Sample records for barcode scanning system

  1. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  2. Evaluation of scanning 2D barcoded vaccines to improve data accuracy of vaccines administered.

    PubMed

    Daily, Ashley; Kennedy, Erin D; Fierro, Leslie A; Reed, Jenica Huddleston; Greene, Michael; Williams, Warren W; Evanson, Heather V; Cox, Regina; Koeppl, Patrick; Gerlach, Ken

    2016-11-11

    Accurately recording vaccine lot number, expiration date, and product identifiers, in patient records is an important step in improving supply chain management and patient safety in the event of a recall. These data are being encoded on two-dimensional (2D) barcodes on most vaccine vials and syringes. Using electronic vaccine administration records, we evaluated the accuracy of lot number and expiration date entered using 2D barcode scanning compared to traditional manual or drop-down list entry methods. We analyzed 128,573 electronic records of vaccines administered at 32 facilities. We compared the accuracy of records entered using 2D barcode scanning with those entered using traditional methods using chi-square tests and multilevel logistic regression. When 2D barcodes were scanned, lot number data accuracy was 1.8 percentage points higher (94.3-96.1%, P<0.001) and expiration date data accuracy was 11 percentage points higher (84.8-95.8%, P<0.001) compared with traditional methods. In multivariate analysis, lot number was more likely to be accurate (aOR=1.75; 99% CI, 1.57-1.96) as was expiration date (aOR=2.39; 99% CI, 2.12-2.68). When controlling for scanning and other factors, manufacturer, month vaccine was administered, and vaccine type were associated with variation in accuracy for both lot number and expiration date. Two-dimensional barcode scanning shows promise for improving data accuracy of vaccine lot number and expiration date records. Adapting systems to further integrate with 2D barcoding could help increase adoption of 2D barcode scanning technology. Published by Elsevier Ltd.

  3. A System for Anesthesia Drug Administration Using Barcode Technology: The Codonics Safe Label System and Smart Anesthesia Manager.

    PubMed

    Jelacic, Srdjan; Bowdle, Andrew; Nair, Bala G; Kusulos, Dolly; Bower, Lynnette; Togashi, Kei

    2015-08-01

    Many anesthetic drug errors result from vial or syringe swaps. Scanning the barcodes on vials before drug preparation, creating syringe labels that include barcodes, and scanning the syringe label barcodes before drug administration may help to prevent errors. In contrast, making syringe labels by hand that comply with the recommendations of regulatory agencies and standards-setting bodies is tedious and time consuming. A computerized system that uses vial barcodes and generates barcoded syringe labels could address both safety issues and labeling recommendations. We measured compliance of syringe labels in multiple operating rooms (ORs) with the recommendations of regulatory agencies and standards-setting bodies before and after the introduction of the Codonics Safe Label System (SLS). The Codonics SLS was then combined with Smart Anesthesia Manager software to create an anesthesia barcode drug administration system, which allowed us to measure the rate of scanning syringe label barcodes at the time of drug administration in 2 cardiothoracic ORs before and after introducing a coffee card incentive. Twelve attending cardiothoracic anesthesiologists and the OR satellite pharmacy participated. The use of the Codonics SLS drug labeling system resulted in >75% compliant syringe labels (95% confidence interval, 75%-98%). All syringe labels made using the Codonics SLS system were compliant. The average rate of scanning barcodes on syringe labels using Smart Anesthesia Manager was 25% (730 of 2976) over 13 weeks but increased to 58% (956 of 1645) over 8 weeks after introduction of a simple (coffee card) incentive (P < 0.001). An anesthesia barcode drug administration system resulted in a moderate rate of scanning syringe label barcodes at the time of drug administration. Further, adaptation of the system will be required to achieve a higher utilization rate.

  4. Usability of a barcode scanning system as a means of data entry on a PDA for self-report health outcome questionnaires: a pilot study in individuals over 60 years of age

    PubMed Central

    Boissy, Patrick; Jacobs, Karen; Roy, Serge H

    2006-01-01

    Background Throughout the medical and paramedical professions, self-report health status questionnaires are used to gather patient-reported outcome measures. The objective of this pilot study was to evaluate in individuals over 60 years of age the usability of a PDA-based barcode scanning system with a text-to-speech synthesizer to collect data electronically from self-report health outcome questionnaires. Methods Usability of the system was tested on a sample of 24 community-living older adults (7 men, 17 women) ranging in age from 63 to 93 years. After receiving a brief demonstration on the use of the barcode scanner, participants were randomly assigned to complete two sets of 16 questions using the bar code wand scanner for one set and a pen for the other. Usability was assessed using directed interviews with a usability questionnaire and performance-based metrics (task times, errors, sources of errors). Results Overall, participants found barcode scanning easy to learn, easy to use, and pleasant. Participants were marginally faster in completing the 16 survey questions when using pen entry (20/24 participants). The mean response time with the barcode scanner was 31 seconds longer than traditional pen entry for a subset of 16 questions (p = 0.001). The responsiveness of the scanning system, expressed as first scan success rate, was less than perfect, with approximately one-third of first scans requiring a rescan to successfully capture the data entry. The responsiveness of the system can be explained by a combination of factors such as the location of the scanning errors, the type of barcode used as an answer field in the paper version, and the optical characteristics of the barcode scanner. Conclusion The results presented in this study offer insights regarding the feasibility, usability and effectiveness of using a barcode scanner with older adults as an electronic data entry method on a PDA. While participants in this study found their experience with the

  5. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  6. Scanning for safety: an integrated approach to improved bar-code medication administration.

    PubMed

    Early, Cynde; Riha, Chris; Martin, Jennifer; Lowdon, Karen W; Harvey, Ellen M

    2011-03-01

    This is a review of lessons learned in the postimplementation evaluation of a bar-code medication administration technology implemented at a major tertiary-care hospital in 2001. In 2006, with a bar-code medication administration scan compliance rate of 82%, a near-miss sentinel event prompted review of this technology as part of an institutional recommitment to a "culture of safety." Multifaceted problems with bar-code medication administration created an environment of circumventing safeguards as demonstrated by an increase in manual overrides to ensure timely medication administration. A multiprofessional team composed of nursing, pharmacy, human resources, quality, and technical services formalized. Each step in the bar-code medication administration process was reviewed. Technology, process, and educational solutions were identified and implemented systematically. Overall compliance with bar-code medication administration rose from 82% to 97%, which resulted in a calculated cost avoidance of more than $2.8 million during this time frame of the project.

  7. Feasibility and Limitations of Vaccine Two-Dimensional Barcoding Using Mobile Devices.

    PubMed

    Bell, Cameron; Guerinet, Julien; Atkinson, Katherine M; Wilson, Kumanan

    2016-06-23

    Two-dimensional (2D) barcoding has the potential to enhance documentation of vaccine encounters at the point of care. However, this is currently limited to environments equipped with dedicated barcode scanners and compatible record systems. Mobile devices may present a cost-effective alternative to leverage 2D vaccine vial barcodes and improve vaccine product-specific information residing in digital health records. Mobile devices have the potential to capture product-specific information from 2D vaccine vial barcodes. We sought to examine the feasibility, performance, and potential limitations of scanning 2D barcodes on vaccine vials using 4 different mobile phones. A unique barcode scanning app was developed for Android and iOS operating systems. The impact of 4 variables on the scan success rate, data accuracy, and time to scan were examined: barcode size, curvature, fading, and ambient lighting conditions. Two experimenters performed 4 trials 10 times each, amounting to a total of 2160 barcode scan attempts. Of the 1832 successful scans performed in this evaluation, zero produced incorrect data. Five-millimeter barcodes were the slowest to scan, although only by 0.5 seconds on average. Barcodes with up to 50% fading had a 100% success rate, but success rate deteriorated beyond 60% fading. Curved barcodes took longer to scan compared with flat, but success rate deterioration was only observed at a vial diameter of 10 mm. Light conditions did not affect success rate or scan time between 500 lux and 20 lux. Conditions below 20 lux impeded the device's ability to scan successfully. Variability in scan time was observed across devices in all trials performed. 2D vaccine barcoding is possible using mobile devices and is successful under the majority of conditions examined. Manufacturers utilizing 2D barcodes should take into consideration the impact of factors that limit scan success rates. Future studies should evaluate the effect of mobile barcoding on workflow and

  8. Insect barcode information system.

    PubMed

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  9. BOLDMirror: a global mirror system of DNA barcode data.

    PubMed

    Liu, D; Liu, L; Guo, G; Wang, W; Sun, Q; Parani, M; Ma, J

    2013-11-01

    DNA barcoding is a novel concept for taxonomic identification using short, specific genetic markers and has been applied to study a large number of eukaryotes. The huge amount of data output generated by DNA barcoding requires well-organized information systems. Besides the Barcode of Life Data system (BOLD) established in Canada, the mirror system is also important for the international barcode of life project (iBOL). For this purpose, we developed the BOLDMirror, a global mirror system of DNA barcode data. It is open-sourced and can run on the LAMP (Linux + Apache + MySQL + PHP) environment. BOLDMirror has data synchronization, data representation and statistics modules, and also provides spaces to store user operation history. BOLDMirror can be accessed at http://www.boldmirror.net and several countries have used it to setup their site of DNA barcoding. © 2012 John Wiley & Sons Ltd.

  10. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  11. An Algorithm Enabling Blind Users to Find and Read Barcodes

    PubMed Central

    Tekin, Ender; Coughlan, James M.

    2010-01-01

    Most camera-based systems for finding and reading barcodes are designed to be used by sighted users (e.g. the Red Laser iPhone app), and assume the user carefully centers the barcode in the image before the barcode is read. Blind individuals could benefit greatly from such systems to identify packaged goods (such as canned goods in a supermarket), but unfortunately in their current form these systems are completely inaccessible because of their reliance on visual feedback from the user. To remedy this problem, we propose a computer vision algorithm that processes several frames of video per second to detect barcodes from a distance of several inches; the algorithm issues directional information with audio feedback (e.g. “left,” “right”) and thereby guides a blind user holding a webcam or other portable camera to locate and home in on a barcode. Once the barcode is detected at sufficiently close range, a barcode reading algorithm previously developed by the authors scans and reads aloud the barcode and the corresponding product information. We demonstrate encouraging experimental results of our proposed system implemented on a desktop computer with a webcam held by a blindfolded user; ultimately the system will be ported to a camera phone for use by visually impaired users. PMID:20617114

  12. An Analytic Hierarchy Process-based Method to Rank the Critical Success Factors of Implementing a Pharmacy Barcode System.

    PubMed

    Alharthi, Hana; Sultana, Nahid; Al-Amoudi, Amjaad; Basudan, Afrah

    2015-01-01

    Pharmacy barcode scanning is used to reduce errors during the medication dispensing process. However, this technology has rarely been used in hospital pharmacies in Saudi Arabia. This article describes the barriers to successful implementation of a barcode scanning system in Saudi Arabia. A literature review was conducted to identify the relevant critical success factors (CSFs) for a successful dispensing barcode system implementation. Twenty-eight pharmacists from a local hospital in Saudi Arabia were interviewed to obtain their perception of these CSFs. In this study, planning (process flow issues and training requirements), resistance (fear of change, communication issues, and negative perceptions about technology), and technology (software, hardware, and vendor support) were identified as the main barriers. The analytic hierarchy process (AHP), one of the most widely used tools for decision making in the presence of multiple criteria, was used to compare and rank these identified CSFs. The results of this study suggest that resistance barriers have a greater impact than planning and technology barriers. In particular, fear of change is the most critical factor, and training is the least critical factor.

  13. A DNA Mini-Barcoding System for Authentication of Processed Fish Products.

    PubMed

    Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad

    2015-10-30

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.

  14. Accuracy and time requirements of a bar-code inventory system for medical supplies.

    PubMed

    Hanson, L B; Weinswig, M H; De Muth, J E

    1988-02-01

    The effects of implementing a bar-code system for issuing medical supplies to nursing units at a university teaching hospital were evaluated. Data on the time required to issue medical supplies to three nursing units at a 480-bed, tertiary-care teaching hospital were collected (1) before the bar-code system was implemented (i.e., when the manual system was in use), (2) one month after implementation, and (3) four months after implementation. At the same times, the accuracy of the central supply perpetual inventory was monitored using 15 selected items. One-way analysis of variance tests were done to determine any significant differences between the bar-code and manual systems. Using the bar-code system took longer than using the manual system because of a significant difference in the time required for order entry into the computer. Multiple-use requirements of the central supply computer system made entering bar-code data a much slower process. There was, however, a significant improvement in the accuracy of the perpetual inventory. Using the bar-code system for issuing medical supplies to the nursing units takes longer than using the manual system. However, the accuracy of the perpetual inventory was significantly improved with the implementation of the bar-code system.

  15. Nurses' attitudes toward the use of the bar-coding medication administration system.

    PubMed

    Marini, Sana Daya; Hasman, Arie; Huijer, Huda Abu-Saad; Dimassi, Hani

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the attitudinal basis for system adoption and use decisions in terms of subjective satisfaction. Only 67 nurses in the United States had the chance to respond to the e-questionnaire posted on the CARING list server for the months of June and July 2007. Participants rated their satisfaction with bar-coding medication administration system use based on system functionality, usability, and its positive/negative impact on the nursing practice. Results showed, to some extent, positive attitude, but the image profile draws attention to nurses' concerns for improving certain system characteristics. The high bar-coding medication administration system skills revealed a more negative perception of the system by the nursing staff. The reasons underlying dissatisfaction with bar-coding medication administration use by skillful users are an important source of knowledge that can be helpful for system development as well as system deployment. As a result, strengthening bar-coding medication administration system usability by magnifying its ability to eliminate medication errors and the contributing factors, maximizing system functionality by ascertaining its power as an extra eye in the medication administration process, and impacting the clinical nursing practice positively by being helpful to nurses, speeding up the medication administration process, and being user-friendly can offer a congenial settings for establishing positive attitude toward system use, which in turn leads to successful bar-coding medication administration system use.

  16. QR Codes in the Library: "It's Not Your Mother's Barcode!"

    ERIC Educational Resources Information Center

    Dobbs, Cheri

    2011-01-01

    Barcode scanning has become more than just fun. Now libraries and businesses are leveraging barcode technology as an innovative tool to market their products and ideas. Developed and popularized in Japan, these Quick Response (QR) or two-dimensional barcodes allow marketers to provide interactive content in an otherwise static environment. In this…

  17. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  18. BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources.

    PubMed

    Lim, Jeongheui; Kim, Sang-Yoon; Kim, Sungmin; Eo, Hae-Seok; Kim, Chang-Bae; Paek, Woon Kee; Kim, Won; Bhak, Jong

    2009-12-03

    DNA barcoding provides a rapid, accurate, and standardized method for species-level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth, particularly when DNA sequencing technology is cheaply available. There are many nations in Asia with many biodiversity resources that need to be mapped and registered in databases. We have built a general DNA barcode data processing system, BioBarcode, with open source software - which is a general purpose database and server. It uses mySQL RDBMS 5.0, BLAST2, and Apache httpd server. An exemplary database of BioBarcode has around 11,300 specimen entries (including GenBank data) and registers the biological species to map their genetic relationships. The BioBarcode database contains a chromatogram viewer which improves the performance in DNA sequence analyses. Asia has a very high degree of biodiversity and the BioBarcode database server system aims to provide an efficient bioinformatics protocol that can be freely used by Asian researchers and research organizations interested in DNA barcoding. The BioBarcode promotes the rapid acquisition of biological species DNA sequence data that meet global standards by providing specialized services, and provides useful tools that will make barcoding cheaper and faster in the biodiversity community such as standardization, depository, management, and analysis of DNA barcode data. The system can be downloaded upon request, and an exemplary server has been constructed with which to build an Asian biodiversity system http://www.asianbarcode.org.

  19. BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources

    PubMed Central

    2009-01-01

    Background DNA barcoding provides a rapid, accurate, and standardized method for species-level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth, particularly when DNA sequencing technology is cheaply available. There are many nations in Asia with many biodiversity resources that need to be mapped and registered in databases. Results We have built a general DNA barcode data processing system, BioBarcode, with open source software - which is a general purpose database and server. It uses mySQL RDBMS 5.0, BLAST2, and Apache httpd server. An exemplary database of BioBarcode has around 11,300 specimen entries (including GenBank data) and registers the biological species to map their genetic relationships. The BioBarcode database contains a chromatogram viewer which improves the performance in DNA sequence analyses. Conclusion Asia has a very high degree of biodiversity and the BioBarcode database server system aims to provide an efficient bioinformatics protocol that can be freely used by Asian researchers and research organizations interested in DNA barcoding. The BioBarcode promotes the rapid acquisition of biological species DNA sequence data that meet global standards by providing specialized services, and provides useful tools that will make barcoding cheaper and faster in the biodiversity community such as standardization, depository, management, and analysis of DNA barcode data. The system can be downloaded upon request, and an exemplary server has been constructed with which to build an Asian biodiversity system http://www.asianbarcode.org. PMID:19958506

  20. FBIS: A regional DNA barcode archival & analysis system for Indian fishes.

    PubMed

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. The database is available for free at http://mail.nbfgr.res.in/fbis/

  1. FBIS: A regional DNA barcode archival & analysis system for Indian fishes

    PubMed Central

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. Availability The database is available for free at http://mail.nbfgr.res.in/fbis/ PMID:22715304

  2. Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology.

    PubMed

    Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao

    2016-01-01

    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it's expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints.

  3. bold: The Barcode of Life Data System (http://www.barcodinglife.org)

    PubMed Central

    RATNASINGHAM, SUJEEVAN; HEBERT, PAUL D N

    2007-01-01

    The Barcode of Life Data System (bold) is an informatics workbench aiding the acquisition, storage, analysis and publication of DNA barcode records. By assembling molecular, morphological and distributional data, it bridges a traditional bioinformatics chasm. bold is freely available to any researcher with interests in DNA barcoding. By providing specialized services, it aids the assembly of records that meet the standards needed to gain BARCODE designation in the global sequence databases. Because of its web-based delivery and flexible data security model, it is also well positioned to support projects that involve broad research alliances. This paper provides a brief introduction to the key elements of bold, discusses their functional capabilities, and concludes by examining computational resources and future prospects. PMID:18784790

  4. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  5. Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology

    PubMed Central

    Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao

    2016-01-01

    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it’s expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints. PMID:27780256

  6. Time trend of injection drug errors before and after implementation of bar-code verification system.

    PubMed

    Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki

    2015-01-01

    Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, p< 0.05), although wrong drug errors did not decrease sufficiently (24.2/year vs. 20.3/year). The source of medication errors due to wrong drugs was drug preparation in hospital wards. Bar-code medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.

  7. Workarounds to Barcode Medication Administration Systems: Their Occurrences, Causes, and Threats to Patient Safety

    PubMed Central

    Koppel, Ross; Wetterneck, Tosha; Telles, Joel Leon; Karsh, Ben-Tzion

    2008-01-01

    The authors develop a typology of clinicians' workarounds when using barcoded medication administration (BCMA) systems. Authors then identify the causes and possible consequences of each workaround. The BCMAs usually consist of handheld devices for scanning machine-readable barcodes on patients and medications. They also interface with electronic medication administration records. Ideally, BCMAs help confirm the five “rights” of medication administration: right patient, drug, dose, route, and time. While BCMAs are reported to reduce medication administration errors—the least likely medication error to be intercepted— these claims have not been clearly demonstrated. The authors studied BCMA use at five hospitals by: (1) observing and shadowing nurses using BCMAs at two hospitals, (2) interviewing staff and hospital leaders at five hospitals, (3) participating in BCMA staff meetings, (4) participating in one hospital's failure-mode-and-effects analyses, (5) analyzing BCMA override log data. The authors identified 15 types of workarounds, including, for example, affixing patient identification barcodes to computer carts, scanners, doorjambs, or nurses' belt rings; carrying several patients' prescanned medications on carts. The authors identified 31 types of causes of workarounds, such as unreadable medication barcodes (crinkled, smudged, torn, missing, covered by another label); malfunctioning scanners; unreadable or missing patient identification wristbands (chewed, soaked, missing); nonbarcoded medications; failing batteries; uncertain wireless connectivity; emergencies. The authors found nurses overrode BCMA alerts for 4.2% of patients charted and for 10.3% of medications charted. Possible consequences of the workarounds include wrong administration of medications, wrong doses, wrong times, and wrong formulations. Shortcomings in BCMAs' design, implementation, and workflow integration encourage workarounds. Integrating BCMAs within real-world clinical

  8. Barcode uses and abuses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Barcodes are something that everybody sees every day; so common as to be taken for granted and normally unnoticed. Readable, no one reads them. They are used to allow machines to identify a wide variety of non-electronic, real life objects. Barcode is one of the earliest types of what is now called ``Automatic Identification and Data Capture'' (AIDC), meaning ``data was transmitted into whatever system by something other than typing or hand-writing.'' There are 18 technologies, broken down into six categories--biometrics, electromagnetic, magnetic, optical, Smart Cards, Touch--included in the AIDC concept. Many are used jointly with or as adjuncts tomore » a basic barcode system of some type. All are based on assignment of a unique identifier to the object, usually a number. The uniqueness presumption makes barcode systems very applicable and appropriate to the nuclear information management venue as they inherently comply with the Nuclear Quality Assurance (NQA-1) requirements. Barcode systems belong to the optical category of AIDC. It is very old in usage as these technologies go, having first been patented in 1949. It astonished me, in researching this paper, to find that there are over 250 types of barcode (symbologies), each with its own specialized attributes, though only a few dozen are in active use. The initial uses were in the early 1950s and diversity of use is ever increasing as people find new ways to make this versatile old technology work. To what else could it be applied, in the future? This paper attempts to answer this.« less

  9. Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    PubMed

    Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2017-09-28

    Nucleic acid-based technologies have been applied to numerous biomedical applications. As a novel material for target detection, DNA has been used to construct a barcode system with a range of structures. This paper reports multi-functionalized DNA nanospheres (DNANSs) by rolling circle amplification (RCA) with several functionalized nucleotides. DNANSs with a barcode system were designed to exhibit fluorescence for coding enhanced signals and contain biotin for more functionalities, including targeting through the biotin-streptavidin (biotin-STA) interaction. Functionalized deoxynucleotide triphosphates (dNTPs) were mixed in the RCA process and functional moieties can be expressed on the DNANSs. The anti-epidermal growth factor receptor antibodies (anti-EGFR Abs) can be conjugated on DNANSs for targeting cancer cells specifically. As a proof of concept, the potential of the multi-functional DNANS barcode was demonstrated by direct cell detection as a simple detection method. The DNANS barcode provides a new route for the simple and rapid selective recognition of cancer cells.

  10. DNA barcoding a nightmare taxon: assessing barcode index numbers and barcode gaps for sweat bees.

    PubMed

    Gibbs, Jason

    2018-01-01

    There is an ongoing campaign to DNA barcode the world's >20 000 bee species. Recent revisions of Lasioglossum (Dialictus) (Hymenoptera: Halictidae) for Canada and the eastern United States were completed using integrative taxonomy. DNA barcode data from 110 species of L. (Dialictus) are examined for their value in identification and discovering additional taxonomic diversity. Specimen identification success was estimated using the best close match method. Error rates were 20% relative to current taxonomic understanding. Barcode Index Numbers (BINs) assigned using Refined Single Linkage Analysis (RESL) and barcode gaps using the Automatic Barcode Gap Discovery (ABGD) method were also assessed. RESL was incongruent for 44.5% of species, although some cryptic diversity may exist. Forty-three of 110 species were part of merged BINs with multiple species. The barcode gap is non-existent for the data set as a whole and ABGD showed levels of discordance similar to the RESL. The viridatum species-group is particularly problematic, so that DNA barcodes alone would be misleading for species delimitation and specimen identification. Character-based methods using fixed nucleotide substitutions could improve specimen identification success in some cases. The use of DNA barcoding for species discovery for standard taxonomic practice in the absence of a well-defined barcode gap is discussed.

  11. Rapidly evolving homing CRISPR barcodes

    PubMed Central

    Kalhor, Reza; Mali, Prashant; Church, George M.

    2017-01-01

    We present here an approach for engineering evolving DNA barcodes in living cells. The methodology entails using a homing guide RNA (hgRNA) scaffold that directs the Cas9-hgRNA complex to target the DNA locus of the hgRNA itself. We show that this homing CRISPR-Cas9 system acts as an expressed genetic barcode that diversifies its sequence and that the rate of diversification can be controlled in cultured cells. We further evaluate these barcodes in cell populations and show the barcode RNAs can be assayed as single molecules in situ . This integrated approach will have wide ranging applications, such as in deep lineage tracing, cellular barcoding, molecular recording, dissecting cancer biology, and connectome mapping. PMID:27918539

  12. Patient safety with blood products administration using wireless and bar-code technology.

    PubMed

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a 'big bang,' hospital-wide implementation occurred on February 7, 2005. Preliminary results from pilot data indicate that the new barcode process captures errors 3 to 10 times better than the old manual process.

  13. Ten years of barcoding at the African Centre for DNA Barcoding.

    PubMed

    Bezeng, B S; Davies, T J; Daru, B H; Kabongo, R M; Maurin, O; Yessoufou, K; van der Bank, H; van der Bank, M

    2017-07-01

    The African Centre for DNA Barcoding (ACDB) was established in 2005 as part of a global initiative to accurately and rapidly survey biodiversity using short DNA sequences. The mitochondrial cytochrome c oxidase 1 gene (CO1) was rapidly adopted as the de facto barcode for animals. Following the evaluation of several candidate loci for plants, the Plant Working Group of the Consortium for the Barcoding of Life in 2009 recommended that two plastid genes, rbcLa and matK, be adopted as core DNA barcodes for terrestrial plants. To date, numerous studies continue to test the discriminatory power of these markers across various plant lineages. Over the past decade, we at the ACDB have used these core DNA barcodes to generate a barcode library for southern Africa. To date, the ACDB has contributed more than 21 000 plant barcodes and over 3000 CO1 barcodes for animals to the Barcode of Life Database (BOLD). Building upon this effort, we at the ACDB have addressed questions related to community assembly, biogeography, phylogenetic diversification, and invasion biology. Collectively, our work demonstrates the diverse applications of DNA barcoding in ecology, systematics, evolutionary biology, and conservation.

  14. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  15. DNA Barcoding through Quaternary LDPC Codes.

    PubMed

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).

  16. Automation and workflow considerations for embedding Digimarc Barcodes at scale

    NASA Astrophysics Data System (ADS)

    Rodriguez, Tony; Haaga, Don; Calhoon, Sean

    2015-03-01

    The Digimarc® Barcode is a digital watermark applied to packages and variable data labels that carries GS1 standard GTIN-14 data traditionally carried by a 1-D barcode. The Digimarc Barcode can be read with smartphones and imaging-based barcode readers commonly used in grocery and retail environments. Using smartphones, consumers can engage with products and retailers can materially increase the speed of check-out, increasing store margins and providing a better experience for shoppers. Internal testing has shown an average of 53% increase in scanning throughput, enabling 100's of millions of dollars in cost savings [1] for retailers when deployed at scale. To get to scale, the process of embedding a digital watermark must be automated and integrated within existing workflows. Creating the tools and processes to do so represents a new challenge for the watermarking community. This paper presents a description and an analysis of the workflow implemented by Digimarc to deploy the Digimarc Barcode at scale. An overview of the tools created and lessons learned during the introduction of technology to the market are provided.

  17. Choosing and Using a Plant DNA Barcode

    PubMed Central

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  18. Laser identification system based on acousto-optical barcode scanner principles

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Korol, Georgy I.; Preslenev, Leonid N.; Bestugin, Aleksandr R.; Paraskun, Arthur S.

    2016-09-01

    The main purpose of the bar code in the modern world is the unique identification of the product, service, or any of their features, so personal and stationary barcode scanners so widely used. One of the important parameters of bar code scanners is their reliability, accuracy of the barcode recognition, response time and performance. Nowadays, the most popular personal barcode scanners contain a mechanical part, which extremely impairs the reliability indices. Group of SUAI engineers has proposed bar code scanner based on laser beam acoustic deflection effect in crystals [RU patent No 156009 issued 4/16/2015] Through the use of an acousto-optic deflector element in barcode scanner described by a group of engineers SUAI, it can be implemented in the manual form factor, and the stationary form factor of a barcode scanner. Being a wave electronic device, an acousto-optic element in the composition of the acousto-optic barcode scanner allows you to clearly establish a mathematical link between the encoded function of the bar code with the accepted input photodetector intensities function that allows you to speak about the great probability of a bar code clear definition. This paper provides a description of the issued patent, the description of the principles of operation based on the mathematical analysis, a description of the layout of the implemented scanner.

  19. Pitfalls of Establishing DNA Barcoding Systems in Protists: The Cryptophyceae as a Test Case

    PubMed Central

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5′-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed. PMID:22970104

  20. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    PubMed

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  1. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  2. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method.

  3. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  4. The campaign to DNA barcode all fishes, FISH-BOL.

    PubMed

    Ward, R D; Hanner, R; Hebert, P D N

    2009-02-01

    FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.

  5. Closed-Tube Barcoding.

    PubMed

    Sirianni, Nicky M; Yuan, Huijun; Rice, John E; Kaufman, Ronit S; Deng, John; Fulton, Chandler; Wangh, Lawrence J

    2016-11-01

    Here, we present a new approach for increasing the rate and lowering the cost of identifying, cataloging, and monitoring global biodiversity. These advances, which we call Closed-Tube Barcoding, are one application of a suite of proven PCR-based technologies invented in our laboratory. Closed-Tube Barcoding builds on and aims to enhance the profoundly important efforts of the International Barcode of Life initiative. Closed-Tube Barcoding promises to be particularly useful when large numbers of small or rare specimens need to be screened and characterized at an affordable price. This approach is also well suited for automation and for use in portable devices.

  6. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing—moving toward barcoding the world

    PubMed Central

    Zhou, Chengran

    2017-01-01

    Abstract Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)–based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn’t show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. PMID:29077841

  7. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world.

    PubMed

    Liu, Shanlin; Yang, Chentao; Zhou, Chengran; Zhou, Xin

    2017-12-01

    Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)-based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn't show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. © The Authors 2017. Published by Oxford University Press.

  8. Self-registering spread-spectrum barcode method

    DOEpatents

    Cummings, Eric B.; Even Jr., William R.

    2004-11-09

    A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.

  9. DNA barcodes for 1/1000 of the animal kingdom.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Landry, Jean-François

    2010-06-23

    This study reports DNA barcodes for more than 1300 Lepidoptera species from the eastern half of North America, establishing that 99.3 per cent of these species possess diagnostic barcode sequences. Intraspecific divergences averaged just 0.43 per cent among this assemblage, but most values were lower. The mean was elevated by deep barcode divergences (greater than 2%) in 5.1 per cent of the species, often involving the sympatric occurrence of two barcode clusters. A few of these cases have been analysed in detail, revealing species overlooked by the current taxonomic system. This study also provided a large-scale test of the extent of regional divergence in barcode sequences, indicating that geographical differentiation in the Lepidoptera of eastern North America is small, even when comparisons involve populations as much as 2800 km apart. The present results affirm that a highly effective system for the identification of Lepidoptera in this region can be built with few records per species because of the limited intra-specific variation. As most terrestrial and marine taxa are likely to possess a similar pattern of population structure, an effective DNA-based identification system can be developed with modest effort.

  10. Image barcodes

    NASA Astrophysics Data System (ADS)

    Damera-Venkata, Niranjan; Yen, Jonathan

    2003-01-01

    A Visually significant two-dimensional barcode (VSB) developed by Shaked et. al. is a method used to design an information carrying two-dimensional barcode, which has the appearance of a given graphical entity such as a company logo. The encoding and decoding of information using the VSB, uses a base image with very few graylevels (typically only two). This typically requires the image histogram to be bi-modal. For continuous-tone images such as digital photographs of individuals, the representation of tone or "shades of gray" is not only important to obtain a pleasing rendition of the face, but in most cases, the VSB renders these images unrecognizable due to its inability to represent true gray-tone variations. This paper extends the concept of a VSB to an image bar code (IBC). We enable the encoding and subsequent decoding of information embedded in the hardcopy version of continuous-tone base-images such as those acquired with a digital camera. The encoding-decoding process is modeled by robust data transmission through a noisy print-scan channel that is explicitly modeled. The IBC supports a high information capacity that differentiates it from common hardcopy watermarks. The reason for the improved image quality over the VSB is a joint encoding/halftoning strategy based on a modified version of block error diffusion. Encoder stability, image quality vs. information capacity tradeoffs and decoding issues with and without explicit knowledge of the base-image are discussed.

  11. Barcoding Fauna Bavarica: 78% of the Neuropterida Fauna Barcoded!

    PubMed Central

    Morinière, Jérome; Hendrich, Lars; Hausmann, Axel; Hebert, Paul; Haszprunar, Gerhard; Gruppe, Axel

    2014-01-01

    This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78%) recorded from Bavaria (Germany) and three other species from nearby regions (Austria, France and the UK). Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH), 237 (83%) generated a DNA barcode. Eleven species (13%) shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836) and W. quadrifasciatus (Reuter, 1894); Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763), Sympherobius pygmaeus (Rambur, 1842), Sisyra nigra (Retzius, 1783), Semidalis aleyrodiformis (Stephens, 1836) and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research. PMID:25286434

  12. [Integrated DNA barcoding database for identifying Chinese animal medicine].

    PubMed

    Shi, Lin-Chun; Yao, Hui; Xie, Li-Fang; Zhu, Ying-Jie; Song, Jing-Yuan; Zhang, Hui; Chen, Shi-Lin

    2014-06-01

    In order to construct an integrated DNA barcoding database for identifying Chinese animal medicine, the authors and their cooperators have completed a lot of researches for identifying Chinese animal medicines using DNA barcoding technology. Sequences from GenBank have been analyzed simultaneously. Three different methods, BLAST, barcoding gap and Tree building, have been used to confirm the reliabilities of barcode records in the database. The integrated DNA barcoding database for identifying Chinese animal medicine has been constructed using three different parts: specimen, sequence and literature information. This database contained about 800 animal medicines and the adulterants and closely related species. Unknown specimens can be identified by pasting their sequence record into the window on the ID page of species identification system for traditional Chinese medicine (www. tcmbarcode. cn). The integrated DNA barcoding database for identifying Chinese animal medicine is significantly important for animal species identification, rare and endangered species conservation and sustainable utilization of animal resources.

  13. Efficient alignment-free DNA barcode analytics.

    PubMed

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-11-10

    In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.

  14. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  15. Tamper-indicating barcode and method

    DOEpatents

    Cummings, Eric B.; Even, Jr., William R.; Simmons, Blake A.; Dentinger, Paul Michael

    2005-03-22

    A novel tamper-indicating barcode methodology is disclosed that allows for detection of alteration to the barcode. The tamper-indicating methodology makes use of a tamper-indicating means that may be comprised of a particulate indicator, an optical indicator, a deformable substrate, and/or may be an integrated aspect of the barcode itself. This tamper-indicating information provides greater security for the contents of containers sealed with the tamper-indicating barcodes.

  16. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  17. Developing mobile BIM/2D barcode-based automated facility management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.

  18. Barcodes for genomes and applications

    PubMed Central

    Zhou, Fengfeng; Olman, Victor; Xu, Ying

    2008-01-01

    Background Each genome has a stable distribution of the combined frequency for each k-mer and its reverse complement measured in sequence fragments as short as 1000 bps across the whole genome, for 1barcode. Results We found that for each genome, the majority of its short sequence fragments have highly similar barcodes while sequence fragments with different barcodes typically correspond to genes that are horizontally transferred or highly expressed. This observation has led to new and more effective ways for addressing two challenging problems: metagenome binning problem and identification of horizontally transferred genes. Our barcode-based metagenome binning algorithm substantially improves the state of the art in terms of both binning accuracies and the scope of applicability. Other attractive properties of genomes barcodes include (a) the barcodes have different and identifiable characteristics for different classes of genomes like prokaryotes, eukaryotes, mitochondria and plastids, and (b) barcodes similarities are generally proportional to the genomes' phylogenetic closeness. Conclusion These and other properties of genomes barcodes make them a new and effective tool for studying numerous genome and metagenome analysis problems. PMID:19091119

  19. Barcoded microchips for biomolecular assays.

    PubMed

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  20. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.

  1. Application Research of QRCode Barcode in Validation of Express Delivery

    NASA Astrophysics Data System (ADS)

    Liu, Zhihai; Zeng, Qingliang; Wang, Chenglong; Lu, Qing

    The barcode technology has become an important way in the field of information input and identify automatically. With the outstanding features of big storage capacity, secure, rich encoding character set and fast decoding, the two-dimensional(2D) QRcode(Quick Response Barcode) has become an important choice of commerce barcode. The development of wireless communications technology and the popularization and application of mobile device has set the foundation of 2D barcode used in business. In this paper, the characteristics and the compositions of 2D QRcode are described, the secure validation workflows and contents of QRcode in goods express delivery are discussed, the encoding process of QRcode is showed, and the system framework is analyzed and established. At last, the system compositions and functions of each part are discussed.

  2. Building a DNA barcode library of Alaska's non-marine arthropods.

    PubMed

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  3. DNA Barcoding of Marine Metazoa

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Steinke, Dirk; Blanco-Bercial, Leocadio

    2011-01-01

    More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may outpace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a ˜648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.

  4. DNA barcodes for ecology, evolution, and conservation.

    PubMed

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. Published by Elsevier Ltd.

  5. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species.

    PubMed

    Nwani, Christopher D; Becker, Sven; Braid, Heather E; Ude, Emmanuel F; Okogwu, Okechukwu I; Hanner, Robert

    2011-10-01

    Fishes are the main animal protein source for human beings and play a vital role in aquatic ecosystems and food webs. Fish identification can be challenging, especially in the tropics (due to high diversity), and this is particularly true for larval forms or fragmentary remains. DNA barcoding, which uses the 5' region of the mitochondrial cytochrome c oxidase subunit I (COI) as a target gene, is an efficient method for standardized species-level identification for biodiversity assessment and conservation, pending the establishment of reference sequence libraries. In this study, fishes were collected from three rivers in southeastern Nigeria, identified morphologically, and imaged digitally. DNA was extracted, PCR-amplified, and the standard barcode region was bidirectionally sequenced for 363 individuals belonging to 70 species in 38 genera. All specimen provenance data and associated sequence information were recorded in the barcode of life data systems (BOLD; www.barcodinglife.org ). Analytical tools on BOLD were used to assess the performance of barcoding to identify species. Using neighbor-joining distance comparison, the average genetic distance was 60-fold higher between species than within species, as pairwise genetic distance estimates averaged 10.29% among congeners and only 0.17% among conspecifics. Despite low levels of divergence within species, we observed river system-specific haplotype partitioning within eight species (11.4% of all species). Our preliminary results suggest that DNA barcoding is very effective for species identification of Nigerian freshwater fishes.

