Science.gov

Sample records for bark beetle ips

  1. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees

    NASA Astrophysics Data System (ADS)

    Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.

    2016-02-01

    Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.

  2. Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut.

    PubMed

    Skrodenyte-Arbaciauskiene, V; Radziute, S; Stunzenas, V; Būda, V

    2012-04-01

    Gram-negative-staining bacteria that were resistant to monoterpene myrcene (7-methyl-3-methylene-1.6-octadiene, C10H16, at concentrations of up to 10 µl ml(-1) in TSB) were isolated from the gut contents of adult bark beetles Ips typographus (Coleoptera, Scolytidae). The beetles were collected from the bark of Norway spruce (Picea abies) in Lithuania. Bark beetles feed on conifers, which produce myrcene among many other defensive compounds. It has been suggested that the micro-organisms present within the beetles' guts could be involved in their resistance towards this plant defensive compound. The most resistant bacterial strains were isolated and characterized by phenotypic assays as well as fatty acid analysis, 16S rRNA gene sequencing, multilocus sequence analyses (MLSA) based on the rpoB, atpD and infB genes and DNA-DNA hybridization. Biochemical characterization indicated that the bacteria belonged to the family Enterobacteriaceae. Phylogenetic analyses of the 16S rRNA gene sequences and MLSA of the novel strains revealed that they belonged to the genus Erwinia, but represented a novel species. The dominant cellular fatty acids were C16:0 and C17:0 cyclo. The DNA G+C content was 49.1 mol%. The results obtained in this study indicated that these bacteria from the bark beetle gut represented a novel species, for which the name Erwinia typographi sp. nov. is proposed, with the type strain DSM 22678T (=Y1T=LMG 25347T).

  3. Multiple component system of sugars and polyols in the overwintering spruce bark beetle, Ips typographus.

    PubMed

    Kostál, V; Zahradnícková, H; Simek, P; Zelený, J

    2007-06-01

    Overwintering adults of the spruce bark beetle, Ips typographus (L.) showed an unusually complex sugar/polyol cryoprotectant system. The major components of the multiple system were: glucose (177.6 mmolL(-1), March); trehalose (175.0 mmolL(-1), December); sorbitol (147.9 mmolL(-1), January); mannitol (81.2 mmolL(-1), March); and erythritol (40.7mmolL(-1), March) (in the parentheses, the maximum concentrations are shown and the month when they were reached). Other minor components were glycerol, fructose, threitol, myo-inositol, arabinitol and ribitol. Distinct seasonal patterns of accumulation/depletion in various components were found. Glycerol, trehalose and glucose started to accumulate first, during early autumn, when the air temperatures fluctuated between 20 and 0 degrees C, and diapause beetles continued in feeding. Glycerol was depleted, glucose remained stable and trehalose continued in accumulation during late autumn when the temperatures oscillated around 0 degrees C. During early winter severe frosts reaching -20 degrees C came, the beetles terminated their diapause and trehalose was partially depleted, while mannitol, sorbitol, fructose, threitol and erythritol started to accumulate. Cold weather continued also during late winter when the beetles remained quiescent. During this period, trehalose was re-accumulated, threitol and erythritol continued to increase, mannitol remained stable and sorbitol, fructose decreased. All cryoprotectans were finally cleared in the beetles which were spontaneously leaving bark during early spring. The seasonal maximum of total concentration of all cryoprotectants (578.2 mOsmol L(-1)) was reached in March. Such a concentration results in colligative depression of melting point of body fluids down by 1.08 degrees C only. It suggests that the potential cryoprotective effect of accumulated sugars and polyols was related rather to their non-colligative functions. PMID:17481650

  4. What is Next in Bark Beetle Phylogeography?

    PubMed Central

    Avtzis, Dimitrios N.; Bertheau, Coralie; Stauffer, Christian

    2012-01-01

    Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the

  5. What is Next in Bark Beetle Phylogeography?

    PubMed

    Avtzis, Dimitrios N; Bertheau, Coralie; Stauffer, Christian

    2012-05-07

    Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km² of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree's defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the

  6. A dynamical model for bark beetle outbreaks.

    PubMed

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  7. A dynamical model for bark beetle outbreaks.

    PubMed

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  8. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

    PubMed

    Zhao, Tao; Axelsson, Karolin; Krokene, Paal; Borg-Karlson, Anna-Karin

    2015-09-01

    Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems.

  9. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

    PubMed

    Zhao, Tao; Axelsson, Karolin; Krokene, Paal; Borg-Karlson, Anna-Karin

    2015-09-01

    Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems. PMID:26302987

  10. The ecology of yeasts in the bark beetle holobiont: a century of research revisited.

    PubMed

    Davis, Thomas Seth

    2015-05-01

    Yeasts are extremely common associates of scolytine bark beetles, yet the basic ecology of yeasts in the bark beetle holobiont remains poorly understood. Yeasts are present in all beetle life stages and consistently isolated from adult, larval, and pupal integuments and mycangial structures, but yeasts are also found in oviposition galleries, pupal chambers, larval and adult digestive tracts, as well as phloem and xylem tissues. Yeasts in the Saccharomycetaceae family are the most prevalent associates, and most individual beetles are associated with only one or several yeast species. Kuraishia capsulata and Ogataea pini are the most commonly encountered yeast species in surveys of Dendroctonus and Ips beetles; most beetles that have been surveyed are vectors for one or both yeasts. Yeasts have significant but often overlooked functional roles in bark beetle ecology. Infochemicals resulting from volatile production by yeast have wide-ranging bioactivity for arthropods: Yeast emissions attract beetles at low concentrations but repel beetles at high concentrations, and yeast emissions can also serve as cues to predators and parasites of bark beetles. In some cases, yeasts can modify tree chemistry over time or metabolize toxic terpenoids, though potential consequences for beetle performance or the growth of nutritional fungi remain to be demonstrated. Also, the presence of yeast species can restrict or promote the establishment and growth of filamentous fungi, including mutualists, entomopathogens, and opportunistic saprophytes. The role of yeasts as nutritional symbionts has received mixed support, though a nutritional hypothesis has not been extensively tested. Continued research on the functional ecology of bark beetle-yeast associations is needed to better understand the emergent properties of these complex symbiont assemblages.

  11. Chemical ecology of bark beetles in regard to search and selection of host trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bark beetles (Coleoptera: Scolytidae), especially pests in the genera Dendroctonus, Ips, Scolytus, Trypodendron, Tomicus, and Pityogenes of the Northern hemisphere are reviewed regarding aspects of their chemical ecology during host finding and selection. Most of the species covered here feed on con...

  12. The bark beetle holobiont: why microbes matter.

    PubMed

    Six, Diana L

    2013-07-01

    All higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods. Insects rely on microbes to perform basic life functions and to exploit resources and habitats. By "partnering" with microbes, insects access new genomic variation instantaneously allowing the exploitation of new adaptive zones, influencing not only outcomes in ecological time, but the degree of innovation and change that occurs over evolutionary time. In this review, I present a brief overview of the importance of insect-microbe holobionts to illustrate how critical an understanding of the holobiont is to understanding the insect host and it interactions with its environment. I then review what is known about the most influential insect holobionts in many forest ecosystems-bark beetles and their microbes-and how new approaches and technologies are allowing us to illuminate how these symbioses function. Finally, I discuss why it will be critical to study bark beetles as a holobiont to understand the ramifications and extent of anthropogenic change in forest ecosystems.

  13. Pheromone Chemistry of the Smaller European Elm Bark Beetle.

    ERIC Educational Resources Information Center

    Beck, Keith

    1978-01-01

    Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)

  14. Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae)

    SciTech Connect

    Flamm, R.O.; Pulley, P.E.; Coulson, R.N. )

    1993-02-01

    The southern pine bark beetle guild [Dendroctonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. grandicollis (Eichhoff), and I. avulsus (Eichhoff)] uses disturbed hosts as habitat for establishment of within-tree populations. The process of colonization of disturbed hosts was examined. Using a procedure designed to emulate effects of a lightning strike, pines were severely disturbed. Response was characterized by measuring beetle populations that (1) arrived at the trees and (2) successfully attacked the trees. Establishment of within-tree populations was characterized by measuring length of egg gallery excavated by attacking adults. The time delay between arrival and attack for D. frontalis and I. calligraphus was also calculated. Attack densities of both species became asymptotic as arrival increased. The percentage of arriving beetles that attacked ranged from 9 to 41 for D. frontalis and from 8 to 59 for I. calligraphus. Numbers of beetles that arrived at the tree but did not attack ranged from 2.7 to 50.2 beetles per dm[sup 2] for D. frontalis and from 0.2 to 10.0 beetles per dm[sup 2] for I. calligraphus. Most D. frontalis and I. calligraphus attacked on the day they arrived. The delay between arrival and attack was longer for I. calligraphus than the D. frontalis. Egg gallery excavated by D. frontalis increased throughout the study. Eventually, the Ips species were excluded from the lower half of the hole. The low attack densities observed in this study illustrate the significance of disturbed trees in providing refuges for enzootic levels of bark beetles. The aggregation behavior of beetle populations colonizing disturbed hosts supported the contention that these trees serve as foci for initiation of infestations. Furthermore, in disturbed pines, small numbers of beetles were capable of overcoming host defense systems.

  15. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle

    PubMed Central

    Seidl, Rupert; Müller, Jörg; Hothorn, Torsten; Bässler, Claus; Heurich, Marco; Kautz, Markus

    2016-01-01

    Summary 1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4. Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management. PMID:27041769

  16. Experimental evidence of bark beetle adaptation to a fungal symbiont.

    PubMed

    Bracewell, Ryan R; Six, Diana L

    2015-11-01

    The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect-microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient-poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle-fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle-fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine-scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non-natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non-natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non-natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle-fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.

  17. Response of native and exotic bark beetles to high-energy wind event in the Tian Shan Mountains, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Mukhamadiev, N.; Lynch, A.; O'Connor, C.; Sagitov, A.; Panyushkina, I. P.

    2012-12-01

    On May 17, 2011, the spruce forest of Yile-Alatausky and Medeo National Parks in southeast Kazakhstan was surged by a high-energy cyclonic storm. Severe blowdown damaged several thousand hectare of Tian Shan spruce forest (Picea schrenkiana), with over 90% of trees killed in extensive areas. Bark beetle populations are increasing rapidly, particularly Ips hauseri, I. typographis, I. sexdentatus, and Pityogenes perfossus (all Coleoptera: Curculionidae). Little is known about the frequency or extent of either large storm events or bark beetle outbreaks in the Tian Shan Mountains, nor about associations between outbreaks of these species and temperature and precipitation regimes. Local managers are concerned that triggering bark beetle outbreaks during current unusually warm, dry conditions will have devastating consequences for the residual forest and forest outside of the blowdown. We characterize the bark beetle population response to the 2011 event to date, and reconstruct the temporal and spatial dynamics of historical disturbance events in the area using dendrochronology. Additionally temperature and precipitation-sensitive tree-ring width chronologies from the Tian Shan Mountains are analyzed to determine high- and low-frequency variability of climate for the past 200 years. Catastrophic windstorm disturbances may play a crucial role in determining forest structure across the mountains. We hypothesize that the Tian Shan spruce forest could be prone to severe storm winds and subsequent bark beetle outbreaks and never reach an old-growth phase between events.

  18. Low-severity fire increases tree defense against bark beetle attacks.

    PubMed

    Hood, Sharon; Sala, Anna; Heyerdahl, Emily K; Boutin, Marion

    2015-07-01

    Induced defense is a common plant strategy in response to herbivory. Although abiotic damage, such as physical wounding, pruning, and heating, can induce plant defense, the effect of such damage by large-scale abiotic disturbances on induced defenses has not been explored and could have important consequences for plant survival facing future biotic disturbances. Historically, low-severity wildfire was a widespread, frequent abiotic disturbance in many temperate coniferous forests. Native Dendroctonus and Ips bark beetles are also a common biotic disturbance agent in these forest types and can influence tree mortality patterns after wildfire. Therefore, species living in these disturbance-prone environments with strategies to survive both frequent fire and bark beetle attack should be favored. One such example is Pinus ponderosa forests of western North America. These forests are susceptible to bark beetle attack and frequent, low-severity fire was common prior to European settlement. However, since the late 1800s, frequent, low-severity fires have greatly decreased in these forests. We hypothesized that non-lethal, low-severity, wildfire induces resin duct defense in P. ponderosa and that lack of low-severity fire relaxes resin duct defense in forests dependent on frequent, low-severity fire. We first compared axial resin duct traits between trees that either survived or died from bark beetle attacks. Next, we studied axial ducts using tree cores with crossdated chronologies in several natural P. ponderosa stands before and after an individual wildfire and, also, before and after an abrupt change in fire frequency in the 20th century. We show that trees killed by bark beetles invested less in resin ducts relative to trees that survived attack, suggesting that resin duct-related traits provide resistance against bark beetles. We then show low-severity fire induces resin duct production, and finally, that resin duct production declines when fire ceases. Our results

  19. Monoterpene emissions from bark beetle infested Engelmann spruce trees

    NASA Astrophysics Data System (ADS)

    Amin, Hardik S.; Russo, Rachel S.; Sive, Barkley; Richard Hoebeke, E.; Dodson, Craig; McCubbin, Ian B.; Gannet Hallar, A.; Huff Hartz, Kara E.

    2013-06-01

    Bark beetle infestation impacts the health of coniferous forests, which are an important source of volatile organic compounds (VOCs) to the atmosphere. The types and amounts of VOCs emitted from forests can influence secondary organic aerosol (SOA) formation and impact overall air quality. In this initial work, the impact of bark beetle infestation on SOA precursors from Engelmann spruce is assessed. The VOCs emitted from the trunk of infested and healthy spruce trees were sampled using both sorbent traps and evacuated canisters that were analyzed by gas chromatography/mass spectroscopy. The samples from the infested spruce tree suggest a nine-fold enhancement in the total VOC emissions. The dominant VOCs in the infested spruce trees were 3-carene, β-pinene, and α-pinene. The increase observed in VOCs sampled at the trunk of the infested spruce was consistent with increases observed at infested lodgepole pine trunks. However, the types and amounts of VOCs emitted from Engelmann spruce and lodgepole pine are different, which suggests that additional measures of VOC emissions are needed to characterize the impact of bark beetle infestation on VOC emissions and SOA precursors.

  20. Coffee Berry Borer Joins Bark Beetles in Coffee Klatch

    PubMed Central

    Jaramillo, Juliana; Torto, Baldwyn; Mwenda, Dickson; Troeger, Armin; Borgemeister, Christian; Poehling, Hans-Michael; Francke, Wittko

    2013-01-01

    Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms. PMID:24073204

  1. Climate change induced effects on the predisposition of forests of the water protection zone Wildalpen to disturbances by bark beetles

    NASA Astrophysics Data System (ADS)

    Baier, P.; Pennerstorfer, J.; Schopf, A.

    2012-04-01

    The provision of drinking water of high quality is a precious service of forests. Large-scale disturbances like forest fires, wind throws, pest outbreaks and subsequent clear cutting may lead to changes in hydrology (runoff as well as percolation). Furthermore, water quality can be negatively influenced by increased erosion, increased decomposition of litter and humus and leaching of nitrate. Large-scale epidemics of forest pests may induce forest decline at landscape scale with subsequent long-lasting negative effects on water quality. The European spruce bark beetle, Ips typographus (L.), is one of the most significant sources of mortality in mature spruce forest ecosystems in Eurasia. The objective of this study was to apply a complex predisposition assessment system for hazard rating and for the evaluation of climate change impacts for the water protection forests of the City of Vienna in Wildalpen. The following steps have been done to adapt/apply the bark beetle phenology model and the hazard rating system: -application, adaptation and validation of the bark beetle phenology model PHENIPS concerning start of dispersion, brood initiation, duration of development, beginning of sister broods, voltinism and hibernation - spatial/temporal modelling of the phenology and voltinism of I. typographus using past, present as well as projected climate data - application and validation of the stand- and site related long-term predisposition assessment system using forest stand/site data, annual damage reports and outputs of phenology modelling as data input - mapping of endangered areas and assessment of future susceptibility to infestations by I. typographus and other disturbing agents based on climate scenarios using GIS. The assessment of site- and stand-related predisposition revealed that the forest stands in Wildalpen are highly susceptible to bark beetle infestation. More than 65% of the stands were assigned to the predisposition classes high/very high. Only 10% of

  2. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    PubMed

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  3. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    PubMed

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas.

  4. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    PubMed Central

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  5. Co-occurence of Two Invasive Species: The Banded and European Elm Bark Beetles (Coleoptera: Scolytidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive European elm bark beetle, Scolytus multistriatus (Marsham), was first detected a century ago and now occurs in most of the continental United States. The invasive banded elm bark beetle, Scolytus schevyrewi Semenov, native to Asia, was discovered in the United States in 2003 and is now...

  6. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles.

    PubMed

    Dohet, Loïc; Grégoire, Jean-Claude; Berasategui, Aileen; Kaltenpoth, Martin; Biedermann, Peter H W

    2016-09-01

    Bark beetles (Curculionidae: Scolytinae) are one of the most species-rich herbivorous insect groups with many shifts in ecology and host-plant use, which may be mediated by their bacterial and fungal symbionts. While symbionts are well studied in economically important, tree-killing species, little is known about parasitic species whose broods develop in living trees. Here, using culture-dependent and independent methods, we provide a comprehensive overview of the associated bacteria, yeasts and filamentous fungi of the parasitic Dendroctonus micans, D. punctatus and D. valens, and compare them to those of other tree-inhabiting insects. Despite inhabiting different geographical regions and/or host trees, the three species showed similar microbial communities. Enterobacteria were the most prevalent bacteria, in particular Rahnella, Pantoea and Ewingella, in addition to Streptomyces Likewise, the yeasts Candida/Cyberlindnera were the most prominent fungi. All these microorganisms are widespread among tree-inhabiting insects with various ecologies, but their high prevalence overall might indicate a beneficial role such as detoxification of tree defenses, diet supplementation or protection against pathogens. As such, our results enable comparisons of symbiont communities of parasitic bark beetles with those of other beetles, and will contribute to our understanding of how microbial symbioses facilitate dietary shifts in insects. PMID:27387908

  7. Response of the engraver beetle, IPS perturbatus, to semiochemicals in white spruce stands of interior Alaska. Forest Service research paper

    SciTech Connect

    Werner, R.A.

    1993-05-01

    Field tests on the efficacy of various scolytid bark beetle pheromones to attract Ips perturbatus (Eichhoff) were conducted from 1977 through 1992 in stands of white spruce (Picea glauca (Moench) Voss) in interior Alaska. Several pheromones attracted high numbers of I. perturbatus and species of the predator Thanasimus to baited funnel traps. Test results also indicated that attacks by I. perturbatus may be deferred by certain semiochemicals.

  8. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe

    PubMed Central

    R. Kirkendall, Lawrence; Faccoli, Massimo

    2010-01-01

    Abstract Invasive bark beetles are posing a major threat to forest resources around the world. DAISIE’s web-based and printed databases of invasive species in Europe provide an incomplete and misleading picture of the alien scolytines and platypodines. We present a review of the alien bark beetle fauna of Europe based on primary literature through 2009. We find that there are 18 Scolytinae and one Platypodinae species apparently established in Europe, from 14 different genera. Seventeen species are naturalized. We argue that Trypodendron laeve, commonly considered alien in Europe, is a native species; conversely, we hypothesize that Xyleborus pfeilii, which has always been treated as indigenous, is an alien species from Asia. We also point out the possibility that the Asian larch bark beetle Ips subelongatus is established in European Russia. We show that there has been a marked acceleration in the rate of new introductions to Europe, as is also happening in North America: seven alien species were first recorded in the last decade. We present information on the biology, origins, and distributions of the alien species. All but four are polyphagous, and 11 are inbreeders: two traits which increase invasiveness. Eleven species are native to Asia, six to the Americas, and one is from the Canary Islands. The Mediterranean is especially favorable for invasives, hosting a large proportion of the aliens (9/19). Italy, France and Spain have the largest numbers of alien species (14, 10 and 7, respectively). We point out that the low numbers for at least some countries is likely due to under-reporting. Finally, we discuss the difficulties associated with identifying newly invasive species. Lack of good illustrations and keys hinder identification, particularly for species coming from Asia and Oceania. PMID:21594183

  9. Antennally mediated negative feedback regulation of pheromone production in the pine engraver beetle, Ips pini

    NASA Astrophysics Data System (ADS)

    Ginzel, Matthew D.; Bearfield, Jeremy C.; Keeling, Christopher I.; McCormack, Colin C.; Blomquist, Gary J.; Tittiger, Claus

    2007-01-01

    Bark beetles use monoterpenoid aggregation pheromones to coordinate host colonization and mating. These chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production may be regulated by a negative feedback system mediated through the antennae. In this study, we explored the effect of antennectomy on pheromone production and transcript levels of key mevalonate pathway genes in juvenile hormone III-treated male pine engraver beetles, Ips pini (Say). Antennectomized males produced significantly greater amounts of pheromone than podectomized males and those with intact antennae. Likewise, mRNA levels of three mevalonate pathway genes important in pheromone biosynthesis were measured by quantitative real-time PCR and found to be induced to a greater extent with antennectomy, suggesting a transcriptional regulation of pheromone production.

  10. Do water-limiting conditions predispose Norway spruce to bark beetle attack?

    PubMed

    Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel

    2015-02-01

    Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel 'attack box' method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance by I. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials.

