on ants able to digest plant polysaccharides other than starch.

  19. Polysaccharide formulation for improvement of racemic vitamin E bioavailability.

    PubMed

    Zimmer, Łukasz; Czarnecki, Wiktor

    2007-01-01

    The relative bioavailability of polysaccharide--racemic vitamin E preparation in comparison with a commercial product was assessed in a kinetic study of plasma alpha-tocopherol in rabbits. Six male rabbits were used in a cross-over design. Alpha-Tocopherol levels were determined by the fluorometric method. A secondary peak in alpha-Tocopherol plasma concentration--time profiles was observed in connection with enterohepatic circulation of vitamin E. A simple one-compartment pharmacokinetic model was proposed to explain enterohepatic circulation of alpha-tocopherol in rabbits. On the basis of the results obtained, it is apparent that polysaccharide--vitamin E preparation achieved a higher rate and extent of absorption. The total AUC of experimental preparation was 1.78-fold greater than that of a commercial capsule preparation, suggesting an increase of bioavailability by 78%.

  20. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis.

    PubMed

    Amanda, Dhika; Doblin, Monika S; Galletti, Roberta; Bacic, Antony; Ingram, Gwyneth C; Johnson, Kim L

    2016-12-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling.

  1. Transcriptome Analysis of Shade-Induced Inhibition on Leaf Size in Relay Intercropped Soybean

    PubMed Central

    Gong, Wanzhuo; Qi, Pengfei; Du, Junbo; Sun, Xin; Wu, Xiaoling; Song, Chun; Liu, Weiguo; Wu, Yushan; Yu, Xiaobo; Yong, Taiwen; Wang, Xiaochun; Yang, Feng; Yan, Yanhong; Yang, Wenyu

    2014-01-01

    Multi-species intercropping is a sustainable agricultural practice worldwide used to utilize resources more efficiently. In intercropping systems, short crops often grow under vegetative shade of tall crops. Soybean, one important legume, is often planted in intercropping. However, little is known about the mechanisms of shade inhibition effect on leaf size in soybean leaves at the transcriptome level. We analyzed the transcriptome of shaded soybean leaves via RNA-Seq technology. We found that transcription 1085 genes in mature leaves and 1847 genes in young leaves were significantly affected by shade. Gene ontology analyses showed that expression of genes enriched in polysaccharide metabolism was down-regulated, but genes enriched in auxin stimulus were up-regulated in mature leaves; and genes enriched in cell cycling, DNA-replication were down-regulated in young leaves. These results suggest that the inhibition of higher auxin content and shortage of sugar supply on cell division and cell expansion contribute to smaller and thinner leaf morphology, which highlights potential research targets such as auxin and sugar regulation on leaves for crop adaptation to shade in intercropping. PMID:24886785

  2. Leaf-closing substance in Leucaena leucocephala.

    PubMed

    Sohtome, Yoshihiro; Tokunaga, Takashi; Ueda, Katsuhiro; Yamamura, Shosuke; Ueda, Minoru

    2002-01-01

    Potassium (2R,3R)-2,3,4-trihydroxy-2-methylbutanoate (1) was identified as a leaf-closing substance in the nyctinastic plant, Leucaena leucocephala. Compound 1 showed strong leaf-closing activity toward L. leucocephala and was not effective against other nyctinastic plants. The potassium ion was indispensable for the bioactivity of 1. Compound 1 gradually lost its bioactivity because of the exchange of the counter cation during isolation. A leaf-opening substance was also observed in the same plant.

  3. A climatology of leaf surface wetness

    NASA Astrophysics Data System (ADS)

    Klemm, O.; Milford, C.; Sutton, M. A.; Spindler, G.; van Putten, E.

    The wetness of plant leaf surfaces is an important parameter in the deposition process of atmospheric trace gases. Particularly gases with high water solubility tend to deposit faster to a wet surface, compared to a dry one. Further, drying up of a wet leaf surface may lead to revolatilization of previously deposited gases. Despite the high importance of leaf surface wetness in biosphere/atmosphere exchange, there is no quantitative description of this parameter on the ecosystem scale, quantifying its initiation, duration, dissipation, correlation with parameters such as air humidity, turbulence, vegetation type, plant physiology, and others. This contribution is a first step towards a climatology of leaf surface wetness, based on a large data basis from various ecosystems. Leaf surface wetness was monitored at two grassland and two forest research sites in NW and central Europe throughout the vegetation period of 1998. It was sensed through measurement of the electrical conductivity between two electrodes that were clipped to the living plant leaf surfaces. This yields a relative signal that responds promptly to the presence of leaf wetness. A routine is presented that combines the data from several sensors to the dimensionless leaf wetness, LW, with values between zero and one. Periods of high leaf wetness (LW>0.9) were in most cases triggered by precipitation events. After termination of rain, LW decreased quickly at the forest sites and dropped to values below 0.1 within less than 24 hours in most cases. At the grassland sites, the formation of dew led to a more complex pattern, with the occurrence of diurnal cycles of LW. Although periods of low relative air humidity (e.g., rH<50%) are normally associated with periods of low leaf wetness, the extent of correlation between these two parameters at rH>60% varies between the different sites. The grassland sites show very similar distributions of the LW data with rH, indicating a positive correlation between LW and

  4. Why so strong for the lotus leaf?

    NASA Astrophysics Data System (ADS)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2008-11-01

    The authors discussed the potential reasons why the lotus leaf is so strong by means of scanning electron microscopy (SEM). The results showed that the good mechanical properties of lotus leaf should be attributed to its architecture, such as paralleled microtubes structure, umbrellalike structure, and hierarchically layered hexagon structure. The important observation from this work is that the surface of the rear face of the lotus leaf seems to be constituted by the layers of hexagons whose hierarchical pilling up of size decreases as we go deeper from surface. This is a typical fractal-like phenomenon.

  5. Interrelation between the crystallinity of polysaccharides and water absorption

    NASA Astrophysics Data System (ADS)

    Prusov, A. N.; Prusova, S. M.; Radugin, M. V.; Zakharov, A. G.

    2014-05-01

    The maximum sorption of water and its vapors is calculated using experimental data from calorimetric and effusion studies of flax, wood, and cotton cellulose. X-day diffraction is used to determine the crystallinity of cellulose samples. The equations relating crystallinity ( X) with maximum sorption and the enthalpy of interaction between cellulose and water are presented. Experimental results and the literature data on water sorption by chitin, chitosan and other polysaccharides show that our equations for calculating crystallinity are correct.

  6. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  7. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

    PubMed

    Stokes, Jason R; Macakova, Lubica; Chojnicka-Paszun, Agnieszka; de Kruif, Cornelis G; de Jongh, Harmen H J

    2011-04-05

    Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio

  8. Synthesis of Calocybe indica var. APK2 polysaccharide repeating unit.

    PubMed

    Zhang, Lei; Zhu, Xiangming

    2014-06-04

    The first total synthesis of p-methoxyphenyl α-l-fucopyranosyl-(1→6)-α-d-galactopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2) was achieved starting from five monosaccharide building blocks. This structure represents the repeating unit of the polysaccharide isolated from edible mushroom Calocybe indica var. APK2, and was synthesized in high overall yield via a convergent '3+2' glycosylation strategy.

  9. Signaling factor interactions with polysaccharide aggregates of bacterial biofilms.

    PubMed

    DeSalvo, Stephen C; Liu, Yating; Choudhary, Geetika Sanjay; Ren, Dacheng; Nangia, Shikha; Sureshkumar, Radhakrishna

    2015-02-17

    Biofilms are surface-attached colonies of bacteria embedded in an extracellular polymeric substance (EPS). Inside the eukaryotic hosts, bacterial biofilms interact with the host cells through signaling factors (SFs). These signaling processes play important roles in the interaction between bacteria and host cells and the outcome of infections and symbiosis. However, how host immune factors diffuse through biofilms is not well understood. Here, we describe synergistic molecular dynamics and experimental approaches for studying the translocation of signaling factors through polysaccharide chain aggregates present in the extracellular matrix of bacterial biofilms. The effect of polysaccharide chain degradation on the energetics of SF-EPS interactions was examined by simulating an EPS consisting of various polysaccharide chain lengths. It is shown that the SF stabilization energy, defined as the average potential of mean force difference between the environments outside and within the matrix, increases linearly with decreasing chain length. This effect has been explained based on the changes in the polysaccharide configurations around the SF. Specifically, shorter chains are packed tightly around the SF, promoting favorable SF-EPS interactions, while longer chains are packed loosely resulting in screening of interactions with neighboring chains. We further investigated the translocation of SFs through the host cell membrane using molecular dynamics simulations. Further, simulations predict the existence of energy barriers greater than 1000 kJ mol(-1) associated with the translocation of the signaling factors necrosis factor-alpha (TNF-α) and granulocyte macrophage colony stimulating factor (GM-CSF) across the lipid bilayer. The agreement of computational and experimental findings motivates future computational studies using a more detailed description of the EPS aimed at understanding the role of the extracellular matrix on biofilm drug resistance.

  10. An anti-inflammatory and immunomodulatory polysaccharide from Orbignya phalerata.

    PubMed

    da Silva, B P; Parente, J P

    2001-12-01

    A polysaccharide, a glucan with mean M(r) of 1.0 x 10(6) (MP1), was isolated from the mesocarp of fruits of Orbignya phalerata. Chemical and spectroscopic studies indicated that MP1 has a highly branched glucan type structure composed of alpha-(1-->4) linked D-glucopyranose residues with (3-->4), (4-->6), and with (3-->6) branching points. MP1 enhanced phagocytosis in vivo and exhibited anti-inflammatory activity.

  11. [Biological activities of exogenous polysaccharides via controlling endogenous proteoglycan metabolism in vascular endothelial cells].

    PubMed

    Sato, Tomoko; Yamamoto, Chika; Fujiwara, Yasuyuki; Kaji, Toshiyuki

    2008-05-01

    Proteoglycan contains glycosmainoglycans, which are endogenous sulfated polysaccharides, in the molecule. The metabolism of proteoglycans regulates cell behavior and cellular events. It is possible that exogenous polysaccharide-related molecules exhibit their biological activities by two mechanisms. One is the interaction with cells and the other is the interaction with growth factors/cytokines that regulate proteoglycans. In this review, we describe sodium spirulan, a sulfated polysaccharide obtained from a hot-water extract of the blue-green alga Spirulina platensis, as an exogenous polysaccharide that stimulates the release of proteoglycans from vascular endothelial cells. Factors that regulate endothelial proteoglycan metabolism are also being described as possible target molecules of exogenous polysaccharides. Further research is required to obtain exogenous polysaccharide-related molecules that exhibit useful biological activities through controlling endothelial proteoglycan metabolism for protection against vascular lesions such as atheroslcerosis.

  12. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    PubMed

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents.

  13. Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro.

    PubMed

    Wang, Zhanyong; Wang, Chenyu; Quan, Yue

    2014-01-01

    In this study, response surface methodology was employed to optimize the extraction of polysaccharides from Phellinus nigricans mycelia. A central composite design was adopted to determine optimum parameters (extraction time, extraction temperature, extraction frequency, and ratio of water to raw material) that could yield a maximum polysaccharide. Results revealed the following optimum extraction conditions: extraction time, 2.8h; ratio of water to raw material, 28; extraction frequency, 5; and extraction temperature, 95 °C. Under optimized conditions, the experimental yield of P. nigricans mycelia polysaccharides was 15.33 ± 0.21%, which is consistent with the predicted yield. The antioxidant activity assay in vitro showed that the polysaccharides exhibited a high scavenging activity against superoxide anion, hydroxyl, and 1,1-diphenyl-2-picrylhydrazyl radicals. These polysaccharides also exhibited a strong reducing power. Thus, these polysaccharides can be used as natural antioxidants in functional foods or medicine.

  14. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities.

    PubMed

    Meng, Xin; Liang, Hebin; Luo, Lixin

    2016-04-07

    Mushrooms are popular folk medicines that have attracted considerable attention because of their efficient antitumor activities. This review covers existing research achievements on the mechanisms of isolated mushroom polysaccharides, particularly (1→3)-β-D-glucans. Our review also describes the function in modulating the immune system and potential tumor-inhibitory effects of polysaccharides. The antitumor mechanisms of mushroom polysaccharides are mediated by stimulated T cells or other immune cells. These polysaccharides are able to trigger various cellular responses, such as the expression of cytokines and nitric oxide. Most polysaccharides could bind other conjugate molecules, such as polypeptides and proteins, whose conjugation always possess strong antitumor activities. The purpose of this review is to summarize available information, and to reflect the present situation of polysaccharide research filed with a view for future direction.