  6. DNA barcoding Indian freshwater fishes.

    PubMed

    Lakra, Wazir Singh; Singh, M; Goswami, Mukunda; Gopalakrishnan, A; Lal, K K; Mohindra, V; Sarkar, U K; Punia, P P; Singh, K V; Bhatt, J P; Ayyappan, S

    2016-11-01

    DNA barcoding is a promising technique for species identification using a short mitochondrial DNA sequence of cytochrome c oxidase I (COI) gene. In the present study, DNA barcodes were generated from 72 species of freshwater fish covering the Orders Cypriniformes, Siluriformes, Perciformes, Synbranchiformes, and Osteoglossiformes representing 50 genera and 19 families. All the samples were collected from diverse sites except the species endemic to a particular location. Species were represented by multiple specimens in the great majority of the barcoded species. A total of 284 COI sequences were generated. After amplification and sequencing of 700 base pair fragment of COI, primers were trimmed which invariably generated a 655 base pair barcode sequence. The average Kimura two-parameter (K2P) distances within-species, genera, families, and orders were 0.40%, 9.60%, 13.10%, and 17.16%, respectively. DNA barcode discriminated congeneric species without any confusion. The study strongly validated the efficiency of COI as an ideal marker for DNA barcoding of Indian freshwater fishes.

  7. Direct embryo tagging and identification system by attachment of biofunctionalized polysilicon barcodes to the zona pellucida of mouse embryos.

    PubMed

    Novo, Sergi; Penon, Oriol; Barrios, Leonardo; Nogués, Carme; Santaló, Josep; Durán, Sara; Gómez-Matínez, Rodrigo; Samitier, Josep; Plaza, José Antonio; Pérez-García, Luisa; Ibáñez, Elena

    2013-06-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading

  8. One-dimensional barcode reading: an information theoretic approach

    NASA Astrophysics Data System (ADS)

    Houni, Karim; Sawaya, Wadih; Delignon, Yves

    2008-03-01

    In the convergence context of identification technology and information-data transmission, the barcode found its place as the simplest and the most pervasive solution for new uses, especially within mobile commerce, bringing youth to this long-lived technology. From a communication theory point of view, a barcode is a singular coding based on a graphical representation of the information to be transmitted. We present an information theoretic approach for 1D image-based barcode reading analysis. With a barcode facing the camera, distortions and acquisition are modeled as a communication channel. The performance of the system is evaluated by means of the average mutual information quantity. On the basis of this theoretical criterion for a reliable transmission, we introduce two new measures: the theoretical depth of field and the theoretical resolution. Simulations illustrate the gain of this approach.

  9. One-dimensional barcode reading: an information theoretic approach.

    PubMed

    Houni, Karim; Sawaya, Wadih; Delignon, Yves

    2008-03-10

    In the convergence context of identification technology and information-data transmission, the barcode found its place as the simplest and the most pervasive solution for new uses, especially within mobile commerce, bringing youth to this long-lived technology. From a communication theory point of view, a barcode is a singular coding based on a graphical representation of the information to be transmitted. We present an information theoretic approach for 1D image-based barcode reading analysis. With a barcode facing the camera, distortions and acquisition are modeled as a communication channel. The performance of the system is evaluated by means of the average mutual information quantity. On the basis of this theoretical criterion for a reliable transmission, we introduce two new measures: the theoretical depth of field and the theoretical resolution. Simulations illustrate the gain of this approach.

  10. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode.

    PubMed

    Françoso, E; Arias, M C

    2013-09-01

    Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode. © 2013 John Wiley & Sons Ltd.

  11. The Nuclear Barcode: a New Taggant for Identifying Explosives

    NASA Astrophysics Data System (ADS)

    Seman, James; Johnson, Catherine; Castaño, Carlos

    2017-06-01

    Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.

  12. A DNA mini-barcode for land plants.

    PubMed

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). © 2013 John Wiley & Sons Ltd.

  13. The Barcode of Life Data Portal: Bridging the Biodiversity Informatics Divide for DNA Barcoding

    PubMed Central

    Sarkar, Indra Neil; Trizna, Michael

    2011-01-01

    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence–based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form—often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum. PMID:21818249

  14. The neotype barcode of the cotton aphid (Hemiptera: Aphididae: Aphis gossypii Glover, 1877) and a proposal for type barcodes

    USDA-ARS?s Scientific Manuscript database

    A type barcode is a DNA barcode unequivocally tied to an authoritatively identified specimen, preferably the primary type specimen. Type barcodes are analogous, albeit subordinate, to type specimens, providing a stable reference to which other barcodes can be compared. We here designate and describe...

  15. Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.

    PubMed

    Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C

    2018-01-01

    This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).

  16. [Principles for molecular identification of traditional Chinese materia medica using DNA barcoding].

    PubMed

    Chen, Shi-Lin; Yao, Hui; Han, Jian-Ping; Xin, Tian-Yi; Pang, Xiao-Hui; Shi, Lin-Chun; Luo, Kun; Song, Jing-Yuan; Hou, Dian-Yun; Shi, Shang-Mei; Qian, Zhong-Zhi

    2013-01-01

    Since the research of molecular identification of Chinese Materia Medica (CMM) using DNA barcode is rapidly developing and popularizing, the principle of this method is approved to be listed in the Supplement of the Pharmacopoeia of the People's Republic of China. Based on the study on comprehensive samples, the DNA barcoding systems have been established to identify CMM, i.e. ITS2 as a core barcode and psbA-trnH as a complementary locus for identification of planta medica, and COI as a core barcode and ITS2 as a complementary locus for identification of animal medica. This article introduced the principle of molecular identification of CMM using DNA barcoding and its drafting instructions. Furthermore, its application perspective was discussed.

  17. DNA barcoding the floras of biodiversity hotspots.

    PubMed

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G; Savolainen, Vincent

    2008-02-26

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a "DNA barcoding gap" is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.

  18. DNA barcoding the floras of biodiversity hotspots

    PubMed Central

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a “DNA barcoding gap” is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes. PMID:18258745

  19. DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

    PubMed Central

    Mabragaña, Ezequiel; Díaz de Astarloa, Juan Martín; Hanner, Robert; Zhang, Junbin; González Castro, Mariano

    2011-01-01

    Background DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org). Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125) examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. Conclusions/Significance This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide

  20. Thank you for asking: Exploring patient perceptions of barcode medication administration identification practices in inpatient mental health settings.

    PubMed

    Strudwick, Gillian; Clark, Carrie; McBride, Brittany; Sakal, Moshe; Kalia, Kamini

    2017-09-01

    Barcode medication administration systems have been implemented in a number of healthcare settings in an effort to decrease medication errors. To use the technology, nurses are required to login to an electronic health record, scan a medication and a form of patient identification to ensure that these correspond correctly with the ordered medications prior to medication administration. In acute care settings, patient wristbands have been traditionally used as a form of identification; however, past research has suggested that this method of identification may not be preferred in inpatient mental health settings. If barcode medication administration technology is to be effectively used in this context, healthcare organizations need to understand patient preferences with regards to identification methods. The purpose of this study was to elicit patient perceptions of barcode medication administration identification practices in inpatient mental health settings. Insights gathered can be used to determine patient-centered preferences of identifying patients using barcode medication administration technology. Using a qualitative descriptive approach, fifty-two (n=52) inpatient interviews were completed by a Peer Support Worker using a semi-structured interview guide over a period of two months. Interviews were conducted in a number of inpatient mental health areas including forensic, youth, geriatric, acute, and rehabilitation services. An interprofessional team, inclusive of a Peer Support Worker, completed a thematic analysis of the interview data. Six themes emerged as a result of the inductive data analysis. These included: management of information, privacy and security, stigma, relationships, safety and comfort, and negative associations with the technology. Patients also indicated that they would like a choice in the type of identification method used during barcode medication administration. As well, suggestions were made for how barcode medication

  1. A DNA Barcode Library for Korean Chironomidae (Insecta: Diptera) and Indexes for Defining Barcode Gap

    PubMed Central

    Kim, Sungmin; Song, Kyo-Hong; Ree, Han-Il; Kim, Won

    2012-01-01

    Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library. PMID:22138764

  2. A DNA barcode for land plants.

    PubMed

    2009-08-04

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

  3. Pay Attention to the Overlooked Cryptic Diversity in Existing Barcoding Data: the Case of Mollusca with Character-Based DNA Barcoding.

    PubMed

    Zou, Shanmei; Li, Qi

    2016-06-01

    With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation.

  4. Wolbachia and DNA barcoding insects: patterns, potential, and problems.

    PubMed

    Smith, M Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S; Fernandez-Triana, Jose; Fisher, Brian L; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H; Li, Yanwei; Miller, Scott E; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R; Sheffield, Cory; Stahlhut, Julie K; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.

  5. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism

    PubMed Central

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-01-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612

  6. Highlights of DNA Barcoding in identification of salient microorganisms like fungi.

    PubMed

    Dulla, E L; Kathera, C; Gurijala, H K; Mallakuntla, T R; Srinivasan, P; Prasad, V; Mopati, R D; Jasti, P K

    2016-12-01

    Fungi, the second largest kingdom of eukaryotic life, are diverse and widespread. Fungi play a distinctive role in the production of different products on industrial scale, like fungal enzymes, antibiotics, fermented foods, etc., to give storage stability and improved health to meet major global challenges. To utilize algae perfectly for human needs, and to pave the way for getting a healthy relationship with fungi, it is important to identify them in a quick and robust manner with molecular-based identification system. So, there is a technique that aims to provide a well-organized method for species level identifications and to contribute powerfully to taxonomic and biodiversity research is DNA Barcoding. DNA Barcoding is generally achieved by the retrieval of a short DNA sequence - the 'barcode' - from a standard part of the genome and that barcode is then compared with a library of reference barcode sequences derived from individuals of known identity for identification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Evaluation of candidate barcoding markers in Orinus (Poaceae).

    PubMed

    Su, X; Liu, Y P; Chen, Z; Chen, K L

    2016-04-26

    Orinus is an alpine endemic genus of Poaceae. Because of the imperfect specimens, high level of intraspecific morphological variability, and homoplasies of morphological characters, it is relatively difficult to delimitate species of Orinus by using morphology alone. To this end, the DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnH-psbA, and ITS) in identifying four currently revised species of Orinus from the Qinghai-Tibetan Plateau (QTP). Among all the single-barcode candidates, the differentiation power was the highest for the nuclear internal transcribed spacer (ITS), while the chloroplast barcodes matK (M), rbcL (R), and trnH-psbA (H) could not identify the species. Meanwhile, the differentiation efficiency of the nuclear ITS (I) was also higher than any two- or three-locus combination of chloroplast barcodes, or even a combination of ITS and any chloroplast barcode except H + I and R + I. All the combinations of chloroplast barcodes plus the nuclear ITS, H + I, and R + I differentiated the highest portion of species. The highest differentiation rate for the barcodes or barcode combinations examined here was 100% (H + I and R + I). In summary, this case study showed that the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions in differentiating Orinus species from the QTP. Moreover, combining the ITS region with chloroplast regions may improve the barcoding success rate.

  8. A DNA barcode for land plants

    PubMed Central

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  9. Limitations of mitochondrial gene barcoding in Octocorallia.

    PubMed

    McFadden, Catherine S; Benayahu, Yehuda; Pante, Eric; Thoma, Jana N; Nevarez, P Andrew; France, Scott C

    2011-01-01

    The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was <0.5%, with most species exhibiting no variation in any of the three gene regions. Interspecific divergence was also low: 18.5% of congeneric morphospecies shared identical COI barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy. © 2010 Blackwell Publishing Ltd.

  10. Barcoding Tetrahymena: discriminating species and identifying unknowns using the cytochrome c oxidase subunit I (cox-1) barcode.

    PubMed

    Kher, Chandni P; Doerder, F Paul; Cooper, Jason; Ikonomi, Pranvera; Achilles-Day, Undine; Küpper, Frithjof C; Lynn, Denis H

    2011-01-01

    DNA barcoding using the mitochondrial cytochromecoxidase subunit I (cox-1) gene has recently gained popularity as a tool for species identification of a variety of taxa. The primary objective of our research was to explore the efficacy of using cox-1 barcoding for species identification within the genusTetrahymena. We first increased intraspecific sampling forTetrahymena canadensis, Tetrahymena hegewischi, Tetrahymena pyriformis, Tetrahymena rostrata, Tetrahymena thermophila, and Tetrahymena tropicalis. Increased sampling efforts show that intraspecific sequence divergence is typically less than 1%, though it may be more in some species. The barcoding also showed that some strains might be misidentified or mislabeled. We also used cox-1 barcodes to provide species identifications for 51 unidentified environmental isolates, with a success rate of 98%. Thus, cox-1 barcoding is an invaluable tool for protistologists, especially when used in conjunction with morphological studies. 2010 Elsevier GmbH. All rights reserved.

  11. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    PubMed

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  12. Electronic inventory systems and barcode technology: impact on pharmacy technical accuracy and error liability.

    PubMed

    Oldland, Alan R; Golightly, Larry K; May, Sondra K; Barber, Gerard R; Stolpman, Nancy M

    2015-01-01

    To measure the effects associated with sequential implementation of electronic medication storage and inventory systems and product verification devices on pharmacy technical accuracy and rates of potential medication dispensing errors in an academic medical center. During four 28-day periods of observation, pharmacists recorded all technical errors identified at the final visual check of pharmaceuticals prior to dispensing. Technical filling errors involving deviations from order-specific selection of product, dosage form, strength, or quantity were documented when dispensing medications using (a) a conventional unit dose (UD) drug distribution system, (b) an electronic storage and inventory system utilizing automated dispensing cabinets (ADCs) within the pharmacy, (c) ADCs combined with barcode (BC) verification, and (d) ADCs and BC verification utilized with changes in product labeling and individualized personnel training in systems application. Using a conventional UD system, the overall incidence of technical error was 0.157% (24/15,271). Following implementation of ADCs, the comparative overall incidence of technical error was 0.135% (10/7,379; P = .841). Following implementation of BC scanning, the comparative overall incidence of technical error was 0.137% (27/19,708; P = .729). Subsequent changes in product labeling and intensified staff training in the use of BC systems was associated with a decrease in the rate of technical error to 0.050% (13/26,200; P = .002). Pharmacy ADCs and BC systems provide complementary effects that improve technical accuracy and reduce the incidence of potential medication dispensing errors if this technology is used with comprehensive personnel training.

  13. Electronic Inventory Systems and Barcode Technology: Impact on Pharmacy Technical Accuracy and Error Liability

    PubMed Central

    Oldland, Alan R.; May, Sondra K.; Barber, Gerard R.; Stolpman, Nancy M.

    2015-01-01

    Purpose: To measure the effects associated with sequential implementation of electronic medication storage and inventory systems and product verification devices on pharmacy technical accuracy and rates of potential medication dispensing errors in an academic medical center. Methods: During four 28-day periods of observation, pharmacists recorded all technical errors identified at the final visual check of pharmaceuticals prior to dispensing. Technical filling errors involving deviations from order-specific selection of product, dosage form, strength, or quantity were documented when dispensing medications using (a) a conventional unit dose (UD) drug distribution system, (b) an electronic storage and inventory system utilizing automated dispensing cabinets (ADCs) within the pharmacy, (c) ADCs combined with barcode (BC) verification, and (d) ADCs and BC verification utilized with changes in product labeling and individualized personnel training in systems application. Results: Using a conventional UD system, the overall incidence of technical error was 0.157% (24/15,271). Following implementation of ADCs, the comparative overall incidence of technical error was 0.135% (10/7,379; P = .841). Following implementation of BC scanning, the comparative overall incidence of technical error was 0.137% (27/19,708; P = .729). Subsequent changes in product labeling and intensified staff training in the use of BC systems was associated with a decrease in the rate of technical error to 0.050% (13/26,200; P = .002). Conclusions: Pharmacy ADCs and BC systems provide complementary effects that improve technical accuracy and reduce the incidence of potential medication dispensing errors if this technology is used with comprehensive personnel training. PMID:25684799

  14. Looking back on a decade of barcoding crustaceans

    PubMed Central

    Raupach, Michael J.; Radulovici, Adriana E.

    2015-01-01

    Abstract Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  15. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism.

    PubMed

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-09-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7-14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  16. Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes.

    PubMed

    Weger-Lucarelli, James; Garcia, Selene M; Rückert, Claudia; Byas, Alex; O'Connor, Shelby L; Aliota, Matthew T; Friedrich, Thomas C; O'Connor, David H; Ebel, Gregory D

    2018-06-20

    Arboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) must replicate in both mammalian and insect hosts possessing strong immune defenses. Accordingly, transmission between and replication within hosts involves genetic bottlenecks, during which viral population size and genetic diversity may be significantly reduced. To help quantify these bottlenecks and their effects, we constructed 4 "barcoded" ZIKV populations that theoretically contain thousands of barcodes each. After identifying the most diverse barcoded virus, we passaged this virus 3 times in 2 mammalian and mosquito cell lines and characterized the population using deep sequencing of the barcoded region of the genome. C6/36 maintain higher barcode diversity, even after 3 passages, than Vero. Additionally, field-caught mosquitoes exposed to the virus to assess bottlenecks in a natural host. A progressive reduction in barcode diversity occurred throughout systemic infection of these mosquitoes. Differences in bottlenecks during systemic spread were observed between different populations of Aedes aegypti. Copyright © 2018. Published by Elsevier Inc.

  17. Barcoding Sponges: An Overview Based on Comprehensive Sampling

    PubMed Central

    Vargas, Sergio; Schuster, Astrid; Sacher, Katharina; Büttner, Gabrielle; Schätzle, Simone; Läuchli, Benjamin; Hall, Kathryn; Hooper, John N. A.; Erpenbeck, Dirk; Wörheide, Gert

    2012-01-01

    Background Phylum Porifera includes ∼8,500 valid species distributed world-wide in aquatic ecosystems ranging from ephemeral fresh-water bodies to coastal environments and the deep-sea. The taxonomy and systematics of sponges is complicated, and morphological identification can be both time consuming and erroneous due to phenotypic convergence and secondary losses, etc. DNA barcoding can provide sponge biologists with a simple and rapid method for the identification of samples of unknown taxonomic membership. The Sponge Barcoding Project (www.spongebarcoding.org), the first initiative to barcode a non-bilaterian metazoan phylum, aims to provide a comprehensive DNA barcode database for Phylum Porifera. Methodology/Principal Findings ∼7,400 sponge specimens have been extracted, and amplification of the standard COI barcoding fragment has been attempted for approximately 3,300 museum samples with ∼25% mean amplification success. Based on this comprehensive sampling, we present the first report on the workflow and progress of the sponge barcoding project, and discuss some common pitfalls inherent to the barcoding of sponges. Conclusion A DNA-barcoding workflow capable of processing potentially large sponge collections has been developed and is routinely used for the Sponge Barcoding Project with success. Sponge specific problems such as the frequent co-amplification of non-target organisms have been detected and potential solutions are currently under development. The initial success of this innovative project have already demonstrated considerable refinement of sponge systematics, evaluating morphometric character importance, geographic phenotypic variability, and the utility of the standard barcoding fragment for Porifera (despite its conserved evolution within this basal metazoan phylum). PMID:22802937

  18. Long-range barcode labeling-sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  19. Constructing DNA Barcode Sets Based on Particle Swarm Optimization.

    PubMed

    Wang, Bin; Zheng, Xuedong; Zhou, Shihua; Zhou, Changjun; Wei, Xiaopeng; Zhang, Qiang; Wei, Ziqi

    2018-01-01

    Following the completion of the human genome project, a large amount of high-throughput bio-data was generated. To analyze these data, massively parallel sequencing, namely next-generation sequencing, was rapidly developed. DNA barcodes are used to identify the ownership between sequences and samples when they are attached at the beginning or end of sequencing reads. Constructing DNA barcode sets provides the candidate DNA barcodes for this application. To increase the accuracy of DNA barcode sets, a particle swarm optimization (PSO) algorithm has been modified and used to construct the DNA barcode sets in this paper. Compared with the extant results, some lower bounds of DNA barcode sets are improved. The results show that the proposed algorithm is effective in constructing DNA barcode sets.

  20. Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France

    PubMed Central

    Sonet, Gontran; Jordaens, Kurt; Braet, Yves; Bourguignon, Luc; Dupont, Eréna; Backeljau, Thierry; De Meyer, Marc; Desmyter, Stijn

    2013-01-01

    Abstract Fly larvae living on dead corpses can be used to estimate post-mortem intervals. The identification of these flies is decisive in forensic casework and can be facilitated by using DNA barcodes provided that a representative and comprehensive reference library of DNA barcodes is available. We constructed a local (Belgium and France) reference library of 85 sequences of the COI DNA barcode fragment (mitochondrial cytochrome c oxidase subunit I gene), from 16 fly species of forensic interest (Calliphoridae, Muscidae, Fanniidae). This library was then used to evaluate the ability of two public libraries (GenBank and the Barcode of Life Data Systems – BOLD) to identify specimens from Belgian and French forensic cases. The public libraries indeed allow a correct identification of most specimens. Yet, some of the identifications remain ambiguous and some forensically important fly species are not, or insufficiently, represented in the reference libraries. Several search options offered by GenBank and BOLD can be used to further improve the identifications obtained from both libraries using DNA barcodes. PMID:24453564

  1. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo

    PubMed Central

    Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-01-01

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping1 has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites2, viral barcodes3, and strategies based on transposons4 and CRISPR/Cas9 genome editing5; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system6,7. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs8–10. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure. PMID:28813413

  2. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

    PubMed

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-08-24

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  3. Four years of DNA barcoding: current advances and prospects.

    PubMed

    Frézal, Lise; Leblois, Raphael

    2008-09-01

    Research using cytochrome c oxidase barcoding techniques on zoological specimens was initiated by Hebert et al. [Hebert, P.D.N., Ratnasingham, S., deWaard, J.R., 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270, S96-S99]. By March 2004, the Consortium for the Barcode of Life started to promote the use of a standardized DNA barcoding approach, consisting of identifying a specimen as belonging to a certain animal species based on a single universal marker: the DNA barcode sequence. Over the last 4 years, this approach has become increasingly popular and advances as well as limitations have clearly emerged as increasing amounts of organisms have been studied. Our purpose is to briefly expose DNA Barcode of Life principles, pros and cons, relevance and universality. The initially proposed Barcode of life framework has greatly evolved, giving rise to a flexible description of DNA barcoding and a larger range of applications.

  4. Structure-based barcoding of proteins.

    PubMed

    Metri, Rahul; Jerath, Gaurav; Kailas, Govind; Gacche, Nitin; Pal, Adityabarna; Ramakrishnan, Vibin

    2014-01-01

    A reduced representation in the format of a barcode has been developed to provide an overview of the topological nature of a given protein structure from 3D coordinate file. The molecular structure of a protein coordinate file from Protein Data Bank is first expressed in terms of an alpha-numero code and further converted to a barcode image. The barcode representation can be used to compare and contrast different proteins based on their structure. The utility of this method has been exemplified by comparing structural barcodes of proteins that belong to same fold family, and across different folds. In addition to this, we have attempted to provide an illustration to (i) the structural changes often seen in a given protein molecule upon interaction with ligands and (ii) Modifications in overall topology of a given protein during evolution. The program is fully downloadable from the website http://www.iitg.ac.in/probar/. © 2013 The Protein Society.

  5. A DNA Barcode Library for North American Pyraustinae (Lepidoptera: Pyraloidea: Crambidae).

    PubMed

    Yang, Zhaofu; Landry, Jean-François; Hebert, Paul D N

    2016-01-01

    Although members of the crambid subfamily Pyraustinae are frequently important crop pests, their identification is often difficult because many species lack conspicuous diagnostic morphological characters. DNA barcoding employs sequence diversity in a short standardized gene region to facilitate specimen identifications and species discovery. This study provides a DNA barcode reference library for North American pyraustines based upon the analysis of 1589 sequences recovered from 137 nominal species, 87% of the fauna. Data from 125 species were barcode compliant (>500bp, <1% n), and 99 of these taxa formed a distinct cluster that was assigned to a single BIN. The other 26 species were assigned to 56 BINs, reflecting frequent cases of deep intraspecific sequence divergence and a few instances of barcode sharing, creating a total of 155 BINs. Two systems for OTU designation, ABGD and BIN, were examined to check the correspondence between current taxonomy and sequence clusters. The BIN system performed better than ABGD in delimiting closely related species, while OTU counts with ABGD were influenced by the value employed for relative gap width. Different species with low or no interspecific divergence may represent cases of unrecognized synonymy, whereas those with high intraspecific divergence require further taxonomic scrutiny as they may involve cryptic diversity. The barcode library developed in this study will also help to advance understanding of relationships among species of Pyraustinae.

  6. Multiplexing clonality: combining RGB marking and genetic barcoding

    PubMed Central

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-01-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  7. Potential of DNA barcoding for detecting quarantine fungi.

    PubMed

    Gao, Ruifang; Zhang, Guiming

    2013-11-01

    The detection of live quarantine pathogenic fungi plays an important role in guaranteeing regional biological safety. DNA barcoding, an emerging species identification technology, holds promise for the reliable, quick, and accurate detection of quarantine fungi. International standards for phytosanitary guidelines are urgently needed. The varieties of quarantine fungi listed for seven countries/regions, the currently applied detection methods, and the status of DNA barcoding for detecting quarantine fungi are summarized in this study. Two approaches have been proposed to apply DNA barcoding to fungal quarantine procedures: (i) to verify the reliability of known internal transcribed spacer (ITS)/cytochrome c oxidase subunit I (COI) data for use as barcodes, and (ii) to determine other barcodes for species that cannot be identified by ITS/COI. As a unique, standardizable, and universal species identification tool, DNA barcoding offers great potential for integrating detection methods used in various countries/regions and establishing international detection standards based on accepted DNA barcodes. Through international collaboration, interstate disputes can be eased and many problems related to routine quarantine detection methods can be solved for global trade.

  8. Errors detected in pediatric oral liquid medication doses prepared in an automated workflow management system.

    PubMed

    Bledsoe, Sarah; Van Buskirk, Alex; Falconer, R James; Hollon, Andrew; Hoebing, Wendy; Jokic, Sladan

    2018-02-01

    The effectiveness of barcode-assisted medication preparation (BCMP) technology on detecting oral liquid dose preparation errors. From June 1, 2013, through May 31, 2014, a total of 178,344 oral doses were processed at Children's Mercy, a 301-bed pediatric hospital, through an automated workflow management system. Doses containing errors detected by the system's barcode scanning system or classified as rejected by the pharmacist were further reviewed. Errors intercepted by the barcode-scanning system were classified as (1) expired product, (2) incorrect drug, (3) incorrect concentration, and (4) technological error. Pharmacist-rejected doses were categorized into 6 categories based on the root cause of the preparation error: (1) expired product, (2) incorrect concentration, (3) incorrect drug, (4) incorrect volume, (5) preparation error, and (6) other. Of the 178,344 doses examined, 3,812 (2.1%) errors were detected by either the barcode-assisted scanning system (1.8%, n = 3,291) or a pharmacist (0.3%, n = 521). The 3,291 errors prevented by the barcode-assisted system were classified most commonly as technological error and incorrect drug, followed by incorrect concentration and expired product. Errors detected by pharmacists were also analyzed. These 521 errors were most often classified as incorrect volume, preparation error, expired product, other, incorrect drug, and incorrect concentration. BCMP technology detected errors in 1.8% of pediatric oral liquid medication doses prepared in an automated workflow management system, with errors being most commonly attributed to technological problems or incorrect drugs. Pharmacists rejected an additional 0.3% of studied doses. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  9. Comprehensive DNA barcoding of the herpetofauna of Germany.

    PubMed

    Hawlitschek, O; Morinière, J; Dunz, A; Franzen, M; Rödder, D; Glaw, F; Haszprunar, G

    2016-01-01

    We present the first comprehensive DNA barcoding study of German reptiles and amphibians representing likewise the first on the European herpetofauna. A total of 248 barcodes for all native species and subspecies in the country and a few additional taxa were obtained in the framework of the projects 'Barcoding Fauna Bavarica' (BFB) and 'German Barcode of Life' (GBOL). In contrast to many invertebrate groups, the success rate of the identification of mitochondrial lineages representing species via DNA barcode was almost 100% because no cases of Barcode Index Number (BIN) sharing were detected within German native reptiles and amphibians. However, as expected, a reliable identification of the hybridogenetic species complex in the frog genus Pelophylax was not possible. Deep conspecific lineages resulting in the identification of more than one BIN were found in Lissotriton vulgaris, Natrix natrix and the hybridogenetic Pelophylax complex. A high variety of lineages with different BINs was also found in the barcodes of wall lizards (Podarcis muralis), confirming the existence of many introduced lineages and the frequent occurrence of multiple introductions. Besides the reliable species identification of all life stages and even of tissue remains, our study highlights other potential applications of DNA barcoding concerning German amphibians and reptiles, such as the detection of allochthonous lineages, monitoring of gene flow and also noninvasive sampling via environmental DNA. DNA barcoding based on COI has now proven to be a reliable and efficient tool for studying most amphibians and reptiles as it is already for many other organism groups in zoology. © 2015 John Wiley & Sons Ltd.

  10. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.

  11. The practical evaluation of DNA barcode efficacy.

    PubMed

    Spouge, John L; Mariño-Ramírez, Leonardo

    2012-01-01

    This chapter describes a workflow for measuring the efficacy of a barcode in identifying species. First, assemble individual sequence databases corresponding to each barcode marker. A controlled collection of taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly when comparing barcodes based on more than one marker. To ensure proper controls when evaluating species identification, specimens not having a sequence in every marker database should be discarded. Second, select a computer algorithm for assigning species to barcode sequences. No algorithm has yet improved notably on assigning a specimen to the species of its nearest neighbor within a barcode database. Because global sequence alignments (e.g., with the Needleman-Wunsch algorithm, or some related algorithm) examine entire barcode sequences, they generally produce better species assignments than local sequence alignments (e.g., with BLAST). No neighboring method (e.g., global sequence similarity, global sequence distance, or evolutionary distance based on a global alignment) has yet shown a notable superiority in identifying species. Finally, "the probability of correct identification" (PCI) provides an appropriate measurement of barcode efficacy. The overall PCI for a data set is the average of the species PCIs, taken over all species in the data set. This chapter states explicitly how to calculate PCI, how to estimate its statistical sampling error, and how to use data on PCR failure to set limits on how much improvements in PCR technology can improve species identification.

  12. DNA barcoding commercially important fish species of Turkey.

    PubMed

    Keskın, Emre; Atar, Hasan H

    2013-09-01

    DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654-bp-long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2-parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour-joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries. © 2013 John Wiley & Sons Ltd.

  13. Personal digital assistant with a barcode reader--a medical decision support system for nurses in home care.

    PubMed

    Johansson, Pauline E; Petersson, Göran I; Nilsson, Gunilla C

    2010-04-01

    Inappropriate medication among elderly people increases the risk of adverse drug-drug interactions, drug-related falls and hospital admissions. In order to prevent these effects it is necessary to obtain a profile of the patients' medication. A personal digital assistant (PDA) can be used as a medical decision support system (MDSS) to obtain a profile of the patients' medication and to check for inappropriate drugs and drug combinations, and to reduce medication errors. The aim of the present study was to evaluate nurses' experiences of using a MDSS in a PDA with a barcode reader, in order to obtain profiles of the patients' medication, regarding drug-drug interactions, therapeutic duplications, and warnings for drugs unsuitable for elderly in home care. The LIFe-reader is a MDSS in a PDA with a barcode reader. By scanning the drug packages in the patients' home, the LIFe-reader obtained profiles of the patients' medication and checked for drug-drug interactions, therapeutic duplications and warnings for drugs unsuitable for elderly people. The LIFe-reader also contained, e.g. drug information and medical reference works. Nurses (n=15) used the LIFe-reader for five weeks during their nursing home care practice assignment. The nurses answered questionnaires about the content and functions of the LIFe-reader before, during and after the nursing home care practice assignment, and were interviewed in focus groups. Descriptive statistics were used and content analysis was applied for qualitative data. By using the LIFe-reader, the majority of the nurses found it easy to obtain profiles of the patients' medication and check for drug-drug interactions, therapeutic duplications and warnings for drugs unsuitable for elderly people. Most nurses regarded the LIFe-reader to reduce drug-related risks of falling, and some thought it could reduce the drug-related admissions to hospitals. The scanning function was described as easy and time saving, although not always possible to

  14. Multilocus inference of species trees and DNA barcoding.

    PubMed

    Mallo, Diego; Posada, David

    2016-09-05

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  15. The Hemiptera (Insecta) of Canada: Constructing a Reference Library of DNA Barcodes

    PubMed Central

    Gwiazdowski, Rodger A.; Foottit, Robert G.; Maw, H. Eric L.; Hebert, Paul D. N.

    2015-01-01

    DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided. PMID:25923328

  16. Methodologies for sustaining barcode medication administration compliance. A multi-disciplinary approach.

    PubMed

    McNulty, Judy; Donnelly, Eileen; Iorio, Kris

    2009-01-01

    Numerous recent studies have looked at how nursing workarounds and technology failures can undermine the patient safety benefits of barcode medication administration (BCMA) systems. This article will discuss how Solaris Health System in Edison, NJ, methodically addressed these challenges to achieve and sustain 95 percent compliance with BCMA, one of two major initiatives of the non-profit Solaris Patient Safety Institute, which was established to research best practices that could be shared with other organizations. Through meetings and interviews with frontline nurses and their managers, a multidisciplinary team (pharmacy, IT, nursing) identified 12 educational, technological and process-oriented issues, then developed concrete action plans to address each one (e.g., one-on-one software and device training, additional wireless access points, a "hard stop" to require scanning the patient's wristband). Key success factors included demonstrating executive dedication, creating a culture of ownership by engaging frontline nurses in solution design and providing a strong support system.

  17. DNA barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera).

    PubMed

    Foottit, Robert G; Maw, Eric; Hebert, P D N

    2014-01-01

    Many studies have shown the suitability of sequence variation in the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage.

  18. 77 FR 33314 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    .... This revision adds DMM revisions (regarding Periodicals automation letters and flats) that were... eligibility for the use of POSTNET barcodes and allow only Intelligent Mail barcodes (IMbs) for automation... for all automation letters, including Business Reply Mail[supreg] letters that qualify for Qualified...

  19. Classification of Sharks in the Egyptian Mediterranean Waters Using Morphological and DNA Barcoding Approaches

    PubMed Central

    Moftah, Marie; Abdel Aziz, Sayeda H.; Elramah, Sara; Favereaux, Alexandre

    2011-01-01

    The identification of species constitutes the first basic step in phylogenetic studies, biodiversity monitoring and conservation. DNA barcoding, i.e. the sequencing of a short standardized region of DNA, has been proposed as a new tool for animal species identification. The present study provides an update on the composition of shark in the Egyptian Mediterranean waters off Alexandria, since the latest study to date was performed 30 years ago, DNA barcoding was used in addition to classical taxonomical methodologies. Thus, 51 specimen were DNA barcoded for a 667 bp region of the mitochondrial COI gene. Although DNA barcoding aims at developing species identification systems, some phylogenetic signals were apparent in the data. In the neighbor-joining tree, 8 major clusters were apparent, each of them containing individuals belonging to the same species, and most with 100% bootstrap value. This study is the first to our knowledge to use DNA barcoding of the mitochondrial COI gene in order to confirm the presence of species Squalus acanthias, Oxynotus centrina, Squatina squatina, Scyliorhinus canicula, Scyliorhinus stellaris, Mustelus mustelus, Mustelus punctulatus and Carcharhinus altimus in the Egyptian Mediterranean waters. Finally, our study is the starting point of a new barcoding database concerning shark composition in the Egyptian Mediterranean waters (Barcoding of Egyptian Mediterranean Sharks [BEMS], http://www.boldsystems.org/views/projectlist.php?&#Barcoding%20Fish%20%28FishBOL%29). PMID:22087242

  20. Defining operational taxonomic units using DNA barcode data.

    PubMed

    Blaxter, Mark; Mann, Jenna; Chapman, Tom; Thomas, Fran; Whitton, Claire; Floyd, Robin; Abebe, Eyualem

    2005-10-29

    The scale of diversity of life on this planet is a significant challenge for any scientific programme hoping to produce a complete catalogue, whatever means is used. For DNA barcoding studies, this difficulty is compounded by the realization that any chosen barcode sequence is not the gene 'for' speciation and that taxa have evolutionary histories. How are we to disentangle the confounding effects of reticulate population genetic processes? Using the DNA barcode data from meiofaunal surveys, here we discuss the benefits of treating the taxa defined by barcodes without reference to their correspondence to 'species', and suggest that using this non-idealist approach facilitates access to taxon groups that are not accessible to other methods of enumeration and classification. Major issues remain, in particular the methodologies for taxon discrimination in DNA barcode data.

  1. Competitive Genomic Screens of Barcoded Yeast Libraries

    PubMed Central

    Urbanus, Malene; Proctor, Michael; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2011-01-01

    By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment. PMID:21860376

  2. Locating and decoding barcodes in fuzzy images captured by smart phones

    NASA Astrophysics Data System (ADS)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  3. Critical factors for assembling a high volume of DNA barcodes

    PubMed Central

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  4. Designing robust watermark barcodes for multiplex long-read sequencing.

    PubMed

    Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth

    2017-03-15

    To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    PubMed Central

    Sass, Chodon; Little, Damon P.; Stevenson, Dennis Wm.; Specht, Chelsea D.

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  6. Services of DNA barcoding in different fields.

    PubMed

    Muhammad Tahir, Hafiz; Akhtar, Samreen

    2016-11-01

    DNA barcoding is a new master key for species identification and has greatly accelerated the pace of species discovery. In this novel and cost-effective technique, a short DNA sequence from a standard region of mitochondrial "CO1" gene called "barcode" is used. At present, researchers all over the world are utilizing this powerful tool for investigating biodiversity, differentiating cryptic species, testing food authenticity, identifying parasites, vectors, insect pests, and predators, monitoring of illegal trade of animals and their products, and identifying forensically important insects. In addition, this technique can potentially be used to monitor quality of drinking water, quickly identify the indicator species of lakes, rivers, and streams, identify species with harmful attributes or medicinal properties, monitor smuggling of endangered plants and animals and their products, and disease investigations. Despite non-favorable criticism from a few researchers, DNA barcoding has achieved immense popularity in the scientific community, especially among biologists. The present review provides an overview of DNA barcoding and its practical applications. The limitation, future prospective and main informative platforms for DNA barcoding have also been discussed.

  7. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  8. Quantitative phenotyping via deep barcode sequencing

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J.; Chee, Mark; Roth, Frederick P.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or “Bar-seq,” outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that ∼20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene–environment interactions on a genome-wide scale. PMID:19622793

  9. Defining operational taxonomic units using DNA barcode data

    PubMed Central

    Blaxter, Mark; Mann, Jenna; Chapman, Tom; Thomas, Fran; Whitton, Claire; Floyd, Robin; Abebe, Eyualem

    2005-01-01

    Abstract The scale of diversity of life on this planet is a significant challenge for any scientific programme hoping to produce a complete catalogue, whatever means is used. For DNA barcoding studies, this difficulty is compounded by the realization that any chosen barcode sequence is not the gene ‘for’ speciation and that taxa have evolutionary histories. How are we to disentangle the confounding effects of reticulate population genetic processes? Using the DNA barcode data from meiofaunal surveys, here we discuss the benefits of treating the taxa defined by barcodes without reference to their correspondence to ‘species’, and suggest that using this non-idealist approach facilitates access to taxon groups that are not accessible to other methods of enumeration and classification. Major issues remain, in particular the methodologies for taxon discrimination in DNA barcode data. PMID:16214751

  10. The seven deadly sins of DNA barcoding.

    PubMed

    Collins, R A; Cruickshank, R H

    2013-11-01

    Despite the broad benefits that DNA barcoding can bring to a diverse range of biological disciplines, a number of shortcomings still exist in terms of the experimental design of studies incorporating this approach. One underlying reason for this lies in the confusion that often exists between species discovery and specimen identification, and this is reflected in the way that hypotheses are generated and tested. Although these aims can be associated, they are quite distinct and require different methodological approaches, but their conflation has led to the frequently inappropriate use of commonly used analytical methods such as neighbour-joining trees, bootstrap resampling and fixed distance thresholds. Furthermore, the misidentification of voucher specimens can also have serious implications for end users of reference libraries such as the Barcode of Life Data Systems, and in this regard we advocate increased diligence in the a priori identification of specimens to be used for this purpose. This commentary provides an assessment of seven deficiencies that we identify as common in the DNA barcoding literature, and outline some potential improvements for its adaptation and adoption towards more reliable and accurate outcomes. © 2012 John Wiley & Sons Ltd.