  11. Do water-limiting conditions predispose Norway spruce to bark beetle attack?

    PubMed

    Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel

    2015-02-01

    Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel 'attack box' method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance by I. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials. PMID:25417785

  12. Do water-limiting conditions predispose Norway spruce to bark beetle attack?

    PubMed Central

    Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel

    2015-01-01

    Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel ‘attack box’ method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance byI. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials. PMID:25417785

  13. Synthetic attractants for the bark beetle parasitoid Coeloides bostrichorum Giraud (Hymenoptera: Braconidae)

    NASA Astrophysics Data System (ADS)

    Pettersson, Eva M.; Birgersson, Göran; Witzgall, Peter

    2001-02-01

    Coeloides bostrichorum Giraud parasitoids (Hymenoptera: Braconidae) attack late larval stages of various bark beetle species breeding in spruce. Volatile compounds collected from Norway spruce (Picea abies) infested by Ips typographus L. (Coleoptera: Scolytidae) were analysed by coupled gas chromatography-mass spectrometry (GC-MS) and GC-electroantennographic detection (GC-EAD). Monoterpene hydrocarbons are the predominant volatile compounds of fresh Norway spruce, while the presence of oxygenated monoterpenes indicates damaged trees. Between one and eight EAD-active oxygenated monoterpenes were used, in amounts reflecting their natural abundance in spruce trees containing bark beetle larvae, to prepare five synthetic baits which were tested in wind tunnel bioassays. Odour samples collected from spruce logs containing the preferred host stage were attractive, while similar samples from uninfested logs failed to elicit any flight activity. However, when a four- or an eight-component synthetic bait was added to volatiles collected from uninfested spruce logs, this combination was as attractive as volatiles collected from infested spruce logs.

  14. Dispersal of the spruce beetle, `dendroctonus rufipennis`, and the engraver beetle, `ips perturbatus`, in Alaska. Forest Service research paper

    SciTech Connect

    Werner, R.A.; Holsten, E.H.

    1997-09-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus beetles dispersed up to 30 m from their overwintering sites compared to most D. rufipennis, which dispersed from 90 to 300 m. Ips perturbatus beetles were caught up to 90 m and D. rufipennis up to 600 m from the point of release.

  15. Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products

    NASA Astrophysics Data System (ADS)

    Bright, Benjamin C.; Hicke, Jeffrey A.; Meddens, Arjan J. H.

    2013-07-01

    affect forest-atmosphere exchanges of carbon, water, and energy, thereby influencing weather and climate. Bark beetle outbreaks are one such disturbance type that alters biogeochemical and biogeophysical processes in forests. Few studies have documented bark beetle impacts to leaf area index (LAI), gross primary productivity (GPP), evapotranspiration (ET), land surface temperature (LST), and surface albedo with satellite observations. Our objective was to use Landsat-derived estimates of bark beetle-caused tree mortality and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface products to estimate beetle-caused changes in LAI, GPP, ET, LST, and surface albedo in northern Colorado. Following bark beetle-caused tree mortality, decreases occurred in LAI (0.02-0.80 m2m-2, 1-40%), annual GPP (50-248 gC m-2 yr-1, (5-26%), and daily summer ET (0.20-0.70 mm day-1, 13-44%), whereas increases occurred in August LST (1-3.9 K) and February albedo (0.03-0.09, 19-52%). We found greater responses of these variables in areas of greater mortality severity. The extent and severity of tree mortality in northern Colorado caused substantial changes in land surface variables (9-23%) when averaged across all forested areas of our study area. Our results demonstrate that land surface variables are sensitive to bark beetle-caused tree mortality and that bark beetle outbreaks can significantly impact biogeochemical and biogeophysical processes.

  16. Comparison of pathogens infection level in Ips typographus (Coleoptera: Curculionidae) beetles sampled in pheromone traps and at place of overwintering.

    PubMed

    Lukášová, Karolina; Holuša, Jaroslav

    2015-09-01

    The importance of pathogens in the population dynamics of Ips typographus remains a subject of ongoing debate. The main objective of our experiment was to compare the pathogen infection levels of individuals overwintering in bark with the levels of individuals from the same population captured with pheromone traps and thereby to determine primary answers as to whether it can be confirmed that pathogenic organisms affect the flight ability of bark beetles or their ability to leave their places of overwintering. A total of 402 I. typographus individuals were analyzed at a study location under limited management. Three pathogens were confirmed to be present: the gregarine Gregarina typographi, the virus ItEPV, and the microsporidium Nosema typographi. Infection levels of Gregarina typographi and ItEPV were the same in beetles collected at places of overwintering and in those beetles collected in pheromone traps within the immediate vicinity. As these pathogens infect the host's intestine, the tendency to leave the places of overwintering is apparently not diminished. A similar analysis and comparison of pathogens located in the fat body might bring different results, as our study only detected N. typographi in a single dissected adult spruce bark beetle.

  17. The Bark-Beetle-Associated Fungus, Endoconidiophora polonica, Utilizes the Phenolic Defense Compounds of Its Host as a Carbon Source.

    PubMed

    Wadke, Namita; Kandasamy, Dineshkumar; Vogel, Heiko; Lah, Ljerka; Wingfield, Brenda D; Paetz, Christian; Wright, Louwrance P; Gershenzon, Jonathan; Hammerbacher, Almuth

    2016-06-01

    Norway spruce (Picea abies) is periodically attacked by the bark beetle Ips typographus and its fungal associate, Endoconidiophora polonica, whose infection is thought to be required for successful beetle attack. Norway spruce produces terpenoid resins and phenolics in response to fungal and bark beetle invasion. However, how the fungal associate copes with these chemical defenses is still unclear. In this study, we investigated changes in the phenolic content of Norway spruce bark upon E. polonica infection and the biochemical factors mediating these changes. Although genes encoding the rate-limiting enzymes in Norway spruce stilbene and flavonoid biosynthesis were actively transcribed during fungal infection, there was a significant time-dependent decline of the corresponding metabolites in fungal lesions. In vitro feeding experiments with pure phenolics revealed that E. polonica transforms both stilbenes and flavonoids to muconoid-type ring-cleavage products, which are likely the first steps in the degradation of spruce defenses to substrates that can enter the tricarboxylic acid cycle. Four genes were identified in E. polonica that encode catechol dioxygenases carrying out these reactions. These enzymes catalyze the cleavage of phenolic rings with a vicinal dihydroxyl group to muconoid products accepting a wide range of Norway spruce-produced phenolics as substrates. The expression of these genes and E. polonica utilization of the most abundant spruce phenolics as carbon sources both correlated positively with fungal virulence in several strains. Thus, the pathways for the degradation of phenolic compounds in E. polonica, initiated by catechol dioxygenase action, are important to the infection, growth, and survival of this bark beetle-vectored fungus and may play a major role in the ability of I. typographus to colonize spruce trees. PMID:27208235

  18. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula.

    PubMed

    Lombardero, María J; Ayres, Matthew P

    2011-10-01

    Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.

  19. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attackingPinus ponderosa, with special emphasis on the western pine beetle,Dendroctonus brevicomis.

    PubMed

    Moeck, H A; Wood, D L; Lindahl, K Q

    1981-01-01

    Detection of weakened hosts from a distance by bark beetles through olfaction was investigated in field experiments. No significant numbers of Scolytidae were attracted to anaerobically treated pine bolts, stem disks, or sugar and ponderosa pine bark including phloem. Treatment of living trees with cacodylic acid induced attacks byDendroctonus brevicomis, D. ponderosae, Ips latidens, Gnathotrichus retusus, andPityophthorus scalptor, beginning two weeks after treatment. There was no significant difference between landing rates ofD. brevicomis andD. ponderosae on screened treated trees and screened controls. There was a significant increase in landing rates ofG. retusus andI. latidens, because both species had penetrated the screen and produced pheromones. Tree frilling alone did not increase the landing rate of bark beetles. Freezing of the lower trunk with dry ice did not increase significantly the landing rate ofD. brevicomis, D. ponderosae, G. retusus, orI. latidens on screened trees, whereas unscreened frozen trees were attacked by all four species. There was no significantly higher landing rate byD. brevicomis, D. ponderosae, I. paraconfusus, I. latidens, G. retusus, orHylurgops subcostulatus on screened trees evidencing symptoms of severe infection by the root pathogenVerticicladiella wagenerii, than on symptornless trees. These experiments show thatD. brevicomis, D. ponderosae, I. paraconfusus, I. latidens, andG. retusus land, apparently indiscriminately, on healthy and stressed hosts. Thus, in these species host discrimination must occur after landing and prior to sustained feeding.

  20. Effect of bark beetle infestation on secondary organic aerosol precursor emissions.

    PubMed

    Amin, Hardik; Atkins, P Tyson; Russo, Rachel S; Brown, Aaron W; Sive, Barkley; Hallar, A Gannet; Huff Hartz, Kara E

    2012-06-01

    Bark beetles are a potentially destructive force in forest ecosystems; however, it is not known how insect attacks affect the atmosphere. The emissions of volatile organic compounds (VOCs) were sampled i.) from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) trees and ii.) from sites with and without active mountain pine beetle infestation. The emissions from the trunk and the canopy were collected via sorbent traps. After collection, the sorbent traps were extracted with hexane, and the extracts were separated and detected using gas chromatography/mass spectroscopy. Canister samples were also collected and analyzed by a multicolumn gas chromatographic system. The samples from bark beetle infested lodgepole pine trees suggest a 5- to 20-fold enhancement in total VOCs emissions. Furthermore, increases in the β-phellandrene emissions correlated with bark beetle infestation. A shift in the type and the quantity of VOC emissions can be used to identify bark beetle infestation but, more importantly, can lead to increases in secondary organic aerosol from these forests as potent SOA precursors are produced. PMID:22545866

  1. Spatial characterization of bark beetle infestations by a multidate synergy of SPOT and Landsat imagery.

    PubMed

    Latifi, Hooman; Schumann, Bastian; Kautz, Markus; Dech, Stefan

    2014-01-01

    Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.

  2. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA.

    PubMed

    Rassati, Davide; Faccoli, Massimo; Haack, Robert A; Rabaglia, Robert J; Petrucco Toffolo, Edoardo; Battisti, Andrea; Marini, Lorenzo

    2016-01-01

    Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS) ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall), forest (cover area, composition), geographical (distance), and human-related (import) variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have on climate

  3. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA

    PubMed Central

    Rassati, Davide; Faccoli, Massimo; Haack, Robert A.; Rabaglia, Robert J.; Petrucco Toffolo, Edoardo; Battisti, Andrea; Marini, Lorenzo

    2016-01-01

    Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS) ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall), forest (cover area, composition), geographical (distance), and human-related (import) variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have on climate

  4. Frequent, Low-Intensity Fire Increases Tree Defense To Bark Beetles

    NASA Astrophysics Data System (ADS)

    Hood, S.; Sala, A.

    2013-12-01

    Wildfire and bark beetles are the two largest disturbance agents in North American conifer forests and have interacted for millennia to drive forest composition, structure, and ecological processes. Recent widespread mortality in western coniferous forests due to bark beetle outbreaks have been attributed in part to increasing temperatures and drought associated with global climate change. In fire-dependent forests, fire exclusion has also led to uncharacteristically dense forests which are also thought to be more susceptible to bark beetle outbreaks due to increased drought stress in individual trees. These mortality events have spurred strong interest in the interaction of fire and bark beetles in driving forest dynamics under a changing climate. However, a fact that has not received adequate attention is whether fire exclusion in fire-dependent forests decreases allocation to tree defense, thereby making contemporary forests more prone to bark beetle outbreaks, regardless of climate and stand structure. Fire is known to increase constitutive resin production in many tree species, yet the impact of frequent fire on expression of better defended tree phenotypes has never been examined. We hypothesized that frequent, low-intensity fire increases tree resistance to bark beetle attack through systemic induced resistance. Using a combination of sampling in natural stands for which we had long-term fire history data and an experimental block design of four thinning and burning treatments, we examined the influence of fire and water stress on tree defense to determine if frequent fire increases tree defense and the degree to which water stress modulates this response. We used axial resin ducts as the measure of defense, as this is where resin is both stored and manufactured in Pinaceae. Resin duct production and density has also been shown to be a better indicator of mortality from bark beetle attacks than tree growth. Resin duct density increased after fire at all

  5. An Assessment of European Spruce Bark Beetle Infestation Using WorldView-2 Satellite Data

    NASA Astrophysics Data System (ADS)

    Filchev, L.

    2012-05-01

    During the past three decades the spectral responses of declining forest health due to pest infestations as well as various methods for detection of trees' health status have been extensively studied. A set of narrow-band and broad-band Vegetation Indices (VIs) have been developed to assess the changes in the vegetation reflectance. The main objective of the study is to assess the damages caused by European Spruce Bark Beetle (Ips typographus L.) infestation in 'Bistrishko Branishte' UNESCO Man And Biosphere (MAB) reserve using WorldView-2 satellite data. The analysis was performed on Norway spruce (Picea abies) forest using the VIs indicative for forest stress: NDVI, SR, EVI, ARVI, CRI, CSc, and ARI. By applying density slice on the VIs, the main regions for stressed vegetation have been delineat ed. The CSc has been found to perform better in detecting the pattern of stressed spruce trees compared to ARI. The area affected by Ips typographus was determined by CSc index to 5.97% (0.373 km2) of the study area.

  6. Effects of Bark Beetle Infestation on Secondary Organic Aerosol Precursors in the Western United States

    NASA Astrophysics Data System (ADS)

    Huff Hartz, K. E.; Amin, H.; Dodson, C.; Atkins, P. T.; Hallar, G.

    2009-12-01

    Bark beetles are a potentially destructive force in forest ecosytems; however, it is not known how insect attacks affect the atmosphere. Other insects, such as the weevil (Strophosoma melanogrammum) attacks on spruce trees in Denmark, have a significant local effect on monoterpene emissions. In fact, a single weevil induced a three-fold increase in monoterpene emission, and the response lasted for several weeks. Mountain pine bark beetles (Dendroctonus ponderosae) have infested the forests in the vicinity of Storm Peak Laboratory near Steamboat Springs, Colorado. Emissions were sampled from the headspace of bark at the trunk and from the tree branches in the canopy from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce (Picea engelmannii) trees. The emissions were collected onto scent traps, containing 110 mg of Porapak Q sorbent, using PAS-500 micro air samplers set to a 0.4 mL/min flow rate for two hours. After collection, the scent traps were spiked with a recovery standard, perdeutrated decane, and extracted with 1.5 mL hexanes (in three portions). The analytes in the extracts were separated and detected using gas chromatography/mass spectroscopy. The analytes were identified and quantified using calibration curves from authentic standards, and when authentic standards were not available, the NIST mass spectra library and Adams retention time indices were used. The samples from lodgepole pine trees suggest an enhancement in the 3-carene, beta-phellandrene, and estragole (methyl chavicol) emissions upon bark beetle infestation. The samples from the Engelmann spruce trees suggest an enhancement in the 1,4-cineole, p-cymene, and beta-phellandrene emissions upon bark beetle infestation. A shift in the type and the quantity of VOC emissions due to bark beetle infestation may lead increases in SOA from these forests, since potent SOA precursors are produced.

  7. Semiochemical-MediatedFlight Strategies of Two Invasive Elm Bark Beetles: A Potential Factor in Competitive Displacement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent seven-state survey revealed that the newly invasive banded elm bark beetle, Scolytus schevyrewi, was abundant in areas of Colorado and Wyoming, USA, whereas the long-established European elm bark beetle, S. multistriatus was not as abundant. Behavioral trials were conducted by hanging sm...

  8. The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry.

    PubMed

    Popa, Valentin; Déziel, Eric; Lavallée, Robert; Bauce, Eric; Guertin, Claude

    2012-07-01

    Bark beetles, especially Dendroctonus species, are considered to be serious pests of the coniferous forests in North America. Bark beetle forest pests undergo population eruptions, causing region wide economic losses. In order to save forests, finding new and innovative environmentally friendly approaches in wood-boring insect pest management is more important than ever. Several biological control methods have been attempted over time to limit the damage and spreading of bark beetle epidemics. The use of entomopathogenic microorganisms against bark beetle populations is an attractive alternative tool for many biological control programmes in forestry. However, the effectiveness of these biological control agents is strongly affected by environmental factors, as well as by the susceptibility of the insect host. Bark beetle susceptibility to entomopathogens varies greatly between species. According to recent literature, bark beetles are engaged in symbiotic relationships with fungi and bacteria. These types of relationship are very complex and apparently involved in bark beetle defensive mechanisms against pathogens. The latest scientific discoveries in multipartite symbiosis have unravelled unexpected opportunities in bark beetle pest management, which are discussed in this article. PMID:22566204

  9. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  10. Recent bark beetle outbreaks have little impact on streamflow in the Western United States

    NASA Astrophysics Data System (ADS)

    Slinski, Kimberly M.; Hogue, Terri S.; Porter, Aaron T.; McCray, John E.

    2016-07-01

    In the Western United States (US), the current mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has affected more than five million hectares since its start in 1996, including headwater catchments that supply water to much of the Western US. There is widespread concern that the hydrologic consequences of the extensive pine tree die-off will impact water supply across the Western US. While forest disturbance studies have shown that streamflow increases in response to tree harvest, the actual effect of bark beetle infestations on water supply remains widely debated. The current study evaluates watershed-level response following bark beetle outbreak for 33 watersheds in seven western states. Streamflow records were investigated to assess whether the timing and amount of stream discharge during bark beetle outbreak and early recovery periods were significantly different to pre-outbreak conditions. Results show no significant modification in peak flows or average daily streamflow following bark beetle infestation, and that climate variability may be a stronger driver of streamflow patterns and snowmelt timing than chronic forest disturbance.

  11. Phloeophagous and predaceous insects responding to synthetic pheromones of bark beetles inhabiting white spruce stands in the Great Lakes region.

    PubMed

    Haberkern, Kirsten E; Raffa, Kenneth F

    2003-07-01

    Tree killing and saprophytic bark beetles exert important ecological and economic roles in North American spruce forests. Chemical signaling among bark beetles, and responses by associate insects such as predators and competitors, have significant effects on the population dynamics and ecology of this community. Synthetic pheromones of primary (tree killing) and secondary (saprophytic) bark beetle species and blank controls were tested using multiple funnel and lower stem flight traps in white spruce forests in Wisconsin, Michigan, and Minnesota. Six phloeophagous and four predaceous species were collected with significant attraction by the bark beetles Dryocoetes affaber, Dryocoetes autographus, and Polygraphus rufipennis, and the predatory checkered beetles (Coleoptera: Cleridae) Thanasimus dubius and Enoclerus nigrifrons. In general, trap catches to synthetic lures resembled the species composition obtained by felling trees and collecting emerging beetles in a companion study, although several species showed differing trends. Some cross attraction occurred among bark beetles and between bark beetles and predatory beetles. For example, P. rufipennis was abundant in traps baited with Dryocoetes spp. pheromones. Thanasimus dubius and E. nigrifrons were collected in significant numbers in traps baited with the pheromone of the spruce beetle (Dendroctonus rufipennis), frontalin plus a-pinene. This is a new observation for E. nigrifrons. Attraction of T. dubius to the pheromones of at least three bark beetle species in the Great Lakes region, as well as to several southern and western species, reflects its role as a habitat specialist and feeding generalist. Several other important predators and competitors commonly obtained in pine forests in this region were not obtained in these spruce stands, either in response to synthetic pheromones of spruce colonizing beetles, or in host material colonized by these beetles. Potential differences in predator prey dynamics

  12. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles.

    PubMed

    Jacobs, Karin; Bergdahl, Dale R; Wingfield, Michael J; Halik, Shari; Seifert, Keith A; Bright, Donald E; Wingfield, Brenda D

    2004-04-01

    Leptographium wingfieldii is a well-known fungal associate of the pine shoot beetle, Tomicus piniperda, in Europe. This fungus is pathogenic to pines and is an important cause of blue-stain in the sapwood of infested trees. Tomicus piniperda was first found in a Christmas tree plantation in Ohio, USA, 1992, but isolation of the fungi associated with these intercepted insects was not attempted. Fungal strains resembling L. wingfieldii were recently isolated from pines attacked by T. piniperda, Dendroctonus valens and Ips pini in the northeastern United States. These strains were morphologically similar to the ex-type and other reference strains of L. wingfieldii. Strains were also compared based on sequences of the partial ITS ribosomal DNA operon, beta-tubulin and elongation factor 1-alpha (EF-1alpha) genes. Based on these DNA sequence comparisons, reference strains of European L. wingfieldii were conspecific with North American strains from pines attacked by T. piniperda, D. valens and I. pini. A single strain from Canada, collected in 1993 near the Ontario border with the USA, shortly after the discovery of T. piniperda in that area and tentatively identified as L. wingfieldii, was also included in this study. Its identification was confirmed, suggesting that L. wingfieldii has been present in this region and probably over the whole range of the insect's distribution for at least a decade. This represents the first record of L. wingfieldii associated with the introduced and damaging pine shoot beetle T. piniperda in North America. It shows that the fungus is well established and can become associated with other native bark beetles that attack stressed and/or dying trees. The occurrence and spread of this highly pathogenic fungus associated with North American bark beetles should be monitored. PMID:15209281

  13. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles.

    PubMed

    Jacobs, Karin; Bergdahl, Dale R; Wingfield, Michael J; Halik, Shari; Seifert, Keith A; Bright, Donald E; Wingfield, Brenda D

    2004-04-01

    Leptographium wingfieldii is a well-known fungal associate of the pine shoot beetle, Tomicus piniperda, in Europe. This fungus is pathogenic to pines and is an important cause of blue-stain in the sapwood of infested trees. Tomicus piniperda was first found in a Christmas tree plantation in Ohio, USA, 1992, but isolation of the fungi associated with these intercepted insects was not attempted. Fungal strains resembling L. wingfieldii were recently isolated from pines attacked by T. piniperda, Dendroctonus valens and Ips pini in the northeastern United States. These strains were morphologically similar to the ex-type and other reference strains of L. wingfieldii. Strains were also compared based on sequences of the partial ITS ribosomal DNA operon, beta-tubulin and elongation factor 1-alpha (EF-1alpha) genes. Based on these DNA sequence comparisons, reference strains of European L. wingfieldii were conspecific with North American strains from pines attacked by T. piniperda, D. valens and I. pini. A single strain from Canada, collected in 1993 near the Ontario border with the USA, shortly after the discovery of T. piniperda in that area and tentatively identified as L. wingfieldii, was also included in this study. Its identification was confirmed, suggesting that L. wingfieldii has been present in this region and probably over the whole range of the insect's distribution for at least a decade. This represents the first record of L. wingfieldii associated with the introduced and damaging pine shoot beetle T. piniperda in North America. It shows that the fungus is well established and can become associated with other native bark beetles that attack stressed and/or dying trees. The occurrence and spread of this highly pathogenic fungus associated with North American bark beetles should be monitored.