  15. Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206.

    PubMed

    Jin, Mingliang; Wang, Youming; Huang, Ming; Lu, Zeqing; Wang, Yizhen

    2014-01-01

    The protective effects of sulfated polysaccharide derivatives produced by Enterobacter cloacae Z0206 against H₂O₂-induced oxidative damage in RAW264.7 murine macrophages as well as the possible mechanisms governing the protective effects were studied. Sulfated polysaccharides protected RAW264.7 cells from oxidative damage and apoptosis induced by H₂O₂ by protecting the cellular structure; improving the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); and inhibiting caspase-3 activation and DNA fragmentation. In addition, the sulfated polysaccharides conferred higher levels of protection from H₂O₂-induced oxidative damage in RAW264.7 murine macrophages compared to the native polysaccharide lacking sulfation. These results indicated that sulfated modifications might be an effective approach to enhance the antioxidant activity of polysaccharides produced by E. cloacae Z0206, and the sulfated derivatives of these polysaccharides may act as potent antioxidant agents.

  16. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans.

    PubMed

    Feng, Shiling; Cheng, Haoran; Xu, Zhou; Shen, Shian; Yuan, Ming; Liu, Jing; Ding, Chunbang

    2015-11-01

    Panax notoginseng attract public attention due to their potential biomedical properties and corresponding health benefits. The present study investigated the anti-aging and thermal stress resistance effects of polysaccharides from P. notoginseng on Caenorhabditis elegans. Results showed polysaccharides had little scavenging ability of reactive oxygen species (ROS) in vitro, but significantly extended lifespan of C. elegans, especially the main root polysaccharide (MRP) which prolongs the mean lifespan of wild type worms by 21%. Further study demonstrated that the heat stress resistance effect of polysaccharides on C. elegans might be attributed to the elevation of antioxidant enzyme activities (both superoxide dismutase (SOD) and catalase (CAT)) and the reduction lipid peroxidation of malondialdehyde (MDA) level. Taken together, the results provided a scientific basis for the further exploitation of the mechanism of longer lifespan controlled by P. notoginseng polysaccharides on C. elegans. The P. notoginseng polysaccharides might be considered as a potential source to delay aging.

  17. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2015-01-01

    Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry.

  18. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class

    PubMed Central

    Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  19. Compositional studies on succinoglycan-like extracellular water-soluble Rhizobium polysaccharides.

    PubMed

    Ghai, S K

    1981-01-01

    This study reports structural information on extracellular, water-soluble polysaccharides from 5 different strains of Rhizobium, viz. R. trifolii J60, R. meliloti J1017, 202, 204 and 207. All the 5 polysaccharides had glucose and galactose in approximate molar ratio of 7:1. Methylation analysis revealed that the polysaccharides contained (1 leads to 3), (1 leads to 6), (1 leads to 4), (1 leads to 4, 1 leads to 6)-linked D-glucose residues, (1 leads to 3)-linked D-galactose and non-reducing terminal D-glucose attached to pyruvate. This structure was found to be exactly the same as that of succinoglycan, a succinic acid containing water-soluble polysaccharide elaborated by Alcaligenes faecalis var. myxogenes 10C3. The similarity of the structure of polysaccharides of two different Rhizobium species and also to the polysaccharide produced by Alcaligenes are discussed in terms of host specificity.

  20. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.

    PubMed

    Wang, Shuang; Xia, Zhen; Hu, Yamin; He, Zhixia; Uzoejinwa, Benjamin Bernard; Wang, Qian; Cao, Bin; Xu, Shanna

    2017-03-01

    Co-pyrolysis conversion of seaweed (Enteromorpha clathrat and Sargassum fusiforme) polysaccharides and cellulose has been investigated. From the Py-GC/MS results, Enteromorpha clathrata (EN) polysaccharides pyrolysis mainly forms furans; while the products of Sargassum fusiforme (SA) polysaccharides pyrolysis are mainly acid esters. The formation mechanisms of H2O, CO2, and SO2 during the pyrolysis of seaweed polysaccharides were analyzed using the thermogravimetric-mass spectrometry. Meanwhile the pyrolysis of seaweed polysaccharide based on the Amber and the ReaxFF force fields, has also been proposed and simulated respectively. The simulation results coincided with the experimental results. During the fast pyrolysis, strong synergistic effects among cellulose and seaweed polysaccharide molecules have been simulated. By comparing the experimental and simulation value, it has been found that co-pyrolysis could increase the number of molecular fragments, increase the pyrolysis conversion rate, and increase gas production rate at the middle temperature range.

  1. Novel imaging technologies for characterization of microbial extracellular polysaccharides

    PubMed Central

    Lilledahl, Magnus B.; Stokke, Bjørn T.

    2015-01-01

    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects. PMID:26074906

  2. Sulfation patterns determine cellular internalization of heparin-like polysaccharides

    PubMed Central

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R.; Kuberan, Balagurunathan

    2013-01-01

    Heparin is a highly sulfated polysaccharide which serves biologically relevant roles as an anticoagulant and anti-cancer agent. While it is well known that modification of heparin’s sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently-labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery. PMID:23398560

  3. Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction

    NASA Astrophysics Data System (ADS)

    Wilson, Iain B. H.

    Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.

  4. Extraction of Opuntia dillenii Haw. Polysaccharides and Their Antioxidant Activities.

    PubMed

    Li, Heng; Yuan, Qingxia; Zhou, Xianjiao; Zeng, Fuhua; Lu, Xiangyang

    2016-11-24

    Use of natural polysaccharides in medicine and food has wide interest in research. In this study, we extracted and purified some polysaccharides from cactus Opuntia dillenii Haw. (ODP). Some preliminary functions of these products were characterized. Under the optimal purification conditions, the yield of ODP extracted from the 2-4 month-old Opuntia dillenii Haw. (T-ODP) was 30.60% ± 0.40%, higher than that of ODP from the 5-10 month-old materials (O-ODP) (18.97% ± 0.58%). The extracted ODP was purified by DEAE sepharose fast flow anion exchange and Sephacryl S-400 chromatography with four fractions obtained (ODP-Ia, ODP-Ib, ODP-IIa and ODP-IIb). Analysis with UV-vis chromatography indicated that ODP-Ia and ODP-IIa were relatively homogeneous molecules with a molecular weight of 339 kD and 943 kD, respectively. Results of infrared spectroscopy indicated that ODP, ODP-Ia, and ODP-IIa were acidic polysaccharides. Further, the antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical, hydroxyl radicals, and superoxide radical in vitro demonstrated that the T-ODP exhibited higher antioxidant activity than the O-ODP, and the purified fraction (ODP-Ia) was superior to the ODP. These results will offer a theoretical basis for further research on the structure-function relationship of ODP and the rational utilization of Opuntia dillenii Haw.

  5. Antioxidative Properties of Crude Polysaccharides from Inonotus obliquus

    PubMed Central

    Mu, Haibo; Zhang, Amin; Zhang, Wuxia; Cui, Guoting; Wang, Shunchun; Duan, Jinyou

    2012-01-01

    The mushroom Inonotus obliquus has been widely used as a folk medicine in Russia, Poland and most of the Baltic countries. In this study, water-soluble and alkali-soluble crude polysaccharides (IOW and IOA) were isolated from I. obliquus, and the carbohydrate-rich fractions IOW-1 and IOA-1 were obtained respectively after deproteination and depigmentation. Their contents, such as neutral carbohydrate, uronic acid and protein, were measured. Their antioxidant properties against chemicals-induced reactive species (ROS) including 1,1′-Diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide anion radical, as well as their protective effects on H2O2-induced PC12 cell death were investigated. Results showed that I. obliquus polysaccharides can scavenge all ROS tested above in a dose-dependent manner. IOA and its product IOA-1 could rescue PC12 cell viability from 38.6% to 79.8% and 83.0% at a concentration of 20μg/mL. Similarly, IOW and its product IOW-1 at the same dose, can also increase cell viability to 84.9% and 88.6% respectively. The antioxidative activities of water-soluble and alkali-soluble polysaccharide constituents from I. obliquus might contribute to diverse medicinal and nutritional values of this mushroom. PMID:22942760

  6. Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus.

    PubMed

    Dunne, Jonathan C; Li, Dong; Kelly, William J; Leahy, Sinead C; Bond, Judy J; Attwood, Graeme T; Jordan, T William

    2012-01-01

    Plant polysaccharide-degrading rumen microbes are fundamental to the health and productivity of ruminant animals. Butyrivibrio proteoclasticus B316(T) is a gram-positive, butyrate-producing anaerobic bacterium with a key role in hemicellulose degradation in the rumen. Gel-based proteomics was used to examine the growth-phase-dependent abundance patterns of secreted proteins recovered from cells grown in vitro with xylan or xylose provided as the sole supplementary carbon source. Five polysaccharidases and two carbohydrate-binding proteins (CBPs) were among 30 identified secreted proteins. The endo-1,4-β-xylanase Xyn10B was 17.5-fold more abundant in the culture medium of xylan-grown cells, which suggests it plays an important role in hemicellulose degradation. The secretion of three nonxylanolytic enzymes and two CBPs implies they augment hemicellulose degradation by hydrolysis or disruption of associated structural polysaccharides. Sixteen ATP-binding cassette (ABC) transporter substrate-binding proteins were identified, several of which had altered relative abundance levels between growth conditions, which suggests they are important for oligosaccharide uptake. This study demonstrates that B. proteoclasticus modulates the secretion of hemicellulose-degrading enzymes and ATP-dependent sugar uptake systems in response to growth substrate and supports the notion that this organism makes an important contribution to polysaccharide degradation in the rumen.

  7. Sulfation patterns determine cellular internalization of heparin-like polysaccharides.

    PubMed

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R; Kuberan, Balagurunathan

    2013-04-01

    Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery.

  8. Acidification increases microbial polysaccharide degradation in the ocean

    NASA Astrophysics Data System (ADS)

    Piontek, J.; Lunau, M.; Händel, N.; Borchard, C.; Wurst, M.; Engel, A.

    2009-12-01

    With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to affect the cycling of organic carbon in the future ocean by weakening the biological carbon pump and increasing the respiratory production of CO2.

  9. Acidification increases microbial polysaccharide degradation in the ocean

    NASA Astrophysics Data System (ADS)

    Piontek, J.; Lunau, M.; Händel, N.; Borchard, C.; Wurst, M.; Engel, A.

    2010-05-01

    With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.

  10. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    PubMed Central

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  11. Polysaccharide production by microalgae. Final report on phase 1

    SciTech Connect

    Benemann, J.R.; Weissman, J.C.

    1980-04-01

    The feasibility of producing commercially valuable polysaccharides from microalgal biomass was demonstrated. Algal biomass with a high polysaccharide content was produced by subjecting cultures to short periods of nitrogen limitation without decreasing overall biomass production rates. Three different algae were studied--unicellular blue-green alga Synechococcus leopoliensis, filamentous blue-green alga Spirulina platensis, and a green colonial alga, Scenedesmus sp. Batch cultures were grown with varying amounts of nitrate to limit nitrogen uptake at various stages in the batch growth curve. In the presence of high nitrate concentrations, the Synechococcus culture became stationary within four days, whereas both Spirulina and Scenedesmus maintained an appreciable growth rate and high daily productivities, for at least a week. With limiting nitrate concentrations, the cellular content of polysaccharide (measured as total carbohydrates) increased markedly, from 20-25 percent to 70-80 percent in Synechococcus and Spirulina. Depending on the level of nitrate used, onset of nitrogen limitation could be set at various culture densities. In all cases, little or no inhibition of total biomass production was noted.

  12. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).

    PubMed

    Wefers, Daniel; Gmeiner, Bianca M; Tyl, Catrin E; Bunzel, Mirko

    2015-08-01

    In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales.

  13. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli

    PubMed Central

    Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.