  11. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.

    2003-07-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  12. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    PubMed Central

    Yan, Hao; LaBean, Thomas H.; Feng, Liping; Reif, John H.

    2003-01-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping. PMID:12821776

  13. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.

    PubMed

    Yan, Hao; LaBean, Thomas H; Feng, Liping; Reif, John H

    2003-07-08

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  14. DNA Barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera)

    PubMed Central

    Foottit, Robert G.; Maw, Eric; Hebert, P. D. N.

    2014-01-01

    Background Many studies have shown the suitability of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. Conclusions/Significance This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage. PMID:25004106

  15. Developing an Apicomplexan DNA Barcoding System to Detect Blood Parasites of Small Coral Reef Fishes.

    PubMed

    Renoux, Lance P; Dolan, Maureen C; Cook, Courtney A; Smit, Nico J; Sikkel, Paul C

    2017-08-01

    Apicomplexan parasites are obligate parasites of many species of vertebrates. To date, there is very limited understanding of these parasites in the most-diverse group of vertebrates, actinopterygian fishes. While DNA barcoding targeting the eukaryotic 18S small subunit rRNA gene sequence has been useful in identifying apicomplexans in tetrapods, identification of apicomplexans infecting fishes has relied solely on morphological identification by microscopy. In this study, a DNA barcoding method was developed that targets the 18S rRNA gene primers for identifying apicomplexans parasitizing certain actinopterygian fishes. A lead primer set was selected showing no cross-reactivity to the overwhelming abundant host DNA and successfully confirmed 37 of the 41 (90.2%) microscopically verified parasitized fish blood samples analyzed in this study. Furthermore, this DNA barcoding method identified 4 additional samples that screened negative for parasitemia, suggesting this molecular method may provide improved sensitivity over morphological characterization by microscopy. In addition, this PCR screening method for fish apicomplexans, using Whatman FTA preserved DNA, was tested in efforts leading to a more simplified field collection, transport, and sample storage method as well as a streamlining sample processing important for DNA barcoding of large sample sets.

  16. Effect of bar-code technology on the safety of medication administration.

    PubMed

    Poon, Eric G; Keohane, Carol A; Yoon, Catherine S; Ditmore, Matthew; Bane, Anne; Levtzion-Korach, Osnat; Moniz, Thomas; Rothschild, Jeffrey M; Kachalia, Allen B; Hayes, Judy; Churchill, William W; Lipsitz, Stuart; Whittemore, Anthony D; Bates, David W; Gandhi, Tejal K

    2010-05-06

    Serious medication errors are common in hospitals and often occur during order transcription or administration of medication. To help prevent such errors, technology has been developed to verify medications by incorporating bar-code verification technology within an electronic medication-administration system (bar-code eMAR). We conducted a before-and-after, quasi-experimental study in an academic medical center that was implementing the bar-code eMAR. We assessed rates of errors in order transcription and medication administration on units before and after implementation of the bar-code eMAR. Errors that involved early or late administration of medications were classified as timing errors and all others as nontiming errors. Two clinicians reviewed the errors to determine their potential to harm patients and classified those that could be harmful as potential adverse drug events. We observed 14,041 medication administrations and reviewed 3082 order transcriptions. Observers noted 776 nontiming errors in medication administration on units that did not use the bar-code eMAR (an 11.5% error rate) versus 495 such errors on units that did use it (a 6.8% error rate)--a 41.4% relative reduction in errors (P<0.001). The rate of potential adverse drug events (other than those associated with timing errors) fell from 3.1% without the use of the bar-code eMAR to 1.6% with its use, representing a 50.8% relative reduction (P<0.001). The rate of timing errors in medication administration fell by 27.3% (P<0.001), but the rate of potential adverse drug events associated with timing errors did not change significantly. Transcription errors occurred at a rate of 6.1% on units that did not use the bar-code eMAR but were completely eliminated on units that did use it. Use of the bar-code eMAR substantially reduced the rate of errors in order transcription and in medication administration as well as potential adverse drug events, although it did not eliminate such errors. Our data show

  17. 76 FR 34871 - Mobile Barcode Promotion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... POSTAL SERVICE 39 CFR Part 111 Mobile Barcode Promotion AGENCY: Postal Service TM . ACTION: Final rule. SUMMARY: The Postal Service is revising the Mailing Standards of the United States Postal Service... mailpieces with mobile barcodes must be one of the following: 1. Presorted or automation First-Class Mail...

  18. Barcode tagging of human oocytes and embryos to prevent mix-ups in assisted reproduction technologies.

    PubMed

    Novo, Sergi; Nogués, Carme; Penon, Oriol; Barrios, Leonardo; Santaló, Josep; Gómez-Martínez, Rodrigo; Esteve, Jaume; Errachid, Abdelhamid; Plaza, José Antonio; Pérez-García, Lluïsa; Ibáñez, Elena

    2014-01-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time

  19. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  20. 75 FR 56922 - Implementation of the Intelligent Mail Package Barcode

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... the USPS Intelligent Mail strategy. Packages that currently bear barcodes designed to provide delivery... symbology of the barcode; however the elements within the barcode and layout will change. There are several...

  1. Assessment of mangroves from Goa, west coast India using DNA barcode.

    PubMed

    Saddhe, Ankush Ashok; Jamdade, Rahul Arvind; Kumar, Kundan

    2016-01-01

    Mangroves are salt-tolerant forest ecosystems of tropical and subtropical intertidal regions. They are among most productive, diverse, biologically important ecosystem and inclined toward threatened system. Identification of mangrove species is of critical importance in conserving and utilizing biodiversity, which apparently hindered by a lack of taxonomic expertise. In recent years, DNA barcoding using plastid markers rbcL and matK has been suggested as an effective method to enrich traditional taxonomic expertise for rapid species identification and biodiversity inventories. In the present study, we performed assessment of available 14 mangrove species of Goa, west coast India based on core DNA barcode markers, rbcL and matK. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in rbcL (97.7 %) and matK (95.5 %) region. The two candidate chloroplast barcoding regions (rbcL, matK) yielded barcode gaps. Our results clearly demonstrated that matK locus assigned highest correct identification rates (72.09 %) based on TaxonDNA Best Match criteria. The concatenated rbcL + matK loci were able to adequately discriminate all mangrove genera and species to some extent except those in Rhizophora, Sonneratia and Avicennia. Our study provides the first endorsement of the species resolution among mangroves using plastid genes with few exceptions. Our future work will be focused on evaluation of other barcode markers to delineate complete resolution of mangrove species and identification of putative hybrids.

  2. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  3. New taxonomy and old collections: integrating DNA barcoding into the collection curation process.

    PubMed

    Puillandre, N; Bouchet, P; Boisselier-Dubayle, M-C; Brisset, J; Buge, B; Castelin, M; Chagnoux, S; Christophe, T; Corbari, L; Lambourdière, J; Lozouet, P; Marani, G; Rivasseau, A; Silva, N; Terryn, Y; Tillier, S; Utge, J; Samadi, S

    2012-05-01

    Because they house large biodiversity collections and are also research centres with sequencing facilities, natural history museums are well placed to develop DNA barcoding best practices. The main difficulty is generally the vouchering system: it must ensure that all data produced remain attached to the corresponding specimen, from the field to publication in articles and online databases. The Museum National d'Histoire Naturelle in Paris is one of the leading laboratories in the Marine Barcode of Life (MarBOL) project, which was used as a pilot programme to include barcode collections for marine molluscs and crustaceans. The system is based on two relational databases. The first one classically records the data (locality and identification) attached to the specimens. In the second one, tissue-clippings, DNA extractions (both preserved in 2D barcode tubes) and PCR data (including primers) are linked to the corresponding specimen. All the steps of the process [sampling event, specimen identification, molecular processing, data submission to Barcode Of Life Database (BOLD) and GenBank] are thus linked together. Furthermore, we have developed several web-based tools to automatically upload data into the system, control the quality of the sequences produced and facilitate the submission to online databases. This work is the result of a joint effort from several teams in the Museum National d'Histoire Naturelle (MNHN), but also from a collaborative network of taxonomists and molecular systematists outside the museum, resulting in the vouchering so far of ∼41,000 sequences and the production of ∼11,000 COI sequences. © 2012 Blackwell Publishing Ltd.

  4. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode

  5. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions

    PubMed Central

    Hausmann, Axel; Haszprunar, Gerhard; Hebert, Paul D. N.

    2011-01-01

    Background The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. Methodology/Principal Findings This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. Conclusions/Significance The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity. PMID:21423340

  7. DNA barcoding commercially important aquatic invertebrates of Turkey.

    PubMed

    Keskin, Emre; Atar, Hasan Hüseyin

    2013-08-01

    DNA barcoding was used in order to identify aquatic invertebrates sampled from fisheries bycatch and discards. A total of 440 unique cytochrome c oxidase sub unit I (COI) barcodes were generated for 22 species from three important phyla (Arthropoda, Cnidaria, and Mollusca). All the species were sequenced and submitted to GenBank and Barcode of Life Database (BOLD) databases using 654 bp-long fragment of mitochondrial COI gene. Two of them (Pontastacus leptodactylus and Rapana bezoar) were first records of the species for the BOLD database and six of them (Carcinus aestuarii, Loligo vulgaris, Melicertus kerathurus, Nephrops norvegicus, Scyllarides latus, and Scyllarus arctus) were first standard (>648 bp) COI barcode records for the GenBank database. COI barcodes were analyzed for nucleotide composition, nucleotide pair frequencies, and Kimura's two-parameter genetic distance. Mean genetic distance among species was found increasing at higher taxonomic levels. Neighbor-joining trees generated were congruent with morphometric-based taxonomic classification. Findings of this study clearly demonstrate that DNA barcodes could be used as an efficient molecular tool in identification of not only target species from fisheries but also bycatch and discard species, and so it could provide us leverage for a better understanding in monitoring and management of fisheries and biodiversity.

  8. Theranostic barcoded nanoparticles for personalized cancer medicine

    PubMed Central

    Yaari, Zvi; da Silva, Dana; Zinger, Assaf; Goldman, Evgeniya; Kajal, Ashima; Tshuva, Rafi; Barak, Efrat; Dahan, Nitsan; Hershkovitz, Dov; Goldfeder, Mor; Roitman, Janna Shainsky; Schroeder, Avi

    2016-01-01

    Personalized medicine promises to revolutionize cancer therapy by matching the most effective treatment to the individual patient. Using a nanoparticle-based system, we predict the therapeutic potency of anticancer medicines in a personalized manner. We carry out the diagnostic stage through a multidrug screen performed inside the tumour, extracting drug activity information with single cell sensitivity. By using 100 nm liposomes, loaded with various cancer drugs and corresponding synthetic DNA barcodes, we find a correlation between the cell viability and the drug it was exposed to, according to the matching barcodes. Based on this screen, we devise a treatment protocol for mice bearing triple-negative breast-cancer tumours, and its results confirm the diagnostic prediction. We show that the use of nanotechnology in cancer care is effective for generating personalized treatment protocols. PMID:27830705

  9. DNA barcode goes two-dimensions: DNA QR code web server.

    PubMed

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  10. The Effects of Bar-coding Technology on Medication Errors: A Systematic Literature Review.

    PubMed

    Hutton, Kevin; Ding, Qian; Wellman, Gregory

    2017-02-24

    The bar-coding technology adoptions have risen drastically in U.S. health systems in the past decade. However, few studies have addressed the impact of bar-coding technology with strong prospective methodologies and the research, which has been conducted from both in-pharmacy and bedside implementations. This systematic literature review is to examine the effectiveness of bar-coding technology on preventing medication errors and what types of medication errors may be prevented in the hospital setting. A systematic search of databases was performed from 1998 to December 2016. Studies measuring the effect of bar-coding technology on medication errors were included in a full-text review. Studies with the outcomes other than medication errors such as efficiency or workarounds were excluded. The outcomes were measured and findings were summarized for each retained study. A total of 2603 articles were initially identified and 10 studies, which used prospective before-and-after study design, were fully reviewed in this article. Of the 10 included studies, 9 took place in the United States, whereas the remaining was conducted in the United Kingdom. One research article focused on bar-coding implementation in a pharmacy setting, whereas the other 9 focused on bar coding within patient care areas. All 10 studies showed overall positive effects associated with bar-coding implementation. The results of this review show that bar-coding technology may reduce medication errors in hospital settings, particularly on preventing targeted wrong dose, wrong drug, wrong patient, unauthorized drug, and wrong route errors.

  11. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.

    PubMed

    Kane, Nolan; Sveinsson, Saemundur; Dempewolf, Hannes; Yang, Ji Yong; Zhang, Dapeng; Engels, Johannes M M; Cronk, Quentin

    2012-02-01

    To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.

  12. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market.

    PubMed

    Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Mani, Daya N; Shukla, Ashutosh K; Tiwari, Rakesh; Sundaresan, Velusamy

    2016-01-01

    The past couple of decades have witnessed global resurgence of herbal-based health care. As a result, the trade of raw drugs has surged globally. Accurate and fast scientific identification of the plant(s) is the key to success for the herbal drug industry. The conventional approach is to engage an expert taxonomist, who uses a mix of traditional and modern techniques for precise plant identification. However, for bulk identification at industrial scale, the process is protracted and time-consuming. DNA barcoding, on the other hand, offers an alternative and feasible taxonomic tool box for rapid and robust species identification. For the success of DNA barcode, the barcode loci must have sufficient information to differentiate unambiguously between closely related plant species and discover new cryptic species. For herbal plant identification, matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA and 18S-rRNA have been used as successful DNA barcodes. Emerging advances in DNA barcoding coupled with next-generation sequencing and high-resolution melting curve analysis have paved the way for successful species-level resolution recovered from finished herbal products. Further, development of multilocus strategy and its application has provided new vistas to the DNA barcode-based plant identification for herbal drug industry. For successful and acceptable identification of herbal ingredients and a holistic quality control of the drug, DNA barcoding needs to work harmoniously with other components of the systems biology approach. We suggest that for effectively resolving authentication challenges associated with the herbal market, DNA barcoding must be used in conjunction with metabolomics along with need-based transcriptomics and proteomics. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Evaluation of the DNA barcodes in Dendrobium (Orchidaceae) from mainland Asia.

    PubMed

    Xu, Songzhi; Li, Dezhu; Li, Jianwu; Xiang, Xiaoguo; Jin, Weitao; Huang, Weichang; Jin, Xiaohua; Huang, Luqi

    2015-01-01

    DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.

  14. Evaluation of the DNA Barcodes in Dendrobium (Orchidaceae) from Mainland Asia

    PubMed Central

    Xu, Songzhi; Li, Dezhu; Li, Jianwu; Xiang, Xiaoguo; Jin, Weitao; Huang, Weichang; Jin, Xiaohua; Huang, Luqi

    2015-01-01

    DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera. PMID:25602282

  15. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan.

    PubMed

    Ashfaq, Muhammad; Akhtar, Saleem; Rafi, Muhammad Athar; Mansoor, Shahid; Hebert, Paul D N

    2017-01-01

    Sequences from the DNA barcode region of the mitochondrial COI gene are an effective tool for specimen identification and for the discovery of new species. The Barcode of Life Data Systems (BOLD) (www.boldsystems.org) currently hosts 4.5 million records from animals which have been assigned to more than 490,000 different Barcode Index Numbers (BINs), which serve as a proxy for species. Because a fourth of these BINs derive from Lepidoptera, BOLD has a strong capability to both identify specimens in this order and to support studies of faunal overlap. DNA barcode sequences were obtained from 4503 moths from 329 sites across Pakistan, specimens that represented 981 BINs from 52 families. Among 379 species with a Linnaean name assignment, all were represented by a single BIN excepting five species that showed a BIN split. Less than half (44%) of the 981 BINs had counterparts in other countries; the remaining BINs were unique to Pakistan. Another 218 BINs of Lepidoptera from Pakistan were coupled with the 981 from this study before being compared with all 116,768 BINs for this order. As expected, faunal overlap was highest with India (21%), Sri Lanka (21%), United Arab Emirates (20%) and with other Asian nations (2.1%), but it was very low with other continents including Africa (0.6%), Europe (1.3%), Australia (0.6%), Oceania (1.0%), North America (0.1%), and South America (0.1%). This study indicates the way in which DNA barcoding facilitates measures of faunal overlap even when taxa have not been assigned to a Linnean species.

  16. Identification of Species in Tripterygium (Celastraceae) Based on DNA Barcoding.

    PubMed

    Zhang, Xiaomei; Li, Na; Yao, Yuanyuan; Liang, Xuming; Qu, Xianyou; Liu, Xiang; Zhu, Yingjie; Yang, Dajian; Sun, Wei

    2016-11-01

    Species of genus Tripterygium (Celastraceae) have attracted much attention owing to their excellent effect on treating autoimmune and inflammatory diseases. However, due to high market demand causing overexploitation, natural populations of genus Tripterygium have rapidly declined. Tripterygium medicinal materials are mainly collected from the wild, making the quality of medicinal materials unstable. Additionally, identification of herbal materials from Tripterygium species and their adulterants is difficult based on morphological characters. Therefore, an accurate, convenient, and stability method is urgently needed. In this wok, we developed a DNA barcoding technique to distinguish T. wilfordii HOOK. f., T. hypoglaucum (LÉVL.) HUTCH, and T. regelii SPRAGUE et TAKEDA and their adulterants based on four uniform and standard DNA regions (internal transcribed spacer 2 (ITS2), matK, rbcL, and psbA-trnH). DNA was extracted from 26 locations of fresh leaves. Phylogenetic tree was constructed with Neighbor-Joining (NJ) method, while barcoding gap was analyzed to assess identification efficiency. Compared with the other DNA barcodes applied individually or in combination, ITS2+psbA-trnH was demonstrated as the optimal barcode. T. hypoglaucum and T. wilfordii can be considered as conspecific, while T. regelii was recognized as a separate species. Furthermore, identification of commercial Tripterygium samples was conducted using BLAST against GenBank and Species Identification System for Traditional Chinese Medicine. Our results indicated that DNA barcoding is a convenient, effective, and stability method to identify and distinguish Tripterygium and its adulterants, and could be applied as the quality control for Tripterygium medicinal preparations and monitoring of the medicinal herb trade in markets.

  17. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan

    PubMed Central

    Akhtar, Saleem; Rafi, Muhammad Athar; Mansoor, Shahid; Hebert, Paul D. N.

    2017-01-01

    Sequences from the DNA barcode region of the mitochondrial COI gene are an effective tool for specimen identification and for the discovery of new species. The Barcode of Life Data Systems (BOLD) (www.boldsystems.org) currently hosts 4.5 million records from animals which have been assigned to more than 490,000 different Barcode Index Numbers (BINs), which serve as a proxy for species. Because a fourth of these BINs derive from Lepidoptera, BOLD has a strong capability to both identify specimens in this order and to support studies of faunal overlap. DNA barcode sequences were obtained from 4503 moths from 329 sites across Pakistan, specimens that represented 981 BINs from 52 families. Among 379 species with a Linnaean name assignment, all were represented by a single BIN excepting five species that showed a BIN split. Less than half (44%) of the 981 BINs had counterparts in other countries; the remaining BINs were unique to Pakistan. Another 218 BINs of Lepidoptera from Pakistan were coupled with the 981 from this study before being compared with all 116,768 BINs for this order. As expected, faunal overlap was highest with India (21%), Sri Lanka (21%), United Arab Emirates (20%) and with other Asian nations (2.1%), but it was very low with other continents including Africa (0.6%), Europe (1.3%), Australia (0.6%), Oceania (1.0%), North America (0.1%), and South America (0.1%). This study indicates the way in which DNA barcoding facilitates measures of faunal overlap even when taxa have not been assigned to a Linnean species. PMID:28339501

  18. Design of 240,000 orthogonal 25mer DNA barcode probes.

    PubMed

    Xu, Qikai; Schlabach, Michael R; Hannon, Gregory J; Elledge, Stephen J

    2009-02-17

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications.

  19. Design of 240,000 orthogonal 25mer DNA barcode probes

    PubMed Central

    Xu, Qikai; Schlabach, Michael R.; Hannon, Gregory J.; Elledge, Stephen J.

    2009-01-01

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications. PMID:19171886

  20. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-02

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis.

  1. DNA barcoding insect–host plant associations

    PubMed Central

    Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M.; Petitpierre, Eduard; Gómez-Zurita, Jesús

    2008-01-01

    Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions. PMID:19004756

  2. Gold Nanoparticles-Based Barcode Analysis for Detection of Norepinephrine.

    PubMed

    An, Jeung Hee; Lee, Kwon-Jai; Choi, Jeong-Woo

    2016-02-01

    Nanotechnology-based bio-barcode amplification analysis offers an innovative approach for detecting neurotransmitters. We evaluated the efficacy of this method for detecting norepinephrine in normal and oxidative-stress damaged dopaminergic cells. Our approach use a combination of DNA barcodes and bead-based immunoassays for detecting neurotransmitters with surface-enhanced Raman spectroscopy (SERS), and provides polymerase chain reaction (PCR)-like sensitivity. This method relies on magnetic Dynabeads containing antibodies and nanoparticles that are loaded both with DNA barcords and with antibodies that can sandwich the target protein captured by the Dynabead-bound antibodies. The aggregate sandwich structures are magnetically separated from the solution and treated to remove the conjugated barcode DNA. The DNA barcodes are then identified by SERS and PCR analysis. The concentration of norepinephrine in dopaminergic cells can be readily detected using the bio-barcode assay, which is a rapid, high-throughput screening tool for detecting neurotransmitters.

  3. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  4. Infrared zone-scanning system.

    PubMed

    Belousov, Aleksandr; Popov, Gennady

    2006-03-20

    Challenges encountered in designing an infrared viewing optical system that uses a small linear detector array based on a zone-scanning approach are discussed. Scanning is performed by a rotating refractive polygon prism with tilted facets, which, along with high-speed line scanning, makes the scanning gear as simple as possible. A method of calculation of a practical optical system to compensate for aberrations during prism rotation is described.

  5. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe

    PubMed Central

    Dincă, Vlad; Zakharov, Evgeny V.; Hebert, Paul D. N.; Vila, Roger

    2011-01-01

    DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development. PMID:20702462

  6. DNA Barcode Goes Two-Dimensions: DNA QR Code Web Server

    PubMed Central

    Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, “DNA barcode” actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113

  7. DNA barcodes of the native ray-finned fishes in Taiwan.

    PubMed

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Han-Yang; Chiu, Yung-Chieh; Lee, Mao-Ying; Liu, Shih-Hui; Lin, Pai-Lei

    2017-07-01

    Species identification based on the DNA sequence of a fragment of the cytochrome c oxidase subunit I gene in the mitochondrial genome, DNA barcoding, is widely applied to assist in sustainable exploitation of fish resources and the protection of fish biodiversity. The aim of this study was to establish a reliable barcoding reference database of the native ray-finned fishes in Taiwan. A total of 2993 individuals, belonging to 1245 species within 637 genera, 184 families and 29 orders of ray-finned fishes and representing approximately 40% of the recorded ray-finned fishes in Taiwan, were PCR amplified at the barcode region and bidirectionally sequenced. The mean length of the 2993 barcodes is 549 bp. Mean congeneric K2P distance (15.24%) is approximately 10-fold higher than the mean conspecific one (1.51%), but approximately 1.4-fold less than the mean genetic distance between families (20.80%). The Barcode Index Number (BIN) discordance report shows that 2993 specimens represent 1275 BINs and, among them, 86 BINs are singletons, 570 BINs are taxonomically concordant, and the other 619 BINs are taxonomically discordant. Barcode gap analysis also revealed that more than 90% of the collected fishes in this study can be discriminated by DNA barcoding. Overall, the barcoding reference database established by this study reveals the need for taxonomic revisions and voucher specimen rechecks, in addition to assisting in the management of Taiwan's fish resources and diversity. © 2016 John Wiley & Sons Ltd.

  8. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-10-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submicrometre nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be decoded unambiguously using epifluorescence or total internal reflection fluorescence microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ˜40 nm. One species of the barcodes was used to tag yeast surface receptors, which suggests their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments.

  9. Detection of proteins using a colorimetric bio-barcode assay.

    PubMed

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  10. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes.

    PubMed

    Geiger, M F; Herder, F; Monaghan, M T; Almada, V; Barbieri, R; Bariche, M; Berrebi, P; Bohlen, J; Casal-Lopez, M; Delmastro, G B; Denys, G P J; Dettai, A; Doadrio, I; Kalogianni, E; Kärst, H; Kottelat, M; Kovačić, M; Laporte, M; Lorenzoni, M; Marčić, Z; Özuluğ, M; Perdices, A; Perea, S; Persat, H; Porcelotti, S; Puzzi, C; Robalo, J; Šanda, R; Schneider, M; Šlechtová, V; Stoumboudi, M; Walter, S; Freyhof, J

    2014-11-01

    Incomplete knowledge of biodiversity remains a stumbling block for conservation planning and even occurs within globally important Biodiversity Hotspots (BH). Although technical advances have boosted the power of molecular biodiversity assessments, the link between DNA sequences and species and the analytics to discriminate entities remain crucial. Here, we present an analysis of the first DNA barcode library for the freshwater fish fauna of the Mediterranean BH (526 spp.), with virtually complete species coverage (498 spp., 98% extant species). In order to build an identification system supporting conservation, we compared species determination by taxonomists to multiple clustering analyses of DNA barcodes for 3165 specimens. The congruence of barcode clusters with morphological determination was strongly dependent on the method of cluster delineation, but was highest with the general mixed Yule-coalescent (GMYC) model-based approach (83% of all species recovered as GMYC entity). Overall, genetic morphological discontinuities suggest the existence of up to 64 previously unrecognized candidate species. We found reduced identification accuracy when using the entire DNA-barcode database, compared with analyses on databases for individual river catchments. This scale effect has important implications for barcoding assessments and suggests that fairly simple identification pipelines provide sufficient resolution in local applications. We calculated Evolutionarily Distinct and Globally Endangered scores in order to identify candidate species for conservation priority and argue that the evolutionary content of barcode data can be used to detect priority species for future IUCN assessments. We show that large-scale barcoding inventories of complex biotas are feasible and contribute directly to the evaluation of conservation priorities. © 2014 John Wiley & Sons Ltd.

  11. DNA barcoding gap: reliable species identification over morphological and geographical scales.

    PubMed

    Čandek, Klemen; Kuntner, Matjaž

    2015-03-01

    The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a 'barcoding gap' by comparing intra- and interspecific means, medians and overlap in more than 75,000 computed Kimura 2-parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information. © 2014 John Wiley & Sons Ltd.

  12. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  13. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    PubMed

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  14. DNA Barcoding Investigations Bring Biology to Life

    ERIC Educational Resources Information Center

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  15. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos

    PubMed Central

    Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J.

    2011-01-01

    Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding

  16. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    PubMed

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  17. Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern.

    PubMed

    deWaard, Jeremy R; Mitchell, Andrew; Keena, Melody A; Gopurenko, David; Boykin, Laura M; Armstrong, Karen F; Pogue, Michael G; Lima, Joao; Floyd, Robin; Hanner, Robert H; Humble, Leland M

    2010-12-09

    Detecting and controlling the movements of invasive species, such as insect pests, relies upon rapid and accurate species identification in order to initiate containment procedures by the appropriate authorities. Many species in the tussock moth genus Lymantria are significant forestry pests, including the gypsy moth Lymantria dispar L., and consequently have been a focus for the development of molecular diagnostic tools to assist in identifying species and source populations. In this study we expand the taxonomic and geographic coverage of the DNA barcode reference library, and further test the utility of this diagnostic method, both for species/subspecies assignment and for determination of geographic provenance of populations. Cytochrome oxidase I (COI) barcodes were obtained from 518 individuals and 36 species of Lymantria, including sequences assembled and generated from previous studies, vouchered material in public collections, and intercepted specimens obtained from surveillance programs in Canada. A maximum likelihood tree was constructed, revealing high bootstrap support for 90% of species clusters. Bayesian species assignment was also tested, and resulted in correct assignment to species and subspecies in all instances. The performance of barcoding was also compared against the commonly employed NB restriction digest system (also based on COI); while the latter is informative for discriminating gypsy moth subspecies, COI barcode sequences provide greater resolution and generality by encompassing a greater number of haplotypes across all Lymantria species, none shared between species. This study demonstrates the efficacy of DNA barcodes for diagnosing species of Lymantria and reinforces the view that the approach is an under-utilized resource with substantial potential for biosecurity and surveillance. Biomonitoring agencies currently employing the NB restriction digest system would gather more information by transitioning to the use of DNA barcoding, a

  18. A flexible system to capture sample vials in a storage box - the box vial scanner.

    PubMed

    Nowakowski, Steven E; Kressin, Kenneth R; Deick, Steven D

    2009-01-01

    Tracking sample vials in a research environment is a critical task and doing so efficiently can have a large impact on productivity, especially in high volume laboratories. There are several challenges to automating the capture process, including the variety of containers used to store samples. We developed a fast and robust system to capture the location of sample vials being placed in storage that allows the laboratories the flexibility to use sample containers of varying dimensions. With a single scan, this device captures the box identifier, the vial identifier and the location of each vial within a freezer storage box. The sample vials are tracked through a barcode label affixed to the cap while the boxes are tracked by a barcode label on the side of the box. Scanning units are placed at the point of use and forward data to a sever application for processing the scanned data. Scanning units consist of an industrial barcode reader mounted in a fixture positioning the box for scanning and providing lighting during the scan. The server application transforms the scan data into a list of storage locations holding vial identifiers. The list is then transferred to the laboratory database. The box vial scanner captures the IDs and location information for an entire box of sample vials into the laboratory database in a single scan. The system accommodates a wide variety of vials sizes by inserting risers under the sample box and a variety of storage box layouts are supported via the processing algorithm on the server.

  19. DNA Barcodes for Forensically Important Fly Species in Brazil.

    PubMed

    Koroiva, Ricardo; de Souza, Mirian S; Roque, Fabio de Oliveira; Pepinelli, Mateus

    2018-04-07

    Here, we analyze 248 DNA barcode sequences of 35 fly species of forensic importance in Brazil. DNA barcoding can be effectively used for specimen identification of these species, allowing the unambiguous identification of 31 species, an overall success rate of 88%. Our results show a high rate of success for molecular identification using DNA barcoding sequences and open new perspectives for immature species identification, a subject on which limited forensic investigations exist in Tropical regions. We also address the implications of building a robust forensic DNA barcode database. A geographic bias is recognized for the COI dataset available for forensically important fly species in Brazil, with concentration of sequences from specimens collected mainly in sites located in the Cerrado, Mata Atlântica, and Pampa biomes.

  20. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  1. Evaluation of the efficacy of twelve mitochondrial protein-coding genes as barcodes for mollusk DNA barcoding.

    PubMed

    Yu, Hong; Kong, Lingfeng; Li, Qi

    2016-01-01

    In this study, we evaluated the efficacy of 12 mitochondrial protein-coding genes from 238 mitochondrial genomes of 140 molluscan species as potential DNA barcodes for mollusks. Three barcoding methods (distance, monophyly and character-based methods) were used in species identification. The species recovery rates based on genetic distances for the 12 genes ranged from 70.83 to 83.33%. There were no significant differences in intra- or interspecific variability among the 12 genes. The monophyly and character-based methods provided higher resolution than the distance-based method in species delimitation. Especially in closely related taxa, the character-based method showed some advantages. The results suggested that besides the standard COI barcode, other 11 mitochondrial protein-coding genes could also be potentially used as a molecular diagnostic for molluscan species discrimination. Our results also showed that the combination of mitochondrial genes did not enhance the efficacy for species identification and a single mitochondrial gene would be fully competent.

  2. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    PubMed Central

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID

  3. DNA barcoding the Canadian Arctic flora: core plastid barcodes (rbcL + matK) for 490 vascular plant species.

    PubMed

    Saarela, Jeffery M; Sokoloff, Paul C; Gillespie, Lynn J; Consaul, Laurie L; Bull, Roger D

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA-trnH, psbK-psbI, atpF-atpH) collected for a subset of Poa and Puccinellia species, only atpF-atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species.

  4. Factors Associated With Barcode Medication Administration Technology That Contribute to Patient Safety: An Integrative Review.

    PubMed

    Strudwick, Gillian; Reisdorfer, Emilene; Warnock, Caroline; Kalia, Kamini; Sulkers, Heather; Clark, Carrie; Booth, Richard

    In an effort to prevent medication errors, barcode medication administration technology has been implemented in many health care organizations. An integrative review was conducted to understand the effect of barcode medication administration technology on medication errors, and characteristics of use demonstrated by nurses contribute to medication safety. Addressing poor system use may support improved patient safety through the reduction of medication administration errors.

  5. Barcode medication administration work-arounds: a systematic review and implications for nurse executives.

    PubMed

    Voshall, Barbara; Piscotty, Ronald; Lawrence, Jeanette; Targosz, Mary

    2013-10-01

    Safe medication administration is necessary to ensure quality healthcare. Barcode medication administration systems were developed to reduce drug administration errors and the related costs and improve patient safety. Work-arounds created by nurses in the execution of the required processes can lead to unintended consequences, including errors. This article provides a systematic review of the literature associated with barcoded medication administration and work-arounds and suggests interventions that should be adopted by nurse executives to ensure medication safety.

  6. Managing Archival Collections in an Automated Environment: The Joys of Barcoding

    ERIC Educational Resources Information Center

    Hamburger, Susan; Charles, Jane Veronica

    2006-01-01

    In a desire for automated collection control, archival repositories are adopting barcoding from their library and records center colleagues. This article discusses the planning, design, and implementation phases of barcoding. The authors focus on reasons for barcoding, security benefits, in-room circulation tracking, potential for gathering…

  7. The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding: a case in Lachininae.

    PubMed

    Chen, Rui; Jiang, Li-Yun; Qiao, Ge-Xia

    2012-01-01

    The mitochondrial gene COI has been widely used by taxonomists as a standard DNA barcode sequence for the identification of many animal species. However, the COI region is of limited use for identifying certain species and is not efficiently amplified by PCR in all animal taxa. To evaluate the utility of COI as a DNA barcode and to identify other barcode genes, we chose the aphid subfamily Lachninae (Hemiptera: Aphididae) as the focus of our study. We compared the results obtained using COI with two other mitochondrial genes, COII and Cytb. In addition, we propose a new method to improve the efficiency of species identification using DNA barcoding. Three mitochondrial genes (COI, COII and Cytb) were sequenced and were used in the identification of over 80 species of Lachninae. The COI and COII genes demonstrated a greater PCR amplification efficiency than Cytb. Species identification using COII sequences had a higher frequency of success (96.9% in "best match" and 90.8% in "best close match") and yielded lower intra- and higher interspecific genetic divergence values than the other two markers. The use of "tag barcodes" is a new approach that involves attaching a species-specific tag to the standard DNA barcode. With this method, the "barcoding overlap" can be nearly eliminated. As a result, we were able to increase the identification success rate from 83.9% to 95.2% by using COI and the "best close match" technique. A COII-based identification system should be more effective in identifying lachnine species than COI or Cytb. However, the Cytb gene is an effective marker for the study of aphid population genetics due to its high sequence diversity. Furthermore, the use of "tag barcodes" can improve the accuracy of DNA barcoding identification by reducing or removing the overlap between intra- and inter-specific genetic divergence values.

  8. Identification of processed Chinese medicinal materials using DNA mini-barcoding.

    PubMed

    Song, Ming; Dong, Gang-Qiang; Zhang, Ya-Qin; Liu, Xia; Sun, Wei

    2017-07-01

    Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psbA-trnH, rbcL, matK, trnL (UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL (UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%-20% of the processed samples, while the amplification rates of the trnL (UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL (UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species.

    PubMed

    Yu, Min; Jiao, Lichao; Guo, Juan; Wiedenhoeft, Alex C; He, Tuo; Jiang, Xiaomei; Yin, Yafang

    2017-12-01

    ITS2+ trnH - psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens. The increase in illegal logging and timber trade of CITES-listed tropical species necessitates the development of unambiguous identification methods at the species level. For these methods to be fully functional and deployable for law enforcement, they must work using wood or wood products. DNA barcoding of wood has been promoted as a promising tool for species identification; however, the main barrier to extensive application of DNA barcoding to wood is the lack of a comprehensive and reliable DNA reference library of barcodes from wood. In this study, xylarium wood specimens of nine Dalbergia species were selected from the Wood Collection of the Chinese Academy of Forestry and DNA was then extracted from them for further PCR amplification of eight potential DNA barcode sequences (ITS2, matK, trnL, trnH-psbA, trnV-trnM1, trnV-trnM2, trnC-petN, and trnS-trnG). The barcodes were tested singly and in combination for species-level discrimination ability by tree-based [neighbor-joining (NJ)] and distance-based (TaxonDNA) methods. We found that the discrimination ability of DNA barcodes in combination was higher than any single DNA marker among the Dalbergia species studied, with the best two-marker combination of ITS2+trnH-psbA analyzed with NJ trees performing the best (100% accuracy). These barcodes are relatively short regions (<350 bp) and amplification reactions were performed with high success (≥90%) using wood as the source material, a necessary factor to apply DNA barcoding to timber trade. The present results demonstrate the feasibility of using vouchered xylarium specimens to build DNA barcoding reference databases.

  10. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  11. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions.

    PubMed

    Raupach, Michael J; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.

  12. Sub-micrometer Geometrically Encoded Fluorescent Barcodes Self-Assembled from DNA

    PubMed Central

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-01-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here we use DNA-origami technology to construct sub-micrometer nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be unambiguously decoded using epifluorescence or total internal reflection fluorescence (TIRF) microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ~40 nm. One species of the barcodes was used to tag yeast surface receptors, suggesting their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments. PMID:23000997

  13. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  14. Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining1

    PubMed Central

    Behbehani, Gregory K.; Thom, Colin; Zunder, Eli R.; Finck, Rachel; Gaudilliere, Brice; Fragiadakis, Gabriela K.; Fantl, Wendy J.; Nolan, Garry P.

    2015-01-01

    Fluorescent cellular barcoding and mass-tag cellular barcoding are cytometric methods that enable high sample throughput, minimize inter-sample variation, and reduce reagent consumption. Previously employed barcoding protocols require that barcoding be performed after surface marker staining, complicating combining the technique with measurement of alcohol-sensitive surface epitopes. This report describes a method of barcoding fixed cells after a transient partial permeabilization with 0.02% saponin that results in efficient and consistent barcode staining with fluorescent or mass-tagged reagents while preserving surface marker staining. This approach simplifies barcoding protocols and allows direct comparison of surface marker staining of multiple samples without concern for variations in the antibody cocktail volume, antigen-antibody ratio, or machine sensitivity. Using this protocol, cellular barcoding can be used to reliably detect subtle differences in surface marker expression. PMID:25274027

  15. With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast

    PubMed Central

    Borges, Luísa M. S.; Hollatz, Claudia; Lobo, Jorge; Cunha, Ana M.; Vilela, Ana P.; Calado, Gonçalo; Coelho, Rita; Costa, Ana C.; Ferreira, Maria S. G.; Costa, Maria H.; Costa, Filipe O.