  14. Effectiveness of bifenthrin (Onyx) and carbaryl (Sevin SL) for protecting individual, high-value conifers from bark beetle attack (Coleoptera: Curculionidae: Scolytinae) in the Western United States.

    PubMed

    Fettig, Christopher J; Allen, Kurt K; Borys, Robert R; Christopherson, John; Dabney, Christopher P; Eager, Thomas J; Gibson, Kenneth E; Hebertson, Elizabeth G; Long, Daniel F; Munson, A Steven; Shea, Patrick J; Smith, Sheri L; Haverty, Michael I

    2006-10-01

    High-value trees, such as those located in residential, recreational, or administrative sites, are particularly susceptible to bark beetle (Coleoptera: Curculionidae: Scolytinae) attack as a result of increased amounts of stress associated with drought, soil compaction, mechanical injury, or vandalism. Tree losses in these unique environments generally have a substantial impact. The value of these individual trees, cost of removal, and loss of esthetics may justify protection until the main thrust of a bark beetle infestation subsides. This situation emphasizes the need for ensuring that effective insecticides are available for individual tree protection. In this study, we assess the efficacy of bifenthrin (Onyx) and carbaryl (Sevin SL) for protecting: ponderosa pine, Pinus ponderosa Dougl. ex. Laws., from western pine beetle, Dendroctonus brevicomis LeConte, in California; mountain pine beetle, Dendroctonus ponderosae Hopkins in South Dakota; and Ips spp. in Arizona; lodgepole pine, Pinus contorta Dougl. ex Loud., from D. ponderosae in Montana; pinyon, Pinus edulis Engelm. in Colorado and Pinus monophylla Torr. and Frem. in Nevada from pinyon ips, Ips confusus (LeConte); and Engelmann spruce, Picea engelmannii Parry ex. Engelm. from spruce beetle, Dendroctonus rufipennis (Kirby) in Utah. Few trees were attacked by Ips spp. in Arizona and that study was discontinued. Sevin SL (2.0%) was effective for protecting P. ponderosa, P. contorta, and P. monophylla for two field seasons. Estimates of efficacy could not be made during the second field season in P. edulis and P. engelmannii due to insufficient mortality in untreated, baited control trees. Two field seasons of efficacy was demonstrated in P. ponderosa/D. brevicomis and P. monophylla for 0.06% Onyx. We conclude that Onyx is an effective individual tree protection tool, but repeated annual applications may be required in some systems if multiyear control is desired.

  15. Are bark beetles chewing up our forests? What about our coffee?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A write-up for the Elsevier SciTech Connect blog on the recently published book entitled "Bark Beetles: Biology and Ecology of Native and Invasive Species," edited by Fernando E. Vega and Richard W. Hofstetter. The book was published by Academic Press in January 2015....

  16. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines.

    PubMed

    Ferrenberg, Scott; Kane, Jeffrey M; Mitton, Jeffry B

    2014-04-01

    Bark beetles have recently killed billions of trees, yet conifer defenses are formidable and some trees resist attack. A primary anti-insect defense of pines is oleoresin from a system of resin ducts throughout the tree. Resin defense traits are heritable, and evidence suggests that resin duct characteristics are associated with resistance to insects. However, comparisons of resin ducts in trees killed by bark beetles to trees that resisted attack are unavailable. We compared vertical resin duct characteristics (number, density, and size) and growth rates from trees that were "resistant" (survived mass attack) versus "susceptible" (killed by attack) to bark beetles in lodgepole (Pinus contorta) and limber (Pinus flexilis) pines. Resistant trees of both species had significantly more resin ducts in recent growth than susceptible trees. Discriminant analysis (DA) correctly categorized 84% of lodgepole and 92% of limber pines as susceptible/resistant based on combinations of resin duct and growth characteristics from recent 5- through 20-year growth intervals. DA models using measures from only the most recent 5 years of growth correctly categorized 72 and 81% of lodgepole and limber pines, respectively. Comparing resistant to susceptible trees independent of species identity led to the correct categorization of 82% of trees based on factors from 5- to 20-year intervals, and 73% of trees using only resin duct counts from the most recent 5 years. We conclude that resin duct characteristics can be used to assess tree resistance to bark beetles across pine species, and offer a metric for management to enhance pest resistance.

  17. Linking Stream Nitrate to Forest Response and Recovery after Severe Bark Beetle Infestation (Invited)

    NASA Astrophysics Data System (ADS)

    Rhoades, C.; Hubbard, R. M.; Elder, K.

    2013-12-01

    Biogeochemical responses and ecosystem recovery from bark beetle outbreaks are influenced by pre-disturbance forest structure and composition and catchment conditions. Over the past decade, the mountain pine bark beetle (Dendroctonus ponderosae) has killed mature lodgepole pine (Pinus contorta) trees at the Fraser Experimental Forest and throughout the Colorado Rockies. Here we compare stream nitrogen (N) concentrations during the outbreak with data from the previous two decades in four research catchments with distinct forest management history, stand age structure and watershed characteristics. In two old growth forest catchments, stream nitrate concentrations were significantly higher during the infestation in the snowmelt and base flow seasons. The beetle infestation elevated nitrate export 43 and 74% in these two catchments though the amounts of N released in streamwater (0.04 and 0.15 kg N ha-1) were < 2% of annual atmospheric inputs. In contrast, nitrate concentrations were unaffected by beetle infestation in two catchments comprised of a mixture of second-growth (30-60 year old) and old-growth (250-350 year old) forest stands where the density of residual live trees was higher on average. Mortality of overstory trees from bark beetles has stimulated the growth of understory and overstory trees with likely consequences for nutrient demand and retention in recovering forests.

  18. Large carbon release legacy from bark beetle outbreaks across Western United States.

    PubMed

    Ghimire, Bardan; Williams, Christopher A; Collatz, G James; Vanderhoof, Melanie; Rogan, John; Kulakowski, Dominik; Masek, Jeffrey G

    2015-08-01

    Warmer conditions over the past two decades have contributed to rapid expansion of bark beetle outbreaks killing millions of trees over a large fraction of western United States (US) forests. These outbreaks reduce plant productivity by killing trees and transfer carbon from live to dead pools where carbon is slowly emitted to the atmosphere via heterotrophic respiration which subsequently feeds back to climate change. Recent studies have begun to examine the local impacts of bark beetle outbreaks in individual stands, but the full regional carbon consequences remain undocumented for the western US. In this study, we quantify the regional carbon impacts of the bark beetle outbreaks taking place in western US forests. The work relies on a combination of postdisturbance forest regrowth trajectories derived from forest inventory data and a process-based carbon cycle model tracking decomposition, as well as aerial detection survey (ADS) data documenting the regional extent and severity of recent outbreaks. We find that biomass killed by bark beetle attacks across beetle-affected areas in western US forests from 2000 to 2009 ranges from 5 to 15 Tg C yr(-1) and caused a reduction of net ecosystem productivity (NEP) of about 6.1-9.3 Tg C y(-1) by 2009. Uncertainties result largely from a lack of detailed surveys of the extent and severity of outbreaks, calling out a need for improved characterization across western US forests. The carbon flux legacy of 2000-2009 outbreaks will continue decades into the future (e.g., 2040-2060) as committed emissions from heterotrophic respiration of beetle-killed biomass are balanced by forest regrowth and accumulation.

  19. Ophiostoma ips from Pinewood Nematode Vector, Japanese Pine Sawyer Beetle (Monochamus alternatus), in Korea

    PubMed Central

    Suh, Dong Yeon; Hyun, Min Woo; Kim, Jae Jin; Son, Seung Yeol

    2013-01-01

    Japanese pine sawyer beetle (Monochamus alternatus) is an economically important pest in coniferous trees. Ophiostoma ips was isolated from the beetle and identified based on analysis of morphological properties and the β-tubulin gene sequence. The fungus easily produced perithecia with a long neck on malt extract agar and its ascospores were rectangular shaped. This is first report of Ophiostoma species associated with the pinewood nematode vector beetle in Korea. PMID:23610541

  20. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors

    NASA Astrophysics Data System (ADS)

    Byers, John A.; Zhang, Qing-He; Birgersson, Göran

    The bark beetle, Pityogenes bidentatus (Coleoptera: Scolytidae), searches in mixed conifer and deciduous forests of northern Europe for suitable branches of its host, Scots pine (Pinus sylvestris). We tested whether odors from several diverse nonhost trees and plants common in the habitat (e.g., mountain ash, Sorbus aucuparia; oak, Quercus robur; alder buckthorn, Frangula alnus; blueberry, Vaccinium myrtillus; raspberry, Rubus idaeus; and grass, Deschampsia flexuosa) would reduce the attraction of the bark beetle to traps releasing its aggregation pheromone components in the field. Volatiles from the leaves or bark of each of these plants significantly reduced the attraction of the beetles to their pheromone. Odors collected from these nonhosts and analyzed by GC/MS contained monoterpenes, sesquiterpenes, and ``green-leaf'' alcohols, several of which (e.g., 1-octene-3-ol and β-caryophyllene) reduced the attraction to pheromone in the field and elicited electroantennographic responses. In the laboratory, reproduction by the beetle was marginal in nonhost Norway spruce, Picea abies, and was absent in the other nonhost trees. Olfactory avoidance of unsuitable nonhosts may have evolved due to advantages in avoiding mistakes during host selection.

  1. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors.

    PubMed

    Byers, John A; Zhang, Qing-He; Birgersson, Göran

    2004-05-01

    The bark beetle, Pityogenes bidentatus (Coleoptera: Scolytidae), searches in mixed conifer and deciduous forests of northern Europe for suitable branches of its host, Scots pine ( Pinus sylvestris). We tested whether odors from several diverse nonhost trees and plants common in the habitat (e.g., mountain ash, Sorbus aucuparia; oak, Quercus robur; alder buckthorn, Frangula alnus; blueberry, Vaccinium myrtillus; raspberry, Rubus idaeus; and grass, Deschampsia flexuosa) would reduce the attraction of the bark beetle to traps releasing its aggregation pheromone components in the field. Volatiles from the leaves or bark of each of these plants significantly reduced the attraction of the beetles to their pheromone. Odors collected from these nonhosts and analyzed by GC/MS contained monoterpenes, sesquiterpenes, and "green-leaf" alcohols, several of which (e.g., 1-octene-3-ol and beta-caryophyllene) reduced the attraction to pheromone in the field and elicited electroantennographic responses. In the laboratory, reproduction by the beetle was marginal in nonhost Norway spruce, Picea abies, and was absent in the other nonhost trees. Olfactory avoidance of unsuitable nonhosts may have evolved due to advantages in avoiding mistakes during host selection.

  2. The Bark-Beetle-Associated Fungus, Endoconidiophora polonica, Utilizes the Phenolic Defense Compounds of Its Host as a Carbon Source1[OPEN

    PubMed Central

    Wadke, Namita; Kandasamy, Dineshkumar; Vogel, Heiko; Wingfield, Brenda D.; Paetz, Christian

    2016-01-01

    Norway spruce (Picea abies) is periodically attacked by the bark beetle Ips typographus and its fungal associate, Endoconidiophora polonica, whose infection is thought to be required for successful beetle attack. Norway spruce produces terpenoid resins and phenolics in response to fungal and bark beetle invasion. However, how the fungal associate copes with these chemical defenses is still unclear. In this study, we investigated changes in the phenolic content of Norway spruce bark upon E. polonica infection and the biochemical factors mediating these changes. Although genes encoding the rate-limiting enzymes in Norway spruce stilbene and flavonoid biosynthesis were actively transcribed during fungal infection, there was a significant time-dependent decline of the corresponding metabolites in fungal lesions. In vitro feeding experiments with pure phenolics revealed that E. polonica transforms both stilbenes and flavonoids to muconoid-type ring-cleavage products, which are likely the first steps in the degradation of spruce defenses to substrates that can enter the tricarboxylic acid cycle. Four genes were identified in E. polonica that encode catechol dioxygenases carrying out these reactions. These enzymes catalyze the cleavage of phenolic rings with a vicinal dihydroxyl group to muconoid products accepting a wide range of Norway spruce-produced phenolics as substrates. The expression of these genes and E. polonica utilization of the most abundant spruce phenolics as carbon sources both correlated positively with fungal virulence in several strains. Thus, the pathways for the degradation of phenolic compounds in E. polonica, initiated by catechol dioxygenase action, are important to the infection, growth, and survival of this bark beetle-vectored fungus and may play a major role in the ability of I. typographus to colonize spruce trees. PMID:27208235

  3. Arsenic accumulation in bark beetles and forest birds occupying mountain pine beetle infested stands treated with monosodium methanearsonate.

    PubMed

    Morrissey, Christy A; Albert, Courtney A; Dods, Patti L; Cullen, William R; Lai, Vivian W M; Elliott, John E

    2007-02-15

    The arsenic-based pesticide, monosodium methanearsonate (MSMA), is presently being evaluated for re-registration in Canada and the United States and has been widely used in British Columbia to help suppress Mountain Pine Beetle (MPB) outbreaks. We assessed the availability and exposure of MSMA to woodpeckers and other forest birds that may prey directly on contaminated bark beetles. Total arsenic residues in MPB from MSMA treated trees ranged from 1.3-700.2 microg g(-1) dw (geometric mean 42.0 microg g(-1)) with the metabolite monomethyl arsonic acid (MMAA) contributing 90-97% to the total arsenic extracted. Live adult and larval beetles were collected from treated trees and reached concentrations up to 327 microg g(-1) dw. MPBs from reference trees had significantly lower arsenic concentrations averaging 0.19 microg g(-1) dw. Woodpeckers foraged more heavily on MSMAtreesthat contained beetles with lower arsenic residues, suggesting those trees had reduced MSMAtranslocation and possibly greater live beetle broods. Blood samples from five species of woodpeckers and other forest passerines breeding within 1 km of MSMA stands contained elevated levels of total arsenic but with large individual variability (geometric mean = 0.18 microg g(-1) dw, range 0.02-2.20 microg g(-1). The results indicate that there is significant accumulation and transfer of organic arsenic within the food chain at levels that may present a toxicity risk to avian wildlife.

  4. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex.

    PubMed

    Durand, Audrey-Anne; Bergeron, Amélie; Constant, Philippe; Buffet, Jean-Philippe; Déziel, Eric; Guertin, Claude

    2015-11-26

    Many bark beetles belonging to the Dendroctonus genus carry bacterial and fungal microbiota, forming a symbiotic complex that helps the insect to colonize the subcortical environment of the host tree. However, the biodiversity of those bacteria at the surface of the cuticle or inside the body parts of bark beetles is not well established. The aim of this study was to characterize the bacterial microbiome associated with the eastern larch beetle, Dendroctonus simplex, using bacterial 16S rRNA gene pyrosequencing. The ecto- and endomicrobiome and the subcortical galleries were investigated. Several bacterial genera were identified, among which Pseudomonas, Serratia and Yersinia are associated with the surface of the beetle cuticle, and genera belonging to Enterobacteriaceae and Gammaproteobacteria with the interior of the insect body. The index of dissimilarity indicates that the bacterial microbiome associated with each environment constitutes exclusive groups. These results suggest the presence of distinct bacterial microbiota on the surface of the cuticle and the interior of D. simplex body. Additionally, the bacterial diversity identified in the galleries is substantially different from the ectomicrobiome, which could indicate a selection by the insect. This study reports for the first time the identification of the eastern larch beetle microbiome.

  5. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex

    PubMed Central

    Durand, Audrey-Anne; Bergeron, Amélie; Constant, Philippe; Buffet, Jean-Philippe; Déziel, Eric; Guertin, Claude

    2015-01-01

    Many bark beetles belonging to the Dendroctonus genus carry bacterial and fungal microbiota, forming a symbiotic complex that helps the insect to colonize the subcortical environment of the host tree. However, the biodiversity of those bacteria at the surface of the cuticle or inside the body parts of bark beetles is not well established. The aim of this study was to characterize the bacterial microbiome associated with the eastern larch beetle, Dendroctonus simplex, using bacterial 16S rRNA gene pyrosequencing. The ecto- and endomicrobiome and the subcortical galleries were investigated. Several bacterial genera were identified, among which Pseudomonas, Serratia and Yersinia are associated with the surface of the beetle cuticle, and genera belonging to Enterobacteriaceae and Gammaproteobacteria with the interior of the insect body. The index of dissimilarity indicates that the bacterial microbiome associated with each environment constitutes exclusive groups. These results suggest the presence of distinct bacterial microbiota on the surface of the cuticle and the interior of D. simplex body. Additionally, the bacterial diversity identified in the galleries is substantially different from the ectomicrobiome, which could indicate a selection by the insect. This study reports for the first time the identification of the eastern larch beetle microbiome. PMID:26608752

  6. Bark Beetles as Significant Forest Disturbances: Estimating Susceptibility Based On Stand Structure

    NASA Astrophysics Data System (ADS)

    Hicke, J. A.; Jenkins, J. C.

    2007-12-01

    In the western United States, bark beetle outbreaks affect millions of hectares of forests. These disturbances have multiple effects on ecosystems, including modifications to biogeochemical cycles, interactions with fire, and changes in land cover type and species composition. In recent years, extensive outbreaks have occurred in multiple forest ecosystems in the West, thought to be caused by climate variability and stand structure. In this study, we focus on epidemics of mountain pine beetle. We used USDA Forest Service inventories and a model to estimate lodgepole pine susceptibility to mountain pine beetle attack in the West. The model considers stand age, stem density, and percentage of large lodgepole pine to estimate stand susceptibility. Over 150,000 trees in 4454 plots across the western United States were used to compute susceptibility at the plot scale as well as map susceptibility at the county scale. We found that regional susceptibility was high (estimated potential of losses of 34% of stand basal area) for 2.8 Mha, or 46%, of lodgepole pine forests. The highest susceptibility occurred in the Rocky Mountains, with lower susceptibility in coastal states. This study reveals that a substantial fraction of lodgepole pine forest could be subjected to bark beetle outbreaks under current climate conditions. Because climate and weather affect beetle populations, projected future warming will influence outbreak regimes. Thus, forest ecosystems in the West may experience more frequent, extensive, and/or severe disturbances than in recent decades due to current stand structure, and these disturbances may be intensified under climate change.

  7. Ecological and Evolutionary Determinants of Bark Beetle —Fungus Symbioses

    PubMed Central

    Six, Diana L.

    2012-01-01

    Ectosymbioses among bark beetles (Curculionidae, Scolytinae) and fungi (primarily ophiostomatoid Ascomycetes) are widespread and diverse. Associations range from mutualistic to commensal, and from facultative to obligate. Some fungi are highly specific and associated only with a single beetle species, while others can be associated with many. In addition, most of these symbioses are multipartite, with the host beetle associated with two or more consistent partners. Mycangia, structures of the beetle integument that function in fungal transport, have evolved numerous times in the Scolytinae. The evolution of such complex, specialized structures indicates a high degree of mutual dependence among the beetles and their fungal partners. Unfortunately, the processes that shaped current day beetle-fungus symbioses remain poorly understood. Phylogeny, the degree and type of dependence on partners, mode of transmission of symbionts (vertical vs. horizontal), effects of the abiotic environment, and interactions among symbionts themselves or with other members of the biotic community, all play important roles in determining the composition, fidelity, and longevity of associations between beetles and their fungal associates. In this review, I provide an overview of these associations and discuss how evolution and ecological processes acted in concert to shape these fascinating, complex symbioses. PMID:26467964

  8. Aggregation pheromones of bark beetles, pityogenes quadridens and P. bidentatus, colonizing scotch pine: olfactory avoidance of interspecific competition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bark beetles Pityogenes bidentatus and P. quadridens (Coleoptera, Curculionidae, Scolytinae) compete for bark areas on branches of Scotch pine, Pinus sylvestris. Hindguts and head/thoraxes of males and females of both species feeding in hosts were extracted in pentane and analyzed by gas chromat...

  9. Seasonal Succession of Fungi Associated with Ips typographus Beetles and Their Phoretic Mites in an Outbreak Region of Finland

    PubMed Central

    Mahilainen, Saila; Harrington, Alison; Vanhanen, Henri; Eriksson, Miikka; Mehtätalo, Lauri; Pappinen, Ari; Wingfield, Michael J.

    2016-01-01

    The ophiostomatoid fungi (Microascales and Ophiostomatales, Ascomycota) are common associates of Ips typographus, and include tree pathogens and species responsible for blue-stain of timber. Fungal assemblages associated with I. typographus have varied considerably between studies but few investigations have attempted to explain this variation. For this reason, we assessed the overall cultivable fungal diversity associated with I. typographus in a storm-felled spruce forest in south-eastern Finland. Fungi were isolated from the individually collected beetles as well as their phoretic mites in spring, summer and autumn, including different life stages of the beetle (hibernation, dispersal flight and first generation). The internal transcribed spacer (ITS) gene region was used to identify the fungi. A total of 32 operational taxonomic units (OTUs) were found and these resided in four fungal phyla/subphyla (24 Ascomycota, 2 Basidiomycota, 5 Mucoromycotina, 1 Mortierellomycotina) in association with adult bark beetles. Ophiostomatoid species were the most commonly detected fungal associates. A generalized linear model analysis showed a clear association between fungal communities and season, indicating seasonal succession among I. typographus-associated fungi. The season of sampling appears to be an important factor that has resulted in inconsistencies between results in previous studies. Many of these fungi were also found on phoretic mites and their presence or absence could have influenced variation in patterns of association. PMID:27187192

  10. Seasonal Succession of Fungi Associated with Ips typographus Beetles and Their Phoretic Mites in an Outbreak Region of Finland.