    2016-01-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  14. Immunomodulatory activity and partial characterisation of polysaccharides from Momordica charantia.

    PubMed

    Deng, Yuan-Yuan; Yi, Yang; Zhang, Li-Fang; Zhang, Rui-Fen; Zhang, Yan; Wei, Zhen-Cheng; Tang, Xiao-Jun; Zhang, Ming-Wei

    2014-08-29

    Momordica charantia Linn. is used as an edible and medicinal vegetable in sub-tropical areas. Until now, studies on its composition and related activities have been confined to compounds of low molecular mass, and no data have been reported concerning the plant's polysaccharides. In this work, a crude polysaccharide of M. charantia (MCP) fruit was isolated by hot water extraction and then purified using DEAE-52 cellulose anion-exchange chromatography to produce two main fractions MCP1 and MCP2. The immunomodulatory effects and physicochemical characteristics of these fractions were investigated in vitro and in vivo. The results showed that intragastric administration of 150 or 300 mg·kg-·d⁻¹ of MCP significantly increased the carbolic particle clearance index, serum haemolysin production, spleen index, thymus index and NK cell cytotoxicity to normal control levels in cyclophosphamide (Cy)-induced immunosuppressed mice. Both MCP1 and MCP2 effectively stimulated normal and concanavalin A-induced splenic lymphocyte proliferation in vitro at various doses. The average molecular weights of MCP1 and MCP2, which were measured using high-performance gel permeation chromatography, were 8.55×10⁴ Da and 4.41×10⁵ Da, respectively. Both fractions exhibited characteristic polysaccharide bands in their Fourier transform infrared spectrum. MCP1 is mainly composed of glucose and galactose, and MCP2 is mainly composed of glucose, mannose and galactose. The results indicate that MCP and its fractions have good potential as immunotherapeutic adjuvants.

  15. Carbohydrate-binding modules: fine-tuning polysaccharide recognition

    PubMed Central

    2004-01-01

    The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM–carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands. PMID:15214846

  16. Structural elucidation of polysaccharide fractions from brown seaweed Sargassum pallidum.

    PubMed

    Ye, Hong; Zhou, Chunhong; Li, Wei; Hu, Bing; Wang, Xiaoqing; Zeng, Xiaoxiong

    2013-09-12

    The structural characteristics of two purified fractions of polysaccharides from Sargassum pallidum (SPS) were investigated in the present study. As results, the molecular weights of the two polysaccharide fractions, SPS-3-1 and SPS-3-2, were determined to be 5.87 and 7.25 kDa, respectively. SPS-3-1 was composed of glucose, mannose and galactose in a molar ratio of 11.18:1.00:0.96, while SPS-3-2 was composed of fucose, xylose, mannose, glucose and galactose in a molar ratio of 2.53:0.61:1.00:0.46:0.92. Both SPS-3-1 and SPS-3-2 exhibited the characteristics of polysaccharide in the frequency range of 4000-400 cm(-1) based on their Fourier-transform infrared spectra. Furthermore, the results of periodic acid oxidation, Smith degradation, methylation analysis and nuclear magnetic resonance spectroscopic analysis suggested that SPS-3-2 was composed of (1→4)-linked fucopyranosyl backbone and (1→3)-linked galactopyranosyl, (1→3)-linked mannopyranosyl, (1→2)-linked xylopyranosyl and (1→6)-linked glucopyranosyl branch chains.

  17. Sucrose and polysaccharide induced obesity in the rat.

    PubMed

    Sclafani, A; Xenakis, S

    1984-02-01

    Adult male rats were fed, in addition to chow and water, solutions (32%) of either sucrose, Polycose (a bland-tasting polysaccharide), or Polycose sweetened with 0.2% saccharin. The solutions were available for two 30-day periods when the rats were 90-120, and 180-210 days of age. A control group received only chow and water during these periods. During the second 30-day test the Polycose and Saccharin- Polycose groups were hyperphagic and gained as much excess weight as did the Sucrose group. The sucrose-fed rats, however, did not overeat relative to the control animals. Adding saccharin to the Polycose failed to increase total caloric intake or weight gain, but did increase Polycose intake and percent carbohydrate intake. The intakes of both Polycose solutions were greater than that of the sucrose solution, although in brief two-bottle preference tests the sucrose solution was preferred over the Polycose and saccharin- Polycose solutions. A similar pattern of results was obtained during the first test period, but the group differences were less pronounced. The findings demonstrate that carbohydrate-induced obesity is not unique to sweet-tasting sugars, but can also be produced by bland-tasting polysaccharides. Sweet taste does increase polysaccharide preference and intake, however.

  18. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications.

    PubMed

    Cunha, Ludmylla; Grenha, Ana

    2016-02-25

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting.

  19. Synthetic polymer nanoparticle-polysaccharide interactions: a systematic study.

    PubMed

    Zeng, Zhiyang; Patel, Jiten; Lee, Shih-Hui; McCallum, Monica; Tyagi, Anuradha; Yan, Mingdi; Shea, Kenneth J

    2012-02-08

    The interaction between synthetic polymer nanoparticles (NPs) and biomacromolecules (e.g., proteins, lipids, and polysaccharides) can profoundly influence the NPs fate and function. Polysaccharides (e.g., heparin/heparin sulfate) are a key component of cell surfaces and the extracelluar matrix and play critical roles in many biological processes. We report a systematic investigation of the interaction between synthetic polymer nanoparticles and polysaccharides by ITC, SPR, and an anticoagulant assay to provide guidelines to engineer nanoparticles for biomedical applications. The interaction between acrylamide nanoparticles (~30 nm) and heparin is mainly enthalpy driven with submicromolar affinity. Hydrogen bonding, ionic interactions, and dehydration of polar groups are identified to be key contributions to the affinity. It has been found that high charge density and cross-linking of the NP can contribute to high affinity. The affinity and binding capacity of heparin can be significantly diminished by an increase in salt concentration while only slightly decreased with an increase of temperature. A striking difference in binding thermodynamics has been observed when the main component of a polymer nanoparticle is changed from acrylamide (enthalpy driven) to N-isopropylacryalmide (entropy driven). This change in thermodynamics leads to different responses of these two types of polymer NPs to salt concentration and temperature. Select synthetic polymer nanoparticles have also been shown to inhibit protein-heparin interactions and thus offer the potential for therapeutic applications.

  20. Superlubricity of a natural polysaccharide from the alga Porphyridium sp.

    NASA Astrophysics Data System (ADS)

    Gourdon, Delphine; Lin, Qi; Israelachvili, Jacob

    2005-03-01

    Using a surface forces apparatus we have studied the adhesive and lubrication forces of mica surfaces separated by a molecularly-thin, sub-nanometer, film of a high molecular weight (2.6 MDa) naturally occurring anionic polysaccharide adsorbed from aqueous solution. The adhesion and friction forces of the biopolymer were monitored as a function of time, shearing distance and driving velocity under a large range of compressive loads. Although the thickness of the confined biopolymer was <1 nm, the friction was ultra-low (coefficient of friction = 0.015) at pressures up to 100 atm and over 4 decades of velocity with no wear. Complementary atomic force microscopy imaging in solution shows that the biopolymer adsorbs well to the mica surface but remains mobile and easily dragged upon shearing. The good adsorption of this polysaccharide to negatively charged surfaces, its low friction, its robustness (high-load carrying capacity and wear protection), as well as the weak (logarithmic) dependency of the friction on the sliding velocity make it, or this class of polyelectrolytes, excellent candidates for use in water-based lubricant fluids and as potential additives to synovial fluid in joints and other biolubricating fluids. The physical reasons for the tribological properties of this polysaccharide will be discussed.

  1. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza.

    PubMed

    Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang

    2017-01-01

    Leaf hydraulic conductance (Kleaf ) and mesophyll conductance (gm ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that Kleaf and gm is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, Kleaf , leaf hydraulic conductance inside xylem (Kx ), leaf hydraulic conductance outside xylem (Kox ), A, stomatal conductance (gs ), gm , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H2 O and CO2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. Kleaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (gsmax ), and neither gs nor gsmax were correlated with Kx . Moreover, Kox was linearly correlated with gm and both were closely related to mesophyll structural traits. These results suggest that Kleaf and gm are related to leaf anatomical and structural features, which may explain the mechanism for correlation between gm and Kleaf .

  2. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    NASA Astrophysics Data System (ADS)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  3. Can species-specific differences in foliar chemistry influence leaf litter decomposition in grassland species?

    NASA Astrophysics Data System (ADS)

    Sanaullah, M.; Chabbi, A.; Rumpel, C.

    2009-04-01

    The influence of litter quality on its rate of decomposition is a crucial aspect of C cycle. In this study we concentrated on grassland ecosystems where leaf litter is one of the major sources of C input. To quantify the contribution of initial leaf chemistry within different plant species, the decomposition of chemically different leaf litter of three grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) was monitored, using the litter bag technique. Litter of different maturity stages i.e. green (fresh leaves) and brown litter (brown leaves were still attached to the plant), were incubated on bare soil surface. Samples were taken at different time intervals (0, 2, 4, 8, 20 and 44 weeks) and were analyzed for mass loss, organic C and N contents and stable isotopic signatures (C and N). Changes in litter chemistry were addressed by determining lignin-derived phenols after CuO oxidation and non-cellulosic polysaccharides after acid hydrolysis followed by gas chromatography. Green litter was chemically different from brown litter due to higher initial N and lower lignin contents. While in grassland species, both L. perenne and D. glomerata were similar in their initial chemical composition compared with F. arundinacea. Green litter showed higher rate of degradation. In green litter, Percent lignin remaining of initial (% OI) followed the similar decomposition pattern as of C remaining indicating lignin as controlling factor in decomposition. Constant Acid-to-Aldehyde ratios of lignin-derived phenols (vanillyl and syringyl) did not suggest any transformation in lignin structures. In green litter, increase in non-cellulosic polysaccharides ratios (C6/C5 and deoxy/C5) proposed microbial-derived sugars, while there was no significant increase in these ratios in brown litter. In conclusion, due to the differences in initial chemical composition (initial N and lignin contents), green litter decomposition was higher than brown litter in all

  4. Simple method for refining arabinan polysaccharides by alcohol extraction of the prune, Prunus domestica L.

    PubMed

    Hara, Yukari; Mizukawa, Hitomi; Yamamoto, Hirotaka; Ikami, Takao; Kato, Koji; Yabe, Tomio

    2013-01-01

    L-Arabinose is a useful sugar in the food industry. We demonstrate here simple methods for refining arabinan polysaccharides by alcohol extraction from prune, Prunus domestica L., as a source of L-arabinose. Alcohol-soluble polysaccharides were purified from a solution of prune extracted by 80% ethanol. After fractionating the polysaccharides by ion-exchange chromatography, arabinans were identified as mainly constituted by (1→5)-linked arabinofuranosyl units.

  5. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-01

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  6. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    SciTech Connect

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-13

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  7. Production of polysaccharidases in different carbon sources by Leucoagaricus gongylophorus Möller (Singer), the symbiotic fungus of the leaf-cutting ant Atta sexdens Linnaeus.

    PubMed

    Silva, Aline; Bacci, Maurício; Pagnocca, Fernando C; Bueno, Odair C; Hebling, Maria J A

    2006-07-01

    Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens, produces polysaccharidases that degrade leaf components by generating nutrients believed to be essential for ant nutrition. We evaluated pectinase, amylase, xylanase, and cellulase production by L. gongylophorus in laboratory cultures and found that polysaccharidases are produced during fungal growth on pectin, starch, cellulose, xylan, or glucose but not cellulase, whose production is inhibited during fungal growth on xylan. Pectin was the carbon source that best stimulated the production of enzymes, which showed that pectinase had the highest production activity of all of the carbon sources tested, indicating that the presence of pectin and the production of pectinase are key features for symbiotic nutrition on plant material. During growth on starch and cellulose, polysaccharidase production level was intermediate, although during growth on xylan and glucose, enzyme production was very low. We propose a possible profile of polysaccharide degradation inside the nest, where the fungus is cultured on the foliar substrate.

  8. Effect of harvest timing and leaf hairiness on fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent concerns over leaf grades have generated questions of how both time of day cotton is harvested, as well as leaf hairiness levels of certain varieties, influence fiber quality. To address this, two smooth leaf varieties and two varieties with higher levels of leaf pubescence were harvested at...

