Sample records for barium hexaferrite bafe12o19

  1. Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Trukhanov, S. V.; Kostishin, V. G.; Panina, L. V.; Salem, M. M.; Kazakevich, I. S.; Turchenko, V. A.; Kochervinskii, V. V.; Krivchenya, D. A.

    2017-04-01

    Precise studies of the crystal and magnetic structures of M-type substituted barium hexaferrites BaFe12- x Al x O19 (0.1 ≤ x ≤ 1.2) have been performed by powder neutron diffraction in the temperature range 300-730 K. The electric polarization and the magnetization, and also the magnetoelectric effect of the compositions under study have been studied in electric (to 110 kV/m) and magnetic (to 14 T) fields at room temperature. The spontaneous polarization and significant correlation between the dielectric and magnetic subsystems have been observed at room temperature. The magnetoelectric effect value is, on average, about 5%, and it increases slightly with the aluminum cation concentration. The precise structural studies made it possible to reveal the cause and the mechanism of formation of the spontaneous polarization in M-type substituted barium hexaferrites BaFe12- x Al x O19 ( x ≤ 1.2) with a collinear ferromagnetic structure.

  2. Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

    NASA Astrophysics Data System (ADS)

    Waqar, Moaz; Rafiq, Muhammad Asif; Mirza, Talha Ahmed; Khalid, Fazal Ahmad; Khaliq, Abdul; Anwar, Muhammad Sabieh; Saleem, Murtaza

    2018-04-01

    M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12- x Ni x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol-gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization ( M s) and remnant magnetization ( M r) increased with the addition of Ni, however, coercivity ( H c) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.

  3. Mössbauer and X-ray diffraction study of Co2+-Si4+ substituted M-type barium hexaferrite BaFe12-2хСохSiхO19±γ

    NASA Astrophysics Data System (ADS)

    Solovyova, E. D.; Pashkova, E. V.; Ivanitski, V. P.; V‧yunov, O. I.; Belous, A. G.

    2013-03-01

    Using X-ray powder diffractions, Mössbauer spectroscopy, and magnetic measurements, the effect of dopants (Co2++Si4+) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution 2Fe3+→Со2++Sі4+.

  4. Crystal structure and magnetic properties of Cr doped barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan

    2018-04-01

    The Cr3+ substituted BaFe12O19 has been synthesized by modified sol-gel method to tailor the magnetic anisotropy and coercivity for technological applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the M-type hexaferrite. In order to investigate these interactions, BaFe12-xCrxO19 (x = 0.0, 0.5, 1.0, 2.0, and 4.0) M-type hexaferrites were characterized by employing XRD (X-ray Diffractometer). It is confirmed that, all the samples are in nanocrystalline and single phase, no impurity has been detected within the XRD limit. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field were increasing with the increasing Cr3+ content, but after the percolation limit it decreases. The magnetocrystalline anisotropy is increasing with the Cr3+ concentration in samples and high values of magnetocrystalline anisotropy revealed that all samples are hard magnetic materials. Magnetic hysteresis loops were analyzed using the Law of Approach to Saturation method.

  5. Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.

    2016-09-01

    Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg-1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.

  6. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.A., E-mail: moala@47hotmail.com; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{submore » 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.« less

  7. Characteristics of B2O3 and Fe added into BaFe12O19 permanent magnets prepared at different milling time and sintering temperature

    NASA Astrophysics Data System (ADS)

    Sebayang, Perdamean; Sari, Ayu Yuswita; Ginting, Delovita; Allan, Yola; Nasruddin M., N.; Sebayang, Kerista

    2016-02-01

    The objective of present work is to investigate the characteristic of BaFe12O19, B2O3-BaFe12O19 and Fe-BaFe12O19 magnets fabricated at different milling time and sintering temperature. The characteristic of perrmanen magnet BaFe12O19 with different content of B2O3 and Fe which was fabricated at different milling time and sintering temperature were investigated. The powder mixtures were prepared by dry and wet milling at various milling time. The powder were mixtured and prepared by dry and wet milling at various milling time. The mixture powder was then compacted by anisotropic with compressive pressure of 50 N/cm2. The green bodies were sinter at 1050, 1100, 1150 and 1200°C and hold for 1 h, separately. The density, magnetic flux density and B-H curve were measured by Archimedes principle, Gauss meter and Permagraph, respectively. The microstructure and phase composition characterization were performed by SEM and XRD. The results of this study are presented in this paper. It shows that addition of Fe (in wet milling) and B2O3 (in dry milling) respectively give a potential benefit to reduce the sintering temperature and improve the magnetic flux density of barium hexaferrite.

  8. Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.

    2018-01-01

    The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.

  9. Synthesis, structural characterization and antibacterial activity of cotton fabric modified with a hydrogel containing barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Staneva, Desislava; Koutzarova, Tatyana; Vertruyen, Benedicte; Vasileva-Tonkova, Evgenia; Grabchev, Ivo

    2017-01-01

    Barium hexaferrite nanoparticles were synthesized by co-precipitation of Ba2+ and Fe3+ cations with NaOH under of high-power ultrasound. The nanoparticles were dispersed in an aqueous solution of the hydrogel precursors. This solution was used to impregnate the cotton fabric dyed with a photoinitiator. The composite material BaFe12O19 nanoparticles-hydrogel-cotton fabric was prepared by surface initiate photopolymerization under visible light. The modification of the cotton fabric and uniform distribution of the nanoparticles in the structure of the hydrogel were analyzed by scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), fluorescence and colourimetric analyses. The antibacterial efficacy of the material was evaluated against Gram-negative Escherichia coli and Pseudomonas aeruginosa.

  10. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffractionmore » to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.« less

  11. Influence of Ba/Fe mole ratios on magnetic properties, crystallite size and shifting of X-ray diffraction peaks of nanocrystalline BaFe12O19 powder, prepared by sol gel auto combu

    NASA Astrophysics Data System (ADS)

    Suastiyanti, Dwita; Sudarmaji, Arif; Soegijono, Bambang

    2012-06-01

    Barium hexaferrite BaFe12O19 (BFO) is of great importance as permanent magnets, particularly for magnetic recording as well as in microwave devices. Nano-crystalline BFO powders were prepared by sol gel auto combustion method in citric acid - metal nitrates system. Hence the mole ratios of Ba/Fe were variated at 1:12; 1:11.5 and 1:11. Ratio of cation to fuel was fixed at 1:1. An appropriate amount of amonia solution was added dropwise to this solution with constant stirring until the PH reached 7 in all cases. Heating at 850oC for 10 hours for each sample to get final formation of BFO nanocrystalline. The data from XRD showing the lattice parameters a,c and the unit-cell volume V, confirm that BFO with ratio 1:12 has same crystall parameters with ratio 1:11. Ratio of Ba/Fe 1:12 and 1:11 have diffraction pattern similarly at almost each 2 θ for each samples. Ratio of Ba/Fe 1: 11.5 has the finest crystallite size 22 nm. Almost diffraction pattern peaks of Ba/Fe 1:11.5 move to the left from of Ba/Fe 1:12 then return to diffraction pattern of Ba/Fe 1:12 for Ba/Fe 1:11. SEM observations show the particle size less than 100 nm and the same shape for each sample. Ratio of Ba/Fe 1: 12 gives the highest intrinsic coercive Hc = 427.3 kA/m. The highest remanent magnetization is at ratio 1:11 with Mr = 0.170 T. BFO with mole ratio 1:11.5 has the finest grain 22 nm, good magnetic properties and the highest value of best FoM 89%.

  12. Electrical, Magnetic and Microwave Absorption Properties of M-type Barium Hexaferrites (BaFe12-2x CoxNixO19)

    NASA Astrophysics Data System (ADS)

    Susilawati; Doyan, A.; Khair, H.; Taufik, M.; Wahyudi

    2018-04-01

    M-type barium hexaferrites synthesis with Co-Ni doping ion (BaFe12-2x CoxNixO19) based on natural iron sand of Loang Balok beach, Lombok, Indonesia, to be applied as a microwave absorbent material using co-precipitation method. The materials used in the synthesis process are magnetite minerals (Fe2O3 and Fe3O4), 12M HCl, NH4OH 37%, CoCl2.6H2O and NiCl2.6H2O. This research to investigate the effect of doping ion concentration variation (x = 0.0, 0.6 and 1.0) and calcination temperature (T = 80, 600, and 800°C) on electrical and magnetic properties and microwave absorption as well. The samples were characterized using Vibrating Sample Magnetometer (VSM) and Network Vector Analyzer (VNA). The result from VSM showed that the coercivity value decreased when doping ion concentration and calcination temperature increased (0.151 Tesla at 600°C for x = 0.0 and 0.044 Tesla at 800°C for x = 1.0. The value of magnetic saturation and the magnetic remanence increased with increasing ion concentration (Ms = 0.327 emu/g at x = 0.0 increased to 35.4 emu/g at x = 1.0) and Mr = 0.148 emu/g for x = 0.0 increased to 15.6 emu/g at x=1.0, this indicates that the sample has been soft magnetic. The result from VNA showed that the electrical conductivity values measured in the range 8.0-15.0 GHz indicate that the sample is a semiconductor (6.149 x 10-6 -5.975 x 10-4 S/cm). It also showed that the microwave absorption properties increased at higher concentration of doping ions and the calcination temperature would increase the value of Reflection Loss (RL). The maximum RL value of the sample is -14.47 dB at 12.38 GHz, and the absorption coefficient of 96.43%. These results indicate that the BaFe12-2x CoxNixO19 sample can be applied as a microwave absorbent material on X-band to Ku-band frequency.

  13. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19

    NASA Astrophysics Data System (ADS)

    Tang, Rujun; Zhou, Hao; You, Wenlong; Yang, Hao

    2016-08-01

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe10.2Sc1.8O19 have been investigated. The results show that the magnetic moments of insulating BaFe10.2Sc1.8O19 can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominant mechanism. The above results show that the hexaferrite BaFe10.2Sc1.8O19 is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.

  14. Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.

    2018-03-01

    The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

  15. Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12-3xO19 (0.0≤x≤0.33) hexaferrites

    NASA Astrophysics Data System (ADS)

    Güner, S.; Auwal, I. A.; Baykal, A.; Sözeri, H.

    2016-10-01

    BaBixLaxYxFe12-3xO19 (0.0≤x≤0.33) hexaferrites were synthesized by sol-gel autocombustion method and the effects of Bi, La, Y substitutions on structural, magneto-optical properties of barium hexaferrite were investigated. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Vibrating sample magnetometer (VSM), and Percent diffuse reflectance spectroscopy (DR %), were used to study the physical properties. XRD peaks showed pure single phase of hexagonal ferrites and the average crystallite size varies in a range of 42.35-49.90 nm. Room temperature (RT) specific magnetization (σ-H) data revealed the strong ferromagnetic nature of hexaferrite with remanant specific magnetization (σr) in the range of 29.9-34.6 Am2/kg and extrapolated specific saturation magnetization (σs) in the range 53.69-67.42 Am2/kg. The maximum coercive field (Hc) of 3.812×105 A/m (belongs to BaFe12O19) decreases to minimum 2.177×105 A/m with increasing ion substitution. Magnetic anisotropy was confirmed as uniaxial and effective anisotropy constant (Keff) takes values between 2.532×105 J/m3 and 3.105×105 J/m3. The anisotropy field (Ha) around 1.6 T revealed that all samples are magnetically hard materials. The Tauc graphs were plotted to estimate the direct optical energy band gap (Eg) of hexaferrite. The Eg values decreased from 1.88 eV to 1.69 eV with increasing Bi, La, Y compositions.

  16. Influence of Fabrication Conditions on the Structural and the Magnetic Properties of Co-doped BaFe12O19 Hexaferrites

    NASA Astrophysics Data System (ADS)

    Tran, Ngo; Kim, Deok Hyeon; Lee, Bo Wha

    2018-03-01

    BaFe11CoO19 hexaferrites were prepared by using a co-precipitation method and heat treatment. By changing the ion molar ratio of (Fe + Co)/Ba = ( x + 1)/1, we found a clear difference in the crystalline structural and magnetic properties. Particularly, the magnetic properties became optimal at x = 11 - 13 based on the saturation magnetization and coercivity values. The effects of heat treatment on the morphological, structural and magnetic properties were assessed. With the results of thermal gravimetric analyses, X-ray diffraction patterns, and magnetic-field-dependent magnetization, we found that M-type hexaferrite nanocrystals start being formed at a temperature of 650°C, which was much lower than temperatures reported previously.

  17. Vacuum and low oxygen pressure influence on BaFe12O19 film deposited by pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Gaur, Anurag; Choudhary, R. J.

    2018-05-01

    BaFe12O19 hexaferrite thin films are deposited on Si (111) substrate by the pulse laser deposition (PLD) technique in high vacuum 10-6 Torr and low oxygen pressure (10 mTorr) at 650°C substrate temperature. The effects of high vacuum and low pressure on magnetic and optical properties are studied. These films are characterized by the x-ray diffractometer (XRD), SQUID-VSM magnetometer, and Photo-luminescence spectroscopy. XRD pattern reveals that the BaFe12O19 film well formed in both environments without any impurity pick. High magnetic saturazation 317 emu/cm3 and coercivity 130 Oe are observed for the film deposited in vacuum. Photoluminescence emission spectrum of BaFe12O19 film reveals that the higher intensity emission peak at ˜372 nm under the excitation wavelength of 270 nm is observed for the film grown in vacuum.

  18. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system. Electronic supplementary information (ESI) available: Synthesis (ESI #1) and properties (ESI #2) of the barium hexaferrite core nanoparticles, TEM of the nanoparticles synthesized under an excessive supersaturation (ESI #3), and magnetic properties of physical mixtures of the hard-magnetic hexaferrite and the soft-magnetic spinel ferrite (ESI #4). See DOI: 10.1039/c4nr05854b

  19. Multiple electrical phase transitions in Al substituted barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2017-12-01

    Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.

  20. Structural and Magnetic Characterization of BaFe12O19 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhage, Vinod N.; Mane, M. L.; Shirsath, Sagar E.; Jadhav, S. P.; Gunjal, R. P.; Jadhav, K. M.

    2011-07-01

    Barium hexaferrite nanoparticles have been synthesized successfully by using sol-gel auto-combustion technique. In this process dextrose and citric acid both used as a fuel separately. The ratio of cation to both the fuel was maintained at 1:3 whereas the pH of the sample was kept constant at 8. The particle size for dextrose and citric acid sample is 34 nm and 45 nm respectively. The room temperature hysteresis curve gives maximum magnetization (48.46 emu/g) and coercivity (1.350 kOe) values for dextrose used sample. The dextrose used sample gives better results than that of citric acid used sample.

  1. Simultaneous effect of crystal lattice and non magnetic substitution on magnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pradhan, Lagen Kumar; Pandey, Rabichandra; Kar, Manoranjan

    2018-05-01

    The aluminium doped barium hexaferrite BaFe12-xAlxO19 with x =0.0, 1.0, 2.0, 4.0 and 6.0 have been synthesized by the sol-gel method to modify the magnetic properties for technological applications. The crystal structure and phase purity of all the samples have been explored by employing the X-ray diffraction (XRD) technique. It confirms that the sample is nanocrystalline, hexagonal symmetry and all the intense peaks could be indexed to the P63/mmc space group. The obtained lattice parameters from the XRD analysis decrease with the increase in Al3+ content in the samples. The microstructural morphology and particle sizes of all samples were studied by using the Field Emission Scanning Electron Microscopy (FESEM-Hitachi-S4800) technique. The magnetic hysteresis (M-H) loops measurement has been carried out at room temperature by employing the vibrating sample magnetometer (VSM) over a field range of +20 kOe to -20 kOe. The magnetic hysteresis (M-H) loops revealed the ferromagnetic (hard magnetic materials) nature of the samples and, analyzed by using the Law of Approach to Saturation.

  2. Synthesis and Characterization Materials M-Barium Hexaferrite Doping Ions Co-Mn Nano Particle

    NASA Astrophysics Data System (ADS)

    Susilawati; Doyan, A.; Sahlam

    2017-05-01

    This research has been success in the synthesis of M-Barium hexaferrite (BaM) doping Co-Mn ions using coprecipitation method are expected to be applied as a base material in the coating RADAR. M-Barium hexaferrite (BaM) are BaFe12-2xCoxMnxO19 synthesized with various concentrations (x = 0.0, 0.1, 0.2, 0.3) and the calcinations temperature (T = 400°C, 600°C, 800°C). The materials characterization using a X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Inductance Capacitance and resistance (LCR) meter, and Vibrating Sample Magnetometer (VSM) Instruments. The measurement results using XRD shows the material has a hexagonal crystalline structure. The measurement results using a TEM show a sample of nano crystal materials with grain diameters up to 40 nm and spacing of the crystal lattice. The measurement results using a LCR-meter shows the electric conductivity of 1.15 × 10-6 S/cm to BaM without doping, 3.75 × 10-6 S/cm to 0.1 doping concentration calcination temperature of 400 °C, and 1,23 × 10-5 S/cm to 0.3 doping concentration calcination temperature of 800 °C, thus including semiconductor materials. The magnetic properties of materials using a VSM test results show the value of coercivity of 0.1 T; remanence value of 0.06 emu/g; and the saturation value of 0.42 emu/g. The results above show BaM Co-Mn metal doping potential as anti-radar material.

  3. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalini, M. Govindaraj; Sahoo, Subasa C., E-mail: subasa@cukerala.ac.in

    2016-05-06

    M-type barium hexaferrite (BaFe{sub 12}O{sub 19}) and cobalt doped barium hexaferrite (BaFe{sub 11}CoO{sub 19}) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample andmore » was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.« less

  4. The effect of milling time and sintering temperature on Mn, Ti substituted barium hexaferrite nanoparticle

    NASA Astrophysics Data System (ADS)

    Yustanti, Erlina; Manaf, Azwar

    2018-04-01

    Barium hexaferrite (BaO.6Fe2O3/BaFe12O19) is a permanent magnetic material and microwave absorbing material. The value of microwave absorption can be increased through the engineering of the material structure, while the reduction of crystallite and particle size up to nanometer results device performance improvement to be superior. In this research, the structural engineering through mechanical alloying and crystallite size reduction through high power ultrasonic irradiation will be explained. Mixing and alloying of Sigma Aldrich BaCO3, Fe2O3, MnCO3, TiO2 p.a 99% precursor material used ball mill with powder ratio of vial at 1:10. Mechanical alloying for 60 hours at 160 rpm produced amorphous material. The process of the crystalline embryo nucleation for 4 hours produced multicrystalline material at a sinter temperature of 1100°C. Phase analysis of the mechanical alloying result using x-ray diffractometer was confirmed either the formation of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) single phase. Multicrystalline powder of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) was obtained through 20 hours hand grinding and re-milling to bulk sample. Crystallite size reduction in the analysis was conducted through particle density variation in ultrasonic reactor and variation of the increase in ultrasonic time. Increase in milling time up to 60 hours produced fragmenting so that particle size reduction from 18.8 µm to 0.9 µm was occurred. The 12-h ultrasonic irradiation at a frequency of 20 kHz amplitude of 60 µm produced a crystallite-size reduction up to 18 nm at a 10 g/L particle density.

  5. Could binary mixture of Nd-Ni ions control the electrical behavior of strontium-barium M-type hexaferrite nanoparticles?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Farooq, Saima

    2011-05-15

    Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials ofmore » nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.« less

  6. Growing barium hexaferrite (BaFe{sub 12}O{sub 19}) thin films using chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budiawanti, Sri, E-mail: awanty77@yahoo.com; Faculty of Teacher Training and Education, Sebelas Maret University; Soegijono, Bambang

    Barium hexaferrite (BaFe{sub 12}O{sub 19}, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysismore » indicates the isotropic nature of the films.« less

  7. A simple process to obtain anisotropic self-biased magnets constituted of stacked barium ferrite single domain particles

    NASA Astrophysics Data System (ADS)

    Mattei, Jean-Luc; Le, Cong Nha; Chevalier, Alexis; Maalouf, Azar; Noutehou, Nathan; Queffelec, Patrick; Laur, Vincent

    2018-04-01

    An efficient and inexpensive process is presented that produces highly oriented bulk compacts made of BaM particles. Barium hexaferrite particles (BaM, nominal composition BaFe11O19) were prepared by a chemical coprecipitation method, using different rates and types of precipitating agents (NaOH and Na2CO3). It was demonstrated that when a large excess of Na2CO3 is used, a noteworthy packing of hexagonal BaM platelets is obtained, after mechanical compaction and firing at moderate temperature (1140 °C), without including any more steps than those required for a conventional sintering process. The hysteresis loop displays a very competitive squareness of 0.88 (normalized remanent magnetization) and a coercivity of 215 kA/m, which make this BaM bulk ferrite suitable for self-biased applications.

  8. Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Singh, Rakesh Kumar; Kar, Manoranjan

    2018-07-01

    The calcium (Ca2+) substituted M-type barium hexaferrite (Ba1-xCaxFe12O19) for Ca2+ (x = 0.00, 0.025, 0.050, 0.075, 0.100, 0.150, and 0.200) have been synthesized by the citrate sol-gel method. The X-ray diffraction (XRD) patterns with Rietveld refinement reveal the formation of hexagonal crystal structure with P63/mmc space group. The lattice parameters a = b and c decrease, whereas lattice strain found to increase with the increase in Ca concentration in the samples. The analysis of Raman spectra well supports the XRD patterns analysis. The average particle size is obtained from the FE-SEM (Field Emission Scanning Electron Microscopy) micrographs and these are similar to that of crystallite size obtained from the XRD pattern analysis. The saturation magnetization and magnetocrystalline anisotropy have been obtained by employing the "Law of Approach (LA) to Saturation magnetization" technique at room temperature. The saturation magnetization and magnetocrystalline anisotropy constant are maximum for 5% Ca substitution in barium hexaferrite. It could be due to lattice strain mediated magnetism. However, these magnetic properties decrease for more than the 5% Ca substitution in barium hexaferrite. It could be due to decrease of magnetic exchange interaction (Fe-O-Fe) in the sample. A correlation between magnetic interaction and lattice strain has been observed in Ca2+ substituted M-type barium hexaferrite.

  9. Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manju; Kashyap, Subhash C.; Gupta, Hem C.

    2014-07-15

    Curie temperature of polycrystalline barium hexaferrite (BaFe{sub 12}O{sub 19}), prepared by conventional solid state technique, is anomalously and significantly enhanced (by nearly 15%) by energetic heavy ion irradiation (150 MeV, Ag{sup 12+}) at ambient temperature due to dense electronic excitations Moderate fluence (1 × 10{sup 12} ions/cm{sup 2}) induces structural defects giving rise to above enhancement. As established by X-ray diffraction, scanning electron microscopy and Raman studies, higher fluence (1 × 10{sup 13} ions/cm{sup 2}) has structurally transformed the sample to amorphous phase with marginal change in magnetization and Curie temperature.

  10. Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.

    2017-03-01

    M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.

  11. Effect of Sintering Temperature to Physical, Magnetic Properties and Crystal Structure on Permanent Magnet BaFe12O19 Prepared From Mill Scale

    NASA Astrophysics Data System (ADS)

    Ramlan; Muljadi; Sardjono, Priyo; Gulo, Fakhili; Setiabudidaya, Dedi

    2017-07-01

    Permanent magnet of Barium hexa Ferrite with formula BaFe12O19 has been made by metallurgy powder method from raw materials : Barium carbonate (BaCO3 E-merck) and Iron Oxide (Fe2O3 from mill scale). Both of raw materials have been mixed with stoichiometry composition by using a ball mill for 24 hours. The fine powder obtained from milling process was formed by using a hydraulic press at pressure 50 MPa and continued with sintering process. The sintering temperature was varied : 1150°C, 1200°C, 1250°C and 1300°C with holding time for 1 hour. The sintered samples were characterized such as : physical properties (bulk density, porosity and shrinkage), magnetic properties (flux density, remanence, coercivity and magnetic saturation) by using VSM and crystal structure by using XRD. According characterization results show that the crystal structure of BaFe12O19 does not change after sintering process, but the grain size tends to increase. The optimum condition is achieved at temperature 1250°C, and at this condition, the sample has characterization such as : bulk density = 4.35 g/cm3, porosity = 1.03% and firing shrinkage = 11.63%, flux density = 681.1 Gauss, remanence (σr) = 20.78 emu/g, coercivity (Hc) = 2058 Oe and magnetic saturation (σs) 45.16 emu/g.

  12. Effect of Al on the microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite thin films

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Chen, Zhuo; Wang, Guijuan; Chen, Yong; Li, Yuanxun; Liu, Yingli

    2017-12-01

    The microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite (BaAlxFe12-xO19) thin films with Al doping level x from 0 to 2 are reported. The films were grown on Pt/TiO2/SiO2/Si substrate by Sol-gel method. It is found that with increasing x from 0 to 2 the hexagonal grain disappear, together with Curie temperature dropped from 449 °C to 332 °C and saturated magnetization (4πMs) decreased from 3.8 kG to 1.9 kG, it is attributed to the fact that the Fe ions were substituted by non-magnetic Al ions, leading to the Fe3+-O-Fe3+ super-exchange interaction became weak. The ferromagnetic resonance (FMR) measurement showed that the FMR linewidths is as low as 113 Oe @ 58 GHz, and the FMR frequency shifted to higher frequency range when increasing Al doping level. These result offer the potential application of barium ferrite thin films in tunable millimeter wave devices such as filter, circulator and isolator.

  13. Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Baykal, A.; Auwal, I. A.; Güner, S.; Sözeri, H.

    2017-05-01

    Ba1-xZnxFe12O19 (0.0≤x≤0.3) hexaferrites were produced via sol-gel auto combustion technique. XRD patterns show that all the samples are single-phase M-type barium hexaferrite (BaM). Scanning electron microscopy (SEM) revealed that grains have a size range of 0.5-2 μm. The magnetic hysteresis (σ-H) loops revealed the ferromagnetic nature of NPs. The average crystallite sizes were calculated by applying Scherrer equation on the base of XRD powder patterns of all samples and found to be in the range of 16.78-48.34 nm. In particular, Ba1-xZnxFe12O19 (0.0≤x≤0.3) hexaferrites have suitable magnetic characteristics (saturation magnetization in a range of 63.00-67.70 emu/g and coercive field in a range of 822-1275 Oe) for magnetic recording and permanent magnets. Effective crystalline anisotropy constants (Keff) are between 4.20×105 and 4.84×105 Erg/g. Magnetic moment increased by the substitution of non-magnetic Zn2+ ions. The anisotropy field (Ha) or intrinsic coercivity values above 13255 Oe reveals that all samples are magnetically hard materials. Tauc plots were drawn to specify the direct optical energy band gap (Eg) of NPs. The Eg values are in a narrow range between 1.69 eV and 1.76 eV.

  14. Quantum electric-dipole liquid on a triangular lattice.

    PubMed

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  15. Synthesis and Characterization of BaFe12O19/Poly(aniline, pyrrole, ethylene terephthalate) Composites Coatings as Radar Absorbing Material (RAM)

    NASA Astrophysics Data System (ADS)

    Sasria, Nia; Ardhyananta, H.; Fajarin, R.; Widyastuti

    2017-07-01

    This research shows the processing and design of radar absorbing material (RAM) based on barium hexaferrite (BaM) and poly(aniline, pyrrole, ethylene terephthalate) (PAni,PPy,PET). BaM was prepared by sol gel method with Ni-Zn doping at mole fraction of 0. 4 to obtain soft magnetic material. BaM/(PAni,PPy) composites were synthesized by in-situ polymerization method at ˜0 °C. (BaM/PET) composite was prepared by melt compounding at 220°C. The composites were coated on A-grade AH36 steel using Dallenbach Layer, Salisbury Screen and Jaumann Layer methods with thickness of 2, 4, and 6 mm. The composites were evaluated using XRD, SEM, FTIR, VSM, LCM-meter and VNA. Results showed that doped BaM showed BaNixZnxFe12-2xO19 structure. BaM/(PAni,PPy,PET) composites possessed globular morphology with M-O and C-H bonds. BaNixZnxFe12-2xO19 exhibited the value of Ms and Hc, 56.6 emu/g and 60 Oe respectively. High electrical conductivity of 1.77744 × 10-5 S/cm was achieved of BaM/PAni composite. The maximum reflection loss (RL) was reached at - 48.720 dB and 8.1 GHz for BaM/PAni composite coating with 6 mm thickness at Jaumann Layer. These results indicated that BaM/PAni composite was a soft magnetic material with a high RL value that is suitable for RAM, which used in stealth technology on naval vessels.

  16. Significant reduction of saturation magnetization and microwave-reflection loss in barium-natural ferrite via Nd3+ substitution

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Ardenti, E.; Ghoshal, S. K.; Kurniawan, C.; Effendi, M.; Cahyanto, W. T.

    2018-06-01

    To minimize the signal degradation, many electronic devices require efficient microwave absorbers with very low reflection-losses within the X-band. We prepared a series of trivalent neodymium-ion (Nd3+) substituted barium-natural ferrite using a modified solid-state reaction method. The effect of the Nd3+-ion content on the structure, surface morphology, magnetic properties, and microwave reflection loss was studied. The composites were characterized using X-ray diffraction, a vibrating sample magnetometer, scanning electron microscopy, and a vector network analyzer. The XRD patterns of the sample without Nd3+ reveal the presence of BaFe12O19 (hexagonal) and BaFe2O4 (rhombohedral) phases. Furthermore, a new hexagonal crystal phase of Ba6Nd2Fe4O15 appeared after substituting Nd3+. The average size of the prepared barium-natural ferrite particles was estimated to be between 0.4 and 0.8 μm. Both saturation magnetization and microwave reflection losses of these barium-ferrites were significantly reduced by increasing the Nd3+ content.

  17. Effect on dielectric, magnetic, optical and structural properties of Nd-Co substituted barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaur, Talwinder; Kumar, Sachin; Bhat, Bilal Hamid; Want, Basharat; Srivastava, A. K.

    2015-06-01

    M-type barium hexaferrite [Ba1- x Nd x Co x Fe12- x O19 ( x = 0.0-0.5) (BNCM)] powders, synthesized using citrate precursor method, were heat treated at 900 °C for 5 h. The pattern of powders, when subjected to X-ray diffraction, shows the formation of M-type hexaferrite phase. The formation of BNCM, from thermogravimetric analysis/differential thermal analysis/derivative thermogravimetry, is observed to be at 440 °C. The presence of two prominent peaks near 430 and 580 cm-1 in Fourier transform infrared spectroscopy spectra indicates the formation of M-type hexaferrites. The M- H curves obtained from vibrating sample magnetometer were used to calculate saturation magnetization ( M S), retentivity ( M R), squareness ration and coercivity ( H C). UV-Vis NIR spectroscopy reveals that band gap depends on size of the crystallites. The dielectric constant is found to be high at low frequency and decreases with increase in frequency. This kind of behaviour is explained on the basis of Koop's phenomenological theory and Maxwell-Wagner theory.

  18. Brillouin function characteristics for La-Co substituted barium hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chuanjian, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated usingmore » the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.« less

  19. Sol-gel route approach and improvisation in physico-chemical, structural, magnetic and electrical properties of BaCox/2Znx/2ZrxFe(12-2x)O19 ferrites

    NASA Astrophysics Data System (ADS)

    Kaur Jassal, Amanpreet; Mudsainiyan, R. K.; Chawla, S. K.; Anu; Bindra Narang, Sukhleen; Pubby, Kunal

    2018-02-01

    The structural and magnetic properties of Zn, Co and Zr cations doped barium hexaferrite [Ba(Znx/2Cox/2)xZrxFe(12-2x)O19] nanoparticles synthesized by sol-gel method have been investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) were employed to investigate the physico-chemical properties of the obtained ferrite samples. XRD studies reveal that the magnetoplumbite structure for all sample (up to x = 0.8) have been formed and the crystallite size of nanoparticles lies in the range of 34-46 nm. At higher dopant concentration, other impurities (α-Fe2O3 and BaFe2O4 etc.) have been observed. Magnetic studies indicate that site occupancy and nature of dopant ions greatly affect the behavior of magnetic properties. The results of VSM and LCR analysis show that magnetic and electrical parameters vary with an increase in dopant concentration. The results of BET surface area of samples indicate that these types of materials could be used for catalytic properties. Dielectric constant, dielectric loss tangent and A.C. conductivity weremeasured using impedance analyzer over wide frequency range 20 Hz-120 MHz. All the three parameters increase significantly with increase in doping. Increase in dielectric constant proposes these materials for fabrication of microwave devices, while increase in dielectric loss tangent proposes these for applications such as attenuator, absorber etc.

  20. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  1. Preparation of Scandium-Doped, Textured, M-Type Barium Ferrite via a Wet Magnetizing Orientation Process

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Liu, Yingli; Zhang, Huaiwu; Li, Jie; Gao, Liwen; Chen, Daming; Chen, Yong

    2018-02-01

    In this paper, a wet magnetizing orientation process was applied to synthesize c-axis-textured, M-type barium ferrite (BaFe12O19 or BaM), which is widely used to produce hard magnetic materials. To modify the magnetic properties of the BaM ferrite and make it suitable for certain operating frequencies, Sc3+ was substituted into Fe3+ sites of the BaM crystal structure. A BaSc x Fe12- x O19 ferrite with a typical relative density of ˜ 75% was successfully obtained. We used x-ray diffraction, scanning electronic microscopy, and a vibrating sample magnetometer to obtain phase information, detail of the microstructure, and magnetic properties of the BaSc x Fe12- x O19, respectively. The composition BaSc x Fe12- x O19 ( x = 0.1) featured a superior squareness ratio of ˜ 67% and a saturation magnetization ( M S) of ˜ 5300 Gauss in magnetic hysteresis loop measurements. These features match well with requirements for self-biased passive devices. Moreover, the site preference of Sc3+ in the hexagonal crystal structure was investigated.

  2. Determination of local order in the amorphous precursor to Ba-hexaferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Das, B. N.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-04-01

    Ba-hexaferrite thin films for recording media applications are often fabricated by a two-step process: sputter deposition of an amorphous precursor, followed by annealing to crystallize the BaFe12O19 phase. The magnetic anisotropy of the crystalline films can be either in-plane or perpendicular, depending on the sputtering process used in the first step. However, conventional structural characterization techniques have not been able to distinguish between different as-sputtered films. Using polarization-dependent extended x-ray absorption fine structure (PD-EXAFS), we have observed anisotropic local structure around both Ba and Fe atoms in the amorphous precursor films. Comparison of the results suggests that the amorphous films consist of networks of Fe atoms surrounded by their O nearest neighbors, with Ba atoms fitting into in-between spaces as network modifiers (there might also be some minor Fe network modifying contribution). The local structural anisotropy of the amorphous films appears to determine the orientation of the fast-growing basal plane directions during annealing, and thus the directions of the c axes and the magnetic anisotropy.

  3. Local Structure and Anisotropy in the Amorphous Precursor= to Ba-Hexaferrite Thin Films

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-03-01

    Ba-hexaferrite thin-films for recording media applications are commonly fabricated by a two-step process: sputter-deposition of an amorphous precursor, followed by annealing to crystallize the BaFe_12O_19 phase. The magnetic anisotropy of the crystalline films can be either in-plane or perpendicular, depending on the sputtering process used in the first step. However, conventional characterization techniques (x-ray diffraction and TEM) have been unable to observe any structure in the amorphous precursor films. In this study, such films are investigated by PD-EXAFS (polarization-dependent extended x-ray absorption fine structure). An anisotropic local ordered structure is observed around both Fe and Ba atoms in the "amorphous" films. This anisotropic local structure appears to determine the orientation of the fast-growing basal plane directions during crystallization, and thus the directions of the c-axes and the magnetic anisotropy. Results suggest that the structure of the amorphous films consists of networks made up of units of Fe atoms surrounded by their O nearest neighbors, that are connected together. Ba atoms appear to fit into in-between spaces as network-modifiers.

  4. Epitaxial growth of 100-μm thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bolin; Su, Zhijuan; Bennett, Steve

    2014-05-07

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ∼100 μm were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ∼100 Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simplemore » powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.« less

  5. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s}more » of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)« less

  6. Magneto-optical properties of BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrites

    NASA Astrophysics Data System (ADS)

    Asiri, S.; Güner, S.; Korkmaz, A. D.; Amir, Md.; Batoo, K. M.; Almessiere, M. A.; Gungunes, H.; Sözeri, H.; Baykal, A.

    2018-04-01

    In this study, nanocrystalline BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrite powders were prepared by sol-gel auto combustion method and the effect of Cr3+ ion substitution on morphology, structure, optic and magnetic properties of Barium hexaferrite were investigated. X-ray powder diffraction (XRD) analyses confirmed the purity of all samples. The XRD data shows that the average crystallite size lies between 60.95 nm and 50.10 nm and same was confirmed by Transmission electron microscopy. Transmission electron and scanning electron microscopy analyses presented the hexagonal morphology of all products. The characteristic hysteresis (σ-H) curves proved the ferromagnetic feature of as grown nanoparticle samples. Specific saturation magnetization (σs) drops from 46.59 to 34.89 emu/g with increasing Cr content while the coercive field values lie between 770 and 1652 Oe. The large magnitude of the magnetocrystalline (intrinsic) anisotropy field, (Ha) between 11.0 and 12.6 kOe proves that all products are magnetically hard. The energy band gap values decrease from 2.0 eV to 1.84 eV with increasing Cr content. From 57Fe Mössbauer spectroscopy, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values were determined and discussed.

  7. Optimization of rotational speed for growing BaFe12O19 thin films using spin coating

    NASA Astrophysics Data System (ADS)

    Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.

    2017-07-01

    Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.

  8. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  9. Magnetic and dipole moments in indium doped barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. A.; Trukhanov, An. V.; Tishkevich, D. I.; Trukhanova, E. L.; Zubar, T. I.; Karpinsky, D. V.; Kostishyn, V. G.; Panina, L. V.; Vinnik, D. A.; Gudkova, S. A.; Trofimov, E. A.; Thakur, P.; Thakur, A.; Yang, Y.

    2018-07-01

    Crystal and magnetic structure of the doped BaFe12-xInxO19 samples were refined by the results of investigations using high resolution neutron powder diffraction and vibration sample magnetometry at different temperatures. The refinements were realized in frame of two space groups. The P63/mmc (No 194) centrosymmetric nonpolar and P63mc (No 186) noncentrosymmetric polar space groups were used. The unit cell parameters, ionic coordinates, thermal isotropic factors, occupation positions, bond lengths and bond angles, microstrain values were established. The magnetic and dipole moments were also defined. It is established that the In3+ cations may be located only in the Fe1 - 2a and Fe2 - 2b crystallographic positions with equal probability for the sample with lowest substitution level x = 0.1. At the x = 1.2 substitution level about half of the In3+ cations occupies the Fe5 - 12 k positions. For the last sample the remaining half of the In3+ cations is equiprobably located in the Fe1 - 2a and Fe2 - 2b positions. The spontaneous polarization was established for these compositions at 300 K. It is studied the influence of the type of substitutive cation and structural parameters on the Fe3+(i) - O2- - Fe3+(j) (i, j = 1, 2, 3, 4, 5) indirect superexchange interactions with temperature. With substitution level increase the superexchange interactions between the magnetic positions inside and outside the sublattices are broken which leads to a decrease in the value of their magnetic moments.

  10. Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; Hemeda, O. M.; Abdo, M. A.; Nada, W. A.

    2018-01-01

    Nanocomposites from M-type hexaferrite BaFe11.7Al0.15Zn0.15O19 and spinel ferrite Mn0.8Mg0.2Fe2O4 nanoparticles according to the formula [(x)(Ba Fe11.7Al0.15 Zn0.15O19) + (1 - x)(Mn0.8 Mg0.2Fe2O4); x = 0.3, 0.4 and 0.5] have been manufactured by the citrate combustion method. The structure and morphology of the nanocomposites were appointed by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The remanent magnetization and coercivity of the nanocomposites became 2 and 2.5 times higher, respectively by adding BaFe11.7Al0.15 Zn0.15O19 phase. The Cole-Cole plots of the nanocomposite x = 0.4 at the selected temperatures shows two successive semicircles at all the selected temperatures. The first low frequencies semicircle elucidates the contribution of the grain boundary and the second one, at high frequencies, gives the contribution of grain to conduction process. Multilateral applications for exchange spring magnets can be manufactured using those nanocomposites.

  11. Synthesis of nanocomposites comprising iron and barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Pal, M.; Bid, S.; Pradhan, S. K.; Nath, B. K.; Das, D.; Chakravorty, D.

    2004-02-01

    Composites of nanometre-sized α-iron and barium hexaferrite phases, respectively, have been synthesized by the ceramic processing route. Pure barium hexaferrite (BaO·6Fe 2O 3) was first of all prepared by calcinations of the precursor oxides at a maximum temperature of 1200°C for 4 h. By subjecting the resulting powder having particle size of the order of 1 μm to a reduction treatment in the temperature range 500-650°C for a period varying from 10 to 15 min it was possible to obtain a composite consisting of nanosized barium hexaferrite and α-Fe. At reduction temperature of 650°C for a period greater than 15 min all the ferrite phase was converted to α-Fe and Ba—the particle sizes being 59.4 and 43.6 nm, respectively. These conclusions are based on X-ray diffraction and Mossbauer studies of different samples. During reduction H + ions are introduced into the hexaferrite crystallite. It is believed that due to a tensile stress the crystals are broken up into smaller dimensions and the reduction brings about the growth of nanosized α-Fe and barium, respectively, around the hexaferrite particles. Magnetic measurements show coercivity values for the reduced samples in the range 120-440 Oe and saturation magnetization varying from 158 to 53.7 emu/g. These values have been ascribed to the formation and growth of α-Fe particles as the reduction treatment is increased. By heating the nanocomposites at a temperature of 1000°C for 1 h in ordinary atmosphere it was found that they were reconverted to the barium hexaferrite phase with a particle size ˜182.3 nm. The reaction described in this study is thus reversible.

  12. Manufacture of barium hexaferrite (BaO3.98Fe2O3) from iron oxide waste of grinding process by using calcination process

    NASA Astrophysics Data System (ADS)

    Idayanti, N.; Dedi; Kristiantoro, T.; Mulyadi, D.; Sudrajat, N.; Alam, G. F. N.

    2018-03-01

    The utilization of iron oxide waste of grinding process as raw materials for making barium hexaferrite has been completed by powder metallurgy method. The iron oxide waste was purified by roasting at 800 °C temperature for 3 hours. The method used varying calcination temperature at 1000, 1100, 1200, and 1250 °C for 3 hours. The starting iron oxide waste (Fe2O3) and barium carbonate (BaCO3) were prepared by mol ratio of Fe2O3:BaCO3 from the formula BaO3.98Fe2O3. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcination process. The samples were formed at the pressure of 2 ton/cm2 and sintered at the temperature of 1250 °C for 1 hour. The formation of barium hexaferrite compounds after calcination is determined by X-Ray diffraction. The magnetic properties were observed by Permagraph-Magnet Physik with the optimum characteristic at calcination temperature of 1250 °C with the induction of remanence (Br) = 1.38 kG, coercivity (HcJ) = 4.533 kOe, product energy maximum (BHmax) = 1.086 MGOe, and density = 4.33 g/cm3.

  13. Crystal Structure Analysis of Electromagnetic Wave Absorber Material BaFe12-xTix/2Znx/2O19Based

    NASA Astrophysics Data System (ADS)

    Delina, M.; Nenni, N.; Adi, W. A.

    2018-04-01

    The optimization of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8)single phase composition have been performed. The materials were synthesized by solid state reaction method through mechanical milling technique.The materials were made from the mixture of oxide materials, which are BaCO3, Fe2O3, TiO2 and ZnO. The mixture was milled for five hours using a High Energy Milling (HEM), was dried at 100°C in the Oven and then was sintered at 1000°C for five hours in the Furnace. The phase identification of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8) were carried out by using a Match Program while the crystal structure analysis were investigated by using a General Structure Analysis System (GSAS) program. The refinement results of x-ray diffraction pattern showed that the sample of x ≤ 2.4 have a BaFe12O19 single phase while the sample of x> 2.4 have two phases, which are BaFe12O19 and ZnFe2O4 phases. The surface morphology of sample and the element of sample were identified through an analysis of Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) data.

  14. The Microscopic Magnetic Properties of W-type Hexaferrite Powder Prepared by A Sol-Gel Route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jotania, Rajshree; Chauhan, Chetna; Sharma, Pooja

    2010-12-01

    Magnetic particles of W-type barium-calcium hexaferrite (BaCa{sub 2}Fe{sub 16}O{sub 27}) have been synthesized using a Stearic acid gel route. The gel precursors were dried at 100 deg. C for 2 hrs and then calcinated at 650 deg. C, 750 deg. C, 850 deg. C and 950 deg. C for 4 hrs in a furnace and slowly cooled to room temperature in order to obtain barium-calcium hexaferrite particles. The microscopic magnetic properties of prepared samples studying using Moessbauer spectroscopy. Moessbauer spectra of all samples were recorded at room temperature. Mossbauer parameters like Isomer shift, Quadruple splitting etc. were calculated with respectmore » to iron foil. Barium calcium hexaferrite samples heated at 650 deg. C, 750 deg. C, 850 deg. C show relaxation type Moessbauer spectra along with paramagnetic doublet. The intensity of paramagnetic doublet increases with temperature confirm the presence of ferrous ions in the samples, where as sample calcinated at 950 deg. C confirm the presence of ferrimagnetic phase with partial super paramagnetic nature of prepared hexaferrite sample.« less

  15. Synthesis and characterization of barium hexaferrite with manganese (Mn) doping material as anti-radar

    NASA Astrophysics Data System (ADS)

    Susilawati, Doyan, Aris; Khalilurrahman

    2017-01-01

    Have been successfully synthesized barium powder doping Manganese hexaferrite with the expected potential as anti-radar material. Synthesis was done by using the co-precipitation method, the variation of the variable x concentrations used were 0; 0.2; 0.4; and 0.6 and calcined at temperatures of 400, 600 and 800°C. Characterization powders of hexaferrite have used XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), LCR (inductance, capacitance, and resistance) meter, and VSM (Vibrating Sample Magnetometer). The higher the concentration and temperature of calcinations given affect the color of the powder. The test results using XRD indicates that it has formed barium hexaferrite phase with a hexagonal crystal structure. Tests using SEM showed that all the constituent elements barium powder hexaferrite by doping Manganese powders have been spread evenly. XRD test results were confirmed by a test using a TEM showing the crystal structure and the powder was sized nano particles. The results from the LCR meter showed that the barium powder hexaferrite by doping Manganese that has been synthesized classified in semiconductor materials. The result from VSM showed that the value of coercivity magnetic powder doped barium hexaferrite Manganese is smaller when compared with barium hexaferrite without doping and belong to the soft magnetic. Based on the results of the synthesis and characterization, we can conclude that the barium powder heksaferrite by doping Manganese potential as a material anti-radar.

  16. The Phase Transformation and Crystal Structure Studies of Strontium Substituted Barium Monoferrite

    NASA Astrophysics Data System (ADS)

    Mulyawan, A.; Adi, W. A.; Mustofa, S.; Fisli, A.

    2017-03-01

    Unlike other AFe2O4 ferrite materials, Barium Monoferrite (BaFe2O4) have an orthorhombic structure which is very interesting to further study the crystal structure and phase formation. In this study, Strontium substituted Barium Monoferrite in the form of Ba(1-x)Sr(x)Fe2O4 has successfully been synthesized through solid state reaction method which includes BaCO3, SrCO3, and Fe2O3 as starting materials. Ba(1-x)Sr(x)Fe2O4 was made by varying the dopant composition of Strontium (Sr2+) from x = 0, 0.1, 0.3, and 0.5. Each composition was assisted by ethanol and continued to the milling process for 5 hours then followed by sintering process at 900 °C for 5 hours. The phase transformation was studied by using X-ray diffractometer (XRD) and Rietveld refinement using General Structure Analysis System (GSAS) also 3D crystal visualization using VESTA. Referring to the refinement results, a single phase of BaFe2O4 was formed in x = 0 and 0.1. The composition has orthorhombic structure, space group B b21m, and lattice parameters of a = 19.0229, b = 5.3814 c = 8.4524 Å, α = β = γ = 90° and a = 18.9978, b = 5.3802 c = 8.4385 Å, α = β = γ = 90° respectively. In the composition of x = 0.3 it was found that the phase of BaSrFe4O8 begin to form due to the overload expansion of the Sr2+ occupancy which made the distortion of the initial lattice parameters and finally in the x = 0.5 composition the single phase of BaSrFe4O8 was clearly formed. Energy Dispersive Spectroscopy (EDS) was used to confirm the change of the material structure by measuring the elemental compound composition ratio. The result of EDS spectra clearly exhibited the dominant elements were Barium (Ba), Strontium (Sr), Iron (Fe), and Oxygen (O) with the compound ratio (Atomic percentage and mass percentage) correspond to the BaFe2O4 and BaSrFe4O8 phase.