    PubMed

    Linnakoski, Riikka; Mahilainen, Saila; Harrington, Alison; Vanhanen, Henri; Eriksson, Miikka; Mehtätalo, Lauri; Pappinen, Ari; Wingfield, Michael J

    2016-01-01

    The ophiostomatoid fungi (Microascales and Ophiostomatales, Ascomycota) are common associates of Ips typographus, and include tree pathogens and species responsible for blue-stain of timber. Fungal assemblages associated with I. typographus have varied considerably between studies but few investigations have attempted to explain this variation. For this reason, we assessed the overall cultivable fungal diversity associated with I. typographus in a storm-felled spruce forest in south-eastern Finland. Fungi were isolated from the individually collected beetles as well as their phoretic mites in spring, summer and autumn, including different life stages of the beetle (hibernation, dispersal flight and first generation). The internal transcribed spacer (ITS) gene region was used to identify the fungi. A total of 32 operational taxonomic units (OTUs) were found and these resided in four fungal phyla/subphyla (24 Ascomycota, 2 Basidiomycota, 5 Mucoromycotina, 1 Mortierellomycotina) in association with adult bark beetles. Ophiostomatoid species were the most commonly detected fungal associates. A generalized linear model analysis showed a clear association between fungal communities and season, indicating seasonal succession among I. typographus-associated fungi. The season of sampling appears to be an important factor that has resulted in inconsistencies between results in previous studies. Many of these fungi were also found on phoretic mites and their presence or absence could have influenced variation in patterns of association. PMID:27187192

  11. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines.

    PubMed

    Ferrenberg, Scott; Kane, Jeffrey M; Mitton, Jeffry B

    2014-04-01

    Bark beetles have recently killed billions of trees, yet conifer defenses are formidable and some trees resist attack. A primary anti-insect defense of pines is oleoresin from a system of resin ducts throughout the tree. Resin defense traits are heritable, and evidence suggests that resin duct characteristics are associated with resistance to insects. However, comparisons of resin ducts in trees killed by bark beetles to trees that resisted attack are unavailable. We compared vertical resin duct characteristics (number, density, and size) and growth rates from trees that were "resistant" (survived mass attack) versus "susceptible" (killed by attack) to bark beetles in lodgepole (Pinus contorta) and limber (Pinus flexilis) pines. Resistant trees of both species had significantly more resin ducts in recent growth than susceptible trees. Discriminant analysis (DA) correctly categorized 84% of lodgepole and 92% of limber pines as susceptible/resistant based on combinations of resin duct and growth characteristics from recent 5- through 20-year growth intervals. DA models using measures from only the most recent 5 years of growth correctly categorized 72 and 81% of lodgepole and limber pines, respectively. Comparing resistant to susceptible trees independent of species identity led to the correct categorization of 82% of trees based on factors from 5- to 20-year intervals, and 73% of trees using only resin duct counts from the most recent 5 years. We conclude that resin duct characteristics can be used to assess tree resistance to bark beetles across pine species, and offer a metric for management to enhance pest resistance. PMID:24305863

  12. A new approach to determine the capture conditions of bark beetles in pheromone-baited traps

    PubMed Central

    Ozcan, Gonca Ece; Cicek, Osman; Enez, Korhan; Yildiz, Mustafa

    2014-01-01

    Forests form an organic unity with a great number of organic and inorganic components and tend to maintain the sustainability of their existing balance. However, some factors which adversely affect the balance of nature may interrupt this sustainability. The epidemic which is formed by bark beetles in their spreading region, due to various factors, changes the stability so much that interference is required. One of the most common methods used to monitor these beetles is pheromone-baited traps. The recognition of parameters, such as date (day/month/year), temperature and humidity, when bark beetles are captured in pheromone-baited traps, especially those used for monitoring will help to increase the trap efficiency on land and to develop an effective strategy for combating pests. In this study, an electronic control unit was added to pheromone-baited traps in order to obtain all of the above mentioned parameters. This unit operates with microcontrollers and data related to the parameters is saved in a storage unit. This is triggered by the beetle at the moment it is captured in the trap. A photovoltaic system was used to meet the energy needed for the system functioning and to complete the counting process in due time. PMID:26019592

  13. Preferential host switching and codivergence shaped radiation of bark beetle symbionts, nematodes of Micoletzkya (Nematoda: Diplogastridae).

    PubMed

    Susoy, V; Herrmann, M

    2014-05-01

    Host-symbiont systems are of particular interest to evolutionary biology because they allow testable inferences of diversification processes while also providing both a historical basis and an ecological context for studies of adaptation. Our investigations of bark beetle symbionts, predatory nematodes of the genus Micoletzkya, have revealed remarkable diversity of the group along with a high level of host specificity. Cophylogenetic analyses suggest that evolution of the nematodes was largely influenced by the evolutionary history of beetles. The diversification of the symbionts, however, could not be attributed to parallel divergence alone; our results indicate that adaptive radiation of the nematodes was shaped by preferential host shifts among closely related beetles along with codivergence. Whereas ecological and geographic isolation have played a major role in the diversification of Micoletzkya at shallow phylogenetic depths, adaptations towards related hosts have played a role in shaping cophylogenetic structure at a larger evolutionary scale.

  14. Carbon stocks of trees killed by bark beetles and wildfire in the western United States

    USGS Publications Warehouse

    Hicke, Jeffrey A.; Meddens, Arjan J.H.; Allen, Craig D.; Kolden, Crystal A.

    2013-01-01

    Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984-2010, fires killed trees that contained 5-11 Tg C year-1 and during 1997-2010, beetles killed trees that contained 2-24 Tg C year-1, with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5-10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States.

  15. A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce1[C][W][OA

    PubMed Central

    Hammerbacher, Almuth; Schmidt, Axel; Wadke, Namita; Wright, Louwrance P.; Schneider, Bernd; Bohlmann, Joerg; Brand, Willi A.; Fenning, Trevor M.; Gershenzon, Jonathan; Paetz, Christian

    2013-01-01

    Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host’s chemical defenses that it is even able to use host phenolic compounds as its sole carbon source. PMID:23729780

  16. Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livneh, Ben; Deems, Jeffrey S.; Buma, Brian; Barsugli, Joseph J.; Schneider, Dominik; Molotch, Noah P.; Wolter, K.; Wessman, Carol A.

    2015-04-01

    Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p ⩽ 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust

  17. Southern pine beetle, Dendroctonus frontalis, antennal and behavioral responses to nonhost leaf and bark volatiles.

    PubMed

    Shepherd, William P; Sullivan, Brian T

    2013-04-01

    A growing body of evidence suggests that bark beetles detect and avoid release points of volatile compounds associated with nonhost species, and thus such nonhost volatiles may have potential utility in the management of bark beetles. We used a coupled gas chromatograph-electroantennographic detector (GC-EAD) to assay the olfactory sensitivity of the southern pine beetle, Dendroctonus frontalis Zimmermann, to volatiles from leaves and bark of eight species of nonhost angiosperm trees that are common in the range of D. frontalis. Tree species sampled were red maple (Acer rubrum L.), mockernut hickory [Carya alba (L.) Nutt. ex Ell.], sweetgum (Liquidambar styraciflua L.), black tupelo (Nyssa sylvatica Marsh.), black cherry (Prunus serotina Ehrh.), southern red oak (Quercus falcata Michx.), blackjack oak [Quercus marilandica (L.) Muenchh.], and water oak (Quercus nigra L.). Beetle antennae responded to a total of 28 identifiable compounds in these samples. The relative olfactory responsiveness to 14 of these, as well as to nonanoic acid and four additional volatiles reported to be associated with nonhost angiosperms, was assessed in GC-EAD analyses of synthetic dilutions spanning six orders of magnitude. The largest response voltage amplitudes were obtained with trans-conophthorin, nonanoic acid, terpinen-4-ol, phenylethyl alcohol, and eucalyptol, whereas the lowest response thresholds were to nonanoic acid, nonanal, linalool, (E)-2-hexen-1-ol, and phenylethyl alcohol. Funnel traps baited with various combinations of eleven antennally-active angiosperm volatiles along with a standard attractant captured significantly fewer male and female D. frontalis than traps baited with the standard attractant alone. Our data suggest that a diversity of semiochemicals may be involved in host species discrimination by D. frontalis, and several may have utility in their management. PMID:23460417

  18. Genomic Mining of Phylogenetically Informative Nuclear Markers in Bark and Ambrosia Beetles

    PubMed Central

    Pistone, Dario; Mugu, Sigrid; Jordal, Bjarte Henry

    2016-01-01

    Deep level insect relationships are generally difficult to resolve, especially within taxa of the most diverse and species rich holometabolous orders. In beetles, the major diversity occurs in the Phytophaga, including charismatic groups such as leaf beetles, longhorn beetles and weevils. Bark and ambrosia beetles are wood boring weevils that contribute 12 percent of the diversity encountered in Curculionidae, one of the largest families of beetles with more than 50000 described species. Phylogenetic resolution in groups of Cretaceous age has proven particularly difficult and requires large quantity of data. In this study, we investigated 100 nuclear genes in order to select a number of markers with low evolutionary rates and high phylogenetic signal. A PCR screening using degenerate primers was applied to 26 different weevil species. We obtained sequences from 57 of the 100 targeted genes. Sequences from each nuclear marker were aligned and examined for detecting multiple copies, pseudogenes and introns. Phylogenetic informativeness (PI) and the capacity for reconstruction of previously established phylogenetic relationships were used as proxies for selecting a subset of the 57 amplified genes. Finally, we selected 16 markers suitable for large-scale phylogenetics of Scolytinae and related weevil taxa. PMID:27668729

  19. Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri.

    PubMed

    Reed, Sharon E; Juzwik, Jennifer; English, James T; Ginzel, Matthew D

    2015-12-01

    Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X. crassiusculus, and X. germanus) are known to carry propagules of canker-causing fungi of black walnut. In summary, a large number of ambrosia beetles, bark beetles, and other weevils are attracted to stressed walnut trees in Indiana and Missouri. Several of these species have the potential to introduce walnut canker pathogens during colonization.

  20. The biophysical controls on tree defense against attacking bark beetles in managed pine forests of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Miniat, C. F.; Denham, S. O.; Ritger, H. M.; Williams, C.; Guldin, J. M.; Bragg, D.; Coyle, D.

    2013-12-01

    Bark beetles are highly damaging pests capable of destroying large areas of southern pine forests, with significant consequences for regional timber supply and forest ecosystem carbon dynamics. A number of recent studies have shown that following bark beetle outbreak, significant effects on ecosystem carbon and water cycling can occur. Relatively few studies have explored how ecosystem carbon and water cycling interact with other factors to control the hazard or risk of bark beetle outbreaks; these interactions, and their representation in conceptual model frameworks, are the focus of this study. Pine trees defend against bark beetle attacks through the exudation of of resin - a viscous compound that deters attacking beetles through a combination of chemical and physical mechanisms. Constitutive resin flow (CRF, representing resin produced before attack) is assumed to be directly proportional to the balance between gross primary productivity (GPP) and net primary productivity (NPP) according to the Growth-Differentiation Balance theory (GDB). Thus, predictions for tree mortality and bark beetle dynamics under different management and climate regimes may be more accurate if a model framework describing the biophysical controls on resin production (e.g., GDB) were employed. Here, we synthesize measurements of resin flow, bark beetle dynamics, and ecosystem C flux from three managed loblolly pine forests in the Southeastern U.S.: the Duke Forest in Durham, NC; the Savannah River DOE site near Aiken, SC; and the Crossett Experimental Forest in southern Arkansas. We also explore the relationship between CRF and induced resin flow (IRF, representing the de novo synthesis of resin following stem wounding) in the latter two sites, where IRF was promoted by a novel tree baiting approach and prescribed fire, respectively. We assimilate observations within a hierarchical Bayesian framework to 1) test whether observations conform to the GDB hypothesis, and 2) explore effects

  1. Spatial and Temporal Patterns of Observed Bark Beetle-Caused Tree Mortality in Western United States and British Columbia

    NASA Astrophysics Data System (ADS)

    Meddens, A. J.; Hicke, J. A.; Ferguson, C. A.

    2011-12-01

    Outbreaks of aggressive bark beetle species cause widespread tree mortality, affecting wildlife habitat, wildfire risk, forest recovery, biogeochemical cycling, and biophysical processes. As a result, agencies responsible for forest management in the US and British Columbia are concerned about monitoring outbreaks and so conduct aerial surveys to map these forest disturbances. Here, we describe a gridded product of bark beetle disturbances for the western conterminous United States (1997-2009) and British Columbia (2001-2009). We converted aerial survey polygon data into 1-km2 grids for each combination of host type (e.g., lodgepole pine) and bark beetle species (e.g., mountain pine beetle) available in the US, and for each bark beetle species available in British Columbia. Polygon data are considered "affected area" because the polygons include live and killed trees. We converted affected area to mortality area within each grid cell for each year. We compared the number of killed trees from the US data set with high-resolution classified imagery in Idaho, Colorado, and New Mexico, finding that the number of trees reported by the aerial surveys in these locations was substantially underestimated. We adjusted mortality area for the US and found better matches with the spatial patterns and severity of the British Columbia mortality area. As a result, we produced US grids for lower (from the original aerial survey) and upper (with adjustment) estimates. Bark beetle mortality occurred across the entire study domain and temporal and spatial patterns differed among bark beetle species. The calculated mortality area from all bark beetles combined was 0.42 million ha for the lower estimate and 5.04 million ha for the upper estimate in the western conterminous US from 1997 to 2009, and 5.07 million ha in British Columbia from 2001 to 2009. The analyses suggest that mortality area caused by bark beetles in the western conterminous US exceeded the British Columbia mortality

  2. Towards scaling interannual ecohydrological responses of conifer forests to bark beetle infestations from individuals to landscapes

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.

    2013-12-01

    Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95

  3. Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles.

    PubMed Central

    Sequeira, A S; Normark, B B; Farrell, B D

    2000-01-01

    Several shifts from ancestral conifer feeding to angiosperm feeding have been implicated in the unparalleled diversification of beetle species. The single largest angiosperm-feeding beetle clade occurs in the weevils, and comprises the family Curculionidae and relatives. Most authorities confidently place the bark beetles (Scolytidae) within this radiation of angiosperm feeders. However, some clues indicate that the association between conifers and some scolytids, particularly in the tribe Tomicini, is a very ancient one. For instance, several fragments of Gondwanaland (South America, New Caledonia, Australia and New Guinea) harbour endemic Tomicini specialized on members of the formerly widespread and abundant conifer family Araucariaceae. As a first step towards resolving this seeming paradox, we present a phylogenetic analysis of the beetle family Scolytidae with particularly intensive sampling of conifer-feeding Tomicini and allies. We sequenced and analysed elongation factor 1alpha and nuclear rDNAs 18S and 28S for 45 taxa, using members of the weevil family Cossoninae as an out-group. Our results indicate that conifer feeding is the ancestral host association of scolytids, and that the most basal lineages of scolytids feed on Aramucaria. If scolytids are indeed nested within a great angiosperm-feeding clade, as many authorities have held, then a reversion to conifer feeding in ancestral scolytids appears to have occurred in the Mesozoic, when Araucaria still formed a major component of the woody flora. PMID:11133024

  4. High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae)

    NASA Astrophysics Data System (ADS)

    Pureswaran, Deepa S.; Sullivan, Brian T.; Ayres, Matthew P.

    2008-01-01

    Aggregation via pheromone signalling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxical. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An alternative hypothesis is that aggregation behaviour dilutes the contribution of individuals to the trait under selection and reduces the efficacy of natural selection on pheromone production by individuals. We compared pheromone measurements from traditional hindgut extractions of female southern pine beetles with those obtained by aerating individuals till they died. Aerations showed greater total pheromone production than hindgut extractions, but coefficients of variation (CV) remained high (60-182%) regardless of collection technique. This leaves the puzzle of high variation unresolved. A novel but simple explanation emerges from considering bark beetle aggregation behaviour. The phenotype visible to natural selection is the collective pheromone plume from hundreds of colonisers. The influence of a single beetle on this plume is enhanced by high variation among individuals but constrained by large group sizes. We estimated the average contribution of an individual to the pheromone plume across a range of aggregation sizes and showed that large aggregation sizes typical in mass attacks limit the potential of natural selection because each individual has so little effect on the overall plume. Genetic variation in pheromone production could accumulate via mutation and recombination, despite strong effects of the pheromone plume on the fitness of individuals within the aggregation. Thus, aggregation behaviour, by limiting the efficacy of natural selection, can allow the persistence of extreme phenotypes in nature.

  5. Bark Beetle-Induced Mortality Impacts on Forest Biogeochemical Cycles are Less than Expected

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Pendall, E.; Norton, U.; Millar, D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Hyde, K.

    2015-12-01

    Bark beetles increased conifer tree mortality across western North America due to past land use interacting with climate change. For both mountain pine and spruce beetles, the mechanism of mortality is hydraulic failure due to xylem occlusion by beetle-carried blue stain fungi, which causes the trees to die from symptoms that are the same as extreme drought. As the mortality event peaked in the last decade, the hypothesized effects on forest biogeochemical processes were 1) lower forest water use from xylem occlusion, 2) less carbon uptake from limited canopy gas exchange, 3) increased nitrogen cycling from increased litterfall and soil moisture and 4) increased streamflow and organic N and C loading at the watershed scale from the first three consequences. The stand-scale effects during mortality were as predicted with transpiration falling by 10-35% in proportion to the occluded xylem, carbon uptake declining by > 50% due to lack of canopy gas exchange and nitrogen cycling increasing from elevated litter inputs and stimulated organic matter decomposition. Some stands, especially mid-elevation lodgepole pine, did not follow these trends because of residual vegetation taking advantage of the increased resources from the dead trees and rapid succession within 5 years of new grasses, shrubs and tree seedlings as well as increased resource use by surviving canopy trees. In a high elevation spruce stand, the lower water use lasted for only three years while summer carbon uptake was only significantly reduced for a year. At the scale of small to medium-sized watersheds, the impact of mortality was not detectable in stream flow due to the spatial and temporal scale muting of the mortality signal as temporal and spatial scales increase. Current ecosystem and watershed models miss these compensating mechanisms with increasing scale and thus over predict the impact of bark beetle mortality.

  6. Two newly introduced tropical bark and ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) damaging figs (Ficus carica) in southern Italy.

    PubMed

    Faccoli, Massimo; Campo, Giuseppe; Perrotta, Giancarlo; Rassati, Davide

    2016-01-01

    In summer 2014, the bark beetle Hypocryphalus scabricollis (Eichhoff) and the ambrosia beetle Xyleborus bispinatus Eichhoff, species new to Italy and Europe, respectively, were found for the first time in south-eastern Sicily (Italy). Large infestations of the two species were recorded in many plantations of common fig (Ficus carica L.) both in 2014 and 2015. Data concerning insect characteristics, taxonomy, and distribution are briefly reported. PMID:27470760

  7. Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories.

    PubMed

    Adams, Aaron S; Boone, Celia K; Bohlmann, Jörg; Raffa, Kenneth F

    2011-08-01

    Bark beetles that colonize living conifers and their microbial associates encounter constitutive and induced chemical defenses of their host. Monoterpene hydrocarbons comprise a major component of these allelochemicals, and many are antibiotic to insects, fungi, and bacteria. Some bark beetle species exhaust these defenses by killing their host through mass attacks mediated by aggregation pheromones. Others lack adult aggregation pheromones and do not engage in pheromone-mediated mass attacks, but rather have the ability to complete development within live hosts. In the former species, the larvae develop in tissue largely depleted of host terpenes, whereas in the latter exposure to these compounds persists throughout development. A substantial literature exists on how monoterpenes affect bark beetles and their associated fungi, but little is known of how they affect bacteria, which in turn can influence beetle performance in various manners. We tested several bacteria from two bark beetle species for their ability to grow in the presence of a diversity of host monoterpenes. Bacteria were isolated from the mountain pine beetle, Dendroctonus ponderosae Hopkins, which typically kills trees during colonization, and the red turpentine beetle, Dendroctonus valens LeConte, which often lives in their host without causing mortality. Bacteria from D. ponderosae were gram-positive Actinobacteria and Bacilli; one yeast also was tested. Bacteria from D. valens were Actinobacteria, Bacilli, and γ-Proteobacteria. Bacteria from D. valens were more tolerant of monoterpenes than were those from D. ponderosae. Bacteria from D. ponderosae did not grow in the presence of α-pinene and 3-carene, and grew in, but were inhibited by, β-pinene and β-phellandrene. Limonene and myrcene had little inhibitory effect on bacteria from either beetle species. Tolerance to these antibiotic compounds appears to have resulted from adaptation to living in a terpene-rich environment.

  8. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.

    PubMed

    Hammerbacher, Almuth; Paetz, Christian; Wright, Louwrance P; Fischer, Thilo C; Bohlmann, Joerg; Davis, Andrew J; Fenning, Trevor M; Gershenzon, Jonathan; Schmidt, Axel

    2014-04-01

    Proanthocyanidins (PAs) are common polyphenolic polymers of plants found in foliage, fruit, bark, roots, rhizomes, and seed coats that consist of flavan-3-ol units such as 2,3-trans-(+)-catechin and 2,3-cis-(-)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms, little is known about their biosynthesis and ecological roles in gymnosperms. In this study, the genes encoding leucoanthocyanidin reductase, a branch point enzyme involved in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, were identified and functionally characterized in Norway spruce (Picea abies), the most widespread and economically important conifer in Europe. In addition, the accumulation of flavan-3-ols and PAs was investigated in Norway spruce saplings after wounding or inoculation with the fungal pathogen Ceratocystis polonica, which is vectored by bark beetles (Ips typographus) and is usually present during fatal beetle attacks. Monomeric and dimeric flavan-3-ols were analyzed by reverse-phase high-pressure liquid chromatography, while the size and subunit composition of larger PAs were characterized using a novel acid hydrolysis method and normal phase chromatography. Only flavan-3-ol monomers with 2,3-trans stereochemistry were detected in spruce bark; dimeric and larger PAs contained flavan-3-ols with both 2,3-trans and 2,3-cis stereochemistry. Levels of monomers as well as PAs with a higher degree of polymerization increased dramatically in spruce bark after infection by C. polonica. In accordance with their role in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, transcript abundance of Norway spruce LEUCOANTHOCYANIDIN REDUCTASE genes also increased significantly during fungal infection. Bioassays with C. polonica revealed that the levels of 2,3-trans-(+)-catechin and PAs that are produced in the tree in response to fungal infection inhibit C. polonica growth and can therefore be considered chemical defense compounds.