  9. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic, narrow, 70..., medium body, close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic... Leaf. Mature, heavy, close leaf structure, rough, lean in oil, dull finish, pale color...

  10. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic, narrow, 70..., medium body, close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic... Leaf. Mature, heavy, close leaf structure, rough, lean in oil, dull finish, pale color...

  11. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic, narrow, 70..., medium body, close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic... Leaf. Mature, heavy, close leaf structure, rough, lean in oil, dull finish, pale color...

  12. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic, narrow, 70..., medium body, close leaf structure, rough, lean in oil, dull finish, pale color intensity, inelastic... Leaf. Mature, heavy, close leaf structure, rough, lean in oil, dull finish, pale color...

  13. Effect of herbivore damage on broad leaf motion in wind

    NASA Astrophysics Data System (ADS)

    Burnett, Nicholas; Kothari, Adit

    2015-11-01

    Terrestrial plants regularly experience wind that imposes aerodynamic forces on the plants' leaves. Passive leaf motion (e.g. fluttering) and reconfiguration (e.g. rolling into a cone shape) in wind can affect the drag on the leaf. In the study of passive leaf motion in wind, little attention has been given to the effect of herbivory. Herbivores may alter leaf motion in wind by making holes in the leaf. Also, a small herbivore (e.g. snail) on a leaf can act as a point mass, thereby affecting the leaf's motion in wind. Conversely, accelerations imposed on an herbivore sitting on a leaf by the moving leaf may serve as a defense by dislodging the herbivore. In the present study, we investigated how point masses (>1 g) and holes in leaves of the tuliptree affected passive leaf motion in turbulent winds of 1 and 5 m s-1. Leaf motion was unaffected by holes in the leaf surface (about 10% of leaf area), but an herbivore's mass significantly damped the accelerations of fluttering leaves. These results suggest that an herbivore's mass, but not the damage it inflicts, can affect leaf motion in the wind. Furthermore, the damping of leaf fluttering from an herbivore's mass may prevent passive leaf motions from being an effective herbivore defense.

  14. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco...

  15. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco...

  16. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco...

  17. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco...

  18. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco...

  19. What Is a Leaf? An Online Tutorial and Tests

    ERIC Educational Resources Information Center

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  20. Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant.

    PubMed

    S, Preethi; A, Mary Saral

    2016-11-01

    Polysaccharides were extracted from the dried fruiting bodies of Pithecellobium dulce with 20% ethanol by microwave-assisted extraction. The polysaccharides were isolated by ion exchange chromatography and afford three water-soluble polysaccharides PDP-1, PDP-2, and PDP-3. These isolated compounds were subjected to acid hydrolysis, methylation, IR and GC-MS for its compositional analysis and revealed that all the three fractions are heteropolysaccharides. PDP-1 was found to be composed of xylose, mannose, galactose and Rhamnose. PDP-2 and PDP-3 composed of xylose, Rhamnose, glucose, ribose, galactose, and mannose. The micromeretic properties of the extracted polysaccharides possessed a bulk density of 0.69g/ml, 0.65g/ml and 0.71g/ml for PDP-1, PDP-2, and PDP-3 respectively. The Hausner's ratio and Carr's index confirm the good flow property and compressibility of the polysaccharides. The polysaccharides extracted from Pithecellobium dulce fruits were tested for its application as a pharmaceutical adjuvant. The in vitro drug release study suggests that the extracted polysaccharides are potential candidates as a pharmaceutical adjuvant. Furthermore, the three isolated polysaccharides were subjected to its radical scavenging activity using DPPH, phospho molybdenum assay and reducing power assay. The results exhibited that the polysaccharides can be explored as a novel natural antioxidant and can be recommended as a functional food.

  1. The structure of mushroom polysaccharides and their beneficial role in health.

    PubMed

    Huang, Xiaojun; Nie, Shaoping

    2015-10-01

    Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.

  2. Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls.

    PubMed

    Hervé, Cécile; Marcus, Susan E; Knox, J Paul

    2011-01-01

    Plant cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in plant materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant materials and also describe treatments that can provide information on the masking of sets of polysaccharides that may prevent detection. These masking -phenomena may indicate potential interactions between sets of cell wall polysaccharides, and methods to uncover them are an important aspect of cell wall immunocytochemistry.

  3. Observation of the helical structure of the bacterial polysaccharide acetan by atomic force microscopy.

    PubMed Central

    Kirby, A R; Gunning, A P; Morris, V J; Ridout, M J

    1995-01-01

    A method has been developed that has been found to give reproducible images of uncoated polysaccharides by Atomic Force Microscopy (AFM). Aqueous solutions of the polysaccharide are deposited as drops onto freshly cleaved mica surfaces, air dried, and then imaged under butanol. The method has been used to obtain images of the bacterial polysaccharide acetan. In regions within the deposited sample, where the molecules are aligned side-by-side, it has been possible to observe a periodic structure along the polysaccharide chain, attributable to the helical structure of acetan. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:7711262

  4. [Bacterial polysaccharides of polymyxan 88A. Basic characteristics and extent of possible uses].

    PubMed

    Matora, A V; Ignatova, E N; Zhemerichkin, D A; Egorenkova, I V; Shipin, O V; Panasenko, V I; Arsen'eva, L Iu; Barkovskiĭ, A L

    1992-01-01

    A new high-viscous polysaccharide polymyxan from Bacillus polymyxa 88A is described. Polymyxan consists of an acid high-viscous polysaccharide (Mw 1-10 MD) and a neutral low-viscous polysaccharide (Mw 100-300 kD), which is a glucomannan containing equal amounts of monosaccharides and traces of uronic acids. The acid high-viscous polysaccharide consists of 36% glucose, 36% mannose, 7% galactose and 21% glucuronic acid. Data are presented on the application of polymyxan in baking industry and for preparation of drilling muds.

  5. Separation of lacquer polysaccharides and interaction with poly-L-lysine.

    PubMed

    Bai, Yuting; Yoshida, Takashi

    2013-10-15

    A naturally occurring acidic lacquer polysaccharide with glucuronic acid at the terminals of the complex branches has specific biological activities including promotion of blood coagulation and antitumor activities. The polysaccharide has two molecular weight fractions M¯n=10×10(4) and M¯n=3.0×10(4). In the present work, two pure fractions were isolated for the first time by Sephadex G-100 column chromatography. Then, each fraction was treated with diluted alkaline solution to decrease the molecular weights to M¯n=3.0×10(4) and M¯n=1.4×10(4), respectively. The NMR and IR spectra and specific rotations of the fractionated and original lacquer polysaccharides were almost identical, suggesting that the lacquer polysaccharides are an associated structure with several low molecular weight polysaccharides of M¯n=1.4×10(4). Interactions between each lacquer polysaccharide and poly-L-lysine, a model compound of proteins and peptides with positively-charged amino groups, were investigated by surface plasmon resonance (SPR) to elucidate the biological mechanism. The apparent dissociation-rate (kd), association-rate (ka), and dissociation constant (KD) obtained by SPR indicate that the lacquer polysaccharides had weaker interactions with poly-L-lysine than sulfated polysaccharides and that the interaction depended on the molecular weight. These SPR results suggest that the specific biological activities of lacquer polysaccharides originate from electrostatic interaction.

  6. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    PubMed

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  7. [Purification and analysis of polysaccharides from the caudex of Undaria pinnatifida].

    PubMed

    Kang, Yanyan; Wang, Yifei; Zhu, Liang; Men, Xiaoyuan

    2005-09-01

    To isolate polysaccharides with hot water from the caudex of Undaria pinnatifida, and precipitate with ethanol. The protein in polysaccharides was removed by sevage way. DEAE-52 and Sephadex G-200 column chromatography were used to isolate and purification polysaccharides, three purified polysaccharides F2, F3 and F4 were obtained. It was identified that they were homogeneity. The ultraviolet spectrum showed there was no proteins and nucleic acids in F2, F3 and F4. Through thin-layer chromatography analysis, F2, F3 and F4 were mainly composed of Gal, Fuc, Man and Glu acid. F2 also contained Glu and Rha.

  8. [The structure of the glycerophosphate-containing O-specific polysaccharide from Escherichia coli 0130].

    PubMed

    Perepelov, A V; Lu, B; Sebchenkova, S N; Shevelev, S D; Wang, V; Shashkov, A S; Feng, L; Wang, L; Knirel', Iu A

    2007-01-01

    A phosphorylated O-specific polysaccharide was obtained by mild acidic degradation of the lipopolysaccharide from the intestinal bacterium Escherichia coli 0130 and characterized by the methods of chemical analysis, including dephosphorylation, and 1H and 13C NMR spectroscopy. The polysaccharide was shown to be composed of branched tetrasaccharide repeating units containing two N-acetyl-D-galactosamine residues, D-galactose, D-glucose, and glycerophosphate residues (one of each). The polysaccharide has the following structure, which is unique among the known bacterial polysaccharides.

  9. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.

    PubMed

    Aquino, Rafael S; Grativol, Clicia; Mourão, Paulo A S

    2011-04-28

    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.

  10. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    PubMed

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release.

  11. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.

    PubMed

    Manivasagan, Panchanathan; Oh, Junghwan

    2016-01-01

    Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications.

  12. Genetic control of leaf curl in maize.

    PubMed

    Entringer, G C; Guedes, F L; Oliveira, A A; Nascimento, J P; Souza, J C

    2014-03-17

    Among the many implications of climatic change on agriculture, drought is expected to continue to have a major impact on agribusinesses. Leaf curling is an anatomical characteristic that might be potentially used to enhance plant tolerance to water deficit. Hence, we aimed to study the genetic control of leaf curl in maize. From 2 contrasting inbred lines for the trait, generations F1, F2, and the backcrosses were obtained. All of these generations were evaluated in a randomized block design with 2 replicates. Leaf curl samples were collected from 3 leaves above the first ear at the tasseling stage, and quantified by dividing the width of the leaf blade with natural curling against its extended width. The mean and variance components were estimated by the weighted least square method. It was found that the trait studied has predominance of the additive effects, with genetic control being attributed to few genes that favor selection and exhibit minimal influence from the environment.

  13. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Official Standard Grades for Kentucky and Tennessee Fire-Cured and Foreign-Grown Fire-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development...

  14. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Official Standard Grades for Kentucky and Tennessee Fire-Cured and Foreign-Grown Fire-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development...

  15. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Official Standard Grades for Kentucky and Tennessee Fire-Cured and Foreign-Grown Fire-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development...

  16. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Official Standard Grades for Kentucky and Tennessee Fire-Cured and Foreign-Grown Fire-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development...

  17. 7 CFR 29.3528 - Leaf surface.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco...

  18. 7 CFR 29.3528 - Leaf surface.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco...

  19. Interaction between photons and leaf canopies

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri V.; Marshak, Alexander L.; Myneni, Ranga B.

    1991-01-01

    The physics of neutral particle interaction for photons traveling in media consisting of finite-dimensional scattering centers that cross-shade mutually is investigated. A leaf canopy is a typical example of such media. The leaf canopy is idealized as a binary medium consisting of randomly distributed gaps (voids) and regions with phytoelements (turbid phytomedium). In this approach, the leaf canopy is represented by a combination of all possible open oriented spheres. The mathematical approach for characterizing the structure of the host medium is considered. The extinction coefficient at any phase-space location in a leaf canopy is the product of the extinction coefficient in the turbid phytomedium and the probability of absence gaps at that location. Using a similar approach, an expression for the differential scattering coefficient is derived.

  20. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  1. The red edge of plant leaf reflectance

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.

    1983-01-01

    A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.

  2. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  3. Reflectance model of a plant leaf

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Silva, L.

    1973-01-01

    A light ray, incident at 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's Equations and Snell's Law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The above ray is also drawn through the same leaf cross section considering cell wall and air as the only optical mediums. The values of the reflection and transmission found from ray tracing agree closely with the experimental results obtained using a Beckman DK-2A Spectroreflectometer. Similarly a light ray, incident at about 60 deg to the normal, is drawn through the palisade cells of a soybean leaf to illustrate the pathway of light, incident at an oblique angle, through the palisade cells.