  17. Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Kaur, Talwinder; Kaur, Barjinder; Bhat, Bilal H.; Kumar, Sachin; Srivastava, A. K.

    2015-01-01

    M-type barium hexaferrite Ba0.7La0.3Fe11.7Co0.3O19 (BaLCM) powder, synthesized using sol gel auto combustion method, heat treated at 700, 900, 1100 and 1200 °C. X ray diffraction (XRD) powder patterns of heat treated samples show the formation of pure phase of M-type hexaferrite after 700 °C. Thermo gravimetric analysis (TGA) reveals that the weight loss of BaLCM becomes constant after 680 °C. The presence of two prominent peaks, at 432 cm-1 and 586 cm-1 in Fourier Transform Infrared Spectroscopy (FT-IR) spectra, gives the idea of formation of M-type hexaferrites. The M-H curve obtained from Vibrating Sample Magnetometer (VSM) were used to calculate saturation magnetization (MS), retentivity (Mr), squareness ration (SR) and coercivity (Hc). The maximum value of coercivity (5602 Oe) is found at 900 °C. The band gap dependency on temperature was studied using UV-vis NIR spectroscopy. The dielectric constant has been found to be high at low frequency but it decreases with increase in frequency. Such kind of dielectric behavior is explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory.

  18. Tunable ferromagnetic resonance in La-Co substituted barium hexaferrites at millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.

    2018-05-01

    Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.

  19. Effect of finite size in magnetic properties of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Kumar, A. Sendil; Bhatnagar, Anil K.

    2018-05-01

    BaFe12O19 Nanoparticles are prepared through auto ignition method and structure, microstructure and magnetic properties are characterized. Samples having spherical shapes and elongated nanorods are chosen to investigate the role of finite size effect in magnetic properties. Magnetization studies show superparamagnetic, antiferromagnetic and ferrimagnetic behaviors depending on the size and shape. Very small coercive field of around 200 Oe is observed for spherical nanoparticles and a large coercive field of around 7000 Oe for nanorods is found. The shape and size plays an important role in magnetic properties of BaFe12O19 nanoparticles. Shape anisotropy has significant value compared to other anisotropies. Therefore shape of nanoparticles influences the magnetic order.

  20. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    NASA Astrophysics Data System (ADS)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  1. Synthesis and orientation of barium hexaferrite ceramics by magnetic alignment

    NASA Astrophysics Data System (ADS)

    Autissier, Denis

    1990-01-01

    Particles of Ba 2Mn xZn 2- xFe 12O 22 with planar structure were prepared by chemical precipitation. They were processed by sleep casting in presence of a magnetic field. The degree of alignment was improved by a special sintering treatment. By this procedure an alignment as high as 99.9% is obtained.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Liu, Tao; Chang, Houchen

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe 12O 19 bilayer where the BaFe 12O 19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control themore » up and down states of the remnant magnetization in the BaFe 12O 19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe 12O 19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.« less

  3. Investigation on structural properties of M-type strontium hexaferrite synthesized in presence of neem and aloe-vera plant leaves extract

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Jotania, Rajshree B.

    2017-05-01

    M-type strontium hexaferrite powder samples were synthesized using a green synthesis route with and without presence of Aloe vera and Neem leaves extract. The dry brownish precursors of strontium hexaferrite were recovered from a mixed solution of metal salts and leaves extract, heated at 100 °C. The obtained precursors were pre-heated at 500 °C for 4 hrs. followed by final heating at 950 °C for 4 hrs. in a muffle furnace to obtain SrFe12O19 hexaferrite powder. The obtained SrFe12O19 hexaferrite powder samples characterized at room temperature in order to check phase purity and structural properties. XRD analysis confirms that samples prepared without and with Aloe vera leaves extract (heated at 950 °C for 4 hrs.) show formation of α-Fe2O3 and M-phase; while the sample prepared in presence of Neem leaves extract (heated at 950 °C for 4 hrs.) show formation of mono phase of strontium hexaferrite. Lattice parameter (a) and cell volume (V) are found to increase in the samples prepared in presence of Aloe vera and Neem leaves extract.

  4. Magnetic properties of Ni substituted Y-type barium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Mi Hee; Kim, Chul Sung, E-mail: cskim@kookmin.ac.kr

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirmsmore » the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.« less

  5. Preparation and radar absorptive properties of BaFe12O19 -coated glass fiber

    NASA Astrophysics Data System (ADS)

    Jia, F.; Xu, M.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Traditional passive jamming materials such as chaff and foil showed some limitations in use because they can only reflect the electromagnetic wave. Therefore, to develop a kind of absorptive passive jamming material to make up for deficiencies of traditional passive jamming materials and improve the jamming efficiency is of great significance. In this paper, the BaFe12O19-coated glass fiber, used as a kind of radar absorptive chaff, was prepared by sol-gel dip-coating method. The effects of heat treatment temperature, heat treatment time and coating times on film quality, tensile strength and attenuation efficiency of the samples were discussed. The study shows that an increase of the heat treatment temperature and an extension of the heat treatment time is conducive to the growth of barium ferrite grain, while they would introduce the loss of chaff strength at the same time. In addition, multi-coating process can improve the film quality and attenuation efficiency of the sample. Data show that the 10 times coated samples have a best reflectivity of (15GHz, -6.65dB) and the bandwidth of reflectivity lower than -5dB is11.8 GHz. According to the test results, the prepared material has certain attenuation efficiency in the range of 2GHz-18GHz, having a high practical value.

  6. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in; Jotania, Rajshree, E-mail: rbjotania@gmail.com

    2016-05-06

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carriedmore » out by SEM analysis.« less

  7. Spin-phonon coupling in BaFe{sub 12}O{sub 19} M-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Júnior, Flávio M.; Paschoal, Carlos W. A., E-mail: paschoal.william@gmail.com

    2014-12-28

    The spin-phonon coupling in magnetic materials is due to the modulation of the exchange integral by lattice vibrations. BaFe{sub 12}O{sub 19} M-type hexaferrite, which is the most used magnetic material as permanent magnet, transforms into ferrimagnet at high temperatures, but no spin-phonon coupling was previously observed at this transition. In this letter, we investigated the temperature-dependent Raman spectra of polycrystalline BaFe{sub 12}O{sub 19} M-type hexaferrite from room temperature up to 780 K to probe spin-phonon coupling at the ferrimagnetic transition. An anomaly was observed in the position of the phonon attributed to the Fe{sup (4)}O{sub 6}, Fe{sup (5)}O{sub 6}, and Fe{supmore » (1)}O{sub 6} octahedra, evidencing the presence of a spin-phonon coupling in BaM in the ferrimagnetic transition at 720 K. The results also confirmed the spin-phonon coupling is different for each phonon even when they couple with the same spin configuration.« less

  8. Structural and magnetic properties of barium-gadolinium hexaferrites

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba 1-xGd x)O·5.25Fe 2O 3 ( x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe 2O 3) and GdFeO 3 were detected in the remaining samples. Coercivity ( Hc) shows remarkably high values, ˜293 kA/m for x=0.20 and 0.30 with a maximum of 322 kA/m for x=0.25. Specific saturation magnetization ( σsat) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  9. Low-loss Z-type barium hexaferrite composites from nanoscale ZnAl2O4 addition for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Zheng, Zongliang; Feng, Quanyuan; Harris, Vincent G.

    2018-05-01

    In this study, nanocrystalline ZnAl2O4 (ZA) were introduced to Z-type barium hexaferrite (Co2Z) and the effects of ZA addition upon the crystal-phase composition, microstructure, permeability and permittivity as well as losses characteristics over a wide frequency range of 10 MHz-1 GHz have been systematically investigated. With increasing ZA content (x) from 0 to 15 wt%, the permeability μ' at low frequencies decreased from 12.0 to 4.3, while the permittivity ɛ' was decreased from 27.4 to 10.7. Correspondingly, the frequency stability of permeability and permittivity were improved and the losses were effectively reduced. When x is in the range of 5-10 wt%, the magnetic loss tan δμ is in the order of 10-2 and the dielectric loss tan δɛ is in the order of 10-3 at 300 MHz, which is lower by one order of magnitude compared with that of undoped Co2Z. The modified magnetic and dielectric properties are closely related to the changing phase composition and microstructure.

  10. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    DOE PAGES

    Li, Peng; Liu, Tao; Chang, Houchen; ...

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe 12O 19 bilayer where the BaFe 12O 19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control themore » up and down states of the remnant magnetization in the BaFe 12O 19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe 12O 19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.« less

  11. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; Demann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.

  12. Calculation of exchange integrals and Curie temperature for La-substituted barium hexaferrites.

    PubMed

    Wu, Chuanjian; Yu, Zhong; Sun, Ke; Nie, Jinlan; Guo, Rongdi; Liu, Hai; Jiang, Xiaona; Lan, Zhongwen

    2016-10-31

    As the macro behavior of the strength of exchange interaction, state of the art of Curie temperature T c , which is directly proportional to the exchange integrals, makes sense to the high-frequency and high-reliability microwave devices. Challenge remains as finding a quantitative way to reveal the relationship between the Curie temperature and the exchange integrals for doped barium hexaferrites. Here in this report, for La-substituted barium hexaferrites, the electronic structure has been determined by the density functional theory (DFT) and generalized gradient approximation (GGA). By means of the comparison between the ground and relative state, thirteen exchange integrals have been calculated as a function of the effective value U eff . Furthermore, based on the Heisenberg model, the molecular field approximation (MFA) and random phase approximation (RPA), which provide an upper and lower bound of the Curie temperature T c , have been adopted to deduce the Curie temperature T c . In addition, the Curie temperature T c derived from the MFA are coincided well with the experimental data. Finally, the strength of superexchange interaction mainly depends on 2b-4f 1 , 4f 2 -12k, 2a-4f 1 , and 4f 1 -12k interactions.

  13. Observation of grain size effect on multiferroism and magnetoelectric coupling of Na0.5Bi0.5TiO3 - BaFe12O19 novel composite system

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Kuila, Sourav; Raut, Subhajit; Ghosh, Surya Prakash; Dhal, Satyanarayan; Panigrahi, Simanchalo

    2017-12-01

    Four novel polycrystalline magnetoelectric composite systems: S1, S2, S3 and S4 having composition [90 wt% Na0.5Bi0.5TiO3 (NBT) - 10 wt% BaFe12O19 (BaM)] considering the variation of grain size of both the phases [NBT(Lg)-BaM(Lg)-[S1], NBT(Lg)-BaM(Sg)-[S2], NBT(Sg)-BaM(Lg)-[S3] and NBT(Sg)-BaM(Sg)-[S4

  14. Structural, magneto-optical properties and cation distribution of SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auwal, I.A.; Güngüneş, H.; Güner, S.

    Highlights: • SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites have been prepared by sol-gel autocombustion. • XRD patterns show that SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites exhibit hexagonal structure. • The intrinsic coercivity (H{sub ci}) above 15000 Oe reveals that all samples are magnetically hard materials. - Abstract: SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites were produced via sol-gel auto combustion. XRD patterns show that all the samples are single-phase M-type strontium hexaferrite (SrM). The magnetic hysteresis (σ-H) loops revealed the ferromagnetic nature ofmore » nanoparticles (NPs). The coercive field decreases from 4740 Oe to 2720 Oe with increasing ion content. In particular, SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} NPs with x = 0.0, 0.1, 0.2 have suitable magnetic characteristics (σ{sub s} = 62.03–64.72 emu/g and H{sub c} = 3105–4740 Oe) for magnetic recording. The intrinsic coercivity (H{sub ci}) above 15000 Oe reveals that all samples are magnetically hard materials. Tauc plots were used to specify the direct optical energy band gap (E{sub g}) of NPs. The E{sub g} values are between 1.76 eV and 1.85 eV. {sup 57}Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting, relative area and hyperfine magnetic field values on Bi{sup 3+} La{sup 3+} and Y{sup 3+} substitutions have been determined.« less

  15. Electron spin resonance (ESR) of magnetic sublattices in Sc-substituted barium hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díaz-Pardo, Rebeca; Monjaras, Raúl Valenzuela; Bierlich, Silvia

    2016-05-15

    The partial substitution of Fe{sup 3+} by Sc{sup 3+} in barium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the ferrite. In order to investigate these interactions, samples with formula BaSc{sub x}Fe{sub 12-x}O{sub 19} (1 ≤x ≤ 2) were prepared by sintering (1300°C, 6h). After structural characterization by x-ray diffraction, their ferromagnetic resonance spectra were measured in the X-band (9.4 GHz), in the 100-500 K temperature range. For x = 2, a single, broad resonancemore » peak was observed at the low temperatures (103 K), exhibiting a progressive splitting into two peaks for increasing T, to finally coalesce again into a single (paramagnetic) narrow peak at 473 K. These results are interpreted in terms of a substitution of Fe{sup 3+} by Sc{sup 3+} ions in the 4f{sub vi} and 2b sublattices; the diamagnetic cations disrupt the superexchange interactions and produce a splitting of the 12k sublattice (which interacts directly with the 4f{sub vi} sublattice) into two sublattices with different canting angles, and different thermal dependence. As a result, the fraction of the 12k sublattices that are nearest neighbours of substituted 4f{sub vi} sites can behave as an independent sublattice for some temperature ranges. A similar behavior is observed for all the compositions with varying degrees of amplitude, but it is more evident for x = 2. A deconvolution of peaks has been attempted, in order to shed more light into this behavior.« less

  16. Synthesis and Characterization of BaFe12O19 Thin Films Using Suspension of Nano Powders

    NASA Astrophysics Data System (ADS)

    Salemizadeh, Saman; Seyyed Ebrahimi, S. A.

    BaM thin films have been synthesized by dispersing the dried gel nano powders prepared by Sol-Gel method. The solution was made by dissolving iron nitrate Fe(NO3).9H2O, barium nitrate Ba(NO3)2 and citric acid in deyonized water and methanol. This sol was slowly evaporated until a dried gel was formed. This dried gel was then added to ethylene glycol. The final solution was vigorously shaken and mixed in ultrasonic cleaner for 30 min to disperse particles sufficiently. Then the prepared solution spin coated on Si(110) substrate. The obtained thin films were dried at 120 °C and then calcined at 900 °C for 1 h. The films were characterized using X-ray diffraction (XRD) and vibrating sample magnetometer (VSM).

  17. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less

  18. Heat treatment effects on dielectric properties of SRFe{sub 12}O{sub 19} hexaferrite prepared by an SHS route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, Nital R.; Jotania, Rajshree B., E-mail: natal_panchal@yahoo.co.in, E-mail: rbjotania@gmail.com

    2011-07-01

    The M-type Strontium Hexaferrite SRFe{sub 12}O{sub 19} particles were prepared by a Self propagating High temperature Synthesis (SHS) route. Precursors were heated under two different conditions: microwave heating for 30 minutes and sintered at 950 deg C for 4 hrs. The dielectric properties: dielectric constant ({epsilon}{sup '}), dielectric loss (tan {delta} ) and ac conductivity ({sigma}{sub ac}) were measured at room temperature in the frequency range from 100 Hz to 2 MHz. The samples present a non-linear behavior for the dielectric constant at 1 kHz, 100 kHz and 2 MHz. The dielectric properties of prepared Strontium Hexaferrite samples were discussedmore » in view of applications as a material for microwave devices, permanent magnets and high density magnetic recording media. (author)« less

  19. Structural and dielectric properties of La and Ni-doped M-type BaFe{sub 12}O{sub 19} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Poorva; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: dubea89@yahoo.com; Kumar, Ashwini

    2016-05-23

    BaFe{sub 12}O{sub 19} and Ba{sub 0.98}La{sub 0.02}Fe{sub 12-x}Ni{sub x}O{sub 19} (x = 0.02, 0.05) samples synthesized using solid-state reaction route crystallizes in hexagonal structure with space group P6{sub 3}/mmc as revealed from X-ray diffraction. A Raman spectrum shows seven strong and sharp modes at 291.9 (A{sub 1g}), 410.4 (E{sub 2g}), 496.09 (A{sub 1g}), 611.3 (E{sub 2g}), 681(A{sub 1g}), 1048.0 (A{sub 1g}+A{sub 1g}) and 1313.3 cm{sup −1} (A{sub 1g}+E{sub 2g}), identifying the presence of barium hexaferrite phase. The higher values of the dielectric constant at lower frequency and lower values at higher frequency indicate the dispersion due to interfacial polarization. Dielectricmore » constant decreases as the doping concentration of Ni increases due to increase in band gap. A resonance peak has been observed in all three sample and is attributed to the fact that hopping frequency of charge carrier matches well with the frequency of the applied field. Henceforth, Ba{sub 0.98}La{sub 0.02}Fe{sub 12-x}Ni{sub x}O{sub 19} (x = 0.02, 0.05) is suitable novel materials for microwave application with low dielectric constant and dielectric loss values.« less

  20. High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe 12O 19

    DOE PAGES

    Cao, Huibo B.; Zhao, Zhiying Y.; Lee, Minseong; ...

    2015-06-24

    High quality single crystals of BaFemore » $$_{12}$$O$$_{19}$$ were grown with the floating zone technique in flowing oxygen atmosphere of 100 atm. BaFe$$_{12}$$O$$_{19}$$ melts incongruently in atmospheric oxygen. High oxygen pressure above 50 atm modifies the melting behavior to be congruent, which allows for the crystal growth with the crucible-free floating zone technique. Single crystal neutron diffraction were measured to determine the nuclear and magnetic structures at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe$$^{3+}$$ ions at the bypyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of specific heat shows no anomaly associated with the long range polar ordering in the temperature range of 1.90-300~K. The inverse dielectric constant along the c-axis shows a $T^2$ temperature dependence below 20 K and then following by a plateau below 10 K, recognized as quantum paraelectric features. Further cooling below 1.4 K, the upturn region was clearly revealed and indicates BaFe$$_{12}$$O$$_{19}$$ is a critical quantum paraelectric system with Fe$$^{3+}$$ ions playing roles for both magnetic and electric dipoles.« less

  1. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  2. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon, E-mail: kimsg@ccs.msstate.edu

    2015-11-28

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe{sub 12}O{sub 19}). Based on the calculation of the substitution energy of Ga and In in SrFe{sub 12}O{sub 19} and the formation probability analysis, we conclude that in SrFe{sub 12−x}Ga{sub x}O{sub 19} the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f{sub 1} sites, while In atoms in SrFe{sub 12−x}In{sub x}O{sub 19} occupy the 12k, 4f{sub 2}, and 4f{sub 1} sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe{sub 12}O{sub 19}. It was found that as the fractionmore » of Ga atoms in SrFe{sub 12−x}Ga{sub x}O{sub 19} increases, the saturation magnetization (M{sub s}) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (H{sub a}) increases. In the case of SrFe{sub 12−x}In{sub x}O{sub 19}, M{sub s}, MAE, and H{sub a} decrease with an increase of the concentration of In atoms.« less

  3. Stress induced magnetic-domain evolution in magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Trivedi, Harsh; Shvartsman, Vladimir V.; Lupascu, Doru C.; Medeiros, Marco S. A.; Pullar, Robert C.

    2018-06-01

    Local observation of the stress mediated magnetoelectric (ME) effect in composites has gained a great deal of interest over the last decades. However, there is an apparent lack of rigorous methods for a quantitative characterization of the ME effect at the local scale, especially in polycrystalline microstructures. In the present work, we address this issue by locally probing the surface magnetic state of barium titante–hexagonal barium ferrite (BaTiO3–BaFe12O19) ceramic composites using magnetic force microscopy (MFM). The effect of the piezoelectrically induced local stress on the magnetostrictive component (BaFe12O19, BaM) was observed in the form of the evolution of the magnetic domains. The local piezoelectric stress was induced by applying a voltage to the neighboring BaTiO3 grains, using a conductive atomic force microscopy tip. The resulting stochastic evolution of magnetic domains was studied in the context of the induced magnetoelastic anisotropy. In order to overcome the ambiguity in the domain changes observed by MFM, certain generalizations about the observed MFM contrast are put forward, followed by application of an algorithm for extracting the average micromagnetic changes. An average change in domain wall thickness of 50 nm was extracted, giving a lower limit on the corresponding induced magnetoelastic anisotropy energy. Furthermore, we demonstrate that this induced magnetomechanical energy is approximately equal to the K1 magnetocrystalline anisotropy constant of BaM, and compare it with a modeled value of applied elastic energy density. The comparison allowed us to judge the quality of the interfaces in the composite system, by roughly gauging the energy conversion ratio.

  4. Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.

    2012-07-01

    Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol-gel process. The thin films with various Fe/Sr molar ratios of 8-12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.

  5. Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes

    NASA Astrophysics Data System (ADS)

    Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2004-04-01

    The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.

  6. Magnetic and absorbing properties of M-type substituted hexaferrites BaFe{sub 12–x}Ga{sub x}O{sub 19} (0.1 < x < 1.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhanov, S. V., E-mail: trukhanov@ifttp.bas-net.by; Trukhanov, A. V.; Kostishin, V. G.

    2016-09-15

    X-ray powder diffraction is used to determine the unit cell parameters and to refine the crystal structure of the solid solutions of M-type hexagonal barium ferrite BaFe{sub 12–x}Ga{sub x}O{sub 19} (x = 0.1–1.2) with isostructural diamagnetic cation Ga{sup 3+} substitution at T = 300 K. As the level of substitution increases, the unit cell parameters are shown to decrease monotonically. The temperature (300 K ≤ T ≤ 750 K, H = 8.6 kOe) and field (T = 300 K,–20 kOe ≤ H ≤ 20 kOe) dependences of the saturation magnetization of these solid solutions are studied with a vibrating-sample magnetometer.more » The concentration dependences of the Curie temperature T{sub C}, the specific spontaneous magnetization, and the coercive force are plotted. The magnetic parameters are found to decrease with increasing substitution. The microwave properties of the solid solutions are analyzed in an external magnetic field (0 ≤ H ≤ 4 kOe). As the cation Ga{sup 3+} concentration increases from x = 0.1 to 0.6, the natural ferromagnetic resonance (NFMR) frequency decreases; as the concentration increases further to x = 1.2, this frequency again increases. As the cation Ga{sup 3+} concentration increases, the NFMR line width increases, which indicates a widening of the frequency range where electromagnetic radiation is intensely absorbed. Here, the resonance curve peak amplitude changes insignificantly. The shift of the NFMR frequency in an applied magnetic field is more pronounced for samples with low cation Ga{sup 3+} concentrations. The role of diamagnetic substitution is revealed, and the prospects and advantages of Ga-substituted beryllium hexaferrite as the material absorbing high-frequency electromagnetic radiation are demonstrated.« less

  7. Fabrication of PbFe12O19 nanoparticles and study of their structural, magnetic and dielectric properties

    NASA Astrophysics Data System (ADS)

    Mousavi Ghahfarokhi, S. E.; Rostami, Z. A.; Kazeminezhad, I.

    2016-02-01

    In this study, M-type Lead hexaferrite (PbFe12O19) nanoparticles were prepared by a sol-gel method and the prepared powders were annealed at 700-1000 °C for 1, 1.5, 2, 2.5 and 3 h. The Lead hexaferrite powders were characterized using thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, LCR meter, vibrating sample magnetometer, and Fourier transforms infrared spectroscopy. The size of the nanoparticles was increased with the annealing temparature. The results reveal that the best annealing temperature and annealing time for preparing PbFe12O19 nanoparticles at 800 °C and 3 h are obtained. The infrared spectra measured in range of 4000-400 cm-1 exhibit stretching modes of metal ions in tetrahedral site at 580-550 cm-1 and octahedral site at 470-430 cm-1. The variation in ac conductivity (σac) with frequency shows that the electrical conductivity in these ferrites is mainly attributed to the electron hopping mechanism.

  8. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  9. Improved magnetic properties of barium hexaferrite by CoFe2O4 nanoparticles prepared by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Nastiti, G.; Manaf, A.

    2017-07-01

    Magnetic properties of composite magnets made of nanoparticles of Barium Hexaferrite (BHF) and CoFe2O4 were reported in this paper. The two types of magnetic particles have a high total magnetization value which was required for permanent magnet applications. Both CoFe2O4 and BHF were synthesized through mechanical alloying coupled with high-frequency ultrasonic irradiation. In this respect, mechanically milled BHF precursors was sintered at a temperature of 1250 °C for 2 hours leading to single-phase powders. A similar method was also employed in the preparation of CoFe2O4 materials, but this required a relatively longer sintering time up to 12 hours at a sintering temperature of 900 °C. Composite magnets were obtained after sintering the mechanically mixed the two types of nanoparticles as constituted components of the composite. The hysteresis loop of CoFe2O4 materials as evaluated by Vibrating Sample Magnetometer (VSM) showing soft magnetic phase with a total magnetization value of 0.47 T and a coercivity of 47.37 kA/m. It is shown that the magnetic properties of composite magnets are a composition dependent in which the remanent was enhanced above the value of an isotropic single phase BHF magnet. The enhancement in remanent magnetization raised the effect of grain exchange interaction between hard and soft magnetic phases. The microstructure studied by X-Ray diffraction (XRD), Particle Size Analyzer (PSA) and their respective enhancement in magnetic properties are discussed in detail in term of grain exchange interactions.

  10. First observation of magnetoelectric effect in M-type hexaferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Marjan; Ebnabbasi, Khabat; Vittoria, Carmine

    2013-05-07

    The magnetoelectric (ME) effect in M-type hexaferrite thin films is reported. Prior to this work, the ME effect in hexaferrite materials was observed only in bulk polycrystalline materials. Thin films of SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} were grown on sapphire (0001) using pulsed laser deposition. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1250 G, g-factor of 2.66, and coercive field of 20 Oe for these magnetoelectric M-type hexaferrite thin films. The magnetoelectric effect was confirmed by monitoring the change rate in remanence magnetizationmore » with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 12.8% with the application of only 1 V (DC voltage). We deduced a magnetoelectric coupling, {alpha}, of 6.07 Multiplication-Sign 10{sup -9} s m{sup -1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.« less

  11. Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Tchouank Tekou Carol, T.; Sharma, Jyoti; Mohammed, J.; Kumar, Sachin; Srivastava, A. K.

    2017-07-01

    The application of M-type hexagonal ferrites in electronic devices is increasing with technological advancement. This is due to the possibility of improving the physical and magnetic properties to suit the desired application. Enhanced magnetic properties make hexagonal ferrites suitable for hyper frequency and radar absorbing application. In this paper, we investigated the effect of heat-treatment temperature on the structural and magnetic properties of M-type barium hexagonal ferrites with chemical composition Ba1-xAlxFe12-yMnyO19 (x=0.6 and y=0.3) synthesized by sol-gel auto-combustion method and sintered at 750°C, 850°C, 950°C and 1050°C. Characterisations of the prepared samples were done using Fourier transform-infrared (FT-IR), and vibrating sample magnetometer (VSM). The formation of M-type hexaferrite has been confirmed from XRD. The presence of two prominent peaks between 400 cm-1 and 600 cm-1 in the spectra of Fourier transform-infrared spectroscopy (FT-IR) also shows the formation of ferrite phase. Saturation magnetisation (MS), remnant magnetisation (Mr), coercivity (Hc) and squareness ratio (SR) were calculated from the M-H loop obtained from vibrating sample magnetometer (VSM).

  12. Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg{sub 0.5}Co{sub 0.5}TiFe{sub 10}O{sub 19}/MWCNTs nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Reza Shams; Moradi, Mahmood, E-mail: moradi@susc.ac.ir; Institute of Nanotechnology, Shiraz University, Shiraz 71454

    2016-01-15

    Graphical abstract: Reflection losses of (a) doped barium hexaferrite, BaMg{sub 0.5}Co{sub 0.5}TiFe{sub 10}O{sub 19}, sample and their nanocomposites with (b) 4 vol. (c) 8 vol. and (d) 12 vol.% of MWCNTs are presented. - Highlights: • BaMg{sub 0.5}Co{sub 0.5}TiFe{sub 10}O{sub 19}/MWCNTs nanocomposites were synthesized. • The structural, magnetic and microwave absorption properties were investigated. • The microwave absorption is strongly influenced by volume percentage of MWCNTs. • The nanocomposite with 8 vol.% of MWCNTs can be proposed as a wideband absorber. - Abstract: In this study BaMg{sub 0.5}Co{sub 0.5}TiFe{sub 10}O{sub 19}/MWCNTs nanocomposites with different amount of MWCNTs (0, 4, 8more » and 12 vol.%) were synthesized. Here, the X-ray diffraction (XRD), Fourier transform spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to demonstrate the structural and morphological characteristics of the prepared samples. XRD along with FTIR examinations exhibited that the nanocomposites were successfully synthesized. Vibrating sample magnetometer (VSM) showed the relatively strong dependence of saturation magnetization and coercivity on the volume percentage of MWCNTs. The microwave evaluation also confirmed that the complex permittivity of nanocomposites could be enhanced by adding MWCNTs. Finally, the nanocomposite with 8% vol. of MWCNTs exhibited the best microwave absorption performance among the samples.« less

  13. SrFe 12O 19 prepared by the proteic sol-gel process

    NASA Astrophysics Data System (ADS)

    Brito, P. C. A.; Gomes, R. F.; Duque, J. G. S.; Macêdo, M. A.

    2006-10-01

    Powders of strontium hexaferrite (SrFe 12O 19) were prepared by the proteic sol-gel process using coconut water as a precursor. X-ray diffraction (XRD) measurement showed the formation of SrFe 12O 19 with a small amount of the hematite for the sample calcined at 1000 °C with Fe/Sr=12. Rietveld refinement disclosed that this sample had 87.56% of the SrFe 12O 19 and 12.44% of Fe 2O 3 and the values for Rp, Rwp and χ2 were 4.28%, 5.93% and 1.71, respectively. The magnetic properties were Ms=64 emu/g, Mr/ Ms=0.55 and Hc=1.4 kOe for a crystallite size of 57 nm.

  14. Investigating the Magneto Electric Coupling of [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] novel multiferroiccomposite system by increasing of BaM grain size

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Raut, Subhajit; Kuila, Sourav; Chandrasekhar, Mallam; Panigrahi, Simanchala

    2017-02-01

    Polycrystalline three novel [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] magnetoelctricmultiferroic composite systems were fabricated by considering the variation (increasing) of BaM grain size. The desired formation of composites was confirmed by X-ray diffraction study. The FESEM and SEM study were verified the variation of grain size and 0-3 type connectivity of composite systems. To predict the room temperature multiferroicbehaviour of theses composite systems we were taken PE and MH loop. For investigating the extrinsic and intrinsic magnetoelctric effect magneto impedance spectroscopy was considered for theses composite systems. The variation of intrinsic magnetoelctric coupling was predicted by proposing a simple mechanical model.

  15. Synthesization and magnetic properties of Ba1-xYxFe12O19 hexaferrites prepared by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Rehman, Khalid Mehmood Ur; Liu, Xiansong; Li, Mingling; Jiang, Shuai; Wu, Yingchun; Zhang, Cong; Liu, Chaocheng; Meng, Xiangyu; Li, Haohao

    2017-03-01

    M-type hexaferrite Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powder and magnets existed to ready according to the conventional ceramic reaction method. X-ray difractometer was used to study the phase compositions of the calcites powder samples. There was a single magnetoplumbite segment in the calcanei magnetic powder with the intensification of x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13. The influence of yttrium aggregation on attractive possessions of the magnets was studied scientifically. The magnetic properties of the magnets were measured by a magnetic properties test instrument (VSM). The saturation magnetization (σs) and coercivity (Hcj) of the Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powders with different Yttrium aggregation (x) were determined. The saturation magnetization (σs) was decreased whereas coercivity (Hcj) was increased. The magnetic properties of the magnet at x=0.13 reached the maximum values.

  16. Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Baykal, A.; Manikandan, A.

    2018-07-01

    In this study, nano-sized particles of BaCrxFe12-xO19 (0.0 ≤ x ≤ 1.0) hexaferrite were fabricated through citrate auto gel combustion process and the impact of Cr-ion substitution on ac magnetic susceptibility properties of Ba-hexaferrite were explored. X-ray powder diffraction (XRD) measurements approved the purity of prepared samples and showed a reduction of the average crystallite size with increasing the content of Cr. Transmission electron microscopy (TEM) observation indicated the hexagonal morphology of all samples. AC susceptibility measurements displayed a frequency dependence of the magnetic responses. These measurements indicated that there are strong magnetic interactions (which is the highest for BaCr0.3Fe11.7O19 NP) between particles which cause a superspin glass-like (SSG) behavior at low temperatures. Estimating the values of loss power density revealed an increase of loss power density with increasing Cr-substitution element. The relative sensitivity of the prepared MNPs to the variation of applied frequency is very influenced by Cr-substitution and is highest in BaCr0.3Fe11.7O19 MNPs, suggesting that this sample can be considered as magnetic nanomaterial for hyperthermia and for many other applications.

  17. High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Gillette, Scott

    2014-02-17

    Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic methodmore » of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.« less

  18. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19-polystyrene bilayer composite

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.; El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.

    2016-03-01

    Soft-magnetic NiCoP coated hard-magnetic M-type ferrite BaFe12O19 (BaM)-polystyrene (PS) bilayer composite film was successfully synthesized. X-ray diffraction peaks exhibited no change in the structure of BaM after coating with PS. The NiCoP coated BaM-PS composite exhibited a wasp-waisted magnetic hysteretic loop with remarkable reduction in the coercivity, remanence and squareness with respect to BaM-PS, which is useful for the core of a magnetic switching device to control currents so large that they are unmanageable. Moreover, the initial permeability measurement exhibits initial permeability of around 100 000 and thermal stability up to 558 K, which is good for flux-amplifying components of smaller inductors.

  19. Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia

    2013-10-01

    Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.

  20. Structural, Magnetic and Microwave Absorption Properties of Hydrothermally Synthesized (Gd, Mn, Co) Substituted Ba-Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Torabi, Z.; Arab, A.; Ghanbari, F.

    2018-02-01

    Gd, Mn and Co substituted barium hexagonal ferrite nanoparticles, according to the formula Ba1- x Gd x Fe12-2 y (MnCo) y O19 and the proportion of y = x/2 (and x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1), have been prepared by hydrothermal method. Structural, magnetic and absorption microwave properties of the compositions were evaluated by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), vibrating sample magnetometry, and vector network analysis. Studying the XRDs data showed the single-phase structure of all samples without any impurities at 900°C calcination temperature. FE-SEM micrographs demonstrated that the morphology of the nanoparticles has planar and nearly hexagonal morphology. The nanoparticles size calculated within the range of 62-85 nm. Study of the room temperature hysteresis loops of calcined samples indicated that maximum magnetizations and coercivities decreased compared to undoped composite with respect to x. The alterations of magnetizations and coercivities are related to the site occupation of substituted ions, change in grain growth inhibition and the effect of spin canting. Moreover, the results of microwave absorption measurements demonstrated that the maximum reflection loss of substituted Ba-hexaferrite equivalent to - 47 dB in sample x = 0.5 with thickness 5.6 mm at a frequency about 17.2 GHz and a bandwidth of 2 GHz greater than - 10 dB. The results showed that Gd has good potential for use as a rare-earth substitution in permanent magnet hexaferrites and these composites can be employed as absorbers in the gigahertz frequency range.

  1. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2007-09-01

    The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr1-xGdx)O·5.25Fe2O3 and Sr1-xGdxFe12-xCoxO19, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr0.95Gd)O·5.25Fe2O3 is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305 kA/m (3.8 kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.

  2. Réalisation de couches minces magnétiques d'hexaferrite de baryum en vue de concevoir un isolateur coplanaire passif

    NASA Astrophysics Data System (ADS)

    Capraro, S.; Nader, C.; Chatelon, J. P.; Le Berre, M.; Rouiller, T.; Bayard, B.; Joisten, H.; Barbier, D.; Rousseau, J. J.

    2005-05-01

    Le développement des dispositifs intégrés employant un ferrite est un objectif majeur pour des applications électroniques dans la gamme hyperfréquence (circulateurs et isolateurs). Les ferrites hexagonaux, tel que l'hexaferrite de baryum (BaFe{12}O{19} ou BaM), présentent un grand intérêt pour de tels dispositifs en raison de leurs grandes résistivités et de leurs perméabilités élevées aux hautes fréquences. Dans cette étude, les couches minces de BaM, sont déposées et optimisées par pulvérisation cathodique RF sur des substrats d'alumine et de silicium. Après dépôt, les films sont amorphes et un recuit thermique à 800° C est nécessaire pour que les couches de BaM cristallisent et présentent des propriétés magnétiques. Les propriétés magnétiques des couches minces de BaM ont été déterminées par VSM, et on constate que le champ coercitif et l'aimantation à saturation atteignent respectivement 330 kA/m et 500 mT. Des isolateurs sont réalisés par dépôt d'une couche conductrice d'or en utilisant la technique du lift-off qui permet la mise en place du ruban signal ainsi que des plans de masse. Les premiers résultats de mesure en transmission ont montré un effet non réciproque qui atteint 8 dB/cm à 50 GHz.

  3. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Park, J; Hong, YK

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased withmore » increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.« less

  4. Investigation of the photosensitivity of LiNbO3:BaFeO3 crystal

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Koplitz, Brent D.; Jackson, E.; Jalbout, F.; Jalbout, A.; Aggarwal, Mohan D.

    2002-01-01

    Ferromagnetic resonance (FMR) absorptions from six fine particle-samples of barium ferrite were studied over a temperature range of -195 degree(s)C to 500 degree(s)C. It was found that the shape of the FMR absorption signal is affected by the particle shape and crystalline anisotropy of each sample. From this analysis, the first magnetic anisotropy constant K1 was estimated approximately as a function of temperature. The estimation suggested that the value of K1 was sensitive to the condition of preparation of fine powders. In addition the photosensitivity of the LiNbO3:BaFe doped crystal was enhanced, suggesting the importance of Barium Ferrite powder as a potential candidate with NOL materials.

  5. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  6. Microwave absorption studies of magnetic sublattices in microwave sintered Cr3+ doped SrFe12O19

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Sadhana, K.; Liu, Hsiang-Lin; Bououdina, M.

    2017-03-01

    The partial substitution of Fe3+ by Cr3+ in strontium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the hexaferrite. In order to investigate these interactions, Cr3+ doped SrCrxFe12-xO19 (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) (m-type) hexaferrites were prepared by microwave-hydrothermal (m-H) method and subsequently sintered at 950 °C/90 min using microwave furnace. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field was increasing from 3291 Oe to 7335 Oe with increasing chromium content. This resulting compacts exhibited high squareness ratio (Mr/Ms-80%). The intrinsic coercivity (Hci) above 1,20,000 Oe and high values of magnetocrystalline anisotropy revealed that all samples are magnetically hard materials. A material with high loss as well as high dielectric constant may be desired in applications such as electromagnetic (EM) wave absorbing coatings. The room temperature complex dielectric and magnetic properties (ε‧, ε‧‧, μ‧ and μ‧‧) of Cr3+ doped SrFe12O19 were measured in X-band region. The frequency dependent dielectric and magnetic losses were increasing to large extent. The reflection coefficient varied from -16 to -33 dB at 10.1 GHz as Cr3+ concentration increased from x=0.0 to x=0.9. Ferromagnetic resonance spectra (FMR) were measured in the X-band (9.4 GHz), linewidth decreases with chromium concentration from 1368 to 752 Oe from x=0.0 to x=0.9, which is quite low compared to commercial samples. We also have detailed origins of the FMR linewidth broadenings in terms of some important theoretical models. These results show that chromium doped strontium hexaferrites are useful for microwave absorption in the X-band frequency and also have potential for use in low frequency self-biased microwave/millimeter devices such as circulators and isolators.

  7. Surface doping with Al in Ba-hexaferrite powders (abstract)

    NASA Astrophysics Data System (ADS)

    Turilli, G.; Paoluzi, A.; Lucenti, M.

    1991-04-01

    Barium M-hexaferrites were intensively studied in order to improve their magnetic characteristics for application as permanent magnets using different ion substitutions. However, substitutions that improve the BHmax energy product have not been found. We propose a new method in order to modify the extrinsic magnetic characteristics of Ba-hexaferrite powders without reducing drastically the magnetization and the magnetic anisotropy. This method consists in the surface doping of the hexaferrite particles, giving as a result a modification of the energy pinning of the domain walls at the grain boundary. Ba ferrite powders having a mean diameter of 3.2 μm have been dry mixed with Al2O3 powders with a diameter <0.5 μm. From the mixed powder a series of 10 cylindrically shaped samples was obtained by isostatically pressing the powders. The samples were thermically treated from 900 to 1200 °C, together with 10 cylindrical samples of pure hexaferrite, for 1 h each. For all the samples we have measured the Curie temperature (Tc), the anisotropy field (HA), the coercive field (Hc), and the saturation magnetization σ. The main results are that up to 1000 °C the Al diffusion is mainly localized at the surface of the grain so that the main part of the grain is undoped as confirmed by the Tc and HA values that are the same as those found in pure hexaferrites. From 900 to 1000 °C the saturation magnetization decreases of the 3% while Hc increases of the 9% with respect to the pure hexaferrite. This result seems to confirm the validity of the proposed method. Above 1000 °C Al begin to diffuse in the grain and above 1200 °C it is possible to say, from thermomagnetic analysis, that Al has diffused uniformly throughout the grain. In this last temperature range the Al substitution leads to a 10% reduction in σ as expected1 while Hc only increases 12%. These preliminary results suggest that the method of surface doping of the powders could be used in order to increase or decrease the H values without strongly influencing the σ values.

  8. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Rujun, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn; Zhou, Hao; You, Wenlong

    2016-08-22

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} have been investigated. The results show that the magnetic moments of insulating BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominantmore » mechanism. The above results show that the hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.« less

  9. Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method

    NASA Astrophysics Data System (ADS)

    Serletis, C.; Litsardakis, G.; Pavlidou, E.; Efthimiadis, K. G.

    2017-11-01

    In this work, using the chemical coprecipitation method, Sr1-xSmxFe12-xCoxO19 (x = 0, 0.1, 0.2) hexaferrite powders were prepared. Major magnetization loops were recorded at room temperature in order to determine the correct calcination temperature for optimum hard magnetic properties. It is found that a small degree of substitution increases substantially the coercive field. Also, the use of the molten flux calcination method increases the remanent magnetization. SEM/EDXS and XRD measurements were performed at the calcined powders: the results show that a single hexaferrite phase is formed and that the substituted powders consist of an assembly of grains with a mean diameter of 40 nm. Measurements of minor magnetization loops and of the temperature and time dependence of the magnetization confirm that the powders consist of a non-oriented single domain magnetic particles assembly. The results indicate that Sm could be a viable replacement for La in the manufacturing of hexaferrites with a high-energy product.

  10. Structural and magnetic properties of nanostructured composites (SrFe12O19)x(CaCu3Ti4O12)1-x

    NASA Astrophysics Data System (ADS)

    Gavrilova, T. P.; Deeva, J. A.; Yatsyk, I. V.; Yagfarova, A. R.; Gilmutdinov, I. F.; Lyadov, N. M.; Milovich, F. O.; Chupakhina, T. I.; Eremina, R. M.

    2018-05-01

    (SrFe12O19)x(CaCu3Ti4O12)1-x (x = 0.01, 0.03, 0.07, 0.1) composites were synthesized using a solid state method, while the pre-synthesized strontium hexaferrite SrFe12O19 (SFO) was added to the stoichiometric amount of CaO, CuO and TiO oxides to form the CaCu3Ti4O12 (CCTO) structure around SFO microinclusions. The structural and microstructural properties of obtained composites were studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The magnetic properties were studied by electron spin resonance and magnetometry methods. Based on all experimental data we can conclude, that SFOxCCTO1-x nanostructured composites were formed only for concentrations x = 0.03 and x = 0.07, where SFO nanoinclusions are inside CCTO matrix, that leads to the strong mutual influence of the magnetic properties of both component.

  11. Study of structural, electrical, magnetic and optical properties of BaFe12O19 and its modified systems with Ni and Ti

    NASA Astrophysics Data System (ADS)

    Nayak, Debabrata; Pattanayak, Ranjit; Raut, Subhajit; Panigrahi, Simanchalo

    2018-02-01

    In this work, BaFe12O19 (BaM) and its modified systems (by substitution of Ni and Ti) have been synthesized by solid-state reaction method. From Rietveld refinement of X-ray diffraction pattern, it is found that volume of unit cell increased slightly in case of modified systems. SEM images provided the information about the microstructure of BaM and its modified systems. The electric, magnetic and optical properties have been carried out with the help of complex impedance spectroscopy, VSM and UV spectrum, respectively. From electrical analysis, it is perceived that Ni-substitution system has shown co-contribution of grain and grain boundary effect due to increases of grain size. The M- H loops are explored that, with substitution of Ni and Ti both M s and H c are decreased. From the variation of band gap ( E g), it is observed that E g has been significantly decreased with substitution (least for Ni-substitution).

  12. Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)

    NASA Astrophysics Data System (ADS)

    Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.

    2018-04-01

    The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.

  13. Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites

    NASA Astrophysics Data System (ADS)

    Bai, Dezhong; Feng, Huixia; Chen, Nali; Tan, Lin; Qiu, Jianhui

    2018-07-01

    In this paper, we introduced attapulgite (ATP) into the system of ferrite composites for the first time. By sol-gel self-propagating combustion method, attapulgite/barium ferrite (ATP/BaFe12O19) was prepared, and then ternary composites of attapulgite/barium ferrite/polyaniline (ATP/BaFe12O19/PANI) were obtained by in-situ oxidative polymerization of aniline on ATP/BaFe12O19 mixture. The phase composition, morphology and electromagnetic properties of the as-prepared composites were characterized by X-ray diffraction (XRD), Transmission election microscope (TEM), Fourier transform infrared (FTIR), vibrating sample magnetometer (VSM) and vector network analyzer (VNA). We found that the ATP/BaFe12O19/PANI composites at a thickness of 2 mm have the minimum reflection loss of -11.89 dB at 11.28 GHz, besides the effective absorption bandwidth (less than -5 dB) reached 6.39 GHz (from 8.42 GHz to 14.81 GHz).

  14. A comparative study on the magnetic and electrical properties of MFe12O19 (M=Ba and Sr)/BiFeO3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Mansour, S. F.; Ismael, H.

    2015-03-01

    M-type hexaferrite (MFe12O19), M=Ba or Sr nanoparticles with hexagonal crystal structure have been successfully synthesized by a citrate auto-combustion method. BiFeO3 (BFO) was prepared by the flash auto-combustion technique. Different nanocomposites were prepared according to the formula [(1-X) MFe12O19+XBiFeO3; M=Ba or Sr, X=0.3, 0.4, 0.5 and 0.6]. The structure and morphology of the obtained nanocomposites have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). From the results, it is observed that the value of saturation magnetization decreases with increasing BFO content, which was mainly due to the contribution of the volume of the weak-magnetic BFO to the total sample volume.

  15. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less

  16. Magnetic properties of (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremina, R. M., E-mail: REremina@yandex.ru; Sharipov, K. R.; Yatsyk, I. V.