  9. Negative Feedbacks on Bark Beetle Outbreaks: Widespread and Severe Spruce Beetle Infestation Restricts Subsequent Infestation

    PubMed Central

    Hart, Sarah J.; Veblen, Thomas T.; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  10. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    PubMed

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  11. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    PubMed

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  12. Surface energy flux consequences of bark beetle outbreaks in the south-central Rockies using MODIS data

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M. K.; Williams, C. A.

    2012-12-01

    Changes in canopy cover due to disturbance-related mortality have been shown to profoundly impact parameters within the surface energy balance and water budget. A shift in such fluxes can have consequences for surface temperature, cloudiness, run-off and stream flow, forest regeneration and net primary productivity. Current outbreaks of native bark beetles in western North America are some of the largest and most severe in recorded history. In recent outbreaks, bark beetles have reduced the basal area of host-dominated forests by up to 70%; with over-story mortality often exceeding 90% in mature, even-aged stands. The magnitude, frequency and intensity of recent outbreaks have been attributed to warmer summer and winter temperatures and drought conditions as a result of climate change. However, despite the likelihood that canopy mortality from bark beetle attacks will have profound effects on forest albedo and evapotranspiration, consequences for this disturbance type remain largely un-documented. This study addressed the question: how does a bark beetle outbreak event influence surface albedo and evapotranspiration? Seasonal patterns of surface temperature, albedo, evapotranspiration, and radiative forcing were modeled for lodgepole and ponderosa pine stands by outbreak age using Moderate Resolution Imaging Spectroradiometer (MODIS) data within the south-central Rocky Mountains. Beetle damage data was derived from both field-based plots as well as aerial surveys. The prevalence of bark beetle outbreaks in high-elevation environments, which are exceedingly sensitive to climate change, necessitates the importance of understanding the energy and evapotranspiration consequences of such events.

  13. Physiology of cold tolerance in the bark beetle, Pityogenes chalcographus and its overwintering in spruce stands.

    PubMed

    Koštál, Vladimír; Miklas, Bořek; Doležal, Petr; Rozsypal, Jan; Zahradníčková, Helena

    2014-04-01

    The seasonal development of physiological features underlying gradual acquisition of relatively high cold tolerance in overwintering adults of the bark beetles, Pityogenes chalcographus was described. Prior to overwintering, the beetles accumulated carbohydrate reserves in the form of glycogen and trehalose. These reserves were partially converted to glycerol during peaking winter so that glycerol concentration reached 1.4M in average, which corresponds to approximately one quarter of the beetle dry mass. Whole body supercooling points decreased from -12.8°C in average at the beginning of dormancy (August) to -26.3°C in average during peaking winter (January). More than 75% of January-collected beetles survived at -5°C for 30days, at -15°C for 60days and more than 40% of them survived at -26°C for 12h. High resistance against inoculation of body fluids with external ice crystals, and low mortality, was observed when January-collected beetles were encased in an ice block for 14days. Thus, the physiological limits of cold tolerance measured at individual level in laboratory were safely sufficient for survival of P. chalcographus at any conceivable cold spell that may occur in Central Europe. In contrast, the field experiment showed that winter survival fluctuated between 23.8% and 69.2% at a population level depending on microclimatic conditions in different altitudes and overwintering locations (standing tree trunk or ground level). The meaning of laboratory-assessed physiological limits of cold tolerance for predictions of population winter survival in the field is discussed. PMID:24607639

  14. Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.

    2013-12-01

    The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic

  15. Predation by Flat Bark Beetles (Coleoptera: Silvanidae and Laemophloeidae) on Coffee Berry Borer (Coleoptera: Curculionidae) in Hawaii coffee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coffee berry borer(CBB), Hypothenemus hampei, is a serious pest of coffee worldwide and a new invasive pest in Hawaii. Adult flat bark beetles, mainly Leptophloeus sp.(75%) and Cathartus quadricollis(21%) (Coleoptera: Laemophloeidae and Silvanidae, respectively), were found feeding in CBB-infested c...

  16. A population genetic model of evolution of host-mate attraction and nonhost repulsion in a bark beetle Pityogenes bidentatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown that the bark beetle Pityogenes bidentatus (Coleoptera, Curculionidae, Scolytinae) avoids volatiles of nonhost trees (Norway spruce, birch, and oak) and healthy host Scotch pine when orienting to aggregation pheromone. A population genetic model of two behavioral genes was hypothe...

  17. Bark beetles, pityogenes bidentatus, orienting to aggregation pheromone avoid conifer monoterpene odors when flying but not when walking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have provided evidence that monoterpene odors from healthy host Scotch pine (Pinus sylvestris) and non-host Norway spruce (Picea abies) significantly reduce the attraction of flying bark beetles, Pityogenes bidentatus, to their aggregation pheromone components (grandisol and cis-ver...

  18. Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?

    NASA Astrophysics Data System (ADS)

    Moser, John C.; Konrad, Heino; Blomquist, Stacy R.; Kirisits, Thomas

    2010-02-01

    Dutch elm disease (DED) is a destructive vascular wilt disease of elm ( Ulmus) trees caused by the introduced Ascomycete fungus Ophiostoma novo-ulmi. In Europe, this DED pathogen is transmitted by elm bark beetles in the genus Scolytus. These insects carry phoretic mites to new, suitable habitats. The aim of this study was to record and quantify conidia and ascospores of O. novo-ulmi on phoretic mites on the three elm bark beetle species Scolytus multistriatus, Scolytus pygmaeus, and Scolytus scolytus. Spores of O. novo-ulmi were found on four of the ten mite species phoretic on Scolytus spp. These included Elattoma fraxini, Proctolaelaps scolyti, Pseudotarsonemoides eccoptogasteri, and Tarsonemus crassus. All four species had spores attached externally to their body surfaces. However, T. crassus carried most spores within its sporothecae, two paired pocket-like structures adapted for fungal transmission. Individuals of Pr. scolyti also had O. novo-ulmi conidia and ascospores frequently in their digestive system, where they may remain viable. While E. fraxini and P. eccoptogasteri rarely had spores attached to their bodies, large portions of Pr. scolyti and T. crassus carried significant numbers of conidia and/or ascospores of O. novo-ulmi. P. scolyti and T. crassus, which likely are fungivores, may thus contribute to the transmission of O. novo-ulmi, by increasing the spore loads of individual Scolytus beetles during their maturation feeding on twigs of healthy elm trees, enhancing the chance for successful infection with the pathogen. Only S. scolytus, which is the most efficient vector of O. novo-ulmi in Europe, carried high numbers of Pr. scolyti and T. crassus, in contrast to S. multistriatus and S. pygmaeus, which are known as less efficient vectors. The high efficiency of S. scolytus in spreading Dutch elm disease may be partly due to its association with these two mites and the hyperphoretic spores of O. novo-ulmi they carry.

  19. Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality

    NASA Astrophysics Data System (ADS)

    Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.

    2016-03-01

    A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.

  20. Nor-hopanes from Zanha africana root bark with toxicity to bruchid beetles.

    PubMed

    Stevenson, Philip C; Green, Paul W C; Veitch, Nigel C; Farrell, Iain W; Kusolwa, Paul; Belmain, Steven R

    2016-03-01

    Zanha africana (Radlk.) Exell (Sapindaceae) root bark is used by farmers throughout sub-Saharan Africa to protect stored grain from bruchid beetles, such as Callosobruchus maculatus. Chloroform, methanol and water extracts of Z. africana root bark inhibited oviposition and caused significantly higher mortality of C. maculatus at a rate of application equivalent to that applied by farmers compared to control insects. The chloroform extract contained nor-hopanes rarely found in plants of which seven were isolated, one of which was previously known. Two of the most abundant nor-hopanes 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene and 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene were toxic to and reduced oviposition of C. maculatus in a dose dependent manner. Z. africana root bark is rich in insecticidal compounds that account for its effective use by smallholder farmers as an alternative to conventional insecticides. PMID:26803395

  1. Nor-hopanes from Zanha africana root bark with toxicity to bruchid beetles.

    PubMed

    Stevenson, Philip C; Green, Paul W C; Veitch, Nigel C; Farrell, Iain W; Kusolwa, Paul; Belmain, Steven R

    2016-03-01

    Zanha africana (Radlk.) Exell (Sapindaceae) root bark is used by farmers throughout sub-Saharan Africa to protect stored grain from bruchid beetles, such as Callosobruchus maculatus. Chloroform, methanol and water extracts of Z. africana root bark inhibited oviposition and caused significantly higher mortality of C. maculatus at a rate of application equivalent to that applied by farmers compared to control insects. The chloroform extract contained nor-hopanes rarely found in plants of which seven were isolated, one of which was previously known. Two of the most abundant nor-hopanes 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)-diene and 3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene were toxic to and reduced oviposition of C. maculatus in a dose dependent manner. Z. africana root bark is rich in insecticidal compounds that account for its effective use by smallholder farmers as an alternative to conventional insecticides.

  2. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    PubMed

    Cale, Jonathan A; Collignon, R Maxwell; Klutsch, Jennifer G; Kanekar, Sanat S; Hussain, Altaf; Erbilgin, Nadir

    2016-01-01

    Mountain pine beetle (Dendroctonus ponderosae) has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs) help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success. PMID:27583519

  3. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    PubMed

    Cale, Jonathan A; Collignon, R Maxwell; Klutsch, Jennifer G; Kanekar, Sanat S; Hussain, Altaf; Erbilgin, Nadir

    2016-01-01

    Mountain pine beetle (Dendroctonus ponderosae) has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs) help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success.

  4. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    USGS Publications Warehouse

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in

  5. Mariannaea samuelsii Isolated from a Bark Beetle-Infested Elm Tree in Korea.

    PubMed

    Tang, Longqing; Hyun, Min Woo; Yun, Yeo Hong; Suh, Dong Yeon; Kim, Seong Hwan; Sung, Gi-Ho; Choi, Hyung-Kyoon

    2012-06-01

    During an investigation of fungi from an elm tree infested with bark beetles in Korea, one isolate, DUCC401, was isolated from elm wood. Based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer and 28S rDNA (large subunit) sequences, the isolate, DUCC401, was identified as Mariannaea samuelsii. Mycelia of the fungus grew faster on malt extract agar than on potato dextrose agar and oatmeal agar media. Temperature and pH for optimal growth of fungal mycelia were 25℃ and pH 7.0, respectively. The fungus demonstrated the capacity to degrade cellobiose, starch, and xylan. This is the first report on isolation of Mariannaea samuelsii in Korea. PMID:22870050

  6. Streamwater Chemistry and Nutrient Export During Five Years of Bark Beetle Infestation of Subalpine Watersheds at the Fraser Experimental Forest

    NASA Astrophysics Data System (ADS)

    Rhoades, C.; Elder, K.; Hubbard, R.; Porth, L.

    2008-12-01

    Forested watersheds of western North America are currently undergoing rapid and extensive canopy mortality caused by a variety of insect species. The mountain pine bark beetle (Dendroctonus ponderosae) began to attack lodgepole pine (Pinus contorta) at the USFS Fraser Experimental Forest in central Colorado in 2002. By 2007, bark beetles had killed 78% of the overstory pine in Fraser research watersheds on average. The hydrologic, climatic, biogeochemical and vegetation records at the Fraser Experimental Forest provide a unique opportunity to quantify the impacts of this widespread, but poorly understood forest disturbance relative to a multi-decade pre-disturbance period. Here we compare seasonal streamwater chemistry and annual nutrient export for the five years since the bark beetle outbreak began with the pre- attack record. Patterns in post-outbreak streamwater biogeochemistry are compared to changes is species composition and proportional loss of overstory basal area for four basins. The influence of the outbreak will depend upon an aggregate of short (i.e. halted overstory water and nutrient use) and longer-term (i.e. altered canopy interception, windthrow, and understory growth) processes, so the hydrologic and biogeochemical implications of current beetle activity will not be fully realized for decades.

  7. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts

    PubMed Central

    Collignon, R. Maxwell; Klutsch, Jennifer G.; Kanekar, Sanat S.; Hussain, Altaf; Erbilgin, Nadir

    2016-01-01

    Mountain pine beetle (Dendroctonus ponderosae) has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs) help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle’s fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success. PMID:27583519

  8. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback.

    PubMed

    Stursová, Martina; Snajdr, Jaroslav; Cajthaml, Tomáš; Bárta, Jiří; Santrůčková, Hana; Baldrian, Petr

    2014-09-01

    Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio. PMID:24671082

  9. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback

    PubMed Central

    Štursová, Martina; Šnajdr, Jaroslav; Cajthaml, Tomáš; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2014-01-01

    Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio. PMID:24671082

  10. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement.

    PubMed

    Steininger, M S; Hulcr, J; Šigut, M; Lucky, A

    2015-06-01

    Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae) are among the most damaging forest pests worldwide, and monitoring is essential to damage prevention. Unfortunately, traps and attractants that are currently used are costly, and agencies rely on limited field personnel for deployment. The situation can be greatly aided by 1) the development of cost-effective trapping techniques, and 2) distribution of the effort through the Citizen Science approach. The goal of this study was to test a simple, effective trap that can be made and deployed by anyone interested in collecting bark and ambrosia beetles. Three trap types made from 2-liter soda bottles and, separately, four attractants were compared. Simple, one-window traps performed comparably at capturing species in traps painted or with multiple windows. A comparison of attractants in two-window traps found that 95% ethanol attracted the highest number of species but that Purell hand sanitizer (70% ethanol) and then Germ-X hand sanitizer (63% ethanol) were also effective. A perforated zip-top plastic bag containing Purell hanging over a trap filled with automobile antifreeze attracted the fewest species and individual specimens. Overall, >4,500 bark and ambrosia beetles, including 30 species were captured, representing a third of the regional species diversity. More than three quarters of the specimens were nonnative, representing nearly half of the known regional exotic species. These results suggest that simple one-window soda bottle traps baited with ethanol-based hand sanitizer will be effective and inexpensive tools for large-scale monitoring of bark and ambrosia beetles.

  11. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement.

    PubMed

    Steininger, M S; Hulcr, J; Šigut, M; Lucky, A

    2015-06-01

    Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae) are among the most damaging forest pests worldwide, and monitoring is essential to damage prevention. Unfortunately, traps and attractants that are currently used are costly, and agencies rely on limited field personnel for deployment. The situation can be greatly aided by 1) the development of cost-effective trapping techniques, and 2) distribution of the effort through the Citizen Science approach. The goal of this study was to test a simple, effective trap that can be made and deployed by anyone interested in collecting bark and ambrosia beetles. Three trap types made from 2-liter soda bottles and, separately, four attractants were compared. Simple, one-window traps performed comparably at capturing species in traps painted or with multiple windows. A comparison of attractants in two-window traps found that 95% ethanol attracted the highest number of species but that Purell hand sanitizer (70% ethanol) and then Germ-X hand sanitizer (63% ethanol) were also effective. A perforated zip-top plastic bag containing Purell hanging over a trap filled with automobile antifreeze attracted the fewest species and individual specimens. Overall, >4,500 bark and ambrosia beetles, including 30 species were captured, representing a third of the regional species diversity. More than three quarters of the specimens were nonnative, representing nearly half of the known regional exotic species. These results suggest that simple one-window soda bottle traps baited with ethanol-based hand sanitizer will be effective and inexpensive tools for large-scale monitoring of bark and ambrosia beetles. PMID:26470236

  12. Bark beetle and wood borer infestation in the greater Yellowstone area during four postfire years. Forest Service research paper

    SciTech Connect

    Rasmussen, L.A.; Amman, G.D.; Vandygriff, J.C.; Oakes, R.D.; Munson, A.S.

    1996-03-01

    Surveys of bark beetle and wood borer infestation in the Greater Yellowstone Area were conducted from 1991 through 1993 to determine the effect of delayed tree mortality on mosaics of fire-killed and green tree stands, the relationship between fire injury and infestation, but both types of mortality greatly altered the mosaics immediately apparent after the 1988 fires. The high level of infestation suggests that insects built up in fire-injured trees and then caused increased infestation of uninjured trees.

  13. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Romme, William H; Turner, Monica G

    2013-11-01

    Understanding how disturbances interact to shape ecosystems is a key challenge in ecology. In forests of western North America, the degree to which recent bark beetle outbreaks and subsequent fires may be linked (e.g., outbreak severity affects fire severity) and/ or whether these two disturbances produce compound effects on postfire succession is of widespread interest. These interactions remain unresolved, largely because field data from actual wildfires following beetle outbreaks are lacking. We studied the 2008 Gunbarrel Fire, which burned 27 200 ha in Douglas-fir (Pseudotsuga menziesii) forests that experienced a bark beetle outbreak 4-13 years prefire ("gray stage," after trees have died and needles have dropped), to determine whether outbreak severity influenced subsequent fire severity and postfire tree regeneration. In 85 sample plots we recorded prefire stand structure and outbreak severity; multiple measures of canopy and forest-floor fire severity; and postfire tree seedling density. Prefire outbreak severity was not related to any measure of fire severity except for mean bole scorch, which declined slightly with increasing outbreak severity. Instead, fire severity varied with topography and burning conditions (proxy for weather at time of fire). Postfire Douglas-fir regeneration was low, with tree seedlings absent in 65% of plots. Tree seedlings were abundant in plots of low fire severity that also had experienced low outbreak severity (mean = 1690 seedlings/ha), suggesting a dual filter on tree regeneration. Although bark beetles and fire collectively reduced live basal area to < 5% and increased snag density to > 2000% of pre-outbreak levels, the lack of relationship between beetle outbreak and fire severity suggests that these disturbances were not linked. Nonetheless, effects on postfire tree regeneration suggest compound disturbance interactions that contribute to the structural heterogeneity characteristic of mid/lower montane forests.

  14. Olfactory responses of Ips duplicatus from inner Mongolia, China to nonhost leaf and bark volatiles.

    PubMed

    Zhang, Q H; Liu, G T; Schlyter, F; Birgersson, G; Anderson, P; Valeur, P

    2001-05-01

    Leaf and bark volatiles from nonhost angiosperm trees were tested on Ips duplicatus by gas chromatographic-electroantennographic detection (GC-EAD) and by pheromone-baited traps in Sweden and Inner Mongolia, China, respectively. GC-EAD analysis of the headspace volatiles from fresh bark chips of Betula pubescens revealed trans-conophthorin, two green leaf volatiles (GLVs): 1-hexanol and (Z)-3-hexen-1-ol, and two C8 alcohols: 3-octanol and 1-octen-3-ol, that consistently elicited antennal responses by I. duplicatus. The identification of these EAD-active compounds was confirmed in further GC-EAD recordings with synthetic mixtures. Antennal responses were also found to synthetic (E)-2-hexen-1-ol and linalool, which have been identified from the leaves of nonhost birch and aspen species. No antennal responses of I. duplicatus were found to hexanal, (E)-2-hexenal, and (Z)-3-hexyl acetates. In field trapping experiments, blends of EAD-active green leaf alcohols or C8 alcohols, or transconophthorin alone resulted in significant reductions (27-60%) in the number of I. duplicatus captured compared with pheromone-baited traps. The unsuitable host compound, verbenone (Vn), also significantly reduced trap catches by up to 60% in both experiments. The strongest disruptive effect resulted from the addition of the combination of green leaf alcohols, C8 alcohols, and verbenone to the pheromone trap, which caused an 84% reduction in trap catch. The blend of two green leaf aldehydes plus the acetate increased the trap catches in 1998 and had no negative or positive effects in 1999. Our results suggest that these nonhost volatiles (NHVs) are important olfactory signals used by I. duplicatus in host selection. They may have great significance in developing semiochemical-based management programs for I. duplicatus by reducing or stopping attacks on suitable hosts.

  15. Genetic relationships among Leptographium terebrantis and the mycangial fungi of three western Dendroctonus bark beetles.

    PubMed

    Six, Diana L; Harrington, Thomas C; Steimel, Joseph; McNew, Douglas; Paine, T D

    2003-01-01

    Morphology, mitochondrial DNA (mtDNA) restriction fragment polymorphisms (RFLPs) and nuclear DNA (nDNA) fingerprinting were used to clarify relationships among the morphologically similar Ophiostoma and Leptographium species associated with mycangia of three Dendroctonus bark beetles (Ophiostoma clavigerum associated with both D. ponderosae and D. jeffreyi, and L. pyrinum associated with D. adjunctus), as well as a closely related nonmycangial bark beetle associate (L. terebrantis). Most isolates of O. clavigerum form long (40-70 μm), septate conidia, while all isolates of L. terebrantis and L. pyrinum form conidia less than 17.0 μm in length. The conidia of L. pyrinum are pyriform, with truncate bases, while the conidia of the other species form only slightly truncate bases. Conidial masses of L. terebrantis are creamy yellow, while the conidial masses of the other species are white. Nuclear DNA fingerprints resulting from probing PstI restrictions with the oligonucleotide probe (CAC)(5) and HaeIII and MspI restrictions of mtDNA, exhibited three major clusters. In the dendrogram developed from mtDNA RFLPs, the L. pyrinum isolates formed one cluster, while the majority of O. clavigerum isolates, including all D. jeffreyi isolates, formed another. A third cluster was composed of all L. terebrantis isolates, as well as several O. clavigerum isolates from D. ponderosae. The inclusion of some O. clavigerum isolates in the L. terebrantis cluster suggests that horizontal transfer of mtDNA has occurred among these fungi. The nDNA dendrogram also exhibited three clusters, and most isolates of L. pyrinum, L. terebrantis and O. clavigerum grouped separately; however, one isolate of O. clavigerum grouped with the L. terebrantis isolates, while one isolate of L. terebrantis grouped with O. clavigerum. No genetic markers were found that distinguished between O. clavigerum associated with D. ponderosae and O. clavigerum associated with D. jeffreyi. Ophiostoma clavigerum might

  16. Soil carbon cycle 13C responses in the decade following bark beetle and girdling disturbance

    NASA Astrophysics Data System (ADS)

    Maurer, G. E.; Chan, A. M.; Trahan, N. A.; Moore, D. J.; Bowling, D. R.