  4. 7 CFR 29.3528 - Leaf surface.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco...

  5. 7 CFR 29.3528 - Leaf surface.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco...

  6. 7 CFR 29.3528 - Leaf surface.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco...

  7. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  8. Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis.

    PubMed

    Shahzadi, I; Ahmed, R; Hassan, A; Shah, M M

    2010-03-09

    Tagetes, a genus of flowering marigolds in the family Asteraceae (Compositeae), is reported to be a medicinal plant with hypotensive, spasmolytic, anti-inflammatory, antimicrobial, and antifungal properties. Tagetes minuta characteristically contains high concentrations of essential oils, flavonoids, polyphenols, and polysaccharides that interfere with DNA, causing erroneous or no PCR products. We tested and modified various standard protocols in an effort to isolate high-quality DNA from different plant tissues of T. minuta. We used sun-dried, shade-dried and fresh-leaf tissues, as well as seeds for DNA analysis. The DNA obtained from seeds and fresh-leaf tissues with a modified cetyltrimethylammonium bromide buffer protocol was of good quality, with no colored pigments and contaminants. We were able to obtain good quality DNA from fresh leaf tissues without using liquid nitrogen. A relatively large amount of DNA was also extracted from the sun- and shade-dried tissues, but its quality was not as good as that from seeds. The DNA extracted from seeds and fresh leaves was successfully amplified by PCR using arbitrary RAPD primers. The same protocol will probably be useful for extracting high-molecular weight DNA from other plant materials containing large amounts of secondary metabolites and essential oils.

  9. Characterization of potato leaf starch.

    PubMed

    Santacruz, Stalin; Koch, Kristine; Andersson, Roger; Aman, Per

    2004-04-07

    The starch accumulation-degradation process as well as the structure of leaf starch are not completely understood. To study this, starch was isolated from potato leaves collected in the early morning and late afternoon in July and August, representing different starch accumulation rates. The starch content of potato leaves varied between 2.9 and 12.9% (dry matter basis) over the night and day in the middle of July and between 0.6 and 1.5% in August. Scanning electron microscopy analyses of the four isolated starch samples showed that the granules had either an oval or a round shape and did not exceed 5 microm in size. Starch was extracted by successive washing steps with dimethyl sulfoxide and precipitated with ethanol. An elution profile on Sepharose CL-6B of debranched starch showed the presence of a material with a chain length distribution between that generally found for amylose and amylopectin. Amylopectin unit chains of low molecular size were present in a higher amount in the afternoon than in the morning samples. What remains at the end of the night is depleted in specific chain lengths, mainly between DP 15 and 24 and above DP 35, relative to the end of the day.

  10. Nutrient influences on leaf photosynthesis

    SciTech Connect

    Longstreth, D.J.; Nobel, P.S.

    1980-01-01

    The net rate of CO/sub 2/ uptake for leaves of Gossypium hirsutum L. was reduced when the plants were grown at low concentrations of NO/sub 3//sup -/, PO/sub 4//sup 2 -/, or K/sup +/. The water vapor conductance was relatively constant for all nutrient levels, indicating little effect on stomatal response. Although leaves under nutrient stress tended to be lower in chlorophyll and thinner, the ratio of mesophyll surface area to leaf area did not change appreciably. Thus, the reduction in CO/sub 2/ uptake rate at low nutrient levels was due to a decrease in the CO/sub 2/ conductance expressed per unit mesophyll cell wall area (g/sub CO/sup cell//sub 2/). The use of g/sub CO//sup cell//sub 2/ and nutrient levels expressed per unit of mesophyll cell wall provides a new means of assessing nutrient effects on CO/sub 2/ uptake of leaves. 14 figures, 1 table.

  11. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation

    PubMed Central

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-01-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe a srl2 (semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function. SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1 (SLL1)/ROLLED LEAF9 (RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation. PMID:26873975

  12. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation.

    PubMed

    Liu, Xiaofei; Li, Ming; Liu, Kai; Tang, Ding; Sun, Mingfa; Li, Yafei; Shen, Yi; Du, Guijie; Cheng, Zhukuan

    2016-04-01

    Moderate leaf rolling maintains the erectness of leaves and minimizes the shadowing between leaves which is helpful to establish ideal plant architecture. Here, we describe asrl2(semi-rolled leaf2) rice mutant, which has incurved leaves due to the presence of defective sclerenchymatous cells on the abaxial side of the leaf and displays narrow leaves and reduced plant height. Map-based cloning revealed that SRL2 encodes a novel plant-specific protein of unknown biochemical function.SRL2 was mainly expressed in the vascular bundles of leaf blades, leaf sheaths, and roots, especially in their sclerenchymatous cells. The transcriptional activities of several leaf development-related YABBY genes were significantly altered in the srl2 mutant. Double mutant analysis suggested that SRL2 and SHALLOT-LIKE1(SLL1)/ROLLED LEAF9(RL9) function in distinct pathways that regulate abaxial-side leaf development. Hence, SRL2 plays an important role in regulating leaf development, particularly during sclerenchymatous cell differentiation.

  13. Antibacterial activity on Citrullus colocynthis Leaf extract

    PubMed Central

    gowri, S. Shyamala; Priyavardhini, S.; Vasantha, K.; Umadevi, M.

    2009-01-01

    Studies on the antibacterial activities of the leaf extract of Citrullus colocynthis (Cucurbitaceae), a medicinal plant used for the treatment of various ailments was carried out using agar disc diffusion technique. The results revealed that the crude acetone extract exhibited antibacterial activities against Pseudomonas aeruginosa with zones of inhibition measuring 14.0mm. The chloroform leaf extract exhibited no antibacterial activity against Staphylococcus aureus. The minimum inhibitory concentration for the chloroform extract was 4.0mm for Escherichia coli. PMID:22557336

  14. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries?

    PubMed Central

    Weathers, Pamela J; Towler, Melissa; Hassanali, Ahmed; Lutgen, Pierre; Engeu, Patrick Ogwang

    2015-01-01

    Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into

  15. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries?

    PubMed

    Weathers, Pamela J; Towler, Melissa; Hassanali, Ahmed; Lutgen, Pierre; Engeu, Patrick Ogwang

    2014-12-09

    Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat "fever". More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into the

  16. Wind increases leaf water use efficiency.

    PubMed

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes.

  17. Antihypertensive properties of spinach leaf protein digests.

    PubMed

    Yang, Yanjun; Marczak, Ewa D; Usui, Hachiro; Kawamura, Yukio; Yoshikawa, Masaaki

    2004-04-21

    Leaf protein containing approximately 50% rubisco (ribulose bisphosphate carboxylase/oxygenase) was obtained from fresh spinach leaf with the use of a simple extraction method. Pepsin and pepsin-pancreatin digests of spinach leaf protein have potent angiotensin-I converting enzyme inhibitory properties with IC(50) values of 56 and 120 microg/mL, respectively. Both digests of leaf protein have antihypertensive effects after oral administration to spontaneously hypertensive rats (SHR) with minimum effective doses of 0.25 and 0.5 g/kg, respectively. The maximum antihypertensive effect for the pepsin digest was observed 4 h after oral administration, while for the pepsin-pancreatin digest, the maximum effect was observed 2 h after oral administration. Undigested spinach leaf protein did not exert any significant antihypertensive effect after oral administration to SHR at doses of 0.5 and 1 g/kg. Obtained results show that the pepsin digest of leaf protein may be useful in treatment of hypertension.

  18. Association of tomato leaf curl Sudan virus with leaf curl disease of tomato in Jeddah, Saudi Arabia.

    PubMed

    Sohrab, Sayed Sartaj; Yasir, Muhammad; El-Kafrawy, Sherif Ali; Abbas, Ayman T; Mousa, Magdi Ali Ahmed; Bakhashwain, Ahmed A

    2016-06-01

    Tomato is an important vegetable crop and its production is adversely affected by leaf curl disease caused by begomovirus. Leaf curl disease is a serious concern for tomato crops caused by begomovirus in Jeddah, Kingdom of Saudi Arabia. Tomato leaf curl disease has been shown to be mainly caused either by tomato leaf curl Sudan virus or tomato yellow leaf curl virus as well as tomato leaf curl Oman virus. Many tomato plants infected with monopartite begomoviruses were also found to harbor a symptom enhancing betasatellites. Here we report the association of tomato leaf curl Sudan virus causing leaf curl disease of tomato in Jeddah, Kingdom of Saudi Arabia. The complete genome sequence analysis showed highest (99.9 %) identity with tomato leaf curl Sudan virus causing leaf curl disease in Arabian Peninsula. In phylogenetic relationships analysis, the identified virus formed closest cluster with tomato leaf curl Sudan virus. In recombination analysis study, the major parent was identified as tomato leaf curl Sudan virus. Findings of this study strongly supports the associated virus is a variant of tomato leaf curl Sudan virus causing disease in Sudan, Yemen and Arabian Peninsula. The betasatellites sequence analysis showed highest identity (99.8 %) with tomato leaf curl betasatellites-Amaranthus-Jeddah. The phylogenetic analysis result based on betasatellites formed closed cluster with tomato yellow leaf curl Oman betasatellites. The importance of these findings and occurrence of begomovirus in new geographic regions causing leaf curl disease of tomato in Jeddah, Kingdom of Saudi Arabia are discussed.

  19. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    SciTech Connect

    Yang, Xi; Tang, Jianwu; Mustard, John F.; Wu, Jin; Zhao, Kaiguang; Serbin, Shawn; Lee, Jung-Eun

    2016-04-02

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyll a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R2 = 0.6–0.8 for temporal variability; R2 = 0.3–0.7 for cross-site variability; R2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of Nmass, Cmass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season

  20. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.

    PubMed

    Scoffoni, Christine; Rawls, Michael; McKown, Athena; Cochard, Hervé; Sack, Lawren

    2011-06-01

    Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.

  1. The scaling of leaf area and mass: the cost of light interception increases with leaf size

    PubMed Central

    Milla, Rubén; Reich, Peter B

    2007-01-01

    For leaves, the light-capturing surface area per unit dry mass investment (specific leaf area, SLA) is a key trait from physiological, ecological and biophysical perspectives. To address whether SLA declines with leaf size, as hypothesized due to increasing costs of support in larger leaves, we compiled data on intraspecific variation in leaf dry mass (LM) and leaf surface area (LA) for 6334 leaves of 157 species. We used the power function LM=α LAβ to test whether, within each species, large leaves deploy less surface area per unit dry mass than small leaves. Comparing scaling exponents (β) showed that more species had a statistically significant decrease in SLA as leaf size increased (61) than the opposite (7) and the average β was significantly greater than 1 (βmean=1.10, 95% CI 1.08–1.13). However, scaling exponents varied markedly from the few species that decreased to the many that increased SLA disproportionately fast as leaf size increased. This variation was unrelated to growth form, ecosystem of origin or climate. The average within-species tendency found here (allometric decrease of SLA with leaf size, averaging 13%) is in accord with concurrent findings on global-scale trends among species, although the substantial scatter around the central tendency suggests that the leaf size dependency does not obligately shape SLA. Nonetheless, the generally greater mass per unit leaf area of larger than smaller leaves directly translates into a greater cost to build and maintain a unit of leaf area, which, all else being equal, should constrain the maximum leaf size displayed. PMID:17591590

  2. [Influence of photosynthetic parameters on leaf longevity].