    2016-01-01

    The Gastropoda is one of the best studied classes of marine invertebrates. Yet, most species have been delimited based on morphology only. The application of DNA barcodes has shown to be greatly useful to help delimiting species. Therefore, sequences of the cytochrome c oxidase I gene from 108 specimens of 34 morpho-species were used to investigate the molecular diversity within the gastropods from the Portuguese coast. To the above dataset, we added available COI-5P sequences of taxonomically close species, in a total of 58 morpho-species examined. There was a good match between ours and sequences from independent studies, in public repositories. We found 32 concordant (91.4%) out of the 35 Barcode Index Numbers (BINs) generated from our sequences. The application of a ranking system to the barcodes yield over 70% with top taxonomic congruence, while 14.2% of the species barcodes had insufficient data. In the majority of the cases, there was a good concordance between morphological identification and DNA barcodes. Nonetheless, the discordance between morphological and molecular data is a reminder that even the comparatively well-known European marine gastropods can benefit from being probed using the DNA barcode approach. Discordant cases should be reviewed with more integrative studies. PMID:26876495

  16. With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast.

    PubMed

    Borges, Luísa M S; Hollatz, Claudia; Lobo, Jorge; Cunha, Ana M; Vilela, Ana P; Calado, Gonçalo; Coelho, Rita; Costa, Ana C; Ferreira, Maria S G; Costa, Maria H; Costa, Filipe O

    2016-02-15

    The Gastropoda is one of the best studied classes of marine invertebrates. Yet, most species have been delimited based on morphology only. The application of DNA barcodes has shown to be greatly useful to help delimiting species. Therefore, sequences of the cytochrome c oxidase I gene from 108 specimens of 34 morpho-species were used to investigate the molecular diversity within the gastropods from the Portuguese coast. To the above dataset, we added available COI-5P sequences of taxonomically close species, in a total of 58 morpho-species examined. There was a good match between ours and sequences from independent studies, in public repositories. We found 32 concordant (91.4%) out of the 35 Barcode Index Numbers (BINs) generated from our sequences. The application of a ranking system to the barcodes yield over 70% with top taxonomic congruence, while 14.2% of the species barcodes had insufficient data. In the majority of the cases, there was a good concordance between morphological identification and DNA barcodes. Nonetheless, the discordance between morphological and molecular data is a reminder that even the comparatively well-known European marine gastropods can benefit from being probed using the DNA barcode approach. Discordant cases should be reviewed with more integrative studies.

  17. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton.

    PubMed

    Elías-Gutiérrez, Manuel; Valdez-Moreno, Martha; Topan, Janet; Young, Monica R; Cohuo-Colli, José Angel

    2018-03-01

    Currently, freshwater zooplankton sampling and identification methodologies have remained virtually unchanged since they were first established in the beginning of the XX century. One major contributing factor to this slow progress is the limited success of modern genetic methodologies, such as DNA barcoding, in several of the main groups. This study demonstrates improved protocols which enable the rapid assessment of most animal taxa inhabiting any freshwater system by combining the use of light traps, careful fixation at low temperatures using ethanol, and zooplankton-specific primers. We DNA-barcoded 2,136 specimens from a diverse array of taxonomic assemblages (rotifers, mollusks, mites, crustaceans, insects, and fishes) from several Canadian and Mexican lakes with an average sequence success rate of 85.3%. In total, 325 Barcode Index Numbers (BINs) were detected with only three BINs (two cladocerans and one copepod) shared between Canada and Mexico, suggesting a much narrower distribution range of freshwater zooplankton than previously thought. This study is the first to broadly explore the metazoan biodiversity of freshwater systems with DNA barcodes to construct a reference library that represents the first step for future programs which aim to monitor ecosystem health, track invasive species, or improve knowledge of the ecology and distribution of freshwater zooplankton.

  18. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    PubMed

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate

  19. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    PubMed Central

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to

  20. Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries.

    PubMed

    Trebitz, Anett S; Hoffman, Joel C; Grant, George W; Billehus, Tyler M; Pilgrim, Erik M

    2015-07-22

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to bioassessment and non-native species monitoring. The ability to assign species identities to DNA sequences found depends on the availability of comprehensive DNA reference libraries. Here, we compile inventories for aquatic metazoans extant in or threatening to invade the Laurentian Great Lakes and examine the availability of reference mitochondrial COI DNA sequences (barcodes) in the Barcode of Life Data System for them. We found barcode libraries largely complete for extant and threatening-to-invade vertebrates (100% of reptile, 99% of fish, and 92% of amphibian species had barcodes). In contrast, barcode libraries remain poorly developed for precisely those organisms where morphological identification is most challenging; 46% of extant invertebrates lacked reference barcodes with rates especially high among rotifers, oligochaetes, and mites. Lack of species-level identification for many aquatic invertebrates also is a barrier to matching DNA sequences with physical specimens. Attaining the potential for DNA-based identification of mixed-organism samples covering the breadth of aquatic fauna requires a concerted effort to build supporting barcode libraries and voucher collections.

  1. Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries

    NASA Astrophysics Data System (ADS)

    Trebitz, Anett S.; Hoffman, Joel C.; Grant, George W.; Billehus, Tyler M.; Pilgrim, Erik M.

    2015-07-01

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to bioassessment and non-native species monitoring. The ability to assign species identities to DNA sequences found depends on the availability of comprehensive DNA reference libraries. Here, we compile inventories for aquatic metazoans extant in or threatening to invade the Laurentian Great Lakes and examine the availability of reference mitochondrial COI DNA sequences (barcodes) in the Barcode of Life Data System for them. We found barcode libraries largely complete for extant and threatening-to-invade vertebrates (100% of reptile, 99% of fish, and 92% of amphibian species had barcodes). In contrast, barcode libraries remain poorly developed for precisely those organisms where morphological identification is most challenging; 46% of extant invertebrates lacked reference barcodes with rates especially high among rotifers, oligochaetes, and mites. Lack of species-level identification for many aquatic invertebrates also is a barrier to matching DNA sequences with physical specimens. Attaining the potential for DNA-based identification of mixed-organism samples covering the breadth of aquatic fauna requires a concerted effort to build supporting barcode libraries and voucher collections.

  2. DNA barcoding the native flowering plants and conifers of Wales.

    PubMed

    de Vere, Natasha; Rich, Tim C G; Ford, Col R; Trinder, Sarah A; Long, Charlotte; Moore, Chris W; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  3. DNA Barcoding the Native Flowering Plants and Conifers of Wales

    PubMed Central

    de Vere, Natasha; Rich, Tim C. G.; Ford, Col R.; Trinder, Sarah A.; Long, Charlotte; Moore, Chris W.; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J.

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification. PMID:22701588

  4. Patterns of DNA barcode variation in Canadian marine molluscs.

    PubMed

    Layton, Kara K S; Martel, André L; Hebert, Paul D N

    2014-01-01

    Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%), and showed a significant positive correlation with nearest neighbour distances. DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.

  5. Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses.

    PubMed

    Smith, M Alex; Eveleigh, Eldon S; McCann, Kevin S; Merilo, Mark T; McCarthy, Peter C; Van Rooyen, Kathleen I

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana--SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD)--the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the "bird feeder effect") and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm

  6. Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses

    PubMed Central

    Smith, M. Alex; Eveleigh, Eldon S.; McCann, Kevin S.; Merilo, Mark T.; McCarthy, Peter C.; Van Rooyen, Kathleen I.

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future

  7. Increasing global participation in genetics research through DNA barcoding.

    PubMed

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.

  8. Research on Optimization of Encoding Algorithm of PDF417 Barcodes

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Fu, Longsheng; Han, Shuqing

    The purpose of this research is to develop software to optimize the data compression of a PDF417 barcode using VC++6.0. According to the different compression mode and the particularities of Chinese, the relevant approaches which optimize the encoding algorithm of data compression such as spillage and the Chinese characters encoding are proposed, a simple approach to compute complex polynomial is introduced. After the whole data compression is finished, the number of the codeword is reduced and then the encoding algorithm is optimized. The developed encoding system of PDF 417 barcodes will be applied in the logistics management of fruits, therefore also will promote the fast development of the two-dimensional bar codes.

  9. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, James R; Kuhn, Michael J; Gradle, Colleen

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integratedmore » into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.« less

  10. DNA barcode identification of Podocarpaceae--the second largest conifer family.

    PubMed

    Little, Damon P; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B 30 = 0.596-0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p-distance > minimum interspecific p-distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27).

  11. [Nurses' Innovation Acceptance of Barcode Technology].

    PubMed

    Cheng, Hui-Ping; Lee, Ting-Ting; Liu, Chieh-Yu; Hou, I-Ching

    2016-04-01

    Healthcare organizations have increasingly adopted barcode technology to improve care quality and work efficiency. Barcode technology is simple to use, so it is frequently used in patient identification, medication administration, and specimen collection processes. This study used a technology acceptance model and innovation diffusion theory to explore the innovation acceptance of barcode technology by nurses. The data were collected using a structured questionnaire with open-ended questions that was based on the technology acceptance model and innovation diffusion theory. The questionnaire was distributed to and collected from 200 nurses from March to May 2014. Data on laboratory reporting times and specimen rejection rates were collected as well. Variables that were found to have a significant relationship (p<.001) with innovation acceptance included (in order of importance): perceived usefulness (r=.722), perceived ease of use (r=.720), observability (r=.579), compatibility (r=.364), and trialability (r=.344). N-level nurses demonstrated higher acceptance than their N1 and N2 level peers (F=3.95, p<.05). Further, the mean laboratory reporting time decreased 109 minutes (t=10.03, p<.05) and the mean specimen rejection rate decreased from 2.18% to 0.28%. The results revealed that barcode technology has been accepted by nurses and that this technology effectively decreases both laboratory reporting times and specimen rejection rates. However, network speed and workflow should be further improved in order to benefit clinical practice.

  12. DNA barcoding in the media: does coverage of cool science reflect its social context?

    PubMed

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  13. A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    PubMed Central

    Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton; Phillips, Iain; Hebert, Paul D. N.

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species. PMID:22666447

  14. DNA barcode authentication of saw palmetto herbal dietary supplements.

    PubMed

    Little, Damon P; Jeanson, Marc L

    2013-12-17

    Herbal dietary supplements made from saw palmetto (Serenoa repens; Arecaceae) fruit are commonly consumed to ameliorate benign prostate hyperplasia. A novel DNA mini-barcode assay to accurately identify [specificity = 1.00 (95% confidence interval = 0.74-1.00); sensitivity = 1.00 (95% confidence interval = 0.66-1.00); n = 31] saw palmetto dietary supplements was designed from a DNA barcode reference library created for this purpose. The mini-barcodes were used to estimate the frequency of mislabeled saw palmetto herbal dietary supplements on the market in the United States of America. Of the 37 supplements examined, amplifiable DNA could be extracted from 34 (92%). Mini-barcode analysis of these supplements demonstrated that 29 (85%) contain saw palmetto and that 2 (6%) supplements contain related species that cannot be legally sold as herbal dietary supplements in the United States of America. The identity of 3 (9%) supplements could not be conclusively determined.

  15. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections.

    PubMed

    Chambers, E Anne; Hebert, Paul D N

    2016-01-01

    High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale.

  16. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections

    PubMed Central

    Chambers, E. Anne; Hebert, Paul D. N.

    2016-01-01

    Background High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. Methodology/Principal Findings This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. Conclusions/Significance This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna

  17. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  18. Motor racing, tobacco company sponsorship, barcodes and alibi marketing.

    PubMed

    Grant-Braham, Bruce; Britton, John

    2012-11-01

    Sponsorship of Formula One (F1) motor racing, which has been used as an indirect medium of tobacco advertising for several decades, was prohibited by the 2005 European Union Tobacco Advertising Directive. Most F1 tobacco sponsorship of motor racing in the EU has since ceased, with the exception of the Scuderia Ferrari team, which continues to be funded by Philip Morris. In 2007, the Marlboro logo on Ferrari cars and other race regalia was replaced by an evolving 'barcode' design, which Ferrari later claimed was part of the livery of the car, and not a Marlboro advertisement. To determine whether the 'barcode' graphics used by Ferrari represent 'alibi' Marlboro advertising. Academic and grey literature, and online tobacco industry document archives, were searched using terms relevant to tobacco marketing and motorsport. Tobacco sponsorship of F1 motor racing began in 1968, and Philip Morris has sponsored F1 teams since 1972. Phillip Morris first used a 'barcode' design, comprising red vertical parallel lines below the word Marlboro on the British Racing Motors F1 car in 1972. Vertical or horizontal 'barcode' designs have been used in this way, latterly without the word Marlboro, ever since. The modern 'barcode' logos occupied the same position on cars and drivers' clothing as conventional Marlboro logos in the past. The shared use of red colour by Marlboro and Ferrari is also recognised by Philip Morris as a means of promoting brand association between Marlboro and Ferrari. The Ferrari 'barcode' designs are alibi Marlboro logos and hence constitute advertising prohibited by the 2005 EU Tobacco Advertising Directive.

  19. The unholy trinity: taxonomy, species delimitation and DNA barcoding

    PubMed Central

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-01-01

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this ‘DNA barcoding’ initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the ‘DNA barcoding’ initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the ‘DNA barcoding’ initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings—Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of ‘DNA barcoding’. PMID:16214748

  20. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine.

    PubMed

    Vassou, Sophie Lorraine; Nithaniyal, Stalin; Raju, Balaji; Parani, Madasamy

    2016-07-18

    Ayurveda is a system of traditional medicine that originated in ancient India, and it is still in practice. Medicinal plants are the backbone of Ayurveda, which heavily relies on the plant-derived therapeutics. While Ayurveda is becoming more popular in several countries throughout the World, lack of authenticated medicinal plant raw drugs is a growing concern. Our aim was to DNA barcode the medicinal plants that are listed in the Ayurvedic Pharmacopoeia of India (API) to create a reference DNA barcode library, and to use the same to authenticate the raw drugs that are sold in markets. We have DNA barcoded 347 medicinal plants using rbcL marker, and curated rbcL DNA barcodes for 27 medicinal plants from public databases. These sequences were used to create Ayurvedic Pharmacopoeia of India - Reference DNA Barcode Library (API-RDBL). This library was used to authenticate 100 medicinal plant raw drugs, which were in the form of powders (82) and seeds (18). Ayurvedic Pharmacopoeia of India - Reference DNA Barcode Library (API-RDBL) was created with high quality and authentic rbcL barcodes for 374 out of the 395 medicinal plants that are included in the API. The rbcL DNA barcode differentiated 319 species (85 %) with the pairwise divergence ranging between 0.2 and 29.9 %. PCR amplification and DNA sequencing success rate of rbcL marker was 100 % even for the poorly preserved medicinal plant raw drugs that were collected from local markets. DNA barcoding revealed that only 79 % raw drugs were authentic, and the remaining 21 % samples were adulterated. Further, adulteration was found to be much higher with powders (ca. 25 %) when compared to seeds (ca. 5 %). The present study demonstrated the utility of DNA barcoding in authenticating medicinal plant raw drugs, and found that approximately one fifth of the market samples were adulterated. Powdered raw drugs, which are very difficult to be identified by taxonomists as well as common people, seem to be the easy

  1. Probing planetary biodiversity with DNA barcodes: The Noctuoidea of North America

    PubMed Central

    Lafontaine, J. Donald; Schmidt, B. Christian; deWaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    This study reports the assembly of a DNA barcode reference library for species in the lepidopteran superfamily Noctuoidea from Canada and the USA. Based on the analysis of 69,378 specimens, the library provides coverage for 97.3% of the noctuoid fauna (3565 of 3664 species). In addition to verifying the strong performance of DNA barcodes in the discrimination of these species, the results indicate close congruence between the number of species analyzed (3565) and the number of sequence clusters (3816) recognized by the Barcode Index Number (BIN) system. Distributional patterns across 12 North American ecoregions are examined for the 3251 species that have GPS data while BIN analysis is used to quantify overlap between the noctuoid faunas of North America and other zoogeographic regions. This analysis reveals that 90% of North American noctuoids are endemic and that just 7.5% and 1.8% of BINs are shared with the Neotropics and with the Palearctic, respectively. One third (29) of the latter species are recent introductions and, as expected, they possess low intraspecific divergences. PMID:28570635

  2. How Many Loci Does it Take to DNA Barcode a Crocus?

    PubMed Central

    Seberg, Ole; Petersen, Gitte

    2009-01-01

    Background DNA barcoding promises to revolutionize the way taxonomists work, facilitating species identification by using small, standardized portions of the genome as substitutes for morphology. The concept has gained considerable momentum in many animal groups, but the higher plant world has been largely recalcitrant to the effort. In plants, efforts are concentrated on various regions of the plastid genome, but no agreement exists as to what kinds of regions are ideal, though most researchers agree that more than one region is necessary. One reason for this discrepancy is differences in the tests that are used to evaluate the performance of the proposed regions. Most tests have been made in a floristic setting, where the genetic distance and therefore the level of variation of the regions between taxa is large, or in a limited set of congeneric species. Methodology and Principal Findings Here we present the first in-depth coverage of a large taxonomic group, all 86 known species (except two doubtful ones) of crocus. Even six average-sized barcode regions do not identify all crocus species. This is currently an unrealistic burden in a barcode context. Whereas most proposed regions work well in a floristic context, the majority will – as is the case in crocus – undoubtedly be less efficient in a taxonomic setting. However, a reasonable but less than perfect level of identification may be reached – even in a taxonomic context. Conclusions/Significance The time is ripe for selecting barcode regions in plants, and for prudent examination of their utility. Thus, there is no reason for the plant community to hold back the barcoding effort by continued search for the Holy Grail. We must acknowledge that an emerging system will be far from perfect, fraught with problems and work best in a floristic setting. PMID:19240801

  3. How many loci does it take to DNA barcode a crocus?

    PubMed

    Seberg, Ole; Petersen, Gitte

    2009-01-01

    DNA barcoding promises to revolutionize the way taxonomists work, facilitating species identification by using small, standardized portions of the genome as substitutes for morphology. The concept has gained considerable momentum in many animal groups, but the higher plant world has been largely recalcitrant to the effort. In plants, efforts are concentrated on various regions of the plastid genome, but no agreement exists as to what kinds of regions are ideal, though most researchers agree that more than one region is necessary. One reason for this discrepancy is differences in the tests that are used to evaluate the performance of the proposed regions. Most tests have been made in a floristic setting, where the genetic distance and therefore the level of variation of the regions between taxa is large, or in a limited set of congeneric species. Here we present the first in-depth coverage of a large taxonomic group, all 86 known species (except two doubtful ones) of crocus. Even six average-sized barcode regions do not identify all crocus species. This is currently an unrealistic burden in a barcode context. Whereas most proposed regions work well in a floristic context, the majority will--as is the case in crocus--undoubtedly be less efficient in a taxonomic setting. However, a reasonable but less than perfect level of identification may be reached--even in a taxonomic context. The time is ripe for selecting barcode regions in plants, and for prudent examination of their utility. Thus, there is no reason for the plant community to hold back the barcoding effort by continued search for the Holy Grail. We must acknowledge that an emerging system will be far from perfect, fraught with problems and work best in a floristic setting.

  4. Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).

    PubMed

    Yang, Jun-Bo; Wang, Yi-Ping; Möller, Michael; Gao, Lian-Ming; Wu, Ding

    2012-03-01

    DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia. © 2011 Blackwell Publishing Ltd.

  5. DNA Barcode Identification of Podocarpaceae—The Second Largest Conifer Family

    PubMed Central

    Little, Damon P.; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B 30 = 0.596–0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p–distance > minimum interspecific p–distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27). PMID:24312258

  6. Reliable DNA Barcoding Performance Proved for Species and Island Populations of Comoran Squamate Reptiles

    PubMed Central

    Hawlitschek, Oliver; Nagy, Zoltán T.; Berger, Johannes; Glaw, Frank

    2013-01-01

    In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research. PMID:24069192

  7. Direct Identification of On-Bead Peptides Using Surface-Enhanced Raman Spectroscopic Barcoding System for High-Throughput Bioanalysis

    PubMed Central

    Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik

    2015-01-01

    Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery. PMID:26017924

  8. Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis.

    PubMed

    Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik

    2015-05-28

    Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery.

  9. DNA Barcode Authentication of Saw Palmetto Herbal Dietary Supplements

    PubMed Central

    Little, Damon P.; Jeanson, Marc L.

    2013-01-01

    Herbal dietary supplements made from saw palmetto (Serenoa repens; Arecaceae) fruit are commonly consumed to ameliorate benign prostate hyperplasia. A novel DNA mini–barcode assay to accurately identify [specificity = 1.00 (95% confidence interval = 0.74–1.00); sensitivity = 1.00 (95% confidence interval = 0.66–1.00); n = 31] saw palmetto dietary supplements was designed from a DNA barcode reference library created for this purpose. The mini–barcodes were used to estimate the frequency of mislabeled saw palmetto herbal dietary supplements on the market in the United States of America. Of the 37 supplements examined, amplifiable DNA could be extracted from 34 (92%). Mini–barcode analysis of these supplements demonstrated that 29 (85%) contain saw palmetto and that 2 (6%) supplements contain related species that cannot be legally sold as herbal dietary supplements in the United States of America. The identity of 3 (9%) supplements could not be conclusively determined. PMID:24343362

  10. DNA barcodes identify Central Asian Colias butterflies (Lepidoptera, Pieridae).

    PubMed

    Laiho, Juha; Ståhls, Gunilla

    2013-12-30

    A majority of the known Colias species (Lepidoptera: Pieridae, Coliadinae) occur in the mountainous regions of Central-Asia, vast areas that are hard to access, rendering the knowledge of many species limited due to the lack of extensive sampling. Two gene regions, the mitochondrial COI 'barcode' region and the nuclear ribosomal protein RpS2 gene region were used for exploring the utility of these DNA markers for species identification. A comprehensive sampling of COI barcodes for Central Asian Colias butterflies showed that the barcodes facilitated identification of most of the included species. Phylogenetic reconstruction based on parsimony and Neighbour-Joining recovered most species as monophyletic entities. For the RpS2 gene region species-specific sequences were registered for some of the included Colias spp. Nevertheless, this gene region was not deemed useful as additional molecular 'barcode'. A parsimony analysis of the combined COI and RpS2 data did not support the current subgeneric classification based on morphological characteristics.

  11. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  12. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  13. Fluorescent Cell Barcoding for Multiplex Flow Cytometry

    PubMed Central

    Krutzik, Peter O.; Clutter, Matthew R.; Trejo, Angelica; Nolan, Garry P.

    2011-01-01

    Fluorescent Cell Barcoding (FCB) enables high throughput, i.e. high content flow cytometry by multiplexing samples prior to staining and acquisition on the cytometer. Individual cell samples are barcoded, or labeled, with unique signatures of fluorescent dyes so that they can be mixed together, stained, and analyzed as a single sample. By mixing samples prior to staining, antibody consumption is typically reduced 10 to 100-fold. In addition, data robustness is increased through the combination of control and treated samples, which minimizes pipetting error, staining variation, and the need for normalization. Finally, speed of acquisition is enhanced, enabling large profiling experiments to be run with standard cytometer hardware. In this unit, we outline the steps necessary to apply the FCB method to cell lines as well as primary peripheral blood samples. Important technical considerations such as choice of barcoding dyes, concentrations, labeling buffers, compensation, and software analysis are discussed. PMID:21207359

  14. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria.

    PubMed

    Santamaria, Monica; Vicario, Saverio; Pappadà, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-06-16

    A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode

  15. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication

    PubMed Central

    Raclariu, Ancuta Cristina; Heinrich, Michael; Ichim, Mihael Cristin

    2017-01-01

    Abstract Introduction Herbal medicines play an important role globally in the health care sector and in industrialised countries they are often considered as an alternative to mono‐substance medicines. Current quality and authentication assessment methods rely mainly on morphology and analytical phytochemistry‐based methods detailed in pharmacopoeias. Herbal products however are often highly processed with numerous ingredients, and even if these analytical methods are accurate for quality control of specific lead or marker compounds, they are of limited suitability for the authentication of biological ingredients. Objective To review the benefits and limitations of DNA barcoding and metabarcoding in complementing current herbal product authentication. Method Recent literature relating to DNA based authentication of medicinal plants, herbal medicines and products are summarised to provide a basic understanding of how DNA barcoding and metabarcoding can be applied to this field. Results Different methods of quality control and authentication have varying resolution and usefulness along the value chain of these products. DNA barcoding can be used for authenticating products based on single herbal ingredients and DNA metabarcoding for assessment of species diversity in processed products, and both methods should be used in combination with appropriate hyphenated chemical methods for quality control. Conclusions DNA barcoding and metabarcoding have potential in the context of quality control of both well and poorly regulated supply systems. Standardisation of protocols for DNA barcoding and DNA sequence‐based identification are necessary before DNA‐based biological methods can be implemented as routine analytical approaches and approved by the competent authorities for use in regulated procedures. © 2017 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd. PMID:28906059

  16. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication.

    PubMed

    Raclariu, Ancuta Cristina; Heinrich, Michael; Ichim, Mihael Cristin; de Boer, Hugo

    2018-03-01

    Herbal medicines play an important role globally in the health care sector and in industrialised countries they are often considered as an alternative to mono-substance medicines. Current quality and authentication assessment methods rely mainly on morphology and analytical phytochemistry-based methods detailed in pharmacopoeias. Herbal products however are often highly processed with numerous ingredients, and even if these analytical methods are accurate for quality control of specific lead or marker compounds, they are of limited suitability for the authentication of biological ingredients. To review the benefits and limitations of DNA barcoding and metabarcoding in complementing current herbal product authentication. Recent literature relating to DNA based authentication of medicinal plants, herbal medicines and products are summarised to provide a basic understanding of how DNA barcoding and metabarcoding can be applied to this field. Different methods of quality control and authentication have varying resolution and usefulness along the value chain of these products. DNA barcoding can be used for authenticating products based on single herbal ingredients and DNA metabarcoding for assessment of species diversity in processed products, and both methods should be used in combination with appropriate hyphenated chemical methods for quality control. DNA barcoding and metabarcoding have potential in the context of quality control of both well and poorly regulated supply systems. Standardisation of protocols for DNA barcoding and DNA sequence-based identification are necessary before DNA-based biological methods can be implemented as routine analytical approaches and approved by the competent authorities for use in regulated procedures. © 2017 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd. © 2017 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd.

  17. Species-specific identification from incomplete sampling: applying DNA barcodes to monitoring invasive solanum plants.

    PubMed

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling-through this, DNA barcoding will greatly benefit the current fields of its application.

  18. DNA Barcoding and PBL in an Australian Postsecondary College

    ERIC Educational Resources Information Center

    Cross, Joseph; Garard, Helen; Currie, Tina

    2018-01-01

    DNA barcoding is increasingly being introduced into biological science educational curricula worldwide. The technique has a number of features that make it ideal for science curricula and particularly for Project-Based Learning (PBL). This report outlines the development of a DNA barcoding project in an Australian TAFE college, which also combined…

  19. Linking Project Procedure Manual for Using Dumb-Barcode Linking on GEAC.

    ERIC Educational Resources Information Center

    Condron, Lyn

    This procedure manual is designed to assist cataloging staff members at a university library through the 10-step process of barcoding and linking books classified by the Library of Congress system to the library's GEAC online computer system. A brief introduction provides background information on the project. The procedures involved in each…

  20. Imaging-based molecular barcoding with pixelated dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice

    2018-06-01

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

  1. Design of character-based DNA barcode motif for species identification: A computational approach and its validation in fishes.

    PubMed

    Chakraborty, Mohua; Dhar, Bishal; Ghosh, Sankar Kumar

    2017-11-01

    The DNA barcodes are generally interpreted using distance-based and character-based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance-based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character-based approach more accurately defines this using a unique set of nucleotide characters. The character-based analysis of full-length barcode has some inherent limitations, like sequencing of the full-length barcode, use of a sparse-data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154-bp fragment, from the transversion-rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species-specific barcode motifs for 109 species by the character-based method, which successfully identifies the correct species using a pattern-matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species-specific mini-barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini-barcode approach will greatly benefit the field-based system of rapid species identification. © 2017 John Wiley & Sons Ltd.

  2. Attractor Structures of Signaling Networks: Consequences of Different Conformational Barcode Dynamics and Their Relations to Network-Based Drug Design.

    PubMed

    Szalay, Kristóf Z; Nussinov, Ruth; Csermely, Peter

    2014-06-01

    Conformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones. This leads to increased plasticity of signaling and cellular networks. Increased plasticity is both substantiated by and inducing an increased noise level. Using the versatile network dynamics tool, Turbine (www.turbine.linkgroup.hu), here we show that the 10 % noise level expected in cellular systems shifts a cancer-related signaling network of human cells from its proliferative attractors to its largest, apoptotic attractor representing their health-preserving response in the carcinogen containing and tumor suppressor deficient environment modeled in our study. Thus, fuzzy conformational barcodes may not only make the cellular system more plastic, and therefore more adaptable, but may also stabilize the complex system allowing better access to its largest attractor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wide-field reflective scanning optical systems

    NASA Technical Reports Server (NTRS)

    Abel, I. R.

    1973-01-01

    Catoptric optical scanning system provides relatively fast line-scan rate for two-dimensional coverage. Rapid scan rates require low focal ratios between components and smallest possible masses. System is relatively free from monochromatic defects and chromatic aberrations.

  4. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    PubMed

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  5. Indigenous species barcode database improves the identification of zooplankton

    PubMed Central

    Yang, Jianghua; Zhang, Wanwan; Sun, Jingying; Xie, Yuwei; Zhang, Yimin; Burton, G. Allen; Yu, Hongxia

    2017-01-01

    Incompleteness and inaccuracy of DNA barcode databases is considered an important hindrance to the use of metabarcoding in biodiversity analysis of zooplankton at the species-level. Species barcoding by Sanger sequencing is inefficient for organisms with small body sizes, such as zooplankton. Here mitochondrial cytochrome c oxidase I (COI) fragment barcodes from 910 freshwater zooplankton specimens (87 morphospecies) were recovered by a high-throughput sequencing platform, Ion Torrent PGM. Intraspecific divergence of most zooplanktons was < 5%, except Branchionus leydign (Rotifer, 14.3%), Trichocerca elongate (Rotifer, 11.5%), Lecane bulla (Rotifer, 15.9%), Synchaeta oblonga (Rotifer, 5.95%) and Schmackeria forbesi (Copepod, 6.5%). Metabarcoding data of 28 environmental samples from Lake Tai were annotated by both an indigenous database and NCBI Genbank database. The indigenous database improved the taxonomic assignment of metabarcoding of zooplankton. Most zooplankton (81%) with barcode sequences in the indigenous database were identified by metabarcoding monitoring. Furthermore, the frequency and distribution of zooplankton were also consistent between metabarcoding and morphology identification. Overall, the indigenous database improved the taxonomic assignment of zooplankton. PMID:28977035

  6. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    PubMed

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  7. Application of DNA barcodes in wildlife conservation in Tropical East Asia.

    PubMed

    Wilson, John-James; Sing, Kong-Wah; Lee, Ping-Shin; Wee, Alison K S

    2016-10-01

    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced. © 2016 Society for Conservation Biology.

  8. Development of a DNA Barcoding System for Seagrasses: Successful but Not Simple

    PubMed Central

    Lucas, Christina; Thangaradjou, Thirunavakkarasu; Papenbrock, Jutta

    2012-01-01

    Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL) rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches contribute to the

  9. Raman Barcode for Counterfeit Drug Product Detection.

    PubMed

    Lawson, Latevi S; Rodriguez, Jason D

    2016-05-03

    Potential infiltration of counterfeit drug products-containing the wrong or no active pharmaceutical ingredient (API)-into the bona fide drug supply poses a significant threat to consumers worldwide. Raman spectroscopy offers a rapid, nondestructive avenue to screen a high throughput of samples. Traditional qualitative Raman identification is typically done with spectral correlation methods that compare the spectrum of a reference sample to an unknown. This is often effective for pure materials but is quite challenging when dealing with drug products that contain different formulations of active and inactive ingredients. Typically, reliable identification of drug products using common spectral correlation algorithms can only be made if the specific product under study is present in the library of reference spectra, thereby limiting the scope of products that can be screened. In this paper, we introduce the concept of the Raman barcode for identification of drug products by comparing the known peaks in the API reference spectrum to the peaks present in the finished drug product under study. This method requires the transformation of the Raman spectra of both API and finished drug products into a barcode representation by assigning zero intensity to every spectral frequency except the frequencies that correspond to Raman peaks. By comparing the percentage of nonzero overlap between the expected API barcode and finished drug product barcode, the identity of API present can be confirmed. In this study, 18 approved finished drug products and nine simulated counterfeits were successfully identified with 100% accuracy utilizing this method.

  10. Identification of Fabaceae plants using the DNA barcode matK.

    PubMed

    Gao, Ting; Sun, Zhiying; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Ma, Xinye; Chen, Shilin

    2011-01-01

    In this study, we tested the applicability of the core DNA barcode MATK for identifying species within the Fabaceae family. Based on an evaluation of genetic variation, DNA barcoding gaps, and species discrimination power, MATK is a useful barcode for Fabaceae species. Of 1355 plant samples collected from 1079 species belonging to 409 diverse genera, MATK precisely identified approximately 80 % and 96 % of them at the species and genus levels, respectively. Therefore, our research indicates that the MATK region is a valuable marker for plant species within Fabaceae. © Georg Thieme Verlag KG Stuttgart · New York.

  11. DNA reference libraries of French Guianese mosquitoes for barcoding and metabarcoding

    PubMed Central

    Leroy, Céline; Guidez, Amandine; Dusfour, Isabelle; Girod, Romain; Dejean, Alain; Murienne, Jérôme

    2017-01-01

    The mosquito family (Diptera: Culicidae) constitutes the most medically important group of arthropods because certain species are vectors of human pathogens. In some parts of the world, the diversity is so high that the accurate delimitation and/or identification of species is challenging. A DNA-based identification system for all animals has been proposed, the so-called DNA barcoding approach. In this study, our objectives were (i) to establish DNA barcode libraries for the mosquitoes of French Guiana based on the COI and the 16S markers, (ii) to compare distance-based and tree-based methods of species delimitation to traditional taxonomy, and (iii) to evaluate the accuracy of each marker in identifying specimens. A total of 266 specimens belonging to 75 morphologically identified species or morphospecies were analyzed allowing us to delimit 86 DNA clusters with only 21 of them already present in the BOLD database. We thus provide a substantial contribution to the global mosquito barcoding initiative. Our results confirm that DNA barcodes can be successfully used to delimit and identify mosquito species with only a few cases where the marker could not distinguish closely related species. Our results also validate the presence of new species identified based on morphology, plus potential cases of cryptic species. We found that both COI and 16S markers performed very well, with successful identifications at the species level of up to 98% for COI and 97% for 16S when compared to traditional taxonomy. This shows great potential for the use of metabarcoding for vector monitoring and eco-epidemiological studies. PMID:28575090

  12. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)

    PubMed Central

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  13. Barcoding and Border Biosecurity: Identifying Cyprinid Fishes in the Aquarium Trade

    PubMed Central

    Collins, Rupert A.; Armstrong, Karen F.; Meier, Rudolf; Yi, Youguang; Brown, Samuel D. J.; Cruickshank, Robert H.; Keeling, Suzanne; Johnston, Colin

    2012-01-01

    Background Poorly regulated international trade in ornamental fishes poses risks to both biodiversity and economic activity via invasive alien species and exotic pathogens. Border security officials need robust tools to confirm identifications, often requiring hard-to-obtain taxonomic literature and expertise. DNA barcoding offers a potentially attractive tool for quarantine inspection, but has yet to be scrutinised for aquarium fishes. Here, we present a barcoding approach for ornamental cyprinid fishes by: (1) expanding current barcode reference libraries; (2) assessing barcode congruence with morphological identifications under numerous scenarios (e.g. inclusion of GenBank data, presence of singleton species, choice of analytical method); and (3) providing supplementary information to identify difficult species. Methodology/Principal Findings We sampled 172 ornamental cyprinid fish species from the international trade, and provide data for 91 species currently unrepresented in reference libraries (GenBank/Bold). DNA barcodes were found to be highly congruent with our morphological assignments, achieving success rates of 90–99%, depending on the method used (neighbour-joining monophyly, bootstrap, nearest neighbour, GMYC, percent threshold). Inclusion of data from GenBank (additional 157 spp.) resulted in a more comprehensive library, but at a cost to success rate due to the increased number of singleton species. In addition to DNA barcodes, our study also provides supporting data in the form of specimen images, morphological characters, taxonomic bibliography, preserved vouchers, and nuclear rhodopsin sequences. Using this nuclear rhodopsin data we also uncovered evidence of interspecific hybridisation, and highlighted unrecognised diversity within popular aquarium species, including the endangered Indian barb Puntius denisonii. Conclusions/Significance We demonstrate that DNA barcoding provides a highly effective biosecurity tool for rapidly identifying

  14. Identifying Canadian Freshwater Fishes through DNA Barcodes

    PubMed Central

    Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis

    2008-01-01

    Background DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. Methodology/Principal Findings We bi-directionally sequenced the standard 652 bp “barcode” region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. Conclusions/Significance The present study evidenced that freshwater fish species can be

  15. DNA barcodes for dragonflies and damselflies (Odonata) of Mindanao, Philippines.

    PubMed

    Casas, Princess Angelie S; Sing, Kong-Wah; Lee, Ping-Shin; Nuñeza, Olga M; Villanueva, Reagan Joseph T; Wilson, John-James

    2018-03-01

    Reliable species identification provides a sounder basis for use of species in the order Odonata as biological indicators and for their conservation, an urgent concern as many species are threatened with imminent extinction. We generated 134 COI barcodes from 36 morphologically identified species of Odonata collected from Mindanao Island, representing 10 families and 19 genera. Intraspecific sequence divergences ranged from 0 to 6.7% with four species showing more than 2%, while interspecific sequence divergences ranged from 0.5 to 23.3% with seven species showing less than 2%. Consequently, no distinct gap was observed between intraspecific and interspecific DNA barcode divergences. The numerous islands of the Philippine archipelago may have facilitated rapid speciation in the Odonata and resulted in low interspecific sequence divergences among closely related groups of species. This study contributes DNA barcodes for 36 morphologically identified species of Odonata reported from Mindanao including 31 species with no previous DNA barcode records.

  16. 78 FR 58305 - Honeywell International, Inc.; Analysis of Agreement Containing Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ..., formulas, patterns, devices, manufacturing processes, or customer names. If you want the Commission to give... barcode scanners, barcode printers, RFID systems and voice recognition systems. III. Scan Engines The...

  17. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N

    2016-11-01

    Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.

  18. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    PubMed

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  19. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae).

    PubMed

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD's barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution.

  20. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae)

    PubMed Central

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    Abstract DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD’s barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution. PMID:27408576

  1. Obstacles to Industrial Implementation of Scanning Systems

    Treesearch

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  2. A checklist of the bats of Peninsular Malaysia and progress towards a DNA barcode reference library.