    2016-07-15

    New composite materials (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} (x = 0, 0.05, 1) have been synthesized. Their magnetic properties are studied in the temperature range 5–300 K using the magnetic resonance and magnetometry methods. It is found that strontium hexaferrite microinclusions in the (SrFe{sub 12}O{sub 19}){sub 0.05}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 0.95} composite “magnetize” CaCu{sub 3}Ti{sub 4}O{sub 12} at temperatures from 300 to 200 K, forming a ferrimagnetic particle near the SrFe{sub 12}O{sub 19} “core.” The magnetic resonance line below 200 K splits into two lines corresponding to SrFe{sub 12}O{sub 19} and CaCu{sub 3}Ti{sub 4}O{sub 12}. The coremore » effect decoration is manifested in the increase in the Curie–Weiss temperature from 25 K in CaCu{sub 3}Ti{sub 4}O{sub 12} without the doping ceramics to 80 K in the composite with 5% of SrFe{sub 12}O{sub 19}.« less

  17. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less

  18. Structural, magnetic, and Mössbauer spectroscopy of Cu substituted M-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awadallah, Ahmad, E-mail: ahmadmoh@yahoo.co; Mahmood, Sami H., E-mail: s.mahmood@ju.edu.jo; Maswadeh, Yazan, E-mail: nawabra251@gmail.com

    2016-02-15

    Highlights: • Single BaM hexaferrite structural phases with Cu substations were prepared. • The magnetocrystalline anisotropy decreased with Cu substitution. • The coercivity was significantly modified while the magnetization remained high. • Hexaferrites with 0.2–0.4 Cu possess properties suitable for magnetic recording. • Ionic distributions from structural refinement agreed with Mössbauer spectroscopy. - Abstract: BaFe{sub 12−x}Cu{sub x}O{sub 19} hexaferrites were prepared using ball milling and sintering at 1100 °C. Refinement of the X-ray diffraction patterns was carried out to determine the structural parameters and the ionic distribution over the crystallographic sites. The preferential site occupation and valence state of Cumore » was consistent with the results obtained from the analysis of Mössbauer spectra. Further, the magnetic parameters of the samples were discussed in light of the structural and Mössbauer analyses. The magnetic phase transition temperature was found to decrease with the level of Cu substitution, in accordance with the reduction of the superexchange interactions. Further, the magnetic softening of the hexaferrite and the significant reduction in magnetocrystalline anisotropy with Cu substitution was consistent with the ionic distribution in the lattice. This study clearly demonstrated the feasibility of using a simple method to fabricate hexaferrites with a modified coercivity, while maintain the saturation magnetization high enough for practical applications.« less

  19. Influence of La content on magnetic properties of Cu doped M-type strontium hexaferrite: Structural, magnetic, and Mossbauer spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ghimire, M.; Yoon, S.; Wang, L.; Neupane, D.; Alam, J.; Mishra, S. R.

    2018-05-01

    The present study investigates the influence of Cu2+ and La3+-Cu2+ doping on the magnetic properties of Sr1-xLaxFe12-xCuxO19 (x = 0.0-0.5) hexaferrite (SrM) compounds. The samples were prepared via facile autocombustion technique followed by sintering. X-ray powder diffraction patterns show the formation of the pure phase of M-type hexaferrite for all x. Invariance in lattice parameters was observed with only Cu2+ substitution while lattice contraction along c-axis was observed with co-doping La3+-Cu2+ in SrM. The magnetic property of these compounds is explained based on Cu2+ occupancy in the absence and presence of La3+ in SrM magnetoplumbite structure. The Cu2+ doped SrFe12-xCuxO19 sample showed a monotonic decrease in Ms value while La3+-Cu2+ showed a noticeable increase in Ms value with x. Furthermore, while coercivity of Cu2+ doped SrM reduced with x, the coercivity of La3+-Cu2+ doped SrM showed a marked 12% increase in coercivity at x = 0.1 (Hc = 4391 Oe) from that of x = 0.0 (3918 Oe). Interestingly, Cu2+ doped SrM displayed invariance in Tc ∼ 458.6 °C with x, while La3+-Cu2+ doping reduced Tc by 5% from its x = 0 (Tc = 451.9 °C) to 429.6 °C. The room temperature Mossbauer spectral analysis confirmed a Cu2+ preference for the 12k site and its occupancy is observed to be influenced by the presence of La3+ ion at the Sr2+ site.

  20. Domain-wall superconductivity in superconductor-ferromagnet hybrids.

    PubMed

    Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V

    2004-11-01

    Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.

  1. Effect of bismuth substitution in strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Sahoo, M. R.; Kuila, S.; Sweta, K.; Barik, A.; Vishwakarma, P. N.

    2018-05-01

    Bismuth (Bi) substituted M-type strontium hexaferrite (Sr1-xBix Fe12O19, x=0 and 0.02) are synthesized by sol-gel auto combustion method. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) shows increase in lattice parameter and particle size (500 nm to 3 micron) respectively, for Bi substituted sample. Magnetization via M-H shows decrease in magnetic hardness for Bi substituted samples. M-T data for parent (x=0) sample shows an antiferromagnetic transition in the ZFC plot at 495 °C. This antiferromagnetic transition is replaced by a ferromagnetic transition for FCW measurement. Similar behavior is displayed by the Bi substituted sample with transition temperature reduced to 455 °C.

  2. Characterization and Applications of Micro- and Nano- Ferrites at Microwave and Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Chao, Liu

    Ferrite materials are one of the most widely used magnetic materials in microwave and millimeter wave applications such as radar, wireless communication. They provide unique properties for microwave and millimeter wave devices especially non-reciprocal devices. Some ferrite materials with strong magnetocrystalline anisotropy fields can extend these applications to tens of GHz range while reducing the size, weight and cost. This thesis focuses on characterization of such ferrite materials as micro- and nano-powder and the fabrication of the devices. The ferrite materials with strong magnetocrystalline anisotropy field are metal/non-metal substituted iron oxides oriented in low crystal symmetry. The ferrite materials characterized in this thesis include M-type hexagonal ferrites such as barium ferrite (BaFe12O19), strontium ferrite (SrFe12O19), epsilon phase iron oxide (epsilon-Fe 2O3), substituted epsilon phase iron oxide (epsilon-Ga xFe2-xO3, epsilon-AlxFe2-xO 3). These ferrites exhibit great anisotropic magnetic fields. A transmission-reflection based in-waveguide technique that employs a vector network analyzer was used to determine the scattering parameters for each sample in the microwave bands (8.2--40 GHz). From the S-parameters, complex dielectric permittivity and complex magnetic permeability are evaluated by an improved algorithm. The millimeter wave measurement is based on a free space quasi-optical spectrometer. Initially precise transmittance spectra over a broad millimeter wave frequency range from 40 GHz to 120 GHz are acquired. Later the transmittance spectra are converted into complex permittivity and permeability spectra. These ferrite powder materials are further characterized by x-ray diffraction (XRD) to understand the crystalline structure relating to the strength and the shift of the ferromagnetic resonance affected by the particle size. A Y-junction circulator working in the 60 GHz frequency band is designed based on characterized M-type barium micro- and nano-ferrite. A new fabrication process using ferrite composite is proposed to integrate the Y-junction circulator into the semiconductor substrate. Theoretical design of a high gain Traveling Wave Tube (TWT) amplifier using a metamaterial (MTM) structure and cold-test of the MTM structure are also included in this dissertation. An SWS working around 6 GHz below the X-band waveguide TE10 cutoff frequency is fabricated.

  3. Composition and phase analysis of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) by using general structure analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Jobiliong, E., E-mail: eric.jobiliong@uph.edu; Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id

    2016-03-11

    Single phase of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) was successfully synthesized by mechanical milling method and thermal process. Stoichiometric quantities of analytical-grade SrCO{sub 3}, BaCO{sub 3}, and Fe{sub 2}O{sub 3}, were mixed and milled using a high-energy milling. The mixture of all precursors was sintered at a temperature of 1000 °C for 10 hours. The refinement of x-ray diffraction trace for all samples confirmed a single phase material with a hexagonal structure. The increase of the amount of strontium content in the barium atoms in the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} system canmore » decrease the lattice parameter which have been successfully substituted into the barium atoms. The calculation result of cationic distribution showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 0.6) and (x = 0.4) samples have nominal composition of Ba{sub 0,61}Sr{sub 0,39}Fe{sub 12}O{sub 19} and Ba{sub 0,37}Sr{sub 0,63}Fe{sub 12}O{sub 19}, respectively. Results of the mean of crystallite size evaluation for respective powder materials showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) samples have the crystallite size of 22 nm, 25 nm and 34 nm, respectively. We concluded that the cationic distribution of barium atoms was successfully substituted by strontium atoms approaching the nominal stoichiometric composition.« less

  4. Synthesis of strontium hexaferrite nanoparticles prepared using co-precipitation method and microemulsion processing

    NASA Astrophysics Data System (ADS)

    Drmota, A.; Žnidaršič, A.; Košak, A.

    2010-01-01

    Strontium hexaferrite (SrFe12O19) nanoparticles have been prepared with co-precipitation in aqueous solutions and precipitation in microemulsion system water/SDS/n-butanol/cyclohexane, using iron and strontium nitrates in different molar rations as a starting materials. The mixed Sr2+, Fe3+ hydroxide precursors obtained during the reaction between corresponding metal nitrates and tetramethylammonium hydroxide (TMAH), which served as a precipitating reagent, were calcined in a wide temperature range, from 350 °C to 1000 °C in a static air atmosphere. The influence of the Sr2+/Fe3+ molar ratio and the calcination temperature to the chemistry of the product formation, its crystallite size, morphology and magnetic properties were investigated. It was found that the formation of single phase SrFe12O19 with relatively high specific magnetization (54 Am2/kg) was achieved at the Sr2+/Fe3+ molar ration of 6.4 and calcination at 800 °C for 3h with heating/cooling rate 5 °C/min. The prepared powders were characterized using X-ray diffractometry (XRD) and specific surface area measurements (BET). The specific magnetization (DSM-10, magneto-susceptometer) of the prepared samples was measured.

  5. Development of low loss hexaferrite materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Su, Zhijuan

    Hexaferrites have been widely used in microwave and millimeter wave devices as permanent magnets and as gyromagnetic materials, e.g., in circulators, filters, isolators, inductors, and phase shifters. As a critical component in radar and modern wireless communication systems, it is the microwave circulator that has drawn much attention. Many efforts have been made to design light and miniature circulators with self-biased ferrite materials. We report the magnetic and structural properties of a series of W-type barium hexaferrites of composition BaZn2-xCoxFe16O27 where x=0.15, 0.20, and 0.25. The anisotropy field of these BaW ferrites decreased with the substitution of divalent Co ions, while, they maintained crystallographic c-axis texture. The measured anisotropy field was ~10 kOe, and a hysteresis loop squareness Mr/Ms=79% was obtained due to well-controlled grain size within the range of single domain scale. U-type barium hexaferrite thin films were deposited on (0001) sapphire substrates by pulsed laser deposition. The results indicate a measured anisotropy field of ~8 kOe, and the saturation magnetization (4piMs) of 3.6 kG. More interestingly, an optimal post-deposition annealing of the films results in a strong (0, 0, n) crystallographic texture and a high squareness (Mr/Ms= 92%) out of the film plane. Furthermore, the highly self-biased ferrite films exhibited low FMR linewidth of ~200 Oe. Improved performance and miniaturization are needed to meet the ever-increasing demands of devices used in ultra-high frequency (UHF), L-band, and S-band, which are of particular interest in a variety of commercial and defense related applications. Utilizing materials possessing high permeability and permittivity with low magnetic losses is a promising solution. As a critical component in radar and modern wireless communication systems, antenna elements with compact size are constantly sought. Ferrite composites of the nominal composition Ba3Co2+xIrxFe24-2xO41 were studied in order to achieve low magnetic and dielectric losses and equivalent permittivity and permeability over a frequency range of 0.3-1 GHz. Crystallographic structure was characterized by X-ray diffraction, which revealed a Z-type phase accompanied by increasing amounts of Y-type phase as the iridium amount was increased. The measured microwave dielectric and magnetic properties showed that the loss tandeltaepsilon and loss tandeltamicro were decreased by 80% and 90% at 0.8 GHz with the addition of iridium having x =0.12 and 0.15, respectively. An effective medium approximation was adopted to analyze the composite ferrites having mixed phase structures. Moreover, adding Bi2O3 resulted in equivalent values of real permittivity and real permeability over the studied frequency range. The resultant data gives rise to low loss factors (i.e., tandeltaepsilon/epsilon' = 0.008 and tandelta micro/micro'=0.037 at 0.8 GHz) while characteristic impedance was the same as that of free space impedance.

  6. Theory of magnetic enhancement in strontium hexaferrite through Zn-Sn pair substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, LSI; Kim, S; Hong, YK

    2013-12-01

    We study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite SrFe12-x(Zn0.5Sn0.5)(x)O-19 with x=1 using first-principles total-energy calculations. We find that in the lowest-energy configuration Zn2+ and Sn4+ ions preferentially occupy the 4f(1) and 4f(2) sites, respectively, in contrast to the model previously suggested by Ghasemi et al. [J. Appl. Phys, 107, 09A734 (2010)], where Zn2+ and Sn4+ ions occupy the 2b and 4f(2) sites. Density-functional theory calculations show that our model has a lower total energy by more than 0.2 eV per unit cell compared to Ghasemi's model. More importantly, the latter does not show an increasemore » in saturation magnetization (M-s) compared to the pure M-type Sr-hexaferrite, in disagreement with the experiment. On the other hand, our model correctly predicts a rapid increase in M-s as well as a decrease in magnetic anisotropy compared to the pure M-type Sr-hexaferrite, consistent with experimental measurements. (c) 2013 Elsevier B.V. All rights reserved.« less

  7. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhijuan; Bennett, Steven; Hu, Bolin

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibitedmore » an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.« less

  8. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  9. Investigation of magnetic and structural properties of Ni-Zr co-doped M-type Sr-La hexaferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Huang, Duohui; Tang, Jin; Rehman, Khalid Mehmood Ur

    2018-02-01

    In this research, Ni2+ and Zr4+ co-doped Sr-La hexaferrites Sr0.7La0.3Fe12.0-2 x (NiZr) x O19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters ( c and a) increased with increasing NiZr content ( x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization ( M s), remanent magnetization ( M r) and coercivity ( H c) were calculated from magnetic hysteresis ( M- H) loops. M s and H c decreased with increasing NiZr content ( x) from 0.0 to 0.5. M r and M r/ M s ratio first increased with increasing NiZr content ( x) from 0.0 to 0.1, and then decreased when NiZr content ( x) ≥ 0.1.

  10. The barium iron ruthenium oxide system

    NASA Technical Reports Server (NTRS)

    Kemmler-Sack, S.; Ehmann, A.

    1986-01-01

    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.

  11. Magnetic and Dielectric Investigations of Mn-Doped Ba Hexaferrite Nanoparticles by Hydrothermal Approach

    NASA Astrophysics Data System (ADS)

    Adeela, N.; Khan, U.; Iqbal, M.; Riaz, S.; Ali, H.; Maaz, K.; Naseem, S.

    2016-11-01

    A hydrothermal method followed by heat treatment was used to synthesize Mn-substituted Ba2Co2- x Mn x Fe12O22 nanoparticles with a nominal chemical composition of 0 ≤ x < 1 and step gap of 0.3. In this study, the effect of Mn substitution on Co2Y-type barium hexaferrite is investigated after employing x-ray diffraction for crystal structure, field emission scanning electron microscopy for morphology, energy dispersive analysis of x-ray spectroscopy for elemental composition, Fourier transform infrared spectroscopy to confirm bond modes, and vibrating sample magnetometry for magnetic measurements. It was found that the sample at x = 0.9 is of particular interest due to its large coercivity and anisotropy. Later on, for x = 0.9, temperature-dependent magnetic analyses including hysteresis loops, zero-field-cooled, and field-cooled at a particular field of 100 Oe were performed. The decreasing trend in saturation magnetization with increase in temperature was estimated. On the other hand, first an increase and then decrease in coercivity values were observed. These loops also revealed dependence of coercivity on magneto-crystalline anisotropy and average crystallite size of nanoparticles. Dielectric measurements at x = 0.9 make it suitable for high frequency applications.

  12. Microstructural and thermal properties of pure BaFe{sub 12}O{sub 19} and Sr doped barium ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) synthesized by auto combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha

    2016-05-23

    Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less

  13. Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2014-02-01

    M-type hexaferrite BaCr x Ga x Fe12-2 x O19 ( x = 0.2) powders have been synthesized by use of a sol-gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 109 Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz-3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell-Wagner two-layer model and Koop's phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves.

  14. Implications of Barium Abundances for the Chemical Enrichment of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan N.

    2018-06-01

    There are many candidate sites of the r-process: core-collapse supernovae (including rare magnetorotational core-collapse supernovae), neutron star mergers (NSMs), and neutron star/black hole mergers. The chemical enrichment of galaxies—specifically dwarf galaxies—helps distinguish between these sources based on the continual build-up of r-process elements. The existence of several nearby dwarf galaxies allows us to measure robust chemical abundances for galaxies with different star formation histories. Dwarf galaxies are especially useful because simple chemical evolution models can be used to determine the sources of r-process material. We have measured the r-process element barium with Keck/DEIMOS medium-resolution spectroscopy. We will present the largest sample of barium abundances (more than 200 stars) in dwarf galaxies ever assembled. We measure [Ba/Fe] as a function of [Fe/H] in this sample and compare with existing [alpha/Fe] measurements. We have found that a large contribution of barium needs to occur at timescales similar to Type Ia supernovae in order to recreate our observed abundances, namely the flat or slightly rising trend of [Ba/Fe] vs. [Fe/H]. We conclude that neutron star mergers are the main contribution of r-process enrichment in dwarf galaxies.

  15. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19

    PubMed Central

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-01-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. PMID:26891682

  16. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals were a found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by ~150 K for Co 2Y ferrite, compared to 5--10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based "system on a wafer" architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.

  17. Investigation of Microwave Monolithic Integrated Circuit (MMIC) Non-Reciprocal Millimeterwave Components

    DTIC Science & Technology

    1991-09-01

    nickel zinc ferrite films and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP tech- nique potential for...M-Wave, Components, Ferrites, Films , Yig, Nickel, Zinc , Hexagonal, R96E Measurements, Frequency, Magnetic, Barium Ferrite 17. SECURITY CLASSIFICATION...techniques to integrate millimeter-wave ferrite devices with GaAs VI&Cs. APPROACH Our approach was to deposit ferrite thin films on GaAs sub- strates in a

  18. Investigating the effect of multiple grain-grain interfaces on electric transport behavior of [50 wt% BaFe12O19-50 wt% Na0.5Bi0.5TiO3] magnetoelectric nanocomposite system

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Raut, Subhajit; Dash, Tapan; Mohapatra, Soumyaranjan; Muduli, Rakesh; Panigrahi, Simanchala

    2017-05-01

    Polycrystalline [50 wt% BaFe12O19 (BaM)-50 wt% Na0.5Bi0.5TiO3 (NBT)] particulate novel magnetoelectric nanocomposite system was successfully fabricated by solid state reaction technique. The Rietveld refinement of X-ray diffraction pattern was provided the evidence about the pure phase formation of desired nanocomposite system as well as the presence of both ferrimagnetic (FM) BaM & ferroelectric (FE) NBT phases separately. The Field Scanning Electron Micrograph (FESEM) and Scanning Tunneling Electron Micrograph (STEM) explored the information about grain size and connectivity of the composite system. The XPS study was helped to examine the presence of oxygen vacancy (Ov) as well as multi oxidation states of transition metal ions for nanocomposite system. In this report we have systematically examined the conduction mechanism of different interfaces (BaM-BaM, BaM-NBT and NBT-NBT) by the help of complex impedance spectroscopy technique. From our investigation it was observed that, different interfaces activates at different temperature ranges. Due to absence of OV, BaM-NBT interfaces conduction dominants over BaM-BaM interfaces conduction even at room temperature (RT). The mechanism behind the appeared high dielectric loss (tanδ) at RT which was reduced when NBT-NBT interfaces were activates at higher temperature was explained by Maxwell-Wagner type interfacial polarization concept.

  19. Fabrication of thin bulk ceramics for microwave circulator applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ings, J.B.; Simmins, J.J.; May, J.L.

    1995-09-01

    Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.

  20. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering

    PubMed Central

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-01-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 oC, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase. PMID:26369360

  1. Fenton-like Degradation of Phenol Catalyzed by a Series of Fe-Containing Mixed Oxides Systems

    NASA Astrophysics Data System (ADS)

    Alhmoud, T. T.; Mahmoud, S. S.; Hammoudeh, A. Y.

    2018-02-01

    In our attempts to develop a solid catalyst to degrade organic pollutants in wastewater via the Fenton-like reaction, six Fe-containing mixed oxide systems were prepared by means of the sol-gel auto-combustion method to have the following stoichiometries: CuFe1.2O2.8, BaFe7.2O11.8, BaFe7.2Cu2O13.8, BaFe5.4V3O16.6, BaFe4.8Cu2V3O17.7 and Ag2Fe5.4V3O16.6. The prepared systems were thermally treated at 550°C, 650°C, 800°C and 1100°C, and then characterized by XRD to identify the present phases. The systems were tested with respect to their catalytic efficiency in the degradation of phenol (200 ppm) in water where CuFe1.2O2.8 was found to be the most reactive one (80% removal in 60 min). It showed thereby first-order kinetics and an enhanced behavior under irradiation with a 30-W LED light source. The positive role of irradiation was most obvious in the case of Ag2Fe5.4V3O16.6 in which almost complete conversion was achieved in 120 min compared to only 45% in the same period but without irradiation. However, increasing the temperature at which thermal treatment is performed was found to suppress the catalytic activity of the system. Due to their high efficiency and rather low leaching rates of constituents, CuFe1.2O2.8 or Ag2Fe5.4V3O16.6 seem to be very promising in the Fenton-like degradation of organic pollutants.

  2. The Microstructure Analysis of Barium M- Hexaferrite Particles Coated by Pani Conducting Material with In Situ Polymerization Process

    NASA Astrophysics Data System (ADS)

    Zainuri, M.; Amalia, L.

    2017-05-01

    Barium M-Hexaferrite (BaM) was synthesized by coprecipitation method and doped with Zn. Polyaniline (PANI) was synthesized by chemically and doped DBSA. The composite of PANI/BaM was synthesized by in situ polymerization method. The phase identification of the sample was performed by XRD, FTIR and SEM. Based on XRD data, the phase composition of BaM and hematite are 85.52 % and 14.48%. The characteristic peaks of PANI occur at 3435, 1637, 1473, 1298, 1127, 1009, and 799 cm-1. The characteristic metal oxide stretching peaks of BaM occurs at 575 and 437 cm-1. There is no phase changing in PANI/BaM composite. Based on SEM photography, the shape of BaM is hexagonal. The particle size of BaM powder ranges from 400-700 nm. The qualitative interfacial bonding between PANI and BaM particles are conducted very well and the both materials have good wettability.

  3. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  4. Structural and magnetic properties of La–Co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yujie; Liu, Xiansong, E-mail: xiansongliu@ahu.edu.cn; Jin, Dali

    2014-11-15

    Graphical abstract: The change of the remanence (B{sub r}) and intrinsic coercivity (H{sub cj}) with La content (x) and Co content (y) of hexagonal ferrite Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} magnets. - Highlights: • Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} hexaferrites were synthesized by the solid state reaction method. • B{sub r} continuously increases with increasing dopant contents. • H{sub cb}, H{sub cj} and (BH){sub max} for the magnets first increases and then decreases with an increase in the La–Co contents. - Abstract: Hexagonal ferrite Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} (x = 0.05–0.50; y =more » 0.04–0.40) magnetic powders and magnets were synthesized by the solid state reaction method. X-ray diffraction was employed to determine the phase compositions of the magnetic powders. There is a single magnetoplumbite phase in the magnetic powders with the substitution of La (0.05 ≤ x ≤ 0.15) and Co (0.04 ≤ y ≤ 0.12) contents. For the magnetic powders containing La (x ≥ 0.20) and Co (y ≥ 0.16), magnetic impurities begin to appear in the structure. A field emission scanning electron microscope was used to characterize the micrographs of the magnets. The magnets have formed hexagonal structures. Magnetic properties of the magnets were measured by a magnetic properties test instrument. The remanence continuously increases with increasing dopant contents. Whereas, the magnetic induction coercivity, intrinsic coercivity and maximum energy product for the magnets first increases and then decreases with an increase in the La–Co contents.« less

  5. Influence of La-Mn substitutions on magnetic properties of M-type strontium hexaferrites

    NASA Astrophysics Data System (ADS)

    Zi, Z. F.; Ma, X. H.; Wei, Y. Y.; Liu, Q. C.; Zhang, M.; Zhu, X. B.; Sun, Y. P.

    2018-05-01

    M-type strontium hexaferrites of Sr1-xLaxFe12-xMnxO19 (0.0≤x≤0.4) were synthesized by the chemical coprecipitation method. X-ray diffraction (XRD) studies indicate that the samples are single-phase with the space group of P63/mmc. The results of field-emission scanning electronic microscopy (FE-SEM) show that the grains are regular hexagonal platelets with sizes from 0.7 to 1.4 μm. It is observed that the value of Hc increases at low substitution (x ≤ 0.1), reaches a maximum at x = 0.1 and then decreases at x ≥ 0.1, while the value of Ms decreases monotonously with increasing x. The variations of magnetic properties can be tentatively attributed to the effects of La-Mn substitutions. The results above indicate that our samples might be promising candidates for permanent magnets in the future.

  6. Rare earth doped M-type hexaferrites; ferromagnetic resonance and magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Kumari, Shweta; Kuanr, Bijoy K.

    2018-05-01

    M-type hexagonal barium ferrites come in the category of magnetic material that plays a key role in electromagnetic wave propagation in various microwave devices. Due to their large magnetic anisotropy and large magnetization, their operating frequency exceeds above 50 GHz. Doping is a way to vary its magnetic properties to such an extent that its ferromagnetic resonance (FMR) response can be tuned over a broad frequency band. We have done a complete FMR study of rare earth elements neodymium (Nd) and samarium (Sm), with cobalt (Co) as base, doped hexaferrite nanoparticles (NPs). X-ray diffractometry, vibrating sample magnetometer (VSM), and ferromagnetic resonance (FMR) techniques were used to characterize the microstructure and magnetic properties of doped hexaferrite nanoparticles. Using proper theoretical electromagnetic models, various parameters are extracted from FMR data which play important role in designing and fabricating high-frequency microwave devices.

  7. Thin films sputtered from Ba{sub 2}NdFeNb{sub 4}O{sub 15} multiferroic targets on BaFe{sub 12}O{sub 19} coated substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodeux, Romain; Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac; Michau, Dominique, E-mail: dominique.michau@icmcb.cnrs.fr

    2016-09-15

    Highlights: • Synthesis of Ba{sub 2}NdFeNb{sub 4}O{sub 15}/BaFe{sub 12}O{sub 19} (BaM) heterostructures by RF magnetron sputtering. • Growth of TTB layer were retained regardless of the underlayer (Pt bottom electrode or BaM). • Dielectric and magnetic properties were obtained from the Pt/TTB/BaM/Pt stacks. - Abstract: Ba{sub 2}NdFeNb{sub 4}O{sub 15} tetragonal tungsten bronze (TTB)/BaFe{sub 12}O{sub 19} (BaM) hexaferrite bilayers have been grown by RF magnetron sputtering on Pt/TiO{sub 2}/SiO{sub 2}/Si (PtS) substrates. The BaM layer is textured along (0 0 1) while the TTB layer is multioriented regardless of the PtS or BaM/PtS substrate. Dielectric properties of TTB films are similarmore » to those of bulk, i.e., ε ∼ 150 and a magnetic hysteresis loop is obtained from TTB/BaM bilayers, thanks to the BaM component. This demonstrates the possibility of transferring to 2 dimensional structures the composite multiferroic system TTB/BaM previously identified in 3 dimensional bulk ceramics.« less

  8. Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22

    NASA Astrophysics Data System (ADS)

    Vít, Jakub; Kadlec, Filip; Kadlec, Christelle; Borodavka, Fedir; Chai, Yi Sheng; Zhai, Kun; Sun, Young; Kamba, Stanislav

    2018-04-01

    We investigated static and dynamic magnetoelectric properties of single crystalline BaSrCoZnFe11AlO22 , which is a room-temperature multiferroic with Y-type hexaferrite crystal structure. Below 300 K, a purely electric-dipole-active electromagnon at ≈1.2 THz with the electric polarization oscillating along the hexagonal axis was observed by THz and Raman spectroscopies. We investigated the behavior of the electromagnon with applied dc magnetic field and linked its properties to static measurements of the magnetic structure. Our analytical calculations determined selection rules for electromagnons activated by the magnetostriction mechanism in various magnetic structures of Y-type hexaferrite. Comparison with our experiment supports that the electromagnon is indeed activated by the magnetostriction mechanism involving spin vibrations along the hexagonal axis.

  9. Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol-gel auto-combustion process

    NASA Astrophysics Data System (ADS)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2016-03-01

    Copper hexaferrite (CuFe12O19) nanostructures were prepared by a simple route utilizing maltose-assisted sol-gel process. The morphology, phase structure, composition and purity of nanostructures can be controlled by type of surfactant and also adjusting the Cu:surfactant, Cu:Fe and Cu:reductant ratios. The bean-shape structures are formed in the absence of the surfactant when the molar ratio of Cu:Fe and Cu:reductant are 1:12 and 1:26, respectively. The agglomerated spherical nanoparticles with diameters ranging from 7 to 20 nm are obtained in the presence of triplex, when ratio of Cu:reductant is 1:26. In the absence of surfactant and also in the presence of triplex, the samples are found to be CuFe12O19. When polymer is used, there are still the peaks of CuFe12O19 and also some boad peaks in XRD patterns, because of the small size and encapsulation of nanostructures with polymer. Magnetic measurments show superparamagnetic behavior for the all samples. The Ms for the samples obtained in the presence of polymer shows that the coating of magnetic nanostructures does not always increase Ms. FT-IR frequency bands in the range 463-626, 607 and 542 cm-1 correspond to the formation of metal oxides in ferrites.

  10. Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu Chunhong; Liu Yingli; Song Yuanqiang

    2011-06-15

    Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-typemore » hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.« less

  11. Electrical and magnetic properties of 0-3 Ba(Fe1/2Nb1/2)O3/PVDF composites

    NASA Astrophysics Data System (ADS)

    Ranjan, Hars; Mahto, Uttam K.; Chandra, K. P.; Kulkarni, A. R.; Prasad, A.; Prasad, K.

    Lead-free Ba(Fe1/2Nb1/2)O3/PVDF 0-3 composites were fabricated using melt-mixing technique. X-ray diffraction, scanning electron microscopy, dielectric, impedance, ac conductivity, magnetic force microscopy (MFM) and vibrating sample magnetometer studies were undertaken to characterize the samples. Average crystallite size of the Ba(Fe1/2Nb1/2)O3 powder, estimated using Williamson-Hall approach, was found to be ˜42nm. The filler particles of ˜0.5-1μm were found to disperse in the polymer matrix of all the composites. Filler concentration-dependent values of real and imaginary parts of complex permittivity showed increasing trend and were seen to follow Bruggeman and Furukawa equations. The data for ac conductivity exhibited negative temperature coefficient of resistance character of the test materials and were found to obey Jonscher’s power law. The correlated barrier hopping model was found to explain satisfactorily the mechanism of charge transport occurring in the system. MFM confirmed the presence of magnetic phases in the composites. Typical magnetization versus applied field curves indicated the possibility of magnetoelectric coupling in the system. Hence, the present composites have shown themselves as potential multi-functional candidate materials for use in high density data storage applications.

  12. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE PAGES

    Zhai, Kun; Wu, Yan; Shen, Shipeng; ...

    2017-09-12

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  13. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Kun; Wu, Yan; Shen, Shipeng

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  14. Electromagnetic properties of photodefinable barium ferrite polymer composites

    NASA Astrophysics Data System (ADS)

    Sholiyi, Olusegun; Lee, Jaejin; Williams, John D.

    2014-07-01

    This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3-6 μm for coarse and 0.8-1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass) of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM). The Thru, Reflect, Line (TRL) calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  15. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  16. BARIUM SURFACE ABUNDANCES OF BLUE STRAGGLERS IN THE OPEN CLUSTER NGC 6819

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliman, Katelyn E.; Mathieu, Robert D.; Schuler, Simon C., E-mail: milliman@astro.wisc.edu

    2015-09-15

    We present a barium surface abundance of 12 blue stragglers (BSs) and 18 main-sequence (MS) stars in the intermediate-age open cluster NGC 6819 (2.5 Gyr) based on spectra obtained from the Hydra Multi-object Spectrograph on the WIYN 3.5 m telescope. For the MS stars we find [Fe/H] = +0.05 ± 0.04 and [Ba/Fe] = −0.01 ± 0.10. The majority of the BS stars are consistent with these values. We identify five BSs with significant barium enhancement. These stars most likely formed through mass transfer from an asymptotic giant branch star that polluted the surface of the BS with the nucleosynthesismore » products generated during thermal pulsations. This conclusion aligns with the results from the substantial work done on the BSs in old open cluster NGC 188 that identifies mass transfer as the dominant mechanism for BS formation in that open cluster. However, four of the BSs with enhanced barium show no radial-velocity evidence for a companion. The one star that is in a binary is a double-lined system, meaning the companion is not a white dwarf and not the remnant of a prior AGB star. In this paper we attempt to develop a consistent scenario to explain the origin of these five BSs.« less

  17. Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Shipeng; Yan, Liqin; Chai, Yisheng

    2014-01-20

    Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals howmore » to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.« less

  18. Spin-Orbit Torque-Assisted Switching in Magnetic Insulator Thin Films with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, Mingzhong

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque that can induce magnetization switching in a neighboring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. This presentation reports the SOT-assisted switching in heavy metal/magnetic insulator systems.1 The experiments made use of Pt/BaFe12O19 bi-layered structures. Thanks to its strong spin-orbit coupling, Pt has been widely used to produce pure spin currents in previous studies. BaFe12O19 is an M-type barium hexagonal ferrite and is often referred as BaM. It is one of the few magnetic insulators with strong magneto-crystalline anisotropy and shows an effective uniaxial anisotropy field of about 17 kOe. It's found that the switching response in the BaM film strongly depends on the charge current applied to the Pt film. When a constant magnetic field is applied in the film plane, the charge current in the Pt film can switch the normal component of the magnetization (M⊥) in the BaM film between the up and down states. The current also dictates the up and down states of the remnant magnetization when the in-plane field is reduced to zero. When M⊥ is measured by sweeping an in-plane field, the response manifests itself as a hysteresis loop, which evolves in a completely opposite manner if the sign of the charge current is flipped. When the coercivity is measured by sweeping an out-of-plane field, its value can be reduced or increased by as much as about 500 Oe if an appropriate charge current is applied. 1. P. Li, T. Liu, H. Chang, A. Kalitsov, W. Zhang, G. Csaba, W. Li, D. Richardson, A. Demann, G. Rimal, H. Dey, J. S. Jiang, W. Porod, S. Field, J. Tang, M. C. Marconi, A. Hoffmann, O. Mryasov, and M. Wu, Nature Commun. 7:12688 doi: 10.1038/ncomms12688 (2016).

  19. Superposition model analysis of the magnetocrystalline anisotropy of Ba-ferrite

    NASA Astrophysics Data System (ADS)

    Novák, Pavel

    1994-06-01

    Theoretical analysis of the first magnetocrystalline anisotropy constantK 1 of BaFe12O19 is performed. Two contributions toK 1 are considered — single ion anisotropy and dipolar anisotropy. ParameterD which determines the magnitude of the single ion contribution is calculated on the basis of the superposition model. It is argued that the disagreement between calculated and observed values ofK 1 is most likely connected with the contribution of Fe3+ ions on bipyramidal sites, for which the value ofD is uncertain.

  20. Structural and Magnetic Properties Evolution of Co-Nd Substituted M-type Hexagonal Strontium Ferrites Synthesized by Ball-Milling-Assisted Ceramic Process

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Wu, Wenwei; Zhou, Chong; Zhou, Shifang; Li, Miaoyu; Ning, Yu

    2018-03-01

    M-type hexagonal Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) has been synthesized by ball milling, followed by calcination in air. The calcined products have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra, and vibrating sample magnetometry. XRD and SEM analyses confirm the formation of M-type Sr hexaferrite with platelet-like morphology when Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) precursors are calcined at 950°C in air for 2.5 h. Lattice parameters " a" and " c" values of Sr1- x Co x Nd x Fe12- x O19 reflect a very small variation after doping of Nd3+ and Co2+ ions. Average crystallite size of Sr1- x Co x Nd x Fe12- x O19 sample, calcined at 1150°C, decreased obviously after doping of Co2+ and Nd3+ ions. This is because the bond energy of Nd3+-O2- is much larger than that of Sr2+-O2-. Magnetic characterization indicates that all the samples exhibit good magnetic properties. Substitution of Sr2+ and Fe3+ ions by Nd3+ and Co2+ ions can improve the specific saturation magnetizations and remanence of Sr1- x Co x Nd x Fe12- x O19. Sr0.84Co0.16Nd0.16Fe11.84O19, calcined at 1050°C, has the highest specific saturation magnetization value (74.75 ± 0.60 emu/g), remanence (45.15 ± 0.32 emu/g), and magnetic moment (14.34 ± 0.11 μ B); SrFe12O19, calcined at 1150°C, has the highest coercivity value (4037.01 ± 42.39 Oe). These magnetic parameters make this material a promising candidate for applications such as high-density magnetic recording and microwave absorbing materials.

  1. Molecular Beam Epitaxy Integration of Magnetic Ferrites with Wide Bandgap Semiconductor 6Hydrogen-Silicon carbide for Next-generation Microwave and Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Cai, Zhuhua

    Ferrite/ferroelectric heterostructures have attracted much attention in recent years because of their unique ability to potentially enable dual magnetic and electric field tunability. The simultaneous magnetic and electric tunability in such structures can be applied in a wide range of microwave planar devices (e.g., tunable phase shifters, resonators, and delay lines) and spintronics (e.g., magnetic tunneling junctions for magnetic sensors and nonvolatile magnetic memories). However, the attempts to engineer ferrite/ferroelectric heterostructures to operate at the frequencies higher than 5 GHz are limited. Barium hexaferrite (BaM, BaFe12O19) is an ideal candidate for high frequency microwave device applications because of its strong uniaxial anisotropy (HA ˜17 kOe) and can be tuned to ferromagnetic resonance (FMR) at frequencies higher than 40 GHz with relatively small applied magnetic fields. Spinel ferrite Fe3O4 has a high Curie temperature of 858 K and is predicted to possess ˜ 100% spin polarization, which can lead to ultrahigh tunneling magnetoresistence even at room temperature. The performance of today's ferrite-based microwave communication and spintronic devices would be enhanced and next-generation monolithic microwave integrated circuit (MMIC) would be possible if ferrite/ferroelectric heterostructures can be integrated with wide band gap semiconductors (e.g., SiC or GaN), which can function in high-temperature, high-power, and high-frequency environments. The goal of this work is to use molecular beam epitaxy (MBE) to understand nucleation and film growth mechanisms needed to integrate magnetic ferrites (BaM and Fe3O4) with SiC, and subsequently understand the material chemistry and structure influences on forming functional interfaces (i.e., interfaces that enable effective ferrite/ferroelectric coupling). The study of chemistry, structure, and magnetic properties of three generations of BaM films grown by pulsed laser deposition shows a MBE-grown single crystalline MgO template promotes the c-axis alignment through formation of an oxygen bridge at the interface and minimizes the interface mixing, which enables the effective heteroepitaxy of device quality BaM on 6H-SiC. Epitaxial single crystalline BaM film with strong c-axis perpendicular alignment, high H A (16.2 kOe) and magnetization (4.1 kG) was also successfully grown by MBE for the first time on 6H-SiC. Through MBE, further study of the chemistry and structure evolution at the BaM//SiC interface suggests the 10 nm MgO template not only functions as a diffusion barrier, but also forms a spinel transition layer that is structurally similar to BaM. The high quality BaM film on SiC is compatible with MMIC and can also function as a magnetic layer in BaM/ferroelectric multiferroic heterostructures for electrostatic FMR tuning. Through MBE, single crystalline, epitaxial Fe3O4 (111) films and Fe 3O4/BaTiO3/Fe3O4 heterostructures were successfully integrated with 6H-SiC. The Fe3O4 film exhibits high strucutrual order with sharp interfaces and an easy axis in-plane magnetization with a coercivity of 200 Oe. In the Fe3O 4/BaTiO3/Fe3O4 heterostructure, the magnetoeletric coupling is demonstrated at room-temperature by an electric field induced magnetic anisotropy field change. The Fe3O4 /BaTiO3/Fe3O4 heterostructure has the potential application in multiferroic tunneling junction used in novel information storage. Understanding the ferrite growth mechanisms and interface functions through this research, is an important contribution toward the realization of a next-generation, multifunctional device.

  2. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon, E-mail: kimsg@ccs.msstate.edu

    2015-06-28

    We use first-principles total-energy calculations based on density functional theory to study the site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite SrFe{sub 12−x}Al{sub x}O{sub 19} with x = 0.5 and x = 1.0. We find that the non-magnetic Al{sup 3+} ions preferentially replace Fe{sup 3+} ions at two of the majority spin sites, 2a and 12k, eliminating their positive contribution to the total magnetization causing the saturation magnetization M{sub s} to be reduced as Al concentration x is increased. Our formation probability analysis further provides the explanation for increased magnetic anisotropy field when the fraction of Al is increased. Although Al{sup 3+}more » ions preferentially occupy the 2a sites at a low temperature, the occupation probability of the 12k site increases with the rise of the temperature. At a typical annealing temperature (>700 °C) Al{sup 3+} ions are much more likely to occupy the 12k site than the 2a site. Although this causes the magnetocrystalline anisotropy K{sub 1} to be reduced slightly, the reduction in M{sub s} is much more significant. Their combined effect causes the anisotropy field H{sub a} to increase as the fraction of Al is increased, consistent with recent experimental measurements.« less

  3. Roles of coercivity and remanent flux density of permanent magnet in interior permanent magnet synchronous motor (IPMSM) performance for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Won, Hoyun; Hong, Yang-Ki; Lee, Woncheol; Choi, Minyeong

    2018-05-01

    We used four rotor topologies of an interior permanent magnet synchronous motor (IPMSM) to investigate the effects of remanent flux density (Br) and coercivity (Hc) of permanent magnet on motor performance. Commercial strontium hexaferrite (SrFe12O19: energy product, (BH)max, of 4.62 MGOe) and Nd-Fe-B ((BH)max of 38.2 MGOe) magnets were used for the rotor designs. The same machine specifications and magnet volume keep constant, while the Hc and Br vary to calculate torque and energy efficiency with the finite-element analysis. A combination of high Hc and low Br more effectively increased maximum torque of IPMSM when the hexaferrite magnet was used. For Nd-Fe-B magnet, the same combination did not affect maximum torque, but increased energy efficiency at high speed. Therefore, the Hc value of a permanent magnet is more effective than the Br in producing high maximum torque for SrM-magnet based IPMSM and high energy efficiency at high speed for Nd-Fe-B magnet based IPMSM.

  4. Optimization principles for preparation methods and properties of fine ferrite materials

    NASA Astrophysics Data System (ADS)

    Borisova, N. M.; Golubenko, Z. V.; Kuz'micheva, T. G.; Ol'khovik, L. P.; Shabatin, V. P.

    1992-08-01

    The paper is devoted to the problems of development of fine materials based on Ba-ferrite for vertical magnetic recording in particular. Taking an analogue — BaFe 12-2 xCo xTe xO 19 — we have optimized the melt co-precipitation method and shown a new opportunity to provide chemical homogeneity of microcrystallites by means of cryotechnology. Magnetic characteristics of the magnetic tape experimental sample for digital video recording are presented. A series of principles of consistent control of ferrite powder properties are formulated and illustrated with specific developments.

  5. A promising lightweight multicomponent microwave absorber based on doped barium hexaferrite/calcium titanate/multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Afghahi, Seyyed Salman Seyyed; Jafarian, Mojtaba; Atassi, Yomen

    2016-07-01

    We present the design of a microwave absorber in the X band based on ternary nanocomposite of doped barium hexaferrite (Ba-M)/calcium titanate (CTO)/multiwall carbon nanotubes (MWCNTs) in epoxy matrix. The hydrothermal method has been used to synthesize Ba-M and CTO nanopowder. The phase identification has been investigated using XRD patterns. Scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and vector network analyzer are used to analyze the morphology of the different components and the magnetic, electromagnetic, and microwave absorption properties of the final composite absorbers, respectively. As far as we know, the design of this type of multicomponent microwave absorber has not been investigated before. The results reveal that the combination of these three components with their different loss mechanisms has a synergistic effect that enhances the attenuation properties of the final composite. The absorber of only 2.5-mm thickness and 35 wt% of loading ratio exhibits a minimum reflection loss of -43 dB at 10.2 GHz with a bandwidth of 3.6 GHz, while the corresponding absorber based on pure (Ba-M) shows a minimum reflection loss of -34 dB at 9.8 GHz with a bandwidth of 0.256 GHz and a thickness of 4 mm.

  6. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    NASA Astrophysics Data System (ADS)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  7. Influence of nickel substitution on crystal structure and magnetic properties of strontium ferrite preparation via sol-gel auto-combustion route

    NASA Astrophysics Data System (ADS)

    Roohani, Ebrahim; Arabi, Hadi; Sarhaddi, Reza

    2018-01-01

    In this research, SrFe12-xNixO19 (x = 0 - 1) hexagonal ferrites were prepared by sol-gel auto-combustion method. Effect of Ni substitution on structural, morphological and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. The XRD results confirmed that all samples with x ≤ 0.5 have single phase M-type strontium ferrite structure, whereas for the SrFe12-xNixO19 samples with x > 0.5, the spinel NiFe2O4 phase has also appeared. The lattice parameters and crystallite sizes of the powders were concluded from the XRD data and Williamson-Hall method. Magnetic analyses showed that the coercivity of powders decreased from 5672 Oe to 639 Oe while the saturation magnetization increased from 74 emu/g to 81 emu/g with nickel substitution. The results of this study suggest that the strontium hexaferrites doped with Ni are suitable for applications in high density magnetic recording media as well as microwave devices because of their promising magnetic properties.

  8. Solar Twins and the Barium Puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Arumalla B. S.; Lambert, David L., E-mail: bala@astro.as.utexas.edu

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La−Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s -process, the difficulty to replicate higher Ba abundance and normal La−Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measuredmore » the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba ii relative to La−Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba ii lines by the upper photospheric layers from where the Ba ii lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba ii lines but the change of microturbulence in the upper photosphere has only a minor affect on La−Sm abundances measured from the weak lines.« less

  9. Solar Twins and the Barium Puzzle

    NASA Astrophysics Data System (ADS)

    Reddy, Arumalla B. S.; Lambert, David L.

    2017-08-01

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La-Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s-process, the difficulty to replicate higher Ba abundance and normal La-Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measured the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba II relative to La-Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba II lines by the upper photospheric layers from where the Ba II lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba II lines but the change of microturbulence in the upper photosphere has only a minor affect on La-Sm abundances measured from the weak lines.

  10. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe 2As 2

    DOE PAGES

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; ...

    2016-02-12

    Within the BaFe 2As 2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba 1-xTl xFe 2As 2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe 2As 2 (T N = T s = 133 K) increase for x = 0.05 (T N = 138 K, T s = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidencemore » from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (T N = T s = 131 K), and this is due to charge doping. Lastly, we illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.« less

  11. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    PubMed Central

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  12. Modulation of electromagnetic and absorption properties in 18-26.5 GHz frequency range of strontium hexaferrites with doping of cobalt-zirconium

    NASA Astrophysics Data System (ADS)

    Pubby, Kunal; Narang, Sukhleen Bindra; Kaur, Prabhjyot; Chawla, S. K.