    PubMed

    Vasfilov, S P

    2015-01-01

    Higher plants show a wide range of leaf lifespan (LL) variability. LL is calculated as a sum of functional LL(f) (corresponding to the time of active photosynthesis and CO2 accumulation in the leaf) and nonfunctional LL(n) (the time of photosynthetic activity absence). For evergreen species of boreal zones, LL(n) corresponds to the period of winter rest. Photosynthetic potential of leaf (PPL), interpreted as the maximum possible amount of CO2 that can be fixed during its life, can be estimated on the basis of maximum photosynthesis rate (P(a)) dynamics during LL(f); the maximum (P(a max)) being achieved in mature leaf. Photosynthetic potential depends on LL(f) more strongly than on P(a max). The PPL/LL(f) ratio is indicative of the rate of PPL realization over leaf lifespan. As LL(f) shows strong positive correlation with LL, the latter parameter can also characterize the rate of PPL realization. Long LL(f) in evergreen species provides higher PPL, which is advantageous by comparison with deciduous ones. In evergreen species, the PPL itself is realized slower than in deciduous ones. The increase in LL(f) and LL is accompanied by the increase in leaf constructional cost (LCC(a)) as well as the decrease in photosynthesis rate. At that, photosynthesis rate per unit of dry weight (P(m)) decreases much faster than that per unit of leaf area (P(a)). Apparently, when considering dry leaf weight, the apoplast share seems to be much higher in long-living leaves of evergreen species than in short-living leaves of deciduous species. The leaf payback (LP) may be stabilized by unidirectional shifts in PPL and LCC(a). Species with short/long LL(f) and high/low PPL realization rate are typical for early/late succession stages and for habitats with the environmental conditions favorable/adverse for photosynthesis and growth. If the conditions for photosynthesis and growth are favorable, high PPL realization rate provides advantage in competition. The PPL realization rate is

  3. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  4. Hypoglycemic activity of polysaccharide fractions containing beta-glucans from extracts of Rhynchelytrum repens (Willd.) C.E. Hubb., Poaceae.

    PubMed

    De Paula, A C C F F; Sousa, R V; Figueiredo-Ribeiro, R C L; Buckeridge, M S

    2005-06-01

    Beta-glucans are soluble fibers with physiological functions, such as interference with absorption of sugars and reduction of serum lipid levels. The objective of the present study was to analyze the distribution of beta-glucans in different tissues of the African grass species Rhynchelytrum repens and also to evaluate their hypoglycemic activity. Leaf blades, sheaths, stems, and young leaves of R. repens were submitted to extraction with 4 M KOH. Analysis of the fractions revealed the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of beta-glucan in these fractions was confirmed by hydrolyzing the polymers with endo-beta-glucanase from Bacillus subtilis, followed by HPLC analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues were subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers was similar (250 kDa) to that of maize coleoptile beta-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes showed hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 h. This performance was better than that obtained with pure beta-glucan from barley, which decreased blood sugar levels for about 4 h. These results suggest that the activity of beta-glucans from R. repens is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine.

  5. Leaf alkaloids, phenolics, and coffee resistance to the leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae).

    PubMed

    Magalhães, S T V; Fernandes, F L; Demuner, A J; Picanço, M C; Guedes, R N C

    2010-08-01

    Coffee (Coffea spp.) alkaloids (caffeine and related methylxanthines) and phenolics (caffeic and chlorogenic acids) have recognized pestistatic/pesticidal activity and mediate insect-plant interactions. The present investigation assessed the resistance of 12 coffee genotypes to the leaf miner Leucoptera (= Perileucoptera) coffeella (Guérin-Méneville & Perrottet) (Lepidoptera: Lyonetiidae) and correlated such results with the leaf content of coffee alkaloids and phenolics that probably play a role in the interaction between coffee and this leaf miner. The levels of chlorogenic and caffeic acid, caffeine, and related methylxanthines were measured and quantified in leaf extracts of these genotypes before and 7 d after their infestation by the leaf miner. Some coffee genotypes (Coffea canephora L. and Coffea racemosa Lour. and its hybrids with Coffea arabica L.) exhibited high pesticidal activity (100% mortality) toward the L. coffeella, indicating their antibiosis resistance. However, there was no correlation between this activity and the leaf levels of coffee alkaloids and phenolics. Curiously, infestation by L. coffeella leads to a nearly four-fold decline in the leaf levels of chlorogenic acid, which does not affect this pest species but may affect other generalist species. Indeed, chlorogenic acid sprayed on coffee leaves stimulated locomotory activity of the green scale Coccus viridis (Green) (Hemiptera: Coccidae), thus minimizing their feeding in contrast with the absence of this polyphenol. Therefore, reduction of chlorogenic acid levels in coffee leaves due to leaf miner infestation seems to also favor infestation by generalist insects, such as the green scale.

  6. Reaction of sorghum lines to zonate leaf spot and rough leaf spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant, frequent rains, along with humid and cloudy conditions during the early part of the 2015 growing season, provided conducive conditions for an unusually severe outbreak of zonate leaf spot and rough leaf spot in a block of sorghum lines at the Texas A&M AgriLife Research Farm, Burleson Coun...

  7. Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides.

    PubMed

    Wu, Yang; Zhang, Qibo; Sales, Debra; Bianco, Albert Edward; Craig, Alister

    2010-09-07

    A phage display peptide library was screened using a panel of antibodies to the capsular polysaccharides of Streptococcus agalactiae and Neisseria meningitidis. Mimotopes NPDHPRVPTFMA (2-8), LIPFHKHPHHRG (3-2) and EQEIFTNITDRV (G3) showing the highest binding capacity and strongest ELISA reaction were selected for immunization experiments. These mimotopes were either synthesised as oligodeoxynucleotides for DNA immunization or MAP (multiple antigen peptide) for peptide immunization. Mimotope-DNA vaccination, particularly for G3, induced antibodies recognizing a number of target bacteria. This response was seen after the second boost injection and was significantly enhanced by the 3rd boost injection with a Th1-associated profile, which was dominated by IgG2a, followed by IgG1. Mimotope-MAP immunization also produced strong humoral immune responses to the bacteria. Antibodies from G3 DNA immunization reacted with the surface molecules of S. agalactiae, N. meningitidis and Escherichia coli K5 shown by indirect immunofluorescence staining, indicating a possible localization to the bacterial capsule. Antibodies produced both from DNA/MAP immunization reacted with purified bacterial capsular polysaccharides by ELISA and were of high avidity. We have further characterized peptide G3 by a 'tiling path' study to examine the effect of changing individual residues in the peptide in raising antibodies, which showed that the EIFTN motif in G3 was important in generating antibodies to several capsulated bacteria. We conclude that mimotope immunization with DNA or MAP potentially induces strong antibody responses against encapsulated bacteria. It is suggested that the antibody targets are polysaccharides, and these antibodies may cross react at least among closely related species of bacteria.

  8. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-06

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels.

  9. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  10. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure

    PubMed Central

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-01-01

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp. PMID:27483255

  11. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract

    PubMed Central

    Yang, Jing-Ming; Jiang, Hua; Dai, Hong-Liang; Wang, Zi-Wei; Jia, Gui-Zhi; Meng, Xiang-Cai

    2016-01-01

    Vegetative but not reproductive stage of Saposhnikovia divaricate (Turxz.) schischk possesses pharmacological activities. However, our recent study showed that reproductive S. divaricate supplemented with polysaccharide showed evidently elevated pharmacological activities and increased cimifugin content in rat serum. The aims of present study were to assess the influence of polysaccharides on the chromones pharmacological activities in Radix Saposhnikoviae (RS), the dried root of vegetative stage of S. divaricate, and to explore the underlying mechanisms. Only cimifugin was detected in the plasma of chromone treated animals and RS polysaccharide significantly increased the plasma content of cimifugin. It was shown that neither cimifugin absorption nor glycoside components transformation in simulated digestive fluid was affected by RS polysaccharide. However, a significant promotion of transformation of cimifugin to more stable prime-O-glucosylcimifugin (PGCN) by RS polysaccharide, and a protective effect of polysaccharide on chromone components were observed in small intestine solutions. Meanwhile, RS polysaccharide produced a significant elevation of cimifugin and PGCN concentration in vivo. Based on these findings, we concluded that RS polysaccharide could greatly increase the content of cimifugin, which might be related to its degradation-proof effect on cimifugin, via transforming cimifugin to comparatively more stable PGCN and spatial structure protection. PMID:27595868

  12. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    PubMed

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  13. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  14. Efficient purification of antiproliferative polysaccharides from Hypsizigus marmoreus with radial flow chromatography.

    PubMed

    Yan, Pei-Sheng; Cao, Li-Xin; Zhang, Bing-Zhao

    2014-01-01

    The increasing commercial significance of natural polysaccharides for use in medicinal products is stimulating the development of efficient and easy scale-up techniques for polysaccharide purification. In this research, the crude polysaccharides from submerged cultivation broth of Hypsizigus marmoreus were purified using radial flow chromatography (RFC), and the antiproliferative activity of the purified fractions was evaluated in vitro. DEAE Sepharose CL-6B was selected to be packed in the RFC column based on its good resolution, physical stability, and low cost. Compared with axial flow chromatography (AFC), an efficient chromatographic process with significantly less time and buffer consumption but yielding higher polysaccharide recovery and resolution was established in RFC, which could clearly purify the crude polysaccharides into different fractions. An acceptable linear scale-up effect of RFC from 100 to 500 mL was successfully achieved without loss of resolution and enhancement of time consumption. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in cell cultures indicated that the purified polysaccharide fractions possess moderate antiproliferative activities in three different human cancer cell lines, but have significantly lower cytotoxicity in normal human cell lines in vitro. Among the polysaccharide fractions, the main purified acidic fraction W-I could be considered as a novel potential antitumor agent candidate for several tumors, especially for human alveolar epithelial tumors. This research confirmed for the first time that RFC would be a new fast and efficient tool for purification of polysaccharides into different fractions, both at laboratory and commercial scales.

  15. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the global structure of microwave-assisted alkaline soluble polysaccharides (ASP) isolated from fresh sugar beet pulp. The objective was to minimize the disassembly and possibly the degradation of these polysaccharides during extraction. Prior to ASP microwave assisted-extraction (...

  16. The role of sugar beet pulp polysaccharides in the sustainability of the sugar beet industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp was sequentially extracted with a microwave heating source under pressure to produce pectin, alkaline soluble polysaccharides and cellulose, which was converted into carboxymethyl-cellulose. The solution physical-chemical properties of these polysaccharides were compared to those obt...

  17. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  18. Draft genome sequence of pectic polysaccharide-degrading moderate thermophilic bacterium Geobacillus thermodenitrificans DSM 101594.

    PubMed

    Petkauskaite, Raimonda; Blom, Jochen; Goesmann, Alexander; Kuisiene, Nomeda

    Geobacillus thermodenitrificans DSM 101594 was isolated as a producer of extracellular thermostable pectic polysaccharide degrading enzymes. The completely sequenced genome was 3.6Mb in length with GC content of 48.86%. A number of genes encoding enzymatic active against the high molecular weight polysaccharides of potential biotechnological importance were identified in the genome.

  19. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La.

  20. In vitro and ex vivo studies of antioxidant activity of carrageenans, sulfated polysaccharides from red algae.

    PubMed

    Sokolova, E V; Barabanova, A O; Homenko, V A; Solov'eva, T F; Bogdanovich, R N; Yermak, I M

    2011-02-01

    Antioxidant properties of structurally different sulfated polysaccharides (carrageenans) were studied in vitro and ex vivo. Ferric reducing antioxidant activity of carrageenans and their inhibitory effects on hydroxyl radicals and superoxide anion radicals were demonstrated in vitro. Activity of carrageenans depends on the polysaccharide structure. Carrageenans stimulate catalytic activity of SOD from donor erythrocyte.

  1. Digestion of fibre polysaccharides of pea (Pisum sativum) hulls, carrot and cabbage by adult cockerels.

    PubMed

    Longstaff, M; McNab, J M

    1989-11-01

    Characterization of the carbohydrates of pea (Pisum sativum) hulls, carrot and cabbage using both colorimetric and gas-liquid chromatographic techniques permitted a detailed investigation into the extent of digestion of differing types of fibre. These digestion studies were greatly aided by the development of a rapid bioassay employing starved adult cockerels. Total collection of undigested residues, uncontaminated by food spillage, could be made from trays placed under the cockerels. Chemical analysis showed that pea hulls consisted mainly of fibre with very little available carbohydrate present, whereas more than half of freeze-dried carrot and cabbage consisted of available carbohydrate (sucrose, glucose, fructose, starch) and consequently considerably less fibre was present. The fibre of carrot and cabbage was similarly composed of nearly equal amounts of neutral and acidic polysaccharides, whereas pea-hull fibre had four times as much neutral as acidic polysaccharides. The digestibility of total neutral polysaccharides from all three foodstuffs was extremely low. However, there appeared to be preferential digestion of polysaccharides composed of rhamnose, arabinose and galactose residues, all associated with pectic material, in contrast to the indigestibility of polysaccharides composed of fucose, xylose and glucose. Acidic polysaccharides were digested to a greater extent than neutral ones, and those of carrot and cabbage more so than pea hulls. The polysaccharides which were the most soluble were also the most digestible, but due to the arbitrariness of polysaccharide solubility, quantification of their total digestibility per se was considered not possible.