    PubMed

    Lim, Voon-Ching; Ramli, Rosli; Bhassu, Subha; Wilson, John-James

    2017-01-01

    Several published checklists of bat species have covered Peninsular Malaysia as part of a broader region and/or in combination with other mammal groups. Other researchers have produced comprehensive checklists for specific localities within the peninsula. To our knowledge, a comprehensive checklist of bats specifically for the entire geopolitical region of Peninsular Malaysia has never been published, yet knowing which species are present in Peninsular Malaysia and their distributions across the region are crucial in developing suitable conservation plans. Our literature search revealed that 110 bat species have been documented in Peninsular Malaysia; 105 species have precise locality records while five species lack recent and/or precise locality records. We retrieved 18 species from records dated before the year 2000 and seven species have only ever been recorded once. Our search of Barcode of Life Datasystems (BOLD) found that 86 (of the 110) species have public records of which 48 species have public DNA barcodes available from bats sampled in Peninsular Malaysia. Based on Neighbour-Joining tree analyses and the allocation of DNA barcodes to Barcode Index Number system (BINs) by BOLD, several DNA barcodes recorded under the same species name are likely to represent distinct taxa. We discuss these cases in detail and highlight the importance of further surveys to determine the occurences and resolve the taxonomy of particular bat species in Peninsular Malaysia, with implications for conservation priorities.

  3. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  4. Revealing the Hyperdiverse Mite Fauna of Subarctic Canada through DNA Barcoding

    PubMed Central

    Young, Monica R.; Behan-Pelletier, Valerie M.; Hebert, Paul D. N.

    2012-01-01

    Although mites are one of the most abundant and diverse groups of arthropods, they are rarely targeted for detailed biodiversity surveys due to taxonomic constraints. We address this gap through DNA barcoding, evaluating acarine diversity at Churchill, Manitoba, a site on the tundra-taiga transition. Barcode analysis of 6279 specimens revealed nearly 900 presumptive species of mites with high species turnover between substrates and between forested and non-forested sites. Accumulation curves have not reached an asymptote for any of the three mite orders investigated, and estimates suggest that more than 1200 species of Acari occur at this locality. The coupling of DNA barcode results with taxonomic assignments revealed that Trombidiformes compose 49% of the fauna, a larger fraction than expected based on prior studies. This investigation demonstrates the efficacy of DNA barcoding in facilitating biodiversity assessments of hyperdiverse taxa. PMID:23133656

  5. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    PubMed

    Cook, Michael A; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-02-06

    Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base) unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  6. Prospects and Problems for Identification of Poisonous Plants in China using DNA Barcodes.

    PubMed

    Xie, Lei; Wang, Ying Wei; Guan, Shan Yue; Xie, Li Jing; Long, Xin; Sun, Cheng Ye

    2014-10-01

    Poisonous plants are a deadly threat to public health in China. The traditional clinical diagnosis of the toxic plants is inefficient, fallible, and dependent upon experts. In this study, we tested the performance of DNA barcodes for identification of the most threatening poisonous plants in China. Seventy-four accessions of 27 toxic plant species in 22 genera and 17 families were sampled and three DNA barcodes (matK, rbcL, and ITS) were amplified, sequenced and tested. Three methods, Blast, pairwise global alignment (PWG) distance, and Tree-Building were tested for discrimination power. The primer universality of all the three markers was high. Except in the case of ITS for Hemerocallis minor, the three barcodes were successfully generated from all the selected species. Among the three methods applied, Blast showed the lowest discrimination rate, whereas PWG Distance and Tree-Building methods were equally effective. The ITS barcode showed highest discrimination rates using the PWG Distance and Tree-Building methods. When the barcodes were combined, discrimination rates were increased for the Blast method. DNA barcoding technique provides us a fast tool for clinical identification of poisonous plants in China. We suggest matK, rbcL, ITS used in combination as DNA barcodes for authentication of poisonous plants. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  7. Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast.

    PubMed

    Lobo, Jorge; Teixeira, Marcos A L; Borges, Luisa M S; Ferreira, Maria S G; Hollatz, Claudia; Gomes, Pedro T; Sousa, Ronaldo; Ravara, Ascensão; Costa, Maria H; Costa, Filipe O

    2016-01-01

    Annelid polychaetes have been seldom the focus of dedicated DNA barcoding studies, despite their ecological relevance and often dominance, particularly in soft-bottom estuarine and coastal marine ecosystems. Here, we report the first assessment of the performance of DNA barcodes in the discrimination of shallow water polychaete species from the southern European Atlantic coast, focusing on specimens collected in estuaries and coastal ecosystems of Portugal. We analysed cytochrome oxidase I DNA barcodes (COI-5P) from 164 specimens, which were assigned to 51 morphospecies. To our data set from Portugal, we added available published sequences selected from the same species, genus or family, to inspect for taxonomic congruence among studies and collection location. The final data set comprised 290 specimens and 79 morphospecies, which generated 99 Barcode Index Numbers (BINs) within Barcode of Life Data Systems (BOLD). Among these, 22 BINs were singletons, 47 other BINs were concordant, confirming the initial identification based on morphological characters, and 30 were discordant, most of which consisted on multiple BINs found for the same morphospecies. Some of the most prominent cases in the latter category include Hediste diversicolor (O.F. Müller, 1776) (7), Eulalia viridis (Linnaeus, 1767) (2) and Owenia fusiformis (delle Chiaje, 1844) (5), all of them reported from Portugal and frequently used in ecological studies as environmental quality indicators. Our results for these species showed discordance between molecular lineages and morphospecies, or added additional relatively divergent lineages. The potential inaccuracies in environmental assessments, where underpinning polychaete species diversity is poorly resolved or clarified, demand additional and extensive investigation of the DNA barcode diversity in this group, in parallel with alpha taxonomy efforts. © 2015 John Wiley & Sons Ltd.

  8. DNA Barcoding of the Mexican Sedative and Anxiolytic Plant Galphimia glauca

    PubMed Central

    Sharma, Ashutosh; Folch, Jorge Luis; Cardoso-Taketa, Alexandre; Lorence, Argelia; Villarreal, María Luisa

    2015-01-01

    Ethnopharmacology relevance Galphimiaglauca (Malpighiaceae) is a Mexican plant popularly used as a tranquilizer in the treatment of nervous system disorders, although it is also used to treat other common illnesses. Aim of the study The aim of this investigation is to find out if populations of Galphimiaglauca collected in different regions and ecosystems in Mexico actually belong to the same species by using the contemporary technique of DNA barcodes. Our previous metabolic profiling study demonstrates that different collections of this plant obtained from various geographical areas exhibited diverse chemical profiles in terms of the active compounds named Galphimines. We expected the DNA barcodes apart from indicating the different species of Galphimia would indicate the active populations. Materials and methods We employed matK, rpoC1 and rbcL DNA barcodes to indicate the different species. Furthermore to investigate the possible impact of the several different ecosystems where the seven populations were collected, thin layer chromatography was employed to create a partial chemical profile, which was then compared with the metabolic profiles obtained by 1H-NMR and multivariate data analysis. Results and conclusions This study showed that the seven populations here analyzed contain at least three different species of the genus Galphimia, although each individual population is homogeneous. Interestingly our TLC analysis clearly showed that the active populations displayed a distinctively unique chemical profile. This work also showed that the use of DNA barcodes combined with chemical profile analysis is an excellent approach to solve the problems of quality control in the development of Galphimia-based medicines, as well as for any breeding programs for this species. PMID:23010364

  9. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    PubMed

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  10. Allosteric conformational barcodes direct signaling in the cell.

    PubMed

    Nussinov, Ruth; Ma, Buyong; Tsai, Chung-Jung; Csermely, Peter

    2013-09-03

    The cellular network is highly interconnected. Pathways merge and diverge. They proceed through shared proteins and may change directions. How are cellular pathways controlled and their directions decided, coded, and read? These questions become particularly acute when we consider that a small number of pathways, such as signaling pathways that regulate cell fates, cell proliferation, and cell death in development, are extensively exploited. This review focuses on these signaling questions from the structural standpoint and discusses the literature in this light. All co-occurring allosteric events (including posttranslational modifications, pathogen binding, and gain-of-function mutations) collectively tag the protein functional site with a unique barcode. The barcode shape is read by an interacting molecule, which transmits the signal. A conformational barcode provides an intracellular address label, which selectively favors binding to one partner and quenches binding to others, and, in this way, determines the pathway direction, and, eventually, the cell's response and fate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Digital barcodes of suspension array using laser induced breakdown spectroscopy

    PubMed Central

    He, Qinghua; Liu, Yixi; He, Yonghong; Zhu, Liang; Zhang, Yilong; Shen, Zhiyuan

    2016-01-01

    We show a coding method of suspension array based on the laser induced breakdown spectroscopy (LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in accuracy and stability to current fluorescent multicolor coding method. This demonstration increases the capability of multiplexed detection and accurate filtrating, expanding more extensive applications of suspension array in life science. PMID:27808270

  12. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan.

    PubMed

    Ebihara, Atsushi; Nitta, Joel H; Ito, Motomi

    2010-12-08

    DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking. The Japanese pteridophyte flora (733 taxa including subspecies and varieties) was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA) with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0%) taxa for rbcL and 617 (84.2%) taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances) did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52%) was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only. This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially anticipated to be helpful for identification of non-hybridizing gametophytes.

  13. Exploring the utility of DNA barcoding in species delimitation of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae).

    PubMed

    Song, Chao; Wang, Qian; Zhang, Ruilei; Sun, Bingjiao; Wang, Xinhua

    2016-02-16

    In this study, we tested the utility of the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) as the barcode region to deal with taxonomical problems of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae). The 114 DNA barcodes representing 27 morphospecies are divided into 33 well separated clusters based on both Neighbor Joining and Maximum Likelihood methods. DNA barcodes revealed an 82% success rate in matching with morphospecies. The selected DNA barcode data support 37-64 operational taxonomic units (OTUs) based on the methods of Automatic Barcode Gap Discovery (ABGD) and Poisson Tree Process (PTP). Furthermore, a priori species based on consistent phenotypic variations were attested by molecular analysis, and a taxonomical misidentification of barcode sequences from GenBank was found. We could not observe a distinct barcode gap but an overlap ranged from 9-12%. Our results supported DNA barcoding as an ideal method to detect cryptic species, delimit sibling species, and associate different life stages in non-biting midges.

  14. DNA barcoding for species identification in deep-sea clams (Mollusca: Bivalvia: Vesicomyidae).

    PubMed

    Liu, Jun; Zhang, Haibin

    2018-01-15

    Deep-sea clams (Bivalvia: Vesicomyidae) have been found in reduced environments over the world oceans, but taxonomy of this group remains confusing at species and supraspecific levels due to their high-morphological similarity and plasticity. In the present study, we collected mitochondrial COI sequences to evaluate the utility of DNA barcoding on identifying vesicomyid species. COI dataset identified 56 well-supported putative species/operational taxonomic units (OTUs), approximately covering half of the extant vesicomyid species. One species (OTU2) was first detected, and may represent a new species. Average distances between species ranged from 1.65 to 29.64%, generally higher than average intraspecific distances (0-1.41%) when excluding Pliocardia sp.10 cf. venusta (average intraspecific distance 1.91%). Local barcoding gap existed in 33 of the 35 species when comparing distances of maximum interspecific and minimum interspecific distances with two exceptions (Abyssogena southwardae and Calyptogena rectimargo-starobogatovi). The barcode index number (BIN) system determined 41 of the 56 species/OTUs, each with a unique BIN, indicating their validity. Three species were found to have two BINs, together with their high level of intraspecific variation, implying cryptic diversity within them. Although fewer 16 S sequences were collected, similar results were obtained. Nineteen putative species were determined and no overlap observed between intra- and inter-specific variation. Implications of DNA barcoding for the Vesicomyidae taxonomy were then discussed. Findings of this study will provide important evidence for taxonomic revision in this problematic clam group, and accelerate the discovery of new vesicomyid species in the future.

  15. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    PubMed

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  16. Barcode haplotype variation in North American agroecosystem ladybird beetles (Coleoptera: Coccinellidae

    USDA-ARS?s Scientific Manuscript database

    DNA barcodes have proven invaluable in identifying and distinguishing insect pests, for example for determining the provenance of exotic invasives, but relatively few insect natural enemies have been barcoded. We used Folmer et al.’s universal invertebrate primers (1994), and those designed by Heber...

  17. Building a DNA barcode reference library for the true butterflies (Lepidoptera) of Peninsula Malaysia: what about the subspecies?

    PubMed

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.

  18. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    PubMed Central

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  19. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs

    PubMed Central

    Sun, Shao’e; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong; Yu, Ruihai; Dai, Lina; Sun, Yan; Chen, Jun; Liu, Jun; Ni, Lehai; Feng, Yanwei; Yu, Zhenzhen; Zou, Shanmei; Lin, Jiping

    2016-01-01

    This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes. PMID:27640675

  20. Barcoding and species recognition of opportunistic pathogens in Ochroconis and Verruconis.

    PubMed

    Samerpitak, Kittipan; Gerrits van den Ende, Bert H G; Stielow, J Benjamin; Menken, Steph B J; de Hoog, G Sybren

    2016-02-01

    The genera Ochroconis and Verruconis (Sympoventuriaceae, Venturiales) have remarkably high molecular diversity despite relatively high degrees of phenotypic similarity. Tree topologies, inter-specific and intra-specific heterogeneities, barcoding gaps and reciprocal monophyly of all currently known species were analyzed. It was concluded that all currently used genes viz. SSU, ITS, LSU, ACT1, BT2, and TEF1 were unable to reach all 'gold standard' criteria of barcoding markers. They could nevertheless be used for reasonably reliable identification of species, because the markers, although variable, were associated with large inter-specific heterogeneity. Of the coding protein-genes, ACT1 revealed highest potentiality as barcoding marker in mostly all parts of the investigated sequence. SSU, LSU, ITS, and ACT1 yielded consistent monophyly in all investigated species, but only SSU and LSU generated clear barcoding gaps. For phylogeny, LSU was an informative marker, suitable to reconstruct gene-trees showing correct phylogenetic relationships. Cryptic species were revealed especially in complexes with very high intra-specific variability. When all these complexes will be taxonomically resolved, ACT1 will probably appear to be the most reliable barcoding gene for Ochroconis and Verruconis. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Grating-dot two-dimensional barcode patterns with extra binary data for encoding secret information

    NASA Astrophysics Data System (ADS)

    Lih Yeh, Sheng; Lin, Shyh Tsong

    2013-02-01

    The usual two-dimensional (2D) barcode patterns do not encrypt secret information. However, secret information is sometimes needed to increase the security features of barcode patterns. Therefore, this paper proposes 2D barcode patterns created by two-beam writers to encrypt extra binary data for encoding secret information. The proposed 2D barcode patterns are composed of many grating dots and the fringes of the grating dots are classified into four types. The first type of fringe possesses a pitch of 1.1 μm and an orientation of -45°, the second type of fringe possesses a pitch of 1.2 μm and an orientation of -45°, the third type of fringe possesses a pitch of 1.1 μm and an orientation of 45°and the fourth type of fringe possesses a pitch of 1.2 μm and an orientation of 45°. All the fringes with a 1.1 μm pitch can show a color and all the fringes with a 1.2 μm pitch can show another color when a microscope is used to inspect them. Therefore, extra binary data for encoding secret information can be formed with the two pitches. On the other hand, all the fringes with a -45° orientation can become bright for a viewing direction and all the fringes with a 45° orientation can become bright for another viewing direction when one looks at them. Therefore, the grating dots with the -45° fringe orientation and the grating dots with the 45° fringe orientation can be used to show a positive barcode image and a negative barcode image, respectively. Both the positive and negative barcode images can be used to derive the barcode data. The experiment shows that the proposed barcode patterns can be used conveniently and correctly.

  2. Status and prospects of DNA barcoding in medically important parasites and vectors.

    PubMed

    Ondrejicka, Danielle A; Locke, Sean A; Morey, Kevin; Borisenko, Alex V; Hanner, Robert H

    2014-12-01

    For over 10 years, DNA barcoding has been used to identify specimens and discern species. Its potential benefits in parasitology were recognized early, but its utility and uptake remain unclear. Here we review studies using DNA barcoding in parasites and vectors affecting humans and find that the technique is accurate (accords with author identifications based on morphology or other markers) in 94-95% of cases, although aspects of DNA barcoding (vouchering, marker implicated) have often been misunderstood. In a newly compiled checklist of parasites, vectors, and hazards, barcodes are available for 43% of all 1403 species and for more than half of 429 species of greater medical importance. This is encouraging coverage that would improve with an active campaign targeting parasites and vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    PubMed Central

    2011-01-01

    Background A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Results Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. Conclusions We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups. PMID:21276253

  4. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae)

    PubMed Central

    Larranaga, Nerea; Hormaza, José I.

    2015-01-01

    The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL) Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra, and A. purpurea) and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD) data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia) and in an interspecific hybrid (A. cherimola x A. squamosa). The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management. PMID:26284104

  5. Barcoding of live human PBMC for multiplexed mass cytometry*

    PubMed Central

    Mei, Henrik E.; Leipold, Michael D.; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T.

    2014-01-01

    Mass cytometry is developing as a means of multiparametric single cell analysis. Here, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a CyTOF® instrument. Using six different anti-CD45 antibody (Ab) conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and reduces wet work and antibody consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45-barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and should be applicable to fluorescence flow cytometry as well. PMID:25609839

  6. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  7. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species

    Treesearch

    Min Yu; Lichao Jiao; Juan Guo; Alex C. Wiedenhoeft; Tuo He; Xiaomei Jiang; Yafang Yin

    2017-01-01

    ITS2+trnH-psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens.

  8. A checklist of the bats of Peninsular Malaysia and progress towards a DNA barcode reference library

    PubMed Central

    Ramli, Rosli; Bhassu, Subha

    2017-01-01

    Several published checklists of bat species have covered Peninsular Malaysia as part of a broader region and/or in combination with other mammal groups. Other researchers have produced comprehensive checklists for specific localities within the peninsula. To our knowledge, a comprehensive checklist of bats specifically for the entire geopolitical region of Peninsular Malaysia has never been published, yet knowing which species are present in Peninsular Malaysia and their distributions across the region are crucial in developing suitable conservation plans. Our literature search revealed that 110 bat species have been documented in Peninsular Malaysia; 105 species have precise locality records while five species lack recent and/or precise locality records. We retrieved 18 species from records dated before the year 2000 and seven species have only ever been recorded once. Our search of Barcode of Life Datasystems (BOLD) found that 86 (of the 110) species have public records of which 48 species have public DNA barcodes available from bats sampled in Peninsular Malaysia. Based on Neighbour-Joining tree analyses and the allocation of DNA barcodes to Barcode Index Number system (BINs) by BOLD, several DNA barcodes recorded under the same species name are likely to represent distinct taxa. We discuss these cases in detail and highlight the importance of further surveys to determine the occurences and resolve the taxonomy of particular bat species in Peninsular Malaysia, with implications for conservation priorities. PMID:28742835

  9. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  10. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  11. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Chen, Bo-Ruei; Hale, Devin C; Ciolek, Peter J; Runge, Kurt W

    2012-05-03

    Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.

  12. DNA barcoding and the identification of tree frogs (Amphibia: Anura: Rhacophoridae).

    PubMed

    Dang, Ning-Xin; Sun, Feng-Hui; Lv, Yun-Yun; Zhao, Bo-Han; Wang, Ji-Chao; Murphy, Robert W; Wang, Wen-Zhi; Li, Jia-Tang

    2016-07-01

    The DNA barcoding gene COI (cytochrome c oxidase subunit I) effectively identifies many species. Herein, we barcoded 172 individuals from 37 species belonging to nine genera in Rhacophoridae to test if the gene serves equally well to identify species of tree frogs. Phenetic neighbor joining and phylogenetic Bayesian inference were used to construct phylogenetic trees, which resolved all nine genera as monophyletic taxa except for Rhacophorus, two new matrilines for Liuixalus, and Polypedates leucomystax species complex. Intraspecific genetic distances ranged from 0.000 to 0.119 and interspecific genetic distances ranged from 0.015 to 0.334. Within Rhacophorus and Kurixalus, the intra- and interspecific genetic distances did not reveal an obvious barcode gap. Notwithstanding, we found that COI sequences unambiguously identified rhacophorid species and helped to discover likely new cryptic species via the synthesis of genealogical relationships and divergence patterns. Our results supported that COI is an effective DNA barcoding marker for Rhacophoridae.

  13. Towards writing the encyclopaedia of life: an introduction to DNA barcoding

    PubMed Central

    Savolainen, Vincent; Cowan, Robyn S; Vogler, Alfried P; Roderick, George K; Lane, Richard

    2005-01-01

    An international consortium of major natural history museums, herbaria and other organizations has launched an ambitious project, the ‘Barcode of Life Initiative’, to promote a process enabling the rapid and inexpensive identification of the estimated 10 million species on Earth. DNA barcoding is a diagnostic technique in which short DNA sequence(s) can be used for species identification. The first international scientific conference on Barcoding of Life was held at the Natural History Museum in London in February 2005, and here we review the scientific challenges discussed during this conference and in previous publications. Although still controversial, the scientific benefits of DNA barcoding include: (i) enabling species identification, including any life stage or fragment, (ii) facilitating species discoveries based on cluster analyses of gene sequences (e.g. cox1=CO1, in animals), (iii) promoting development of handheld DNA sequencing technology that can be applied in the field for biodiversity inventories and (iv) providing insight into the diversity of life. PMID:16214739

  14. Use of DNA barcodes to identify flowering plants

    PubMed Central

    Kress, W. John; Wurdack, Kenneth J.; Zimmer, Elizabeth A.; Weigt, Lee A.; Janzen, Daniel H.

    2005-01-01

    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes. PMID:15928076

  15. Use of DNA barcodes to identify flowering plants.

    PubMed

    Kress, W John; Wurdack, Kenneth J; Zimmer, Elizabeth A; Weigt, Lee A; Janzen, Daniel H

    2005-06-07

    Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

  16. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    PubMed

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  17. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  18. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  19. How effective are DNA barcodes in the identification of African rainforest trees?

    PubMed

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W; Kenfack, David; Chuyong, George B; Cruaud, Corinne; Hardy, Olivier J

    2013-01-01

    DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.

  20. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    PubMed Central

    Frandsen, Paul B.; Holzenthal, Ralph W.; Beet, Clare R.; Bennett, Kristi R.; Blahnik, Roger J.; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V.; Collins, Gemma E.; deWaard, Jeremy; Dean, John; Flint, Oliver S.; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D.; Kondratieff, Boris C.; Malicky, Hans; Milton, Megan A.; Morinière, Jérôme; Morse, John C.; Mwangi, François Ngera; Pauls, Steffen U.; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L.; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A.; Zamora-Muñoz, Carmen; Ziesmann, Tanja

    2016-01-01

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481793

  1. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life.

    PubMed

    Zhou, Xin; Frandsen, Paul B; Holzenthal, Ralph W; Beet, Clare R; Bennett, Kristi R; Blahnik, Roger J; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V; Collins, Gemma E; deWaard, Jeremy; Dean, John; Flint, Oliver S; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D; Kondratieff, Boris C; Malicky, Hans; Milton, Megan A; Morinière, Jérôme; Morse, John C; Mwangi, François Ngera; Pauls, Steffen U; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A; Zamora-Muñoz, Carmen; Ziesmann, Tanja; Kjer, Karl M

    2016-09-05

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  2. Selection of a DNA barcode for Nectriaceae from fungal whole-genomes.

    PubMed

    Zeng, Zhaoqing; Zhao, Peng; Luo, Jing; Zhuang, Wenying; Yu, Zhihe

    2012-01-01

    A DNA barcode is a short segment of sequence that is able to distinguish species. A barcode must ideally contain enough variation to distinguish every individual species and be easily obtained. Fungi of Nectriaceae are economically important and show high species diversity. To establish a standard DNA barcode for this group of fungi, the genomes of Neurospora crassa and 30 other filamentous fungi were compared. The expect value was treated as a criterion to recognize homologous sequences. Four candidate markers, Hsp90, AAC, CDC48, and EF3, were tested for their feasibility as barcodes in the identification of 34 well-established species belonging to 13 genera of Nectriaceae. Two hundred and fifteen sequences were analyzed. Intra- and inter-specific variations and the success rate of PCR amplification and sequencing were considered as important criteria for estimation of the candidate markers. Ultimately, the partial EF3 gene met the requirements for a good DNA barcode: No overlap was found between the intra- and inter-specific pairwise distances. The smallest inter-specific distance of EF3 gene was 3.19%, while the largest intra-specific distance was 1.79%. In addition, there was a high success rate in PCR and sequencing for this gene (96.3%). CDC48 showed sufficiently high sequence variation among species, but the PCR and sequencing success rate was 84% using a single pair of primers. Although the Hsp90 and AAC genes had higher PCR and sequencing success rates (96.3% and 97.5%, respectively), overlapping occurred between the intra- and inter-specific variations, which could lead to misidentification. Therefore, we propose the EF3 gene as a possible DNA barcode for the nectriaceous fungi.

  3. 78 FR 13006 - New Intelligent Mail Package Barcode Standards To Enhance Package Visibility; Opportunity for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ...The Postal Service is exploring the advisability of requiring the use of Intelligent Mail[supreg] package barcodes (IMpb) or unique tracking Intelligent Mail barcodes (IMbTM) on all commercial parcels, and providing support to mailers to assure their ability to apply unique tracking barcodes to all commercial parcels.

  4. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil

    PubMed Central

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil. PMID:26506007

  5. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil.

    PubMed

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha; Peixoto, Alexandre Afranio

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23-19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.

  6. Telling plant species apart with DNA: from barcodes to genomes

    PubMed Central

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  7. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    PubMed

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  8. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  9. R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring.

    PubMed

    Rimet, Frédéric; Chaumeil, Philippe; Keck, François; Kermarrec, Lenaïg; Vasselon, Valentin; Kahlert, Maria; Franc, Alain; Bouchez, Agnès

    2016-01-01

    Diatoms are micro-algal indicators of freshwater pollution. Current standardized methodologies are based on microscopic determinations, which is time consuming and prone to identification uncertainties. The use of DNA-barcoding has been proposed as a way to avoid these flaws. Combining barcoding with next-generation sequencing enables collection of a large quantity of barcodes from natural samples. These barcodes are identified as certain diatom taxa by comparing the sequences to a reference barcoding library using algorithms. Proof of concept was recently demonstrated for synthetic and natural communities and underlined the importance of the quality of this reference library. We present an open-access and curated reference barcoding database for diatoms, called R-Syst::diatom, developed in the framework of R-Syst, the network of systematic supported by INRA (French National Institute for Agricultural Research), see http://www.rsyst.inra.fr/en. R-Syst::diatom links DNA-barcodes to their taxonomical identifications, and is dedicated to identify barcodes from natural samples. The data come from two sources, a culture collection of freshwater algae maintained in INRA in which new strains are regularly deposited and barcoded and from the NCBI (National Center for Biotechnology Information) nucleotide database. Two kinds of barcodes were chosen to support the database: 18S (18S ribosomal RNA) and rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase), because of their efficiency. Data are curated using innovative (Declic) and classical bioinformatic tools (Blast, classical phylogenies) and up-to-date taxonomy (Catalogues and peer reviewed papers). Every 6 months R-Syst::diatom is updated. The database is available through the R-Syst microalgae website (http://www.rsyst.inra.fr/) and a platform dedicated to next-generation sequencing data analysis, virtual_BiodiversityL@b (https://galaxy-pgtp.pierroton.inra.fr/). We present here the content of the library regarding the

  10. R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring

    PubMed Central

    Rimet, Frédéric; Chaumeil, Philippe; Keck, François; Kermarrec, Lenaïg; Vasselon, Valentin; Kahlert, Maria; Franc, Alain; Bouchez, Agnès

    2016-01-01

    Diatoms are micro-algal indicators of freshwater pollution. Current standardized methodologies are based on microscopic determinations, which is time consuming and prone to identification uncertainties. The use of DNA-barcoding has been proposed as a way to avoid these flaws. Combining barcoding with next-generation sequencing enables collection of a large quantity of barcodes from natural samples. These barcodes are identified as certain diatom taxa by comparing the sequences to a reference barcoding library using algorithms. Proof of concept was recently demonstrated for synthetic and natural communities and underlined the importance of the quality of this reference library. We present an open-access and curated reference barcoding database for diatoms, called R-Syst::diatom, developed in the framework of R-Syst, the network of systematic supported by INRA (French National Institute for Agricultural Research), see http://www.rsyst.inra.fr/en. R-Syst::diatom links DNA-barcodes to their taxonomical identifications, and is dedicated to identify barcodes from natural samples. The data come from two sources, a culture collection of freshwater algae maintained in INRA in which new strains are regularly deposited and barcoded and from the NCBI (National Center for Biotechnology Information) nucleotide database. Two kinds of barcodes were chosen to support the database: 18S (18S ribosomal RNA) and rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase), because of their efficiency. Data are curated using innovative (Declic) and classical bioinformatic tools (Blast, classical phylogenies) and up-to-date taxonomy (Catalogues and peer reviewed papers). Every 6 months R-Syst::diatom is updated. The database is available through the R-Syst microalgae website (http://www.rsyst.inra.fr/) and a platform dedicated to next-generation sequencing data analysis, virtual_BiodiversityL@b (https://galaxy-pgtp.pierroton.inra.fr/). We present here the content of the library regarding the

  11. When COI barcodes deceive: complete genomes reveal introgression in hairstreaks

    PubMed Central

    Shen, Jinhui; Borek, Dominika; Robbins, Robert K.; Opler, Paul A.; Otwinowski, Zbyszek; Grishin, Nick V.

    2017-01-01

    Two species of hairstreak butterflies from the genus Calycopis are known in the United States: C. cecrops and C. isobeon. Analysis of mitochondrial COI barcodes of Calycopis revealed cecrops-like specimens from the eastern US with atypical barcodes that were 2.6% different from either USA species, but similar to Central American Calycopis species. To address the possibility that the specimens with atypical barcodes represent an undescribed cryptic species, we sequenced complete genomes of 27 Calycopis specimens of four species: C. cecrops, C. isobeon, C. quintana and C. bactra. Some of these specimens were collected up to 60 years ago and preserved dry in museum collections, but nonetheless produced genomes as complete as fresh samples. Phylogenetic trees reconstructed using the whole mitochondrial and nuclear genomes were incongruent. While USA Calycopis with atypical barcodes grouped with Central American species C. quintana by mitochondria, nuclear genome trees placed them within typical USA C. cecrops in agreement with morphology, suggesting mitochondrial introgression. Nuclear genomes also show introgression, especially between C. cecrops and C. isobeon. About 2.3% of each C. cecrops genome has probably (p-value < 0.01, FDR < 0.1) introgressed from C. isobeon and about 3.4% of each C. isobeon genome may have come from C. cecrops. The introgressed regions are enriched in genes encoding transmembrane proteins, mitochondria-targeting proteins and components of the larval cuticle. This study provides the first example of mitochondrial introgression in Lepidoptera supported by complete genome sequencing. Our results caution about relying solely on COI barcodes and mitochondrial DNA for species identification or discovery. PMID:28179510

  12. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification.

    PubMed

    Liu, Jie; Milne, Richard I; Möller, Michael; Zhu, Guang-Fu; Ye, Lin-Jiang; Luo, Ya-Huang; Yang, Jun-Bo; Wambulwa, Moses C; Wang, Chun-Neng; Li, De-Zhu; Gao, Lian-Ming

    2018-05-22

    Rapid and accurate identification of endangered species is a critical component of biosurveillance and conservation management, and potentially policing illegal trades. However, this is often not possible using traditional taxonomy, especially where only small or preprocessed parts of plants are available. Reliable identification can be achieved via a comprehensive DNA barcode reference library, accompanied by precise distribution data. However, these require extensive sampling at spatial and taxonomic scales, which has rarely been achieved for cosmopolitan taxa. Here, we construct a comprehensive DNA barcode reference library and generate distribution maps using species distribution modelling (SDM), for all 15 Taxus species worldwide. We find that trnL-trnF is the ideal barcode for Taxus: It can distinguish all Taxus species and in combination with ITS identify hybrids. Among five analysis methods tested, NJ was the most effective. Among 4,151 individuals screened for trnL-trnF, 73 haplotypes were detected, all species-specific and some population private. Taxonomical, geographical and genetic dimensions of sampling strategy were all found to affect the comprehensiveness of the resulting DNA barcode library. Maps from SDM showed that most species had allopatric distributions, except T. mairei in the Sino-Himalayan region. Using the barcode library and distribution map data, two unknown forensic samples were identified to species (and in one case, population) level and another was determined as a putative interspecific hybrid. This integrated species identification system for Taxus can be used for biosurveillance, conservation management and to monitor and prosecute illegal trade. Similar identification systems are recommended for other IUCN- and CITES-listed taxa. © 2018 John Wiley & Sons Ltd.

  13. Organic Phase Change Nanoparticles for in-Product Labeling of Agrochemicals.

    PubMed

    Wang, Miao; Duong, Binh; Su, Ming

    2015-10-28

    There is an urgent need to develop in-product covert barcodes for anti-counterfeiting of agrochemicals. This paper reports a new organic nanoparticle-based in-product barcode system, in which a panel of organic phase change nanoparticles is added as a barcode into in a variety of chemicals (herein agrochemicals). The barcode is readout by detecting melting peaks of organic nanoparticles using differential scanning calorimetry. This method has high labeling capacity due to small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The in-product barcode can be effectively used to protect agrochemical products from being counterfeited due to its large coding capacity, technical readiness, covertness, and robustness.

  14. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

    USDA-ARS?s Scientific Manuscript database

    The extensive use of DNA barcoding technology in a large inventory of Macrolepidoptera and their parasitoids is documented. The methodology used and its practical applications are summarized, and numerous examples of how DNA barcoding has untangled complexes of cryptic species of butterflies, moths...

  15. A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF).

    PubMed

    Lai, Liyun; Ong, Raymond; Li, Juntao; Albani, Salvatore

    2015-04-01

    CyTOF enables the study of the immune system with a complexity, depth, and multidimensionality never achieved before. However, the full potential of using CyTOF can be limited by scarce cell samples. Barcoding strategies developed based on direct labeling of cells using maleimido-monoamide-DOTA (m-DOTA) provide a very useful tool. However, using m-DOTA has some inherent problems, mainly associated with signal intensity. This may be a source of uncertainty when samples are multiplexed. As an alternative or complementary approach to m-DOTA, conjugating an antibody, specific for a membrane protein present on most immune cells, with different isotopes could address the issues of stability and signal intensity needed for effective barcoding. We chose for this purpose CD45, and designed experiments to address different types of cultures and the ability to detect extra- and intra-cellular targets. We show here that our approach provides an useful alternative to m-DOTA in terms of sensitivity, specificity, flexibility, and user-friendliness. Our manuscript provides details to effectively barcode immune cells, overcoming limitations in current technology and enabling the use of CyTOF with scarce samples (for instance precious clinical samples). © 2015 The Authors. Published by Wiley Periodicals, Inc.

  16. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  17. DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods

    PubMed Central

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T.

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification. PMID:22272356

  18. DNA barcoding of recently diverged species: relative performance of matching methods.

    PubMed

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.

  19. Single molecule counting and assessment of random molecular tagging errors with transposable giga-scale error-correcting barcodes.

    PubMed

    Lau, Billy T; Ji, Hanlee P

    2017-09-21

    RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.

  20. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication

    PubMed Central

    Chao, Zhi; Liao, Jing; Liang, Zhenbiao; Huang, Suhua; Zhang, Liang; Li, Junde

    2014-01-01

    Objective: To test the feasibility of DNA barcoding for accurate identification of Jinqian Baihua She and its adulterants. Materials and Methods: Standard cytochrome C oxidase subunit I (COI) gene fragments were sequenced for DNA barcoding of 39 samples from 9 snake species, including Bungarus multicinctus, the officially recognized origin animal by Chinese Pharmacopoeia, and other 8 adulterate species. The aligned sequences, 658 base pairs in length, were analyzed for divergence using the Kimura-2-parameter (K2P) distance model with MEGA5.0. Results: The mean intraspecific K2P distance was 0.0103 and the average interspecific genetic distance was 0.2178 in B. multicinctus, far greater than the minimal interspecific genetic distance of 0.027 recommended for species identification. A neighbor-joining (NJ) tree was constructed, in which each species formed a monophyletic clade with bootstrap supports of 100%. All the data were submitted to Barcode of Life Data system version 3.0 (BOLD, http://www.barcodinglife.org) under the project title “DNA barcoding Bungarus multicinctus and its adulterants”. Ten samples of commercially available crude drugs of JBS were identified using the identification engine provided by BOLD. All the samples were clearly identified at the species level, among which five were found to be the adulterants and identified as Dinodon rufozonatum. Conclusion: DNA barcoding using the standard COI gene fragments provides an effective and accurate means for JBS identification and authentication. PMID:25422545

  1. Improving the Conservation of Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library

    PubMed Central

    Arculeo, Marco; Bonello, Juan J.; Bonnici, Leanne; Cannas, Rita; Carbonara, Pierluigi; Cau, Alessandro; Charilaou, Charis; El Ouamari, Najib; Fiorentino, Fabio; Follesa, Maria Cristina; Garofalo, Germana; Golani, Daniel; Guarniero, Ilaria; Hanner, Robert; Hemida, Farid; Kada, Omar; Lo Brutto, Sabrina; Mancusi, Cecilia; Morey, Gabriel; Schembri, Patrick J.; Serena, Fabrizio; Sion, Letizia; Stagioni, Marco; Tursi, Angelo; Vrgoc, Nedo; Steinke, Dirk; Tinti, Fausto

    2017-01-01

    Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental change because of their K-selected reproductive strategy. Accurate data from scientific surveys and landings are essential to assess conservation status and to develop robust protection and management plans. Currently available data are often incomplete or incorrect as a result of inaccurate species identifications, due to a high level of morphological stasis, especially among closely related taxa. Moreover, several diagnostic characters clearly visible in adult specimens are less evident in juveniles. Here we present results generated by the ELASMOMED Consortium, a regional network aiming to sample and DNA-barcode the Mediterranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode reference library. This library will support and improve the molecular taxonomy of this group and the effectiveness of management and conservation measures. We successfully barcoded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera), including four endemic and several threatened ones. Morphological misidentifications were found across most orders, further confirming the need for a comprehensive DNA barcoding library as a valuable tool for the reliable identification of specimens in support of taxonomist who are reviewing current identification keys. Despite low intraspecific variation among their barcode sequences and reduced samples size, five species showed preliminary evidence of phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific features in otherwise taxonomically problematic groups for biodiversity management and conservation actions. PMID:28107413

  2. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species.

    PubMed

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-07

    The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.

  3. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia)

    PubMed Central

    Marescaux, Jonathan; Van Doninck, Karine

    2013-01-01

    Abstract The zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena rostriformis bugensis) are considered as the most competitive invaders in freshwaters of Europe and North America. Although shell characteristics exist to differentiate both species, phenotypic plasticity in the genus Dreissena does not always allow a clear identification. Therefore, the need to find an accurate identification method is essential. DNA barcoding has been proven to be an adequate procedure to discriminate species. The cytochrome c oxidase subunit I mitochondrial gene (COI) is considered as the standard barcode for animals. We tested the use of this gene as an efficient DNA barcode and found that it allow rapid and accurate identification of adult Dreissena individuals. PMID:24453560

  4. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    PubMed

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  5. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology

    PubMed Central

    Janzen, Daniel H.; Burns, John M.; Cong, Qian; Hallwachs, Winnie; Dapkey, Tanya; Manjunath, Ramya; Hajibabaei, Mehrdad; Hebert, Paul D. N.; Grishin, Nick V.