    2014-12-01

    Recent bark beetle outbreaks in western North America have impacted millions of hectares of conifer forests leading to uncertainty about whether these forests will become new sources of atmospheric CO2. In large part, this depends on whether enhanced respiration from the decomposition of newly dead organic matter will outpace the recovery of ecosystem carbon uptake by the ecosystems. To understand how rapidly conifer forest carbon pools turn over following these disturbances, we examined changes in the isotopic composition of soil respiration (δ13Cresp) following beetle and girdling mortality in two subalpine forests in Colorado, U.S.A. At the beetle-impacted forest δ13Cresp declined by ~1‰ between 3 and 8 years post-disturbance, but recovered in years 9-10. In the girdled forest, deep (<10 cm depth) soil respiration from plots at <1 to 2 years post-girdling was depleted by ~1‰ relative to ungirdled plots, but then gradually increased until there was a significant spike in δ13Cresp at 8-9 years post-girdling. Based on our understanding of isotopic composition in carbon pools and fluxes at these forests, we attribute these changes to removal of recently assimilated C in rhizosphere respiration (1-2 years) followed by the decomposition of litterfall (needles and roots) 8-10 years post-disturbance. Relative to ungirdled plots, there was also a transient enrichment in surface δ13Cresp from plots at <1 to 2 years post-girdling (~0.5‰, not statistically significant) and significant declines in microbial carbon in surface soils in 2-4 year post-girdling plots. Again, based on current understanding, we interpret these to signify the rapid turnover of mycorrhizal and rhizosphere microbial biomass in the 2 years following girdling. A potential confounding factor in this study is that seasonal variation in δ13Cresp was similar in magnitude to changes with time since disturbance and was significantly related to variation in soil temperature and water content.

  17. Seasonal water stress and the resistance of Pinus yunnanensis to a bark-beetle-associated fungus.

    PubMed

    Salle, Aurelien; Ye, Hui; Yart, Annie; Lieutier, François

    2008-05-01

    We examined the influence of seasonal water stress on the resistance of Pinus yunnanensis (Franch.) to inoculation with Leptographium yunnanense, a pathogenic fungus associated with the aggressive bark beetle, Tomicus n. sp. Experiments took place between October 1997 and November 1999 in two plots located at the top and at the foot of a hill in Shaogiu, China, a region characterized by dry winters and wet summers. Following isolated and mass fungal inoculations, we observed the reaction zone length, fungal growth in the phloem, and the occlusion, blue-staining and specific hydraulic conductivity of the sapwood. Measurements of soil and needle water contents and predawn needle water potentials confirmed that trees were subject to mild water stress during winter, especially at the drier hilltop site. Measures of tree resistance to fungal infection of phloem and sapwood were congruent and indicated that trees were most susceptible to inoculation during the wet summer, especially at the lower-elevation plot. Specific hydraulic conductivity decreased after inoculation in summer. The results indicate that mild seasonal water stress is not likely responsible for the recent extensive damage to young P. yunnanensis stands by Tomicus n. sp. in the vicinity of our study plots. Rather, the results suggest that mild water stress enhances tree resistance to fungal pathogens associated with Tomicus n. sp.

  18. The Response of Subalpine Vegetation to Climate Change and Bark Beetle Infestations: A Multi-Scale Interaction.

    NASA Astrophysics Data System (ADS)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Negrón, J. F.

    2015-12-01

    Mean annual temperatures in the western United States have increased in the last few decades, and are predicted to continue warming. In the subalpine zone of the Rocky Mountains, this warming is also predicted to increase the frequency and severity of spruce beetle outbreaks. Climate change itself may affect this vegetation, potentially leading to shifts in species compositions. These forests are a crucial part of the US's carbon budget, thus it is important to analyze how climate change and bark beetles in conjunction will affect the biomass and species composition of vegetation in subalpine zone. UVAFME is an individual-based gap model that simulates biomass and species composition of a forest. This model has been quantitatively tested at various Rocky Mountain sites in the Front Range, and has been shown to accurately simulate the vegetation dynamics in the region. UVAFME has been updated with a spruce beetle subroutine that calculates the probability for beetle infestation of each tree on a plot. This probability is based on site, climate, and individual tree characteristics, such as temperature; stand structure; and tree stress level, size, and age. These governing characteristics are based on data from the US Forest Service, and other studies on spruce susceptibility and spruce beetle phenology. UVAFME is then run with multiple climate change and beetle scenarios to determine the net effect of both variables on subalpine vegetation. These results are compared among the different scenarios and to current forest inventory data. We project that increasing temperatures due to climate change will cause an increase in the frequency and severity of spruce beetle outbreaks, leading to a decrease in the biomass and dominance of Engelmann spruce. These results are an important step in understanding the possible futures for the vegetation of subalpine zone in the Rocky Mountains.

  19. Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles

    PubMed Central

    Kausrud, Kyrre L.; Grégoire, Jean-Claude; Skarpaas, Olav; Erbilgin, Nadir; Gilbert, Marius; Økland, Bjørn; Stenseth, Nils Chr.

    2011-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between “endemic” and “epidemic” regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics. PMID:21647433

  20. Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.

    PubMed

    Beach, James M; Uertz, James L; Eckhardt, Lori G

    2015-10-01

    A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. PMID:26303206

  1. Cytochrome P450 complement (CYPome) of Candida oregonensis, a gut-associated yeast of bark beetle, Dendroctonus rhizophagus.

    PubMed

    Hernández-Martínez, Fabiola; Briones-Roblero, Carlos Iván; Nelson, David R; Rivera-Orduña, Flor Nohemí; Zúñiga, Gerardo

    2016-09-01

    Bark beetles (Curculionidae: Scolytinae) and associated microorganisms must overcome a complex tree's defence system, which includes toxic monoterpenes, to successfully complete their life cycle. A number of studies have suggested these microorganisms could have ecological roles related with the nutrition, detoxification, and semiochemical production. In particular, in filamentous fungi symbionts, cytochrome P450 (CYP) have been involved with terpenoid detoxification and biotransformation processes. Candida oregonensis has been isolated from the gut, ovaries, and frass of different bark beetle species, and it is a dominant species in the Dendroctonus rhizophagus gut. In this study, we identify, characterise, and infer the phylogenetic relationships of C. oregonensis CYP genes. The results indicate that the cytochrome P450 complement (CYPome) is composed of nine genes (CYP51F1, CYP61A1, CYP56D1, CYP52A59, CYP52A60, CYP52A61, CYP52A62, CYP5217A8, and CYP5217B1), which might participate in primary metabolic reactions such as sterol biosynthesis, biodegradation of xenobiotic, and resistance to environmental stress. The prediction of the cellular location suggests that these CYPs to be anchored to the plasma membrane, membranes of the endoplasmic reticulum, mitochondria, and peroxisomes. These findings lay the foundation for future studies about the functional role of P450s, not only for yeasts, but also for the insects with which they interact. PMID:27567714

  2. Species Boundaries and Host Range of Tortoise Mites (Uropodoidea) Phoretic on Bark Beetles (Scolytinae), Using Morphometric and Molecular Markers

    PubMed Central

    Knee, Wayne; Beaulieu, Frédéric; Skevington, Jeffrey H.; Kelso, Scott; Cognato, Anthony I.; Forbes, Mark R.

    2012-01-01

    Understanding the ecology and evolutionary history of symbionts and their hosts requires accurate taxonomic knowledge, including clear species boundaries and phylogenies. Tortoise mites (Mesostigmata: Uropodoidea) are among the most diverse arthropod associates of bark beetles (Curculionidae: Scolytinae), but their taxonomy and host associations are largely unstudied. We tested the hypotheses that (1) morphologically defined species are supported by molecular data, and that (2) bark beetle uropodoids with a broad host range comprise cryptic species. To do so, we assessed the species boundaries of uropodoid mites collected from 51 host species, across 11 countries and 103 sites, using morphometric data as well as partial cytochrome oxidase I (COI) and nuclear large subunit ribosomal DNA (28S). Overall, morphologically defined species were confirmed by molecular datasets, with a few exceptions. Twenty-nine of the 36 uropodoid species (Trichouropoda, Nenteria and Uroobovella) collected in this study had narrow host ranges, while seven species had putative broad host ranges. In all but one species, U. orri, our data supported the existence of these host generalists, which contrasts with the typical finding that widespread generalists are actually complexes of cryptic specialists. PMID:23071768

  3. Molecular markers detect cryptic predation on coffee berry borer (Coleoptera: Curculionidae) by silvanid and laemophloeid flat bark beetles (Coleoptera: Silvanidae, Laemophloeidae) in coffee beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coffee berry borer, Hypothenemus hampei(Coleoptera: Curculionidae)(Ferrari), is a serious pest of coffee worldwide and has been recently introduced in Hawai’i, first detected in the state in 2010. Adult silvanid flat bark beetles, Cathartus quadricollis (Coleoptera: Silvanidae) and adult laemoph...

  4. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.

    PubMed

    Keefover-Ring, Ken; Trowbridge, Amy; Mason, Charles J; Raffa, Kenneth F

    2016-01-01

    Ponderosa pine (Pinus ponderosa) is a major and widely distributed component of conifer biomes in western North America and provides substantial ecological and economic benefits. This tree is exposed to several tree-killing bark beetle-microbial complexes, including the mountain pine beetle (Dendroctonus ponderosae) and the phytopathogenic fungus Grosmannia clavigera that it vectors, which are among the most important. Induced responses play a crucial role in conifer defenses, yet these have not been reported in ponderosa pine. We compared concentrations of terpenes and a phenylpropanoid, two phytochemical classes with strong effects against bark beetles and their symbionts, in constitutive phloem tissue and in tissue following mechanical wounding or simulated D. ponderosae attack (mechanical wounding plus inoculation with G. clavigera). We also tested whether potential induced responses were localized or systemic. Ponderosa pines showed pronounced induced defenses to inoculation, increasing their total phloem concentrations of monoterpenes 22.3-fold, sesquiterpenes 56.7-fold, and diterpenes 34.8-fold within 17 days. In contrast, responses to mechanical wounding alone were only 5.2, 11.3, and 7.7-fold, respectively. Likewise, the phenylpropanoid estragole (4-allyanisole) rose to 19.1-fold constitutive levels after simulated attack but only 4.4-fold after mechanical wounding. Overall, we found no evidence of systemic induction after 17 days, which spans most of this herbivore's narrow peak attack period, as significant quantitative and compositional changes within and between terpenoid groups were localized to the wound site. Implications to the less frequent exploitation of ponderosa than lodgepole pine by D. ponderosae, and potential advantages of rapid localized over long-term systemic responses in this system, are discussed.

  5. Ecological coassociations influence species' responses to past climatic change: an example from a Sonoran Desert bark beetle.

    PubMed

    Garrick, Ryan C; Nason, John D; Fernández-Manjarrés, Juan F; Dyer, Rodney J

    2013-06-01

    Ecologically interacting species may have phylogeographical histories that are shaped both by features of their abiotic landscape and by biotic constraints imposed by their coassociation. The Baja California peninsula provides an excellent opportunity to examine the influence of abiotic vs. biotic factors on patterns of diversity in plant-insect species.This is because past climatic and geological changes impacted the genetic structure of plants quite differently to that of codistributed free-living animals (e.g. herpetofauna and small mammals). Thus, 'plant-like' patterns should be discernible in host-specific insect herbivores. Here, we investigate the population history of a monophagous bark beetle, Araptus attenuatus, and consider drivers of phylogeographical patterns in the light of previous work on its host plant, Euphorbia lomelii. Using a combination of phylogenetic, coalescent-simulation-based and exploratory analyses of mitochondrial DNA sequences and nuclear genotypic data, we found that the evolutionary history of A. attenuatus exhibits similarities to its host plant that are attributable to both biotic and abiotic processes. Southward range expansion and recent colonization of continental Sonora from the Baja peninsula appear to be unique to this taxon pair and probably reflect influences of the host plant. On the other hand, abiotic factors with landscape level influences on a diverse suite of codistributed arid-adapted taxa, such as Plio- and Pleistocene-aged marine incursions in the region, also left genetic signatures in beetle and host plant populations. Superimposed on these similarities, bark beetle-specific patterns and processes were also evident: our data revealed two secondarily sympatric,reproductively isolated genetic lineages, as well as a previously unrecognized mid peninsular warm desert refuge. Taken together, this work illustrates that the evolutionary history of species-specific insect herbivores may represent a mosaic of influences

  6. Effects of bark beetle outbreaks on species composition, biomass, and nutrient distribution in a mixed deciduous forest

    SciTech Connect

    Johnson, D.W.; Henderson, G.S.; Harris, W.F.

    1987-01-01

    The increment of forest biomass and nutrient content on Walker Branch Watershed, Tennessee, from 1967 to 1983 was interrupted by two bark beetle outbreaks. An outbreak of the southern pine beetle in the early 1970s and an outbreak of the hickory borer in the late 1970s, early 1980s killed a number of shortleaf pine (Pinus echinata) and hickory (Carya spp.) respectively. Yellow-poplar (Liriodendron tulipifera) growth increased over this 16-year period, especially in response to the mortality of shortleaf pine. The net result of these events was little change in total biomass but a substantial shift in species composition (from pine to yellow-poplar) in the Pine forest type over this period. No species has yet responded to the mortality of hickory. Due to the shift in species composition in the Pine type, calcium and magnesium accumulation rates in biomass increased but foliage biomass decreased over the inventory period. There was little change in foliage biomass or nutrient content in other forest types. The beetle attacks, combined with apparently natural self-thinning, caused a large increase in standing dead biomass and in nutrient return via tree fall. This increased rate of return will substantially alter forest floor nutrient content and availability, especially with regard to calcium and nitrogen.

  7. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone.

    PubMed

    Donato, Daniel C; Harvey, Brian J; Romme, William H; Simard, Martin; Turner, Monica G

    2013-01-01

    Consequences of bark beetle outbreaks for forest wildfire potential are receiving heightened attention, but little research has considered ecosystems with mixed-severity fire regimes. Such forests are widespread, variable in stand structure, and often fuel limited, suggesting that beetle outbreaks could substantially alter fire potentials. We studied canopy and surface fuels in interior Douglas-fir (Pseudotsuga menziesii v. glauca) forests in Greater Yellowstone, Wyoming, USA, to determine how fuel characteristics varied with time since outbreak of the Douglas-fir beetle (Dendroctonus pseudotsugae). We sampled five stands in each of four outbreak stages, validated for pre-outbreak similarity: green (undisturbed), red (1-3 yr), gray (4-14 yr), and silver (25-30 yr). General linear models were used to compare variation in fuel profiles associated with outbreak to variation associated with the range of stand structures (dense mesic forest to open xeric parkland) characteristic of interior Douglas-fir forest. Beetle outbreak killed 38-83% of basal area within stands, generating a mix of live trees and snags over several years. Canopy fuel load and bulk density began declining in the red stage via needle drop and decreased by approximately 50% by the silver stage. The dead portion of available canopy fuels peaked in the red stage at 41%. After accounting for background variation, there was little effect of beetle outbreak on surface fuels, with differences mainly in herbaceous biomass (50% greater in red stands) and coarse woody fuels (doubled in silver stands). Within-stand spatial heterogeneity of fuels increased with time since outbreak, and surface-to-crown continuity decreased and remained low because of slow/sparse regeneration. Collectively, results suggest reduced fire potentials in post-outbreak stands, particularly for crown fire after the red stage, although abundant coarse fuels in silver stands may increase burn residence time and heat release. Outbreak

  8. Carbon Impacts of Fire- and Bark Beetle-Caused Tree Mortality across the Western US using the Community Land Model (Invited)

    NASA Astrophysics Data System (ADS)

    Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.

    2013-12-01

    Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions

  9. Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates.

    PubMed

    Mason, Charles J; Klepzig, Kier D; Kopper, Brian J; Kersten, Philip J; Illman, Barbara L; Raffa, Kenneth F

    2015-06-01

    Conifers possess a suite of physiochemical defenses that protect their subcortical tissues from bark beetle - fungal complexes. These defenses include rapid induction of terpenoids and phenolics at the site of attack. Studies of the distribution, induction, and bioactivity of conifer terpenoids have focused heavily on monoterpenes. We assessed induction of diterpene acids in white spruce (Picea glauca) and red pine (Pinus resinosa) to fungal associates of two bark beetles, and the responses of four spruce beetle (Dendroctonus rufipennis)-associated fungi to three diterpene acids. Constitutive phloem contents differed between species, in that red pine had extremely low concentrations of diterpene acids, whereas white spruce had substantial constitutive levels. Induction differed quantitatively. Both red pine and white spruce exhibited marked increases, but red pine underwent greater increases and achieved higher concentrations than white spruce. Induction also differed qualitatively in that red pine showed lower diversity and fewer compositional changes during induction than white spruce. In red pine,fungal inoculation accompanying wounding elicited greater increases than wounding alone, but in white spruce total concentrations were higher following wounding alone. Spruce beetle fungal symbiont growth varied among species and compounds. Some diterpenes elicited both stimulatory and inhibitory effects on fungi, depending on concentration. All four fungi exhibited higher tolerances compared to those associated with pine bark beetles in previous studies. Variation in tolerances to, and potentially metabolism of, diterpene acids by symbionts may reflect differences in constitutive levels between spruce and pine, and partially explain differences in concentrations achieved during induction.

  10. Testing remote sensing estimates of bark beetle induced mortality in lodgepole pine and Engelmann spruce with ground data

    NASA Astrophysics Data System (ADS)

    King, A.; Ewers, B. E.; Sivanpillai, R.; Pendall, E.

    2012-12-01

    Bark beetles have caused widespread regional mortality in both lodgepole and Engelmann spruce forests across western North America, and while studies have addressed the impact on water partitioning caused by the mountain pine beetle, spruce beetle which often occur at high elevations with larger snowpack might have a disproportional impact. Beetle caused mortality can have significant effects on the hydrology of a watershed and therefore needs to be considered when evaluating increased runoff. The objective of this project was to generate maps showing beetle caused mortality for lodgepole pine and spruce fir forests that capture changes to the landscape to improve hydrologic models. Our study area in southeast Wyoming covered an area of approximately 2 by 4 km from 2700 to 2800m elevation range. High spatial resolution (0.5m) aerial imagery acquired by the Airborne Environmental Research Observational Camera (AEROCam) in fall 2011, provided by the Upper Midwest Aerospace Consortium (UMAC), was manually classified into four conifer thematic classes: live and dead lodgepole pine, and live and dead spruce/fir. The classified high resolution image was then verified by tree surveys conducted July-September, 2012 documenting species, tree diameter at breast height (dbh), and the stage of beetle infestation for each tree. After verification the high resolution aerial images were used to train and evaluate the accuracy of a supervised classification of a Landsat 5 Thematic Mapper image from the same time period and area. The preliminary results of a supervised classification show that map accuracy was 57%, 77%, 44%, and 83% for lodgepole live and dead, and spruce/fir live and dead respectively. The highest commission error, 24%, was for dead lodgepole pine being falsely labeled dead spruce/fir. The second highest commission error, 22%, was for live spruce/fir falsely labeled dead spruce/fir. The results indicate high spectral overlap between dead spruce/fir and dead

  11. A survey of the weevils of Ukraine. Bark and ambrosia beetles (Coleoptera: Curculionidae: Platypodinae and Scolytinae).

    PubMed

    Nikulina, Tatyana; Mandelshtam, Mikhail; Petrov, Alexander; Nazarenko, Vitalij; Yunakov, Nikolai

    2015-01-22

    Our knowledge of Ukrainian bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) is summarized as a baseline for future studies of the fauna, with a checklist including information on distribution, host trees, biology and taxonomy. One hundred twenty-two species are recorded from Ukraine, of which seven are recorded for the first time. One species is recorded for the first time from Europe. Previous records of 24 species are considered dubious and requiring confirmation. In contrast to the Palaearctic Catalogue (Knížek 2011b), we consider Anisandrus maiche to be first described by Kurentsov (1941) rather than by Eggers (1942); A. maiche (Eggers, 1942) is a junior synonym of A. maiche (Kurentsov, 1941). 

  12. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    USGS Publications Warehouse

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  13. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles.

    PubMed

    Speckman, Heather N; Frank, John M; Bradford, John B; Miles, Brianna L; Massman, William J; Parton, William J; Ryan, Michael G

    2015-02-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  14. Semiochemical-mediated flight strategies of two invasive elm bark beetles: a potential factor in competitive displacement.

    PubMed

    Lee, Jana C; Hamud, Shakeeb M; Negrón, José F; Witcosky, Jeffrey J; Seybold, Steven J

    2010-04-01

    A seven-state survey showed that the recently detected invasive Asian banded elm bark beetle, Scolytus schevyrewi Semenov, was abundant in areas of Colorado and Wyoming, whereas the long-established European elm bark beetle, S. multistriatus (Marsham), was not as abundant. In one of a series of studies to evaluate whether S. schevyrewi is competitively displacing S. multistriatus in their North American zone of sympatry, we characterized long-range flight responses infested or uninfested to small cut logs of American, Chinese, and Siberian elm, Ulmus americana, U. parvifolia, and U. pumila. Trials were conducted in Colorado and Wyoming to test the flight response of S. schevyrewi; in California to test the response of S. multistriatus; and in Nevada to test the responses of both species simultaneously. Studies with S. schevyrewi showed that males and females aggregated toward Ulmus spp. host volatiles but provided no evidence of a putative aggregation pheromone during the 0- to 48- or 48- to 96-h period of infestation. In contrast, S. multistriatus was attracted to U. pumila over unbaited controls, more to U. pumila infested with conspecific females than without, and more during the 48- to 96- versus 0- to 48-h period of infestation. This confirmed that male and female S. multistriatus aggregated toward host volatiles and that females produced an aggregation pheromone. In a cross-attraction study, S. schevyrewi displayed neither flight preference nor interruption to U. pumila infested with conspecifics, heterospecifics, or a mix of both species. Response of S. multistriatus was too low to draw conclusions. Although S. multistriatus aggregates moderately to host volatiles and strongly to female-derived pheromones emitted after a few days, S. multistriatus may have a relative disadvantage by selecting elm hosts more slowly than S. schevyrewi, which aggregates very strongly to host volatiles. The differential long-range host location strategy may be one factor in a

  15. What is the password? Female bark beetles (Scolytinae) grant males access to their galleries based on courtship song.