  2. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure.

    PubMed

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-07-30

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl₃, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp.

  3. Enzyme-catalyzed modifications of polysaccharides and poly(ethylene glycol)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; these are mostly done through chemica...

  4. Physico-chemical characterization of protein associated polysaccharides extracted from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar Beet Pulp (SBP), contains 67 to 80% (dry weight) of potentially valuable polysaccharides. We have solubilized and separated polysaccharides from SBP into three fractions with steam assisted flash extraction (SAFE) employed to solubilize the first and second fractions. Pectin, the first fract...

  5. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa.

    PubMed

    Zhang, Wiejie; Huang, Jing; Wang, Wei; Li, Qian; Chen, Yao; Feng, Weiwei; Zheng, Daheng; Zhao, Ting; Mao, Guanghua; Yang, Liuqing; Wu, Xiangyang

    2016-12-01

    An efficient ultrasonic-cellulase-assisted extraction (UCE) of Cistanche tubulosa polysaccharide (CTP) was established. The response surface methodology based on Box-Behnken Design was employed to further optimize extraction conditions. After quaternary ammonium salt precipitation, the polysaccharide of C. tubulosa was characterized by different techniques. The results showed that a maximum polysaccharide yield of 22.31±0.45% was achieved at a pH of 5.2 for 31.5min at 54.1°C. Compared to hot water extraction, the yield of CTP in UCE and polysaccharide content increased to 44.96% and 70.13±2.19%, respectively. There was no marked difference among polysaccharides extracted using different methods from the infrared spectrum. Ultrasonic-cellulase-assisted extraction polysaccharide showed a fibrous structure from scanning electron microscopy and was composed of rhamnose, mannose, glucose, and galactose in a molar ratio of 2.18:1:28.29:1.43 by gas chromatography. The circular dichroism results indicated that polysaccharides had a maximum positive peak around 210nm with different peak values. The thermogravimetric analysis and differential scanning calorimetry were used to test the thermostability of CTP. Besides, CTP demonstrated appreciable antioxidant potential on antioxidant experiments in vitro. The results suggested that UCE is an effective method for CTP extraction and its polysaccharide showed appreciable antioxidant activity.

  6. Fermentation optimization and antioxidant activities of mycelial polysaccharides from Morchella esculenta using soybean residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mycelial polysaccharides from Morchella esculenta are active ingredients in a number of medicines that play important roles in immunity improvement and tumor growth inhibition. So far, the production of polysaccharides from M. esculenta mycelia has not been commercialized. The aims of this wor...

  7. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  8. Non-Cellulosic Polysaccharides from Cotton Fibre Are Differently Impacted by Textile Processing

    PubMed Central

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G. T.; Knox, J. Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments. PMID:25517975

  9. Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus officinalis using response surface methodology.

    PubMed

    Zhao, Qingsheng; Kennedy, John F; Wang, Xiaodong; Yuan, Xiaofan; Zhao, Bing; Peng, Youshun; Huang, Yunxiang

    2011-08-01

    Polysaccharides were extracted from Asparagus officinalis. A novel ultrasonic circulating extraction (UCE) technology was applied for the polysaccharide extraction. Three-factor-three-level Box-Behnken design was employed to optimize ultrasonic power, extraction time and the liquid-solid ratio to obtain a high polysaccharide yield. The optimal extraction conditions were as follows: ultrasonic power was 600 W, extraction time was 46 min, the liquid-solid ratio was 35 mL/g. Under these conditions, the experimental yield of polysaccharides was 3.134%, which was agreed closely to the predicted value. The average molecular weight of A. officinalis polysaccharide was about 6.18×10(4) Da. The polysaccharides were composed of glucose, fucose, arabinose, galactose and rhamnose in a ratio of 2.18:1.86:1.50:0.98:1.53. Compared with hot water extraction (HWE), UCE showed time-saving, higher yield and no influence on the structure of asparagus polysaccharides. The results indicated that ultrasonic circulating extraction technology could be an effective and advisable technique for the large scale production of plant polysaccharides.

  10. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700 μg/ml and the maximum anticancer activity of 62.89% was recorded at 200 μg/ml; whereas, the lowest of 9.87% was observed at 25 μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity.

  11. Measurement of leaf relative water content by infrared reflectance

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Rock, Barrett N.; Nobel, Park S.

    1987-01-01

    From basic considerations and Beer's law, a leaf water content index incorporating reflectances of wavelengths from 0.76 to 0.90 microns and from 1.55 to 1.75 microns was developed that relates leaf reflectance to leaf relative water content. For the leaf succulent, Agave deserti, the leaf water content index was not significantly different from the relative water content for either individual leaves or an entire plant. Also, the relative water contents of intact plants of Encelia farinosa and Hilaria rigida in the field were estimated by the leaf water content index; variations in the proportion of living to dead leaf area could cause large errors in the estimate of relative water content. Thus, the leaf water content index may be able to estimate average relative water content of canopies when TM4 and TM5 are measured at a known relative water content and fraction of dead leaf material.

  12. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    PubMed

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  13. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  14. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation.

    PubMed

    Johansen, Katja Salomon

    2016-11-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-enzymes that catalyze oxidative cleavage of glycosidic bonds. These enzymes are secreted by many microorganisms to initiate infection and degradation processes. In particular, the concept of fungal degradation of lignocellulose has been revised in the light of this recent finding. LPMOs require a source of electrons for activity, and both enzymatic and plant-derived sources have been identified. Importantly, light-induced electron delivery from light-harvesting pigments can efficiently drive LPMO activity. The possible implications of LPMOs in plant-symbiont and -pathogen interactions are discussed in the context of the very powerful oxidative capacity of these enzymes.

  15. Polysaccharide (guar) as a soil conditioner. [Cyamopsis tetragonoloba

    SciTech Connect

    Wallace, A.

    1986-05-01

    The author tested a polysaccharide (guar) derived from guar bean (Cyamopsis tetragonoloba L. Taub.) was tested in soil flocculation tests and found that use of acid solutions to fully dissolve the guar leads to more effective soil conditioning than otherwise would be possible, and that guar does not lead to strong water-stable aggregates. Larger quantities were needed to improve emergence and growth of plants in a glasshouse than for synthetic soil conditioners. The effects of soil conditioning with guar did not last long.

  16. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

    PubMed Central

    Daffé, Mamadou; Crick, Dean C.; Jackson, Mary

    2014-01-01

    This chapter summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity and biogenesis of a variety of non-covalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this chapter include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, non-carotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides. PMID:25485178

  17. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia

    PubMed Central

    Kouakou, Koffi; Schepetkin, Igor A.; Yapi, Ahoua; Kirpotina, Liliya N.; Jutila, Mark A.; Quinn, Mark T.

    2013-01-01

    Ethnopharmacological relevance Extracts of leaves from different species of the genus Alchornea have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Objective The aim of this study was to evaluate the immunomodulatory activity of polysaccharides isolated from the leaves of Alchornea cordifolia. Materials and methods Water-soluble polysaccharides from leaves of A. cordifolia were extracted and fractionated by DEAE-cellulose, Diaion HP-20, and size-exclusion chromatography. Molecular weight, sugar analysis, and other physical and chemical characterization of the fractions were performed. Immunomodulatory activity of the polysaccharide fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO) and cytokine production. Activation of mitogen activated protein kinases (MAPK) was also assessed using a phospho-MAPK array. Activation of nuclear factor κB (NF-κB) was measured using an alkaline phosphatase reporter gene assay in THP1-Blue monocytic cells. Results Six polysaccharide fractions from A. cordifolia were isolated. Fractions containing type II arabinogalactan had potent immunomodulatory activity. Particularly, the parent fraction AP-AU and its high-molecular weight sub-fraction AP-AU1 (average Mr was estimated to be 39.5 kDa) induced production of NO and cytokines [interleukin (IL)-1β, -6, -10, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF)] in human peripheral blood mononuclear cells and human and murine monocyte/macrophages cell lines in vitro. Furthermore, treatment with AP-AU1 induced phosphorylation of Akt2, p38δ/p38γ, p70S6K1, RSK2, and mTOR, as well as stimulation of NF-κB transcriptional activity. Conclusion Our results provide a molecular basis to explain a portion of the beneficial therapeutic

  18. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR

    PubMed Central

    Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  19. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.

    PubMed

    Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  20. BOREAS TE-9 NSA Leaf Chlorophyll Density

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Computer vision cracks the leaf code

    PubMed Central

    Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A.; Wing, Scott L.; Serre, Thomas

    2016-01-01

    Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies. PMID:26951664

  2. Computer vision cracks the leaf code.

    PubMed

    Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A; Wing, Scott L; Serre, Thomas

    2016-03-22

    Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies.

  3. Antifatigue Effects of Ethanol Extracts and Polysaccharides Isolated from Abelmoschus esculentus

    PubMed Central

    Li, Yu-Xian; Yang, Zhong-Han; Lin, Yin; Han, Wei; Jia, Shan-Shan; Yuan, Ke

    2016-01-01

    Background: The aim of this study is to determine the antifatigue active fraction from Abelmoschus esculentus. The in vivo antifatigue effects of ethanol extracts and polysaccharides from A. esculentus fruit have been determined. The polysaccharides of A. esculentus were determined as the best effective fractions of antifatigue effects. Materials and Methods: About 360 Kunming male mice were randomly divided into nine subgroups: normal control subgroup, model subgroup, positive subgroup and the ethanol extracts of A. esculentus with high dose (3.2 g/kg) subgroup, medium dose (1.6 g/kg) subgroup and low dose (0.8 g/kg) subgroup, the polysaccharides of high dose (3.2 g/kg) subgroup, medium dose (1.6 g/kg) subgroup, and the low dose (0.8 g/kg) subgroup. The antifatigue effects of ethanol extracts and polysaccharides form A. esculentus were measured by comparing body weight, food intake, swimming time, liver glycogen, serum urea, blood lactic acid as well as visceral parameter in mice. Results: Compared with the model subgroup, other subgroups significantly prolonged swimming time, and high dose polysaccharides administration was the most effective (P < 0.01). High dose polysaccharides significantly increased liver glycogen, serum lactic acid, and serum urea (P < 0.01) in mice. In contrast with model group, the high dose polysaccharides administration could also significantly elevated the parameters of testicles and epididymis (P < 0.01). The study established that the ethanol extracts and polysaccharides of A. esculentus both have antifatigue effects. Conclusions: The results demonstrated that both the ethanol extracts and polysaccharides of A. esculentus have antifatigue effects. The high dosage polysaccharides have significant antifatigue properties. The results will provide the basis for further development and utilization of this plant. SUMMARY The high dosage polysaccharides have restoration ability on kidney yang deficiency mice.The high dosage polysaccharides

  4. Characterization of bacterial polysaccharide capsules and detection in the presence of deliquescent water by atomic force microscopy.

    PubMed

    Su, Hai-Nan; Chen, Zhi-Hua; Liu, Sheng-Bo; Qiao, Li-Ping; Chen, Xiu-Lan; He, Hai-Lun; Zhao, Xian; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2012-05-01

    We detected polysaccharide capsules from Zunongwangia profunda SM-A87 with atomic force microscopy (AFM). The molecular organization of the capsules at the single-polysaccharide-chain level was reported. Furthermore, we found that with ScanAsyst mode the polysaccharide capsules could be detected even in the presence of deliquescent water covering the capsule.