    2017-05-01

    Hexaferrite nano-particles of stoichiometric composition {{Sr}}{({{CoZr}})_x}{{F}}{{{e}}_{12 - 2x}}{{{O}}_{19}}, with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared using sol-gel auto-combustion route owing to its advantages such as low sintering temperature requirement, homogeneity and uniformity of grains. Tartaric acid as a fuel was utilized to complete the chemical reaction. The goal of this study is to analyse the effect of co-substitution of cobalt and zirconium on the electromagnetic and absorption properties of pure {{SrF}}{{{e}}_{12}}{{{O}}_{19}} hexaferrite. The properties were measured on the rectangular pellets of thickness 2.5 mm for K-frequency band using Vector Network Analyzer. The doping of Co-Zr has resulted in increase in real as well as imaginary parts of permittivity. The values of real permittivity lie in the range 3.6-7.0 for all the composition. The real part of permeability remains in range 0.7-1.6 in the studied frequency band for all the samples and shows slightly increasing trend with frequency. The maximum values of dielectric loss tangent peak (3.04) and magnetic loss tangent peak (2.34), among all the prepared compositions, have been observed for composition x = 0.2. Compositions with x = 0.6 and x = 0.0 also have high dielectric and magnetic loss peaks. Dielectric loss peaks are attributed to dielectric resonance and magnetic loss peaks are attributed to natural resonance. Experimentally determined reflection loss results show that all six compositions of prepared series have high values of absorption to propose them as single-layer absorbers in 18-26.5 GHz frequency range. The composition with x = 0.2 has maximum absorption capacity with reflection loss peak of -37.2 dB at 24.3 GHz frequency. The undoped composition also has high absorption peak (-25.46 dB), but -10 dB absorption bandwidth is minimum (2.2 GHz) out of the present series. Maximum absorption bandwidth is obtained for x = 1.0 (4.1 GHz). Other doped compositions also have high absorption bandwidth in range 3.4-3.9 GHz. The results of absorption were related to the dielectric phase angle to conclude that high electro-magnetic losses are dominant factor in deciding absorption properties of ferrites in comparison to impedance matching.

  13. SrFe12O19 based ceramics with ultra-low dielectric loss in the millimetre-wave band

    NASA Astrophysics Data System (ADS)

    Yu, Chuying; Zeng, Yang; Yang, Bin; Wylde, Richard; Donnan, Robert; Wu, Jiyue; Xu, Jie; Gao, Feng; Abrahams, Isaac; Reece, Mike; Yan, Haixue

    2018-04-01

    Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75-170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies are found at the surface on annealing, which are reflected in the bulk sample by a small change in the unit cell volume. The significant decrease in the dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through the annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.

  14. Multiferroic properties of microwave sintered PbFe12-xO19-δ

    NASA Astrophysics Data System (ADS)

    Prathap, S.; Madhuri, W.

    2017-05-01

    The effect of iron deficiency on the structural, electrical, ferroelectric and magnetic properties of nano PbFe12-xO19-δ (where x=0.0, 0.25, 0.50, 0.75, 1.0) hexaferrites prepared by sol-gel auto combustion and processed by microwaves are investigated. X-ray analysis confirms single phase magneto-plumbite phase formation. The surface morphology is studied from Field Emission Scanning Electron Microscope. Further, optical properties are investigated using Fourier Transform Infrared spectra and UV-visible spectra. AC electrical conductivity is estimated as a function of temperature and frequency in the range of room temperature (RT) to 500 °C and 100 Hz to 5MHz. AC electrical conduction analysis shows that conduction is mainly due to small polaron hopping mechanism. The variation of polarization with applied electric field exhibits hysteresis loop confirming the ferroelectric nature. The initial permeability studies with varying temperature reveals that the Curie transition temperature for the present series is around 400 °C. Variation of initial permeability with frequency ranging from 100 to 5 MHz shows a constant value (except for x=0.0) opening avenues for high frequency applications.

  15. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe 1.9Ni 0.1As 2

    DOE PAGES

    Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...

    2015-11-06

    In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe 1.9Ni 0.1As 2 near optimal superconductivity (T c = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe 1.9Ni 0.1As 2. Sincemore » this energy scale is considerably larger than the energy splitting of the d xz and d yz bands of uniaxial-strained Ba(Fe 1–xCox) 2As 2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less

  16. Electrical and thermal properties of Ca and Ni doped barium ferrite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    Ca and Ni doped M type Barium ferrite of the composition ((Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19) were prepared by the traditional sol gel auto combustion method using citric acid as a fuel. Microstructural analyses were carried out with the help of XRD and SEM. XRD analysis is the evidence of nanometer regime along with crystalline planes of hexagonal structure. It also confirms the hexagonal structure of barium ferrite even with the doping of Ca and Ni. SEM analysis is the signature of the spherical shape and surface morphology of agglomerated form of nano-powders of doped samples. The thermal properties of samples were carried out with the help of TGA. That shows the variation of weight loss of the prepared sample with the temperature.

  17. Influence of samarium substitution on the structural and magnetic properties of M-type hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yasmin, Nazia; Mirza, Misbah; Muhammad, Safdar; Zahid, Maria; Ahmad, Mukhtar; Awan, M. S.; Muhammad, Altaf

    2018-01-01

    The M-type hexagonal ferrites with chemical formula SrFe12-xSmxO19 (x = 0, 0.01, 0.02, 0.03) were synthesized via sol-gel method. We studied the effects of substitution of rare earth on the structural and magnetic temperament of M-type hexaferrites. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) strategies are employed for the systematical examination of micrographs and structures of the samples. The magnetic particularities are studied by the use of vibrating sample magnetometery. The M-H loops are used to investigate the hard magnetic behavior of all the samples. The substantial value of coercivity (>1 kOe) for all the samples shows that the particular sample is permanent magnet and reveals the hard magnetic action. It is observed that values of saturation magnetization (Mr) and remanence (Ms) decline with increasing the rare earth ions substitution. This decrease may follow spin canting and the magnetic dilution, which results in dislocation of superexchange interactions. The improvement in Hc may be because of large anisotropy of magnetocrystalline, where ion anisotropy of Fe2+ ion on the 2a site probably overriding in all hexaferrites series. The synthesized composites were useful for applications in magnetic microwave absorbing materials.

  18. X-band microwave absorbing characteristics of multicomponent composites with magnetodielectric fillers

    NASA Astrophysics Data System (ADS)

    Afghahi, Seyyed Salman Seyyed; Jafarian, Mojtaba; Stergiou, Charalampos A.

    2016-12-01

    We have studied the microwave absorbing performance in the X-band (8-12.4 GHz) of epoxy composites filled with magnetic and dielectric oxides and multiwalled carbon nanotubes. To this end, pure cobalt-substituted Ba-hexaferrite and calcium titanate were synthesized with the hydrothermal method in the form of nanosized powder. Moreover, the produced powders were characterized in regard of their structural, morphological and static magnetic properties. For the electromagnetic investigation, composite samples were also prepared with various thicknesses up to 4 mm and two basic filler compositions; namely 30 wt% of BaCoFe11O19 and 30 wt% of the mixture BaCoFe11O19/CaTiO3/carbon nanotubes. The magnetic composites show strong but narrowband reflection losses up to 27.5 dB, whereas the magnetodielectric composites with maximum losses of 15.8 dB possess wider bandwidth of operation, due to improved impedance matching. Furthermore, the characteristic frequency of the maximum losses for these quarter-wavelength absorbers was verified to be in inverse proportion to the layer thickness. These findings are supported by reflectance measurements of the samples both in waveguide and free-space.

  19. BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.

    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.

  20. Highly textured oxypnictide superconducting thin films on metal substrates

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Kurth, Fritz; Chihara, Masashi; Sumiya, Naoki; Grinenko, Vadim; Ichinose, Ataru; Tsukada, Ichiro; Hänisch, Jens; Matias, Vladimir; Hatano, Takafumi; Holzapfel, Bernhard; Ikuta, Hiroshi

    2014-10-01

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y2O3/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (Tc) of 43 K with a self-field critical current density (Jc) of 7.0 × 10 4 A / cm 2 at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher Tc as well as better crystalline quality than Co-doped BaFe2As2 coated conductors, in-field Jc of NdFeAs(O,F) was lower than that of Co-doped BaFe2As2. These results suggest that grain boundaries in oxypnictides reduce Jc significantly compared to that in Co-doped BaFe2As2 and, hence biaxial texture is necessary for high Jc.

  1. Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud

    2018-06-01

    We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.

  2. Hexaferrite multiferroics: from bulk to thick films

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  3. Spin reorientation transition and near room-temperature multiferroic properties in a W-type hexaferrite SrZn{sub 1.15}Co{sub 0.85}Fe{sub 16}O{sub 27}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y. Q.; Fang, Y.; Wang, L. Y.

    2014-03-07

    In this Letter, we investigate the magnetic and multiferroic properties of a W-type hexaferrite SrZn{sub 1.15}Co{sub 0.85}Fe{sub 16}O{sub 27}. Due to the strong planar contribution to the anisotropy provided by Co{sup 2+} ions, this hexaferrite shows a spin reorientation transition from easy-axis to easy-cone at 302 K, which is different from the onset temperature of ferroelectric polarization, 275 K. By applying magnetic field, a remarkable drop of polarization is observed, suggesting a large magnetoelectric effect in this multiferroics. The difference between spin reorientation and ferroelectric phase transition temperature as well as the origin of magnetoelectric effect are discussed.

  4. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  5. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE PAGES

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; ...

    2017-07-10

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  6. Local Structure of the Amorphous Precursor to Ba-Hexaferrite Thin Films: An Anisotropic Octahedral Fe-O Glass Network

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-10-01

    Anisotropic local structure has been observed around both the Fe and Ba ions in the amorphous precursor to Ba-hexaferrite thin films, using polarization-dependent extended x-ray-absorption fine structure. This anisotropic local structure, consisting mainly of a network of Fe-O octahedra, determines the orientation of the fast-growing basal planes during crystallization, and thus the directions of the c axes and the resulting magnetic anisotropy.

  7. Soft x-ray resonant diffraction study of magnetic structure in magnetoelectric Y-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Tanaka, Y.; Wakabayashi, Y.; Kimura, T.

    2018-05-01

    The effect of magnetic field on the magnetic structure associated with magnetoelectric properties in a Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, was investigated by utilizing the soft x-ray resonant diffraction technique. In this hexaferrite, the so-called alternating longitudinal conical phase is stabilized at room temperature and zero magnetic field. Below room temperature, however, this phase is transformed into the so-called transverse conical phase by applying an in-plane magnetic field (≈ 0.3 T). The transverse conical phase persists even after removing the magnetic field. The magnetoelectricity, which is magnetically-induced electric polarization, observed in the hexaferrite is discussed in terms of the temperature-dependent magnetic structure at zero field.

  8. Dielectric properties of Ti4+ substituted BaFe12O19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoneim, A. I.; Amer, M. A.; Meaz, T. M.; Attalah, S. S.

    2017-02-01

    Series of nanocrystalline BaTixFe12-(4/3)xO19 hexagonal ferrites, 0≤x≤1, was prepared using the chemical co-precipitation method. As-prepared samples were heated at 1200 °C for 20 h and slowly cooled to room temperature (RT). XRD studies proved that the samples have single phase M-type hexagonal nanostructure, where their grain size lies in the range of 42.4 - 61.3 nm. Their dielectric properties were studied against temperature (T) and frequency (F). DC conductivity showed increase against T, whereas AC conductivity showed increase with increasing both T and F. This proved the semiconducting behavior of the samples. Activation energies were found to lie in the range of 0.054-0.169 eV for temperature range of RT 373 K and of 0.114-0.274 eV for higher temperatures up to 473 K. Variation of the dielectric constant and AC conductivity against F revealed dispersion in all these hexagonal nanostructures, which was assigned to Maxwell-Wagner type of interfacial polarization. Variation of the dielectric loss tangent against F showed a relaxation spectrum for all samples, whereas the dielectric constant and loss tangent showed an increasing trend against T. The relative magnetic permeability μr showed an increasing trend with temperature.

  9. Selective Metal Exsolution in BaFe 2-yMy(PO 4) 2 (M = Co 2+, Ni 2+) Solid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcover, Ignacio Blazquez; Daviero-Minaud, Sylvie; David, Rénald

    2015-08-19

    The 2D-Ising ferromagnetic phase BaFe 2+ 2(PO 4) 2 shows exsolution of up to one-third of its iron content (giving BaFe 3+ 1.33(PO 4) 2) under mild oxidation conditions, leading to nanosized Fe 2O 3 exsolved clusters. Here we have prepared BaFe 2–yMy(PO 4) 2 (M = Co 2+, Ni 2+; y = 0, 0.5, 1, 1.5) solid solutions to investigate the feasibility and selectivity of metal exsolution in these mixed metallic systems. For all the compounds, after 600 °C thermal treatment in air, a complete oxidation of Fe 2+ to Fe 3+ leaves stable M 2+ ions, as verifiedmore » by 57Fe Mössbauer spectroscopy, TGA, TEM, microprobe, and XANES. Furthermore, the size of the nanometric α-Fe 2O 3clusters coating the main phase strongly depends on the y M metal concentration. For M-rich phases the iron diffusion is hampered so that a significant fraction of superparamagnetic α-Fe2O3 particles (100% for BaFe 0.5–xCo 1.5(PO 4) 2) was detected even at 78 K. Although Ni 2+and Co 2+ ions tend to block Fe diffusion, the crystal structure of BaFe 0.67Co 1(PO 4) 2demonstrates a fully ordered rearrangement of Fe 3+ and Co 2+ ions after Fe exsolution. We found that the magnetic behaviors of the Fe-depleted materials are mostly dominated by antiferromagnetic exchange, while Co 2+-rich compounds show metamagnetic transitions reminiscent of the BaCo 2(PO 4) 2 soft helicoidal magnet.« less

  10. The effect of Bi substitution on the microstructure and magnetic properties of the Sr0.4Ba0.3La0.3Fe12-xBixO19 hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Liu, Xiansong; Shao, Juxiang; Feng, Shuangjiu; Huang, Duohui; Li, Mingling

    2017-01-01

    Bi3+ ions doped M-type hexaferrites, Sr0.4Ba0.3La0.3Fe12-xBixO19 (0≤x≤0.7), were prepared by the ceramic process. The phase components of the magnetic powders were investigated by X-ray diffraction. The results show that a single magnetoplumbite phase is obtained for the magnetic powders with x from 0 to 0.2, and BiFeO3 as a second phase appears when Bi content (x)≥0.3. The micrographs of the sintered magnets were observed by a field emission scanning electron microscopy. The sintered magnets are formed of hexagonal-shaped crystals. The magnetic properties of the sintered magnets were measured at room temperature by a permanent magnetic measuring system. The remanence (Br) first increases with x from 0 to 0.2, and then decreases when Bi content (x)≥0.2. The intrinsic coercivity (Hcj) and magnetic induction coercivity (Hcb) firstly decrease quickly with x from 0 to 0.1, and then increase linearly when Bi content (x)≥0.1. The maximum energy product [(BH)max] increases with x from 0 to 0.3, and then decreases when Bi content (x)≥0.3. The ratio Hk/Hcj ratio first increases with Bi content (x) from 0 to 0.4. And the Hk/Hcj ratio decreases when x≥0.4.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jing; Chongqing University of Science and Technology, Chongqing 401331; Hu, Chenguo, E-mail: hucg@cqu.edu.cn

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g,more » coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S = 1/2.« less

  12. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molaei, M.J., E-mail: mj.molaee@merc.ac.ir; Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft; Ataie, A.

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of amore » 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites including iron nano-crystals forms by milling and heat treatment. • Shorter milling time results in higher H{sub C} of the milled and heat treated samples.« less

  13. Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency

    NASA Astrophysics Data System (ADS)

    Afzali, Arezoo; Mottaghitalab, Vahid; Seyyed Afghahi, Seyyed Salman; Jafarian, Mojtaba; Atassi, Yomen

    2017-11-01

    Current investigation focuses on the electromagnetic properties of nonwoven fabric coated with BaFe12O19 (BHF) /MWCNTs/PANi nanocomposite in X and Ku bands. The BHF/MWCNTs and BHF/MWCNTs/PANi nanocomposites are prepared using the sol gel and in-situ polymerization methods respectively. The absorbent fabric was prepared based on applying a 40 wt% of BHF/MWCNTs/PANi nanocomposite in silicon resin on nonwoven fabric via roller coating technique The X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and vector network analysis (VNA) are used to peruse microstructural, magnetic and electromagnetic features of the composite and absorber fabric respectively. The microscopic images of the fabric coated with magnetic nanocomposite shows a homogenous layer of nanoparticles on the fabric surface. The maximum reflection loss of binary nano-composite BHF/MWCNTs was measured about -28.50 dB at 11.72 GHz with 1.7 GHz bandwidth (RL < -10 dB) in X band. Moreover in Ku band, the maximum reflection loss is -29.66 dB at 15.78 GHz with 3.2 GHz bandwidths. Also the ternary nanocomposite BHF/MWCNTs/PANi exhibits a broad band absorber over a wide range of X band with a maximum reflection loss of -36.2 dB at 10.2 GHz with 1.5 GHz bandwidth and in the Ku band has arrived a maximum reflection loss of -37.65 dB at 12.84 GHz with 2.43 GHz bandwidth. This result reflects the synergistic effect of the different components with different loss mechanisms. As it is observed due to the presence of PANi in the structure of nanocomposite, the amount of absorption has increased extraordinarily. The absorber fabric exhibits a maximum reflection loss of -24.2 dB at 11.6 GHz with 4 GHz bandwidth in X band. However, in Ku band, the absorber fabric has had the maximum absorption in 16.88 GHz that is about -24.34 dB with 6 GHz bandwidth. Therefore, results indicate that the fabric samples coated represents appreciable maximum absorption value of more than 99% in X and Ku bands which can be attributed to presence of carbon and polyaniline structure in composite material.

  14. Self-assembly of a tetrahedral 58-nuclear barium vanadium oxide cluster.

    PubMed

    Kastner, Katharina; Puscher, Bianka; Streb, Carsten

    2013-01-07

    We report the synthesis and characterization of a molecular barium vanadium oxide cluster featuring high nuclearity and high symmetry. The tetrameric, 2.3 nm cluster H(5)[Ba(10)(NMP)(14)(H(2)O)(8)[V(12)O(33)](4)Br] is based on a bromide-centred, octahedral barium scaffold which is capped by four previously unknown [V(12)O(33)](6-) clusters in a tetrahedral fashion. The compound represents the largest polyoxovanadate-based heterometallic cluster known to date. The cluster is formed in organic solution and it is suggested that the bulky N-methyl-2-pyrrolidone (NMP) solvent ligands allow the isolation of this giant molecule and prevent further condensation to a solid-state metal oxide. The cluster is fully characterized using single-crystal XRD, elemental analysis, ESI mass spectrometry and other spectroscopic techniques.

  15. Multiphase magnetic systems: Measurement and simulation

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.

    2018-01-01

    Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.

  16. Gigantic terahertz magnetochromism via electromagnons in the hexaferrite magnet Ba2Mg2Fe12O22

    NASA Astrophysics Data System (ADS)

    Kida, N.; Kumakura, S.; Ishiwata, S.; Taguchi, Y.; Tokura, Y.

    2011-02-01

    Effects of temperature (6-225 K) and magnetic field (0-7 T) on the low-energy (1.2-5 meV) electrodynamics of the electromagnon, the magnetic resonance driven by the light electric field, have been investigated for a hexaferrite magnet Ba2Mg2Fe12O22 by using terahertz time-domain spectroscopy. We find the gigantic terahertz magnetochromism via electromagnons; the magnetochromic change, as defined by the difference of the absorption intensity with and without magnetic field, exceeds 500% even at 0.6 T. The results arise from the fact that the spectral intensity of the electromagnon critically depends on the magnetic structure. With changing the conical spin structures in terms of the conical angle θ from the proper screw (θ=0°) to the ferrimagnetic (θ=90°) through the conical spin-ordered phases (0°<θ<90°) by external magnetic fields, we identify the maximal magnetochromism around θ≈45°. On the contrary, there is no remarkable signature of the electromagnon in the proper screw and spin-collinear (ferrimagnetic) phases, clearly indicating the important role of the conical spin order to produce the magnetically controllable electromagnons. The possible origin of this electromagnon is argued in terms of the exchange-striction mechanism.

  17. Phase-pure eutectic CoFe2O4-Ba1-xSrxTiO3 composites prepared by floating zone melting

    NASA Astrophysics Data System (ADS)

    Breitenbach, Martin; Ebbinghaus, Stefan G.

    2018-02-01

    Composites consisting of ferrimagnetic CoFe2O4 and ferroelectric Ba1-xSrxTiO3 were grown by the floating zone technique. The influence of Sr substitution, growth rate and atmosphere during the floating zone process were investigated. The formation of the non-ferroelectric, hexagonal modification of BaTiO3 was avoided by a slight Sr substitution of 3 mol% and the formation of BaFe12O19 was suppressed using pure nitrogen as atmosphere during the floating zone melting. These synthesis parameters led to phase-pure, but electrically conductive CoFe2O4-Ba1-xSrxTiO3 composites. A thermal treatment at 973 K in air resulted in a strong increase of the electric resistivity accompanied by a decrease of the unit-cell parameters of both components indicating the healing of oxygen defects. SEM investigations revealed a variety of different geometric structures and crack-free interfaces between both phases. The low porosities observed in the micrographs correspond with densities above 90%. Magnetoelectric (ME) measurements confirmed a coupling between the ferroic orders of both phases with a hysteresis and maximum αME of 1.3 mV Oe-1 cm-1.

  18. RAPID COMMUNICATION: DC superconducting quantum interference devices fabricated using bicrystal grain boundary junctions in Co-doped BaFe2As2 epitaxial films

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2010-08-01

    DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30° misorientation angles. The 18 × 8 µm2 SQUID loop with an estimated inductance of 13 pH contained two 3 µm wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with ΔV = 1.4 µV at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 × 10 - 5 Φ0 Hz - 1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal-metal-superconductor junction nature of the bicrystal grain boundary.

  19. High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2008-04-01

    A series of Gd-substituted Ba hexaferrites with nominal formula (Ba1-xGdx)Oṡ5.25 Fe2O3 (x=0-0.30) were prepared by the chemical coprecipitation method from nitrate precursors and heating at T =800-1200°C for 2h. The samples have been examined by x-ray diffraction, vibrating-sample magnetometer, and scanning electron microscopy methods. Gd substituted samples form single phase materials with the M-type hexaferrite structure at all heating temperatures, in the range of x ⩽0.10-0.20. The saturation magnetization (at 1.8T) varies slightly with x in most cases and, for x =0.05-0.10, it increases up to 66.7Am2/kg, exceeding the value of the unsubstituted hexaferrite. A strong enhancement of the coercivity is observed for all substituted samples, with maximum values Hc=457kA/m for the single-phase x =0.10 sample annealed at 1000°C and Hc=477kA/m for the x =0.25 sample annealed at 1100°C which contains Fe2O3 and GdFeO3 impurities. As the variation of coercivity with either substitution rate (x ) or annealing temperature is not monotonic, three different factors may account for the high coercivities that are obtained: (a) an inhibition of grain growth due to the presence of Gd, (b) a possible inherent effect on magnetocrystalline anisotropy, especially for single phase samples, and (c) a microstructural effect of secondary phases.

  20. Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.

    2018-02-01

    The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.

  1. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    NASA Astrophysics Data System (ADS)

    Meshram, M. R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P. S.

    2004-05-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δTi 0.5δMn 0.1Fe (11.87-δ)O 19] and [Ba(MnTi) δFe (12-2δ)O 19] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc.

  2. Synthesis and Characterization of Polyether Adducts of Barium and Strontium Carboxylates and Their Use in the Formation of MTiO(3) Films.

    PubMed

    Wojtczak, William A.; Atanassova, Paolina; Hampden-Smith, Mark J.; Duesler, Eileen

    1996-11-20

    The synthesis, characterization, and reactivity of new polyether adducts of strontium and barium carboxylates of general composition M(O(2)CCF(3))(n)()(L) (M = Ba, L = 15-crown-5, (1); M = Ba (2), Sr (3), respectively, with L = tetraglyme are reported. The compounds were synthesized by reaction of BaCO(3) or MH(2) (M = Sr or Ba) with organic acids in the presence of the polyether ligands. These compounds have been characterized by IR and (13)C and (1)H NMR spectroscopies, elemental analyses, and thermogravimetric analysis. The species Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) and [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2), were also characterized by single-crystal X-ray diffraction. Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) crystallizes in the orthorhombic space group Cccm with cell dimensions of a = 13.949(1) Å, b = 19.376(2) Å, c = 16.029(1) Å, and Z = 8. [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2) crystallizes in the monoclinic space group C2/c with cell dimensions of a = 12.8673(12) Å, b = 16.6981(13) Å, c = 15.1191(12) Å, beta = 99.049(8) degrees, and Z = 4. Compounds 1-3 thermally decompose at high temperatures in the solid state to give MF(2). However, solutions of compounds 1-3 dissolved in ethanol with Ti(O-i-Pr)(4) give crystalline perovskite phase MTiO(3) films, or in the case of mixtures of 2 and 3, Ba(1)(-)(x)()Sr(x)()TiO(3) films below 600 degrees C when spin coated onto silicon substrates and thermally treated. The crystallinity, purity, and elemental composition of the films was determined by glancing angle X-ray diffraction and Auger electron spectroscopy.

  3. Dielectric, magnetic, and lattice dynamics properties of Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}: Comparison of ceramics and single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamba, S.; Goian, V.; Savinov, M.

    2010-05-15

    We prepared multiferroic Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at T{sub C}=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal.more » Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near T{sub C}. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D{sub 3d}{sup 5} hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.« less

  4. Influence of Mg and Ni substitution on structural, microstructural and magnetic properties of Sr2Co2-xMgx/2Nix/2Fe12O22 (Co2Y) hexaferrite

    NASA Astrophysics Data System (ADS)

    Alizad Farzin, Y.; Mirzaee, O.; Ghasemi, A.

    2014-12-01

    In this study, Mg and Ni substituted Y-type hexaferrite particles with narrow size distribution have been prepared by using a sol-gel auto combustion method. The effects on structural, microstructure and magnetic properties have been investigated by substituting Mg2+ and Ni2+ at Co2+ sites. XRD patterns showed that Y-type hexaferrite phase formation has not been affected by substituting magnesium and nickel with cobalt in the range of 0.0≤x≤0.75. Various parameters such as lattice constants, cell volume and crystallite size have been calculated based on XRD data. The morphology and size distribution of the particles have been studied using high resolution field emission scanning electron microscopy (FESEM). It was also understood that the average crystallite size of particles increased from 45 to 63 nm with an increase of x content at Co2Y compound. Magnetic properties were determined using a vibrating sample magnetometer (VSM). The magnetic results revealed that by increasing the Mg and Ni in octahedral and tetrahedral sites, the coercivity was also increased from 949 to 1066 Oe, whereas saturation magnetization and Remnant magnetization were decreased from 47.98 to 40.78 emu/g and 23.05 to 20.99 emu/g, respectively.

  5. Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured Co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes

    NASA Astrophysics Data System (ADS)

    Trommler, S.; Hänisch, J.; Matias, V.; Hühne, R.; Reich, E.; Iida, K.; Haindl, S.; Schultz, L.; Holzapfel, B.

    2012-08-01

    Optimized, biaxially textured BaFe1.8Co0.2As2 thin films with an in-plane alignment of 1.7° have been realized on high-quality IBAD-textured MgO-coated technical substrates utilizing additional Fe buffer layers. High critical current densities (Jc) were achieved, comparable to films on single crystalline MgO (Jc ≥ 1 MA cm-2 at 4 K, self-field). Transmission electron microscopy investigations reveal a small number of c-axis correlated defects introduced by the MgO template. The effect of these defects on the Jc anisotropy was determined in angular-dependent electronic transport measurements.

  6. Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe2 -xTxAs2 (T =Co,Ni )

    NASA Astrophysics Data System (ADS)

    Tam, David W.; Song, Yu; Man, Haoran; Cheung, Sky C.; Yin, Zhiping; Lu, Xingye; Wang, Weiyi; Frandsen, Benjamin A.; Liu, Lian; Gong, Zizhou; Ito, Takashi U.; Cai, Yipeng; Wilson, Murray N.; Guo, Shengli; Koshiishi, Keisuke; Tian, Wei; Hitti, Bassam; Ivanov, Alexandre; Zhao, Yang; Lynn, Jeffrey W.; Luke, Graeme M.; Berlijn, Tom; Maier, Thomas A.; Uemura, Yasutomo J.; Dai, Pengcheng

    2017-02-01

    We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe2As2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe1.9Co0.1As2 , and a 15% increase for BaFe1.915Ni0.085As2 . We also observe an increase of the AF ordering temperature (TN) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.

  7. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  8. Giant magnetoresistance due to magnetoelectric currents in Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xian; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074; Su, Zhijuan

    2014-09-15

    The giant magnetoresistance and magnetoelectric (ME) effects of Z-type hexaferrite Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} were investigated. The present experiments indicated that an induced magnetoelectric current in a transverse conical spin structure not only presented a nonlinear behavior with magnetic field and electric field but also depended upon a sweep rate of the applied magnetic field. More interestingly, the ME current induced magnetoresistance was measured, yielding a giant room temperature magnetoresistance of 32.2% measured at low magnetic fields (∼125 Oe). These results reveal great potential for emerging applications of multifunctional magnetoelectric ferrite materials.

  9. Sequential structural and antiferromagnetic transitions in BaFe2Se3 under pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Lin, Ling-Fang; Zhang, Jun-Jie; Dagotto, Elbio; Dong, Shuai

    2018-01-01

    The discovery of superconductivity in the two-leg ladder compound BaFe2S3 has established the 123-type iron chalcogenides as a novel and interesting subgroup of the iron-based superconductor family. However, in this 123 series, BaFe2Se3 is an exceptional member, with a magnetic order and crystalline structure different from all others. Recently, an exciting experiment reported the emergence of superconductivity in BaFe2Se3 at high pressure [J. Ying et al., Phys. Rev. B 95, 241109(R) (2017), 10.1103/PhysRevB.95.241109]. In this paper, we report a first-principles study of BaFe2Se3 . Our analysis unveils a variety of qualitative differences between BaFe2S3 and BaFe2Se3 , including in the latter an unexpected chain of transitions with increasing pressure. First, by gradually reducing the tilting angle of iron ladders, the crystalline structure smoothly transforms from P n m a to C m c m at ˜6 GPa. Second, the system becomes metallic at 10.4 GPa. Third, its unique ambient-pressure Block antiferromagnetic ground state is replaced by the more common stripe (so-called CX-type) antiferromagnetic order at ˜12 GPa, the same magnetic state as the 123-S ladder. This transition is found at a pressure very similar to the experimental superconducting transition. Finally, all magnetic moments vanish at 30 GPa. This reported theoretical diagram of the complete phase evolution is important because of the technical challenges to capture many physical properties in high-pressure experiments. The information obtained in our calculations suggests different characteristics for superconductivity in BaFe2Se3 and BaFe2S3 : in 123-S pairing occurs when magnetic moments vanish, while in 123-Se the transition region from Block- to CX-type magnetism appears to catalyze superconductivity. Finally, an additional superconducting dome above ˜30 GPa is expected to occur.

  10. Microstructure, magnetic and microwave absorptive behavior of doped W-type hexaferrite nanoparticles prepared by co-precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordani, Gholam Reza, E-mail: gordani@gmail.com; Mohseni, Marzieh; Ghasemi, Ali

    2016-04-15

    Highlights: • High frequency properties of substituted W-type Sr-hexaferrite. • Saturation magnetization of samples is decreased with increasing of dopants content. • The ferrite sample covers about 6 GHz of bandwidth in K{sub u} band. • The optimum substituted samples can be used as a potential magnetic loss material. • Sample contain x = 0.4 of dopants have shown greater than 90% of reflection loss. - Abstract: Substituted W-type hexaferrite nanoparticles of SrZn{sub 2−x}Co{sub x/2}Ni{sub x/2}Fe{sub 16}O{sub 27} were synthesized by a chemical co-precipitation method. The X-ray diffraction results confirmed that W-type ferrite was identified as the main phase inmore » whole samples in the range of x = 0–0.4. According to magnetic hysteresis loops, with increasing of substituted cations, saturation of magnetization increased and coercivity decreased due to crystalline site occupation of Zn with Ni and Co cations. The microwave reflection loss analysis results in the K{sub u} band (12–18 GHz) show that the highest value of reflection loss of samples was −29.11 dB at frequency of 14.57 GHz with an absorption bandwidth of more than 6 GHz by choosing reflection loss value of −10 dB as a reference. The results indicate that, the sample with appropriate amount of substituted cations hold great promise for microwave device applications.« less

  11. The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chin Mo; Na, Eunhye; Kim, Ingyu

    2015-05-07

    With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe{sub 2}O{sub 3}) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ′) and loss tangent (δ) atmore » 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.« less

  12. Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe 2 - x T x As 2 ( T = Co , Ni )

    DOE PAGES

    Tam, David W.; Song, Yu; Man, Haoran; ...

    2017-02-17

    In this paper, we use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe 2As 2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe 1.9Co 0.1As 2, and a 15% increase for BaFe 1.915Ni 0.085As 2. We also observe an increase of the AF ordering temperature (T N) of about 0.25 K/MPa in all compounds, consistent withmore » density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. Finally, the doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.« less

  13. SALT reveals the barium central star of the planetary nebula Hen 2-39

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Boffin, H. M. J.; Jones, D.; Karakas, A. I.; Köppen, J.; Tyndall, A. A.; Mohamed, S. S.; Rodríguez-Gil, P.; Santander-García, M.

    2013-12-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here, we present evidence for a barium star in the PN Hen 2-39 (PN G283.8-04.2) as one of only a few known systems. The polluted giant is very similar to that found in WeBo 1 (PN G135.6+01.0). It is a cool (Teff = 4250 ± 150 K) giant enhanced in carbon ([C/H] = 0.42 ± 0.02 dex) and barium ([Ba/Fe] = 1.50 ± 0.25 dex). A spectral type of C-R3 C24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars; however, the barium enhancement and likely binary status mean that it is more likely to be a barium star with similar properties, rather than a true member of this class. An AGB star model of initial mass 1.8 M⊙ and a relatively large carbon pocket size can reproduce the observed abundances well, provided mass is transferred in a highly conservative way from the AGB star to the polluted star (e.g. wind Roche lobe overflow). It also shows signs of chromospheric activity and photometric variability with a possible rotation period of ˜5.5 d likely induced by wind accretion. The nebula exhibits an apparent ring morphology in keeping with the other PNe around barium stars (WeBo 1 and A 70) and shows a high degree of ionization implying the presence of an invisible hot pre-WD companion that will require confirmation with UV observations. In contrast to A 70, the nebular chemical abundance pattern is consistent with non-Type I PNe, in keeping with the trend found from nebular s-process studies that non-Type I PNe are more likely to be s-process enhanced.

  14. Strain induced superconductivity in the parent compound BaFe2As2

    NASA Astrophysics Data System (ADS)

    Engelmann, J.; Grinenko, V.; Chekhonin, P.; Skrotzki, W.; Efremov, D. V.; Oswald, S.; Iida, K.; Hühne, R.; Hänisch, J.; Hoffmann, M.; Kurth, F.; Schultz, L.; Holzapfel, B.

    2013-12-01

    The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors.

  15. Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application

    NASA Astrophysics Data System (ADS)

    Ahmad, Bashir; Ashiq, Muhammad Naeem; Mumtaz, Saleem; Ali, Irshad; Najam-Ul-Haq, Muhmmad; Sadiq, Imran

    2018-04-01

    This article reports the fabrication of Ni-Ti doped derivatives of Sr2Co2Fe12-2xO22 by economical Sol-gel method. At room temperature X-ray diffraction (XRD) pattern of powder was obtained after sintering at 1050 °C. The XRD analysis revealed the formation of pure Sr-Y hexaferrite phase. It was found that the observed values of dielectric parameters decreased with increasing Ni-Ti substitution. The higher values of dielectric constants and dielectric loss factor at lower frequency were owing to surface charge polarization. In all the samples the resonance peaks were also observed. The observed room temperature DC electrical resistivity found to increase from 1.8x106 to 4.9x109 ohm cm. The observed activation energies values of the fabricated materials are found in 0.52-0.82 eV range. The decrease in dielectric parameters and increase in resistivity of the fabricated samples with substituents suggest these materials have worth application in micro-wave devices as such devices required highly resistive materials.

  16. Pressure-induced Polarization Reversal in Z-type Hexaferrite Single Crystal

    NASA Astrophysics Data System (ADS)

    Jeon, Byung-Gu; Chun, Sae Hwan; Kim, Kee Hoon

    2012-02-01

    Multiferroic materials with a gigantic magnetoelectric (ME) coupling at room temperature have been searched for applications to novel devices. Recently, large direct and converse ME effects were realized at room temperature in the so-called Z-type hexaferrite (Ba,Sr)3Co2Fe24O41 single crystals [1,2]. To obtain a new control parameter for realizing a sensitive ME tuning, we studied ME properties of the crystals under uniaxial pressure. Upon applying a tiny uniaxial pressure of about 0.6 GPa, magnetic field-driven electric polarization reversal and anomaly in a M-H loop start to appear at 10 K and gradually disappear at higher temperature above 130 K. By comparing those results with longitudinal magnetostriction at ambient pressure, we propose the pressure-dependent variations of transverse conical spin configuration as well as its domain structure under small magnetic field bias, and point out the possibility of having two different physical origins of the ME coupling in this system. [1] Y. Kitagawa et al., Nat. Mater. 9, 797 (2010) [2] S. H. Chun et al., submitted.

  17. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721...

  18. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721...

  19. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  20. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  1. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  2. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.

    PubMed

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Influence of Sn-Mg co-substitution on the microstructural and magnetic characteristics of M-type SrCaLa hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Huang, Duohui; Shao, Juxiang; Tang, Jin; Ur Rehman, Khalid Mehmood; Wu, Zhen

    2018-04-01

    Sn-Mg co-substituted M-type SrCaLa hexaferrites Sr0.5Ca0.2La0.3Fe12.0-2x(SnMg)xO19 (0.0 ≤ x ≤ 0.5) have been synthesized by ball milling and calcining. The results of X-ray diffraction show that a single magnetoplumbite phase is exhibited in all the samples and no impurity phase is observed in the structure. Lattice constants (c and a) increase with increasing Sn-Mg content (x) from 0.0 to 0.5. Platelet like structure exhibited by FE-SEM micrographs confirms the hexagonal structure of the synthesized samples. The saturation magnetization (Ms) first increases with increasing SnMg content (x) from 0.0 to 0.1, and then decreases when Sn-Mg content (x) ≥ 0.1. The remanent magnetization (Mr), Mr/Ms ratio, coercivity (Hc), magnetic anisotropy field (Ha) and first anisotropy constant (K1) decrease with increasing Sn-Mg content (x) from 0.0 to 0.5.

  4. Synthesis and magnetic characterization of Sr-based Ni{sub 2}X-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamishima, K., E-mail: kamisima@fms.saitama-u.ac.jp; Mashiko, T.; Kakizaki, K.

    2015-10-15

    We have investigated the synthesis conditions, and the magnetic properties of the Sr{sub 2}Ni{sub 2}X-type hexagonal ferrite, Sr{sub 2}Ni{sub 2}Fe{sub 28}O{sub 46}. The Sr{sub 2}Ni{sub 2}X-type hexaferrite was synthesized at 1240{sup ∘}C. The spontaneous magnetization at 5 K was 44.2 μ{sub B}/f.u., suggesting that most of the Ni{sup 2+} ions are at the up-spin octahedral sites in the spinel-structure blocks within the model of a Néel-type collinear ferrimagnetic structure. The Curie temperature of the Sr{sub 2}Ni{sub 2}X-type hexaferrite was estimated to be T{sub C}[Sr{sub 2}Ni{sub 2}X] = 472{sup ∘}C. This is consistent with the difference of the block stacking structuresmore » of SrM-type, Sr{sub 2}Ni{sub 2}X-type, SrNi{sub 2}W-type, and nickel spinel ferrites.« less

  5. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  6. Radiation losses in the microwave Ku band in magneto-electric nanocomposites

    PubMed Central

    Kaur, Talwinder; Kumar, Sachin; Sharma, Jyoti

    2015-01-01

    Summary A study on radiation losses in conducting polymer nanocomposites, namely La–Co-substituted barium hexaferrite and polyaniline, is presented. The study was performed by means of a vector network analyser, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy and a vibrating sample magnetometer. It is found that the maximum loss occurs at 17.9 GHz (−23.10 dB, 99% loss) which is due to the composition of a conducting polymer and a suitable magnetic material. A significant role of polyaniline has been observed in ESR. The influence of the magnetic properties on the radiation losses is explained. Further studies revealed that the prepared material is a nanocomposite. FTIR spectra show the presence of expected chemical structures such as C–H bonds in a ring system at 1512 cm−1. PMID:26425421

  7. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices

    PubMed Central

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G.

    2017-01-01

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range. PMID:28276492

  8. Epitaxially grown BaM hexaferrite films having uniaxial axis in the film plane for self-biased devices.

    PubMed

    Zhang, Xiaozhi; Meng, Siqin; Song, Dongsheng; Zhang, Yao; Yue, Zhenxing; Harris, Vincent G

    2017-03-09

    Barium hexaferrite (BaM) films with in-plane c-axis orientation are promising and technically important materials for self-biased magnetic microwave devices. In this work, highly oriented BaM films with different thickness and an in-plane easy axis (c-axis) of magnetization were grown on a-plane single-crystal sapphire substrates by direct current magnetron sputtering. A procedure involving seed layers, layer-by-layer annealing was adopted to reduce the substrate-induced strains and allow for the growth of thick (~3.44 μm) films. The epitaxial growth of the BaM film on sapphire was revealed by high-resolution transmission electron microscopy with dislocations being observed at the film-substrate interface. The orientation was also verified by X-ray diffraction and more notably, polarized Raman scattering. The magnetic properties and ferromagnetic resonant frequencies were experimentally characterized by a vibrating sample magnetometry and a frequency-swept ferromagnetic resonant flip-chip technique, respectively. The micron-thick BaM films exhibited a large remanence ratio of 0.92 along in-plane easy axis and a small one of 0.09 for the in-plane hard axis loop measurement. The FMR frequency was 50.3 GHz at zero field and reached 57.9 GHz under a magnetic field of 3 kOe, indicating that the epitaxial BaM films with strong self-biased behaviors have good electromagnetic properties in millimeter-wave range.

  9. Effectiveness of therapeutic barium enema for diverticular hemorrhage

    PubMed Central

    Matsuura, Mizue; Inamori, Masahiko; Nakajima, Atsushi; Komiya, Yasuhiko; Inoh, Yumi; Kawasima, Keigo; Naitoh, Mai; Fujita, Yuji; Eduka, Akiko; Kanazawa, Noriyoshi; Uchiyama, Shiori; Tani, Rie; Kawana, Kennichi; Ohtani, Setsuya; Nagase, Hajime

    2015-01-01

    AIM: To evaluate the effectiveness of barium impaction therapy for patients with colonic diverticular bleeding. METHODS: We reviewed the clinical charts of patients in whom therapeutic barium enema was performed for the control of diverticular bleeding between August 2010 and March 2012 at Yokohama Rosai Hospital. Twenty patients were included in the review, consisting of 14 men and 6 women. The median age of the patients was 73.5 years. The duration of the follow-up period ranged from 1 to 19 mo (median: 9.8 mo). Among the 20 patients were 11 patients who required the procedure for re-bleeding during hospitalization, 6 patients who required it for re-bleeding that developed after the patient left the hospital, and 3 patients who required the procedure for the prevention of re-bleeding. Barium (concentration: 150 w%/v%) was administered per the rectum, and the leading edge of the contrast medium was followed up to the cecum by fluoroscopy. After confirmation that the ascending colon and cecum were filled with barium, the enema tube was withdrawn, and the patient’s position was changed every 20 min for 3 h. RESULTS: Twelve patients remained free of re-bleeding during the follow-up period (range: 1-19 mo) after the therapeutic barium enema, including 9 men and 3 women with a median age of 72.0 years. Re-bleeding occurred in 8 patients including 5 men and 3 women with a median age of 68.5 years: 4 developed early re-bleeding, defined as re-bleeding that occurs within one week after the procedure, and the remaining 4 developed late re-bleeding. The DFI (disease-free interval) decreased 0.4 for 12 mo. Only one patient developed a complication from therapeutic barium enema (colonic perforation). CONCLUSION: Therapeutic barium enema is effective for the control of diverticular hemorrhage in cases where the active bleeding site cannot be identified by colonoscopy. PMID:25987779

  10. A fresnoite-structure-related mixed valent titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl: A flux crystal growth route to Ti(III) containing oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysinghe, Dileka; Smith, Mark D.; Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu

    Single crystals of mixed valent barium titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were grown in a high temperature molten chloride flux involving an in situ reduction step. The fresnoite structure related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} crystallizes in the tetragonal space group P4/mbm with lattice parameters of a=8.6717(2) Å, c=18.6492(5) Å. The title compound exhibits a 3D structure consisting of 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} groups and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} groups that are linked via barium atoms. The in situmore » reduction of Ti(IV) to Ti(III) is achieved via the addition of metallic Mg to the flux to function as the reducing agent. The temperature dependence of the magnetic susceptibility shows simple paramagnetism above 100 K. There is a discontinuity in the susceptibility data below 100 K, which might be due to a structural change that takes place resulting in charge ordering. - Graphical abstract: The fresnoite structure related novel reduced barium titanium chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were synthesized via flux method. An in situ reduction of Ti(IV) to Ti(III) achieved using Mg metal. The 3D structure consists 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connected via barium atoms. Compound shows simple paramagnetism above 100 K. - Highlights: • The fresnoite related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} were grown via molten flux method. • The in situ reduction of Ti(IV) to Ti(III) is achieved using metallic Mg. • 2D layers of Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connect via Ba atoms. • The magnetic susceptibility shows simple paramagnetism above 100 K.« less

  11. Investigation of the strain-sensitive superconducting transition of BaFe1.8Co0.2As2 thin films utilizing piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Trommler, S.; Hänisch, J.; Iida, K.; Kurth, F.; Schultz, L.; Holzapfel, B.; Hühne, R.

    2014-05-01

    The preparation of biaxially textured BaFe1.8Co0.2As2 thin films has been optimized on MgO single crystals and transfered to piezoelectric (001) Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. By utilizing the inverse piezoelectric effect the lattice parameter of these substrates can be controlled applying an electric field, leading to a induction of biaxial strain into the superconducting layer. High electric fields were used to achieve a total strain of up to 0.05% at low temperatures. A sharpening of the resistive transition and a shift of about 0.6 K to higher temperatures was found at a compressive strain of 0.035%.

  12. A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications

    NASA Astrophysics Data System (ADS)

    Sardarian, Pouria; Naffakh-Moosavy, Homam; Afghahi, Seyyed Salman Seyyed

    2017-11-01

    Developments in electronic industries for telecommunications and demands for decreasing electromagnetic radiation pollution result in developing researches on microwave absorption materials. The target of the present study is to design materials with high absorption properties for electromagnetic waves in the 12-18 GHz range. Thus, Fe3O4 magnetic nanoparticles were syntheses through chemical co-precipitation reinforced by ultrasonic. Then, BaTiO3 nanocrystalline powder was synthesized by the hydrothermal sol-gel method under atmospheric oxygen. Next, nano-particles of barium titanate were deposited on the multi-walled carbon nanotubes (BaTiO3@CNT). It was concluded that a magnetic-dielectric nanocomposite has superior microwave absorption properties in comparison to individual magnetic or dielectric absorbers. Also, in order to obtain an optimum absorption in a wide frequency band, dielectric-CNT nanocomposites represents higher properties than magnetic-CNT composites. It is concluded that composites with more magnetic percentage showed better absorption in low frequency band (12 GHz), whereas composites with more dielectric percentage exhibited superior absorption for high frequency band (18 GHz). 80-93% absorption was obtained in the frequency range of 16.7-18 GHz by composite 40M.20F.40C (40% paraffin, 20% magnetite, 40% multi-walled carbon nanotubes). Also, composite 40M.20B.40B@C (40% paraffin, 20% barium titanate, 40% barium titanate deposited on multi-walled carbon nanotubes) showed the absorption of 80-90%.