    PubMed

    Lindeman, Amanda A; Yack, Jayne E

    2015-06-01

    Acoustic signals are commonly used by insects in the context of mating, and signals can vary depending on the stage of interaction between a male and female. While calling songs have been studied extensively, particularly in the Orthoptera, much less is known about courtship songs. One outstanding question is how potential mates are differentiated by their courtship signal characteristics. We examined acoustic courtship signals in a new system, bark beetles (Scolytinae). In the red turpentine beetle (Dendroctonus valens) males produce chirp trains upon approaching the entrance of a female's gallery. We tested the hypotheses that acoustic signals are honest indicators of male condition and that females choose males based on signal characteristics. Males generated two distinct chirp types (simple and interrupted), and variability in their prevalence correlated with an indicator of male quality, body size, with larger males producing significantly more interrupted chirps. Females showed a significant preference for males who produced interrupted chirps, suggesting that females distinguish between males on the basis of their chirp performances. We suggest that interrupted chirps during courtship advertise a male's size and/or motor skills, and function as the proverbial 'passwords' that allow him entry to a female's gallery. PMID:25783802

  16. Developmental mortality increases sex-ratio bias of a size-dimorphic bark beetle.

    PubMed

    Lachowsky, Leanna E; Reid, Mary L

    2014-06-01

    1. Given sexual size dimorphism, differential mortality owing to body size can lead to sex-biased mortality, proximately biasing sex ratios. This mechanism may apply to mountain pine beetles, Dendroctonus ponderosae Hopkins, which typically have female-biased adult populations (2 : 1) with females larger than males. Smaller males could be more susceptible to stresses than larger females as developing beetles overwinter and populations experience high mortality. 2. Survival of naturally-established mountain pine beetles during the juvenile stage and the resulting adult sex ratios and body sizes (volume) were studied. Three treatments were applied to vary survival in logs cut from trees containing broods of mountain pine beetles. Logs were removed from the forest either in early winter, or in spring after overwintering below snow or after overwintering above snow. Upon removal, logs were placed at room temperature to allow beetles to complete development under similar conditions. 3. Compared with beetles from logs removed in early winter, mortality was higher and the sex ratio was more female-biased in overwintering logs. The bias increased with overwinter mortality. However, sex ratios were female-biased even in early winter, so additional mechanisms, other than overwintering mortality, contributed to the sex-ratio bias. Body volume varied little relative to sex-biased mortality, suggesting other size-independent causes of male-biased mortality. 4. Overwintering mortality is considered a major determinant of mountain pine beetle population dynamics. The disproportionate survival of females, who initiate colonisation of live pine trees, may affect population dynamics in ways that have not been previously considered.

  17. Electrophysiological and behavioral responses of the bark beetle Dendroctonus rhizophagus to volatiles from host pines and conspecifics.

    PubMed

    Cano-Ramírez, Claudia; Armendáriz-Toledano, Francisco; Macías-Sámano, Jorge E; Sullivan, Brian T; Zúñiga, Gerardo

    2012-05-01

    The bark beetle Dendroctonus rhizophagus is endemic to northwestern Mexico where it kills immature pines < 3 m tall. We report the first investigation of the chemical ecology of this pest of forest regeneration. We used GC-EAD to assess olfactory sensitivity of this species to volatile compounds from: resin of a major host, Pinus arizonica; mid/hindguts of single, gallery-initiating females; and mate-paired males within galleries of attacked host trees in the field. Antennae of both sexes responded to monoterpenes α-pinene, β-pinene and 3-carene as well as to the beetle-derived oxygenated monoterpenes fenchyl alcohol, myrtenal, cis-verbenol, trans-verbenol, verbenone, and myrtenol. These monoterpenes were quantified from pre-emerged D. rhizophagus adults forced to attack host tissue in the laboratory, and from individuals dissected from naturally-attacked hosts at different stages of colonization. In both bioassays, myrtenol and trans-verbenol were the most abundant volatiles, and trans-verbenol was the only one produced in significantly greater quantities by females than males in a naturally-colonized host. Two field experiments were performed to evaluate behavioral responses of D. rhizophagus to antennally-active monoterpenes. Results show that 3-carene was significantly attractive either alone or in a ternary (1:1:1) combination with α-pinene and β-pinene, whereas neither α-pinene nor β-pinene alone were attractive. None of the beetle-associated oxygenated monoterpenes enhanced the attractiveness of the ternary mixture of monoterpenes, while verbenone either alone or combined with the other five oxygenated terpenes reduced D. rhizophagus attraction to the ternary mixture. The results suggest that attraction of D. rhizophagus to the host tree P. arizonica is mediated especially by 3-carene. There was no conclusive evidence for an aggregation or sex attractant pheromone.

  18. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  19. Metal fate and partitioning in soils under bark beetle-killed trees.

    PubMed

    Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water

  20. Metal fate and partitioning in soils under bark beetle-killed trees.

    PubMed

    Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water

  1. Overshoot in Leaf Development of Ponderosa Pine in Wet Years Leads to Bark Beetle Outbreaks on Fine-Textured Soils in Drier Years

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Waring, R. H.

    2014-12-01

    Frequent outbreaks of insects and diseases have been recorded in forests of western North America during the past few decades, but the distribution of these outbreaks has not been uniform. In some cases, recent climatic variations along with the age and density of forests may explain some spatial variation. Forest managers and policy makers would benefit if areas prone to disturbance could be recognized so that mitigating actions could be taken. In this paper, we used two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modelling approach that couples information from remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. There was a slight downward trend in precipitation for both sites over the period between 1998 and 2010, and, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier and more severely on one site than the other. The initial canopy density of the two sites was also similar, with leaf area indices derived via Landsat imagery ranging between 1.6- 2.0 m2 m-2. We wondered if the difference in bark beetle activity might be related to soils that were fine-textured at site I and coarse-textured at site II. We applied a process-based stand growth model (3-PG) to analyze the data and evaluate the hypotheses.

  2. Terpenes tell different tales at different scales: glimpses into the Chemical Ecology of conifer - bark beetle - microbial interactions.

    PubMed

    Raffa, Kenneth F

    2014-01-01

    Chemical signaling mediates nearly all aspects of species interactions. Our knowledge of these signals has progressed dramatically, and now includes good characterizations of the bioactivities, modes of action, biosynthesis, and genetic programming of numerous compounds affecting a wide range of species. A major challenge now is to integrate this information so as to better understand actual selective pressures under natural conditions, make meaningful predictions about how organisms and ecosystems will respond to a changing environment, and provide useful guidance to managers who must contend with difficult trade-offs among competing socioeconomic values. One approach is to place stronger emphasis on cross-scale interactions, an understanding of which can help us better connect pattern with process, and improve our ability to make mechanistically grounded predictions over large areas and time frames. The opportunity to achieve such progress has been heightened by the rapid development of new scientific and technological tools. There are significant difficulties, however: Attempts to extend arrays of lower-scale processes into higher scale functioning can generate overly diffuse patterns. Conversely, attempts to infer process from pattern can miss critically important lower-scale drivers in systems where their biological and statistical significance is negated after critical thresholds are breached. Chemical signaling in bark beetle - conifer interactions has been explored for several decades, including by the two pioneers after whom this award is named. The strong knowledge base developed by many researchers, the importance of bark beetles in ecosystem functioning, and the socioeconomic challenges they pose, establish these insects as an ideal model for studying chemical signaling within a cross-scale context. This report describes our recent work at three levels of scale: interactions of bacteria with host plant compounds and symbiotic fungi (tree level

  3. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types.

    PubMed

    Griffin, Jacob M; Turner, Monica G

    2012-10-01

    Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4-5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30-50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (<6 μg N g soil(-1) NH(4) (+)or NO(3) (-); <25 μg N g soil(-1) year(-1) net N mineralization; <8 μg N g soil(-1) year(-1) net nitrification). Results suggest that beetle disturbance affected litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N-foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies

  4. Influence of Terrain and Land Cover on the Isotopic Composition of Seasonal Snowpack in Rocky Mountain Headwater Catchments Affected by Bark Beetle Induced Tree Mortality

    NASA Astrophysics Data System (ADS)

    Kipnis, E. L.; Murphy, M.; Klatt, A. L.; Miller, S. N.; Williams, D. G.

    2015-12-01

    Session H103: The Hydrology-Vegetation-Climate Nexus: Identifying Process Interactions and Environmental Shifts in Mountain Catchments Influence of Terrain and Land Cover on the Isotopic Composition of Seasonal Snowpack in Rocky Mountain Headwater Catchments Affected by Bark Beetle Induced Tree Mortality Evan L Kipnis, Melanie A Murphey, Alan Klatt, Scott N Miller, David G Williams Snowpack accumulation and ablation remain difficult to estimate in forested headwater catchments. How physical terrain and forest cover separately and interactively influence spatial patterns of snow accumulation and ablation largely shapes the hydrologic response to land cover disturbances. Analysis of water isotopes in snowpack provides a powerful tool for examining integrated effects of water vapor exchange, selective redistribution, and melt. Snow water equivalence (SWE), δ2H, δ18O and deuterium excess (D-excess) of snowpack were examined throughout winter 2013-2014 across two headwater catchments impacted by bark beetle induced tree mortality. A USGS 10m DEM and a derived land cover product from 1m NAIP imagery were used to examine the effects of terrain features (e.g., elevation, slope, aspect) and canopy disturbance (e.g., live, bark-beetle killed) as predictors of D-excess, an expression of kinetic isotope effects, in snowpack. A weighting of Akaike's Information Criterion (AIC) values from multiple spatially lagged regression models describing D-excess variation for peak snowpack revealed strong effects of elevation and canopy mortality, and weaker, but significant effects of aspect and slope. Snowpack D-excess was lower in beetle-killed canopy patches compared to live green canopy patches, and at lower compared to high elevation locations, suggesting that integrated isotopic effects of vapor exchange, vertical advection of melted snow, and selective accumulation and redistribution varied systematically across the two catchments. The observed patterns illustrate the potential

  5. Distinguishing Bark Beetle-infested Vegetation by Tree Species Types and Stress Levels using Landsat Data

    NASA Astrophysics Data System (ADS)

    Sivanpillai, R.; Ewers, B. E.; Speckman, H. N.; Miller, S. N.

    2015-12-01

    In the Western United States, more than 3 million hectares of lodgepole pine forests have been impacted by the Mountain pine beetle outbreak, while another 166,000 hectares of spruce-fir forests have been attacked by Spruce beetle. Following the beetle attack, the trees lose their hydraulic conductivity thus altering their carbon and water fluxes. These trees go through various stages of stress until mortality, described by color changes in their needles prior to losing them. Modeling the impact of these vegetation types require thematically precise land cover data that distinguishes lodgepole pine and spruce-fir forests along with the stage of impact since the ecosystem fluxes are different for these two systems. However, the national and regional-scale land cover datasets derived from remotely sensed data do not have this required thematic precision. We evaluated the feasibility of multispectral data collected by Landsat 8 to distinguish lodgepole pine and spruce fir, and subsequently model the different stages of attack using field data collected in Medicine Bow National Forest (Wyoming, USA). Operational Land Imager, onboard Landsat 8 has more spectral bands and higher radiometric resolution (12 bit) in comparison to sensors onboard earlier Landsat missions which could improve the ability to distinguish these vegetation types and their stress conditions. In addition to these characteristics, its repeat coverage, rigorous radiometric calibration, wide swath width, and no-cost data provide unique advantages to Landsat data for mapping large geographic areas. Initial results from this study highlight the importance of SWIR bands for distinguishing different levels of stress, and the need for ancillary data for distinguishing species types. Insights gained from this study could lead to the generation of land cover maps with higher thematic precision, and improve the ability to model various ecosystem processes as a result of these infestations.

  6. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds

    NASA Astrophysics Data System (ADS)

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.

    2014-06-01

    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 +/- 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  7. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds

    USGS Publications Warehouse

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.

    2014-01-01

    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  8. Host suitability analysis of the bark beetle Scolytus amygdali (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Zeiri, A; Ahmed, M Z; Braham, M; Qiu, B-L

    2015-08-01

    Scolytus amygdali is a polyphagous insect pest that feeds on fruit trees and forest trees. Our study assessed the host preference and reproductive potential of S. amygdali on four tree species: almond (Prunus dulcis), apricot (Prunus armeniaca), peach (Prunus persica), and plum (Prunus domestica). Females of S. amygdali produced maternal galleries that were longer on peach than the other three trees, and female fecundity was highest on peach. Females with longer maternal galleries produced more eggs, indicating a positive correlation between maternal gallery length and female fertility. The under-bark development time of S. amygdali is significantly shorter on plum (45 days) and almond (56 days) than on apricot (65 days) and peach (64 days). Despite this longer development time on peach, our results still suggest that, of the four types of tree tested, peach is the most preferred host for S. amygdali.

  9. Host suitability analysis of the bark beetle Scolytus amygdali (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Zeiri, A; Ahmed, M Z; Braham, M; Qiu, B-L

    2015-08-01

    Scolytus amygdali is a polyphagous insect pest that feeds on fruit trees and forest trees. Our study assessed the host preference and reproductive potential of S. amygdali on four tree species: almond (Prunus dulcis), apricot (Prunus armeniaca), peach (Prunus persica), and plum (Prunus domestica). Females of S. amygdali produced maternal galleries that were longer on peach than the other three trees, and female fecundity was highest on peach. Females with longer maternal galleries produced more eggs, indicating a positive correlation between maternal gallery length and female fertility. The under-bark development time of S. amygdali is significantly shorter on plum (45 days) and almond (56 days) than on apricot (65 days) and peach (64 days). Despite this longer development time on peach, our results still suggest that, of the four types of tree tested, peach is the most preferred host for S. amygdali. PMID:25809539

  10. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis.

    PubMed

    Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2016-01-01

    Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn't inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community.

  11. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis

    PubMed Central

    Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2016-01-01

    Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn’t inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community. PMID:26839264

  12. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis.

    PubMed

    Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2016-01-01

    Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn't inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community. PMID:26839264

  13. Occurrence of Microsporidium sp. and other pathogens in Ips amitinus (Coleoptera: Curculionidae).

    PubMed

    Holuša, Jaroslav; Lukášová, Karolina; Žižka, Zdenek; Händel, Uwe; Haidler, Bernhard; Wegensteiner, Rudolf

    2016-09-01

    A new microsporidium is reported from the small spruce bark beetle, Ips amitinus: Microsporidium sp. with uninucleate oval spores measuring 3.5 × 2.5 μm; infecting cells of the midgut epithelium, midgut muscles, the fat body, the Malpighian tubules, and the gonads of adult beetles collected in Austria. Seven other pathogens were found in beetles collected from Austria, the Czech Republic, and Finland. Six of them were already known from I. amitinus. Nosema cf. typographi is recorded for the first time in the overwintering generation of I. amitinus from the Czech Republic. PMID:27447229

  14. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    PubMed

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  15. The Rocky Mountain Epidemic of Bark Beetles and Blue Stain Fungi Cause Cascading Effects on Coupled Water, C and N cycles

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Pendall, E.; Norton, U.; Reed, D.; Franks, J.; Aston, T.; Whitehouse, F.; Barnard, H. R.; Brooks, P. D.; Angstmann, J.; Massman, W. J.; Williams, D. G.; Harpold, A. A.; Biederman, J.; Edburg, S. L.; Meddens, A. J.; Gochis, D. J.; Hicke, J. A.

    2010-12-01

    The ongoing epidemic of bark beetles and their associated xylem blocking blue-stain fungi is unprecedented in Rocky Mountain subalpine forests. As this epidemic continues, we seek to improve our predictive understanding of coupled water, C and N cycles by quantifying how these cycles may become uncoupled in response to the outbreak. Our specific questions are 1) how does the rapid drop in individual tree transpiration impact the temporal and spatial extent of evapotranspiration and 2) how does the subsequent increase in soil moisture and lower C inputs and N uptake impact soil C and N fluxes? We address these questions in two forest ecosystems using eddy covariance, sap flux, leaf gas exchange, plant hydraulic conductance, vegetation characteristics and soil trace gas measurements. We applied two sampling designs 1) subdivide the lodgepole pine forest spatially into varying degrees of bark beetle and blue stain infection and 2) follow the fluxes as the outbreak continues at a point in space encompassing the range of spatial variability in mortality. The first order impact of the bark beetle and blue stain fungi is dramatic in all tree species with a greater than 50% reduction in transpiration per tree within a month of infection. This change occurs even before the characteristic red tinge occurs in the needles or before the sapwood is stained blue. Leaf stomatal conductance declines more than either the biochemical or light harvesting components of photosynthesis immediately after infestation. The annual C sink at the spruce/fir forest has declined from -2.88 to -0.57 Mg C ha-1 yr-1 from 2006 to 2009. Annual evapotranspiration (ET) over the last five years at the spruce/fir forest now has an inverse relationship with precipitation because the last two years have seen a dramatic decrease (from 73 to 59 cm/year) in ET while precipitation has increased (from ~100 to 140 cm/year). Soil moisture in both forests has increased up to 100% within one growing season in

  16. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains.

    PubMed

    Maurer, Gregory E; Chan, Allison M; Trahan, Nicole A; Moore, David J P; Bowling, David R

    2016-07-01

    Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ(13) C) of soil respiration (δJ ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near-surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3-7; and (c) a second period of enrichment (1-2‰) in years 8-10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more (13) C-depleted deeper in the soil than near the surface, while the bulk soil followed the well-established pattern of (13) C-enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰). PMID:26824577

  17. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains.

    PubMed

    Maurer, Gregory E; Chan, Allison M; Trahan, Nicole A; Moore, David J P; Bowling, David R

    2016-07-01

    Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ(13) C) of soil respiration (δJ ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near-surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3-7; and (c) a second period of enrichment (1-2‰) in years 8-10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more (13) C-depleted deeper in the soil than near the surface, while the bulk soil followed the well-established pattern of (13) C-enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰).

  18. Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings.

    PubMed

    Karst, Justine; Erbilgin, Nadir; Pec, Gregory J; Cigan, Paul W; Najar, Ahmed; Simard, Suzanne W; Cahill, James F

    2015-11-01

    Dendroctonus ponderosae has killed millions of Pinus contorta in western North America with subsequent effects on stand conditions, including changes in light intensity, needle deposition, and the composition of fungal community mutualists, namely ectomycorrhizal fungi. It is unknown whether these changes in stand conditions will have cascading consequences for the next generation of pine seedlings. To test for transgenerational cascades on pine seedlings, we tested the effects of fungal inoculum origin (beetle-killed or undisturbed stands), light intensity and litter (origin and presence) on seedling secondary chemistry and growth in a glasshouse. We also tracked survival of seedlings over two growing seasons in the same stands from which fungi and litter were collected. Fungal communities differed by inoculum origin. Seedlings grown with fungi collected from beetle-killed stands had lower monoterpene concentrations and fewer monoterpene compounds present compared with seedlings grown with fungi collected from undisturbed stands. Litter affected neither monoterpenes nor seedling growth. Seedling survival in the field was lower in beetle-killed than in undisturbed stands. We demonstrate that stand mortality caused by prior beetle attacks of mature pines have cascading effects on seedling secondary chemistry, growth and survival, probably mediated through effects on below-ground mutualisms. PMID:26033270

  19. Carbon and Nitrogen Levels across Forest Soil Communities Impacted by Bark Beetle and Wildfire Disturbance in Western Montana

    NASA Astrophysics Data System (ADS)

    Kim, E. S. M.; Ballantyne, A. P.; Cooper, L. A.; Hursh, A.

    2014-12-01

    Global climate change has had extensive impacts on the forest ecosystems of the western US, namely by causing increases in mountain pine beetle numbers and wildfires. Mountain pine beetles experience higher survival rates due to milder winters, allowing for greater frequency and severity of attacks and in turn causing more widespread pine tree mortality. Meanwhile, the arid conditions created by this temperature increase have been conducive to a surge in wildfires. Although many investigations have been carried out on the soil biogeochemistry in areas hit by one or the other, no study to our knowledge has explicitly researched the compound effects of these disturbances. This study examined soil levels of carbon (C) and nitrogen (N) as well as the C/N ratios of pine and fir soil communities that have been affected by both beetle and fire disturbance. Our results show that no significant differences were found in the C/N ratios in response to all modes of disturbance. However, significant C losses from the O horizon, but not the M horizon, were observed following wildfire. Similarly, losses in N from just the O horizon were observed, but these were not significant. In conclusion, fire resulted in marked declines in soil C, and forests impacted by beetle infestation and fire experienced C losses similar to fire alone.

  20. Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings.

    PubMed

    Karst, Justine; Erbilgin, Nadir; Pec, Gregory J; Cigan, Paul W; Najar, Ahmed; Simard, Suzanne W; Cahill, James F

    2015-11-01

    Dendroctonus ponderosae has killed millions of Pinus contorta in western North America with subsequent effects on stand conditions, including changes in light intensity, needle deposition, and the composition of fungal community mutualists, namely ectomycorrhizal fungi. It is unknown whether these changes in stand conditions will have cascading consequences for the next generation of pine seedlings. To test for transgenerational cascades on pine seedlings, we tested the effects of fungal inoculum origin (beetle-killed or undisturbed stands), light intensity and litter (origin and presence) on seedling secondary chemistry and growth in a glasshouse. We also tracked survival of seedlings over two growing seasons in the same stands from which fungi and litter were collected. Fungal communities differed by inoculum origin. Seedlings grown with fungi collected from beetle-killed stands had lower monoterpene concentrations and fewer monoterpene compounds present compared with seedlings grown with fungi collected from undisturbed stands. Litter affected neither monoterpenes nor seedling growth. Seedling survival in the field was lower in beetle-killed than in undisturbed stands. We demonstrate that stand mortality caused by prior beetle attacks of mature pines have cascading effects on seedling secondary chemistry, growth and survival, probably mediated through effects on below-ground mutualisms.