  5. Characterization of Bacterial Polysaccharide Capsules and Detection in the Presence of Deliquescent Water by Atomic Force Microscopy

    PubMed Central

    Su, Hai-Nan; Chen, Zhi-Hua; Liu, Sheng-Bo; Qiao, Li-Ping; Chen, Xiu-Lan; He, Hai-Lun; Zhao, Xian; Zhou, Bai-Cheng

    2012-01-01

    We detected polysaccharide capsules from Zunongwangia profunda SM-A87 with atomic force microscopy (AFM). The molecular organization of the capsules at the single-polysaccharide-chain level was reported. Furthermore, we found that with ScanAsyst mode the polysaccharide capsules could be detected even in the presence of deliquescent water covering the capsule. PMID:22344657

  6. [Study on totai flavonoids of Epimedium assisted with soybean polysaccharide spray-drying powder].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Deng, Jia-hui

    2015-08-01

    In order to evaluate the characteristics of the spray drying of total flavonoids of Epimedium extracts assisted with soybean polysaccharide, a certain percentage of soybean polysaccharide or polyvidone were added to the total flavonoids of Epimedium extract to conduct the spray drying. The effect of soybean polysaccharides against the wall sticking effect of the spray drying was detected, as well as the powder property of total flavonoids of Epimedium spray drying powder and the dissolution in vitro behavior of the effective component. Compared with the total flavonoids of Epimedium spray drying powder, soybean polysaccharide revealed a significant anti-wall sticking effect. The spray drying power which had no notable change in the grain size made a increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior. It was worth further studying the application of soybean polysaccharide in spray drying power of traditional Chinese medicine.

  7. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    PubMed Central

    Zhang, Hua; Wang, Zhen-Yu; Yang, Lin; Yang, Xin; Wang, Xue; Zhang, Zhi

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP) derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP). On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents. PMID:21686185

  8. Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications.

    PubMed

    Zhao, Wen; Liu, Wenlong; Li, Jiaojiao; Lin, Xiao; Wang, Ying

    2015-02-01

    Animal polysaccharides belong to a class of biological macromolecules. They are natural biopolymers with numerous advantages for biomedical applications, such as biocompatibility, biodegradability, non-antigenicity and non-toxicity. Electrospinning is a versatile and facile technique which can produce continuous fibers with nanoscale from a wide range of natural and synthetic polymers. The review aims to provide an up-to-date overview of the preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications such as tissue engineering, wound healing, and drug delivery. Various animal polysaccharides including chitin and chitosan (CS), hyaluronic acid (HA), heparin and heparan sulfate (HS), and chondroitin sulfate (ChS), are discussed. The challenges and some useful strategies in electrospinning of animal polysaccharides also are summarized. In addition, future study of animal polysaccharides nanofibers by electrospinning is proposed.

  9. Optimization of Extraction Process for Polysaccharide in Salvia Miltiorrhiza Bunge Using Response Surface Methodology.

    PubMed

    Yanhua, Wang; Fuhua, Wu; Zhaohan, Guo; Mingxing, Peng; Yanan, Zhang; Ling, Pang Zhen; Minhua, Du; Caiying, Zhang; Zian, Liang

    2014-01-01

    This study was aimed to optimize the extraction process for Salvia miltiorrhiza Bunge polysaccharide using response surface methodology The results showed that four operating parameters including microwave power, microwave time and the particle size had notable effects on the polysaccharide extraction of Salvia miltiorrhiza Bunge. The effects could be ranked in decreasing order of importance as follows:. Microwave power > microwave time > the comminution degree. The optimal extraction parameters were determined as 573.83W of Microwave power and 8.4min of microwave time and 67.51mesh of the comminution degree, resulting in the yield of Salvia miltiorrhiza Bunge polysaccharide of 101.161mg / g. The established regression model describing polysaccharide extraction from as a function of the three extraction parameters was highly significant (R 2 = 0.9953). The predicted and experimental results were found to be in good agreement. Thus, the model can be applicable for the prediction of polysaccharide extraction from Salvia miltiorrhiza Bunge.

  10. Optimization of Extraction Process for Polysaccharide in Salvia Miltiorrhiza Bunge Using Response Surface Methodology.

    PubMed

    Yanhua, Wang; Fuhua, Wu; Zhaohan, Guo; Mingxing, Peng; Yanan, Zhang; Ling, Pang Zhen; Minhua, Du; Caiying, Zhang; Zian, Liang

    2015-01-01

    This study was aimed to optimize the extraction process for Salvia miltiorrhiza Bunge polysaccharide using response surface methodology The results showed that four operating parameters including microwave power, microwave time and the particle size had notable effects on the polysaccharide extraction of Salvia miltiorrhiza Bunge. The effects could be ranked in decreasing order of importance as follows:. Microwave power > microwave time > the comminution degree. The optimal extraction parameters were determined as 573.83W of Microwave power and 8.4min of microwave time and 67.51mesh of the comminution degree, resulting in the yield of Salvia miltiorrhiza Bunge polysaccharide of 101.161mg / g. The established regression model describing polysaccharide extraction from as a function of the three extraction parameters was highly significant (R 2 = 0.9953). The predicted and experimental results were found to be in good agreement. Thus, the model can be applicable for the prediction of polysaccharide extraction from Salvia miltiorrhiza Bunge.

  11. Medium-throughput profiling method for screening polysaccharide-degrading enzymes in complex bacterial extracts.

    PubMed

    Fer, Maude; Préchoux, Aurélie; Leroy, Andréa; Sassi, Jean-François; Lahaye, Marc; Boisset, Claire; Nyvall-Collén, Pi; Helbert, William

    2012-06-01

    Polysaccharides are the most abundant and the most diverse renewable materials found on earth. Due to the stereochemical variability of carbohydrates, polysaccharide-degrading enzymes - i.e. glycoside hydrolases and polysaccharide lyases - are essential tools for resolving the structure of these complex macromolecules. The exponential increase of genomic and metagenomic data contrasts sharply with the low number of proteins that have ascribed functions. To help fill this gap, we designed and implemented a medium-throughput profiling method to screen for polysaccharide-degrading enzymes in crude bacterial extracts. Our strategy was based on a series of filtrations, which are absolutely necessary to eliminate any reducing sugars not directly generated by enzyme degradation. In contrast with other protocols already available in the literature, our method can be applied to any panel of polysaccharides having known and unknown structures because no chemical modifications are required. We applied this approach to screen for enzymes that occur in Pseudoalteromonas carrageenovora grown in two culture conditions.

  12. In vitro antioxidant activities of sulfated derivatives of polysaccharides extracted from Auricularia auricular.

    PubMed

    Zhang, Hua; Wang, Zhen-Yu; Yang, Lin; Yang, Xin; Wang, Xue; Zhang, Zhi

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP) derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP). On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents.

  13. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  14. Rapid analysis of polysaccharides contents in Glycyrrhiza by near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Ci-Hai; Yun, Yong-Huan; Fan, Wei; Liang, Yi-Zeng; Yu, Yue; Tang, Wen-Xian

    2015-08-01

    A method for quantitative analysis of the polysaccharides contents in Glycyrrhiza was developed based on near infrared (NIR) spectroscopy, and by adopting the phenol-sulphuric acid method as the reference method. This is the first time to use this method for predicting polysaccharides contents in Glycyrrhiza. To improve the predictive ability (or robustness) of the model, the competitive adaptive reweighted sampling (CARS) mathematical strategy was used for selecting relevance wavelengths. By using the restricted relevance wavelengths, the PLS model was more efficient and parsimonious. The coefficient of determination of prediction (Rp(2)) and the root mean square error of prediction (RMSEP) of the obtained optimum models were 0.9119 and 0.4350 for polysaccharides. The selected relevance wavelengths were also interpreted. It proved that all the wavelengths selected by CARS were related to functional groups of polysaccharide. The overall results show that NIR spectroscopy combined with chemometrics can be efficiently utilised for analysis of polysaccharides contents in Glycyrrhiza.

  15. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide-Polysaccharide Biomaterials

    SciTech Connect

    Taraban, Marc B.; Hyland, Laura L.; Yu, Y. Bruce

    2013-09-23

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy—identical structural characteristics and bulk material properties. The addition of another chiral component, d-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of l-peptides and d-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative d-peptide and d-polysaccharide combination. Chemical modifications of the OH-groups in α-d-glucose units in d-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world.

  16. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae.

    PubMed

    Wang, Jing; Jin, Weihua; Hou, Yun; Niu, Xizhen; Zhang, Hong; Zhang, Quanbin

    2013-06-01

    In this study, we prepared seven polysaccharides extracted from five algae including one brown alga Saccharina japonica, one red alga Porphyra haitanensis and three green algae Codium fragile, Enteromorpha linza and Bryopsis plumose. The chemical composition and capability of moisture-absorption and moisture-retention were investigated in comparison with those of hyaluronic acid (HA). The low molecular weight polysaccharides extracted from brown seaweed exhibited the highest moisture-absorption and moisture-retention abilities of all of the polysaccharides studied and performed better than HA. The relationships between chemical composition (including sulfated groups, monosaccharide, and molecular weight) and the functions of polysaccharides were also studied. We found the sulfated group was a main active site for moisture-absorption and moisture-retention abilities. These abilities were also related to molecular weight; with the exception of the low molecular weight polysaccharide extracted from red seaweed, lower molecular weight improved moisture-absorption and moisture-retention abilities.

  17. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  18. Extraction of Angelica sinensis polysaccharides using ultrasound-assisted way and its bioactivity.

    PubMed

    Zhao, Ying; Shi, Yongyong; Yang, Huixin; Mao, Lijuan

    2016-07-01

    In the present article, ultrasound-assisted extraction (UAE) of polysaccharides from Angelica sinensis were investigated. The aim of the study is to examine the extraction parameters such as ultrasound power (140-180W), the ratio of liquid to solid (5-7), extraction time (40-50min) and extraction temperature (80-100°C) and to obtain the best possible combinations of these parameters through response surface methodology (RSM). Based on contour plots and variance analysis, optimum operational conditions for maximizing polysaccharides yield were found to be 180w, 7, 45min and 90°C. Under the optimum operating conditions determined, 6.96% polysaccharides were achieved. In addition, the results showed that A. sinensis polysaccharides (ASP) could increase antioxidant enzymes activities and decrease the MDA levels in the skeletal muscle of exhaustive exercise rats. This study provides strong evidence that A. sinensis polysaccharides supplementation possessed protective effects against exhaustive exercise-induced oxidative stress.

  19. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review.

    PubMed

    Wu, Jianjun; Shi, Songshan; Wang, Huijun; Wang, Shunchun

    2016-06-25

    Type 2 diabetes mellitus, a common metabolic and endocrine disorder worldwide, causes severe health and economic problems. At present, pharmacotherapy involving synthetic diabetic agents is clinically administered for diabetic therapy, which has certain side effects. Fortunately, various natural polysaccharides have anti-diabetic activity and use of these polysaccharides as adjuncts to conventional therapies is increasing in developing countries. A literature search was conducted to obtain relevant information of anti-diabetic polysaccharide from electronic databases, namely PubMed, Web of Science, ScienceDirect, and Springer, for the period 2011-2015. In total, 114 types of polysaccharides from 78 kinds of natural sources, namely plants, fungi, algae, animals, and bacteria, have shown anti-diabetic properties. In vivo and in vitro experiments have shown that administering these polysaccharides has hypoglycaemic effects and alleviates β-cell dysfunction in addtion to eliciting other anti-diabetic activities which are equally efficient to even more efficient than those of synthetic diabetic agents.

  20. Advances in antitumor polysaccharides from phellinus sensu lato: Production, isolation, structure, antitumor activity, and mechanisms.

    PubMed

    Yan, Jing-Kun; Pei, Juan-Juan; Ma, Hai-Le; Wang, Zhen-Bin; Liu, Yuan-Shuai

    2017-04-13

    Edible and medicinal fungi (mushrooms) are widely applied to functional foods and nutraceutical products because of their proven nutritive and medicinal properties. Phellinus sensu lato is a well-known medicinal mushroom that has long been used in preventing ailments, including gastroenteric dysfunction, diarrhea, hemorrhage, and cancers, in oriental countries, particularly in China, Japan, and Korea. Polysaccharides represent a major class of bioactive molecules in Phellinus s. l., which have notable antitumor, immunomodulatory, and medicinal properties. Polysaccharides that were isolated from fruiting bodies, cultured mycelia, and filtrates of Phellinus s. l. have not only activated different immune responses of the host organism but have also directly suppressed tumor growth and metastasis. Studies suggest that polysaccharides from Phellinus s. l. are promising alternative anticancer agents or synergizers for existing antitumor drugs. This review summarizes the recent development of polysaccharides from Phellinus s. l., including polysaccharide production, extraction and isolation methods, chemical structure, antitumor activities, and mechanisms of action.