    2017-01-01

    DNA sequencing brings another dimension to exploration of biodiversity, and large-scale mitochondrial DNA cytochrome oxidase I barcoding has exposed many potential new cryptic species. Here, we add complete nuclear genome sequencing to DNA barcoding, ecological distribution, natural history, and subtleties of adult color pattern and size to show that a widespread neotropical skipper butterfly known as Udranomia kikkawai (Weeks) comprises three different species in Costa Rica. Full-length barcodes obtained from all three century-old Venezuelan syntypes of U. kikkawai show that it is a rainforest species occurring from Costa Rica to Brazil. The two new species are Udranomia sallydaleyae Burns, a dry forest denizen occurring from Costa Rica to Mexico, and Udranomia tomdaleyi Burns, which occupies the junction between the rainforest and dry forest and currently is known only from Costa Rica. Whereas the three species are cryptic, differing but slightly in appearance, their complete nuclear genomes totaling 15 million aligned positions reveal significant differences consistent with their 0.00065-Mbp (million base pair) mitochondrial barcodes and their ecological diversification. DNA barcoding of tropical insects reared by a massive inventory suggests that the presence of cryptic species is a widespread phenomenon and that further studies will substantially increase current estimates of insect species richness. PMID:28716927

  6. Role of DNA barcoding in marine biodiversity assessment and conservation: An update

    PubMed Central

    Trivedi, Subrata; Aloufi, Abdulhadi A.; Ansari, Abid A.; Ghosh, Sankar K.

    2015-01-01

    More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation. PMID:26980996

  7. Land plants and DNA barcodes: short-term and long-term goals.

    PubMed

    Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haider, Nadia; Haidar, Nadia; Savolainen, Vincent

    2005-10-29

    Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more

  8. Land plants and DNA barcodes: short-term and long-term goals

    PubMed Central

    Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haidar, Nadia; Savolainen, Vincent

    2005-01-01

    Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more

  9. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  10. Fungi in Thailand: a case study of the efficacy of an ITS barcode for automatically identifying species within the Annulohypoxylon and Hypoxylon genera.

    PubMed

    Suwannasai, Nuttika; Martín, María P; Phosri, Cherdchai; Sihanonth, Prakitsin; Whalley, Anthony J S; Spouge, John L

    2013-01-01

    Thailand, a part of the Indo-Burma biodiversity hotspot, has many endemic animals and plants. Some of its fungal species are difficult to recognize and separate, complicating assessments of biodiversity. We assessed species diversity within the fungal genera Annulohypoxylon and Hypoxylon, which produce biologically active and potentially therapeutic compounds, by applying classical taxonomic methods to 552 teleomorphs collected from across Thailand. Using probability of correct identification (PCI), we also assessed the efficacy of automated species identification with a fungal barcode marker, ITS, in the model system of Annulohypoxylon and Hypoxylon. The 552 teleomorphs yielded 137 ITS sequences; in addition, we examined 128 GenBank ITS sequences, to assess biases in evaluating a DNA barcode with GenBank data. The use of multiple sequence alignment in a barcode database like BOLD raises some concerns about non-protein barcode markers like ITS, so we also compared species identification using different alignment methods. Our results suggest the following. (1) Multiple sequence alignment of ITS sequences is competitive with pairwise alignment when identifying species, so BOLD should be able to preserve its present bioinformatics workflow for species identification for ITS, and possibly therefore with at least some other non-protein barcode markers. (2) Automated species identification is insensitive to a specific choice of evolutionary distance, contributing to resolution of a current debate in DNA barcoding. (3) Statistical methods are available to address, at least partially, the possibility of expert misidentification of species. Phylogenetic trees discovered a cryptic species and strongly supported monophyletic clades for many Annulohypoxylon and Hypoxylon species, suggesting that ITS can contribute usefully to a barcode for these fungi. The PCIs here, derived solely from ITS, suggest that a fungal barcode will require secondary markers in Annulohypoxylon and

  11. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    PubMed Central

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  12. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps.

    PubMed

    Wong, Jessica X H; Li, Xiaochun; Liu, Frank S F; Yu, Hua-Zhong

    2015-06-30

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today's smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.

  13. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

    PubMed Central

    Wong, Jessica X. H.; Li, Xiaochun; Liu, Frank S. F.; Yu, Hua-Zhong

    2015-01-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps. PMID:26122608

  14. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

    NASA Astrophysics Data System (ADS)

    Wong, Jessica X. H.; Li, Xiaochun; Liu, Frank S. F.; Yu, Hua-Zhong

    2015-06-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.

  15. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    PubMed Central

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  16. How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?

    PubMed Central

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.

    2013-01-01

    Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements

  17. DNA Barcoding of Freshwater Fishes of Indo-Myanmar Biodiversity Hotspot.

    PubMed

    Barman, Anindya Sundar; Singh, Mamta; Singh, Soibam Khogen; Saha, Himadri; Singh, Yumlembam Jackie; Laishram, Martina; Pandey, Pramod Kumar

    2018-06-05

    To develop an effective conservation and management strategy, it is required to assess the biodiversity status of an ecosystem, especially when we deal with Indo-Myanmar biodiversity hotspot. Importance of this reaches to an entirely different level as the hotspot represents the area of high endemism which is under continuous threat. Therefore, the need of the present study was conceptualized, dealing with molecular assessment of the fish fauna of Indo-Myanmar region, which covers the Indian states namely, Manipur, Meghalaya, Mizoram, and Nagaland. A total of 363 specimens, representing 109 species were collected and barcoded from the different rivers and their tributaries of the region. The analyses performed in the present study, i.e. Kimura 2-Parameter genetic divergence, Neighbor-Joining, Automated Barcode Gap Discovery and Bayesian Poisson Tree Processes suggest that DNA barcoding is an efficient and reliable tool for species identification. Most of the species were clearly delineated. However, presence of intra-specific and inter-specific genetic distance overlap in few species, revealed the existence of putative cryptic species. A reliable DNA barcode reference library, established in our study provides an adequate knowledge base to the groups of non-taxonomists, researchers, biodiversity managers and policy makers in sketching effective conservation measures for this ecosystem.

  18. [DNA barcoding and its utility in commonly-used medicinal snakes].

    PubMed

    Huang, Yong; Zhang, Yue-yun; Zhao, Cheng-jian; Xu, Yong-li; Gu, Ying-le; Huang, Wen-qi; Lin, Kui; Li, Li

    2015-03-01

    Identification accuracy of traditional Chinese medicine is crucial for the traditional Chinese medicine research, production and application. DNA barcoding based on the mitochondrial gene coding for cytochrome c oxidase subunit I (COI), are more and more used for identification of traditional Chinese medicine. Using universal barcoding primers to sequence, we discussed the feasibility of DNA barcoding method for identification commonly-used medicinal snakes (a total of 109 samples belonging to 19 species 15 genera 6 families). The phylogenetic trees using Neighbor-joining were constructed. The results indicated that the mean content of G + C(46.5%) was lower than that of A + T (53.5%). As calculated by Kimera-2-parameter model, the mean intraspecies genetic distance of Trimeresurus albolabris, Ptyas dhumnades and Lycodon rufozonatus was greater than 2%. Further phylogenetic relationship results suggested that identification of one sample of T. albolabris was erroneous. The identification of some samples of P. dhumnades was also not correct, namely originally P. korros was identified as P. dhumnades. Factors influence on intraspecific genetic distance difference of L. rufozonatus need to be studied further. Therefore, DNA barcoding for identification of medicinal snakes is feasible, and greatly complements the morphological classification method. It is necessary to further study in identification of traditional Chinese medicine.

  19. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Zakharov, Evgeny V; Prosser, Sean W J; Sones, Jayme E; McKeown, Jaclyn T A; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  20. Systematic Validation and Atomic Force Microscopy of Non-Covalent Short Oligonucleotide Barcode Microarrays

    PubMed Central

    Cook, Michael A.; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-01-01

    Background Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20–60 base) unique sequence tags, or “barcodes”, associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Methodology/Principal Findings Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5′-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. Conclusions/Significance These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis. PMID:18253494

  1. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina).

    PubMed

    Dentinger, Bryn T M; Didukh, Maryna Y; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  2. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

    PubMed Central

    Chen, Shilin; Yao, Hui; Han, Jianping; Liu, Chang; Song, Jingyuan; Shi, Linchun; Zhu, Yingjie; Ma, Xinye; Gao, Ting; Pang, Xiaohui; Luo, Kun; Li, Ying; Li, Xiwen; Jia, Xiaocheng; Lin, Yulin; Leon, Christine

    2010-01-01

    Background The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Methodology/Principal Findings Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. Conclusions The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa. PMID:20062805

  3. DNA barcoding of the vegetable leafminer Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    DNA barcoding revealed the presence of the polyphagous leafminer pest Liriomyza sativae Blanchard in Bangladesh. DNA barcode sequences for mitochondrial COI were generated for Agromyzidae larvae, pupae and adults collected from field populations across Bangladesh. BLAST sequence similarity searches ...

  4. Scanning System -- Technology Worth a Look

    Treesearch

    Philip A. Araman; Daniel L. Schmoldt; Richard W. Conners; D. Earl Kline

    1995-01-01

    In an effort to help automate the inspection for lumber defects, optical scanning systems are emerging as an alternative to the human eye. Although still in its infancy, scanning technology is being explored by machine companies and universities. This article was excerpted from "Machine Vision Systems for Grading and Processing Hardwood Lumber," by Philip...

  5. DNA barcoding detected improper labelling and supersession of crab food served by restaurants in India.

    PubMed

    Vartak, Vivek Rohidas; Narasimmalu, Rajendran; Annam, Pavan Kumar; Singh, Dhirendra P; Lakra, Wazir S

    2015-01-01

    Detection of improper labelling of raw and processed seafood is of global importance for reducing commercial fraud and enhancing food safety. Crabs are crustaceans with intricate morphological as well as genetic divergence among species and are popular as seafood in restaurants. Owing to the high number of crab species available, it can be difficult to identify those included in particular food dishes, thus increasing the chance of supersession. DNA barcoding is an advanced technology for detecting improper food labelling and has been used successfully to authenticate seafood. This study identified 11 edible crab species from India by classical taxonomy and developed molecular barcodes with the cytochrome c oxidase I (COI) gene. These barcodes were used as reference barcodes for detecting any improper labelling of 50 restaurant crab samples. Neighbour-joining tree analysis with COI barcodes showed distinct clusters of restaurant samples with respective reference species. The study demonstrated 100% improper labelling of restaurant samples to cover up acts of inferior crab supersession. DNA barcoding successfully identified 11 edible crabs in accordance with classical taxonomy and discerned improper crab food labelling in restaurants of India. © 2014 Society of Chemical Industry.

  6. Single-cell barcoding and sequencing using droplet microfluidics.

    PubMed

    Zilionis, Rapolas; Nainys, Juozas; Veres, Adrian; Savova, Virginia; Zemmour, David; Klein, Allon M; Mazutis, Linas

    2017-01-01

    Single-cell RNA sequencing has recently emerged as a powerful tool for mapping cellular heterogeneity in diseased and healthy tissues, yet high-throughput methods are needed for capturing the unbiased diversity of cells. Droplet microfluidics is among the most promising candidates for capturing and processing thousands of individual cells for whole-transcriptome or genomic analysis in a massively parallel manner with minimal reagent use. We recently established a method called inDrops, which has the capability to index >15,000 cells in an hour. A suspension of cells is first encapsulated into nanoliter droplets with hydrogel beads (HBs) bearing barcoding DNA primers. Cells are then lysed and mRNA is barcoded (indexed) by a reverse transcription (RT) reaction. Here we provide details for (i) establishing an inDrops platform (1 d); (ii) performing hydrogel bead synthesis (4 d); (iii) encapsulating and barcoding cells (1 d); and (iv) RNA-seq library preparation (2 d). inDrops is a robust and scalable platform, and it is unique in its ability to capture and profile >75% of cells in even very small samples, on a scale of thousands or tens of thousands of cells.

  7. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation.

    PubMed

    Koroiva, Ricardo; Pepinelli, Mateus; Rodrigues, Marciel Elio; Roque, Fabio de Oliveira; Lorenz-Lemke, Aline Pedroso; Kvist, Sebastian

    2017-01-01

    We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of "Cerrado" and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI) barcodes were generated for the collected specimens. The distinct gap between intraspecific (0-2%) and interspecific variation (15% and above) in COI, and resulting separation of Barcode Index Numbers (BIN), allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation.

  8. System and method for compressive scanning electron microscopy

    DOEpatents

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  9. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  10. Accelerated construction of a regional DNA-barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park

    USGS Publications Warehouse

    Zhou, X.; Robinson, J.L.; Geraci, C.J.; Parker, C.R.; Flint, O.S.; Etnier, D.A.; Ruiter, D.; DeWalt, R.E.; Jacobus, L.M.; Hebert, P.D.N.

    2011-01-01

    Deoxyribonucleic acid (DNA) barcoding is an effective tool for species identification and lifestage association in a wide range of animal taxa. We developed a strategy for rapid construction of a regional DNA-barcode reference library and used the caddisflies (Trichoptera) of the Great Smoky Mountains National Park (GSMNP) as a model. Nearly 1000 cytochrome c oxidase subunit I (COI) sequences, representing 209 caddisfly species previously recorded from GSMNP, were obtained from the global Trichoptera Barcode of Life campaign. Most of these sequences were collected from outside the GSMNP area. Another 645 COI sequences, representing 80 species, were obtained from specimens collected in a 3-d bioblitz (short-term, intense sampling program) in GSMNP. The joint collections provided barcode coverage for 212 species, 91% of the GSMNP fauna. Inclusion of samples from other localities greatly expedited construction of the regional DNA-barcode reference library. This strategy increased intraspecific divergence and decreased average distances to nearest neighboring species, but the DNA-barcode library was able to differentiate 93% of the GSMNP Trichoptera species examined. Global barcoding projects will aid construction of regional DNA-barcode libraries, but local surveys make crucial contributions to progress by contributing rare or endemic species and full-length barcodes generated from high-quality DNA. DNA taxonomy is not a goal of our present work, but the investigation of COI divergence patterns in caddisflies is providing new insights into broader biodiversity patterns in this group and has directed attention to various issues, ranging from the need to re-evaluate species taxonomy with integrated morphological and molecular evidence to the necessity of an appropriate interpretation of barcode analyses and its implications in understanding species diversity (in contrast to a simple claim for barcoding failure).

  11. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data.

    PubMed

    Links, Matthew G; Dumonceaux, Tim J; Hemmingsen, Sean M; Hill, Janet E

    2012-01-01

    Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. Studies investigating the community dynamics of microbes have relied heavily on gene-centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, these criteria have not been used to evaluate gene targets for other domains of life. Using the framework of the International Barcode of Life we evaluated DNA barcodes for Bacteria. Candidates from the 16S rRNA gene and the protein coding cpn60 gene were evaluated. Within complete bacterial genomes in the public domain representing 983 species from 21 phyla, the largest difference between median pairwise inter- and intra-specific distances ("barcode gap") was found from cpn60. Distribution of sequence diversity along the ∼555 bp cpn60 target region was remarkably uniform. The barcode gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length operational taxonomic units from pyrosequencing data from a synthetic microbial community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA barcodes for Bacteria. The cpn60 universal target was found to have a much larger barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A large barcode gap for cpn60 provided a robust target for species-level characterization of data. The assembly of consensus sequences for barcodes was shown to be a reliable method for the identification and tracking of novel microbes in metagenomic studies.

  12. Enhancing the detection of barcoded reads in high throughput DNA sequencing data by controlling the false discovery rate.

    PubMed

    Buschmann, Tilo; Zhang, Rong; Brash, Douglas E; Bystrykh, Leonid V

    2014-08-07

    DNA barcodes are short unique sequences used to label DNA or RNA-derived samples in multiplexed deep sequencing experiments. During the demultiplexing step, barcodes must be detected and their position identified. In some cases (e.g., with PacBio SMRT), the position of the barcode and DNA context is not well defined. Many reads start inside the genomic insert so that adjacent primers might be missed. The matter is further complicated by coincidental similarities between barcode sequences and reference DNA. Therefore, a robust strategy is required in order to detect barcoded reads and avoid a large number of false positives or negatives.For mass inference problems such as this one, false discovery rate (FDR) methods are powerful and balanced solutions. Since existing FDR methods cannot be applied to this particular problem, we present an adapted FDR method that is suitable for the detection of barcoded reads as well as suggest possible improvements. In our analysis, barcode sequences showed high rates of coincidental similarities with the Mus musculus reference DNA. This problem became more acute when the length of the barcode sequence decreased and the number of barcodes in the set increased. The method presented in this paper controls the tail area-based false discovery rate to distinguish between barcoded and unbarcoded reads. This method helps to establish the highest acceptable minimal distance between reads and barcode sequences. In a proof of concept experiment we correctly detected barcodes in 83% of the reads with a precision of 89%. Sensitivity improved to 99% at 99% precision when the adjacent primer sequence was incorporated in the analysis. The analysis was further improved using a paired end strategy. Following an analysis of the data for sequence variants induced in the Atp1a1 gene of C57BL/6 murine melanocytes by ultraviolet light and conferring resistance to ouabain, we found no evidence of cross-contamination of DNA material between samples. Our

  13. Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobo; Pang, Shaojun; Shan, Tifeng; Liu, Feng

    2013-03-01

    This study is part of the endeavor to construct a comprehensive DNA barcoding database for common seaweeds in China. Identifications of red seaweeds, which have simple morphology and anatomy, are sometimes difficult solely depending on morphological characteristics. In recent years, DNA barcode technique has become a more and more effective tool to help solve some of the taxonomic difficulties. Some DNA markers such as COI (cytochrome oxidase subunit I) are proposed as standardized DNA barcodes for all seaweed species. In this study, COI, UPA (universal plastid amplicon, domain V of 23S rRNA), and ITS (nuclear internal transcribed spacer) were employed to analyze common species of intertidal red seaweeds in Qingdao (119.3°-121°E, 35.35°-37.09°N). The applicability of using one or a few combined barcodes to identify red seaweed species was tested. The results indicated that COI is a sensitive marker at species level. However, not all the tested species gave PCR amplification products due to lack of the universal primers. The second barcode UPA had effective universal primers but needed to be tested for the effectiveness of resolving closely related species. More than one ITS sequence types were found in some species in this investigation, which might lead to confusion in further analysis. Therefore ITS sequence is not recommended as a universal barcode for seaweeds identification.

  14. Highlighting Astyanax Species Diversity through DNA Barcoding

    PubMed Central

    Oliveira, Carlos Alexandre Miranda; de Melo, Filipe Augusto Gonçalves; Bertaco, Vinicius de Araújo; de Astarloa, Juan M. Díaz; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio

    2016-01-01

    DNA barcoding has been used extensively to solve taxonomic questions and identify new species. Neotropical fishes are found in a wide variety of shapes and sizes, with a large number of species yet to be described, many of which are very difficult to identify. Characidae is the most species-rich family of the Characiformes, and many of its genera are affected by taxonomic uncertainties, including the widely-distributed, species-rich genus Astyanax. In this study, we present an extensive analysis of Astyanax covering almost its entire area of occurrence, based on DNA barcoding. The use of different approaches (ABGD, GMYC and BIN) to the clustering of the sequences revealed ample consistency in the results obtained by the initial cutoff value of 2% divergence for putative species in the Neighbor-Joining analysis using the Kimura-2-parameter model. The results indicate the existence of five Astyanax lineages. Some groups, such as that composed by the trans-Andean forms, are mostly composed of well-defined species, and in others a number of nominal species are clustered together, hampering the delimitation of species, which in many cases proved impossible. The results confirm the extreme complexity of the systematics of the genus Astyanax and show that DNA barcoding can be an useful tool to address these complexes questions. PMID:27992537

  15. On site DNA barcoding by nanopore sequencing

    PubMed Central

    Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo

    2017-01-01

    Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016

  16. DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting.

    PubMed

    Yesson, Chris; Bárcenas, Rolando T; Hernández, Héctor M; Ruiz-Maqueda, María de la Luz; Prado, Alberto; Rodríguez, Víctor M; Hawkins, Julie A

    2011-09-01

    DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species-level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79-87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra-individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species-level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable. © 2011 Blackwell Publishing Ltd.

  17. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials

    PubMed Central

    Lorenz, Joseph G; Jackson, Whitney E; Beck, Jeanne C; Hanner, Robert

    2005-01-01

    The Integrated Primate Biomaterials and Information Resource (www.IPBIR.org) provides essential research reagents to the scientific community by establishing, verifying, maintaining, and distributing DNA and RNA derived from primate cell cultures. The IPBIR uses mitochondrial cytochrome c oxidase subunit I sequences to verify the identity of samples for quality control purposes in the accession, cell culture, DNA extraction processes and prior to shipping to end users. As a result, IPBIR is accumulating a database of ‘DNA barcodes’ for many species of primates. However, this quality control process is complicated by taxon specific patterns of ‘universal primer’ failure, as well as the amplification or co-amplification of nuclear pseudogenes of mitochondrial origins. To overcome these difficulties, taxon specific primers have been developed, and reverse transcriptase PCR is utilized to exclude these extraneous sequences from amplification. DNA barcoding of primates has applications to conservation and law enforcement. Depositing barcode sequences in a public database, along with primer sequences, trace files and associated quality scores, makes this species identification technique widely accessible. Reference DNA barcode sequences should be derived from, and linked to, specimens of known provenance in web-accessible collections in order to validate this system of molecular diagnostics. PMID:16214744

  18. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, Jawwad H.; Khan, Arif M.; Zafar, Yusuf; Mirza, M. Sajjad

    2014-01-01

    Background Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Methodology/Principal Findings Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. Conclusions As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations. PMID:24827460

  19. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, Jawwad H; Khan, Arif M; Zafar, Yusuf; Mirza, M Sajjad

    2014-01-01

    Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  20. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India.

    PubMed

    Nithaniyal, Stalin; Newmaster, Steven G; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.

  1. DNA Barcode Authentication of Wood Samples of Threatened and Commercial Timber Trees within the Tropical Dry Evergreen Forest of India

    PubMed Central

    Nithaniyal, Stalin; Newmaster, Steven G.; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    Background India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. Methodology/Principal Findings We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. Conclusions We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value. PMID:25259794

  2. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.

    PubMed

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice

    2018-06-08

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation

    PubMed Central

    Pepinelli, Mateus; Rodrigues, Marciel Elio; Roque, Fabio de Oliveira; Lorenz-Lemke, Aline Pedroso; Kvist, Sebastian

    2017-01-01

    We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of “Cerrado” and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI) barcodes were generated for the collected specimens. The distinct gap between intraspecific (0–2%) and interspecific variation (15% and above) in COI, and resulting separation of Barcode Index Numbers (BIN), allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation. PMID:28763495

  4. Efficacy of DNA barcoding for the species identification of spiders from Western Ghats of India.

    PubMed

    Gaikwad, Swapnil; Warudkar, Ashwin; Shouche, Yogesh

    2017-09-01

    DNA barcoding has emerged as an additional tool for taxonomy and as an aid to taxonomic impediments. Due to their extensive morphological variation, spiders are taxonomically challenging. Therefore, all over the world, attempts are being made to DNA barcode species of spiders. Till now no attempts were made to DNA barcode Indian spiders despite their rich diversity. We have generated DNA barcodes for 60 species (n = 112) of spiders for the first time from India. Although only 17 species were correctly identified at the species level, DNA barcoding correctly discriminated 99% of the species studied here. We have also found high intraspecies nucleotide divergence in Plexippus paykulli suggesting cryptic diversity that needs to be studied in detail. Our study also showed non-specific amplification of the Cytochrome Oxidase I (COI) gene of endosymbiont bacteria Wolbachia. However, these cases are very rare and could be resolved by the use of modified or group specific primers.

  5. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.

  6. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae).

    PubMed

    Magnacca, Karl N; Brown, Mark J F

    2010-06-11

    The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna.

  7. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae)

    PubMed Central

    2010-01-01

    Background The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. Results Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. Conclusions Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna

  8. Using high-throughput barcode sequencing to efficiently map connectomes.

    PubMed

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.

    PubMed

    Goldstein, Paul Z; DeSalle, Rob

    2011-02-01

    DNA barcodes, like traditional sources of taxonomic information, are potentially powerful heuristics in the identification of described species but require mindful analytical interpretation. The role of DNA barcoding in generating hypotheses of new taxa in need of formal taxonomic treatment is discussed, and it is emphasized that the recursive process of character evaluation is both necessary and best served by understanding the empirical mechanics of the discovery process. These undertakings carry enormous ramifications not only for the translation of DNA sequence data into taxonomic information but also for our comprehension of the magnitude of species diversity and its disappearance. This paper examines the potential strengths and pitfalls of integrating DNA sequence data, specifically in the form of DNA barcodes as they are currently generated and analyzed, with taxonomic practice.

  10. Identification of Rays through DNA Barcoding: An Application for Ecologists

    PubMed Central

    Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556

  11. Optimization and Standardization of Fluorescent Cell Barcoding for Multiplexed Flow Cytometric Phenotyping

    PubMed Central

    Giudice, Valentina; Feng, Xingmin; Kajigaya, Sachiko; Young, Neal S.; Biancotto, Angélique

    2017-01-01

    Fluorescent cell barcoding (FCB) is a cell-based multiplexing technique for high-throughput flow cytometry. Barcoded samples can be stained and acquired collectively, minimizing staining variability and antibody consumption, and decreasing required sample volumes. Combined with functional measurements, FCB can be used for drug screening, signaling profiling, and cytokine detection, but technical issues are present. We optimized the FCB technique for routine utilization using DyLight 350, DyLight 800, Pacific Orange, and CBD500 for barcoding six, nine, or 36 human peripheral blood specimens. Working concentrations of FCB dyes ranging from 0 to 500 μg/ml were tested, and viability dye staining was optimized to increase robustness of data. A five-color staining with surface markers for Vβ usage analysis in CD4+ and CD8+ T cells was achieved in combination with nine sample barcoding. We provide improvements of the FCB technique that should be useful for multiplex drug screening and for lymphocyte characterization and perturbations in the diagnosis and during the course of disease. PMID:28692789

  12. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    PubMed Central

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  13. Colour-barcoded magnetic microparticles for multiplexed bioassays.

    PubMed

    Lee, Howon; Kim, Junhoi; Kim, Hyoki; Kim, Jiyun; Kwon, Sunghoon

    2010-09-01

    Encoded particles have a demonstrated value for multiplexed high-throughput bioassays such as drug discovery and clinical diagnostics. In diverse samples, the ability to use a large number of distinct identification codes on assay particles is important to increase throughput. Proper handling schemes are also needed to readout these codes on free-floating probe microparticles. Here we create vivid, free-floating structural coloured particles with multi-axis rotational control using a colour-tunable magnetic material and a new printing method. Our colour-barcoded magnetic microparticles offer a coding capacity easily into the billions with distinct magnetic handling capabilities including active positioning for code readouts and active stirring for improved reaction kinetics in microscale environments. A DNA hybridization assay is done using the colour-barcoded magnetic microparticles to demonstrate multiplexing capabilities.

  14. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta).

    PubMed

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.

  15. An example of how barcodes can clarify cryptic species: the case of the calanoid copepod Mastigodiaptomus albuquerquensis (Herrick).

    PubMed

    Gutiérrez-Aguirre, Martha Angélica; Cervantes-Martínez, Adrián; Elías-Gutiérrez, Manuel

    2014-01-01

    The freshwater calanoid Mastigodiaptomus is a genus with high richness in the Americas and is composed of nine species, seven recorded in Mexico and four that are apparently endemic to small areas. Mastigodiaptomus albuquerquensis is a common, widely distributed species ranging from the southern USA to Central America. This species can be easily identified by a notable butterfly-like sclerotization on the basis of the right fifth leg of males. Nevertheless, morphological differences observed among populations throughout this species distributional range have led to the description of several related species or subspecies, such as M. albuquerquensis patzcuarensis from Lake Pátzcuaro in the Central Plateau of Mexico. Genetic results based on barcodes, morphology based on scanning electron and light microscopy images, and morphometric analyses were used to describe cryptic species within the M. albuquerquensis complex. The morphological analyses coincided partially with the genetic markers, suggesting the existence of at least two sibling species: M. albuquerquensis s. str. and M. patzcuarensis. A third species was genetically separated but was morphologically indistinguishable from the M. patzcuarensis group. Hidden diversity has been a major problem in establishing real patterns of species distribution and genetic acquisition from megadiverse hotspots such as Mexico, where the Nearctic and the Neotropical regions of the Americas meet. Barcodes can help taxonomists to reveal and formally name these new species. Here, we describe two of three potential species highlighted by the use of barcodes: M. albuquerquensis s. str. in the northern semi-desert and M. patzcuarensis on the Central Plateau at more than 2000 m above sea level.

  16. DNA Barcoding for Species Identification of Insect Skins: A Test on Chironomidae (Diptera) Pupal Exuviae

    PubMed Central

    Ekrem, Torbjørn; Stur, Elisabeth

    2017-01-01

    Abstract Chironomidae (Diptera) pupal exuviae samples are commonly used for biological monitoring of aquatic habitats. DNA barcoding has proved useful for species identification of chironomid life stages containing cellular tissue, but the barcoding success of chironomid pupal exuviae is unknown. We assessed whether standard DNA barcoding could be efficiently used for species identification of chironomid pupal exuviae when compared with morphological techniques and if there were differences in performance between temperate and tropical ecosystems, subfamilies, and tribes. PCR, sequence, and identification success differed significantly between geographic regions and taxonomic groups. For Norway, 27 out of 190 (14.2%) of pupal exuviae resulted in high-quality chironomid sequences that match species. For Costa Rica, 69 out of 190 (36.3%) Costa Rican pupal exuviae resulted in high-quality sequences, but none matched known species. Standard DNA barcoding of chironomid pupal exuviae had limited success in species identification of unknown specimens due to contaminations and lack of matching references in available barcode libraries, especially from Costa Rica. Therefore, we recommend future biodiversity studies that focus their efforts on understudied regions, to simultaneously use morphological and molecular identification techniques to identify all life stages of chironomids and populate the barcode reference library with identified sequences.

  17. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters

    PubMed Central

    Hadi, Sámed I. I. A.; Santana, Hugo; Brunale, Patrícia P. M.; Gomes, Taísa G.; Oliveira, Márcia D.; Matthiensen, Alexandre; Oliveira, Marcos E. C.; Silva, Flávia C. P.; Brasil, Bruno S. A. F.

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences’ using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  18. Effect of field deposition and pore size on Co/Cu barcode nanowires by electrodeposition

    NASA Astrophysics Data System (ADS)

    Cho, Ji Ung; Wu, Jun-Hua; Min, Ji Hyun; Lee, Ju Hun; Liu, Hong-Ling; Kim, Young Keun

    2007-03-01

    We have studied the effect of an external magnetic field applied during electrodeposition of Co/Cu barcode nanowires in anodic aluminum oxide nanotemplates. The magnetic properties of the barcode nanowires were greatly enhanced for 50 nm pore diameter regardless of segment aspect ratio, but field deposition has little effect on the 200 nm nanowires. The magnetic improvement is correlated with a structural change, attributed to field modification of the growth habit of the barcode nanowires. A mechanism of growth subject to geometric confinement is proposed.

  19. Bar-code medication administration system for anesthetics: effects on documentation and billing.

    PubMed

    Nolen, Agatha L; Rodes, W Dyer

    2008-04-01

    The effects of using a new bar-code medication administration (BCMA) system for anesthetics to automate documentation of drug administration by anesthesiologists were studied. From October 1, 2004, to September 15, 2005, all medications administered to patients undergoing cardiac surgery were documented with a BCMA system at a large acute care facility. Drug claims data for 12 targeted anesthetics in diagnosis-related groups (DRGs) 104-111 were analyzed to determine the quantity of drugs charged and the revenue generated. Those data were compared with claims data for a historical case-control group (October 1, 2003, to September 15, 2004, for the same DRGs) for which medication use was documented manually. From October 1, 2005, to October 1, 2006, anesthesiologists for cardiac surgeries either voluntarily used the automated system or completed anesthesia records manually. A total of 870 cardiac surgery cases for which the BCMA system was used were evaluated. There were 961 cardiac surgery cases in the historical control group. The BCMA system increased the quantity of drugs documented per case by 21.7% and drug revenue captured per case by 18.8%. The time needed by operating-room pharmacy staff to process an anesthesia record for billing decreased by eight minutes per case. After two years, anesthesiologists voluntarily used the new technology on 100% of cardiac surgery patients. Implementation of a BCMA system for anesthetic use in cardiac surgery increased the quantity of drugs charged by 21.7% per case and drug revenue per case by 18.8%. Anesthesiologists continued to use the automated system on a voluntary basis after conclusion of the initial study.

  20. 20 years since the introduction of DNA barcoding: from theory to application.

    PubMed

    Fišer Pečnikar, Živa; Buzan, Elena V

    2014-02-01

    Traditionally, taxonomic identification has relied upon morphological characters. In the last two decades, molecular tools based on DNA sequences of short standardised gene fragments, termed DNA barcodes, have been developed for species discrimination. The most common DNA barcode used in animals is a fragment of the cytochrome c oxidase (COI) mitochondrial gene, while for plants, two chloroplast gene fragments from the RuBisCo large subunit (rbcL) and maturase K (matK) genes are widely used. Information gathered from DNA barcodes can be used beyond taxonomic studies and will have far-reaching implications across many fields of biology, including ecology (rapid biodiversity assessment and food chain analysis), conservation biology (monitoring of protected species), biosecurity (early identification of invasive pest species), medicine (identification of medically important pathogens and their vectors) and pharmacology (identification of active compounds). However, it is important that the limitations of DNA barcoding are understood and techniques continually adapted and improved as this young science matures.

  1. BEST: barcode enabled sequencing of tetrads.

    PubMed

    Scott, Adrian C; Ludlow, Catherine L; Cromie, Gareth A; Dudley, Aimée M

    2014-05-01

    Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny.

  2. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    PubMed

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  3. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    PubMed Central

    Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494

  4. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    PubMed

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  5. DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification?

    PubMed

    Raja, Huzefa A; Baker, Timothy R; Little, Jason G; Oberlies, Nicholas H

    2017-01-01

    One challenge in the dietary supplement industry is confirmation of species identity for processed raw materials, i.e. those modified by milling, drying, or extraction, which move through a multilevel supply chain before reaching the finished product. This is particularly difficult for samples containing fungal mycelia, where processing removes morphological characteristics, such that they do not present sufficient variation to differentiate species by traditional techniques. To address this issue, we have demonstrated the utility of DNA barcoding to verify the taxonomic identity of fungi found commonly in the food and dietary supplement industry; such data are critical for protecting consumer health, by assuring both safety and quality. By using DNA barcoding of nuclear ribosomal internal transcribed spacer (ITS) of the rRNA gene with fungal specific ITS primers, ITS barcodes were generated for 33 representative fungal samples, all of which could be used by consumers for food and/or dietary supplement purposes. In the majority of cases, we were able to sequence the ITS region from powdered mycelium samples, grocery store mushrooms, and capsules from commercial dietary supplements. After generating ITS barcodes utilizing standard procedures accepted by the Consortium for the Barcode of Life, we tested their utility by performing a BLAST search against authenticate published ITS sequences in GenBank. In some cases, we also downloaded published, homologous sequences of the ITS region of fungi inspected in this study and examined the phylogenetic relationships of barcoded fungal species in light of modern taxonomic and phylogenetic studies. We anticipate that these data will motivate discussions on DNA barcoding based species identification as applied to the verification/certification of mushroom-containing dietary supplements. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2016-10-01

    Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular Barcoding of Aquatic Oligochaetes: Implications for Biomonitoring

    PubMed Central

    Vivien, Régis; Wyler, Sofia; Lafont, Michel; Pawlowski, Jan

    2015-01-01

    Aquatic oligochaetes are well recognized bioindicators of quality of sediments and water in watercourses and lakes. However, the difficult taxonomic determination based on morphological features compromises their more common use in eco-diagnostic analyses. To overcome this limitation, we investigated molecular barcodes as identification tool for broad range of taxa of aquatic oligochaetes. We report 185 COI and 52 ITS2 rDNA sequences for specimens collected in Switzerland and belonging to the families Naididae, Lumbriculidae, Enchytraeidae and Lumbricidae. Phylogenetic analyses allowed distinguishing 41 lineages separated by more than 10 % divergence in COI sequences. The lineage distinction was confirmed by Automatic Barcode Gap Discovery (ABGD) method and by ITS2 data. Our results showed that morphological identification underestimates the oligochaete diversity. Only 26 of the lineages could be assigned to morphospecies, of which seven were sequenced for the first time. Several cryptic species were detected within common morphospecies. Many juvenile specimens that could not be assigned morphologically have found their home after genetic analysis. Our study showed that COI barcodes performed very well as species identifiers in aquatic oligochaetes. Their easy amplification and good taxonomic resolution might help promoting aquatic oligochaetes as bioindicators for next generation environmental DNA biomonitoring of aquatic ecosystems. PMID:25856230

  8. A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

    NASA Astrophysics Data System (ADS)

    Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.

    , creating molecular barcodes, which are efficiently read using fluorescence resonance energy transfer techniques for minimizing noise from unincorporated labels. As such, our integrative approach for the realization of genomic analysis through nanoconfinement, named nanocoding, was demonstrated through the barcoding and mapping of bacterial artificial chromosomal molecules, thereby providing the basis for a high-throughput platform competent for whole genome investigations.

  9. ITS1: a DNA barcode better than ITS2 in eukaryotes?

    PubMed

    Wang, Xin-Cun; Liu, Chang; Huang, Liang; Bengtsson-Palme, Johan; Chen, Haimei; Zhang, Jian-Hui; Cai, Dayong; Li, Jian-Qin

    2015-05-01

    A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large-scale meta-analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity-based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample-rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species. © 2014 John Wiley & Sons Ltd.

  10. DNA barcoding Australia's fish species

    PubMed Central

    Ward, Robert D; Zemlak, Tyler S; Innes, Bronwyn H; Last, Peter R; Hebert, Paul D.N

    2005-01-01

    Two hundred and seven species of fish, mostly Australian marine fish, were sequenced (barcoded) for a 655 bp region of the mitochondrial cytochrome oxidase subunit I gene (cox1). Most species were represented by multiple specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively. All species could be differentiated by their cox1 sequence, although single individuals of each of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to develop species identification systems, some phylogenetic signal was apparent in the data. In the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids, rays, sharks and teleosts. Species within genera invariably clustered, and generally so did genera within families. Three taxonomic groups—dogfishes of the genus Squalus, flatheads of the family Platycephalidae, and tunas of the genus Thunnus—were examined more closely. The clades revealed after bootstrapping generally corresponded well with expectations. Individuals from operational taxonomic units designated as Squalus species B through F formed individual clades, supporting morphological evidence for each of these being separate species. We conclude that cox1 sequencing, or ‘barcoding’, can be used to identify fish species. PMID:16214743

  11. Review and future prospects for DNA barcoding methods in forensic palynology.

    PubMed

    Bell, Karen L; Burgess, Kevin S; Okamoto, Kazufusa C; Aranda, Roman; Brosi, Berry J

    2016-03-01

    Pollen can be a critical forensic marker in cases where determining geographic origin is important, including investigative leads, missing persons cases, and intelligence applications. However, its use has previously been limited by the need for a high level of specialization by expert palynologists, slow speeds of identification, and relatively poor taxonomic resolution (typically to the plant family or genus level). By contrast, identification of pollen through DNA barcoding has the potential to overcome all three of these limitations, and it may seem surprising that the method has not been widely implemented. Despite what might seem a straightforward application of DNA barcoding to pollen, there are technical issues that have delayed progress. However, recent developments of standard methods for DNA barcoding of pollen, along with improvements in high-throughput sequencing technology, have overcome most of these technical issues. Based on these recent methodological developments in pollen DNA barcoding, we believe that now is the time to start applying these techniques in forensic palynology. In this article, we discuss the potential for these methods, and outline directions for future research to further improve on the technology and increase its applicability to a broader range of situations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Barcode Technology Acceptance and Utilization in Health Information Management Department at Academic Hospitals According to Technology Acceptance Model.