  13. Effects of Al substitution and thermal annealing on magnetoelectric Ba0.5Sr1.5Zn2Fe12O22 investigated by the enhancement factor of 57Fe nuclear magnetic resonance.

    PubMed

    Kwon, Sangil; Kang, Byeongki; Kim, Changsoo; Jo, Euna; Lee, Soonchil; Chai, Yi Sheng; Chun, Sae Hwan; Kim, Kee Hoon

    2014-04-09

    The magnetoelectric properties of hexaferrite Ba0.5Sr1.5Zn2Fe12O22 are significantly improved by Al substitution and thermal annealing. Measuring the enhancement factor of 57Fe NMR, we found direct microscopic evidence that the magnetic moments of the L and S blocks are rotated by a magnetic field in such a way as to increase the net magnetic moment of a magnetic unit, even after the field is removed. Al substitution makes magnetoelectric property arise easily by suppressing the easy-plane anisotropy. The effect of thermal annealing is to stabilize the multiferroic state by reducing the number of pinning sites and the electron spin fluctuation. The transverse conic structure gradually changes to the alternating longitudinal conic structure where spins fluctuate more severely.

  14. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    PubMed Central

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-01-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices. PMID:25835175

  15. Multi-susceptibile single-phased ceramics with both considerable magnetic and dielectric properties by selectively doping.

    PubMed

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-04-02

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe(3+), such as Ti(4+), Nb(5+) and Zr(4+), into BaFe12O19. In terms of charge balance, Fe(3+)/Fe(2+) pair dipoles are produced through the substitution of Fe(3+) by high-valenced ions. The electron hopping between Fe(3+) and Fe(2+) ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.

  16. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    NASA Astrophysics Data System (ADS)

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-04-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.

  17. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2015-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particlemore » sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.« less

  18. Electron diffraction covering a wide angular range from Bragg diffraction to small-angle diffraction.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Mori, Shigeo

    2018-04-09

    We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.

  19. Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported.

  20. Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications

    PubMed Central

    Safronov, Alexander P.; Mikhnevich, Ekaterina A.; Blyakhman, Felix A.; Sklyar, Tatyana F.; Larrañaga Varga, Aitor; Medvedev, Anatoly I.; Fernández Armas, Sergio

    2018-01-01

    Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a “soft matter.” this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. The basic composition of the FG comprised the polymeric network of polyacrylamide, synthesized by free radical polymerization of monomeric acrylamide (AAm) in water solution at three levels of concentration (1.1 M, 0.85 M and 0.58 M) to provide the FG with varying elasticity. To improve FG biocompatibility and to prevent the precipitation of the particles, polysaccharide thickeners—guar gum or xanthan gum were used. The content of magnetic particles in FG varied up to 5.2 wt % depending on the FG composition. The mechanical properties of FG and their deformation in a uniform magnetic field were comparatively analyzed. FG filled with strontium hexaferrite particles have larger Young’s modulus value than FG filled with magnetite particles, most likely due to the specific features of the adhesion of the network’s polymeric subchains on the surface of the particles. FG networks with xanthan are stronger and have higher modulus than the FG with guar. FG based on magnetite, contract in a magnetic field 0.42 T, whereas some FG based on strontium hexaferrite swell. Weak FG with the lowest concentration of AAm shows a much stronger response to a field, as the concentration of AAm governs the Young’s modulus of ferrogel. A small magnetic field magnetoimpedance sensor prototype with Co68.6Fe3.9Mo3.0Si12.0B12.5 rapidly quenched amorphous ribbon based element was designed aiming to develop a sensor working with a disposable stripe sensitive element. The proposed protocol allowed measurements of the concentration dependence of magnetic particles in gels using magnetoimpedance responses in the presence of magnetite and strontium hexaferrite ferrogels with xanthan. We have discussed the importance of magnetic history for the detection process and demonstrated the importance of remnant magnetization in the case of the gels with large magnetic particles. PMID:29337918

  1. Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites

    NASA Astrophysics Data System (ADS)

    Li, Qifan; Chen, Yajie; Harris, Vincent G.

    2018-05-01

    This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.

  2. Characterization of Barium Borate Frameworks Using Raman Spectroscopy.

    PubMed

    Gharavi-Naeini, Jafar; Yoo, Kyung W; Stump, Nathan A

    2018-04-01

    Systematic micro-Raman scattering investigations have been carried out on Sm +2 doped 2(BaO)-n(B 2 O 3 ) matrices for n = 4, 5, 8, and 2(BaO)-(Na 2 O)-9(B 2 O 3 ) using the 364 nm excitation of an Ar + laser. The Raman results have been compared with the known structures of barium tetraborate, barium pentaborate, barium octaborate, and barium sodium nonaborate. An excellent correlation has been found between the BO 4 /BO 3 composition ratios for each product and intensity ratios of the designated BO 4 and BO 3 Raman peaks. Furthermore, the Raman frequencies of both BO 4 and BO 3 groups undergo a systematic blueshift as n increases from four to nine. The shift results from a decrease of the B-O bond lengths for both BO 4 and BO 3 groups as the samples transition from the tetraborate to nonaborate structures. Linear relations (with negative slopes) have been determined between the measured Raman frequencies and B-O bond lengths in the frameworks.

  3. The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Arabi, H.; Wang, X. L.

    2017-09-01

    Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.

  4. Usefulness of high-density barium for detection of leaks after esophagogastrectomy, total gastrectomy, and total laryngectomy.

    PubMed

    Swanson, Jonathan O; Levine, Marc S; Redfern, Regina O; Rubesin, Stephen E

    2003-08-01

    The purpose of this study was to determine the usefulness of a high-density (250% weight/volume) barium compared with a water-soluble contrast agent for the detection of esophageal leaks in patients who had undergone esophagogastrectomy, total gastrectomy, or total laryngectomy. A search of our radiology database from 1998 to 2001 revealed 46 eligible radiographic studies performed using a water-soluble contrast agent alone or a water-soluble contrast agent followed by barium that showed leaks in patients who had undergone esophagogastrectomy, total gastrectomy, or total laryngectomy. The images were reviewed to determine the morphology of the leaks (i.e., blind-ending tracks, sealed-off collections, or free extravasation of contrast material). Medical records were also reviewed to determine whether detection of the leaks seen on the radiographic studies affected patient management. Of the 46 leaks seen on radiographic studies, 23 (50%) were detected with a water-soluble contrast agent and 23 (50%) were detected only with high-density barium. Of the 23 leaks visualized with water-soluble contrast media, six (26%) were characterized by blind-ending tracks, 14 (61%) by sealed-off collections, and three (13%) by free extravasation of contrast material into the mediastinum or neck. Of the 23 leaks visualized only with high-density barium, 19 (83%) were characterized by blind-ending tracks and four (17%) by sealed-off collections. Thus, leaks detected only on images obtained with high-density barium were significantly more likely to be characterized by blind-ending tracks than those detected on images obtained with a water-soluble contrast agent (p = 0.0007). Of the 33 patients with clinical follow-up, the findings seen on these imaging studies affected management in 12 (86%) of 14 patients with leaks depicted by water-soluble contrast media and in 10 (53%) of 19 with leaks depicted only by high-density barium. Our findings support the use of high-density barium as part of the routine postoperative radiographic examination when no leaks are detected on images obtained with a water-soluble contrast agent.

  5. Structural and magnetic properties and superconductivity in Ba(Fe 1-xTM x) 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaler, Alexander

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe 2As 2. We grew four series of Ba(Fe 1-xTM 2) 2As 2 (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe 1-xCr x) 2As 2 and Ba(Fe 1-xCo x) 2As 2 to heat treatment to explore what changes might be induced.

  6. Transport properties and pinning analysis for Co-doped BaFe2As2 thin films on metal tapes

    NASA Astrophysics Data System (ADS)

    Xu, Zhongtang; Yuan, Pusheng; Fan, Fan; Chen, Yimin; Ma, Yanwei

    2018-05-01

    We report on the transport properties and pinning analysis of BaFe1.84Co0.16As2 (Ba122:Co) thin films on metal tapes by pulsed laser deposition. The thin films exhibit a large in-plane misorientation of 5.6°, close to that of the buffer layer SrTiO3 (5.9°). Activation energy U 0(H) analysis reveals a power law relationship with field, having three different exponents at different field regions, indicative of variation from single-vortex pinning to a collective flux creep regime. The Ba122:Co coated conductors present {{T}{{c}}}{{onset}} = 20.2 K and {{T}{{c}}}{{zero}} = 19.0 K along with a self-field J c of 1.14 MA cm‑2 and an in-field J c as high as 0.98 and 0.86 MA cm‑2 up to 9 T at 4.2 K for both major crystallographic directions of the applied field, promising for high field applications. Pinning force analysis indicates a significant enhancement compared with similar Ba122:Co coated conductors. By using the anisotropic scaling approach, intrinsic pinning associated with coupling between superconducting blocks can be identified as the pinning source in the vicinity of H//ab, while for H//c random point defects are likely to play a role but correlated defects start to be active at high temperatures.

  7. Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics

    NASA Astrophysics Data System (ADS)

    Xie, Rong-Jun; Akimune, Yoshio; Wang, Ruiping; Hirosaki, Naoto; Nishimura, Toshiyuki

    2003-12-01

    Highly dense piezoelectric ceramics of tungsten bronze-type (Sr1.9Ca0.1)1-0.5xBaxNaNb5O15 (where x=0.1--0.8) were prepared by spark plasma sintering. The crystallographic parameters, dielectric behaviors and piezoelectric properties of the sintered ceramics were investigated, and the effects of the Ba substitution on these electrical properties were discussed. The structural analysis and the electrical property measurements indicate a morphotropic phase boundary (MPB)-like phenomenon at x=0.4--0.5. In all compositions, a diffuse phase transition and a relaxor behavior are observed. The electrical properties are found to be crystallographically dependent.

  8. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  9. Two Barium Gold Iodates: Syntheses, Structures, and Properties of Polar BaAu(IO3)5 and Nonpolar HBa4Au(IO3)12 Materials.

    PubMed

    Yang, Bing-Ping; Hu, Chun-Li; Mao, Fei-Fei; Xu, Xiang; Mao, Jiang-Gao

    2017-06-19

    Two new barium gold iodates, namely, BaAu(IO 3 ) 5 and HBa 4 Au(IO 3 ) 12 , have been prepared. BaAu(IO 3 ) 5 crystallizes in the polar space group Pca2 1 , whereas HBa 4 Au(IO 3 ) 12 crystallizes in the centrosymmetric space group P2 1 /c. BaAu(IO 3 ) 5 consists of unique polar [Au(IO 3 ) 4 ] - anions whose four iodate groups are located at both sides of the AuO 4 plane and the polarity points in the [001̅] direction. BaAu(IO 3 ) 5 displays strong second-harmonic-generation (SHG) effects about 0.6KTiOPO 4 (KTP) and is phase-matchable. Thermal properties, optical spectra analyses, and theoretical calculations are also reported.

  10. Preparation and characterization of antimony barium composite oxide photocatalysts

    NASA Astrophysics Data System (ADS)

    Han, X. P.; Yao, B. H.; Pan, Q. H.; Pen, C.; Zhang, C. L.

    2018-01-01

    In this paper, two kinds of antimony barium composite oxide photocatalysts have been prepared by two methods and characterized by XRD and SEM. The photocatalytic activity was evaluated by a photocatalytic reactor and an ultraviolet spectrophotometer. The results showed that-BaSb2O5•4H2O, BaSb2O6 two kinds of antimony barium composite oxide photocatalysts were successfully prepared in this experiment and they showed good photocatalytic properties. In addition, BaSb2O6 morphology showed more regular, microstructure and better catalytic performance.

  11. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  12. Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.; Aerts-Bijma, Anita T.; Bohlke, John Karl; Gehre, Matthias; Geilmann, Heike; Groning, Manfred; Jansen, Henk G.; Meijer, Harro A. J.; Mroczkowski, Stanley J.; Qi, Haiping; Soergel, Karin; Stuart-Williams, Hilary; Weise, Stephan M.; Werner, Roland A.

    2009-01-01

    Internationally distributed organic and inorganic oxygen isotopic reference materials have been calibrated by six laboratories carrying out more than 5300 measurements using a variety of high-temperature conversion techniques (HTC) in an evaluation sponsored by the International Union of Pure and Applied Chemistry (IUPAC). To aid in the calibration of these reference materials, which span more than 125‰, an artificially enriched reference water (δ18O of +78.91‰) and two barium sulfates (one depleted and one enriched in 18O) were prepared and calibrated relative to VSMOW2 and SLAP reference waters. These materials were used to calibrate the other isotopic reference materials in this study, which yielded:Reference materialδ18O and estimated combined uncertainty IAEA-602 benzoic acid+71.28 ± 0.36‰USGS35 sodium nitrate+56.81 ± 0.31‰IAEA-NO-3 potassium nitrate+25.32 ± 0.29‰IAEA-601 benzoic acid+23.14 ± 0.19‰IAEA-SO-5 barium sulfate+12.13 ± 0.33‰NBS 127 barium sulfate+8.59 ± 0.26‰VSMOW2 water0‰IAEA-600 caffeine−3.48 ± 0.53‰IAEA-SO-6 barium sulfate−11.35 ± 0.31‰USGS34 potassium nitrate−27.78 ± 0.37‰SLAP water−55.5‰The seemingly large estimated combined uncertainties arise from differences in instrumentation and methodology and difficulty in accounting for all measurement bias. They are composed of the 3-fold standard errors directly calculated from the measurements and provision for systematic errors discussed in this paper. A primary conclusion of this study is that nitrate samples analyzed for δ18O should be analyzed with internationally distributed isotopic nitrates, and likewise for sulfates and organics. Authors reporting relative differences of oxygen-isotope ratios (δ18O) of nitrates, sulfates, or organic material should explicitly state in their reports the δ18O values of two or more internationally distributed nitrates (USGS34, IAEA-NO-3, and USGS35), sulfates (IAEA-SO-5, IAEA-SO-6, and NBS 127), or organic material (IAEA-601 benzoic acid, IAEA-602 benzoic acid, and IAEA-600 caffeine), as appropriate to the material being analyzed, had these reference materials been analyzed with unknowns. This procedure ensures that readers will be able to normalize the δ18O values at a later time should it become necessary.The high-temperature reduction technique for analyzing δ18O and δ2H is not as widely applicable as the well-established combustion technique for carbon and nitrogen stable isotope determination. To obtain the most reliable stable isotope data, materials should be treated in an identical fashion; within the same sequence of analyses, samples should be compared with working reference materials that are as similar in nature and in isotopic composition as feasible.

  13. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  14. Magnetic study of M-type Ru–Ti doped strontium hexaferrite nanocrystalline particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsmadi, A. M.; Bsoul, I.; Mahmood, S. H.

    2015-11-01

    We carried out a systematic study on the effect of the substitution of Ti2+ and Ru4+ ions for Fe3+ ions on the structural and magnetic properties of the strontium ferrite SrFe12-2xRuxTixO19 nanoparticles with (0 <= x <= 0: 3), using x-ray diffraction, Quantum Design PPMS-9 magnetometry, and electrical resistivity. A clear irreversibility between the zero-field-cooled and field-cooled curves was observed below room temperature and the zero-field-cooled magnetization curves displayed a broad peak at a temperature TM. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showedmore » some kind of a transition from insulator to perfect insulator around TM. The high-temperature magnetization measurements exhibited sharp peaks just below T-c indicating a superparamagnetic behavior. With Ru-Ti substitution, the saturation magnetization at 5 K showed small variations were it slightly increased with increasing x up to 0.2, and then decrease for x = 0.3, while the coercivity decreased monotonically, recording a reduction of about 78% at x = 0.3. These results were discussed in light of the cationic distributions based on the results of the structural refinements.« less

  15. Growth and high rate reactive ion etching of epitaxially grown barium hexaferrite films on single crystal silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui

    Ferrites are an invaluable group of insulating magnetic materials used for high frequency microwave applications in such passive electronic devices as isolators, phase shifters, and circulators. Because of their high permeability, non-reciprocal electromagnetic properties, and low eddy current losses, there are no other materials that serve such a broad range of applications. Until recently, they have been widely employed in bulk form, with little success in thin film-based applications in commercial or military microwave technologies. In today's technology, emerging electronic systems, such as high frequency, high power wireless and satellite communications (GPS, Bluetooth, WLAN, commercial radar, etc) thin film materials are in high demand. It is widely recognized that as high frequency devices shift to microwave frequencies the integration of passive devices with semiconductor electronics holds significant advantages in the realization of miniaturization, broader bandwidths, higher performance, speed, power and lower production costs. Thus, the primary objective of this thesis is to explore the integration of ferrite films with wide band gap semiconductor substrates for the realization of monolithic integrated circuits (MICs). This thesis focuses on two key steps for the integration of barium hexaferrite (Ba M-type or BaM) devices on semiconductor substrates. First, the development of high crystal quality ferrite film growth via pulsed laser deposition on wide band gap silicon carbide semiconductor substrates, and second, the effective patterning of BaM films using dry etching techniques. To address part one, BaM films were deposited on 6H silicon carbide (0001) substrates by Pulsed Laser Deposition. X-ray diffraction showed strong crystallographic alignment while pole figures exhibited reflections consistent with epitaxial growth. After optimized annealing, BaM films have a perpendicular magnetic anisotropy field of 16,900 Oe, magnetization (4piMs) of 4.4 kG, and ferromagnetic resonance peak-to-peak derivative linewidth at 53 GHz of 96 Oe. This combination of properties qualifies these films for microwave device applications. This marks the first growth of a microwave ferrite on SiC substrates and offers a new approach in the design and development of mu-wave and mm-wave monolithic integrated circuits. In part two, high-rate reactive ion etching using CHF3/SF6 gas mixtures was successfully demonstrated on BaM films, resulting in high aspect profile features of less than 50 nm in lateral dimension. These demonstrations enable the future integration of ferrites into MIC devices and technologies.

  16. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J.

    2017-12-01

    We present a critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics. First, the essential crystallography, thermodynamic relations, and concepts necessary to understand piezoelectricity and ferroelectricity in barium titanate are discussed. Strategies to optimize piezoelectric properties through microstructure control and chemical modification are also introduced. Thereafter, we systematically review the synthesis, microstructure, and phase diagrams of barium titanate-based piezoelectrics and provide a detailed compilation of their functional and mechanical properties. The most salient materials treated include the (Ba,Ca)(Zr,Ti)O3, (Ba,Ca)(Sn,Ti)O3, and (Ba,Ca)(Hf,Ti)O3 solid solution systems. The technological relevance of barium titanate-based piezoelectrics is also discussed and some potential market indicators are outlined. Finally, perspectives on productive lines of future research and promising areas for the applications of these materials are presented.

  17. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011.

    PubMed

    Shao, Wentao; Liu, Qian; He, Xiaowei; Liu, Hui; Gu, Aihua; Jiang, Zhaoyan

    2017-04-01

    Global prevalence of obesity has been increasing dramatically in all ages. Although traditional causes for obesity development have been studied widely, it is unclear whether environmental exposure of substances such as trace heavy metals affects obesity development among children and adolescents so far. Data from the National Health and Nutrition Examination Survey (1999-2011) were retrieved, and 6602 US children were analyzed in this study. Urinary level of nine trace heavy metals, including barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten, was analyzed for their association with the prevalence of obesity among children aged 6-19 years. Multiple logistic regression was performed to assess the associations adjusted for age, race/ethnicity, gender, urinary creatinine, PIR, serum cotinine, and television, video game, and computer usage. A remarkable association was found between barium exposure (OR 1.43; 95% CI 1.09-1.88; P < 0.001) and obesity in children aged 6-19 years. Negative association was observed between cadmium (OR 0.46; 95% CI 0.33-0.64; P < 0.001), cobalt (OR 0.56; 95% CI: 0.41-0.76; P < 0.001), and lead (OR 0.57; 95% CI 0.41-0.78; P = 0.018), and obesity. All the negative associations were stronger in the 6-12 years group than in the 13-19 years group. The present study demonstrated that barium might increase the occurrence of obesity, but cadmium, cobalt, and lead caused weight loss among children. The results imply that trace heavy metals may represent critical risk factors for the development of obesity, especially in the area that the state of metal contamination is serious.

  18. Effect of ph Value and Calcination Temperature on Structure and Magnetic Properties of Strontium Hexaferrite Thin Film

    NASA Astrophysics Data System (ADS)

    Shanaghi, A.

    2012-02-01

    Strontium hexaferrite was widely used in the fabrication of commercial permanent magnets and certain microwave devices. In this study, the strontium hexaferrite nanoparticle coatings were prepared by sol-gel method and using spin coating process on silicon substrate, then the effect of pH value, such as 5, 7 and 9, and calcination temperatures, such as 600°C, 800°C, and 1000°C, on structural and magnetic properties of strontium hexaferrite thin films were investigated by XRD, SEM and VSM measurements. The maximum saturation magnetization value of 57.43 emu/g and coercivity value of 3908 Oe were achieved for the thin film with crystallite size approximately 41 nm, prepared at pH value of 7 and calcinations temperature of 800°C.

  19. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){submore » 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.« less

  20. Anomalous dielectrophoretic behaviour of barium titanate microparticles in concentrated solutions of ampholytes

    NASA Astrophysics Data System (ADS)

    Flores-Rodriguez, N.; Markx, G. H.

    2006-08-01

    The dielectrophoretic behaviour of barium titanate (BaTiO3) particles with a mean grain size of 3 µm was studied. Suspensions of the powdered ceramic in the concentration range 0.01-1.60% (w/v) were prepared in dilute aqueous solutions of NaCl and concentrated aqueous solutions of the amphoteric molecules HEPES (N-[2-hydroxyethyl] piperazine-N'4-[2-ethanesulfonic acid] and EACA (ɛ -aminocaproic acid). When suspended in water without ampholytes, the particles showed positive dielectrophoresis (DEP) over the whole frequency range (1 kHz-20 MHz), independent of the medium conductivity or applied voltage. When amphoteric molecules were added at a final concentration of up to 0.57 M, the particles showed positive DEP at all frequencies. When the concentration of ampholytes was increased to 0.71 M, the particles showed positive DEP at frequencies up to 100 kHz and voltages lower than 12 Vpk-pk at all electrode sizes. However, at 100 kHz, when the amplitude was increased to over 12 Vpk-pk, the particles started to display negative DEP at the smallest electrode size (20 µm) and moved away from the microelectrodes, accumulating in the gap between the electrodes. At the highest voltages used (16-20 Vpk-pk), the particles were seen moving upwards and remained stably levitated above the array. For frequencies larger than 100 kHz, the particles showed positive DEP only. It is shown that such behaviour cannot be expected on the basis of the dielectric properties of barium titanate and the suspending medium, and it is suggested that this behaviour may be caused by the fact that at high amphotere concentration and voltages the electric field across the particles surpasses the dielectric strength of the BaTiO3 particles, resulting in a sudden drop in the particle's permittivity. The fact that not all particles showed negative DEP suggests a spread in the dielectric properties of barium titanate particles. Physical separation of barium titanate particles with presumably different dielectric properties was shown to be possible using a flow-through device.

  1. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt LIII XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos

    2008-02-28

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied (Al2O3, BaO/Al2O3, Pt/Al2O3 and Pt-BaO/Al2O3) were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. Even if bariummore » and aluminum sites are available for SO2 to form sulfate, for the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, S XANES spectroscopy results show that barium sulfates are preferentially produced over aluminum sulfates . When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the redox nature of the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g. SO2+H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g. SO2+O2) continue to show the presence of Pt-O bonds. In addition, the former condition was found to give rise to a higher degree of Pt sintering than the latter one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g. sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  2. Roles of Pt and BaO in the Sulfation of Pt/BaO/Al2O3 Lean NOx Trap Materials: Sulfur K-edge XANES and Pt Llll XAFS Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,D.; Kwak, J.; Szanyi, J.

    2008-01-01

    The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt LIII XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, themore » presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt LIII XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur.« less

  3. Mixed-ligand approach to design of heterometallic single-source precursors with discrete molecular structure.

    PubMed

    Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V

    2014-05-05

    Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.

  4. Muon Spin Relaxation Studies of RFeAsO and MFe2As2 Based Compounds

    NASA Astrophysics Data System (ADS)

    Luke, Graeme

    2010-03-01

    Muon spin relaxation measurements of a variety of iron pnictide systems have revealed commensurate long range magnetic order in the parent compounds which can change to incommensurate order with carrier doping. Magnetic order gives way to superconductivity with increased doping; however there are regions of the phase diagrams where the two phenomena co-exist. In the case of Ba1-xKxFe2As2 there is phase separation into superconducting and magnetic domains, whereas in Ba(Fe1-xCox)2As2 the coexistence is apparently microscopic for x=0.035->0.048. Transverse field muon spin rotation measurements of single crystal Ba(Fe1-xCox)2 and Sr(Fe1-xCox)2 exhibit an Abrikosov vortex lattice from which we are able to determine the magnetic field penetration depth and Ginzburg-Landau parameter. The temperature variation of the superfluid density is well described by a two-gap model. In Ba(Fe1-xCox)2As2, both the superconducting TC and the superfluid density decrease with increasing doping above x=0.06; in all of the pnictides we find that the superfluid density obeys the same nearly linear scaling with TC as found in the cuprates.

  5. Thermochemical process for the production of hydrogen using chromium and barium compound

    DOEpatents

    Bamberger, Carlos E.; Richardson, Donald M.

    1977-01-25

    Hydrogen is produced by a closed cyclic process involving the reduction and oxidation of chromium compounds by barium hydroxide and the hydrolytic disproportionation of Ba.sub.2 CrO.sub.4 and Ba.sub.3 (CrO.sub.4).sub.2.

  6. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe 0.953Co 0.047)2As 2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    DOE PAGES

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; ...

    2015-02-04

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less

  7. Advantageous grain boundaries in iron pnictide superconductors

    PubMed Central

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  8. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe 0.953Co 0.047)2As 2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less

  9. Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huseyin

    2002-01-01

    Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with <100> pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and <001>pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of single crystal data. However, the complete polarization, dielectric, and piezoelectric tensors are not available for NBT-BT single crystals. Therefore, the properties of lead based (PZT, 52/48) rhombohedral ferroelectric single domain-single crystals, whose properties (polarization, dielectric and piezoelectric) were computed using Landau-Ginsburg-Devonshire phenomenological theory (by Haun et. al.), were used in the calculations for random and textured cases. (Abstract shortened by UMI.)

  10. Crystallographic and magnetic properties of Cu2U-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Kamishima, K.; Tajima, R.; Watanabe, K.; Kakizaki, K.; Fujimori, A.; Sakai, M.; Watanabe, K.; Abe, H.

    2015-02-01

    We have investigated the synthesis conditions, and the magnetic properties of the Cu2U-type hexagonal ferrite, Ba4Cu2Fe36O60. The Cu2U-type hexaferrite was synthesized at the sintering temperature of 1050 °C with the initial composition of Ba4.4Cu2Fe37.6O62.8 (Cu2U+0.2T-block). The saturation magnetizations at 300 K and 5 K are 46.8 A m2/kg and 65.0 A m2/kg, respectively. The Curie temperature is 420 °C which is lower than that of the M-type ferrite (450 °C) but higher than that of the Cu2Y-type ferrite (320 °C). The amount of the nonmagnetic impurity in this sample is estimated to be about 10 wt% by the electron probe micro analysis. We estimated the expected saturation magnetization to be 65.2 A m2/kg, by assuming the model of a Néel-type ferrimagnetic structure and the reduction of magnetization by the 10 wt% nonmagnetic impurity. This is consistent with the observed magnetization of 65.0 A m2/kg at 5 K.

  11. Low loss composition of BaxSryCa1-x-yTiO3: Ba0.12-0.25Sr0.35-0.47Ca0.32-0.53TiO3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2001-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  12. Hydroxyl defects and conversion thermodynamics and kinetics of hydrothermal barium titanate

    NASA Astrophysics Data System (ADS)

    Atakan, Vahit

    The main objectives of this study are to investigate the possibility of hydrothermal conversion of carboxylate based solid-state precursors to BaTiO3 and to characterize residual H or commonly referred as hydroxyls, which are common defects in hydrothermally synthesized ceramic oxides. Neutron scattering techniques, prompt gamma activation analysis (PGAA) and neutron powder diffraction (NPD) were selected as the main tools for characterization of residual H due to high interaction capability of neutrons with H. Residual H was classified as surface and lattice H. Total H content was measured by PGAA and surface H was measured by Karl Fischer Titration (KFT). NPD was used for estimating lattice H. It was found that 75% of the residual H was in the lattice. Even though more than half of the residual H was removed at low temperatures like 200°C, it was tough to remove H completely even at 1200°C. Residual H caused expansion in the unit cell and presence of lattice H was compensated by Ti vacancies. Yield diagrams were generated depending on a thermodynamic model to theoretically verify that hydrothermal conversion of carboxylate based solid-state precursors to BaTiO3 is possible. Theoretical results were then verified experimentally. It was found that BaC2O 4 and TiO2, and BaTiO(C2O4)2 can be successfully converted to BaTiO3 under hydrothermal conditions. However, BaCO3 and TiO2 precursors were not fully converted. Among barium oxalate and titania, and barium titanly oxalate (BTO) systems, conversion of BTO was more favorable in terms of reaction temperature and KOH concentration. BTO can be hydrothermally converted to BaTiO3 at temperatures as low as room temperature. Further studies on hydrothermal conversion of BTO showed that, reaction time can be reduced from 12 h to less than 5 seconds under atmospheric pressure at ˜103°C.

  13. 40 CFR Appendix I to Part 192 - Listed Constituents

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Propanedinitrile) Melphalan (L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]-) Mercury and compounds, N.O.S. Mercury...) Amitrole (lH-1,2,4-Triazol-3-amine) Ammonium vanadate (Vanadic acid, ammonium salt) Aniline (Benzenamine...[N,N-dimethyl-]) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S. Barium...

  14. 40 CFR Appendix I to Part 192 - Listed Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (Propanedinitrile) Melphalan (L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]-) Mercury and compounds, N.O.S. Mercury...) Amitrole (lH-1,2,4-Triazol-3-amine) Ammonium vanadate (Vanadic acid, ammonium salt) Aniline (Benzenamine...[N,N-dimethyl-]) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S. Barium...

  15. 40 CFR Appendix I to Part 192 - Listed Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (Propanedinitrile) Melphalan (L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]-) Mercury and compounds, N.O.S. Mercury...) Amitrole (lH-1,2,4-Triazol-3-amine) Ammonium vanadate (Vanadic acid, ammonium salt) Aniline (Benzenamine...[N,N-dimethyl-]) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S. Barium...

  16. Structural and optical study of tellurite-barium glasses

    NASA Astrophysics Data System (ADS)

    Grelowska, I.; Reben, M.; Burtan, B.; Sitarz, M.; Cisowski, J.; Yousef, El Sayed; Knapik, A.; Dudek, M.

    2016-12-01

    The goal of this work was to determine the effect of barium oxide on the structural, thermal and optical properties of the TeO2-BaO-Na2O (TBN) and TeO2-BaO-WO3 (TBW) glass systems. Raman spectra allow relating the glass structure and vibration properties (i.e. vibrational frequencies and Raman intensities) with the glass composition. Raman spectra show the presence of TeO4 and TeO3+1/TeO3 units that conform with the glass matrix. Differential thermal analysis DTA, XRD measurements have been considered in term of BaO addition. The spectral dependence of ellipsometric angles of the tellurite-barium glass has been studied. The optical measurements were conducted on Woollam M2000 spectroscopic ellipsometer in spectral range of 190-1700 nm. The reflectance and transmittance measurements have been done on spectrophotometer Perkin Elmer, Lambda 900 in the range of 200-2500 nm (UV-VIS-NIR). From the transmittance spectrum, the energy gap was determined.

  17. Perovskite phase thin films and method of making

    DOEpatents

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  18. Ion Cloud Modeling

    DTIC Science & Technology

    1977-11-11

    neutral collision time is discussed in Section 4.4. The chemical formulation for the barium thermite is based on the reaction of 2.5 moles of barium...per mole of cupric oxide according to the formula 2.5Ba + CuO - BaO + Cu + 1.5Ba. 23 In addition, 1.8% of the thermite weight was barium azide. 5 As a...constant value, tf . Generally at? 1 but if VD1 >> U 2 ,the value of atf * can be much less than 1 . In this case of rapid descent of the ion cloud, its

  19. Comparison of Ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuma; Miyake, Takashi; Arita, Ryotaro; Imada, Masatoshi

    2010-03-01

    We present effective low-energy models for LaFePO and LaFeAsO (1111 family), BaFe2As2 (122), LiFeAs (111), and FeSe and FeTe (11) [1], based on ab initio downfolding scheme, a constrained random-phase-approximation method combined with maximally localized Wannier functions. Comparison among the effective models, derived for 5 Fe-3d bands, provides a basis for interpreting physics/chemistry; material dependences of electron correlations, a multiband character entangled by the 3d orbitals, and the geometrical frustration depending on hybridizations between iron and pnictogen/chalcogen orbitals. We found that LaFePO in the 1111 family resides in the weak correlation regime, while LaFeAsO and 111/122 compounds are the intermediate region and FeSe and FeTe in the 11 family are located in the strong correlation regime. A principal parameter relevant to the physics is clarified to be the pnictogen/chalcogen height from the iron layer. Implications in low-energy properties including magnetism and superconductivity are discussed. [1] T. Miyake, K. Nakamura, R. Arita, and M. Imada, arXiv:0911.3705.

  20. Absorption Characterization of Mn-Zr-Substituted La-Sr Hexaferrite Using Open-Circuit and Short-Circuit Approaches in 8.2-18 GHz Frequency Range

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Kaur, Pawandeep; Bahel, Shalini; Pubby, Kunal

    2018-01-01

    The present study reports on the microwave absorption characterization of Mn2+-Zr4+ substituted lanthanum strontium ferrites, Sr0.85La0.15(MnZr) x Fe12-2 x O19, where x = 0.0, 0.25, 0.50, 0.75 and 1.0 in the X- and Ku-band. The synthesized ferrites are characterized with regard to their electromagnetic properties such as complex permittivity ( {ɛ^' - jɛ^'' ) and complex permeability ( {μ^' - jμ^'' ) using vector network analysis in the 8.2-18 GHz frequency range. Real and imaginary parts of permittivity decrease with the increase in Mn-Zr concentration due to a reduction in electron hopping conduction and eddy current losses, respectively. Microwave permeability spectra are also affected by the doping. The amplitude of magnetic loss peak increases with the increase in doping except for the x = 1.0 composition. Two commonly used approaches, open-circuit and short-circuit, have been employed for the absorption analysis. The difference in the results of these two techniques is justified on the basis of the reflection mechanism. The presented experimental findings underline the potential of the synthesized compositions with Mn-Zr concentrations x = 0.25, 0.5 and 0.75 in the suppression of electromagnetic reflections and radar signatures.

  1. Effects of Gd-Substitutions on the Microstructure, Electrical and Electromagnetic Behavior of M-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ahmad, Ishtiaq; Ahmad, Mahmood; Ali, Ihsan; Kanwal, M.; Awan, M. S.; Mustafa, Ghulam; Ahmad, Mukhtar

    2015-07-01

    A series of Gd-substituted Ba-Co-based (M-type) hexaferrites having the chemical compositions of Ba0.5Co0.5Gd x Fe12- x O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by co-precipitation method. The pellets formed by co-precipitated powder were calcined at a temperature of 1200°C for 20 h. Final sintering was done at 1320°C for 4 h. From the x-ray diffraction analysis, it was revealed that all the samples showed M-type hexagonal structure as a major phase. The scanning electron microscope was used to examine the morphology of the sintered ferrites. The average grain size estimated by the line intercept method was found to be in the range of 2.8-1.0 μm. The room temperature DC resistivity increases with increasing Gd-contents to make these ferrites useful for high frequency applications and microwave devices. Lower values of coercivity ( H c) and higher saturation magnetization ( M s) may be suitable to enhance the permeability of these ferrites, which is favorable for impedance matching in microwave absorption. In addition, reflection coefficients for a sample was also measured from a frequency of 1 MHz to 3 GHz and a reflection peak was observed at about 2.2 GHz.

  2. Multigap superconductivity and strong electron-boson coupling in Fe-based superconductors: a point-contact Andreev-reflection study of Ba(Fe(1-x)Co(x))2As2 single crystals.

    PubMed

    Tortello, M; Daghero, D; Ummarino, G A; Stepanov, V A; Jiang, J; Weiss, J D; Hellstrom, E E; Gonnelli, R S

    2010-12-03

    Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).

  3. Is BaCr 2 As 2 symmetrical to BaFe 2 As 2 with respect to half 3 d shell filling?

    DOE PAGES

    Richard, P.; van Roekeghem, A.; Lv, B. Q.; ...

    2017-05-25

    We have performed an angle-resolved photoemission spectroscopy study of BaCr 2As 2, which has the same crystal structure as BaFe2As2, a parent compound BaFe 2As 2 of Fe-based superconductors. We determine the Fermi surface of this material and its band dispersion down to 5 eV below the Fermi level. Very moderate band renormalization (1.35) is observed for only two bands. We attribute this small renormalization to enhanced direct exchange as compared to Fe in BaFe 2As 2, and to a larger contribution of the eg orbitals in the composition of the bands forming the Fermi surface.

  4. Oxide perovskite crystals for HTSC film substrates microwave applications

    NASA Technical Reports Server (NTRS)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  5. Manganese Health Research Program (MHRP)

    DTIC Science & Technology

    2008-01-01

    NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese

  6. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis.

    PubMed

    Li, Q H; Yang, J C; Li, L; Dong, J Q; Zhao, H X; Liu, S

    2015-03-05

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Li, Q. H.; Yang, J. C.; Li, L.; Dong, J. Q.; Zhao, H. X.; Liu, S.

    2015-03-01

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass.

  8. Electromagnon with Sensitive Terahertz Magnetochromism in a Room-Temperature Magnetoelectric Hexaferrite

    DOE PAGES

    Chun, Sae Hwan; Shin, Kwang Woo; Kim, Hyung Joon; ...

    2018-01-12

    An electromagnon in the magnetoelectric (ME) hexaferrite Ba 0.5Sr 2.5Co 2Fe 24O 41 (Co 2 Z-type) single cystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (E ω) of the THz light parallel to the c axis (∥ [001]), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7% and +5.8% under external magnetic field (H) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magneticmore » order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H.« less

  9. Electromagnon with Sensitive Terahertz Magnetochromism in a Room-Temperature Magnetoelectric Hexaferrite

    NASA Astrophysics Data System (ADS)

    Chun, Sae Hwan; Shin, Kwang Woo; Kim, Hyung Joon; Jung, Seonghoon; Park, Jaehun; Bahk, Young-Mi; Park, Hyeong-Ryeol; Kyoung, Jisoo; Choi, Da-Hye; Kim, Dai-Sik; Park, Gun-Sik; Mitchell, J. F.; Kim, Kee Hoon

    2018-01-01

    An electromagnon in the magnetoelectric (ME) hexaferrite Ba0.5Sr2.5Co2Fe24O41 (Co2Z -type) single crystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (Eω ) of the THz light parallel to the c axis (∥ [001 ] ), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7 % and +5.8 % under external magnetic field (H ) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magnetic order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H .

  10. Electromagnon with Sensitive Terahertz Magnetochromism in a Room-Temperature Magnetoelectric Hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Sae Hwan; Shin, Kwang Woo; Kim, Hyung Joon

    An electromagnon in the magnetoelectric (ME) hexaferrite Ba 0.5Sr 2.5Co 2Fe 24O 41 (Co 2 Z-type) single cystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (E ω) of the THz light parallel to the c axis (∥ [001]), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7% and +5.8% under external magnetic field (H) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magneticmore » order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H.« less

  11. Surface characterizations of oxides synthesized by successive ionic layer deposition

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas I.

    Successive ionic layer deposition (SILD) is an aqueous technique for depositing thin oxide films on a surface in a layer-by-layer fashion through a series of chemical reactions. This dissertation examines empirical aspects of the SILD technique by characterizing thin oxide films synthesized on model planar supports and then extends the SILD technique to synthesize supported oxide nanostructures on three dimensional supports of interest to catalysis. Atomic force microscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy provided insight into the SILD of zirconia, alumina, and barium oxide thin films on silicon wafers. The SILD conditions that most affected the surface morphology of the thin oxide films were the selection of aqueous metal salt precursors comprising the SILD solutions and the total number of SILD cycles. Recent studies suggest that a highly dispersed phase of barium oxide supported on alumina interacts differently with NO2 than a bulk-like phase of barium oxide SILD was used to synthesize disperse nanoislands or rafts of barium oxide on larger rafts of alumina supported on a silicon wafer. The SILD method was then extended to deposit barium oxide on an alumina powder support comprised of dense 150 nm spherical crystallites fused together into 1-2 pm particles. Equally weight loaded samples of barium oxide on the fused alumina powder were prepared by SILD and wet impregnation. The NO2 storage behavior of the barium oxide, evaluated by thermogravimetric analysis during NO2 temperature programmed desorption (TPD) experiments, provided insight into the dispersion of barium oxide that resulted from each of the loading techniques. The highly dispersed barium oxide rafts synthesized by SILD on fused alumina released NO2 at temperatures below 500°C during TPD. By comparison, the barium oxide loaded by wet impregnation showed a higher temperature desorption feature above 500°C indicative of bulk-like barium oxide nanoparticles. The NO2 weight loss curves were also used to calculate the relative percentages of BaO in the dispersed phase and bulk-like phase for each loading technique. The ability of SILD to synthesize highly disperse and uniform, conformal oxide coatings on three dimensional supports provides fundamental insight into the interactions between catalysts and supports.

  12. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe 2 As 2 and its relation to high-temperature superconductivity

    DOE PAGES

    Kim, M. G.; Wang, M.; Tucker, G. S.; ...

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe 0.957Cu 0.043) 2As 2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe 2As 2 and superconducting Ba(Fe 1–xNi x) 2As 2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe 0.957Cu 0.043) 2As 2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouplesmore » the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  13. Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor

    DOE PAGES

    Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...

    2016-09-02

    We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less

  14. Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe 2 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Jianjun; Lei, Hechang; Petrovic, Cedomir

    High pressure resistance, susceptibility, and Fe K β x-ray emission spectroscopy measurements were performed on Fe-ladder compound BaFe 2 Se 3 . Pressure-induced superconductivity was observed which is similar to the previously reported superconductivity in the BaFe 2 S 3 samples. The slope of local magnetic moment versus pressure shows an anomaly across the insulator-metal transition pressure in the BaFe 2 Se 3 samples. The local magnetic moment is continuously decreasing with increasing pressure, and the superconductivity appears only when the local magnetic moment value is comparable to the one in the iron-pnictide superconductors. Our results indicate that the compressedmore » BaFe 2 C h 3 ( C h = S , Se) is a new family of iron-based superconductors. Despite the crystal structures completely different from the known iron-based superconducting materials, the magnetism in this Fe-ladder material plays a critical role in superconductivity. This behavior is similar to the other members of iron-based superconducting materials.« less

  15. Barium Titanate Nanoparticles for Biomarker Applications

    NASA Astrophysics Data System (ADS)

    Matar, O.; Posada, O. M.; Hondow, N. S.; Wälti, C.; Saunders, M.; Murray, C. A.; Brydson, R. M. D.; Milne, S. J.; Brown, A. P.

    2015-10-01

    A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO3) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L3-edge energy separation of the t2g, eg peaks. The results show a change in energy separation between the t2g and eg peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO3 nanoparticles, highlighting the potential for application as biomarkers.

  16. Magnetotransport of proton-irradiated BaFe 2As 2 and BaFe 1.985Co 0.015As 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, D. A.; Yates, K. A.; Peng, N.

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe 2As 2 and BaFe 1.985Co 0.015As 2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data aremore » observed and discussed.« less

  17. Synthesis and Characterization of a Perovskite Barium Zirconate (BaZrO[subscript 3]): An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thananatthanachon, Todsapon

    2016-01-01

    In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…

  18. The effects of preparation conditions for a BaNbO2 N photocatalyst on its physical properties.

    PubMed

    Hisatomi, Takashi; Katayama, Chisato; Teramura, Kentaro; Takata, Tsuyoshi; Moriya, Yosuke; Minegishi, Tsutomu; Katayama, Masao; Nishiyama, Hiroshi; Yamada, Taro; Domen, Kazunari

    2014-07-01

    BaNbO2 N is a semiconductor photocatalyst active for water oxidation under visible-light irradiation up to λ=740 nm. It is important to understand the nitridation processes of precursor materials to form BaNbO2 N to tune the physical properties and improve the photocatalytic activity. Comprehensive experiments and analyses of temperatures, durations, ammonia flow rates, and barium/niobium ratios in the precursor during the nitridation process reveals that faster ammonia flow rates and higher barium/niobium ratios in the precursors help to suppress reduction of pentavalent niobium ions in the nitridation products and that the use of a precursor prepared by a soft-chemistry route allows the production of BaNbO2 N at lower temperatures in shorter times than the use of physical mixtures of BaCO3 and Nb2 O5 because the niobium species is dispersed among the barium species. BaNbO2 N prepared by the soft-chemistry route exhibits comparatively higher activity than that prepared from physical mixtures of BaCO3 and Nb2 O5 , probably because of lower nitridation temperatures, which suppress excessive dissociation of ammonia, and thereby reduce pentavalent niobium ions, and intimate interaction of niobium and barium sources, which lowers the densities of mid-gap states associated with defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  20. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  1. Sealing glasses for titanium and titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansionmore » about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.« less

  2. Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo 2 Fe 11 AlO 22

    DOE PAGES

    Nakajima, Taro; Tokunaga, Yusuke; Matsuda, Masaaki; ...

    2016-11-30

    Here, we have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo 2Fe 11AlO 22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H-T magnetic phase diagram for magnetic field perpendicular to the c axis (H ⟂c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H ⟂c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below 250more » K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism.« less

  3. Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo2Fe11AlO22

    NASA Astrophysics Data System (ADS)

    Nakajima, Taro; Tokunaga, Yusuke; Matsuda, Masaaki; Dissanayake, Sachith; Fernandez-Baca, Jaime; Kakurai, Kazuhisa; Taguchi, Yasujiro; Tokura, Yoshinori; Arima, Taka-hisa

    2016-11-01

    We have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo2Fe11AlO22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature [S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett. 104, 022907 (2014), 10.1063/1.4862432]. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H -T magnetic phase diagram for magnetic field perpendicular to the c axis (H⊥c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H⊥c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below ˜250 K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism.

  4. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    NASA Astrophysics Data System (ADS)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.

  5. Multisite occupation of divalent dopants in barium and strontium titanates

    NASA Astrophysics Data System (ADS)

    Zulueta, Yohandys A.; Nguyen, Minh Tho

    2018-10-01

    Based on recent experimental and theoretical proofs of calcium multisite occupation in barium titanate, we investigated a mixed incorporation mechanism for divalent dopants in barium and strontium titanates (BaTiO3 and SrTiO3). Our present theoretical results demonstrated the multisite occupation of divalent dopants in both perovskite structures. We determined the dependences of the solution, binding energies, and final solution energies with respect to the ionic radii of the dopants. Calculated results obtained based on classical simulations showed that the divalent dopants can occupy both A- and Ti- cation sites in ATiO3 perovskite structures. Such a multisite occupation has direct implications for other experimental findings regarding BaTiO3, such as non-stabilization of the tetragonal phase, shifts in the Curie temperature, intensification of the diffuse phase transition, and shifts in the absorption of ultraviolet light to the visible range in photocatalytic applications related to solar cells for producing energy.

  6. Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds

    NASA Astrophysics Data System (ADS)

    Licht, Stuart; Naschitz, Vera; Liu, Bing; Ghosh, Susanta; Halperin, Nadezhda; Halperin, Leonid; Rozen, Dmitri

    The chemical preparation of high purity potassium and barium ferrates for alkaline electrochemical storage are presented. The synthesized salts are used to demonstrate a variety of high capacity super-iron (Zn anode) alkaline AAA cell configurations which utilize these Fe(V) salts. Results of 500 days, full stability, of the synthesized K 2FeO 4 are presented. Synthetic pathways yielding 80-100 g of 96.5-99.5% pure K 2FeO 4 and BaFeO 4 are presented, and the products of these syntheses are demonstrated to provide a high energy electrochemical discharge in a variety of AAA alkaline cells. BaFeO 4 super-iron alkaline AAA cells provide over 0.8 W h during 2.8 Ω discharge, yielding over 200% higher capacity than conventional alkaline batteries. The barium super-iron cell configurations studied provide higher capacity than the potassium super-iron alkaline cell configurations studied.

  7. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  8. High-resolution, hard x-ray photoemission investigation of BaFe2As2 : Moderate influence of the surface and evidence for a low degree of Fe3d-As4p hybridization of electronic states near the Fermi energy

    NASA Astrophysics Data System (ADS)

    de Jong, S.; Huang, Y.; Huisman, R.; Massee, F.; Thirupathaiah, S.; Gorgoi, M.; Schaefers, F.; Follath, R.; Goedkoop, J. B.; Golden, M. S.

    2009-03-01

    Photoemission data taken with hard x-ray radiation on cleaved single crystals of the barium parent compound of the MFe2As2 pnictide high-temperature superconductor family are presented. Making use of the increased bulk sensitivity upon hard x-ray excitation, and comparing the results to data taken at conventional vacuum ultraviolet photoemission excitation energies, it is shown that the BaFe2As2 cleavage surface provides an electrostatic environment that is slightly different to the bulk, most likely in the form of a modified Madelung potential. However, as the data argue against a different surface doping level, and the surface-related features in the spectra are by no means as dominating as seen in systems such as YBa2Cu3Ox , we can conclude that the itinerant, near- EF electronic states are almost unaffected by the existence of the cleavage surface. Furthermore, exploiting the strong changes in photoionization cross section between the Fe and As states across the wide photon energy range employed, it is shown that the degree of energetic overlap between the iron 3d and arsenic 4p valence bands is particularly small at the Fermi level, which can only mean a very low degree of hybridization between the Fe3d and As4p states near and at EF . Consequently, this means that the itinerancy of the charge carriers in this group of materials involves mainly the Fe3d-Fe3d overlap integrals with at best a minor role for the Fe3d-As4p hopping parameters and that the states which support superconductivity upon doping are essentially of Fe3d character.

  9. Electronic phase diagram of disordered Co doped BaFe2As2-δ

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Iida, K.; Trommler, S.; Hänisch, J.; Nenkov, K.; Engelmann, J.; Oswald, S.; Werner, J.; Schultz, L.; Holzapfel, B.; Haindl, S.

    2013-02-01

    Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2-δ thin films with varying Co concentrations we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2-δ shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.

  10. Advanced Microwave Ferrite Research (AMFeR): Phase Two

    DTIC Science & Technology

    2006-12-31

    motion for the single crystal LPE films were a qualitative success, but a complete set of parameters for these films has not yet been achieved. Key...biasing field. In order to address these issues, we investigated and optimized a new LPE flux system to grow high quality thick films and bulk single...self-biased circulators. III. Methodology: BaM thick film and bulk single crystal growth by LPE process BaFe 120 19 flux melt was prepared from a

  11. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles

    NASA Astrophysics Data System (ADS)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10-9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  12. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    PubMed

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-16

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  13. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles

    PubMed Central

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-01-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT–Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT–Fe3O4 concentration is approximately 33 vol.%. The BT–Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10−9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT–Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT–Fe3O4 hybrid particles. However, the experimental results of the BT–Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT–Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry. PMID:27633958

  14. Single-center prospective study of Plummer-Vinson syndrome.

    PubMed

    Goel, A; Lakshmi, C P; Bakshi, S S; Soni, N; Koshy, S

    2016-10-01

    Post-cricoid web is an uncommon cause for dysphagia and is most frequently reported in middle-aged women. Triad of web, iron deficiency anemia (IDA), and dysphagia is known as Plummer-Vinson syndrome (PVS). Literature on PVS is very limited. Here we report the first prospective study of PVS with predefined diagnostic criteria and management plan. Adults with dysphagia or those incidentally found to have esophageal web were prospectively enrolled between July 2011 and June 2013. Participants were evaluated with hemogram, barium swallow, and esophagogastroduodenoscopy. PVS was diagnosed if a person had IDA and a post-cricoid web in barium swallow and/or endoscopy. Patients were managed with dilation using through-the-scope controlled radial expansion balloon followed by oral iron and folic acid supplementation. Thirty-seven patients (age, median [range] 40 [19-65] years; 32 [86%] women) were enrolled. Thirty-one symptomatic patients had dysphagia grade 1 (n = 12, 39%), 2 (n = 13, 42%), and 3 (n = 6, 19%) for a median (range) duration of 24 (4-324) months. Barium swallow, done in 29, showed web in 25 which were either circumferential or anterior in position. Twenty-nine (29/31, 94%) patients had complete and two had partial response after the first session of endoscopic dilatation without any complication. Dysphagia recurred in three (10%) of the 30 patients who were followed for a median (range) of 10 (1-24) months. Esophageal-web related dysphagia in patients with PVS responds favorably after single session of endoscopic dilation. © 2015 International Society for Diseases of the Esophagus.

  15. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1983-01-01

    The feasibility of making non-volatile digital memory devices of barium titanate, BaTiO3, that are integrated onto a silicon substrate with the required ferroelectric film produced by processing, compatible with silicon technology was examined.

  16. Synthesis of BaTiO3 and Ba(ZrxTi1-X)O3 by using the soft combustion method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Razak, Khairunisak Abdul

    2017-07-01

    In this work, barium titanate, BaTiO3 (BT) and Zr doped BT, BaZrxTi1-xO3 (BZT) with powders were successfully produced using the soft combustion method. Barium nitrate and titanium (IV) isopropoxide were used as the starting materials while zirconium (IV) oxynitrate hydrate as the doping precursors, and glycine as the combustion agent. The produced powders were pressed into 12 mm diameter pellets by using 150 MPa cold press. The effect of Zr dopant in BT was studied with molar ratio of x = 0.00, 0.03, 0.05, 0.08 and 0.10. The phase presence was identified using X-ray diffractometer. Morphology of powders and sintered pellets was observed using a scanning electron microscope. Density of the sintered pellets was measured by using Archimedes' principle, while dielectric properties were analysed by using an LCR meter. Pure perovskite BT and BZT structure were obtained after sintering at 1400 °C for 5 h. BZT with x = 0.03 has grain size of 3.9 µm and shows the highest dielectric constant of 525, compared to undoped BT that has the average grain size of 4.2 µm with dielectric constant 223. The results is in agreement with microstructure observation and density of the sample.

  17. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  18. Method of forming a dielectric thin film having low loss composition of Ba.sub.x Sr.sub.y Ca.sub.1-x-y TiO.sub.3 : Ba.sub.0.12-0.25 Sr.sub.0.35-0.47 Ca.sub.0.32-0.53 TiO.sub.3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2000-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  19. Structural, electrical and magnetic study of Nd-Ni substituted W-type Hexaferrite

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Sadiq, Imran; Ali, Irshad; Rana, Mazhar-Ud-Din; Najam-Ul-Haq, Muhammad; Shah, Afzal; Shakir, Imran; Naeem Ashiq, Muhammad

    2016-01-01

    A series of Nd-Ni substituted W-type hexaferrites with composition Sr1-xNdxCo2NiyFe16-yO27 (where x=0.0, 0.025, 0.050, 0.075, 0.1 and y=0.0, 0.25, 0.50, 0.75, 1) has been prepared by the chemical co-precipitation method. The effect of rare earth Nd substitution at strontium site while Ni at iron site on microstructure, electrical and magnetic properties has been investigated. All the XRD patterns of the synthesized materials show single W-type hexagonal phase without any other intermediate phases. SEM images show that the particles are homogeneous and hexagonal platelet-like shape. DC electrical resistivity measurements were carried out in temperature range of 298-673 K showing metal-to-semiconductor transition when doped with Nd-Ni. The magnetic properties such as saturation magnetization, remanence, squareness ratio and coercivity were calculated from hysteresis loops and were observed to increase with the increase in Nd-Ni concentration up to a certain substitution level which is beneficial for high density recording media.

  20. DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT

    EPA Science Inventory

    Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...

  1. Selection of plants for phytoremediation of barium-polluted flooded soils.

    PubMed

    Ribeiro, Paulo Roberto Cleyton de Castro; Viana, Douglas Gomes; Pires, Fábio Ribeiro; Egreja Filho, Fernando Barboza; Bonomo, Robson; Cargnelutti Filho, Alberto; Martins, Luiz Fernando; Cruz, Leila Beatriz Silva; Nascimento, Mauro César Pinto

    2018-05-10

    The use of barite (BaSO4) in drilling fluids for oil and gas activities makes barium a potential contaminant in case of spills onto flooded soils, where low redox conditions may increase barium sulfate solubility. In order to select plants able to remove barium in such scenarios, the following species were evaluated on barium phytoextraction capacity: Brachiaria arrecta, Cyperus papyrus, Eleocharis acutangula, E. interstincta, Nephrolepsis cf. rivularis, Oryza sativa IRGA 424, O. sativa BRS Tropical, Paspalum conspersum, and Typha domingensis. Plants were grown in pots and exposed to six barium concentrations: 0, 2.5, 5.0, 10.0, 30.0, and 65.0 mg kg -1 . To simulate flooding conditions, each pot was kept with a thin water film over the soil surface (∼1.0 cm). Plants were evaluated for biomass yield and barium removal. The highest amount of barium was observed in T. domingensis biomass, followed by C. papyrus. However, the latter exported most of the barium to the aerial part of the plant, especially at higher BaCl 2 doses, while the former accumulated barium preferentially in the roots. Thus, barium removal with C. papyrus could be achieved by simply harvesting aerial biomass. The high amounts of barium in T. domingensis and C. papyrus resulted from the combination of high barium concentration in plant tissues with high biomass production. These results make T. domingensis and C. papyrus potential candidates for phytoremediation schemes to remove barium from flooded soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Tailoring magnetic properties of self-biased hexaferrites using an alternative copolymer of isobutylene and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Wu, Chuanjian; Yu, Zhong; Sokolov, Alexander S.; Yu, Chengju; Sun, Ke; Jiang, Xiaona; Lan, Zhongwen; Harris, Vincent G.

    2018-05-01

    Discussed is a novel self-biased hexaferrite gelling system based on a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride. This copolymer simultaneously acts as a dispersant and gelling agent, and recently received much attention from the ceramics community. Herein its effects on the rheological conditions throughout magnetic-field pressing, and consequently, orientation, density and magnetic properties of textured hexaferrites were investigated. Ka-band FMR linewidths were measured, and the crystalline anisotropy and porosity induced linewidth broadening were estimated according to Schlömann's theory. The copolymer allowed to reduce the friction between micron-sized magnetic particulates, resulting in higher density and degree of crystalline orientation, and lower FMR linewidth.

  3. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  4. Ba 2TeO: A new layered oxytelluride

    DOE PAGES

    Besara, T.; Ramirez, D.; Sun, J.; ...

    2015-02-01

    For single crystals of the new semiconducting oxytelluride phase, Ba 2TeO, we synthesized from barium oxide powder and elemental tellurium in a molten barium metal flux. Ba 2TeO crystallizes in tetragonal symmetry with space group P4/nmm (#129), a=5.0337(1) Å, c=9.9437(4) Å, Z=2. The crystals were characterized by single crystal x-ray diffraction, heat capacity and optical measurements. Moreover, the optical measurements along with electronic band structure calculations indicate semiconductor behavior with a band gap of 2.93 eV. Resistivity measurements show that Ba 2TeO is highly insulating.

  5. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  6. ESTCP DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT

    EPA Science Inventory

    Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...

  7. Investigating the effect of V2O5 addition on sodium barium borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Halder, Rumu; Sengupta, Pranesh; Sudarsan, V.; Kaushik, C. P.; Dey, G. K.

    2016-05-01

    V2O5 doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V2O5 but a phase separation is observed when V2O5 doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O- Na+/Ba2+ linkages are formed.

  8. Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite

    PubMed Central

    Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao

    2015-01-01

    The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913

  9. Structural, morphological and magnetic properties of Sr0.3La0.48Ca0.25n[Fe(2-0.4/n)O3]Co0.4 (n = 5.5, 5.6,5.7,5.8, 5.9, 6.0) hexaferrites prepared by facile ceramic route methodology

    NASA Astrophysics Data System (ADS)

    Rehman, Khalid Mehmood Ur; Liu, Xiansong; Yang, Yujie; Feng, Shuangjiu; Tang, Jin; Ali, Zulfiqar; Wazir, Z.; Khan, Muhammad Wasim; Shezad, Mudssir; Iqbal, Muhammad Shahid; Zhang, Cong; Liu, Chaocheng

    2018-03-01

    In present work, M-type strontium hexaferrite with chemical composition of Sr0.3La0.48Ca0.25n[Fe(2-0.4/n)O3]Co0.4 (n = 5.5, 5.6, 5.7, 5.8, 5.9, 6.0) magnetic powder were synthesized by using facile ceramic route methodology. The structural, morphological and magnetic properties of the products were investigated by using X-rays diffraction (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) techniques, respectively. There is a single magnetoplumbite phase in the magnetic powders containing (5.5 ≤ n ≤5.8) and (n ≥ 5.9) magnetic some impurities begin to seem in the structure. The magnets have shaped hexagonal structures. Magnetic properties of the samples were metric by permanent magnetic measuring equipment Vibrating Sample Magnetometer, respectively. We report our investigation of n-aggregation iron content on crystalline size characterization and magnetic properties of the specimen. It is originate that the desirable quantity of n-aggregation iron content substitution may curiously increase saturation magnetization (Ms) and intrinsic coercivity (Hc). With the iron addition for the same sintering temperature at 1260 °C, (Ms) and (Hc) first increase and then decrease gradually.

  10. Characterization of the third-order optical nonlinearity spectrum of barium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, S. N. C.; Almeida, J. M. P.; Paula, K. T.; Tomazio, N. B.; Mastelaro, V. R.; Mendonça, C. R.

    2017-11-01

    Borate glasses have proven to be an important material for applications ranging from radiation dosimetry to nonlinear optics. In particular, B2O3-BaO based glasses are attractive to frequency generation since their barium metaborate phase (β-BaB2O4 or β-BBO) may be crystallized under proper heat treatment. Despite the vast literature covering their linear and second-order optical nonlinear properties, their third-order nonlinearities remain overlooked. This paper thus reports a study on the nonlinear refraction (n2) of BBO and BBS-DyEu glasses through femtosecond Z-scan technique. The results were modeled using the BGO approach, which showed that oxygen ions are playing a role in the nonlinear optical properties of the glasses studied here. In addition, the barium borate glasses containing rare-earths ions were found to exhibit larger nonlinearities, which is in agreement with previous studies.

  11. Morphology control of anisotropic BaTiO 3 and BaTiOF 4 using organic-inorganic interaction

    NASA Astrophysics Data System (ADS)

    Masuda, Yoshitake; Tanaka, Yuki; Gao, Yanfeng; Koumoto, Kunihito

    2009-01-01

    We proposed a novel concept for morphology control of barium titanate precursor to fabricate platy particles. Organic molecules play an essential role in the crystallization of BaTiOF 4 to synthesize multi-needle particles, polyhedron particles or platy particles in an aqueous solution. Precursors were successfully transformed to barium titanate single phase by annealing. Platy barium titanate precursor particles are expected for future multilayer ceramic capacitors.

  12. High frequency electromagnetic reflection loss performance of substituted Sr-hexaferrite nanoparticles/SWCNTs/epoxy nanocomposite

    NASA Astrophysics Data System (ADS)

    Gordani, Gholam Reza; Ghasemi, Ali; saidi, Ali

    2015-10-01

    In this study, the electromagnetic properties of a novel nanocomposite material made of substituted Sr-hexaferrite nanoparticles and different percentage of single walled carbon nanotube have been studied. The structural, magnetic and electromagnetic properties of samples were studied as a function of volume percentage of SWCNTs by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and vector network analysis. Well suitable crystallinity of hexaferrite nanoparticles was confirmed by XRD patterns. TEM and FESEM micrographs were shown the good homogenity and high level of dispersivity of SWCNTs and Sr-hexaferrite nanoparticles in nanocomposite samples. The VSM results shown that with increasing in amount of CNTs (0-6 vol%), the saturation of magnetization decreased up to 11 emu/g for nanocomposite sample contains of 6 vol% of SWCNTs. The vector network analysis results show that the maximum value of reflection loss was -36.4 dB at the frequency of 11 GHz with an absorption bandwidth of more than 4 GHz (<-20 dB). The results indicate that, this nanocomposite material with appropriate amount of SWCNTs hold great promise for microwave device applications.

  13. A proposed physical model for the impregnated tungsten cathode based on Auger surface studies of the Ba-O-W system

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1979-01-01

    Auger spectra and work function measurements are used to study the surface reactions between tungsten surface and adsorbed layers of barium, and barium and oxygen. The barium on an impregnated tungsten cathod seems to be an intermediate state, probably a coadsorbed barium-oxygen layer on tungsten. A slightly revised version of the previously suggested (1976) impregnated tungsten cathode model is proposed. This revised model assumes that the cathode surface during life has an adsorbed surface layer of a monolayer or less of both barium and oxygen on the surface. At end of life, steep drop in electron emission and resultant cathode failure occur. Recent NASA life test results on TWT type tubes are reported and explained by the proposed model.

  14. Magnetoelectric Response in Multiferroic SrFe12O19 Ceramics

    PubMed Central

    Huang, Yao; Sheng, Haohao

    2016-01-01

    We report here realization of ferroelectricity, ferromagnetism and magnetocapacitance effect in singleSrFe12O19ceramic at room temperature. The ceramics demonstrate a saturated polarization hysteresis loop, two nonlinear I-V peaks and large anomaly of dielectric constant near Curie temperature, which confirm the intrinsic ferroelectricity of SrFe12O19 ceramicswith subsequent heat-treatment in O2atmosphere. The remnant polarization of the SrFe12O19 ceramic is estimated to be 103μC/cm2. The ceramic also exhibits strong ferromagnetic characterization, the coercive field and remnant magnetic moment are 6192Oe and 35.8emu/g, respectively. Subsequent annealing SrFe12O19 ceramics in O2 plays a key role on revealing its intrinsic ferroelectricity and improving the ferromagnetism through transforming Fe2+ into Fe3+. By applying a magnetic field, the capacitance demonstrates remarkable change along with B field, the maximum rate of change in ε (Δε(B)/ε(0)) is 1174%, which reflects a giant magnetocapacitance effect in SrFe12O19. XPS and molecular magnetic moment measurements confirmed the transformation of Fe2+ into Fe3+ and removal of oxygen vacancies upon O2 heat treatment. These combined functional responses in SrFe12O19 ceramics opens substantial possibilities for applications in novel electric devices. PMID:27935996

  15. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.

  16. Role of magnetism in superconductivity of BaFe 2As 2: Study of 5d Au-doped crystals

    DOE PAGES

    Li, Li; Cao, Huibo; McGuire, Michael A.; ...

    2015-09-09

    We investigate properties of BaFe 2As 2 (122) single crystals upon gold doping, which is the transition metal with the highest atomic weight. The Au substitution into the FeAs-planes of 122 crystal structure (Au-122) is only possible up to a small amount of ~3%. We find that 5d is more effective in reducing magnetism in 122 than its counter 3d Cu, and this relates to superconductivity. We provide evidence of short-range magnetic fluctuations and local lattice inhomogeneities that may prevent strong percolative superconductivity in Ba(Fe 1-xAu x)2As 2.

  17. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  18. Polarization retention in ultra-thin barium titanate films on Ge(001)

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Ponath, Patrick; Zheng, Lu; Hatanpaa, Benjamin; Lai, Keji; Demkov, Alexander A.; Downer, Michael C.

    2018-04-01

    We investigate polarization retention in 10 to 19 nm thick ferroelectric BaTiO3 (BTO) grown on Ge(001) by molecular beam epitaxy. The out-of-plane direction and reversibility of electric polarization were confirmed using piezoresponse force microscopy. After reverse-poling selected regions of the BTO films to a value P with a biased atomic-force microscope tip, we monitored relaxation of their net polarization for as long as several weeks using optical second-harmonic generation microscopy. All films retained reversed polarization throughout the observation period. 10 nm-thick BTO films relaxed monotonically to a saturation value of 0.9 P after 27 days and 19 nm films to 0.75 P after 24 h. Polarization dynamics are discussed in the context of a 1D polarization relaxation/kinetics model.

  19. Influence of pH Adjustment Parameter for Sol-Gel Modification on Structural, Microstructure, and Magnetic Properties of Nanocrystalline Strontium Ferrite

    NASA Astrophysics Data System (ADS)

    Azis, Raba'ah Syahidah; Sulaiman, Sakinah; Ibrahim, Idza Riati; Zakaria, Azmi; Hassan, Jumiah; Muda, Nor Nadhirah Che; Nazlan, Rodziah; Saiden, Norlaily M.; Fen, Yap Wing; Mustaffa, Muhammad Syazwan; Matori, Khamirul Amin

    2018-05-01

    Synthesis of nanocrystalline strontium ferrite (SrFe12O19) via sol-gel is sensitive to its modification parameters. Therefore, in this study, an attempt of regulating the pH as a sol-gel modification parameter during preparation of SrFe12O19 nanoparticles sintered at a low sintering temperature of 900 °C has been presented. The relationship of varying pH (pH 0 to 8) on structural, microstructures, and magnetic behaviors of SrFe12O19 nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning microscope (FESEM), and vibrating sample magnetometer (VSM). Varying the pH of precursor exhibited a strong effect on the sintered density, crystal structure and magnetic properties of the SrFe12O19 nanoparticles. As the pH is 0, the SrFe12O19 produced relatively largest density, saturation magnetization, M s, and coercivity, H c, at a low sintering temperature of 900 °C. The grain size of SrFe12O19 is obtained in the range of 73.6 to 133.3 nm. The porosity of the sample affected the density and the magnetic properties of the SrFe12O19 ferrite. It is suggested that the low-temperature sintered SrFe12O19 at pH 0 displayed M s of 44.19 emu/g and H c of 6403.6 Oe, possessing a significant potential for applying in low-temperature co-fired ceramic permanent magnet.

  20. Videofluoroscopic and Manometric Evaluation of Pharyngeal and Upper Esophageal Sphincter Function During Swallowing

    PubMed Central

    Yoon, Kyung Jae; Park, Jung Ho; Park, Jung Hwan; Jung, Il Seok

    2014-01-01

    Background/Aims The purpose of this study was to determine important manometric metrics for the analysis of pharyngeal and upper esophageal sphincter (UES) function and to investigate the effect of viscosity and other confounding factors on manometric results. Methods Manometric studies were performed on 26 asymptomatic volunteers (12 men and 14 women; age, 19–81 years). The manometric protocol included 5 water swallows (5 mL), 5 barium swallows (5 mL) and 5 yogurt swallows (5 mL). Evaluation of high-resolution manometry parameters including basal pressure of the UES, mesopharyngeal contractile integral (mesopharyngeal CI, mmHg · cm · sec), CI of the hypopharynx and UES (hypopharyngeal CI), relaxation interval of UES, median intrabolus pressure and nadir pressure at UES was performed using MATLAB. Results Mesopharyngeal CIs for barium and yogurt swallows were significantly lower than those for water swallows (both P < 0.05). Hypopharyngeal CIs for water swallows were significantly lower than those for barium swallows (P = 0.004), and median bolus pressure at UES for barium swallows was significantly higher than that for water and yogurt swallows (both P < 0.05). Furthermore, hypopharyngeal CI and median intrabolus pressure at UES were significantly related to age for 3 swallows (all P < 0.01 and P < 0.05, respectively). A significant negative correlation was also noted between nadir pressure at UES and age for water and yogurt swallows (all P < 0.05). Conclusions Manometric measurement of the pharynx and UES varies with respect to viscosity. Moreover, age could be a confounding variable in the interpretation of pharyngeal manometry. PMID:24847841

  1. Lead Barium Potassium Sodium Niobate Ceramics for Piezoelectric Applications

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, K.; Vallisnath, N.; Prasad, T. N. V. K. V.; Ch. Varada Rajulu, K.; Tilak, B.; Lee, Joon Hyung

    This paper reports a systematic study of tungsten bronze morphotropic phase boundary (MPB) system Pb2-2X-3Y/2Ba2xREyK1-xNaxNb5O15, where, x = 0.20, 0.25, 0.30, RE = Pr and Bi and y = 0.05 and their structure, microstructure, hysteresis, dielectric, piezoelectric, and Pyroelectric properties. Enhanced piezoelectric constants kp, kt, k31, d31, d33, g31, g33, S11 E as 30.8%, 47.6%, 18.9%, 57 × 10-12 C/N, 159 × 10-12 C/N, 6.89 × 10-3 mV/N, 19.23 × 10-3 mV/N, and 13.88 × 10-12 m2/N respectively are observed in the composition for which y = 0, and x = 0.30, which is above MPB. Also, a change in thickness, 0.0159 μm has been developed for a thickness of the sample 1.2 mm, d33 = 159 × 10-12 C/N and for an applied voltage of 100 V. The same material produces a length extension, 0.0475 μm for d31 = 57 × 10-12 C/N, l = 10 mm, t = 1.2 mm, for an applied voltage of 100 V. Thus the material may be useful for a piezoelectric transducer. Enhanced piezoelectric coefficients, d31 = 96 × 10-12 C/N and g33 = 12.95 × 10-3 mV/N are also observed in the composition for which RE = Pr and x = 0.25.

  2. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  3. Magnetic moment evolution and spin freezing in doped BaFe2As2

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Ishii, Kenji; ...

    2017-08-14

    Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μ bare in electron- and hole-doped BaFe 2As 2. At low temperature, μ bare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μ bare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe 2As 2, as well as the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.

  4. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough*,**

    PubMed Central

    Nin, Carlos Shuler; Marchiori, Edson; Irion, Klaus Loureiro; Paludo, Artur de Oliveira; Alves, Giordano Rafael Tronco; Hochhegger, Daniela Reis; Hochhegger, Bruno

    2013-01-01

    OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough. METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks) were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons. RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6%) of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6%) of the patients, whereas the treatment was ineffective in 1 (8.4%). We observed no complications related to barium swallow, such as contrast aspiration. CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies. PMID:24473762

  5. Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data.

    PubMed

    Poddalgoda, Devika; Macey, Kristin; Assad, Henry; Krishnan, Kannan

    2017-06-01

    The objectives of the present work were: (1) to assemble population-level biomonitoring data to identify the concentrations of urinary and plasma barium across the general population; and (2) to derive biomonitoring equivalents (BEs) for barium in urine and plasma in order to facilitate the interpretation of barium concentrations in the biological matrices. In population level biomonitoring studies, barium has been measured in urine in the U.S. (NHANES study), but no such data on plasma barium levels were identified. The BE values for plasma and urine were derived from U.S. EPA's reference dose (RfD) of 0.2 mg/kg bw/d, based on a lower confidence limit on the benchmark dose (BMDL 05 ) of 63 mg/kg bw/d. The plasma BE (9 μg Ba/L) was derived by regression analysis of the near-steady-state plasma concentrations associated with the administered doses in animals exposed to barium chloride dihydrate in drinking water for 2-years in a NTP study. Using a human urinary excretion fraction of 0.023, a BE for urinary barium (0.19 mg/L or 0.25 mg/g creatinine) was derived for US EPA's RfD. The median and the 95 th percentile barium urine concentrations of the general population in U.S. are below the BE determined in this study, indicating that the population exposure to inorganic barium is expected to be below the exposure guidance value of 0.2 mg/kg bw/d. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Radiographic Appearance of Interocclusal Record Materials for Cone Beam Computed Tomography-Guided Implant Surgeries.

    PubMed

    Mohunta, Vrinda V; McGlumphy, Edwin A; Kim, Do-Gyoon; Azer, Shereen S

    To select an ideal interocclusal record material for cone beam computed tomography (CBCT)-guided implant surgery based on the material's radiodensity on the scan. Twelve commonly used interocclusal record materials were used for this investigation: two were waxes, one was polyether, and nine were polyvinyl-siloxane-type materials. A scan template was fabricated by duplicating existing dentures in Ortho-Jet acrylic resin mixed with 30% barium powder for the teeth and 10% barium powder for the denture base between the teeth and the tissue. An interocclusal record was fabricated with each material, and the same template was used to obtain a CBCT scan with an ICAT machine (Imaging Sciences International) at 0.3 voxel and 14-bit depth settings. Twelve CBCT scans were obtained and analyzed. The radiopacity of the barium teeth was used as a control and was compared with the opacity of the 12 materials using a paired t test. A post hoc analysis of variance (ANOVA) test was used to compare the densities of the various materials with each other. There was a statistically significant difference between the radiopacity of barium teeth (gray value: 1,959.475) and that of Modelling Wax (gray value: 750; P = .0026), Aluwax (gray value: 795.22; P = .0022), Blu-Bite CT (gray value: 1,105; P = .005), Ramitec (gray value: 1,105.3; P = .08), Memosil 2 (gray value: 1,202; P = .01) followed by Reprosil (gray value: 1,407.73; P = .01). Compared with the barium teeth, there was no statistically significant difference between the densities of Futar D (gray value: 1,866.5; P = .51), Jet Bite (gray value: 1,660.04; P = .08), Lab-Putty (gray value: 1,402.14; P = .19), and Memoreg 2 (gray value: 1,754.72; P = .1). The highest radiodensity was seen with Blu-Mousse (gray value: 2,949; P = .007) and Take 1 (gray value: 2,229.85; P = .025), which were also significantly different from the density of the barium teeth but in the opposite direction, making them more opaque. Within the limitations of this in vitro study, the most radiolucent appearance of Modelling Wax, Aluwax, Memosil 2, Blu-Bite CT, and Ramitec made them the suitable materials of choice of those tested, as the interocclusal registration record during CBCT scanning allowed clear visualization of barium teeth.

  7. Structural and magnetic phase transitions near optimal superconductivity in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; ...

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe 2(As 1-xP x) 2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (T s) and paramagnetic to antiferromagnetic (AF, T N) transitions in BaFe 2(As 1-xP x) 2 are always coupled and approach to T N ≈ T s ≥ T c (≈ 29 K) formore » x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggest that AF order in BaFe 2(As 1-xP x) 2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  8. Behavior of lanthanum containing barium stannate nanoparticles synthesized by cetyltriammonium bromide assisted wet chemistry route

    NASA Astrophysics Data System (ADS)

    Kumar, Astakala Anil; Kumar, Ashok; Quamara, J. K.

    2018-02-01

    In present study, we report dielectric, ferroelectric and pyroelectric behavior of pristine and La3+ containing barium stannate nanoparticles synthesized via wet chemical route involving cetyltriammonium bromide assisted thermal decomposition of binary precursors. The X-ray diffraction patterns of pristine and La3+ (2, 4 and 6 at%) doped BaSnO3 nanoparticles showed the formation of cubic perovskite phase. On substitution of Ba2+ lattice sites by La3+ at the La content of 6 at%, the sample exhibited fourfold increase in conductivity in comparison to pristine BaSnO3. Polarization hysteresis (P-E) curves of La containing barium stannate nanoparticles showed anti-ferroelectric behavior. The pyroelectric coefficient of pristine and La (2, 4 and 6 at%) containing BaSnO3 nanoparticles at 473 K were found to be 7.8, 11.6, 14.1 and 17.2 μCm-2K-1, respectively. Further, the responsivity and detectivity values were higher in comparison to the materials, such as AlN, GaN, CdS and ZnO.

  9. Dielectric and Impedance Characteristics of Nickel-Modified BiFeO3-BaTiO3 Electronic Compound

    NASA Astrophysics Data System (ADS)

    Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N.

    2018-01-01

    The temperature- and field-dependent capacitive, resistive and conducting characteristics of nickel-modified binary electronic systems of bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) have been investigated using dielectric and impedance spectroscopy techniques. The orthorhombic crystal structures of the solid solution (Bi1-2xNixBax)(Fe1-2xTi0.2x)O3 (with x = 0.10, 0.15, 0.20 and 0.25) have been identified from powder x-ray crystallography. The micrographs exhibit the development of dense samples with reduced grain size for higher percentage of Ni in the BiFeO3-BaTiO3. The stoichiometric content of each sample has been realized using the energy dispersive x-ray technique. The relationship between micro-structural study and frequency-temperature-dependent electrical properties of the compound has revealed a negative temperature coefficient of resistance behavior. A non-Debye-type relaxation process is observed from the Niquist plot. The studied compound presents important dielectric properties for the formulation of electronic devices.

  10. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.

    2009-02-01

    Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.

  11. Investigating the effect of V{sub 2}O{sub 5} addition on sodium barium borosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Rumu, E-mail: rumuhalder24feb@gmail.com; Sengupta, Pranesh; Dey, G. K.

    2016-05-23

    V{sub 2}O{sub 5} doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V{sub 2}O{sub 5} but a phase separation is observed when V{sub 2}O{sub 5} doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O{sup −} Na{sup +}/Ba{sup 2+} linkagesmore » are formed.« less

  12. Interpretation and modelling of fission product Ba and Mo releases from fuel

    NASA Astrophysics Data System (ADS)

    Brillant, G.

    2010-02-01

    The release mechanisms of two fission products (namely barium and molybdenum) in severe accident conditions are studied using the VERCORS experimental observations. Barium is observed to be mostly released under reducing conditions while molybdenum release is most observed under oxidizing conditions. As well, the volatility of some precipitates in fuel is evaluated by thermodynamic equilibrium calculations. The polymeric species (MoO 3) n are calculated to largely contribute to molybdenum partial pressure and barium volatility is greatly enhanced if the gas atmosphere is reducing. Analytical models of fission product release from fuel are proposed for barium and molybdenum. Finally, these models have been integrated in the ASTEC/ELSA code and validation calculations have been performed on several experimental tests.

  13. Prompt ionization in the CRIT II barium releases. [Critical Ionization Tests

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-01-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  14. Tuning operating temperature of BaSnO3 gas sensor for reducing and oxidizing gases

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Pugh, David; Dasgupta, Daipayan; Sarin, Neha; Parkin, Ivan; Luthra, Vandna

    2018-05-01

    Barium stannate (BaSnO3) was prepared by solid state ceramic route. The crystalline phase of the prepared sample was confirmed by X-Ray Diffraction (XRD) pattern. Gas sensing behaviour of barium stannate was investigated for reducing and oxidizing gases; such as butane, ethanol, CO and NO2; from 5 ppm to 50 ppm levels of concentration. Barium stannate sensors were optimized for highest responsiveness by varying operating temperature between 270 °C to 550 °C. Its highest response was observed for ethanol at 300°C. The gas sensing response of ethanol was better than other gases at all the operating temperatures. Such studies in conjunction with gas sensing tests can be used for setting the optimum operating temperatures and can be used for low concentration ethanol sensing applications.

  15. Optical properties of white organic light-emitting devices fabricated utilizing a mixed CaAl12O19:Mn4+ and Y3Al5O12:Ce3+ color conversion layer.

    PubMed

    Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W

    2013-06-01

    White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.

  16. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Park, W. K.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, Suchitra E.; Greene, L. H.

    2010-05-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe2As2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other with a V2/3 background conductance universally observed, extending even up to 100 meV for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe2As2 and superconducting (Ba0.6K0.4)Fe2As2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba0.6K0.4Fe2As2, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ~ 3.0-4.0 meV with 2Δ0/kBTc ~ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe0.9Co0.1)2As2, the G(V) curves typically display a zero-bias conductance peak.

  17. Kinetics of lithium peroxide monohydrate thermal decomposition

    NASA Astrophysics Data System (ADS)

    Nefedov, Roman; Posternak, Nikolay; Ferapontov, Yuriy

    2017-11-01

    Topochemical dehydration of lithium peroxide was studied to determine kinetic parameters at the range of temperatures from 90°C to 147°C in non-isothermal conditions by derivatographic method. The study was conducted to select optimal conditions of lithium peroxide synthesis in dehydration reaction of triple LiOH-H2O2-H2O system in ultra-high frequency radiation field. Conditions of dehydration reaction were caused by the thermal conductivity of LiOH -H2O2-H2O system. It is determined that dehydration process runs close to the first order reaction (n=0.85±0.03). The activation energy and pre-exponential factor values were found as Eak = 86.0 ± 0.8 kJ/mol, k0 = (2.19 ± 0.16) .1011 min-1, correspondingly. It is supposed that there is a similarity between the dehydration mechanism of lithium peroxide monohydrate and peroxide hydrates of alkaline-earth metals (calcium, barium and strontium).

  18. Structure and Luminescence Properties of New Green-Emitting Phosphor BaAl12O19:Tb

    NASA Astrophysics Data System (ADS)

    Xiao, Linjiu; He, Mingrui; Tian, Yanwen; Chen, Yongjie; Karaki, Tomoaki; Zhang, Liqing; Wang, Ning

    2007-09-01

    New green-emitting BaAl12O19:Tb phosphors were prepared by using the sol-gel method, and their structure and luminescence property were characterized by X-ray diffraction (XRD) analysis and fluorescence spectrometry. The results of XRD analysis revealed that a Ba1-xAl12O19:Tbx crystal structure was obtained at 1300 °C and Tb3+ ions substituted Ba2+ ions into the BaAl12O19 phase in the ion range x=0.005--0.05. The excitation peak of BaAl12O19:Tb was a wide band at approximately 240 nm, originating from the 4 f8-4 f75d1 transition of Tb3+. The emission spectrum consisted of eight emission peaks, originating from the 5D3-7Fi (i=6,5,4,3) and 5D4-7Fj ( j=6,5,4,3) transitions of Tb3+. The emission intensity of BaAl12O19:Tb phosphors at 543 nm was strongest when the phosphors were crystallized at 1300 °C for 2 h, and the content of Tb3+ was 2 mol %.

  19. Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.

    PubMed

    Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid

    2014-01-01

    Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.

  20. Improvement of kidney redox states contributes to the beneficial effects of dietary pomegranate peel against barium chloride-induced nephrotoxicity in adult rats.

    PubMed

    Elwej, Awatef; Ghorbel, Imen; Marrekchi, Rim; Boudawara, Ons; Jamoussi, Kamel; Boudawara, Tahia; Zeghal, Najiba; Sefi, Mediha

    2016-07-01

    Pomegranate (Punica granatum L., Punicaceae) is known to possess enormous antioxidant activity. This study investigates the protective effects of pomegranate peel against barium-mediated renal damage. Rats were exposed during 21 days either to barium (67 ppm), barium + pomegranate peel (5% of diet) or to only pomegranate peel (5% of diet). Exposure rats to barium provoked a significant increase in kidney malondialdehyde (MDA), advanced oxidation protein products (AOPP) and hydrogen peroxide (H2O2) levels. Creatinine, urea and uric acid levels in plasma and urine were also modified. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, non protein thiol (NPSH) and reduced glutathione (GSH) levels were decreased. Metallothionein (MT) production was increased and their genes expressions were up-regulated. All these changes were improved by dietary pomegranate peel. Moreover, the distorted histoarchitecture in kidney of barium group was alleviated by pomegranate peel. Our data showed, for the first time, the protective effects of pomegranate peel against barium-induced renal oxidative damage.

  1. Split-Ring Resonator Loaded Miniaturised Slot for the Slotted Waveguide Antenna Stiffened Structure

    DTIC Science & Technology

    2011-03-01

    explains the material analysis of BST varactors using the new sputterer so the varactors can be fabricated at RMIT university and utilised for the SRR...44-0093 (*) - Barium Strontium Titanium Oxide - Ba0.77Sr0.23TiO3 - Y: 0.10 % - d x by: 1. - WL: 1.5406 - Tetragonal - Operations: Import D:\\Sensors...unknown unknown BST on sapphire - 2 44-0093 (*) - Barium Strontium Titanium Oxide - Ba0.77Sr0.23TiO3 - Y: 0.10 % - d x by: 1. - WL: 1.5406 - 0

  2. Improving superconductivity in BaFe2As2-based crystals by cobalt clustering and electronic uniformity.

    PubMed

    Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N  = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c  = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .

  3. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE PAGES

    Li, L.; Zheng, Q.; Zou, Q.; ...

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  4. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Zheng, Q.; Zou, Q.

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  5. Study on improving the heat storage property of Ba(OH)2·8H2O with paraffin

    NASA Astrophysics Data System (ADS)

    Cui, Kaixuan; Liu, Liqiang; Sun, Mingjie

    2017-12-01

    Barium hydroxide octahydrate is the crystalline hydration salt with the highest latent heat density within the phase change temperature interval of 0-120 °C and it has a broad application prospect as a phase-change material (PCM). Firstly, red copper test tube was used for the melting—solidification heat cycle experiment in this paper, which was verified by the corrosion experiment of barium hydroxide solution. After the thermogravimetric analysis, it is found that paraffin can effectively reduce the evaporation escape of barium hydroxide octahydrate crystal water within 100 °C. Repeated heat cycle experiments indicated that the paraffin with larger coverage mass fraction can reduce the inhibiting effect of barium hydroxide octahydrate crystal water more obviously. X-ray diffraction analysis indicated that the phase composition of the barium hydroxide octahydrate sample covered with 50 wt% paraffin nearly had no change, while the sample not covered with paraffin has the weight loss ratio of 34.67% and reacted with CO2 in the air, generating BaCO3. In summary, paraffin can not only inhibit the evaporation of crystal water, but also effectively isolate the air to prevent barium hydroxide octahydrate from denaturation. This greatly improved the practicability of barium hydroxide octahydrate as a PCM, laying a good foundation for the further application of barium hydroxide octahydrate.

  6. Nematic fluctuations and phase transitions in LaFeAsO: A Raman scattering study

    DOE PAGES

    Kaneko, U. F.; Gomes, P. F.; Garcia-Flores, A. F.; ...

    2017-07-10

    Raman scattering experiments on LaFeAsO with distinct antiferromagnetic ( T AFM=140 K) and tetragonal-orthorhombic ( T S=155 K) transitions show a quasielastic peak (QEP) in B 2g symmetry (2 Fe tetragonal cell) that fades away below ~ T AFM and is ascribed to electronic nematic fluctuations. A scaling of the reported shear modulus with the T dependence of the QEP height rather than the QEP area indicates that magnetic degrees of freedom drive the structural transition. As a result, the large separation between T S and T AFM in LaFeAsO compared to BaFe 2As 2 manifests itself in slower dynamicsmore » of nematic fluctuations in the former.« less

  7. Unconventional superconductivity in iron pnictides: Magnon mediated pairing

    NASA Astrophysics Data System (ADS)

    kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban

    2018-02-01

    We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.

  8. Vortex flux dynamics and harmonic ac magnetic response of Ba(Fe 0.94Ni 0.06) 2As 2 bulk superconductor

    DOE PAGES

    Nikolo, Martin; Zapf, Vivien S.; Singleton, John; ...

    2016-07-22

    Vortex dynamics and nonlinear ac response are studied in a Ba(Fe 0.94Ni 0.06) 2As 2( T c= 18.5 K) bulk superconductor in magnetic fields up to 12 T via ac susceptibility measurements of the first ten harmonics. A comprehensive study of the ac magnetic susceptibility and its first ten harmonics finds shifts to higher temperatures with increasing ac measurement frequencies (10 to 10,000 Hz) for a wide range of ac (1, 5, and 10 Oe) and dc fields (0 to 12 T). The characteristic measurement time constant t1 is extracted from the exponential fit of the data and linked tomore » vortex relaxation. The Anderson-Kim Arrhenius law is applied to determine flux activation energy E a/k as a function dc magnetic field. The de-pinning, or irreversibility lines, were determined by a variety of methods and extensively mapped. The ac response shows surprisingly weak higher harmonic components, suggesting weak nonlinear behavior. Lastly, our data does not support the Fisher model; we do not see an abrupt vortex glass to vortex liquid transition and the resistivity does not drop to zero, although it appears to approach zero exponentially.« less

  9. Effect of 3d doping on the electronic structure of BaFe2As2.

    PubMed

    McLeod, J A; Buling, A; Green, R J; Boyko, T D; Skorikov, N A; Kurmaev, E Z; Neumann, M; Finkelstein, L D; Ni, N; Thaler, A; Bud'ko, S L; Canfield, P C; Moewes, A

    2012-05-30

    The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu.

  10. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads.

    PubMed

    Majidnia, Zohreh; Idris, Ani; Majid, MuhdZaimiAbd; Zin, RosliMohamad; Ponraj, Mohanadoss

    2015-11-01

    In this paper, both maghemite (γ-Fe2O3) and titanium oxide (TiO2) nanoparticles were synthesized and mixed in various ratios and embedded in PVA and alginate beads. Batch sorption experiments were applied for removal of barium ions from aqueous solution under sunlight using the beads. The process has been investigated as a function of pH, contact time, temperature, initial barium ion concentration and TiO2:γ-Fe2O3 ratios (1:10, 1:60 and 1). The recycling attributes of these beads were also considered. Furthermore, the results revealed that 99% of the Ba(II) was eliminated in 150min at pH 8 under sunlight. Also, the maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the process and reused for at least 7 times without significant losses of their initial properties. The reduction of Ba(II) with maghemite and titania PVA-alginate beads fitted the pseudo first order and second order Langmuir-Hinshelwood (L-H) kinetic model. Copyright © 2015. Published by Elsevier Ltd.

  11. Composition variations in pulsed-laser-deposited Y-Ba-Cu-O thin films as a function of deposition parameters

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Jones, B. B.; Hunt, B. D.; Barner, J. B.; Vasquez, R. P.; Bajuk, L. J.

    1992-01-01

    The composition of pulsed-ultraviolet-laser-deposited Y-Ba-Cu-O films was examined as a function of position across the substrate, laser fluence, laser spot size, substrate temperature, target conditioning, oxygen pressure and target-substrate distance. Laser fluence, laser spot size, and substrate temperature were found to have little effect on composition within the range investigated. Ablation from a fresh target surface results in films enriched in copper and barium, both of which decrease in concentration until a steady state condition is achieved. Oxygen pressure and target-substrate distance have a significant effect on film composition. In vacuum, copper and barium are slightly concentrated at the center of deposition. With the introduction of an oxygen background pressure, scattering results in copper and barium depletion in the deposition center, an effect which increases with increasing target-substrate distance. A balancing of these two effects results in stoichiometric deposition.

  12. Fusion enhancement at near and sub-barrier energies in 19O + 12C

    DOE PAGES

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; ...

    2016-12-12

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.

  13. Site Investigation Report. Volume 1. 120th Fighter Interceptor Group, Montana Air National Guard, International Airport, Great Falls, Montana

    DTIC Science & Technology

    1992-02-01

    poisoning. Chromium . Cr is a transition element, occurring in nature principally as the trivalent ion Cr(III), although valence states ranging from -2...mg/kg 100 - 3,000 mg/kg Chromium 12.9 - 20.7 mg/kg 1 - 1,000 mg/kg Copper 6.9 - 18.6 mg/kg 2 - 1,000 mg/kg Lead 5.5 - 12.2 mg/kg 10 - 200 mg/kg Nickel...6.5 S 10.3 S 5.8 80 Barium ND-1,231 241 246 150 5,600 Cadmium ND ND 24.2 0.76 B 40 Chromium 8.7-22.7 13.8 64.9 14.5 8E04 Copper 3.3-19.7 16.1 66.9

  14. Precipitation method for barium metaborate (BaB2O4) synthesis from borax solution

    NASA Astrophysics Data System (ADS)

    Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye

    2013-12-01

    In this study, barium metaborate (BaB2O4, BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β-BaB2O4 single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na2B4O7ṡ10H2O, BDH) and barium chloride (BaCI2ṡ2H2O, Ba) in the glass-batch reactor with stirring. The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique.