    PubMed

    Ehteshami, Asghar

    2017-03-01

    Nowdays, due to the increasing importance of quality care, organizations focuse on the improving provision, management and distribution of health. On one hand, incremental costs of the new technologies and on the other hand, increased knowledge of health care recipients and their expectations for high quality services have doubled the need to make changes in order to respond to resource constraints (financial, human, material). For this purpose, several technologies, such as barcode, have been used in hospitals to improve services and staff productivity; but various factors effect on the adoption of new technologies and despite good implementation of a technology and its benefits, sometimes personnel don't accept and don't use it. This is an applied descriptive cross-sectional study in which all the barcode users in health information management department of the three academic hospitals (Feiz, Al-Zahra, Ayatollah Kashani) affiliated to Isfahan University of Medical Sciences were surveyed by the barcode technology acceptance questionnaire, in six areas as following: barcode ease of learning, capabilities, perception of its usefulness and its ease of use, users attitudes towards its using, and users intention. The finding showed that barcode technology total acceptance was relatively desirable (%76.9); the most compliance with TAM model was related to the user perceptions about the ease of use of barcode technology and the least compliance was related to the ease of learning barcode technology (respectively %83.7 and %71.5). Ease of learning and barcode capability effect of usefulness and perceived ease of barcode technology. Users perceptions effect their attitudes toward greater use of technology and their attitudes have an effect on their intention to use the technology and finally, their intention makes actual use of the technology (acceptance). Therefore, considering the six elements related to technology implementation can be important in the barcode

  13. DNA Barcoding for Identification of ‘Candidatus Phytoplasmas’ Using a Fragment of the Elongation Factor Tu Gene

    PubMed Central

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta; Kawube, Geofrey; Bertaccini, Assunta; Nicolaisen, Mogens

    2012-01-01

    Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology/Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification. PMID:23272216

  14. "Crown of thorns" of Daphnia: an exceptional inducible defense discovered by DNA barcoding.

    PubMed

    Laforsch, Christian; Haas, Andreas; Jung, Nina; Schwenk, Klaus; Tollrian, Ralph; Petrusek, Adam

    2009-09-01

    DNA barcoding has emerged as valuable tool to document global biodiversity. Mitochondrial cytochrome oxidase I (COI) sequences serve as genetic markers to catalogue species richness in the animal kingdom and to identify cryptic and polymorphic animal species. Furthermore, DNA barcoding data serve as a fuel for ecological studies, as they provide the opportunity to unravel species interactions among hosts and parasites, predators and prey, and among competitors in unprecedented detail. In a recent paper we described how DNA barcoding in combination with morphological and ecological data unravelled a striking predator-prey interaction of organisms from temporary aquatic habitats, the predatory notostracan Triops and its prey, cladocerans of the Daphnia atkinsoni complex.

  15. Identification of Amazonian trees with DNA barcodes.

    PubMed

    Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme

    2009-10-16

    Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.

  16. Identification of Amazonian Trees with DNA Barcodes

    PubMed Central

    Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A.; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme

    2009-01-01

    Background Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Methodology/Principal Findings Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. Conclusion/Significance We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs. PMID:19834612

  17. INTERNAL TRANSCRIBED SPACER (ITS), AN IDEAL DNA BARCODE FOR SPECIES DISCRIMINATION IN CRAWFURDIA WALL. (GENTIANACEAE).

    PubMed

    Zhang, Dequan; Jiang, Bei; Duan, Lizhen; Zhou, Nong

    2016-01-01

    DNA barcoding is a technique used to identify species based on species-specific differences in short regions of their DNA. It is widely used in species discrimination of medicinal plants and traditional medicines. In the present study, four potential DNA barcodes, namely rbcL , matK , trnH-psbA and ITS (nuclear ribosomal internal transcribed spacer) were adopted for species discrimination in Crawfurdia Wall (Genetiaceae). Identification ability of these DNA barcodes and combinations were evaluated using three classic methods (Distance, Blast and Tree-Building). As a result, ITS, trnH-psbA and rbcL regions showed great universality for a success rate of 100%; whereas matK was disappointing for which only 65% samples gained useful DNA sequences. ITS region, which could clearly and effectively identify the five species in Crawfurdia , performed very well in this study. On the contrary, trnH-psbA and rbcL performed poorly in discrimination among these species. ITS marker was an ideal DNA barcode in Crawfurdia and it should be incorporated into one of the core barcodes for seed plants.

  18. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes

    PubMed Central

    Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676

  19. Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern

    Treesearch

    Jeremy R. deWaard; Andrew Mitchell; Melody A. Keena; David Gopurenko; Laura M. Boykin; Karen F. Armstrong; Michael G. Pogue; Joao Lima; Robin Floyd; Robert H. Hanner; Leland M. Humble

    2010-01-01

    This study demonstrates the efficacy of DNA barcodes for diagnosing species of Lymantria and reinforces the view that the approach is an under-utilized resource with substantial potential for biosecurity and surveillance. Biomonitoring agencies currently employing the NB restriction digest system would gather more information by transitioning to the...

  20. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device.

    PubMed

    Gao, Yali; Lam, Albert W Y; Chan, Warren C W

    2013-04-24

    The impact of detecting multiple infectious diseases simultaneously at point-of-care with good sensitivity, specificity, and reproducibility would be enormous for containing the spread of diseases in both resource-limited and rich countries. Many barcoding technologies have been introduced for addressing this need as barcodes can be applied to detecting thousands of genetic and protein biomarkers simultaneously. However, the assay process is not automated and is tedious and requires skilled technicians. Barcoding technology is currently limited to use in resource-rich settings. Here we used magnetism and microfluidics technology to automate the multiple steps in a quantum dot barcode assay. The quantum dot-barcoded microbeads are sequentially (a) introduced into the chip, (b) magnetically moved to a stream containing target molecules, (c) moved back to the original stream containing secondary probes, (d) washed, and (e) finally aligned for detection. The assay requires 20 min, has a limit of detection of 1.2 nM, and can detect genetic targets for HIV, hepatitis B, and syphilis. This study provides a simple strategy to automate the entire barcode assay process and moves barcoding technologies one step closer to point-of-care applications.

  1. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify

  2. Mini-DNA barcode in identification of the ornamental fish: A case study from Northeast India.

    PubMed

    Dhar, Bishal; Ghosh, Sankar Kumar

    2017-09-05

    The ornamental fishes were exported under the trade names or generic names, thus creating problems in species identification. In this regard, DNA barcoding could effectively elucidate the actual species status. However, the problem arises if the specimen is having taxonomic disputes, falsified by trade/generic names, etc., On the other hand, barcoding the archival museum specimens would be of greater benefit to address such issues as it would create firm, error-free reference database for rapid identification of any species. This can be achieved only by generating short sequences as DNA from chemically preserved are mostly degraded. Here we aimed to identify a short stretch of informative sites within the full-length barcode segment, capable of delineating diverse group of ornamental fish species, commonly traded from NE India. We analyzed 287 full-length barcode sequences from the major fish orders and compared the interspecific K2P distance with nucleotide substitutions patterns and found a strong correlation of interspecies distance with transversions (0.95, p<0.001). We, therefore, proposed a short stretch of 171bp (transversion rich) segment as mini-barcode. The proposed segment was compared with the full-length barcodes and found to delineate the species effectively. Successful PCR amplification and sequencing of the 171bp segment using designed primers for different orders validated it as mini-barcodes for ornamental fishes. Thus, our findings would be helpful in strengthening the global database with the sequence of archived fish species as well as an effective identification tool of the traded ornamental fish species, as a less time consuming, cost effective field-based application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DNA barcoding for biosecurity: case studies from the UK plant protection program.

    PubMed

    Hodgetts, Jennifer; Ostojá-Starzewski, Jozef C; Prior, Thomas; Lawson, Rebecca; Hall, Jayne; Boonham, Neil

    2016-11-01

    Since its conception, DNA barcoding has seen a rapid uptake within the research community. Nevertheless, as with many new scientific tools, progression towards the point of routine deployment within diagnostic laboratories has been slow. In this paper, we discuss the application of DNA barcoding in the Defra plant health diagnostic laboratories, where DNA barcoding is used primarily for the identification of invertebrate pests. We present a series of case studies that demonstrate the successful application of DNA barcoding but also reveal some potential limitations to expanded use. The regulated plant pest, Bursephalenchus xylophilus, and one of its vectors, Monochamus alternatus, were found in dining chairs. Some traded wood products are potentially high risk, allowing the movement of longhorn beetles; Trichoferus campestris, Leptura quadrifasciata, and Trichoferus holosericeus were found in a wooden cutlery tray, a railway sleeper, and a dining chair, respectively. An outbreak of Meloidogyne fallax was identified in Allium ampeloprasum and in three weed species. Reference sequences for UK native psyllids were generated to enable the development of rapid diagnostics to be used for monitoring following the release of Aphalara itadori as a biological control agent for Fallopia japonica.

  4. rbcL and matK earn two thumbs up as the core DNA barcode for ferns.

    PubMed

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D; Pryer, Kathleen M

    2011-01-01

    DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history--an endeavor previously impossible--will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade--Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)--to further evaluate the resolving power of these loci. Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.

  5. rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J.; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D.; Pryer, Kathleen M.

    2011-01-01

    Background DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci. Principal Findings Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Conclusions Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development. PMID:22028918

  6. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta)

    PubMed Central

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella–like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential “specific barcode” for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes. PMID:27092945

  7. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    PubMed

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria

    PubMed Central

    Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho

    2016-01-01

    DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256

  9. DNA barcoding detects contamination and substitution in North American herbal products

    PubMed Central

    2013-01-01

    Background Herbal products available to consumers in the marketplace may be contaminated or substituted with alternative plant species and fillers that are not listed on the labels. According to the World Health Organization, the adulteration of herbal products is a threat to consumer safety. Our research aimed to investigate herbal product integrity and authenticity with the goal of protecting consumers from health risks associated with product substitution and contamination. Methods We used DNA barcoding to conduct a blind test of the authenticity for (i) 44 herbal products representing 12 companies and 30 different species of herbs, and (ii) 50 leaf samples collected from 42 herbal species. Our laboratory also assembled the first standard reference material (SRM) herbal barcode library from 100 herbal species of known provenance that were used to identify the unknown herbal products and leaf samples. Results We recovered DNA barcodes from most herbal products (91%) and all leaf samples (100%), with 95% species resolution using a tiered approach (rbcL + ITS2). Most (59%) of the products tested contained DNA barcodes from plant species not listed on the labels. Although we were able to authenticate almost half (48%) of the products, one-third of these also contained contaminants and or fillers not listed on the label. Product substitution occurred in 30/44 of the products tested and only 2/12 companies had products without any substitution, contamination or fillers. Some of the contaminants we found pose serious health risks to consumers. Conclusions Most of the herbal products tested were of poor quality, including considerable product substitution, contamination and use of fillers. These activities dilute the effectiveness of otherwise useful remedies, lowering the perceived value of all related products because of a lack of consumer confidence in them. We suggest that the herbal industry should embrace DNA barcoding for authenticating herbal products through

  10. Limited efficiency of universal mini-barcode primers for DNA amplification from desert reptiles, birds and mammals.

    PubMed

    Arif, I A; Khan, H A; Al Sadoon, M; Shobrak, M

    2011-10-31

    In recent years, DNA barcoding has emerged as a powerful tool for species identification. We report an extended validation of a universal DNA mini-barcode for amplification of 130-bp COI segments from 23 specimens collected from a desert environment, including 11 reptiles, five mammals and seven birds. Besides the standard double-annealing protocol, we also tested a more stringent single-annealing protocol. The PCR success rate for the amplification of the mini-barcode region was: mammals (4/5), reptiles (5/11) and birds (4/7). These findings demonstrate the limited utility of universal primers for mini-barcoding, at least for these vertebrate taxa that we collected from the Saudi Arabian desert.

  11. Application of Barcoding to Reduce Error of Patient Identification and to Increase Patient's Information Confidentiality of Test Tube Labelling in a Psychiatric Teaching Hospital.

    PubMed

    Liu, Hsiu-Chu; Li, Hsing; Chang, Hsin-Fei; Lu, Mei-Rou; Chen, Feng-Chuan

    2015-01-01

    Learning from the experience of another medical center in Taiwan, Kaohsiung Municipal Kai-Suan Psychiatric Hospital has changed the nursing informatics system step by step in the past year and a half . We considered ethics in the original idea of implementing barcodes on the test tube labels to process the identification of the psychiatric patients. The main aims of this project are to maintain the confidential information and to transport the sample effectively. The primary nurses had been using different work sheets for this project to ensure the acceptance of the new barcode system. In the past two years the errors in the blood testing process were as high as 11,000 in 14,000 events per year, resulting in wastage of resources. The actions taken by the nurses and the new barcode system implementation can improve the clinical nursing care quality, safety of the patients, and efficiency, while decreasing the cost due to the human error.

  12. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  13. Comparing and combining distance-based and character-based approaches for barcoding turtles.

    PubMed

    Reid, B N; LE, M; McCord, W P; Iverson, J B; Georges, A; Bergmann, T; Amato, G; Desalle, R; Naro-Maciel, E

    2011-11-01

    Molecular barcoding can serve as a powerful tool in wildlife forensics and may prove to be a vital aid in conserving organisms that are threatened by illegal wildlife trade, such as turtles (Order Testudines). We produced cytochrome oxidase subunit one (COI) sequences (650 bp) for 174 turtle species and combined these with publicly available sequences for 50 species to produce a data set representative of the breadth of the order. Variability within the barcode region was assessed, and the utility of both distance-based and character-based methods for species identification was evaluated. For species in which genetic material from more than one individual was available (n = 69), intraspecific divergences were 1.3% on average, although divergences greater than the customary 2% barcode threshold occurred within 15 species. High intraspecific divergences could indicate species with a high degree of internal genetic structure or possibly even cryptic species, although introgression is also probable in some of these taxa. Divergences between species of the same genus were 6.4% on average; however, 49 species were <2% divergent from congeners. Low levels of interspecific divergence could be caused by recent evolutionary radiations coupled with the low rates of mtDNA evolution previously observed in turtles. Complementing distance-based barcoding with character-based methods for identifying diagnostic sets of nucleotides provided better resolution in several cases where distance-based methods failed to distinguish species. An online identification engine was created to provide character-based identifications. This study constitutes the first comprehensive barcoding effort for this seriously threatened order. © 2011 Blackwell Publishing Ltd.

  14. The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.)

    PubMed Central

    Hartvig, Ida; Czako, Mihaly; Kjær, Erik Dahl; Nielsen, Lene Rostgaard; Theilade, Ida

    2015-01-01

    The genus Dalbergia contains many valuable timber species threatened by illegal logging and deforestation, but knowledge on distributions and threats is often limited and accurate species identification difficult. The aim of this study was to apply DNA barcoding methods to support conservation efforts of Dalbergia species in Indochina. We used the recommended rbcL, matK and ITS barcoding markers on 95 samples covering 31 species of Dalbergia, and tested their discrimination ability with both traditional distance-based as well as different model-based machine learning methods. We specifically tested whether the markers could be used to solve taxonomic confusion concerning the timber species Dalbergia oliveri, and to identify the CITES-listed Dalbergia cochinchinensis. We also applied the barcoding markers to 14 samples of unknown identity. In general, we found that the barcoding markers discriminated among Dalbergia species with high accuracy. We found that ITS yielded the single highest discrimination rate (100%), but due to difficulties in obtaining high-quality sequences from degraded material, the better overall choice for Dalbergia seems to be the standard rbcL+matK barcode, as this yielded discrimination rates close to 90% and amplified well. The distance-based method TaxonDNA showed the highest identification rates overall, although a more complete specimen sampling is needed to conclude on the best analytic method. We found strong support for a monophyletic Dalbergia oliveri and encourage that this name is used consistently in Indochina. The CITES-listed Dalbergia cochinchinensis was successfully identified, and a species-specific assay can be developed from the data generated in this study for the identification of illegally traded timber. We suggest that the use of DNA barcoding is integrated into the work flow during floristic studies and at national herbaria in the region, as this could significantly increase the number of identified specimens and

  15. A survey on barcode RFID and NFC

    NASA Astrophysics Data System (ADS)

    Thanapal, P.; Prabhu, J.; Jakhar, Mridula

    2017-11-01

    Over the recent years, many industries have started implementing new technologies for tracing and tracking their products. These technologies are a kind of blessing to their management system. The technology and management system has to work in parallel to avoid loopholes in the system. We can see so many technologies around us and the most difficult and important part is to choose best out of all these new technologies. The important point which we need to take care while choosing a technology for the system is to make sure the technology can integrate properly with the other parameters in the management system. The industry management system consists of many levels such as initial level, intermediate level, final level and tracking. Nowadays tracking a product from its initial stage is becoming a trend. To cope up with this upcoming trend and also with the company demand, integrating the product with Barcode, RFID tags, NFC tag or any other traceable technology. Many supply chain Management system are also adopting this techniques.

  16. BOKP: A DNA Barcode Reference Library for Monitoring Herbal Drugs in the Korean Pharmacopeia

    PubMed Central

    Liu, Jinxin; Shi, Linchun; Song, Jingyuan; Sun, Wei; Han, Jianping; Liu, Xia; Hou, Dianyun; Yao, Hui; Li, Mingyue; Chen, Shilin

    2017-01-01

    Herbal drug authentication is an important task in traditional medicine; however, it is challenged by the limitations of traditional authentication methods and the lack of trained experts. DNA barcoding is conspicuous in almost all areas of the biological sciences and has already been added to the British pharmacopeia and Chinese pharmacopeia for routine herbal drug authentication. However, DNA barcoding for the Korean pharmacopeia still requires significant improvements. Here, we present a DNA barcode reference library for herbal drugs in the Korean pharmacopeia and developed a species identification engine named KP-IDE to facilitate the adoption of this DNA reference library for the herbal drug authentication. Using taxonomy records, specimen records, sequence records, and reference records, KP-IDE can identify an unknown specimen. Currently, there are 6,777 taxonomy records, 1,054 specimen records, 30,744 sequence records (ITS2 and psbA-trnH) and 285 reference records. Moreover, 27 herbal drug materials were collected from the Seoul Yangnyeongsi herbal medicine market to give an example for real herbal drugs authentications. Our study demonstrates the prospects of the DNA barcode reference library for the Korean pharmacopeia and provides future directions for the use of DNA barcoding for authenticating herbal drugs listed in other modern pharmacopeias. PMID:29326593

  17. DNA barcodes and citizen science provoke a diversity reappraisal for the "ring" butterflies of Peninsular Malaysia (Ypthima: Satyrinae: Nymphalidae: Lepidoptera).

    PubMed

    Jisming-See, Shi-Wei; Sing, Kong-Wah; Wilson, John-James

    2016-10-01

    The "rings" belonging to the genus Ypthima are amongst the most common butterflies in Peninsular Malaysia. However, the species can be difficult to tell apart, with keys relying on minor and often non-discrete ring characters found on the hindwing. Seven species have been reported from Peninsular Malaysia, but this is thought to be an underestimate of diversity. DNA barcodes of 165 individuals, and wing and genital morphology, were examined to reappraise species diversity of this genus in Peninsular Malaysia. DNA barcodes collected during citizen science projects-School Butterfly Project and Peninsular Malaysia Butterfly Count-recently conducted in Peninsular Malaysia were included. The new DNA barcodes formed six groups with different Barcode Index Numbers (BINs) representing four species reported in Peninsular Malaysia. When combined with public DNA barcodes from the Barcode Of Life Datasystems, several taxonomic issues arose. We consider the taxon Y. newboldi, formerly treated as a subspecies of Y. baldus, as a distinct species. DNA barcodes also supported an earlier suggestion that Y. nebulosa is a synonym under Y. horsfieldii humei. Two BINs of the genus Ypthima comprising DNA barcodes collected during citizen science projects did not correspond to any species previously reported in Peninsular Malaysia.

  18. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms.

    PubMed

    Neu, Thomas R; Kuhlicke, Ute

    2017-02-10

    Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems.  Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.

  19. Application of DNA Barcodes in Asian Tropical Trees--A Case Study from Xishuangbanna Nature Reserve, Southwest China.

    PubMed

    Huang, Xiao-cui; Ci, Xiu-qin; Conran, John G; Li, Jie

    2015-01-01

    Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world. A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH-psbA and ITS as supplementary barcodes. The performance of tree species identification success was assessed using 2,052 accessions from four plots belonging to two vegetation types in the region by three methods: Neighbor-Joining, Maximum-Likelihood and BLAST. We corrected morphological field identification errors (9.6%) for the three plots using rbcL and matK based on Neighbor-Joining tree. The best barcode region for PCR and sequencing was rbcL (97.6%, 90.8%), followed by trnH-psbA (93.6%, 85.6%), while matK and ITS obtained relative low PCR and sequencing success rates. However, ITS performed best for both species (44.6-58.1%) and genus (72.8-76.2%) identification. With trnH-psbA slightly less effective for species identification. The two standard barcode rbcL and matK gave poor results for species identification (24.7-28.5% and 31.6-35.3%). Compared with other studies from comparable tropical forests (e.g. Cameroon, the Amazon and India), the overall performance of the four barcodes for species identification was lower for the Xishuangbanna Nature Reserve, possibly because of species/genus ratios and species composition between these tropical areas. Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level. Considering the relative sequence recovery and the species identification performance, we recommend the

  20. TaxI: a software tool for DNA barcoding using distance methods

    PubMed Central

    Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel

    2005-01-01

    DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755

  1. DNA barcode reference data for the Korean herpetofauna and their applications.

    PubMed

    Jeong, Tae Jin; Jun, Jumin; Han, Sanghoon; Kim, Hyun Tae; Oh, Kyunghee; Kwak, Myounghai

    2013-11-01

    Recently, amphibians and reptiles have drawn attention because of declines in species and populations caused mainly by habitat loss, overexploitation and climate change. This study constructed a DNA barcode database for the Korean herpetofauna, including all the recorded amphibians and 68% of the recorded reptiles, to provide a useful, standardized tool for species identification in monitoring and management. A total of 103 individuals from 18 amphibian and 17 reptile species were used to generate barcode sequences using partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene and to compare it with other suggested barcode loci. Comparing 16S rRNA, cytochrome b (Cytb) and COI for amphibians and 12S rRNA, Cytb and COI for reptiles, our results revealed that COI is better than the other markers in terms of a high level of sequence variation without length variation and moderate amplification success. Although the COI marker had no clear barcoding gap because of the high level of intraspecific variation, all of the analysed individuals from the same species clustered together in a neighbour-joining tree. High intraspecific variation suggests the possibility of cryptic species. Finally, using this database, confiscated snakes were identified as Elaphe schrenckii, designated as endangered in Korea and a food contaminant was identified as the lizard Takydromus amurensis. © 2013 John Wiley & Sons Ltd.

  2. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data.

    PubMed

    Lammers, Youri; Peelen, Tamara; Vos, Rutger A; Gravendeel, Barbara

    2014-02-06

    Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation' barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is available at https://github.com/naturalis/HTS-barcode-checker.

  3. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data

    PubMed Central

    2014-01-01

    Background Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. Results The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation’ barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. Conclusions The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is

  4. Barcode Technology Acceptance and Utilization in Health Information Management Department at Academic Hospitals According to Technology Acceptance Model

    PubMed Central

    Ehteshami, Asghar

    2017-01-01

    Nowdays, due to the increasing importance of quality care, organizations focuse on the improving provision, management and distribution of health. On one hand, incremental costs of the new technologies and on the other hand, increased knowledge of health care recipients and their expectations for high quality services have doubled the need to make changes in order to respond to resource constraints (financial, human, material). For this purpose, several technologies, such as barcode, have been used in hospitals to improve services and staff productivity; but various factors effect on the adoption of new technologies and despite good implementation of a technology and its benefits, sometimes personnel don’t accept and don’t use it. Methods: This is an applied descriptive cross-sectional study in which all the barcode users in health information management department of the three academic hospitals (Feiz, Al-Zahra, Ayatollah Kashani) affiliated to Isfahan University of Medical Sciences were surveyed by the barcode technology acceptance questionnaire, in six areas as following: barcode ease of learning, capabilities, perception of its usefulness and its ease of use, users attitudes towards its using, and users intention. Results: The finding showed that barcode technology total acceptance was relatively desirable (%76.9); the most compliance with TAM model was related to the user perceptions about the ease of use of barcode technology and the least compliance was related to the ease of learning barcode technology (respectively %83.7 and %71.5). Conclusion: Ease of learning and barcode capability effect of usefulness and perceived ease of barcode technology. Users perceptions effect their attitudes toward greater use of technology and their attitudes have an effect on their intention to use the technology and finally, their intention makes actual use of the technology (acceptance). Therefore, considering the six elements related to technology implementation can be

  5. A Transcontinental Challenge — A Test of DNA Barcode Performance for 1,541 Species of Canadian Noctuoidea (Lepidoptera)

    PubMed Central

    Zahiri, Reza; Lafontaine, J. Donald; Schmidt, B. Christian; deWaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2014-01-01

    This study provides a first, comprehensive, diagnostic use of DNA barcodes for the Canadian fauna of noctuoids or “owlet” moths (Lepidoptera: Noctuoidea) based on vouchered records for 1,541 species (99.1% species coverage), and more than 30,000 sequences. When viewed from a Canada-wide perspective, DNA barcodes unambiguously discriminate 90% of the noctuoid species recognized through prior taxonomic study, and resolution reaches 95.6% when considered at a provincial scale. Barcode sharing is concentrated in certain lineages with 54% of the cases involving 1.8% of the genera. Deep intraspecific divergence exists in 7.7% of the species, but further studies are required to clarify whether these cases reflect an overlooked species complex or phylogeographic variation in a single species. Non-native species possess higher Nearest-Neighbour (NN) distances than native taxa, whereas generalist feeders have lower NN distances than those with more specialized feeding habits. We found high concordance between taxonomic names and sequence clusters delineated by the Barcode Index Number (BIN) system with 1,082 species (70%) assigned to a unique BIN. The cases of discordance involve both BIN mergers and BIN splits with 38 species falling into both categories, most likely reflecting bidirectional introgression. One fifth of the species are involved in a BIN merger reflecting the presence of 158 species sharing their barcode sequence with at least one other taxon, and 189 species with low, but diagnostic COI divergence. A very few cases (13) involved species whose members fell into both categories. Most of the remaining 140 species show a split into two or three BINs per species, while Virbia ferruginosa was divided into 16. The overall results confirm that DNA barcodes are effective for the identification of Canadian noctuoids. This study also affirms that BINs are a strong proxy for species, providing a pathway for a rapid, accurate estimation of animal diversity. PMID

  6. Genetic barcoding with fluorescent proteins for multiplexed applications.

    PubMed

    Smurthwaite, Cameron A; Williams, Wesley; Fetsko, Alexandra; Abbadessa, Darin; Stolp, Zachary D; Reed, Connor W; Dharmawan, Andre; Wolkowicz, Roland

    2015-04-14

    Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded 'indefinitely'. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.

  7. Multiplexed precision genome editing with trackable genomic barcodes in yeast.

    PubMed

    Roy, Kevin R; Smith, Justin D; Vonesch, Sibylle C; Lin, Gen; Tu, Chelsea Szu; Lederer, Alex R; Chu, Angela; Suresh, Sundari; Nguyen, Michelle; Horecka, Joe; Tripathi, Ashutosh; Burnett, Wallace T; Morgan, Maddison A; Schulz, Julia; Orsley, Kevin M; Wei, Wu; Aiyar, Raeka S; Davis, Ronald W; Bankaitis, Vytas A; Haber, James E; Salit, Marc L; St Onge, Robert P; Steinmetz, Lars M

    2018-07-01

    Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.

  8. DNA barcoding of five common stored-product pest species of genus Cryptolestes (Coleoptera: Laemophloeidae).

    PubMed

    Wang, Y J; Li, Z H; Zhang, S F; Varadínová, Z; Jiang, F; Kučerová, Z; Stejskal, V; Opit, G; Cao, Y; Li, F J

    2014-10-01

    Several species of the genus Cryptolestes Ganglbauer, 1899 (Coleoptera: Laemophloeidae) are commonly found in stored products. In this study, five species of Cryptolestes, with almost worldwide distribution, were obtained from laboratories in China, Czech Republic and the USA: Cryptolestes ferrugineus (Stephens, 1831), Cryptolestes pusillus (Schönherr, 1817), Cryptolestes turcicus (Grouvelle, 1876), Cryptolestes pusilloides (Steel & Howe, 1952) and Cryptolestes capensis (Waltl, 1834). Molecular identification based on a 658 bp fragment from the mitochondrial DNA cytochrome c oxidase subunit I (COI) was adopted to overcome some problems of morphological identification of Cryptolestes species. The utility of COI sequences as DNA barcodes in discriminating the five Cryptolestes species was evaluated on adults and larvae by analysing Kimura 2-parameter distances, phylogenetic tree and haplotype networks. The results showed that molecular approaches based on DNA barcodes were able to accurately identify these species. This is the first study using DNA barcoding to identify Cryptolestes species and the gathered DNA sequences will complement the biological barcode database.

  9. CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations.

    PubMed

    Guernet, Alexis; Mungamuri, Sathish Kumar; Cartier, Dorthe; Sachidanandam, Ravi; Jayaprakash, Anitha; Adriouch, Sahil; Vezain, Myriam; Charbonnier, Françoise; Rohkin, Guy; Coutant, Sophie; Yao, Shen; Ainani, Hassan; Alexandre, David; Tournier, Isabelle; Boyer, Olivier; Aaronson, Stuart A; Anouar, Youssef; Grumolato, Luca

    2016-08-04

    Intratumor genetic heterogeneity underlies the ability of tumors to evolve and adapt to different environmental conditions. Using CRISPR/Cas9 technology and specific DNA barcodes, we devised a strategy to recapitulate and trace the emergence of subpopulations of cancer cells containing a mutation of interest. We used this approach to model different mechanisms of lung cancer cell resistance to EGFR inhibitors and to assess effects of combined drug therapies. By overcoming intrinsic limitations of current approaches, CRISPR-barcoding also enables investigation of most types of genetic modifications, including repair of oncogenic driver mutations. Finally, we used highly complex barcodes inserted at a specific genome location as a means of simultaneously tracing the fates of many thousands of genetically labeled cancer cells. CRISPR-barcoding is a straightforward and highly flexible method that should greatly facilitate the functional investigation of specific mutations, in a context that closely mimics the complexity of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An Example of How Barcodes Can Clarify Cryptic Species: The Case of the Calanoid Copepod Mastigodiaptomus albuquerquensis (Herrick)

    PubMed Central

    Gutiérrez-Aguirre, Martha Angélica; Cervantes-Martínez, Adrián; Elías-Gutiérrez, Manuel

    2014-01-01

    Background The freshwater calanoid Mastigodiaptomus is a genus with high richness in the Americas and is composed of nine species, seven recorded in Mexico and four that are apparently endemic to small areas. Mastigodiaptomus albuquerquensis is a common, widely distributed species ranging from the southern USA to Central America. This species can be easily identified by a notable butterfly-like sclerotization on the basis of the right fifth leg of males. Nevertheless, morphological differences observed among populations throughout this species distributional range have led to the description of several related species or subspecies, such as M. albuquerquensis patzcuarensis from Lake Pátzcuaro in the Central Plateau of Mexico. Methods Genetic results based on barcodes, morphology based on scanning electron and light microscopy images, and morphometric analyses were used to describe cryptic species within the M. albuquerquensis complex. Results The morphological analyses coincided partially with the genetic markers, suggesting the existence of at least two sibling species: M. albuquerquensis s. str. and M. patzcuarensis. A third species was genetically separated but was morphologically indistinguishable from the M. patzcuarensis group. Conclusions Hidden diversity has been a major problem in establishing real patterns of species distribution and genetic acquisition from megadiverse hotspots such as Mexico, where the Nearctic and the Neotropical regions of the Americas meet. Barcodes can help taxonomists to reveal and formally name these new species. Here, we describe two of three potential species highlighted by the use of barcodes: M. albuquerquensis s. str. in the northern semi-desert and M. patzcuarensis on the Central Plateau at more than 2000 m above sea level. PMID:24465470

  11. Evaluation of single and multilocus DNA barcodes towards species delineation in complex tree genus Terminalia

    PubMed Central

    Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Shukla, Ashutosh K.

    2017-01-01

    DNA barcoding is used as a universal tool for delimiting species boundaries in taxonomically challenging groups, with different plastid and nuclear regions (rbcL, matK, ITS and psbA-trnH) being recommended as primary DNA barcodes for plants. We evaluated the feasibility of using these regions in the species-rich genus Terminalia, which exhibits various overlapping morphotypes with pantropical distribution, owing to its complex taxonomy. Terminalia bellerica and T. chebula are ingredients of the famous Ayurvedic Rasayana formulation Triphala, used for detoxification and rejuvenation. High demand for extracted phytochemicals as well as the high trade value of several species renders mandatory the need for the correct identification of traded plant material. Three different analytical methods with single and multilocus barcoding regions were tested to develop a DNA barcode reference library from 222 individuals representing 41 Terminalia species. All the single barcodes tested had a lower discriminatory power than the multilocus regions, and the combination of matK+ITS had the highest resolution rate (94.44%). The average intra-specific variations (0.0188±0.0019) were less than the distance to the nearest neighbour (0.106±0.009) with matK and ITS. Distance-based Neighbour Joining analysis outperformed the character-based Maximum Parsimony method in the identification of traded species such as T. arjuna, T. chebula and T. tomentosa, which are prone to adulteration. rbcL was shown to be a highly conservative region with only 3.45% variability between all of the sequences. The recommended barcode combination, rbcL+matK, failed to perform in the genus Terminalia. Considering the complexity of resolution observed with single regions, the present study proposes the combination of matK+ITS as the most successful barcode in Terminalia. PMID:28829803

  12. Evaluation of DNA barcoding and identification of new haplomorphs in Canadian deerflies and horseflies.

    PubMed

    Cywinska, A; Hannan, M A; Kevan, P G; Roughley, R E; Iranpour, M; Hunter, F F

    2010-12-01

    This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two-parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour-joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (∼ 10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli. © 2010 Brock University. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.

  13. 76 FR 23749 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...The Postal Service is proposing to revise Mailing Standards of the United States Postal Service, Domestic Mail Manual (DMM[supreg]) to require the use of a unique tracking barcode on all commercial parcels, except Standard Mail[supreg] parcels, claiming presort and destination entry pricing by January 2012; and to encourage use of unique tracking barcodes by providing free Delivery Confirmation[supreg] service on all commercial parcels except Standard Mail parcels.

  14. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality.

    PubMed

    Zhou, Zhenpeng; Li, Tian; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Chengzhi; Li, Na

    2014-11-11

    Silver-enhanced fluorescence was coupled with a bio-barcode assay to facilitate a dual amplification assay to demonstrate a non-enzymatic approach for simple and sensitive detection of DNA. In the assay design, magnetic nanoparticles seeded with silver nanoparticles were modified with the capture DNA, and silver nanoparticles were modified with the binding of ssDNA and the fluorescently labeled barcode dsDNA. Upon introduction of the target DNA, a sandwich structure was formed because of the hybridization reaction. By simple magnetic separation, silver-enhanced fluorescence of barcode DNAs could be readily measured without the need of a further step to liberate barcode DNAs from silver nanoparticles, endowing the method with simplicity and high sensitivity with a detection limit of 1 pM.

  15. Boresight alignment method for mobile laser scanning systems

    NASA Astrophysics Data System (ADS)

    Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.

    2010-06-01

    Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.

  16. DNA barcodes reveal microevolutionary signals in fire response trait in two legume genera

    PubMed Central

    Bello, Abubakar; Daru, Barnabas H.; Stirton, Charles H.; Chimphango, Samson B. M.; van der Bank, Michelle; Maurin, Olivier; Muasya, A. Muthama

    2015-01-01

    Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR. PMID:26507570

  17. Microwave Scanning System Correlations

    DTIC Science & Technology

    2010-08-11

    The follow equipment is needed for each of the individual scanning systems: Handheld Scanner Equipment list 1. Dell Netbook (with the...proper software installed by Evisive) 2. Bluetooth USB port transmitter 3. Handheld Probe 4. USB to mini-USB Converter (links camera to netbook

  18. Untangling taxonomy: a DNA barcode reference library for Canadian spiders.

    PubMed

    Blagoev, Gergin A; deWaard, Jeremy R; Ratnasingham, Sujeevan; deWaard, Stephanie L; Lu, Liuqiong; Robertson, James; Telfer, Angela C; Hebert, Paul D N

    2016-01-01

    Approximately 1460 species of spiders have been reported from Canada, 3% of the global fauna. This study provides a DNA barcode reference library for 1018 of these species based upon the analysis of more than 30,000 specimens. The sequence results show a clear barcode gap in most cases with a mean intraspecific divergence of 0.78% vs. a minimum nearest-neighbour (NN) distance averaging 7.85%. The sequences were assigned to 1359 Barcode index numbers (BINs) with 1344 of these BINs composed of specimens belonging to a single currently recognized species. There was a perfect correspondence between BIN membership and a known species in 795 cases, while another 197 species were assigned to two or more BINs (556 in total). A few other species (26) were involved in BIN merges or in a combination of merges and splits. There was only a weak relationship between the number of specimens analysed for a species and its BIN count. However, three species were clear outliers with their specimens being placed in 11-22 BINs. Although all BIN splits need further study to clarify the taxonomic status of the entities involved, DNA barcodes discriminated 98% of the 1018 species. The present survey conservatively revealed 16 species new to science, 52 species new to Canada and major range extensions for 426 species. However, if most BIN splits detected in this study reflect cryptic taxa, the true species count for Canadian spiders could be 30-50% higher than currently recognized. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  19. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    PubMed

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. © 2015 John Wiley & Sons Ltd.

  20. Forensic identification of CITES protected slimming cactus (Hoodia) using DNA barcoding.

    PubMed

    Gathier, Gerard; van der Niet, Timotheus; Peelen, Tamara; van Vugt, Rogier R; Eurlings, Marcel C M; Gravendeel, Barbara

    2013-11-01

    Slimming cactus (Hoodia), found only in southwestern Africa, is a well-known herbal product for losing weight. Consequently, Hoodia extracts are sought-after worldwide despite a CITES Appendix II status. The failure to eradicate illegal trade is due to problems with detecting and identifying Hoodia using morphological and chemical characters. Our aim was to evaluate the potential of molecular identification of Hoodia based on DNA barcoding. Screening of nrITS1 and psbA-trnH DNA sequences from 26 accessions of Ceropegieae resulted in successful identification, while conventional chemical profiling using DLI-MS led to inaccurate detection and identification of Hoodia. The presence of Hoodia in herbal products was also successfully established using DNA sequences. A validation procedure of our DNA barcoding protocol demonstrated its robustness to changes in PCR conditions. We conclude that DNA barcoding is an effective tool for Hoodia detection and identification which can contribute to preventing illegal trade. © 2013 American Academy of Forensic Sciences.