  15. Hydrogen-Bonding System in Barium Nitroprusside 6.5-Hydrate

    NASA Astrophysics Data System (ADS)

    Navaza, A.; Chevrier, G.; Guida, J. A.

    1995-01-01

    The hydrogen-bond system in barium nitroprusside 6.5-hydrate, [Ba 2(H 2O) 10][Fe(CN) 5NOl 23H 2O], has been determined by neutron diffraction on monocrystals. Results show the compound to be orthorhombic, space group Cmc2 1 (36), a = 16.008(43), b = 11.550(3), c = 16.648(5) Å, V = 3078(3) Å 3, Z = 4. Refinement of the structure, using 973 observed structure factors, converged to the final RW factor of 0.058. The 2 independent barium atoms, separated 4.60 Å, share a plane of three water molecules forming dimeric tetravalent units. The nitroprusside anions deviate from the C4r ideal symmetry, but this deviation is less than that observed in other nitroprussides. The 10 crystallographically independent water molecules have been classified according to their coordination. Analysis of the H-bond strength, together with a comparison of the packing of the two known barium nitroprusside hydrates (3-hydrate and 6.5-hydrate), suggests that the water molecules labeled as W(1), W(7), W(8), and W(9) could be lost during the partial dehydration of 6.5-hydrate into 3-hydrate.

  16. Tuning the magnetism of the top-layer FeAs on BaFe2As2 (001): First-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Jing; Liu, Kai; Lu, Zhong-Yi

    2018-04-01

    Magnetism may play an important role in inducing the superconductivity in iron-based superconductors. As a prototypical system, the surface of BaFe2As2 provides a good platform for studying related magnetic properties. We have designed systematic first-principles calculations to clarify the surface magnetism of BaFe2As2 (001), which previously has received little attention in comparison with surface structures and electronic states. We find that the surface environment has an important influence on the magnetic properties of the top-layer FeAs. For As-terminated surfaces, the magnetic ground state of the top-layer FeAs is in the staggered dimer antiferromagnetic (AFM) order, distinct from that of the bulk, while for Ba-terminated surfaces the collinear (single-stripe) AFM order is the most stable, the same as that in the bulk. When a certain coverage of Ba or K atoms is deposited onto the As-terminated surface, the calculated energy differences among different AFM orders for the top-layer FeAs on BaFe2As2 (001) can be much reduced, indicating enhanced spin fluctuations. To compare our results with available scanning tunneling microscopy (STM) measurements, we have simulated the STM images of several structural/magnetic terminations. Astonishingly, when the top-layer FeAs is in the staggered dimer AFM order, a stripe pattern appears in the simulated STM image even when the surface Ba atoms adopt a √{2 }×√{2 } structure, while a √{2 }×√{2 } square pattern comes out for the 1 ×1 full As termination. Our results suggest: (i) the magnetic state at the BaFe2As2 (001) surface can be quite different from that in the bulk; (ii) the magnetic properties of the top-layer FeAs can be tuned effectively by surface doping, which may likely induce superconductivity at the surface layer; (iii) both the surface termination and the AFM order in the top-layer FeAs can affect the STM image of BaFe2As2 (001), which needs to be taken into account when identifying the surface termination.

  17. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements . Our system exhibits flux-film-substrate interactions that can lead to dramatic changes to the microstructure. This effect is especially pronounced onc -sapphire, with Al diffusion from the substrate leading to formation of an epitaxial BaAl2O4 second phase at the substrate-film interface. The formation of this second phase in the presence of a liquid phase seeds {111} twins that drive abnormal grain growth. The orientation of the sapphire substrate determines the BaAl2O 4 morphology, enabling control the abnormal grain growth behavior. CuO additions leads to significant grain growth at 900 °C, with average grain size approaching 500 nm. The orthorhombic-tetragonal phase transition is clearly observable in temperature dependent measurements and both linear and nonlinear dielectric properties are improved. All films containing CuO are susceptible to aging. A number of other systems were investigated for efficacy at temperatures below 900 °C. Pulsed laser deposition was used to study flux + BaTiO 3 targets, layered flux films, and in situ liquids. RF-magnetron sputtering using a dual-gun approach was used to explore integration on flexible foils with Ba1-xSrxTiO3. Many of these systems were based on the BaO-B2O3 system, which has proven effective in thin films, multilayer ceramic capacitors, and bulk ceramics. Modifiers allow tailoring of the microstructure at 900 °C, however no compositions were found, and no reports exist in the open literature, that provide significant grain growth or densification below 900 °C. Liquid phase fluxes offer a promising path forward for low temperature processing of barium titanate, with the ultimate goal of integration with metalized silicon substrates. This work demonstrates significant improvements to dielectric properties and the necessity of understanding interactions in the film-flux-substrate system.

  18. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Synthesis of a ferrolite: A zeolitic all-iron framework

    DOE PAGES

    Latshaw, Allison M.; Chance, W. Michael; Morrison, Gregory; ...

    2016-09-21

    Here, crystals of the first sodalite-type zeolite containing an all-iron framework, a ferrolite, Ba 8(Fe 12O 24)Na y(OH)6 • xH 2O, were synthesized using the hydroflux method in nearly quantitative yield. Ba 8(Fe 12O 24)Na y(OH) 6 • xH 2O crystallizes in the cubic space group Pm3¯m with α = 10.0476(1) Å. Slightly distorted FeO 4 tetrahedra are linked to form Fe 4O 4 and Fe 6O 6 rings, which in turn yield channels and internal cavities that are characteristic of the sodalite structure. Barium, sodium, and hydroxide ions and water molecules are found in the channels and provide chargemore » balance. Magnetic measurements indicate that the ferrolite exhibits magnetic order up to at least 700 K, with the field-cooled and zero-field-cooled curves diverging. Analysis of the 57Fe Mossbauer spectra revealed two spectral components that have equal spectral areas, indicating the presence of two subsets of iron centers in the structure. Dehydrated versions of the ferrolite were also prepared by heating the sample.« less

  20. Heavy metals and mineral elements not included on the nutritional labels in table olives.

    PubMed

    López-López, Antonio; López, Rafael; Madrid, Fernando; Garrido-Fernández, Antonio

    2008-10-22

    The average contents, in mg/kg edible portion (e.p.), of elements not considered for nutritional labeling in Spanish table olives were as follows: aluminum, 71.1; boron, 4.41; barium, 2.77; cadmium, 0.04; cobalt, 0.12; chromium, 0.19; lithium, 6.56; nickel, 0.15; lead, 0.15; sulfur, 321; tin, 18.4; strontium, 9.71; and zirconium, 0.04. Sulfur was the most abundant element in table olives, followed by aluminum and tin (related to green olives). There were significant differences between elaboration styles, except for aluminum, tin, and sulfur. Ripe olives had significantly higher concentrations (mg/kg e.p.) of boron (5.32), barium (3.91), cadmium (0.065), cobalt (0.190), chromium (0.256), lithium (10.01), nickel (0.220), and strontium (10.21), but the levels of tin (25.55) and zirconium (0.039) were higher in green olives. The content of contaminants (cadmium, nickel, and tin) was always below the maximum limits legally established. The discriminant analysis led to an overall 86% correct classification of cases (80% after cross-validation).

  1. Electrodeposition of titania and barium titanate thin films for high dielectric applications

    NASA Astrophysics Data System (ADS)

    Roy, Biplab Kumar

    In order to address the requirement of a low-temperature low-cost cost processing for depositing high dielectric constant ceramic films for applications in embedded capacitor and flexible electronics technology, two different chemical bath processes, namely, thermohydrolytic deposition (TD) and cathodic electrodeposition (ED) have been exploited to generate titania thin films. In thermohydrolytic deposition technique, titania films were generated from acidic aqueous solution of titanium chloride on F: SnO2 coated glass and Si substrates by temperature assisted hydrolysis mechanism. On the other hand, in cathodic electrodeposition, in-situ electro-generation of hydroxyl ions triggered a fast deposition of titania on conductive substrates such as copper and F: SnO2 coated glass from peroxotitanium solution at low temperatures (˜0°C). In both techniques, solution compositions affected the morphology and crystallinity of the films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have been employed to perform such characterization. As both processes utilized water as solvent, the as-deposited films contained hydroxyl ligand or physically adsorbed water molecules in the titania layer. Besides that, electrodeposited films contained peroxotitanium bonds which were characterized by FTIR studies. Although as-electrodeposited titania films were X-ray amorphous, considerable crystallinity could be generated by heat treatment. The films obtained from both the processes showed v moderately high dielectric constant (ranging from 9-30 at 100 kHz) and high breakdown voltage (0.09-0.15 MV/cm) in electrical measurements. To further improve the dielectric constant, electrodeposited titania films were converted to barium titanate films in high pH barium ion containing solution at 80-90°C. The resultant film contained cubic crystalline barium titanate verified by XRD analysis. Simple low-temperature hydrothermal technique of conversion worked perfect for F:SnO2 coated glass substrates, but in this process, high pH precursor caused corrosion in copper substrates and deposition of copper oxide in the final films. To overcome this, an innovative technique, which incorporates an electrochemical protection of substrates by application of cathodic potential in addition to common hydrothermal conversion, has been adopted. Films generated by common hydrothermal technique on F:SnO 2/glass substrates and via electrochemical-hydrothermal technique on Cu substrates showed promising dielectric behavior. Apart from the experimental studies, this report also includes various thermodynamic studies related to hydrolysis and precipitation of titanium ion, protection of copper during titania deposition and barium titanate conversion. Gibbs free energy based model and speciation studies were used to understand supersaturation which is a controlling factor in thermohydrolytic deposition. Similar approaches were utilized to understand the possibilities of barium titanate formation at different Ba2+ concentrations with different pH conditions. Possibilities of atmospheric carbon dioxide incorporation to generate barium carbonate instead of barium titanate formation were also determined by mathematical calculations. Whenever relevant, results of such theoretical analysis were utilized to design the experiment or to explain the experimental observations.

  2. Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe 1.94Co 0.06) 2As 2

    DOE PAGES

    Kyung, W. S.; Huh, S. S.; Koh, Y. Y.; ...

    2016-08-15

    The transition critical temperature (TC ) in a FeSe monolayer on SrTiO 3 is enhanced up to 100 K. High TC is also found in bulk iron chalcogenides with similar electronic structure to that of monolayer FeSe, which suggests that higher TC may be achieved through electron doping, pushing the Fermi surface (FS) topology towards leaving only electron pockets. Such observation, however, has been limited to chalcogenides and is in contrast with the iron pnictides for which the maximum TC is achieved with both hole and electron pockets forming considerable FS nesting instability. Here, we report angle-resolved photoemission (ARPES) characterizationmore » revealing a monotonic increase of TC from 24 to 41.5 K upon surface doping on optimally doped Ba(Fe 1-xCo x) 2As 2 . The doping changes the overall FS topology towards that of chalcogenides through a rigid downward band shift. Our findings suggest that higher electron doping and concomitant changes in FS topology are favorable conditions for the superconductivity, not only for iron chalcogenides but also for iron pnictides.« less

  3. Phase diagram of the isovalent phosphorous-substituted 122-type iron pnictides

    DOE PAGES

    Zhao, YuanYuan; Tai, Yuan -Yen; Ting, C. S.

    2015-05-11

    Recent experiments demonstrated that the isovalent doping system gives a similar phase diagram as the heterovalent doped cases. For example, with the phosphorous (P) doping, the magnetic order in BaFe 2(As 1–xP x) 2 compound is first suppressed, then the superconductivity dome emerges to an extended doping region but eventually it disappears at large x. With the help of a minimal two-orbital model for both BaFe 2As 2 and BaFe 2P 2, together with the self-consistent lattice Bogoliubov-de Gennes (BdG) equation, we calculate the phase diagram against the P content x in which the doped isovalent P atoms are treatedmore » as impurities. Furthermore, we show that our numerical results can qualitatively compare with the experimental measurements.« less

  4. Superconducting properties of Ba(Fe1-xNix)2As2 thin films in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Richter, Stefan; Kurth, Fritz; Iida, Kazumasa; Pervakov, Kirill; Pukenas, Aurimas; Tarantini, Chiara; Jaroszynski, Jan; Hänisch, Jens; Grinenko, Vadim; Skrotzki, Werner; Nielsch, Kornelius; Hühne, Ruben

    2017-01-01

    We report on the electrical transport properties of epitaxial Ba(Fe1-xNix)2As2 thin films grown by pulsed laser deposition in static magnetic fields up to 35 T. The thin film shows a critical temperature of 17.2 K and a critical current density of 5.7 × 105 A/cm2 in self field at 4.2 K, while the pinning is dominated by elastic pinning at two-dimensional nonmagnetic defects. Compared to the single-crystal data, we find a higher slope of the upper critical field for the thin film at a similar doping level and a small anisotropy. Also, an unusual small vortex liquid phase was observed at low temperatures, which is a striking difference to Co-doped BaFe2As2 thin films.

  5. Growth and characterization of high-performance photorefractive BaTiO3 crystals

    NASA Technical Reports Server (NTRS)

    Warde, C.; Garrett, M. H.; Chang, J. Y.; Jenssen, H. P.; Tuller, H. L.

    1991-01-01

    Barium titanate has been used for many nonlinear optical applications primarily because it has high grain and high self-pumped phase conjugate reflectivities. However, barium titanate has had a relatively slow response time, and thus low sensitivity. Therefore, it has not been suited to real-time operations. In this report we will describe the modifications in crystal growth, doping, reduction, and poling that have produced barium titanate crystals with the fastest photorefractive response time reported to date, approximately 21 microseconds with a beam-coupling gain coefficient of 38.7 cm(exp -1) and the highest sensitivity reported to date of 3.44 cm(exp 3)/kJ. The sensitivity of these barium titanate crystals is comparable to or greater than other photorefractive oxides. We will show, for the first time, beam-coupling in barium titanate at video frame rates. We infer from response time measurements that barium titanate has a phonon limited mobility. Also, photorefractive response time measurements as a function of the crystallographic orientation and grating wave vector for our cobalt-doped oxygen reduced crystals indicate that their faster response time arise because of an increase in the free carrier lifetime.

  6. Synthesis and Characterization of Iron Doped Nano Barium Titanate Through Mechanochemical Route

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumya; Ghosh, S.; Ghosh, C.; Mitra, M. K.

    2013-04-01

    Mechanochemical activation was used to prepare Fe doped barium titanate with intense milling in high energy planetary ball mill. Calcination was done at 1250°C for 30 min to obtain BaO, followed by milling with titania, at 400 rpm for 3 and 6 h. Ferric oxide was used for Fe doping. Annealing was done on the milled sample at 650, 750 and 850 °C for 3 and 6 h to generate stoichiometric compound of barium titanate phase. Fe doped barium titanate results in dense cluster of irregular polygonal shape morphology while morphology was spherical in nature for undoped sample. UV-VIS spectra analysis was carried out to determine bandgap (3.93 eV for undoped BT and 3.88 eV for Fe doped BT) followed by emission-excitation of the sample by fluorometric analysis.

  7. Upper critical and irreversibility fields in Ni- and Co-doped pnictide bulk superconductors

    NASA Astrophysics Data System (ADS)

    Nikolo, Martin; Singleton, John; Solenov, Dmitry; Jiang, Jianyi; Weiss, Jeremy; Hellstrom, Eric

    2018-05-01

    A comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)2As2 (large grain and small grain samples), Ba(Fe0.94Ni0.06)2As2, Ba(Fe0.92Co0.08)2As2, and Ba(Fe0.92Co0.09)2As2 polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T. The full magnetic field-temperature (H-T) phase diagrams, starting at 1.5 K, were measured. The higher temperature, upper critical field Hc2 data are well described by the one-band Werthamer, Helfand, and Hohenberg (WHH) model. At low temperatures, the experimental data depart from the fitted WHH curves, suggesting an emergence of a new phase that could be attributed to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The large values of the Maki fitting parameter α indicate that the Zeeman pair breaking dominates over the orbital pair breaking and spin-paramagnetic pair-breaking effect is significant in these materials. Possible multi-band structure of these materials is lumped into effective parameters of the single-band model. Table of measured physical parameters allows us to compare these pnictide superconductors for different Co- and Ni- doping levels and granularity.

  8. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  9. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung

    2018-06-01

    Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.

  10. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOEpatents

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  11. Formation of lead-aluminate ceramics: Reaction mechanisms in immobilizing the simulated lead sludge.

    PubMed

    Lu, Xingwen; Shih, Kaimin

    2015-11-01

    We investigated a strategy of blending lead-laden sludge and an aluminum-rich precursor to reduce the release of hazardous lead from the stabilized end products. To quantify lead transformation and determine its incorporation behavior, PbO was used to simulate the lead-laden sludge fired with γ-Al2O3 by Pb/Al molar ratios of 1/2 and 1/12 at 600-1000 °C for 0.25-10 h. The sintered products were identified and quantified using Rietveld refinement analysis of X-ray diffraction data from the products generated under different conditions. The results indicated that the different crystallochemical incorporations of hazardous lead occurred through the formation of PbAl2O4 and PbAl12O19 in systems with Pb/Al ratios of 1/2 and 1/12, respectively. PbAl2O4 was observed as the only product phase at temperature of 950 °C for 3h heating in Pb/Al of 1/2 system. For Pb/Al of 1/12 system, significant growth of the PbAl12O19 phase clearly occurred at 1000 °C for 3 h sintering. Different product microstructures were found in the sintered products between the systems with the Pb/Al ratios 1/2 and 1/12. The leaching performances of the PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases were compared using a constant pH 4.9 leaching test over 92 h. The leachability data indicated that the incorporation of lead into PbAl12O19 crystal is a preferred stabilization mechanism in aluminate-ceramics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Reliability Studies of Ceramic Capacitors.

    DTIC Science & Technology

    1987-03-01

    with barium/ titanium ratios of greater than one exhibit higher current levels and enhanced degradation compared to the excess titanium compositions. This...essentially insoluble in BaTiO -4- 3. Compositions with barium/ titanium ratios less than one exhibit higher current levels and enhanced degradation compared...this process is shown in figure 1. The cationic sources which have been successfully used are carbonates, hydroxides, isopropoxides , and nitrates. The

  13. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  14. DIAGNOSTIC ACCURACY OF BARIUM ENEMA FINDINGS IN HIRSCHSPRUNG'S DISEASE.

    PubMed

    Peyvasteh, Mehran; Askarpour, Shahnam; Ostadian, Nasrollah; Moghimi, Mohammad-Reza; Javaherizadeh, Hazhir

    2016-01-01

    Hirschsprung's disease is the most common cause of pediatric intestinal obstruction. Contrast enema is used for evaluation of the patients with its diagnosis. To evaluate sensitivity, specificity, positive predictive value, and negative predictive value of radiologic findings for diagnosis of Hirschsprung in patients underwent barium enema. This cross sectional study was carried out in Imam Khomeini Hospital for one year starting from 2012, April. Sixty patients were enrolled. Inclusion criteria were: neonates with failure to pass meconium, abdominal distention, and refractory constipation who failed to respond with medical treatment. Transitional zone, delay in barium evacuation after 24 h, rectosigmoid index (maximum with of the rectum divided by maximum with of the sigmoid; abnormal if <1), and irregularity of mucosa (jejunization) were evaluated in barium enema. Biopsy was obtained at three locations apart above dentate line. PPV, NPV, specificity , and sensitivity was calculated for each finding. Mean age of the cases with Hirschsprung's disease and without was 17.90±18.29 months and 17.8±18.34 months respectively (p=0.983). It was confirmed in 30 (M=20, F=10) of cases. Failure to pass meconium was found in 21(70%) cases. Sensitivity, specificity, PPV, and NPV were 90%, 80%, 81.8% and 88.8% respectively for transitional zone in barium enema. Sensitivity, specificity, PPV, and NPV were 76.7%, 83.3%, 78.1% and 82.1% respectively for rectosigmoid index .Sensitivity, specificity, PPV, and NPV were 46.7%, 100%, 100% and 65.2% respectively for irregular contraction detected in barium enema. Sensitivity, specificity, PPV, and NPV were 23.3%, 100%, 100% and 56.6% respectively for mucosal irregularity in barium enema. The most sensitive finding was transitional zone. The most specific findings were irregular contraction, mucosal irregularity, and followed by cobblestone appearance. A doença de Hirschsprung é a causa mais comum de obstrução intestinal pediátrica. Enema baritado é usado para a avaliação dos pacientes com o diagnóstico . Avaliar a sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo de achados radiológicos para diagnóstico de Hirschsprung em pacientes submetidos ao enema opaco. Este estudo transversal foi realizado em Imam Khomeini Hospital por um ano a partir de abril de 2012. Sessenta pacientes foram incluídos. Os critérios de inclusão foram: recém-nascidos com insuficiência de passagem de mecônio, distensão abdominal, e constipação refratária sem resposta ao tratamento médico. Foram avaliadas no enema zona de transição, atraso na evacuação de bário após 24 h, índice retossigmoide (máximo do diâmetro do reto dividido pelo máximo do sigmóide; anormal se <1), e as irregularidades da mucosa (jejunização). Biópsia foi obtida em três localizações acima da linha dentada. VPP, VPN, especificidade e sensibilidade foram calculados para cada achado. A idade média dos casos com a doença de Hirschsprung e sem foi 17,90±18,29 meses e 17,8±18,34 meses, respectivamente (p=0,983). Confirmou-se em 30 (M=20, F=10) dos casos. Falha no mecônio foi encontrada em 21 (70%) casos. Sensibilidade, especificidade, VPP e VPN foram de 90%, 80%, 81,8% e 88,8%, respectivamente, para a zona de transição no enema. Sensibilidade, especificidade, VPP e VPN foram 76,7%, 83,3%, 78,1% e 82,1%, respectivamente para o índice de retossigmoide. Sensitividade, especificidade, VPP e VPN foram 46,7%, 100%, 100% e 65,2%, respectivamente, para contração irregular detectada no enema baritado. Sensibilidade, especificidade, VPP e VPN foram de 23,3%, 100%, 100% e 56,6%, respectivamente, para a irregularidade da mucosa. O achado mais sensível foi zona de transição. Os achados mais específicos foram contração irregular, irregularidade da mucosa, e seguido por aparecimento de mucosa em forma de paralelepípedos.

  15. Model for interface formation and the resulting electrical properties for barium-strontium-titanate films on silicon

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.

    2003-04-01

    The interface formation between sputtered barium strontium titanate (BST) films and both Si and SiO2 substrate surfaces has been followed using real-time spectroscopic ellipsometry and the mass spectrometry of recoiled ions. In both substrates an intermixed interface layer was observed and subcutaneous Si oxidation occurred. A model for the interface formation is proposed in which the interface includes an SiO2 film on Si, and an intermixed film on which is pure BST. During the deposition of BST the interfaces films were observed to change in time. Electrical characterization of the resulting metal-BST interface capacitors indicates that those samples with SiO2 on the Si surface had the best electrical characteristics.

  16. The value of the preoperative barium-enema examination in the assessment of pelvic masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gedgaudas, R.K.; Kelvin, F.M.; Thompson, W.M.

    1983-03-01

    The value of the barium-enema examination in the assessment of pelvic masses was studied in 44 patients. Findings from those barium-enema examinations and from pathological specimens from 37 patients who had malignant tumors and seven patients who had endometriosis were retrospectively analyzed to determine if the barium-enema examination is useful in differentiating extrinsic lesions with and without invasion of the colon. None of the 12 patients who had extrinsic lesions had any of the criteria that indicated bowel-wall invasion. These criteria included fixation and serrations of the bowel wall in all patients with invasion, and ulceration and fistulizaton in thosemore » patients who had complete transmural invasion. In patients with pelvic masses, the preoperative barium-enema examination may be useful to the surgeon in planning surgery and in preparing the patient for the possibility of partial colectomy or colostomy.« less

  17. Gamma ray interaction with vanadyl ions in barium metaphosphate glasses; spectroscopic and ESR studies

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, H. A.; EzzElDin, F. M.

    2017-11-01

    Optical, FTIR, ESR investigations of prepared undoped barium metaphosphate glass and other samples with the same basic composition containing varying V2O5 contents (0.5, 1, 2, 3%) were carried out before and after gamma irradiation. The undoped glass shows a strong UV optical absorption which is correlated with unavoidable contaminated trace iron impurities. The V2O5-doped samples reveal two additional strong broad visible bands centered at 450 and 680 nm. Such extra peculiar and strong two broad visible bands are related to both tetravalent and trivalent vanadium ions in measurable percent due to the reducing behavior of barium phosphate host glass. Gamma irradiation on the undoped glass results in the generation of collective induced UV and visible bands which are originating from positive hole and electron centers. Glasses containing V2O5 reveal upon gamma irradiation induced defects in the UV as the undoped sample together with distinct splitting within the first broad visible band while the second broad band remains unchanged. This behavior is related to limited photoionization upon the addition of V2O5 indicating specific shielding effect of the vanadium ions towards gamma irradiation. It was noticed that irradiation causes no distinct variations in the FTIR spectra due to the presence of 50% of heavy metal oxide (BaO) and some shielding effect of vanadium ions.

  18. Structure and conductivity of epitaxial thin films of barium ferrite and its hydrated form BaFeO2.5-x+δ (OH)2x

    NASA Astrophysics Data System (ADS)

    Anitha Sukkurji, Parvathy; Molinari, Alan; Benes, Alexander; Loho, Christoph; Sai Kiran Chakravadhanula, Venkata; Garlapati, Suresh Kumar; Kruk, Robert; Clemens, Oliver

    2017-03-01

    Barium ferrite and its hydrated form (BaFeO2.5-x+δ (OH)2x , BFO) is an interesting cathode material for protonic ceramic fuel cells (PCFC) due to its potential to be both, conducting for electrons and protons. We report on the fabrication of almost epitaxially grown thin films (22 nm) of barium ferrite BaFeO~2.5 (BFO) on Nb-doped SrTiO3 substrates via pulsed laser deposition (PLD), followed by treatment under inert, and subsequently wet inert atmospheres to induce water (respectively proton) incorporation. Microstructure, chemical composition and conducting properties are investigated for the BFO films and their hydrated forms, highlighting the influence of hydration on the conductivity characteristics between ~200-290 K. We find that water incorporation gives a strong enhancement of the conductivity to ~10-9 S cm-1 compared to argon annealed films, inducing electronic and protonic charge carriers at the same time. In comparison to bulk powders, proton conductivity is found to be strongly suppressed in such thin hydrated BFO films, pointing towards the influence of strain on the conductivity, which is evaluated based on a detailed investigation by high-resolution transmission electron microscopy.

  19. Structural and dielectric properties of A(Fe{sub 1/2}Ta{sub 1/2})O{sub 3} [A = Ba, Sr, Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo; Sinha, T.P., E-mail: sinha_tp@yahoo.com

    2011-04-15

    Graphical abstract: FTIR spectra of BFT, SFT and CFT at room temperature. Research highlights: {yields} The structural and dielectric properties of BaFe{sub 1/2}Ta{sub 1/2}O{sub 3}, SrFe{sub 1/2}Ta{sub 1/2}O{sub 3} and CaFe{sub 1/2}Ta{sub 1/2}O{sub 3}. {yields} Fourier transform infrared spectra show two primary phonon modes of the samples at around 450 cm{sup -1} and 620 cm{sup -1}. {yields} The compounds show significant frequency dispersion in its dielectric properties. {yields} The relaxation mechanism of the samples is modelled by Cole-Cole equation. -- Abstract: The complex perovskite oxide barium iron tantalate (BFT), BaFe{sub 1/2}Ta{sub 1/2}O{sub 3}, strontium iron tantalate (SFT), SrFe{sub 1/2}Ta{sub 1/2}O{submore » 3} and calcium iron tantalate (CFT), CaFe{sub 1/2}Ta{sub 1/2}O{sub 3} are synthesized by a solid-state reaction technique. Rietveld refinement of the X-ray diffraction data of the samples shows that BFT and SFT crystallize in cubic structure, with lattice parameter a = 4.06 A for BFT and 3.959 A for SFT, whereas CFT crystallizes in orthorhombic structure having lattice parameters a = 5.443 A, b = 5.542 A and c = 7.757 A. Fourier transform infrared spectra show two primary phonon modes of the samples at around 450 cm{sup -1} and 620 cm{sup -1}. The compounds show significant frequency dispersion in its dielectric properties. The complex impedance plane plots of the samples show that the relaxation (conduction) mechanism in these materials is purely a bulk effect arising from the semiconductive grains. The relaxation mechanism of the samples is modelled by Cole-Cole equation. The frequency dependent conductivity spectra are found to follow the power law.« less

  20. A combined ultra-wideline solid-state NMR and DFT study of 137Ba electric field gradient tensors in barium compounds

    NASA Astrophysics Data System (ADS)

    O'Dell, Luke A.; Moudrakovski, Igor L.

    2013-04-01

    Ultra-wideline 137Ba solid-state (SS) NMR spectra have been obtained from a series of five barium compounds (BaSO4, BaMoO4, Ba(CH3COO)2, Ba(OH)2·8H2O and α-Ba2P2O7), using the broadband WURST-QCPMG pulse sequence and magnetic field of 21.1 T. The signals from the two distinct crystallographic sites in α-Ba2P2O7 are resolved, with one of them demonstrating a CQ of 42.3 ± 0.3 MHz, the largest obtained for 137Ba in a powder. The quadrupolar parameters reported in this work are in excellent agreement with the DFT calculations and correlate well with those previously reported by Hamaed et al. (2010) [24].

  1. Precipitation method for barium metaborate (BaB{sub 2}O{sub 4}) synthesis from borax solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye

    2013-12-16

    In this study, barium metaborate (BaB{sub 2}O{sub 4}, BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β−BaB{sub 2}O{sub 4} single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na{sub 2}B{sub 4}O{sub 7⋅}10H{sub 2}O, BDH) and barium chloride (BaCI{sub 2⋅}2H{sub 2}O, Ba) in the glass-batch reactor with stirring.more » The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique.« less

  2. Chemical analyses of ground-water samples from the Rio Grande Valley in the vicinity of Albuquerque, New Mexico, October 1993 through January 1994

    USGS Publications Warehouse

    Wilkins, D.W.; Schlottmann, J.L.; Ferree, D.M.

    1996-01-01

    A study was conducted to investigate general ground-water- quality conditions and contaminant locations in the Rio Grande Valley in the vicinity of Albuquerque, New Mexico. Water samples from 36 observation wells in 12 well nests were analyzed. The well nests are located along three roads near the Rio Grande--two well nests near Paseo del Norte, five well nests near Monta?o Road, and five well nests near Rio Bravo Boulevard. The water samples were collected from October 19, 1993, through January 18, 1994. Water-quality types by major-ion composition were calcium bicarbonate (found in most samples), sodium sulfate, calcium sulfate, and calcium sulfate chloride. Nutrients were detected in all but one sample. Ammonia was detected in 34 samples, nitrite in 4 samples, and nitrate in 17 samples. Orthophosphate was detected in 31 samples. Organic carbon was detected in all samples collected. The trace elements arsenic and barium were detected in all samples and zinc in 31 samples. Fourteen samples contained detectable copper. Cadmium was detected in one sample, chromium in two samples, lead in four samples, and selenium in two samples. Mercury and silver were not detected.

  3. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications.

    PubMed

    Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V

    2010-11-01

    Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications.

  4. Effect of sulfur hexafluoride gas and post-annealing treatment for inductively coupled plasma etched barium titanate thin films

    PubMed Central

    2014-01-01

    Aerosol deposition- (AD) derived barium titanate (BTO) micropatterns are etched via SF6/O2/Ar plasmas using inductively coupled plasma (ICP) etching technology. The reaction mechanisms of the sulfur hexafluoride on BTO thin films and the effects of annealing treatment are verified through X-ray photoelectron spectroscopy (XPS) analysis, which confirms the accumulation of reaction products on the etched surface due to the low volatility of the reaction products, such as Ba and Ti fluorides, and these residues could be completely removed by the post-annealing treatment. The exact peak positions and chemicals shifts of Ba 3d, Ti 2p, O 1 s, and F 1 s are deduced by fitting the XPS narrow-scan spectra on as-deposited, etched, and post-annealed BTO surfaces. Compared to the as-deposited BTOs, the etched Ba 3d 5/2 , Ba 3d 3/2 , Ti 2p 3/2 , Ti 2p 1/2 , and O 1 s peaks shift towards higher binding energy regions by amounts of 0.55, 0.45, 0.4, 0.35, and 0.85 eV, respectively. A comparison of the as-deposited film with the post-annealed film after etching revealed that there are no significant differences in the fitted XPS narrow-scan spectra except for the slight chemical shift in the O 1 s peak due to the oxygen vacancy compensation in O2-excessive atmosphere. It is inferred that the electrical properties of the etched BTO film can be restored by post-annealing treatment after the etching process. Moreover, the relative permittivity and loss tangent of the post-annealed BTO thin films are remarkably improved by 232% and 2,695%, respectively. PMID:25249824

  5. Density functional calculations of carbon substituting for Zr in barium zirconate

    NASA Astrophysics Data System (ADS)

    Al-Hadidi, Meaad; Goss, J. P.; Al-Ani, Oras A.; Briddon, P. R.; Rayson, M. J.

    2017-06-01

    Oxide perovskites such as BaZrO3 possess many significant properties which render them useful in many technological and scientific applications such as sensors, optoelectronics, laser frequency doubling and high capacity memory cells. Several methods are used to grow BaZrO3 crystal, and organic species that may be present during growth lead to carbon contamination. We have investigated, using density-functional theory, the role of carbon impurities on the structural, electrical and electronic properties of carbon substituting of Zr in cubic barium zirconate. The local vibrational modes of the defect centre has been calculated and we suggest it is a feasible route to experimental identification

  6. Local environments and transport properties of heavily doped strontium barium niobates Sr0.5Ba0.5Nb2O6

    NASA Astrophysics Data System (ADS)

    Ottini, Riccardo; Tealdi, Cristina; Tomasi, Corrado; Tredici, Ilenia G.; Soffientini, Alessandro; Burriel, Ramón; Palacios, Elías; Castro, Miguel; Anselmi-Tamburini, Umberto; Ghigna, Paolo; Spinolo, Giorgio

    2018-02-01

    Undoped as well as K-doped (40%), Y-doped (40%), Zr-doped (10%), and Mo-doped (12.5%) strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN50) materials have been investigated to explore the effect of heavy doping on the structural and functional properties (thermo-power, thermal and electrical conductivities) both in the as prepared (oxidized) and reduced states. For all materials, the EXAFS spectra at the Nb - K edge can be consistently analyzed with the same model of six shells around the Nb sites. Doping mostly gives a simple size effect on the structural parameters, but doping on the Nb sites weakens the Nb-O bond regardless of dopant size and charge. Shell sizes and Debye-Waller factors are almost unaffected by temperature and oxidation state, and the disorder is of static nature. The functional effects of heavy doping do not agree with a simple model of hole or electron injection by aliovalent substitutions on a large band gap semiconductor. With respect to the undoped samples, doping with Mo depresses the thermal conductivity by 30%, Y doping enhances the electrical conductivity by an order of magnitude, while Zr doping increases the Seebeck coefficient by a factor of 2-3. Globally, the ZT efficiency factor of the K-, Y-, and Zr-doped samples is enhanced at least by one order of magnitude with respect to the undoped or Mo-doped materials.

  7. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jyoti, E-mail: shah.jyoti1@gmail.com; Kotnala, Ravinder K., E-mail: rkkotnala@nplindia.org, E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film inmore » presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.« less

  8. Enhanced pinning in mixed rare earth-123 films

    DOEpatents

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  9. Effect of alkali earth oxides on hydroxy-carbonated apatite nano layer formation for SiO2-BaO-CaO-Na2O-P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kiran, P.; Ramakrishna, V.; Shashikala, H. D.; Udayashankar, N. K.

    2017-11-01

    Barium soda lime phosphosilicate [(58SiO2-(32 - x)BaO- xCao-6Na2O-4P2O5 (where x = 15, 20, 25 and 30 mol%)] samples were synthesised using conventional sol-gel method at 700 °C sintering temperature. Thermal, structural properties were studied using thermo gravimetric analysis and differential thermal analysis, X-ray diffraction, scanning electron microscopy, fourier transform infrared and Raman spectroscopy. Using Raman spectra non-bridging oxygen concentrations were estimated. The hydroxy-carbonated apatite (HCA) layer formation on samples was analysed for 7 days using simulated body fluid (SBF) soaked samples. The growth of HCA layers self-assembled on the sample surface was discussed as a function of NBO/BO ratio. Results indicated that the number of Ca2+ ions released into SBF solution in dissolution process and weight loss of SB-treated samples vary with NBO/BO ratio. The changes in NBO/BO ratios were observed to be proportional to HCA forming ability of barium soda lime phosphosilicate glasses.

  10. Mössbauer study of conductive oxide glass

    NASA Astrophysics Data System (ADS)

    Matsuda, Koken; Kubuki, Shiro; Nishida, Tetsuaki

    2014-10-01

    Heat treatment of barium iron vanadate glass, BaO - Fe2O3- V2O5, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (ρ) from several MΩcm to several Ωcm. 57Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (Δ) of FeIII, reflecting a structural relaxation, i.e., an increased symmetry of "distorted" FeO4 and VO4 tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu2O -containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. "n-type semiconductor model combined with small polaron hopping theory" was proposed in order to explain the high conductivity.

  11. Surface studies on scandate cathodes and synthesized scandates

    NASA Technical Reports Server (NTRS)

    Lesny, Gary; Forman, Ralph

    1990-01-01

    Auger, ESCA, electron emission, evaporation, and desorption measurements were made on three different types of scandate surfaces. They are: (1) an impregnated top layer scandate cathode, (2) an unimpregnated top layer scandate cathode with a deposited barium or barium oxide adsorbate surface layer, and (3) a synthesized scandate surface, which replicates a scandate cathode surface. The purpose of these experiments was to determine the role that Sc2O3 plays in making the scandate cathode a more copious electron emitter than the conventional impregnated-type cathode. The synthesized scandate surface experiments consisted of depositing multilayer scandium on a tungsten surface, oxidizing the scandium, and then depositing either Ba or BaO on the scandium oxide surface. The results of these measurements showed that the low work function portions of the thin-film scandate cathode are where the Sc2O3 is the substrate and BaO is the adsorbate.

  12. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field.

    PubMed

    Wang, Zhuo; Wang, Tian; Wang, Chun; Xiao, Yujia; Jing, Panpan; Cui, Yongfei; Pu, Yongping

    2017-08-30

    Ba(Fe 0.5 Ta 0.5 )O 3 /poly(vinylidene fluoride) (BFT/PVDF) flexible nanocomposite films are fabricated by tape casting using dopamine (DA)-modified BFT nanopowders and PVDF as a matrix polymer. After a surface modification of installing a DA layer with a thickness of 5 nm, the interfacial couple interaction between BFT and PVDF is enhanced, resulting in less hole defects at the interface. Then the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity of nanocomposite films are reduced. Meanwhile, the value of the reduced dielectric constant (Δε') and the strength of interfacial polarization (k) are introduced to illustrate the effect of DA on the dielectric behavior of nanocomposite films. Δε' can be used to calculate the magnitude of interfacial polarization, and the strength of the dielectric constant contributed by the interface can be expressed as k. Most importantly, the energy-storage density and energy-storage efficiency of nanocomposite films with a small BFT@DA filler content of 1 vol % at a low electric field of 150 MV/m are enhanced by about 15% and 120%, respectively, after DA modification. The high energy-storage density of 1.81 J/cm 3 is obtained in the sample. This value is much larger than the reported polymer-based nanocomposite films. In addition, the outstanding cycle and bending stability of the nanocomposite films make it a promising candidate for future flexible portable energy devices.

  13. Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Tarantini, C.; Grinenko, V.; Hänisch, J.; Jaroszynski, J.; Reich, E.; Mori, Y.; Sakagami, A.; Kawaguchi, T.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Ikuta, H.; Hühne, R.; Iida, K.

    2015-02-01

    Microstructurally clean, isovalently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at μ 0 H = 35 T for H ‖ a b and μ 0 H = 18 T for H ‖ c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.

  14. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  15. Non-bridging Oxygen and Five-coordinated Aluminum in Aluminosilicate Glasses: A Cation Field Strength Study

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Stebbins, J. F.

    2011-12-01

    Linda M. Thompson Jonathan F. Stebbins Dept. of Geological and Environmental Sciences, Stanford University, Stanford CA 94305 Although it is understood in aluminosilicate melts and glasses that non-bridging oxygens (NBO) have significant influence on thermodynamic and transport properties, questions remain about its role and the extent of its influence, particularly in metaluminous and peraluminous compositions. One major question persists regarding whether the formation of NBO is in any way coupled with the formation of VAl (AlO5), which is significantly impacted by cation field strength (defined as the cation charge divided by the square of the distance between the cation and oxygen atoms) (Kelsey et al., 2009). Previous work on calcium and potassium aluminosilicate glasses has shown the presence of NBO on the metaluminous join and persisting into the peraluminous region, with significantly more NBO present in Ca glasses compared to K glasses of similar composition (Thompson and Stebbins, 2011). However, it is unclear if there is any systematic impact on NBO content by cation field strength similar to the impact on VAl. Expanding on the previous study, barium aluminosilicate glasses were synthesized covering a range of compositions crossing the metaluminous (e.g. BaAl2O4-SiO2) join to observe changes in the NBO for comparison against the calcium aluminosilicate glasses, thus looking at the impact of cation size on NBO versus cation charge. In the barium glasses on the 30 mol% SiO2 isopleth, the highest NBO content was 6.9% for the barium rich glass (R = 0.51, where R is Ba2+ / (Ba2+ + 2Al3+)) while the most peraluminous glass (R = 0.45) had an NBO content of 1.9%. Comparison of these results to earlier data shows these numbers are similar to what is observed in the Ca glasses, indicating cation size alone does not have a significant impact on NBO content. However the VAl content does show a decrease (compared to calcium aluminosilicate glasses at similar R values and Si/Al ratios) with decreasing cation field strength. This suggests that the NBO content is much less sensitive to the cation size than the VAl content and indicates that NBO formation across the metaluminous join cannot be completely explained by linking VAl and NBO but that independent mechanisms of formation must exist. Temperature studies are ongoing to offer additional insight into the relationship between VAl and NBO.

  16. Structural and magnetic properties of Ga-substituted Co 2 ‑W hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmood, Sami H.; Al Sheyab, Qusai; Bsoul, Ibrahim; Mohsen, Osama; Awadallah, Ahmad

    2018-05-01

    Precursor powders of BaMg2-xCoxFe16O27 with (x = 0.0, 1.0, and 2.0) were prepared using high-energy ball milling, and the effects of chemical composition and sintering temperature on the structural and magnetic properties were investigated using x-ray diffractometer (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD patterns of the prepared samples indicated that crystallization of pure BaW hexaferrite phase was achieved at sintering temperature of 1300{\\deg} C, while BaM and cubic spinel phase intermediate phases were obtained at lower sintering temperatures of 1100{\\deg} C and 1200{\\deg} C. SEM images revealed improvement of the crystallization of the structural phases, and growth of the particle size with increasing the sintering temperature. The magnetic data of the samples sintered at 1300{\\deg} C revealed an increase of the saturation magnetization from 59.44 emu/g to 72.56 emu/g with increasing Co concentration (x) from 0.0 to 2.0. The coercive field Hc decreased from 0.07 kOe at x = 0.0, to 0.03 kOe at x = 1.0, and then increases to 0.09 kOe at x = 2.0. The thermomagnetic curves of the samples sintered at 1300{\\deg} C confirmed the existence of the W-type phase, and revealed spin reorientation transitions above room temperature.

  17. Study of optical properties of cerium ion doped barium aluminate phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohe, P. P., E-mail: prachiti.lohe2012@gmail.com; Omanwar, S. K.; Bajaj, N. S.

    2016-05-06

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl{sub 2}O{sub 4} doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl{sub 2}O{sub 4}: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescentmore » properties.« less

  18. Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples.

    PubMed

    Zhang, Shengxiao; Niu, Hongyun; Cai, Yaqi; Shi, Yali

    2010-04-30

    The hydrophobic octadecyl (C(18)) functionalized Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)@C(18)) were caged into hydrophilic barium alginate (Ba(2+)-ALG) polymers to obtain a novel type of solid-phase extraction (SPE) sorbents, and the sorbents were applied to the pre-concentration of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) pollutants from environmental water samples. The hydrophilicity of the Ba(2+)-ALG cage enhances the dispersibility of sorbents in water samples, and the superparamagnetism of the Fe(3)O(4) core facilitates magnetic separation. With the magnetic SPE technique based on the Fe(3)O(4)@C(18)@Ba(2+)-ALG sorbents, it requires only 30 min to extract trace levels of analytes from 500 mL water samples. After the eluate is condensed to 0.5 mL, concentration factors for both phenanthrene and di-n-propyl-phthalate are over 500, while for other analytes are about 1000. The recoveries of target compounds are independent of salinity and solution pH under testing conditions. Under optimized conditions, the detection limits for phenanthrene, pyrene, benzo[a]anthracene, and benzo[a]pyrene are 5, 5, 3, and 2 ng L(-1), and for di-n-propyl-phthalate, di-n-butyl-phthalate, di-cyclohexyl-phthalate, and di-n-octyl-phthalate are 36, 59, 19, and 36 ng L(-1), respectively. The spiked recoveries of several real water samples for PAHs and PAEs are in the range of 72-108% with relative standard deviations varying from 1% to 9%, showing good accuracy of the method. The advantages of the new SPE method include high extraction efficiency, short analysis time and convenient extraction procedure. To the best of our knowledge, it is unprecedented that hydrophilic Ba(2+)-ALG polymer caged Fe(3)O(4)@C(18) magnetic nanomaterial is used to extract organic pollutants from large volumes of water samples. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Surface reaction characteristics at low temperature synthesis BaTiO 3 particles by barium hydroxide aqueous solution and titanium tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Zeng, Min

    2011-05-01

    Well-crystallized cubic phase BaTiO 3 particles were prepared by heating the mixture of barium hydroxide aqueous solution and titania derived from the hydrolysis of titanium isopropoxide (TTIP) at 328 K, 348 K or 368 K for 24 h. The morphology and size of obtained particles depended on the reaction temperature and the Ba(OH) 2/TTIP molar ratio. By the direct hydrolytic reaction of titanium tetraisopropoxide, the high surface area titania (TiO 2) was obtained. The surface adsorption characteristics of the titania particles had been studied with different electric charges OH - ions or H + ions. The formation mechanism and kinetics of BaTiO 3 were examined by measuring the concentration of [Ba 2+] ions in the solution during the heating process. The experimental results showed that the heterogeneous nucleation of BaTiO 3 occurred on the titania surface, according to the Avrami's equation.

  20. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  1. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  2. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Evolution of Spin fluctuations in CaFe2As2 with Co-doping.

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.

  5. Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.

    2017-01-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  6. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  7. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1988-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  8. Review on dielectric properties of rare earth doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Fatin Adila, E-mail: fatinadilaismail@gmail.com; Osman, Rozana Aina Maulat, E-mail: rozana@unimap.edu.my; Frontier Materials Research, Seriab, 01000 Kangar, Perlis

    2016-07-19

    Rare earth doped Barium Titanate (BaTiO{sub 3}) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO{sub 3} (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO{sub 3} downshifted the Curie temperature (T{sub C}). Transition temperature also known as Curie temperature, T{sub C} where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-dopedmore » BaTiO{sub 3}, Er-doped BaTiO{sub 3}, Sm-doped BaTiO{sub 3}, Nd-doped BaTiO{sub 3} and Ce-doped BaTiO{sub 3} had been proved to increase and the transition temperature or also known as T{sub C} also lowered down to room temperature as for all the RE doped BaTiO{sub 3} except for Er-doped BaTiO{sub 3}.« less

  9. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Aishwarya, K.; Vinitha, G.; Varma, G. Sreevidya; Asokan, S.; Manikandan, N.

    2017-12-01

    Glasses in the TeO2-ZnO-BaF2 system were prepared by standard melt quenching technique and were characterized for their thermal, optical and structural properties. Samples were found to show good thermal stability with values ranging above 100 °C for all the compositions. Optical bandgap and refractive index values were calculated from linear optical measurements using UV-Vis spectroscopy. Infrared spectra showed the presence of hydroxyl groups in the glasses indicating that the effect of fluorine was negligible in removing the hydroxyl impurities for the experimental conditions and compositions used. Raman measurements showed the modification occurring in the glass network due to addition of barium fluoride in terms of increase in the formation of non-bridging oxygen atoms compared to strong Te-O-Te linkages in the glass matrix.

  10. Tungsten Bronze Barium Neodymium Titanate (Ba(6-3n)Nd(8+2n)Ti(18)O(54)): An Intrinsic Nanostructured Material and Its Defect Distribution.

    PubMed

    Azough, Feridoon; Cernik, Robert Joseph; Schaffer, Bernhard; Kepaptsoglou, Demie; Ramasse, Quentin Mathieu; Bigatti, Marco; Ali, Amir; MacLaren, Ian; Barthel, Juri; Molinari, Marco; Baran, Jakub Dominik; Parker, Stephen Charles; Freer, Robert

    2016-04-04

    We investigated the structure of the tungsten bronze barium neodymium titanates Ba(6-3n)Nd(8+2n)Ti(18)O(54), which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba(6-3n)Nd(8+2n)Ti(18)O(54) (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba(6-3n)Nd(8+2n)Ti(18)O(54) "perovskite" superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity.

  11. Universal lower limit on vortex creep in superconductors

    DOE PAGES

    Eley, Serena Merteen; Miura, Masashi; Maiorov, Boris Alfredo; ...

    2017-02-13

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose–Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors4. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu 3O 7–δ. This was puzzling because Smore » is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu 3O 7–δ. Here, we report very slow creep in BaFe 2(As 0.67P 0.33) 2 films, and propose the existence of a universal minimum realizable S ~ Gi 1/2(T/T c) (T c is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. Furthermore, this limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, Serena Merteen; Miura, Masashi; Maiorov, Boris Alfredo

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose–Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors4. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu 3O 7–δ. This was puzzling because Smore » is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu 3O 7–δ. Here, we report very slow creep in BaFe 2(As 0.67P 0.33) 2 films, and propose the existence of a universal minimum realizable S ~ Gi 1/2(T/T c) (T c is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. Furthermore, this limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.« less

  13. Universal lower limit on vortex creep in superconductors

    NASA Astrophysics Data System (ADS)

    Eley, S.; Miura, M.; Maiorov, B.; Civale, L.

    2017-04-01

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu3O7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu3O7-δ. Here, we report very slow creep in BaFe 2(As0.67P0.33)2 films, and propose the existence of a universal minimum realizable S ~ Gi1/2(T/Tc) (Tc is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.

  14. Compact pulse forming line using barium titanate ceramic material

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  15. 1T1R Nonvolatile Memory with Al/TiO2/Au and Sol-Gel-Processed Insulator for Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

    PubMed Central

    Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her

    2017-01-01

    A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 2.5 cm2/Vs, low threshold voltage of −2.8 V, and low leakage current of 10−12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO2-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications. PMID:29232828

  16. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe

    2013-01-01

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less

  17. Generation mechanism of negative permittivity and Kramers-Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Wang, Zhongyang; Sun, Kai; Xie, Peitao; Liu, Yao; Fan, Runhua

    2017-09-01

    Recently, negative parameters such as negative permittivity and negative permeability have been attracting extensive attention for their unique electromagnetic properties. Usually, negative permittivity is well achieved by plasma oscillation of free electrons in conductor-insulator composites or metamaterials, while some attention has been paid to attaining negative permittivity in ceramics to reduce dielectric loss. In this paper, negative permittivity in barium titanate and yttrium iron garnet composites are reported which was well fitted by the Lorentz model. Further, negative permittivity behavior was verified via Kramers-Kronig relations, and it revealed that the causal principle still valid for negative permittivity resulted from dielectric resonance. The interrelationships among negative permittivity, capacitive-inductive transition and ac conductivity are discussed.

  18. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells.

    PubMed

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Tyson, Trevor A; Liu, Meilin

    2011-06-21

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C(3)H(8), CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H(2)O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  19. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells

    PubMed Central

    Yang, Lei; Choi, YongMan; Qin, Wentao; Chen, Haiyan; Blinn, Kevin; Liu, Mingfei; Liu, Ping; Bai, Jianming; Tyson, Trevor A.; Liu, Meilin

    2011-01-01

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C3H8, CO and gasified carbon fuels at 750°C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity. PMID:21694705

  20. Enhanced magnetoelectric effect in M-type hexaferrites by Co substitution into trigonal bi-pyramidal sites

    NASA Astrophysics Data System (ADS)

    Beevers, J. E.; Love, C. J.; Lazarov, V. K.; Cavill, S. A.; Izadkhah, H.; Vittoria, C.; Fan, R.; van der Laan, G.; Dhesi, S. S.

    2018-02-01

    The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.

  1. Nanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices.

    PubMed

    Hu, Bolin; Chen, Zhaohui; Su, Zhijuan; Wang, Xian; Daigle, Andrew; Andalib, Parisa; Wolf, Jason; McHenry, Michael E; Chen, Yajie; Harris, Vincent G

    2014-11-25

    A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25-40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals was found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by ∼150 K for Co2Y ferrite, compared to 5-10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on a wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based "system on a wafer" architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.

  2. Effect of Eu–Ni substitution on electrical and dielectric properties of Co–Sr–Y-type hexagonal ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com; Islam, M.U.; Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com

    2014-01-01

    Graphical abstract: - Highlights: • Single phase nanostructured Sr{sub 2}Co{sub 2−x}Ni{sub x} Eu{sub y}Fe{sub 12−y}O{sub 22} were synthesized by the microemulsion method. • The materials show semiconducting behavior. • The high resistivity makes these materials useful for high frequency applications. • The Curie temperature decreases with the substituents. - Abstract: Single phase nanostructured Eu–Ni substituted Y-type hexaferrites with nominal composition Sr{sub 2}Co{sub 2−x}Ni{sub x} Eu{sub y}Fe{sub 12−y}O{sub 22} (x = 0.0–1, y = 0.0–0.1) were synthesized by the normal microemulsion method. X-ray diffraction (XRD) technique was employed for phase analysis and indexing of each pattern corroborates that well defined Y-typemore » crystalline phase is formed. It is observed that DC resistivity enhanced which is accredited to room temperature resistivity differences of dopant and host ions. The hopping of electrons and jumping of holes are responsible for conduction below Curie temperature (T{sub C}), whereas above Curie temperature is due to polaron hopping. The decrease in T{sub C} may be due to the fact that Eu–Fe interactions on the B sites are weaker than Fe–Fe interaction. The dispersion in the dielectric constant ε′(f) favor the occurrence of peaks in the tan δ(f). The extraordinary values of resistivity and small dielectric loss make these materials pre-eminent contestant for high frequency applications.« less

  3. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging.

    PubMed

    McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2018-03-30

    A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2  nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  4. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  5. Radiographic anatomy and barium sulfate contrast transit time of the gastrointestinal tract of bearded dragons (Pogona vitticeps).

    PubMed

    Grosset, Claire; Daniaux, Lise; Guzman, David Sanchez-Migallon; Weber, Ernest Scott; Zwingenberger, Allison; Paul-Murphy, Joanne

    2014-01-01

    The positive contrast gastrointestinal study is a common non-invasive diagnostic technique that does not require anesthesia and enables good visualization of the digestive tract. Radiographic anatomy and reference intervals for gastrointestinal contrast transit time in inland bearded dragons (Pogona vitticeps) were established using seven animals administered 15 ml/kg of a 35% w/v suspension of barium by esophageal gavage. Dorso-ventral and lateral radiographic views were performed at 0, 15, 30 min, 1, 2, 4, 6, 8, 12 h, and then every 12 h up to 96 h after barium administration. Gastric emptying was complete at a median time of 10 h (range 4-24 h). Median jejunum and small intestinal emptying times were 1 h (range 30 min-2 h) and 29 h (range 24-48 h), respectively. Median transit time for cecum was 10 h (range 8-12 h). Median time for contrast to reach the colon was 31 h (range 12-72 h) after administration. Results were compared to those obtained in other reptilian species. This technique appeared safe in fasted bearded dragons and would be clinically applicable in other lizard species.

  6. Interplay of superconductivity and magnetic fluctuations in single crystals of BaFe2-xCoxAs2

    NASA Astrophysics Data System (ADS)

    Bag, Biplab; Kumar, Ankit; Banerjee, S. S.; Vinod, K.; Bharathi, A.

    2018-04-01

    We report unusual pinning response in optimally doped and overdoped single crystals of BaFe2-xCoxAs2. Here we use magneto-optical imaging technique to measure the local magnetization response which shows an unusual transformation from low temperature diamagnetic state to high temperature positive magnetization response. Our data suggests coexistence of magnetic fluctuation along with superconductivity in the optimally doped crystal. The strength of magnetic fluctuations is the strongest in the optimally doped compound with the highest Tc.

  7. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less

  8. Synthesis of SrFe12O19 magnetic nanoparticles by EDTA complex method

    NASA Astrophysics Data System (ADS)

    Wang, Shifa; Li, Danming; Xiao, Yuhua; Dang, Wenqiang; Feng, Jie

    2017-10-01

    A modified polyacrylamide gel route was used to prepare SrFe12O19 magnetic nanoparticles; ethylenediaminetetraacetic acid (EDTA) was used as a carboxyl chelating agent. The phase purity, morphology and magnetic properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometery (VSM). XRD analysis indicates that high-purity SrFe12O19 magnetic nanoparticles can be synthesized at 700°C in air. The characteristic peaks of as-prepared sample at 210, 283, 321, 340, 381, 411, 432, 475, 532, 618, 686, and 726 cm-1 were observed in Raman spectra. SEM and TEM show that the synthesized SrFe12O19 magnetic nanoparticles are uniform with the mean particle size of 60 nm. VSM measurement shows that the maximum magnetic energy product (BH)max of sample prepared using EDTA as a chelating agent is higher than that of sample prepared using citric acid as a chelating agent.

  9. Crystal structure of BaMn2(AsO4)2 containing discrete [Mn4O18]28- units.

    PubMed

    Alcantar, Salvador; Ledbetter, Hollis R; Ranmohotti, Kulugammana G S

    2017-12-01

    In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis-(arsenate), has been synthesized by employing a high-temperature RbCl flux. The crystal structure of BaMn 2 (AsO 4 ) 2 is made up of MnO 6 octa-hedra and AsO 4 tetra-hedra assembled by sharing corners and edges into infinite slabs with composition [Mn 2 (AsO 4 ) 2 ] 2- that extend parallel to the ab plane. The barium cations reside between parallel slabs maintaining the inter-slab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly inter-acting [Mn 4 O 18 ] 28- tetra-meric units. In each tetra-mer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetra-meric units are separated from each other by 6.614 (2) Å (Mn⋯Mn distances). The title compound has isostructural analogues amongst synthetic Sr M 2 ( X O 4 ) 2 compounds with M = Ni, Co, and X = As, P.

  10. Microstructural, dielectric and magnetic properties of multiferroic composite system barium strontium titanate – nickel cobalt ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahuja, Poonam, E-mail: poonampahuja123@gmail.com; Tandon, R. P., E-mail: ram-tandon@hotmail.com

    2015-05-15

    Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.

  11. Supercritical fluid route for synthesizing crystalline Barium Strontium Titanate nanoparticles.

    PubMed

    Reverón, H; Elissalde, C; Aymonier, C; Bidault, O; Maglione, M; Cansell, F

    2005-10-01

    Pure and well-crystallized Barium Strontium Titanate (BST) nanoparticles with controlled Ba/Sr ratio have been successfully synthesized under supercritical conditions using a continuous-flow reactor in the temperature range of 150-380 degrees C at 26 MPa. To synthesize the Ba0.6Sr0.4TiO3 composition, alkoxides, ethanol and water were used. The resulting nanopowder consists of fine particles with an average particle size of 23 nm. The results show that the Ba/Sr ratio of this powder can be accurately controlled from the composition of precursor. The characterization of the as-synthesized Ba0.6Sr0.4TiO3 solid-solution and the dielectric properties of the sintered ceramics are here reported.

  12. Phase transition studies in barium and strontium titanates at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1993-01-01

    The objectives were the following: to understand the phase transformations in barium and strontium titanates as the crystals go from one temperature to the other; and to study the dielectric behavior of barium and strontium titanate crystals at a microwave frequency of 9.12 GHz and as a function of temperature. Phase transition studies in barium and strontium titanate are conducted using a cylindrical microwave resonant cavity as a probe. The cavity technique is quite successful in establishing the phase changes in these crystals. It appears that dipole relaxation plays an important role in the behavior of the dielectric response of the medium loading the cavity as phase change takes place within the sample. The method of a loaded resonant microwave cavity as applied in this work has proven to be sensitive enough to monitor small phase changes of the cavity medium.

  13. Study of structure and dielectric properties of 1:2 type modified Barium Niobates in bulk and thin film forms

    NASA Astrophysics Data System (ADS)

    Bishnoi, Bhagwanti Ben S.

    In view of the processing and environmental issues pertaining to lead based ferroelectric materials, investigations on lead free ferroelectrics are carried intensively in recent years. These materials are interesting because, they are flexible with respect to structural changes and functional properties. These materials have potential device applications such as capacitors, sensors, actuators, and memory storage and microwave devices. This thesis is an attempt to elucidate the effect of substitution of isovalent ions (Sr, Ca) at the 'A' site of Hexagonal structured Barium Magnesium Niobate Ba(Mgl/3Nb 2/3)O3 (BMN) as well as effect of simultaneous substitution of divalent ions (Co2+ and Cu2+) on the 'B'-site' of Ba(Mg1/3Nb2/3)O3 (BMN) and Sr(Mg 1/3Nb2/3)O3 (SMN). Their structural, morphological, dielectric, impedance and optical properties are investigated. The XRD study on the ceramic compositions (SMN) showed single phase monoclinic hexagonal perovskite structure at room temperature. The SEM micrograph shows that the grains are uniformly distributed throughout the surface and the average grain size decreases with the substitution of divalent ion doping in Sr(Mg 1/3Nb2/3)O3 ceramic. The diffusivity of ceramics increases with increase in divalent ions substitution. The dielectric study confirmed that the relaxor nature is introduced in the Barium Niobate on replacement by other divalent ions at the A- or B'-site. Among various compositions in Sr(Cu1/3Nb2/3)O3 we obtained most promising dielectric properties. The impedance and modulus spectroscopy were employed to evaluate the different electrical properties of the grain and grain boundary of the ceramics. Ac Conductivity shows the two types of hopping conduction mechanism in frequency exponent vs temperature plots after the divalent ions replacement. The optical band gaps were calculated from UV-Visible spectroscopy ceramic suggested the presence of intermediately energy levels within the band gap. The single phase thin films of various compositions with A- and B'-site substitutions were successfully made using Pulsed laser deposition technique. Over all properties of films are identical to the respective bulk compositions except for some of the samples which exhibited relaxor behaviour only in the film form. Compared to O7+ irradiation the Ag15+ irradiation due to type of defects it created is more effective in reducing lattice strain induced dielectric losses along with marginal loss of dielectric constant. Significant increase in dielectric constant with low loss, on O 7+ as well as Ag15+ ion irradiation, may enhance the electro-optical properties which in turn increase compounds tuneablility for device applications.

  14. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    PubMed

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  15. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    NASA Astrophysics Data System (ADS)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  16. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    PubMed

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO 3 ), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO 3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd 3+ in Ba 2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO 3 -based ceramics.

  17. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    NASA Astrophysics Data System (ADS)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  18. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    PubMed Central

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-01-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559

  19. Facile growth of barium oxide nanorods: structural and optical properties.

    PubMed

    Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer

    2014-07-01

    This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.

  20. Determination of barium in natural waters by ICP-OES technique. Part II: Assessment of human exposure to barium in bottled mineral and spring waters produced in Poland.

    PubMed

    Garboś, Sławomir; Swiecicka, Dorota

    2013-01-01

    A method of the classification of natural mineral and spring waters and maximum admissible concentration (MAC) levels of metals present in such types of waters are regulated by Commission Directive 2003/40/EC, Directive 2009/54/EC of the European Parliament and of the Council and Ordinance of Minister of Health of 30 March 2011 on the natural mineral waters, spring waters and potable waters. MAC of barium in natural mineral and spring waters was set at 1.0 mg/l, while World Health Organization determined the Ba guideline value in water intended for human consumption at the level of 0.7 mg/l. The aims of the study were: the determination of barium in natural mineral and spring waters (carbonated, non-carbonated and medium-carbonated waters) produced and bottled on the area of Poland, and assessment of human exposure to this metal presents in the above-mentioned types of waters. The study concerning barium determinations in 23 types of bottled natural mineral waters and 15 types of bottled spring waters (bought in Polish retail outlets) was conducted in 2010. The analyses were performed by validated method of determination of barium in water based on inductively coupled plasma optical emission spectrometry, using modern internal quality control scheme. Concentrations of barium determined in natural mineral and spring waters were in the ranges from 0.0136 mg/l to 1.12 mg/l and from 0.0044 mg/l to 0.43 mg/l, respectively. Only in the single case of natural mineral water the concentration of barium (1.12 mg/l), exceeded above-mentioned MAC for this metal, which is obligatory in Poland and the European Union - 1.0 mg/l. The long-term monitoring of barium concentration in another natural mineral water (2006 - 2010), in which incidental exceeding MAC was observed in 2006, was conducted. All measured barium concentrations in this water were lower than 1.0 mg/l and therefore, it is possible to state that the proper method of mixing waters taken from six independent groundwater intakes applied during production is actually used. The estimated Hazard Quotient indices were in the ranges: 0.0019 - 0.16 (natural mineral waters) and 0.00063 - 0.061 (natural spring waters), respectively. The natural mineral waters are usually characterized by higher Ba concentrations than those observed in the cases of natural spring waters. The presence of a high concentration of HCO3- in such types of natural waters ensures the existence of Ba2+ in solution as Ba(HCO3)2, which is a highly soluble salt. Taking into account the concentrations of barium determined in above-mentioned waters and the available toxicological data for this metal no long-term risk for human health could be expected (estimated Hazard Quotient indices < or = 0.16).

  1. Oesophageal narrowing on barium oesophagram is more common in adult patients with eosinophilic oesophagitis than PPI-responsive oesophageal eosinophilia.

    PubMed

    Podboy, A; Katzka, D A; Enders, F; Larson, J J; Geno, D; Kryzer, L; Alexander, J

    2016-06-01

    To date there have been no clear features that aid in differentiating patients with eosinophilic oesophagitis (EoE) from PPI-responsive oesophageal eosinophilia (PPI-REE). However, barium swallow roentgenography is a more sensitive and specific measure to detect subtle fibrostenotic remodeling changes present in EoE. We aim to characterise any clinical, endoscopic, histiological or barium roentgenographic differences between EoE and PPI-REE. To characterise any clinical, endoscopic, histiological or barium roentgenographic differences between EoE and PPI-REE. We performed a retrospective cohort analysis on data collected from a tertiary referral centre population from 2010 to 2015. Data from 66 patients with EoE and 28 patients with PPI-REE were analysed. Cases were adults who met consensus guidelines for EOE, and had a barium swallow study within 6 months of the index endoscopy. Clinical, endoscopic, histiological and barium swallow findings were collected. Patients with EoE reported similar characteristics as PPI-REE patients, except EoE patients were younger (35.6 vs. 46.6 years; P = 0.011), had earlier symptom onset (29.0 vs. 38.0 years; P = 0.026), and smaller oesophageal diameters on barium swallow (19.5 mm vs. 20; P = 0.042). Patients with EoE were more likely to have distal strictures (EoE 77% vs. 25%; P = 0.02) and, importantly, a greater likelihood of small calibre oesophagus (51.5% vs. 17.9%; P = 0.002). Moreover, EoE patients had a higher probability of developing small calibre oesophagus after 20 years of symptoms (72.3% vs. 30.2%; P = 0.074) compared to PPI-REE patients. When compared with eosinophilic oesophagitis, PPI-REE patients demonstrate findings that suggest PPI-responsive oesophageal eosinophilia to be a later onset, less aggressive form of oesophageal stricturing disease than eosinophilic oesophagitis. © 2016 John Wiley & Sons Ltd.

  2. Comparison of two barium suspensions for dedicated small-bowel series.

    PubMed

    Davidson, J C; Einstein, D M; Herts, B R; Balfe, D M; Koehler, R E; Morgan, D E; Lieber, M; Baker, M E

    1999-02-01

    The in vivo radiographic features of two commercially available formulations of barium used as contrast media in dedicated small-bowel series were compared. Fifty-six consecutive outpatients referred for a dedicated small-bowel series were randomly administered either E-Z-Paque or Entrobar. Representative survey radiographs from each examination were randomized and reviewed by six gastrointestinal radiologists from three institutions. Each observer assigned a numeric score (1 = poor, 2 = fair, 3 = good, and 4 = excellent) that rated the quality of the radiograph with respect to these characteristics: definition of fold pattern, translucency, distention, and integrity of the barium column. Statistical analysis was performed for each characteristic using Wilcoxon's two-sample rank sum test. All six observers found a statistically significant difference between the two barium formulations for mean scores for definition of fold pattern and translucency. Mean scores for fold pattern were 3.3, 3.0, 3.2, 3.6, 3.3, and 3.4 for Entrobar and 2.1, 2.3, 2.4, 3.2, 2.6, and 2.7 for E-Z-Paque. Mean scores for translucency were 2.5, 2.7, 2.8, 3.1, 2.7, and 3.3 for Entrobar and 1.6, 1.7, 2.1, 2.3, 1.9, and 2.7 for E-Z-Paque. No statistically significant difference was found for mean score for distention or integrity of the barium column. On radiographs, Entrobar was found to have superior characteristics for visualization of fold pattern and translucency but offered no advantages for distention or integrity of the barium column. Improved translucency and definition of fold pattern may translate into improved sensitivity and confidence in diagnosing small-bowel abnormality.

  3. Capabilities of laser ablation mass spectrometry in the differentiation of natural and artificial opal gemstones.

    PubMed

    Erel, Eric; Aubriet, Frédéric; Finqueneisel, Gisèle; Muller, Jean-François

    2003-12-01

    The potentialities of laser ablation coupled to ion cyclotron resonance Fourier transform mass spectrometry are evaluated to distinguish natural and artificial opals. The detection of specific species in both ion detection modes leads us to obtain relevant criteria of differentiation. In positive ions, species including hafnium and large amounts of zirconium atoms are found to be specific for artificial opal. In contrast, aluminum, titanium, iron, and rubidium are systematically detected in the study of natural opals. Moreover, some ions allow us to distinguish between natural opal from Australia and from Mexico. Australian gemstone includes specifically strontium, cesium, and barium. Moreover, it is also found that the yield of (H2O)0-1(SiO2)nX- (X- = O-, OH-, KO-, NaO-, SiO2-, AlO1-2-, FeO2-, ZrO2-, and ZrO3-) and (Al2O3)(SiO2)nAlO2- ions depends on the composition of the sample when opals are laser ablated. Ions, which include zirconium oxide species, are characteristics of artificial gem. In contrast, natural opals lead us, after laser ablation, to the production of ions including H2O, Al2O3 motifs and AlO-, KO-, NaO-, and FeO2- species.

  4. Systematics of the temperature-dependent interplane resistivity in Ba(Fe 1-xM x)₂As₂ (M=Co, Rh, Ni, and Pd)

    DOE PAGES

    Tanatar, M. A.; Ni, N.; Thaler, A.; ...

    2011-07-27

    Temperature-dependent interplane resistivity ρ c(T) was measured systematically as a function of transition-metal substitution in the iron-arsenide superconductors Ba(Fe 1-xM x)₂As₂, M=Ni, Pd, Rh. The data are compared with the behavior found in Ba(Fe 1-xCo x)₂As₂, revealing resistive signatures of pseudogap. In all compounds we find resistivity crossover at a characteristic pseudogap temperature T* from nonmetallic to metallic temperature dependence on cooling. Suppression of T* proceeds very similarly in cases of Ni and Pd doping and much faster than in similar cases of Co and Rh doping. In cases of Co and Rh doping an additional minimum in the temperature-dependentmore » ρ c emerges for high dopings, when superconductivity is completely suppressed. These features are consistent with the existence of a charge gap covering part of the Fermi surface. The part of the Fermi surface affected by this gap is notably larger for Ni- and Pd-doped compositions than in Co- and Rh-doped compounds.« less

  5. Development of very high J c in Ba(Fe 1-xCo x) 2As 2 thin films grown on CaF 2

    DOE PAGES

    Tarantini, C.; Kametani, F.; Lee, S.; ...

    2014-12-03

    Ba(Fe 1-xCo x) 2As 2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, J c. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,T c, of the material. In this study we demonstrate that strain induced by the substrate can further improve J c of both single and multilayer films by more than that expected simply due to the increase in T c. The multilayer deposition of Ba(Fe 1-xComore » x) 2As 2 on CaF 2 increases the pinning force density (F p=J c x μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m 3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less

  6. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.

  8. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    DOE PAGES

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; ...

    2018-03-26

    A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less

  9. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  10. Liquidus Diagram of the Ba-Y-Cu-O System in the Vicinity of the Ba2YCu3O6+x Phase Field

    PubMed Central

    Wong-Ng, Winnie; Cook, Lawrence P.

    1998-01-01

    This paper describes the melting equilibria in the vicinity of the high Tc phase Ba2YCu3O6+x, including evidence for two Ba-Y-Cu-O immiscible liquids. Melting equilibria have been investigated in purified air using a combination of differential thermal analysis (DTA), thermogravimetric analysis (TGA), powder x-ray diffraction (XRD), MgO wick entrapment of liquid for analysis, scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDS), and hydrogen reduction for determination of copper oxidation state. For relatively barium-rich compositions, it was necessary to prepare the starting materials under controlled atmosphere conditions using BaO. A liquidus diagram was derived from quantitative data for the melts involved in various melting reactions. In general the 1/2(Y2O3) contents of the melts participating in these equilibria were low (mole fraction <4 %). The primary phase field of Ba2YCu3O6+x occurs at a mole fraction of <2.0 % 1/2Y2O3 and lies very close along the BaO-CuOx edge, extending from a mole fraction of ≈43 % CuO to a mole fraction of ≈76 % CuO. It is divided by a liquid miscibility gap and extends on either side about this gap. The topological sequence of melting reactions associated with the liquidus is presented as a function of temperature. Implications for the growth of Ba2YCu3O6+x crystals are discussed. PMID:28009382

  11. Composition and Structure Measurements in an Ionospheric Barium Cloud.

    DTIC Science & Technology

    1981-12-23

    AD -AI13 138 AIR FORCE GEOPHYSI;S LAO HANSCOM AFR MA F/6 4/1 COMPOSITION AND STRUCTURE MEASUREMENTS IN AN IONOSPHERIC BARIUM-.ETC’ DEC 81 R NARCISI. E...Approved for public re..: distribution unlimited. This work was supported in part by do n e Nucler Age cy under Subtmk I2SAAXHX,. , Wok Unl 00014...distribution unlimited. 17. DISTRIBUTION STATEMENT rof Ihe bs,-r entered In Block 20, If diff-r-o from, R.FO1r lB SUPPLEMENTARY NOTES This work was

  12. Investigations on the local structures of Cu2+ at various BaO concentrations in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO glasses

    NASA Astrophysics Data System (ADS)

    Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He

    2017-11-01

    The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.

  13. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.

    2014-01-28

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffractionmore » (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.« less

  14. Method for preparing spherical ferrite beads and use thereof

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.

    2002-01-01

    The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.

  15. Subcritical crack growth phenomenon and fractography of barium titanate and barium titanate-based composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H.J.; Niihara, Koichi

    1997-01-15

    Subcritical crack growth (SCG), the propagation of surface and subsurface flaws under subcritical stress, i.e., any stress less than that necessary to catastrophically propagate the flaw, is a general phenomenon frequently observed in ceramics. Recently, electrical devices are miniaturized and used under quite severe atmospheres. Such environments often lead to the initiation and propagation of cracks due to the repeated electrical cycling, stresses by the mismatch in thermal expansion coefficient between devices and other constituents and thermal shock. In this study, the authors fabricated BaTiO{sub 3} and BaTiO{sub 3}-based composites containing nano-sized SiC particulates. The SCG phenomenon and fractography weremore » discussed based on the data obtained from indentation-induced-fracture (IIF) method.« less

  16. Magnetic, ferroelectric, and spin phonon coupling studies of Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} multiferroic Z-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, N.; Shravan Kumar Reddy, S.; Ramesh, J.

    2016-08-07

    The magnetic, Raman, ferroelectric, and in-field {sup 57}Fe Mössbauer studies of polycrystalline multiferroic Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} are reported in this paper. From the magnetization studies, it is observed that the sample is soft magnetic in nature with low temperature magnetic spin transitions like longitudinal to transverse conical structure around 130 K and change in magnetic crystalline anisotropy from conical to planar structure at 250 K. Ferroelectric studies of the sample exhibit the spontaneous polarization at low temperature. Strong spin phonon and spin lattice coupling is observed through low temperature Raman spectroscopy. From the in-field {sup 57}Fe Mössbauer spectroscopy, spin upmore » and spin down site occupations of Fe ions are calculated in the unit cell.« less

  17. Effect of barium sulfate contrast medium on rheology and sensory texture attributes in a model food.

    PubMed

    Ekberg, O; Bulow, M; Ekman, S; Hall, G; Stading, M; Wendin, K

    2009-03-01

    The swallowing process can be visualized using videoradiography, by mixing food with contrast medium, e.g., barium sulfate (BaSO(4)), making it radiopaque. The sensory properties of foods may be affected by adding this medium. To evaluate if and to what extent sensory and rheological characteristics of mango purée were altered by adding barium sulfate to the food. This study evaluated four food samples based on mango purée, with no or added barium sulfate contrast medium (0%, 12.5%, 25.0%, and 37.5%), by a radiographic method, and measured sensory texture properties and rheological characteristics. The sensory evaluation was performed by an external trained panel using quantitative descriptive analysis. The ease of swallowing the foods was also evaluated. The sensory texture properties of mango purée were significantly affected by the added barium in all evaluated attributes, as was the perception of particles. Moreover, ease of swallowing was significantly higher in the sample without added contrast medium. All samples decreased in extensional viscosity with increasing extension rate, i.e., all samples were tension thinning. Shear viscosity was not as dependent on the concentration of BaSO(4) as extensional viscosity. Addition of barium sulfate to a model food of mango purée has a major impact on perceived sensory texture attributes as well as on rheological parameters.

  18. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    DOE PAGES

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; ...

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe 0.92Co 0.08) 2As 2 ( T c = 23.2 K), Ba(Fe 0.95Ni 0.05) 2As 2 ( T c = 20.4 K), and Ba(Fe 0.94Ni 0.06) 2As 2 ( T c = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dcmore » fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe 0.92Co 0.08) 2As 2 polycrystalline sample, showing a promise for liquid helium temperature applications.« less

  19. Two new triterpenoids from the seeds of blackberry (Rubus fructicosus).

    PubMed

    Ono, Masateru; Yasuda, Shin; Nishi, Kaori; Yamamoto, Kazutaka; Fuchizaki, Satoshi; Higuchi, Satomi; Komatsu, Haruki; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2016-01-01

    Two new ursane-type triterpenoids (1, 2) attached to isopropylidenedioxy group were isolated from the seeds of blackberry (Rubus fructicosus L., Rosaceae) along with two known ursane-type triterpenoids, 2,3-O-isopropylidenyl-2α,3α,19α-trihydroxyurs-12-en-28-oic acid (3) and 1β-hydroxyeuscaphic acid (4). The chemical structures of 1 and 2 were determined to be 2,3-O-isopropylidene-1β,2β,3β,19α-tetrahydroxyurs-12-en-28-oic acid and 1,2-O-isopropylidene-1β,2α,3α,19α-tetrahydroxyurs-12-en-28-oic acid, respectively, based on spectroscopic data. Additionally, their cytotoxic activity towards HL-60 human leukaemia cells was evaluated. Among them, 3 demonstrated a clear cytotoxic activity with 72.8 μM of IC50 value.

  20. Electrical Degradation in Ceramic Dielectrics

    DTIC Science & Technology

    1988-09-09

    and D. M. Smyth, " Positron Annihilation in Calcium-Doped Barium Titanate", in Electro- Ceramics and Solid State Ionsi, H. L. Tuller and D. M. Smyth...2 with the formation of ompensating oxygen vacancies, and this causes an increase in the ioni conductivity: 2CaO CaC + Call + 20 + (5) TiO2 --- V

  1. The nature of the F str lambda 4077 stars. 3: Spectroscopy of the barium dwarfs and other CP stars

    NASA Technical Reports Server (NTRS)

    North, P.; Berthet, S.; Lanz, T.

    1994-01-01

    The abundances of C, O, Al, Ca, iron-peak and s-process elements have been derived from high-resolution spectra for a sample of stars classified as F str lambda 4077 by Bidelman. Among the 20 stars mentioned by Bidelman, we have discovered 8 barium dwarfs (or CH subgiants, according to Bond's terminology), while a 9th star, HD 182274, was already known as a CH subgiant. In addition, we have analyzed three barium stars taken from the list of Lu et al. (1983) which are probably dwarfs rather than giants, and three CH subgiants. The other 11 F str lambda 4077 stars resemble either the delta Delphini stars, since their iron abundance is enhanced while Ca is normal, or are probably spectrum composites. A few Am, Ap, lambda Bootis and normal stars have been analyzed for comparison. In particular, we have included three lambda Boo candidates, selected from their photometric properties, and their iron deficiency is confirmed. The spectroscopic, photometric and statistical evidences concerning the Ba dwarfs, support the idea that these stars may be the main sequence counterparts, and possibly the progenitors of the Ba giants. The C/O ratio varies in these stars from normal values to a maximum of 1.5, but mostly within 0.6 and 1.2. Some of these objects may therefore be considered, in this sense, as carbon stars. On the other hand, the abundances of carbon and s-process elements relative to iron are inversely correlated with metallicity, and may even exceed significantly those of typical, solar-metallicity carbon stars. Metal-deficient C stars must therefore have (C/Fe) greater than or approximately equal to 1 and (s/Fe) greater than or approximately equal to 1.5 as soon as (Fe/H) less than or approximately equal to -1. The neutron exposure is shown to increase when the metallicity decreases, which is compatible with the C-13 (alpha, n) O-16 neutron source, but not with the Ne-22 (alpha, n) Mg-25 one. The evolutionary state (within the main sequence) of the Ba dwarfs, is rediscussed in relation with their photometric and spectroscopic surface gravity, but it remains unclear.

  2. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  3. Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2.

    PubMed

    Walmsley, P; Putzke, C; Malone, L; Guillamón, I; Vignolles, D; Proust, C; Badoux, S; Coldea, A I; Watson, M D; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A

    2013-06-21

    We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

  4. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Kwok, W.; Welp, U.; Graf, D.; Brooks, J. S.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.

    2013-08-01

    Irradiation with 1.4 GeV 208Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)2As2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x=0.108 and x=0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of Bϕ=6 T and 6.5 T with doses 2.22×1011 d/cm2 and 2.4×1011 d/cm2, respectively, suppresses the superconducting Tc by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δλ(T)=ATn. Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s± pairing in Ba(Fe1-xCox)2As2 compounds for the entire Co doping range.

  5. Point contact Andreev reflection spectroscopic (PCARS) studies on 122-type iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Park, W. K.; Greene, L. H.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, S. E.

    2010-03-01

    PCARS is applied to investigate the superconducting gap in iron pnictide single crystal superconductors of the AFe2As2 (A=Ba, Sr) family with two categories of G(V) curves observed [1]: one where Andreev reflection (AR) is present for (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other without AR but a V^2/3 shape for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in the nonsuperconducting parent compound BaFe2As2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors. A gap size ˜3.0-4.0 meV with 2δ0/kBTc˜2.0-2.6 is observed for PCARS on Ba0.6K0.4Fe2As2. For the Ba(Fe0.9Co0.1)2As2, G(V) curves typically display a zero-bias conductance peak, sometimes with a V-shape background. [1] Xin Lu et al., arXiv:0910.4230

  6. High Resolution X-ray Scattering Studies of Structural Phase Transitions in BaFe2-x Cr x As 2

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Clancy, J. P.; Wagman, J. J.; Sefat, A. S.

    2011-03-01

    While the effects of electron-doping on the parent compounds of the 122 family of Fe-based superconductors have been extremely well-studied in recent years, far less is known about the influence of hole-doping in compounds such as BaFe 2-x Cr x As 2 . In contrast to the electron-doped 122 systems, the hole-doped compounds do not become superconducting. Furthermore, while the hole-doped compounds exhibit similar structural and magnetic phase transitions, they appear to be much less sensitive to dopant concentration. We have performed high resolution x-ray scattering and magnetic susceptibility measurements on single crystal samples of BaFe 2-x Cr x As 2 for Cr concentrations ranging from 0 <= x <= 0.67 . These measurements allow us to determine the magnetic and structural phase transitions for this series and map out the low temperature phase diagram as a function of doping. In particular, we have carried out detailed measurements of the tetragonal (I4/mmm) to orthorhombic (Fmmm) structural phase transition which reveal how the orthorhombicity of the system evolves with increasing Cr concentration and how this correlates with the values of Ts and Tm .

  7. Energetic Materials and Metals Contamination at CFB/ASU Wainwirght, Alberta Phase 1

    DTIC Science & Technology

    2008-11-01

    Edmonton, Alberta). Metals analyzed for this study were silver (Ag), aluminium (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), bismuth 4...selenium (Se), antimony (Sb), tin (Sn), strontium (Sr), tellurium (Te), titanium (Ti), thallium (Tl), uranium (U), vanadium (V), zinc (Zn), and...mg/kg mg/kg mg/kg Aluminium - 9070 1040 Antimony 40 2 1 Arsenic 12 7 13.6 Barium 2000 177 73.4 Beryllium 8 40 40 Bismuth - 20 20 Boron - 10

  8. Impedance Spectroscopy Study of the Electrical Properties of Cation-Substituted Barium Hexaaluminate Ceramics

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Drokin, N. A.; Poluboyarov, V. A.

    2018-02-01

    We report on the behavior of frequency and temperature dependences of the impedance of a measuring cell in the form of a parallel-plate capacitor filled with barium hexaaluminate ceramics with four aluminum cations replaced by iron (BaO · 2Fe2O3 · 4Al2O3). The measurements have been performed in the frequency range of 0.5-108 Hz at temperatures of 20-375°C. A technique for determining the electrical properties of the investigated ceramics is proposed, which is based on an equivalent electric circuit allowing the recorded impedance spectra to be approximated with sufficiently high accuracy. The established spectral features are indicative of the presence of two electric relaxation times different from each other by three orders of magnitude. This fact is explained by the difference between the charge transport processes in the bulk of crystallites and thin intercrystallite spacers, for which the charge activation energies have been determined.

  9. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.

    2016-05-01

    In this work, Barium Titanate (BaTiO3) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO3 on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectric constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.

  10. Emission properties of Ce3+ centers in barium borate glasses prepared from different precursor materials

    NASA Astrophysics Data System (ADS)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro

    2017-10-01

    The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.

  11. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less

  12. Utilizing maleic acid as a novel fuel for synthesis of PbFe{sub 12}O{sub 19} nanoceramics via sol–gel auto-combustion route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansari, Fatemeh; Soofivand, Faezeh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir

    2015-05-15

    PbFe{sub 12}O{sub 19} nanostructures were prepared in an aqueous solution by the sol–gel auto-combustion method using Pb(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} as starting materials and various carboxylic acids, including oxalic acid, malonic acid, succinic acid and maleic acid as fuel and reducing and capping agents. The as-synthesized products were characterized by X- ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. The effect of carboxylic acid type, Pb{sup +} {sup 2} to carboxylic acid molar ratio, and calcination temperature was investigated on the morphology of the products and several experiments were carried out to obtain the optimalmore » reaction conditions. It was found that the phase and the morphology of the products are influenced by the investigated parameters. Furthermore, vibrating sample magnetometer (VSM) was used to study the magnetic properties of PbFe{sub 12}O{sub 19} samples. - Graphical abstract: Display Omitted - Highlights: • PbFe{sub 12}O{sub 19} nanoceramics were synthesized from Fe(NO{sub 3}){sub 3} and Pb(NO{sub 3}){sub 2} via the sol–gel auto combustion method. • The maleic acid can be instead of common capping agent and fuel in auto-combustion sol–gel. • The synthesized PbFe{sub 12}O{sub 19} is a hard magnetic material. • The specific saturation magnetization and coercivity are 27 emu/g and 1900 Oe, respectively.« less

  13. Crystal growth, differential gas adsorption, high thermal stability, and reversible coordination of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halake, Shobha; Ok, Kang Min, E-mail: kmok@cau.ac.kr

    2015-11-15

    Single crystals of two barium-organic framework materials, Ba(SBA)(DMF){sub 4} (CAUMOF-15) and Ba{sub 2}(BTEC)(H{sub 2}O) (CAUMOF-16), have been grown through solvothermal reactions (H{sub 2}SBA=4,4′-sulfonyldibenzoic acid and H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid). The crystal structures of the reported frameworks have been determined by single-crystal X-ray diffraction. The materials have been fully characterized by powder X-ray diffraction (PXRD), elemental analyses, Infrared (IR) spectroscopy, and thermogravimetric analyses (TGA). CAUMOF-15 reveals a three-dimensional open-framework that comprises of an inorganic motif with one-dimensional chains and the SBA linkers. CAUMOF-16 shows another three-dimensional backbone consisting of layers of edge-shared BaO{sub 9} and BaO{sub 10} polyhedra, and BTEC pillars. Bothmore » of the 3D frameworks exhibit relatively high thermal stabilities. The PXRD and IR spectral data confirm that CAUMOF-15 and CAUMOF-16 reveal reversible coordinations of the respective solvent molecules, DMF and H{sub 2}O. Gas adsorption properties towards nitrogen, hydrogen, and carbon dioxide have been also investigated. - Graphical abstract: Crystals of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O), exhibiting a differential gas adsorption, a high thermal stability, and a reversible coordination of solvent molecules have been grown. - Highlights: • Crystals of two new 3D Ba-MOFs are grown. • The two Ba-MOFs reveal very high thermal stabilities up to ca. 400 °C. • Ba(SBA)(DMF){sub 4} exhibits differential gas adsorption properties. • The two Ba-MOFs show reversible coordination of the solvent molecules.« less

  14. A new SrBi4Ti4O15/CaBi4Ti4O15 thin-film capacitor for excellent electric stability.

    PubMed

    Noda, Minoru; Nomura, Shuhei; Uchida, Hiroshi; Yamashita, Kaoru; Funakubo, Horoshi

    2012-09-01

    SrBi(4)Ti(4)O(15) (SBTi) and CaBi(4)Ti(4)O(15) (CBTi) dielectric films of bismuth layered-structure dielectrics (BLSD) are prepared on Pt(100) film for constructing stacked-type dielectric capacitors; it is observed that they are c-axis singleoriented crystalline films. Compared with the perovskite barium titanate family of (Ba,Sr)TiO(3) (BST), it is observed that the SBTi film keeps a low leakage of 10(-7) A/cm(2) at 250 kV/ cm, which is smaller by an order of magnitude than the BST film, even with thinner SBTi film. The temperature coefficient of capacitance (TCC) of the SBTi or CBTi film is about 100 to 250 ppm/K and is much smaller than that of the perovskite BST film. Because the SBTi and CBTi films have opposite polarities of TCC in this experiment, they are expected to cancel out the temperature dependence in the SBTi/CBTi composite capacitor. These results indicate that the BLSD films of SBTi and CBTi are effective for application in high-temperature and high-permittivity capacitors with the practical barium perovskite oxide family.

  15. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  16. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, S. Gokul; Mathivanan, V.; Mohan, R.

    2016-05-06

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr{sub 0.6}B{sub 0.4}Nb{sub 2}O{sub 6}) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce{sup +} ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  17. Real-time observations of interface formation for barium strontium titanate films on silicon

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.

    2002-05-01

    Ba.5Sr.5TiO3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Å film with intermediate static dielectric constant (K˜12) and refractive index (n˜2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST.

  18. Peculiarities of physical and chemical processes of clinker formation in raw mixes with increased content of magnesium oxide in presence of barite waste

    NASA Astrophysics Data System (ADS)

    Novoselova, I. N.; Novosyolov, A. G.

    2018-03-01

    The article considers the influence of barite waste on clinker formation processes in raw mixes with the increased content of magnesium oxide. A by-product of the barite concentrate manufacture of Tolcheinskoye deposit has been used as a barite waste, its predominant content of barium sulphate BaSO4 amounts to 76,11%. The impact of BaO and SO3 has been revealed, particularly the impact of barium oxide on clinker formation processes in raw mixes with the increased content of magnesium oxide. It has been clarified that the addition of barite waste into a raw mix causes the formation of dicalcium silicate in two modifications, reduces the amount of alite and influences on the composition of tricalcium aluminate. Barium mono-alluminate is formed in the composition of the intermediate material. Solid solutions with barium oxide are formed in clinker phases. The authors have determined the saturation speed of calcium oxide in magnesium-bearing raw mixes with saturation coefficient (SC) 0,91 and 0,80 in the presence of 2 and 3% barite waste in the temperature range 1300-1450°C.

  19. Initial Investigation of Factors Influencing Radiation Dose to Patients Undergoing Barium-Based Fluoroscopy Procedures in Tanzania.

    PubMed

    Ngaile, J E; Msaki, P K; Kazema, R R; Schreiner, L J

    2017-04-25

    The aim of this study was to investigate the nature and causes of radiation dose imparted to patients undergoing barium-based X-ray fluoroscopy procedures in Tanzania and to compare these doses to those reported in the literature from other regions worldwide. The air kerma area product (KAP) to patient undergoing barium investigations of gastrointestinal tract system was obtained from four consultant hospitals. The KAP was determined using a flat transparent transmission ionization chamber. Mean values of KAP for barium swallow (BS), barium meal (BM) and barium enema (BE) were 2.79, 2.62 and 15.04 Gy cm2, respectively. The mean values of KAP per hospital for the BS, BM and BE procedures varied by factors of up to 7.3, 1.6 and 2.0, respectively. The overall difference between individual patient doses across the four consultant hospitals investigated differed by factors of up to 53, 29.5 and 12 for the BS, BM and BE procedures, respectively. The majority of the mean values of KAP was lower than the reported values for Ghana, Greece, Spain and the UK, while slightly higher than those reported for India. The observed wide variation of KAP values for the same fluoroscopy procedure within and among the hospitals was largely attributed to the dynamic nature of the procedures, the patient characteristics, the skills and experience of personnel, and the different examination protocols employed among hospitals. The observed great variations of procedural protocols and patient doses within and across the hospitals call for the need to standardize examination protocols and optimize barium-based fluoroscopy procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound

    NASA Astrophysics Data System (ADS)

    Bordet, P.; Duc, F.; Lefloch, S.; Capponi, J. J.; Alexandre, E.; Rosa-Nunes, M.; Antipov, E. V.; Putilin, S.

    1996-02-01

    A high precision X-ray diffraction analysis up to sin θ/λ = 1.15 of a HgBa2CuO4+δ single crystal having a Tc of ~ 90 K is presented. The cell parameters are a = 3.8815(4), c = 9.485 (7) Å. The refinements indicate the existence of a split barium site due to the presence of excess oxygen in the mercury layer. The position of this excess oxygen might be slightly displaced from the (1/2 1/2 0) position. A 6% mercury deficiency is observed. Models, including mercury defects, substitution by copper cations, or carbonate groups, are compared. However, we obtain no definite evidence for either of the three models. A possible disorder of the Hg position, due to the formation of chemical bonds with neighbouring extra oxygen anions, could correlate to the refinements of mixed species at the Hg site. A low temperature single crystal x-ray diffraction study, and comparison of refinements for the same single crystal with different extra oxygen contents, are in progress to help clarify this problem.

Top