  1. DNA Barcoding of Ichthyoplankton in Hampton Roads Bay Estuary

    NASA Astrophysics Data System (ADS)

    Wilkins, N.; Rodríguez, Á. E.

    2016-02-01

    Zooplankton is composed of animals that drift within the water column. The study of zooplankton biodiversity and distribution is crucial to understand oceanic ecosystems and anticipate the effects of climate change. In this study our focus is on ichthyoplankton (fish eggs and larvae). Our aim is to employ molecular genetic techniques such as DNA barcoding to begin a detailed characterization of ichthyoplankton diversity, abundance and community structure in the Hampton Roads Bay Estuary (HRBE). A sampling of zooplankton was performed on June 19, 2015. Samples were taken with a 0.5m, 200 µm mesh net in triplicates at two stations: inner shore in the mouth of Jones Creek and 5 miles off Hampton in the lower part of Chesapeake Bay. Physical parameters (dissolved oxygen, salinity, and temperature and water transparency) were measured simultaneously. Species were identified by DNA barcoding using the mitochondrial DNA (mtDNA) of the Cytochrome Oxidase 1 (CO1) gene. Fish eggs were identified from Opistonema oglinum (Atlantic Thread Herring) at the offshore stations while, Anchoa mitchilli was found at both stations. These species are common to the area and as observed, differences in species between stations were found. O. oglinum eggs were found in the offshore stations, which is their reported habitat. A. mitchilli eggs were found in both stations; both known to exhibit a wider salinity tolerance. This work indicates that using mtDNA-CO1 barcoding is suitable to identify ichthyoplankton to the species level and helped validate DNA barcoding as a faster taxonomic approach. The long term objective of this project is to provide taxonomic composition and biodiversity assessment of ichthyoplankton in HRBE. This data will be a reference for broad monitoring programs; for a better understanding and management of ecologically and commercially important species in the HRBE. Monthly samplings will be performed for a year beginning September 2015.

  2. Assessment of Four Molecular Markers as Potential DNA Barcodes for Red Algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta)

    PubMed Central

    Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H.; Hurtado, Anicia Q.

    2012-01-01

    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment. PMID:23285223

  3. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry.

    PubMed

    Mei, Henrik E; Leipold, Michael D; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T

    2015-02-15

    Mass cytometry is developing as a means of multiparametric single-cell analysis. In this study, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a cytometry by time of flight instrument. Using six different anti-CD45 Ab conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and it reduces wet work and Ab consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45 barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and it should be applicable to fluorescence flow cytometry as well. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China.

    PubMed

    Chen, Juan; Zhao, Jietang; Erickson, David L; Xia, Nianhe; Kress, W John

    2015-03-01

    The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear-cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH-psbA and trnL-F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH-psbA (100%), trnL-F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH-psbA and trnL-F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers. © 2014 John Wiley & Sons Ltd.

  5. Barcoding of fresh water fishes from Pakistan.

    PubMed

    Karim, Asma; Iqbal, Asad; Akhtar, Rehan; Rizwan, Muhammad; Amar, Ali; Qamar, Usman; Jahan, Shah

    2016-07-01

    DNA bar-coding is a taxonomic method that uses small genetic markers in organisms' mitochondrial DNA (mt DNA) for identification of particular species. It uses sequence diversity in a 658-base pair fragment near the 5' end of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene as a tool for species identification. DNA barcoding is more accurate and reliable method as compared with the morphological identification. It is equally useful in juveniles as well as adult stages of fishes. The present study was conducted to identify three farm fish species of Pakistan (Cyprinus carpio, Cirrhinus mrigala, and Ctenopharyngodon idella) genetically. All of them belonged to family cyprinidae. CO1 gene was amplified. PCR products were sequenced and analyzed by bioinformatic software. Conspecific, congenric, and confamilial k2P nucleotide divergence was estimated. From these findings, it was concluded that the gene sequence, CO1, may serve as milestone for the identification of related species at molecular level.

  6. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding

    PubMed Central

    Chen, Weitao; Ma, Xiuhui; Shen, Yanjun; Mao, Yuntao; He, Shunping

    2015-01-01

    Nujiang River (NR), an essential component of the biodiversity hotspot of the Mountains of Southwest China, possesses a characteristic fish fauna and contains endemic species. Although previous studies on fish diversity in the NR have primarily consisted of listings of the fish species observed during field collections, in our study, we DNA-barcoded 1139 specimens belonging to 46 morphologically distinct fish species distributed throughout the NR basin by employing multiple analytical approaches. According to our analyses, DNA barcoding is an efficient method for the identification of fish by the presence of barcode gaps. However, three invasive species are characterized by deep conspecific divergences, generating multiple lineages and Operational Taxonomic Units (OTUs), implying the possibility of cryptic species. At the other end of the spectrum, ten species (from three genera) that are characterized by an overlap between their intra- and interspecific genetic distances form a single genetic cluster and share haplotypes. The neighbor-joining phenogram, Barcode Index Numbers (BINs) and Automatic Barcode Gap Discovery (ABGD) identified 43 putative species, while the General Mixed Yule-coalescence (GMYC) identified five more OTUs. Thus, our study established a reliable DNA barcode reference library for the fish in the NR and sheds new light on the local fish diversity. PMID:26616046

  7. Barcode ITS2: a useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market.

    PubMed

    Yu, Ning; Wei, Yu-Long; Zhang, Xin; Zhu, Ning; Wang, Yan-Li; Zhu, Yue; Zhang, Hai-Ping; Li, Fen-Mei; Yang, Lan; Sun, Jia-Qi; Sun, Ai-Dong

    2017-07-11

    Trachelospermum jasminoides is commonly used in traditional Chinese medicine. However, the use of the plant's local alternatives is frequent, causing potential clinical problems. The T. jasminoides sold in the medicine market is commonly dried and sliced, making traditional identification methods difficult. In this study, the ITS2 region was evaluated on 127 sequences representing T. jasminoides and its local alternatives according to PCR and sequencing rates, intra- and inter-specific divergences, secondary structure, and discrimination capacity. Results indicated the 100% success rates of PCR and sequencing and the obvious presence of a barcoding gap. Results of BLAST 1, nearest distance and neighbor-joining tree methods showed that barcode ITS2 could successfully identify all the texted samples. The secondary structures of the ITS2 region provided another dimensionality for species identification. Two-dimensional images were obtained for better and easier identification. Previous studies on DNA barcoding concentrated more on the same family, genus, or species. However, an ideal barcode should be variable enough to identify closely related species. Meanwhile, the barcodes should also be conservative in identifying distantly related species. This study highlights the application of barcode ITS2 in solving practical problems in the distantly related local alternatives of medical plants.

  8. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding.

    PubMed

    Chen, Weitao; Ma, Xiuhui; Shen, Yanjun; Mao, Yuntao; He, Shunping

    2015-11-30

    Nujiang River (NR), an essential component of the biodiversity hotspot of the Mountains of Southwest China, possesses a characteristic fish fauna and contains endemic species. Although previous studies on fish diversity in the NR have primarily consisted of listings of the fish species observed during field collections, in our study, we DNA-barcoded 1139 specimens belonging to 46 morphologically distinct fish species distributed throughout the NR basin by employing multiple analytical approaches. According to our analyses, DNA barcoding is an efficient method for the identification of fish by the presence of barcode gaps. However, three invasive species are characterized by deep conspecific divergences, generating multiple lineages and Operational Taxonomic Units (OTUs), implying the possibility of cryptic species. At the other end of the spectrum, ten species (from three genera) that are characterized by an overlap between their intra- and interspecific genetic distances form a single genetic cluster and share haplotypes. The neighbor-joining phenogram, Barcode Index Numbers (BINs) and Automatic Barcode Gap Discovery (ABGD) identified 43 putative species, while the General Mixed Yule-coalescence (GMYC) identified five more OTUs. Thus, our study established a reliable DNA barcode reference library for the fish in the NR and sheds new light on the local fish diversity.

  9. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria.

    PubMed

    Xu, Yueshuang; Wang, Huan; Luan, Chengxin; Liu, Yuxiao; Chen, Baoan; Zhao, Yuanjin

    2018-02-15

    Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL -1 ) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Assembling and auditing a comprehensive DNA barcode reference library for European marine fishes.

    PubMed

    Oliveira, L M; Knebelsberger, T; Landi, M; Soares, P; Raupach, M J; Costa, F O

    2016-12-01

    A large-scale comprehensive reference library of DNA barcodes for European marine fishes was assembled, allowing the evaluation of taxonomic uncertainties and species genetic diversity that were otherwise hidden in geographically restricted studies. A total of 4118 DNA barcodes were assigned to 358 species generating 366 Barcode Index Numbers (BIN). Initial examination revealed as much as 141 BIN discordances (more than one species in each BIN). After implementing an auditing and five-grade (A-E) annotation protocol, the number of discordant species BINs was reduced to 44 (13% grade E), while concordant species BINs amounted to 271 (78% grades A and B) and 14 other had insufficient data (grade D). Fifteen species displayed comparatively high intraspecific divergences ranging from 2·6 to 18·5% (grade C), which is biologically paramount information to be considered in fish species monitoring and stock assessment. On balance, this compilation contributed to the detection of 59 European fish species probably in need of taxonomic clarification or re-evaluation. The generalized implementation of an auditing and annotation protocol for reference libraries of DNA barcodes is recommended. © 2016 The Fisheries Society of the British Isles.

  11. Improving soil bacterial taxa–area relationships assessment using DNA meta-barcoding

    PubMed Central

    Terrat, S; Dequiedt, S; Horrigue, W; Lelievre, M; Cruaud, C; Saby, N P A; Jolivet, C; Arrouays, D; Maron, P-A; Ranjard, L; Chemidlin Prévost-Bouré, N

    2015-01-01

    The evaluation of the taxa–area relationship (TAR) with molecular fingerprinting data demonstrated the spatial structuration of soil microorganisms and provided insights into the processes shaping their diversity. The increasing use of massive sequencing technologies in biodiversity investigations has now raised the question of the advantages of such technologies over the fingerprinting approach for elucidation of the determinism of soil microbial community assembly in broad-scale biogeographic studies. Our objectives in this study were to compare DNA fingerprinting and meta-barcoding approaches for evaluating soil bacterial TAR and the determinism of soil bacterial community assembly on a broad scale. This comparison was performed on 392 soil samples from four French geographic regions with different levels of environmental heterogeneity. Both molecular approaches demonstrated a TAR with a significant slope but, because of its more sensitive description of soil bacterial community richness, meta-barcoding provided significantly higher and more accurate estimates of turnover rates. Both approaches were useful in evidencing the processes shaping bacterial diversity variations on a broad scale. When different taxonomic resolutions were considered for meta-barcoding data, they significantly influenced the estimation of turnover rates but not the relative importance of each component process. Altogether, DNA meta-barcoding provides a more accurate evaluation of the TAR and may lead to re-examination of the processes shaping soil bacterial community assembly. This should provide new insights into soil microbial ecology in the context of sustainable use of soil resources. PMID:25293875

  12. Integrated Blood Barcode Chips

    PubMed Central

    Fan, Rong; Vermesh, Ophir; Srivastava, Alok; Yen, Brian K.H.; Qin, Lidong; Ahmad, Habib; Kwong, Gabriel A.; Liu, Chao-Chao; Gould, Juliane; Hood, Leroy; Heath, James R.

    2008-01-01

    Blood comprises the largest version of the human proteome1. Changes of plasma protein profiles can reflect physiological or pathological conditions associated with many human diseases, making blood the most important fluid for clinical diagnostics2-4. Nevertheless, only a handful of plasma proteins are utilized in routine clinical tests. This is due to a host of reasons, including the intrinsic complexity of the plasma proteome1, the heterogeneity of human diseases and the fast kinetics associated with protein degradation in sampled blood5. Simple technologies that can sensitively sample large numbers of proteins over broad concentration ranges, from small amounts of blood, and within minutes of sample collection, would assist in solving these problems. Herein, we report on an integrated microfluidic system, called the Integrated Blood Barcode Chip (IBBC). It enables on-chip blood separation and the rapid measurement of a panel of plasma proteins from small quantities of blood samples including a fingerprick of whole blood. This platform holds potential for inexpensive, non-invasive, and informative clinical diagnoses, particularly, for point-of-care. PMID:19029914

  13. The Relationship between Barcode Medication Administration Satisfaction and the Use of Workarounds among Registered Nurses

    ERIC Educational Resources Information Center

    Bennett, Sally F.

    2012-01-01

    Adverse drug events, resulting in preventable patient harm or death, are of great concern. To keep patients safe, hospitals have implemented barcode medication administration (BCMA) technology for RNs who have accepted this technology with varying levels of satisfaction. When nurses are dissatisfied with a BCMA system, they may find alternative…

  14. Application of DNA Barcodes in Asian Tropical Trees – A Case Study from Xishuangbanna Nature Reserve, Southwest China

    PubMed Central

    Conran, John G.; Li, Jie

    2015-01-01

    Background Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world. Methodology and Principal Findings A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH–psbA and ITS as supplementary barcodes. The performance of tree species identification success was assessed using 2,052 accessions from four plots belonging to two vegetation types in the region by three methods: Neighbor-Joining, Maximum-Likelihood and BLAST. We corrected morphological field identification errors (9.6%) for the three plots using rbcL and matK based on Neighbor-Joining tree. The best barcode region for PCR and sequencing was rbcL (97.6%, 90.8%), followed by trnH–psbA (93.6%, 85.6%), while matK and ITS obtained relative low PCR and sequencing success rates. However, ITS performed best for both species (44.6–58.1%) and genus (72.8–76.2%) identification. With trnH–psbA slightly less effective for species identification. The two standard barcode rbcL and matK gave poor results for species identification (24.7–28.5% and 31.6–35.3%). Compared with other studies from comparable tropical forests (e.g. Cameroon, the Amazon and India), the overall performance of the four barcodes for species identification was lower for the Xishuangbanna Nature Reserve, possibly because of species/genus ratios and species composition between these tropical areas. Conclusions/Significance Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level. Considering the

  15. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters

    PubMed Central

    Andreakis, Nikos; Høj, Lone; Kearns, Philip; Hall, Michael R.; Ericson, Gavin; Cobb, Rose E.; Gordon, Benjamin R.; Evans-Illidge, Elizabeth

    2015-01-01

    Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters. PMID:26308620

  16. Developing an Environmental Scanning System.

    ERIC Educational Resources Information Center

    Morrison, James L.

    A step-by-step approach is provided for developing an environmental scanning system for colleges and universities to assist them in planning for the future. The objectives of such a system are to detect social, scientific, economic, technical, and political interactions important to the organization; define potential threats and opportunities from…

  17. Safe Active Scanning for Energy Delivery Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, J.; Salazar, B.; Scheibel, P.

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into themore » details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.« less

  18. DNA Barcoding in Fragaria L. (Strawberry) Species

    USDA-ARS?s Scientific Manuscript database

    DNA barcoding for species identification using a short DNA sequence has been successful in animals due to rapid mutation rates of the mitochondrial genome where the animal DNA barocode, cytochrome c oxidase 1 gene is located. The chloroplast PsbA-trnH spacer and the nuclear ribosomal internal transc...

  19. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada.

    PubMed

    Braukmann, Thomas W A; Kuzmina, Maria L; Sills, Jesse; Zakharov, Evgeny V; Hebert, Paul D N

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  20. Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada

    PubMed Central

    Kuzmina, Maria L.; Sills, Jesse; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Their relatively slow rates of molecular evolution, as well as frequent exposure to hybridization and introgression, often make it difficult to discriminate species of vascular plants with the standard barcode markers (rbcL, matK, ITS2). Previous studies have examined these constraints in narrow geographic or taxonomic contexts, but the present investigation expands analysis to consider the performance of these gene regions in discriminating the species in local floras at sites across Canada. To test identification success, we employed a DNA barcode reference library with sequence records for 96% of the 5108 vascular plant species known from Canada, but coverage varied from 94% for rbcL to 60% for ITS2 and 39% for matK. Using plant lists from 27 national parks and one scientific reserve, we tested the efficacy of DNA barcodes in identifying the plants in simulated species assemblages from six biogeographic regions of Canada using BLAST and mothur. Mean pairwise distance (MPD) and mean nearest taxon distance (MNTD) were strong predictors of barcode performance for different plant families and genera, and both metrics supported ITS2 as possessing the highest genetic diversity. All three genes performed strongly in assigning the taxa present in local floras to the correct genus with values ranging from 91% for rbcL to 97% for ITS2 and 98% for matK. However, matK delivered the highest species discrimination (~81%) followed by ITS2 (~72%) and rbcL (~44%). Despite the low number of plant taxa in the Canadian Arctic, DNA barcodes had the least success in discriminating species from this biogeographic region with resolution ranging from 36% with rbcL to 69% with matK. Species resolution was higher in the other settings, peaking in the Woodland region at 52% for rbcL and 87% for matK. Our results indicate that DNA barcoding is very effective in identifying Canadian plants to a genus, and that it performs well in discriminating species in regions where floristic diversity is

  1. DNA Barcoding the Medusozoa using mtCOI

    NASA Astrophysics Data System (ADS)

    Ortman, Brian D.; Bucklin, Ann; Pagès, Francesc; Youngbluth, Marsh

    2010-12-01

    The Medusozoa are a clade within the Cnidaria comprising the classes Hydrozoa, Scyphozoa, and Cubozoa. Identification of medusozoan species is challenging, even for taxonomic experts, due to their fragile forms and complex, morphologically-distinct life history stages. In this study 231 sequences for a portion of the mitochondrial Cytochrome Oxidase I (mtCOI) gene were obtained from 95 species of Medusozoans including; 84 hydrozoans (61 siphonophores, eight anthomedusae, four leptomedusae, seven trachymedusae, and four narcomedusae), 10 scyphozoans (three coronatae, four semaeostomae, two rhizostomae, and one stauromedusae), and one cubozoan. This region of mtCOI has been used as a DNA barcode (i.e., a molecular character for species recognition and discrimination) for a diverse array of taxa, including some Cnidaria. Kimura 2-parameter (K2P) genetic distances between sequence variants within species ranged from 0 to 0.057 (mean 0.013). Within the 13 genera for which multiple species were available, K2P distance between congeneric species ranged from 0.056 to 0.381. A cluster diagram generated by Neighbor Joining (NJ) using K2P distances reliably clustered all barcodes of the same species with ≥99% bootstrap support, ensuring accurate identification of species. Intra- and inter-specific variation of the mtCOI gene for the Medusozoa are appropriate for this gene to be used as a DNA barcode for species-level identification, but not for phylogenetic analysis or taxonomic classification of unknown sequences at higher taxonomic levels. This study provides a set of molecular tools that can be used to address questions of speciation, biodiversity, life-history, and population boundaries in the Medusozoa.

  2. Biodegradable porous silicon barcode nanowires with defined geometry

    PubMed Central

    Chiappini, Ciro; Liu, Xuewu; Fakhoury, Jean Raymond; Ferrari, Mauro

    2010-01-01

    Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode nanowiresby nanolithography and we characterize their multicolor reflectance and photoluminescence. We develop phase diagrams for the different nanostructures obtained as a function of metal catalyst, H2O2 concentration, ethanol concentration and silicon resistivity, and propose a mechanism that explains these observations. We demonstrate that these nanowires are biodegradable, and their degradation time can be modulated by surface treatments. PMID:21057669

  3. Telepharmacy and bar-code technology in an i.v. chemotherapy admixture area.

    PubMed

    O'Neal, Brian C; Worden, John C; Couldry, Rick J

    2009-07-01

    A program using telepharmacy and bar-code technology to increase the presence of the pharmacist at a critical risk point during chemotherapy preparation is described. Telepharmacy hardware and software were acquired, and an inspection camera was placed in a biological safety cabinet to allow the pharmacy technician to take digital photographs at various stages of the chemotherapy preparation process. Once the pharmacist checks the medication vials' agreement with the work label, the technician takes the product into the biological safety cabinet, where the appropriate patient is selected from the pending work list, a queue of patient orders sent from the pharmacy information system. The technician then scans the bar code on the vial. Assuming the bar code matches, the technician photographs the work label, vials, diluents and fluids to be used, and the syringe (before injecting the contents into the bag) along with the vial. The pharmacist views all images as a part of the final product-checking process. This process allows the pharmacist to verify that the correct quantity of medication was transferred from the primary source to a secondary container without being physically present at the time of transfer. Telepharmacy and bar coding provide a means to improve the accuracy of chemotherapy preparation by decreasing the likelihood of using the incorrect product or quantity of drug. The system facilitates the reading of small product labels and removes the need for a pharmacist to handle contaminated syringes and vials when checking the final product.

  4. Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach

    PubMed Central

    Derocles, Stéphane A. P.; Evans, Darren M.; Nichols, Paul C.; Evans, S. Aifionn; Lunt, David H.

    2015-01-01

    A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant – leaf miner – parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a) morphological identification of adult specimens; b) identification based on the shape of the mines; c) the COI Mini-barcode (130 bp) and d) the COI full barcode (658 bp) fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant – leaf miner – parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria. PMID:25710377

  5. Camera Systems Rapidly Scan Large Structures

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  6. A report on identification of sequence polymorphism in barcode region of six commercially important Cymbopogon species.

    PubMed

    Bishoyi, Ashok Kumar; Kavane, Aarti; Sharma, Anjali; Geetha, K A

    2017-02-01

    CYMBOPOGON: is an important member of grass family Poaceae, cultivated for essential oils which have greater medicinal and industrial value. Taxonomic identification of Cymbopogon species is determined mainly by morphological markers, odour of essential oils and concentration of bioactive compounds present in the oil matrices which are highly influenced by environment. Authenticated molecular marker based taxonomical identification is also lacking in the genus; hence effort was made to evaluate potential DNA barcode loci in six commercially important Cymbopogon species for their individual discrimination and authentication at the species level. Four widely used DNA barcoding regions viz., ITS 1 & ITS 2 spacers, matK, psbA-trnH and rbcL were taken for the study. Gene sequences of the same or related genera of the concerned loci were mined from NCBI domain and primers were designed and validated for barcode loci amplification. Out of the four loci studied, sequences from matK and ITS spacer loci revealed 0.46% and 5.64% nucleotide sequence diversity, respectively whereas the other two loci i.e., psbA-trnH and rbcL showed 100% sequence homology. The newly developed primers can be used for barcode loci amplification in the genus Cymbopogon. The identified Single Nucleotide Polymorphisms from the studied sequences may be used as barcodes for the six Cymbopogon species. The information generated can also be utilized for barcode development of the genus by including more number of Cymbopgon species in future.

  7. Towards a comprehensive barcode library for arctic life - Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada

    PubMed Central

    2009-01-01

    Background This study reports progress in assembling a DNA barcode reference library for Ephemeroptera, Plecoptera, and Trichoptera ("EPTs") from a Canadian subarctic site, which is the focus of a comprehensive biodiversity inventory using DNA barcoding. These three groups of aquatic insects exhibit a moderate level of species diversity, making them ideal for testing the feasibility of DNA barcoding for routine biotic surveys. We explore the correlation between the morphological species delineations, DNA barcode-based haplotype clusters delimited by a sequence threshold (2%), and a threshold-free approach to biodiversity quantification--phylogenetic diversity. Results A DNA barcode reference library is built for 112 EPT species for the focal region, consisting of 2277 COI sequences. Close correspondence was found between EPT morphospecies and haplotype clusters as designated using a standard threshold value. Similarly, the shapes of taxon accumulation curves based upon haplotype clusters were very similar to those generated using phylogenetic diversity accumulation curves, but were much more computationally efficient. Conclusion The results of this study will facilitate other lines of research on northern EPTs and also bode well for rapidly conducting initial biodiversity assessments in unknown EPT faunas. PMID:20003245

  8. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve.

    PubMed

    Telfer, Angela C; Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N; deWaard, Jeremy R

    2015-01-01

    Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is

  9. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.

    PubMed

    Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M

    2008-06-01

    Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse

  10. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    PubMed Central

    Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R. Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N

    2015-01-01

    Abstract Background Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic

  11. Data Release: DNA barcodes of plant species collected for the Global Genome Initiative for Gardens Program, National Museum of Natural History, Smithsonian Institution

    PubMed Central

    Zúñiga, Jose D.; Gostel, Morgan R.; Mulcahy, Daniel G.; Barker, Katharine; Asia Hill; Sedaghatpour, Maryam; Vo, Samantha Q.; Funk, Vicki A.; Coddington, Jonathan A.

    2017-01-01

    Abstract The Global Genome Initiative has sequenced and released 1961 DNA barcodes for genetic samples obtained as part of the Global Genome Initiative for Gardens Program. The dataset includes barcodes for 29 plant families and 309 genera that did not have sequences flagged as barcodes in GenBank and sequences from officially recognized barcoding genetic markers meet the data standard of the Consortium for the Barcode of Life. The genetic samples were deposited in the Smithsonian Institution’s National Museum of Natural History Biorepository and their records were made public through the Global Genome Biodiversity Network’s portal. The DNA barcodes are now available on GenBank. PMID:29118648

  12. Pneu-Scan - A novel, lightweight two-axis telemetry tracking system

    NASA Astrophysics Data System (ADS)

    Sullivan, A.

    The development of Pneu-Scan, a conically scanning tracking antenna feed for telemetry applications, is described. Pneu-Scan has the advantage of being pneumatically driven, thereby eliminating the need for a heavy electric drive motor. Air from the dehydrator/pressurizer system is used to drive the Pneu-Scan pedestal at a scan speed which is proportional to the continuously varying pressure. The S-band tracking feed of the Pneu-Scan is less than five inches in diameter and is considerably lighter than single-channel monopulse (SCM) feeds. Aperture blocking of Pneu-Scan is more than two times smaller than conventional SCM designs. The antenna reflector of the Pneu-Scan system is a lightweight 5-foot graphite-epoxy parabolical reflector positioned by an elevator-over-azimuth pedestal. The elevation assembly is surrounded by an inflatable rotodome which rotates with azimuth. The rotating sphere was designed to have a minimum wind-induced torque, thereby minimizing the required drive power. The weight of the entire system is less than 135 pounds. The principle characteristics of the Pneu-Scan system are summarized in a table.

  13. Diversity in a Cold Hot-Spot: DNA-Barcoding Reveals Patterns of Evolution among Antarctic Demosponges (Class Demospongiae, Phylum Porifera).

    PubMed

    Vargas, Sergio; Kelly, Michelle; Schnabel, Kareen; Mills, Sadie; Bowden, David; Wörheide, Gert

    2015-01-01

    The approximately 350 demosponge species that have been described from Antarctica represent a faunistic component distinct from that of neighboring regions. Sponges provide structure to the Antarctic benthos and refuge to other invertebrates, and can be dominant in some communities. Despite the importance of sponges in the Antarctic subtidal environment, sponge DNA barcodes are scarce but can provide insight into the evolutionary relationships of this unique biogeographic province. We sequenced the standard barcoding COI region for a comprehensive selection of sponges collected during expeditions to the Ross Sea region in 2004 and 2008, and produced DNA-barcodes for 53 demosponge species covering about 60% of the species collected. The Antarctic sponge communities are phylogenetically diverse, matching the diversity of well-sampled sponge communities in the Lusitanic and Mediterranean marine provinces in the Temperate Northern Atlantic for which molecular data are readily available. Additionally, DNA-barcoding revealed levels of in situ molecular evolution comparable to those present among Caribbean sponges. DNA-barcoding using the Segregating Sites Algorithm correctly assigned approximately 54% of the barcoded species to the morphologically determined species. A barcode library for Antarctic sponges was assembled and used to advance the systematic and evolutionary research of Antarctic sponges. We provide insights on the evolutionary forces shaping Antarctica's diverse sponge communities, and a barcode library against which future sequence data from other regions or depth strata of Antarctica can be compared. The opportunity for rapid taxonomic identification of sponge collections for ecological research is now at the horizon.

  14. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches.

    PubMed

    Yahr, Rebecca; Schoch, Conrad L; Dentinger, Bryn T M

    2016-09-05

    The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  15. Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida.

    PubMed

    Nagoshi, Rodney N; Brambila, Julieta; Meagher, Robert L

    2011-01-01

    A critical component for sustaining adequate food production is the protection of local agriculture from invasive pest insects. Essential to this goal is the ability to accurately distinguish foreign from closely related domestic species, a process that has traditionally required identification using diagnostic morphological "keys" that can be both subtle and labor-intensive. This is the case for the Lepidopteran group of insects represented by Spodoptera, a genus of Noctuidae "armyworm" moths that includes several important agricultural pests. Two of the most destructive species, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and S. litura (F.) are not yet established in North America. To facilitate the monitoring for these pests, the feasibility of using DNA barcoding methodology for distinguishing between domestic and foreign Spodoptera species was tested. A DNA barcoding database was derived for a subset of Spodoptera species native to Florida, with an emphasis on those attracted to pheromone blends developed for S. litura or S. littoralis. These were then compared to the barcode sequences of S. litura collected from Taiwan and S. littoralis from Portugal. Consistent discrimination of the different species was obtained with phenetic relationships produced that were generally in agreement with phylogenetic studies using morphological characteristics. The data presented here indicate that DNA barcoding has the potential to be an efficient and accurate supplement to morphological methods for the identification of invasive Spodoptera pests in North America.

  16. Computer-assisted bar-coding system significantly reduces clinical laboratory specimen identification errors in a pediatric oncology hospital.

    PubMed

    Hayden, Randall T; Patterson, Donna J; Jay, Dennis W; Cross, Carl; Dotson, Pamela; Possel, Robert E; Srivastava, Deo Kumar; Mirro, Joseph; Shenep, Jerry L

    2008-02-01

    To assess the ability of a bar code-based electronic positive patient and specimen identification (EPPID) system to reduce identification errors in a pediatric hospital's clinical laboratory. An EPPID system was implemented at a pediatric oncology hospital to reduce errors in patient and laboratory specimen identification. The EPPID system included bar-code identifiers and handheld personal digital assistants supporting real-time order verification. System efficacy was measured in 3 consecutive 12-month time frames, corresponding to periods before, during, and immediately after full EPPID implementation. A significant reduction in the median percentage of mislabeled specimens was observed in the 3-year study period. A decline from 0.03% to 0.005% (P < .001) was observed in the 12 months after full system implementation. On the basis of the pre-intervention detected error rate, it was estimated that EPPID prevented at least 62 mislabeling events during its first year of operation. EPPID decreased the rate of misidentification of clinical laboratory samples. The diminution of errors observed in this study provides support for the development of national guidelines for the use of bar coding for laboratory specimens, paralleling recent recommendations for medication administration.

  17. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    USDA-ARS?s Scientific Manuscript database

    Six DNA regions were evaluated in a multi-national, multi-laboratory consortium as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it...

  18. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  19. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens

    PubMed Central

    2018-01-01

    Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling. PMID:29799876

  20. DNA barcoding for conservation, seed banking and ecological restoration of Acacia in the Midwest of Western Australia.

    PubMed

    Nevill, Paul G; Wallace, Mark J; Miller, Joseph T; Krauss, Siegfried L

    2013-11-01

    We used DNA barcoding to address an important conservation issue in the Midwest of Western Australia, working on Australia's largest genus of flowering plant. We tested whether or not currently recommended plant DNA barcoding regions (matK and rbcL) were able to discriminate Acacia taxa of varying phylogenetic distances, and ultimately identify an ambiguously labelled seed collection from a mine-site restoration project. Although matK successfully identified the unknown seed as the rare and conservation priority listed A. karina, and was able to resolve six of the eleven study species, this region was difficult to amplify and sequence. In contrast, rbcL was straightforward to recover and align, but could not determine the origin of the seed and only resolved 3 of the 11 species. Other chloroplast regions (rpl32-trnL, psbA-trnH, trnL-F and trnK) had mixed success resolving the studied taxa. In general, species were better resolved in multilocus data sets compared to single-locus data sets. We recommend using the formal barcoding regions supplemented with data from other plastid regions, particularly rpl32-trnL, for barcoding in Acacia. Our study demonstrates the novel use of DNA barcoding for seed identification and illustrates the practical potential of DNA barcoding for the growing discipline of restoration ecology. © 2013 John Wiley & Sons Ltd.

  1. Molecular Authentication of the Traditional Medicinal Plant "Lakshman Booti" (Smithia conferta Sm.) and Its Adulterants through DNA Barcoding.

    PubMed

    Umdale, Suraj D; Kshirsagar, Parthraj R; Lekhak, Manoj M; Gaikwad, Nikhil B

    2017-07-01

    Smithia conferta Sm. is an annual herb widely used in Indian traditional medical practice and commonly known as "Lakshman booti" in Sanskrit. Morphological resemblance among the species of genus Smithia Aiton . leads to inaccurate identification and adulteration. This causes inconsistent therapeutic effects and also affects the quality of herbal medicine. This study aimed to generate potential barcode for authentication of S. conferta and its adulterants through DNA barcoding technique. Genomic DNA extracted from S. conferta and its adulterants was used as templates for polymerase chain reaction amplification of the barcoding regions. The amplicons were directed for sequencing, and species identification was conducted using BLASTn and unweighted pair-group method with arithmetic mean trees. In addition, the secondary structures of internal transcribed spacer (ITS) 2 region were predicted. The nucleotide sequence of ITS provides species-specific single nucleotide polymorphisms and sequence divergence (22%) than psb A- trn H (10.9%) and rbc L (3.1%) sequences. The ITS barcode indicates that S. conferta and Smithia sensitiva are closely related compared to other species. ITS is the most applicable barcode for molecular authentication of S. conferta , and further chloroplast barcodes should be tested for phylogenetic analysis of genus Smithia. The present investigation is the first effort of utilization of DNA barcode for molecular authentication of S. conferta and its adulterants. Also, this study expanded the application of the ITS2 sequence data in the authentication. The ITS has been proved as a potential and reliable candidate barcode for the authentication of S. conferta . Abbreviations used: BLASTn: Basic Local Alignment Search Tool for Nucleotide; MEGA: Molecular Evolutionary Genetic Analysis; EMBL: European Molecular Biology Laboratory; psb A- trn H: Photosystem II protein D1- stuctural RNA: His tRNA gene; rbcL: Ribulose 1,5 bi-phosphate carboxylase

  2. Free motion scanning system

    DOEpatents

    Sword, Charles K.

    2000-01-01

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  3. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    PubMed

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.

  4. DNA barcoding in diverse educational settings: five case studies

    PubMed Central

    Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-01-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792

  5. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-05

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  6. Footwear scanning systems and methods

    DOEpatents

    Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.

    2017-07-25

    Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.

  7. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    PubMed

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique

    PubMed Central

    Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.

    2017-01-01

    Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707

  9. Detection of plant-based adulterants in turmeric powder using DNA barcoding.

    PubMed

    Parvathy, V A; Swetha, V P; Sheeja, T E; Sasikumar, B

    2015-01-01

    In its powdered form, turmeric [Curcuma longa L. (Zingiberaceae)], a spice of medical importance, is often adulterated lowering its quality. The study sought to detect plant-based adulterants in traded turmeric powder using DNA barcoding. Accessions of Curcuma longa L., Curcuma zedoaria Rosc. (Zingiberaceae), and cassava starch served as reference samples. Three barcoding loci, namely ITS, rbcL, and matK, were used for PCR amplification of the reference samples and commercial samples representing 10 different companies. PCR success rate, sequencing efficiency, occurrence of SNPs, and BLAST analysis were used to assess the potential of the barcoding loci in authenticating the traded samples of turmeric. The PCR and sequencing success of the loci rbcL and ITS were found to be 100%, whereas matK showed no amplification. ITS proved to be the ideal locus because it showed greater variability than rbcL in discriminating the Curcuma species. The presence of C. zedoaria could be detected in one of the samples whereas cassava starch, wheat, barley, and rye in other two samples although the label claimed nothing other than turmeric powder in the samples. Unlabeled materials in turmeric powder are considered as adulterants or fillers, added to increase the bulk weight and starch content of the commodity for economic gains. These adulterants pose potential health hazards to consumers who are allergic to these plants, lowering the product's medicinal value and belying the claim that the product is gluten free. The study proved DNA barcoding as an efficient tool for testing the integrity and the authenticity of commercial products of turmeric.

  10. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding.

    PubMed

    Nithaniyal, Stalin; Vassou, Sophie Lorraine; Poovitha, Sundar; Raju, Balaji; Parani, Madasamy

    2017-02-01

    Plants are the major source of therapeutic ingredients in complementary and alternative medicine (CAM). However, species adulteration in traded medicinal plant raw drugs threatens the reliability and safety of CAM. Since morphological features of medicinal plants are often not intact in the raw drugs, DNA barcoding was employed for species identification. Adulteration in 112 traded raw drugs was tested after creating a reference DNA barcode library consisting of 1452 rbcL and matK barcodes from 521 medicinal plant species. Species resolution of this library was 74.4%, 90.2%, and 93.0% for rbcL, matK, and rbcL + matK, respectively. DNA barcoding revealed adulteration in about 20% of the raw drugs, and at least 6% of them were derived from plants with completely different medicinal or toxic properties. Raw drugs in the form of dried roots, powders, and whole plants were found to be more prone to adulteration than rhizomes, fruits, and seeds. Morphological resemblance, co-occurrence, mislabeling, confusing vernacular names, and unauthorized or fraudulent substitutions might have contributed to species adulteration in the raw drugs. Therefore, this library can be routinely used to authenticate traded raw drugs for the benefit of all stakeholders: traders, consumers, and regulatory agencies.

  11. The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia

    PubMed Central

    Francis, Charles M.; Borisenko, Alex V.; Ivanova, Natalia V.; Eger, Judith L.; Lim, Burton K.; Guillén-Servent, Antonio; Kruskop, Sergei V.; Mackie, Iain; Hebert, Paul D. N.

    2010-01-01

    Background Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. Methodology and Principal Findings DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. Conclusions DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning. PMID:20838635

  12. Integrating Bar-Code Medication Administration Competencies in the Curriculum: Implications for Nursing Education and Interprofessional Collaboration.

    PubMed

    Angel, Vini M; Friedman, Marvin H; Friedman, Andrea L

    This article describes an innovative project involving the integration of bar-code medication administration technology competencies in the nursing curriculum through interprofessional collaboration among nursing, pharmacy, and computer science disciplines. A description of the bar-code medication administration technology project and lessons learned are presented.

  13. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market

    PubMed Central

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication. PMID:27128309

  14. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    PubMed

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.

  15. Identifying Fishes through DNA Barcodes and Microarrays.

    PubMed

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar

    2010-09-07

    International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  16. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  17. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  18. DNA barcoding of medicinal plant material for identification

    USDA-ARS?s Scientific Manuscript database

    Because of the increasing demand for herbal remedies and for authentication of the source material, it is vital to provide a single database containing information about authentic plant materials and their potential adulterants. The database should provide DNA barcodes for data retrieval and similar...

  19. DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species.

    PubMed

    Hassold, Sonja; Lowry, Porter P; Bauert, Martin R; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex

    2016-01-01

    Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world's most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods.

  20. [Microinjection Monitoring System Design Applied to MRI Scanning].

    PubMed

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.