  1. Response of mountain pine beetle,Dendroctonus ponderosae Hopkins, and pine engraver,Ips pint (SAY), to ipsdienol in southwestern British Columbia.

    PubMed

    Hunt, D W; Borden, J H

    1988-01-01

    In bioassays conducted with walking beetles in the laboratory (S)-(+)-, (R)-(-)-, and (±)-ipsdienol were attractive alone, but reduced the attraction of both sexes of the mountain pine beetle,Dendroctonus ponderosae Hopkins, to extracts of female frass. Field trapping studies indicated that attraction ofD. ponderosae to a stimulus composed of myrcene +trans-verbenol +exo-brevicomin was significantly reduced with the addition of (±)- and sometimes (S)-(±)-ipsdienol. Thus, (S)-(+)-ipsdienol produced by males of this species may act as an antiaggregation pheromone. (S)-(+)-Ips-dienol is thought to function as a repellent allomone against the pine engraver,Ips pini (Say), in regions whereI. pini utilizes (R)-(-)-ipsdienol as an aggregation pheromone. However, in southwestern British ColumbiaI. pini was attracted to the (±)-ipsdienol used in field bioassays ofD. ponderosae, a finding consistent with the production of both enantiomers byI. pini in this region. When presented with the ternary semiochemical bait forD. ponderosae, (±)-ipsdienol was not attractive toI. pini. Thus, the activity of (S)-(+)-ipsdienol as a repellent allomone againstI. pini seems to be replaced in southwestern British Columbia by the inhibitory effects of myrcene,trans-verbenol,exo-brevicomin, or some combination thereof.

  2. The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera

    PubMed Central

    2013-01-01

    Background Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees. Results We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae’s natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source. Conclusions This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae’s tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens. PMID:23725015

  3. Oleic Acid Metabolism via a Conserved Cytochrome P450 System-Mediated ω-Hydroxylation in the Bark Beetle-Associated Fungus Grosmannia clavigera

    PubMed Central

    Novak, Metka; Lah, Ljerka; Šala, Martin; Stojan, Jure; Bohlmann, Joerg; Komel, Radovan

    2015-01-01

    The bark beetle-associated fungus Grosmannia clavigera participates in the large-scale destruction of pine forests. In the tree, it must tolerate saturating levels of toxic conifer defense chemicals (e.g. monoterpenes). The fungus can metabolize some of these compounds through the ß-oxidation pathway and use them as a source of carbon. It also uses carbon from pine triglycerides, where oleic acid is the most common fatty acid. High levels of free fatty acids, however, are toxic and can cause additional stress during host colonization. Fatty acids induce expression of neighboring genes encoding a cytochrome P450 (CYP630B18) and its redox partner, cytochrome P450 reductase (CPR2). The aim of this work was to study the function of this novel P450 system. Using LC/MS, we biochemically characterized CYP630 as a highly specific oleic acid ω-hydroxylase. We explain oleic acid specificity using protein interaction modeling. Our results underscore the importance of ω-oxidation when the main ß-oxidation pathway may be overwhelmed by other substrates such as host terpenoid compounds. Because this CYP-CPR gene cluster is evolutionarily conserved, our work has implications for metabolism studies in other fungi. PMID:25794012

  4. Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential.

    PubMed

    Westbrook, Jared W; Resende, Marcio F R; Munoz, Patricio; Walker, Alejandro R; Wegrzyn, Jill L; Nelson, C Dana; Neale, David B; Kirst, Matias; Huber, Dudley A; Gezan, Salvador A; Peter, Gary F; Davis, John M

    2013-07-01

    Rapidly enhancing oleoresin production in conifer stems through genomic selection and genetic engineering may increase resistance to bark beetles and terpenoid yield for liquid biofuels. We integrated association genetic and genomic prediction analyses of oleoresin flow (g 24 h(-1)) using 4854 single nucleotide polymorphisms (SNPs) in expressed genes within a pedigreed population of loblolly pine (Pinus taeda) that was clonally replicated at three sites in the southeastern United States. Additive genetic variation in oleoresin flow (h(2) ≈ 0.12-0.30) was strongly correlated between years in which precipitation varied (r(a) ≈ 0.95), while the genetic correlation between sites declined from 0.8 to 0.37 with increasing differences in soil and climate among sites. A total of 231 SNPs were significantly associated with oleoresin flow, of which 81% were specific to individual sites. SNPs in sequences similar to ethylene signaling proteins, ABC transporters, and diterpenoid hydroxylases were associated with oleoresin flow across sites. Despite this complex genetic architecture, we developed a genomic prediction model to accelerate breeding for enhanced oleoresin flow that is robust to environmental variation. Results imply that breeding could increase oleoresin flow 1.5- to 2.4-fold in one generation.

  5. The carbon isotopic composition of soil respiration in the decade following disturbance by bark beetle or stem girdling

    NASA Astrophysics Data System (ADS)

    Chan, A.; Maurer, G. E.; Bowling, D. R.

    2013-12-01

    Recent outbreaks of mountain pine beetle have caused large-scale tree mortality in western North America, which can lead to fundamental changes in carbon cycling. When a tree is infested, the flow of photosynthate is disrupted. This causes the roots and their symbionts to die, eliminating the autotrophic component of soil respiration. Mycorrhizal fungi are enriched in 13C compared to plant tissues. As the dead fungal biomass is consumed by soil heterotrophs, the δ13C of CO2 in heterotrophic soil respiration may become more enriched as the fungal biomass is consumed. We investigated this response by measuring soil respiration in chronosequences of stem-girdled plots at the Niwot Ridge AmeriFlux site, and beetle-killed plots at the Fraser Experimental Forest, both in Colorado. Stem girdling was used to simulate beetle attack because it kills trees by a similar mechanism. Plots at Niwot Ridge included live trees and 7 years of girdled plots extending back to 2002. Plots at Fraser included live trees and three age classes of beetle-killed trees, within a similar chronosequence. We used manual soil-gas sampling at three depths, during the summers of 2011 and 2012, to determine if there is an isotopic effect associated with disturbance. Consistent with our expectations, in 2011, we found an enrichment in δ13C of approximately 1‰ in the two years following girdling which was absent in subsequent years. Although this pattern was also evident in 2012, the enrichment in δ13C during the same time period was about half that in 2011. At both Niwot and Fraser, in 2011, seasonal mean δ13C decreased by about 1‰ at all depths 3-4 years after disturbance, but returned to values close to control plots in the following 4-6 years. While we found a similar pattern at Fraser in 2012, we measured an enrichment of 1-1.5‰ at the OA interface at Niwot 8-10 years after disturbance, which was not found in 2011. It is possible this is due to the decomposition of woody biomass. At both

  6. Biological pest control in beetle agriculture.

    PubMed

    Aanen, Duur K; Slippers, Bernard; Wingfield, Michael J

    2009-05-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics against an antagonist of the beetles' mutualistic fungus. In addition to highlighting the ecological complexity of bark-beetle-microbial symbioses, this work reveals a potential source of novel antibiotics.

  7. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation

    PubMed Central

    Kaňa, Jiří; Tahovská, Karolina; Kopáček, Jiří; Šantrůčková, Hana

    2015-01-01

    Mountain forests in National park Bohemian Forest (Czech Republic) were affected by bark beetle attack and windthrows in 2004–2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C) and nitrogen (N) cycling in a near-natural spruce (Picea abies) mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC) and N (DON) in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2–3 mmol kg-1), net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2–1 mmol kg-1 to 2–3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers. PMID:26230678

  8. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation.

    PubMed

    Kaňa, Jiří; Tahovská, Karolina; Kopáček, Jiří; Šantrůčková, Hana

    2015-01-01

    Mountain forests in National park Bohemian Forest (Czech Republic) were affected by bark beetle attack and windthrows in 2004-2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C) and nitrogen (N) cycling in a near-natural spruce (Picea abies) mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC) and N (DON) in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2-3 mmol kg-1), net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2-1 mmol kg-1 to 2-3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers. PMID:26230678

  9. Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus.

    PubMed

    Klepzig, K D; Kruger, E L; Smalley, E B; Raffa, K F

    1995-05-01

    This study characterized the chemical response of healthy red pine to artificial inoculation with the bark beetle-vectored fungusLeptographium terebrantis. In addition, we sought to determine whether stress altered this induced response and to understand the implications of these interactions to the study of decline diseases. Twenty-five-year-old trees responded to mechanical wounding or inoculation withL. terebrantis by producing resinous reaction lesions in the phloem. Aseptically wounded and wound-inoculated phloem contained higher concentrations of phenolics than did constitutive tissue. Trees inoculated withL. terebrantis also contained higher concentrations of six monoterpenes,α-pinene,β-pinene, 3-carene, limonene, camphene, and myrcene, and higher total monoterpenes than did trees that were mechanically wounded or left unwounded. Concentrations of these monoterpenes increased with time after inoculation. Total phenolic concentrations in unwounded stem tissue did not differ between healthy and root-diseased trees. Likewise, constitutive monoterpene concentrations in stem phloem were similar between healthy and root-diseased trees. However, when stem phloem tissue was challenged with fungal inoculations, reaction tissue from root-diseased trees contained lower concentrations ofα-pinene, the predominant monoterpene in red pine, than did reaction tissue from healthy trees. Seedlings stressed by exposure to low light levels exhibited less extensive induced chemical changes when challenge inoculated withL. terebrantis than did seedlings growing under higher light. Stem phloem tissue in these seedlings contained lower concentrations ofα-pinene than did nonstressed seedlings also challenge inoculated withL. terebrantis. It is hypothesized that monoterpenes and phenolics play a role in the defensive response of red pine against insect-fungal attack, that stress may predispose red pine to attack by insect-fungal complexes, and that such interactions are involved

  10. Trace gas emissions from a chronosequence of bark beetle-infested lodgepole pine (Pinus contorta) forest stands

    NASA Astrophysics Data System (ADS)

    Norton, U.; Pendall, E.; Ewers, B. E.; Borkhuu, B.

    2011-12-01

    Severe outbreak of mountain pine beetle (MPB) and associated blue stain fungi have killed millions of hectares of coniferous forests in Western North America. This unprecedented disturbance has critically impacted ecosystem biogeochemistry and net carbon (C) and nitrogen (N) fluxes. However, the effects on greenhouse gas (GHG) emissions and drivers of biogeochemical processes that trigger GHG emissions following MPB infestations are not well understood. Such information can help assess regional-level changes in ecosystem C and N budgets and large-scale disturbance impacts on gas exchange between the atmosphere and terrestrial ecosystem. The overall objective of this research was to assess the immediate responses of GHG fluxes and soil C and N mineralization rates along a chronosequence of recently infested (1-yr, 3-yr and 4-yr ago) and uninfested (150-yr, 20-yr and 15-yr old) lodgepole pine stands in Medicine Bow National Forest in southeastern Wyoming. We hypothesize that MPB-induced tree mortality significantly changes stand-level hydrology, soil organic matter quality and chemistry of aboveground and belowground plant inputs. Consequently, these modifications influence nitrous oxide (N2O) emissions and methane (CH4) assimilation. Biweekly GHG measurements using static chambers were carried out during three consecutive snow-free growing seasons. Our results suggest that a stand infested within a year already shows a 20% increase in spring N2O production and a small decline in summer CH4 assimilation when compared to uninfested stands. Stands infested three and four years prior to our measurements produce over three times more N2O and assimilate three to five times less CH4 when compared to uninfested stands. In addition, a notable increase in soil moisture content and soil mineral N concentrations following early onset of the MPB infestation was also observed. An overall increase in N2O production and decline in CH4 assimilation following MPB infestation may

  11. Nonstructural carbon dynamics are best predicted by the combination of photosynthesis and plant hydraulics during both bark beetle induced mortality and herbaceous plant response to drought

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Guadagno, C.; Peckham, S. D.; Pendall, E.; Borkhuu, B.; Aston, T.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Yarkhunova, Y.; Weinig, C.

    2012-12-01

    Recent work has shown that nonstructural carbon (NSC) provides both a signal and consequence of water stress in plants. The dynamics of NSC are likely not solely a result of the balance of photosynthesis and respiration (carbon starvation hypothesis) but also the availability of NSC for plant functions due to hydraulic condition. Further, plant hydraulics regulates photosynthesis both directly through stomatal conductance and indirectly through leaf water status control over leaf biochemistry. To test these hypotheses concerning NSC in response to a wide variety of plant perturbations, we used a model that combines leaf biochemical controls over photosynthesis (Farquhar model) with dynamic plant hydraulic conductance (Sperry model). This model (Terrestrial Regional Ecosystem Exchange Simulator; TREES) simulates the dynamics of NSC through a carbon budget approach that responds to plant hydraulic status. We tested TREES on two dramatically different datasets. The first dataset is from lodgepole pine and Engelmann spruce trees dying from bark beetles that carry blue-stain fungi which block xylem and cause hydraulic failure. The second data set is from Brassica rapa, a small herbaceous plant whose accessions are used in a variety of crops. The Brassica rapa plants include two parents whose circadian clock periods are different; NSC is known to provide inputs to the circadian clock likely modified by drought. Thus, drought may interact with clock control to constrain how NSC changes over the day. The Brassica rapa plants were grown in growth chamber conditions where drought was precisely controlled. The connection between these datasets is that both provide rigorous tests of our understanding of plant NSC dynamics and use similar leaf and whole plant gas exchange and NSC laboratory methods. Our results show that NSC decline (<10% in the whole plant) is less precipitous than expected from carbon starvation alone because both C uptake and use are impacted by water stress

  12. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US

    USGS Publications Warehouse

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.

    2011-01-01

    The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the

  13. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  14. Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera: Cerambycidae) on members of the southern pine beetle guild

    NASA Astrophysics Data System (ADS)

    Schoeller, Erich N.; Husseneder, Claudia; Allison, Jeremy D.

    2012-11-01

    The southern pine bark beetle guild (SPBG) is arguably the most destructive group of forest insects in the southeastern USA. This guild contains five species of bark beetles (Coleoptera: Curculionidae: Scolytinae): Dendroctonus frontalis, Dendroctonus terebrans, Ips avulsus, Ips calligraphus, and Ips grandicollis. A diverse community of illicit receivers is attracted to pheromones emitted by the SPBG, including the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae). These woodborers have been traditionally classified as resource competitors; however, laboratory assays suggest that larval M. carolinensis may be facultative intraguild predators of SPBG larvae. This study used polymerase chain reaction (PCR)-based molecular gut content analyses to characterize subcortical interactions between M. titillator and members of the SPBG. The half-lives of SPBG DNA were estimated in the laboratory prior to examining these interactions in the field. A total of 271 field-collected M. titillator larvae were analyzed and 26 (9.6 %) tested positive for DNA of members of the SPBG. Of these larvae, 25 (96.2 %) tested positive for I. grandicollis and one (3.8 %) for I. calligraphus. Failure to detect D. terebrans and D. frontalis was likely due to their absence in the field. I. avulsus was present, but primers developed using adult tissues failed to amplify larval tissue. Results from this study support the hypothesis that larval Monochamus spp. are facultative intraguild predators of bark beetle larvae. Additionally, this study demonstrates the capabilities of PCR in elucidating the interactions of cryptic forest insects and provides a tool to better understand mechanisms driving southern pine beetle guild population fluctuations.

  15. Willow Bark

    MedlinePlus

    ... this combination.Talk with your health provider.Choline Magnesium Trisalicylate (Trilisate)Willow bark contains chemicals that are similar to choline magnesium trisalicylate (Trilisate). Taking willow bark along with choline ...

  16. Bark- and wood-borer colonization of logs and lumber after heat treatment to ISPM 15 specifications: the role of residual bark.

    PubMed

    Haack, Robert A; Petrice, Toby R

    2009-06-01

    Wood packaging material (WPM) is a major pathway for international movement of bark- and wood-infesting insects. ISPM 15, the first international standard for treating WPM, was adopted in 2002 and first implemented in the United States in 2006. ISPM 15 allows bark to remain on WPM after treatment, raising concerns that insects could infest after treatment, especially if bark were present. We conducted field studies to evaluate insect infestation of green logs and lumber with varying amounts of bark after heat treatment. In a log study, Cerambycidae and Scolytinae (ambrosia beetles and bark beetles) readily infested and developed in logs with bark after heat treatment. In a lumber study, Cerambycidae and bark beetles laid eggs in all sizes of bark patches tested (approximately 25, 100, 250, and 1,000 cm2) after heat treatment but did not infest control or heat-treated lumber without bark. Cerambycidae completed development only in boards with bark patches of 1,000 cm2, whereas bark beetles completed development on patches of 100, 250, and 1,000 cm2. Survival of bark beetles was greater in square patches (10 by 10 cm) versus rectangular patches (2.5 by 40 cm) of the same surface area (100 cm2). In surveys at six U.S. ports in 2006, 9.4% of 5,945 ISPM 15-marked WPM items contained bark, and 1.2% of 564 ISPM 15-marked WPM items with bark contained live insects of quarantine significance under the bark. It was not possible to determine whether the presence of live insects represented treatment failure or infestation after treatment.

  17. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    NASA Astrophysics Data System (ADS)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  18. Molecular Markers Detect Cryptic Predation on Coffee Berry Borer (Coleoptera: Curculionidae) by Silvanid and Laemophloeid Flat Bark Beetles (Coleoptera: Silvanidae, Laemophloeidae) in Coffee Beans.

    PubMed

    Sim, Sheina B; Yoneishi, Nicole M; Brill, Eva; Geib, Scott M; Follett, Peter A

    2016-02-01

    The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae), is a serious pest of coffee worldwide. It was first detected in Hawai'i in 2010. Two predatory beetles, Cathartus quadricollis (Coleoptera: Silvanidae) and Leptophloeus sp. (Coleoptera: Laemophloeidae), have been observed in H. hampei-infested coffee. Under laboratory conditions, colony-reared C. quadricollis and Leptophloeus sp. prey upon all life stages of H. hampei. However, the H. hampei life cycle occurs almost exclusively within a coffee bean obscured from direct observation. Thus, it is unknown if C. quadricollis and Leptophloeus sp. consume H. hampei as prey in the wild. To demonstrate predation of H. hampei by C. quadricollis and Leptophloeus sp., a molecular assay was developed utilizing species-specific primers targeting short regions of the mitochondrial COI gene to determine species presence. Using these primers, wild C. quadricollis and Leptophloeus sp. were collected and screened for the presence of H. hampei DNA using PCR. Analysis of collections from five coffee farms revealed predation of C. quadricollis and Leptophloeus sp. on H. hampei. Further laboratory testing showed that H. hampei DNA could be detected in predators for as long as 48 h after feeding, indicating the farm-caught predators had preyed on H. hampei within 2 d of sampling. This study demonstrates the utility of molecular markers for the study of the ecology of predators and prey with cryptic behavior, and suggests C. quadricollis and Leptophloeus sp. might be useful biocontrol agents against H. hampei.

  19. Evaluating Predators and Competitors in Wisconsin Red Pine Forests for Attraction to Mountain Pine Beetle Pheromones for Anticipatory Biological Control.

    PubMed

    Pfammatter, Jesse A; Krause, Adam; Raffa, Kenneth F

    2015-08-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is an irruptive tree-killing species native to pine forests of western North America. Two potential pathways of spread to eastern forests have recently been identified. First, warming temperatures have driven range expansion from British Columbia into Albertan jack pine forests that are contiguous with the Great Lakes region. Second, high temperatures and drought have fostered largescale outbreaks within the historical range, creating economic incentives to salvage killed timber by transporting logs to midwestern markets, which risks accidental introduction. We evaluated the extent to which local predators and competitors that exploit bark beetle semiochemicals would respond to D. ponderosae in Wisconsin. We emulated D. ponderosae attack by deploying lures containing synthetic aggregation pheromones with and without host tree compounds and blank control traps in six red pine plantations over 2 yr. Predator populations were high in these stands, as evidenced by catches in positive control traps, baited with pheromones of local bark beetles and were deployed distant from behavioral choice plots. Only one predator, Thanasimus dubius F. (Coleoptera: Cleridae) was attracted to D. ponderosae's aggregation pheromones relative to blank controls, and its attraction was relatively weak. The most common bark beetles attracted to these pheromones were lower stem and root colonizers, which likely would facilitate rather than compete with D. ponderosae. There was some, but weak, attraction of potentially competing Ips species. Other factors that might influence natural enemy impacts on D. ponderosae in midwestern forests, such as phenological synchrony and exploitation of male-produced pheromones, are discussed.

  20. [Parasitism of Ips sexdentatus (Insecta: Scolytidae) by Parasitorhabditis ipsophila (Nematoda: Rhabditidae)].

    PubMed

    Lieutier, F

    1984-01-01

    The study of parasitism percentages and contaminations intensity in Ips sexdentatus parasitized by P. ipsophila as well as the examination of the wormholes in the galleries of the bark beetle gave better insight into certain features of nematode biology. Larvae of I. sexdentatus could be infected, whereas pupae could not. Adults were contaminated from initial stages of maturation and throughout preswarming maturation. Following swarming and installation on a new tree, insects were rapidly decontaminated, but recontamination could occur by the end of oviposition. P. ipsophila larvae were found in the mesenteron before they penetrated into the hind gut. Seemingly, the parasite underwent no evolution within its host. All developmental stages of the nematode could be observed in the galleries of the bark beetle as long as the latter was present. No apparent relation exists between parasitism of the digestive tract by P. ipsophila and parasitism of the body or fat body by Parasitaphelenchus or Contortylenchus diplogaster. P. ipsophila exerts very limited effects on I. sexdentatus populations. A slight delay in swarming and initiation of oviposition, and a very low decrease in density of notches of oviposition and of eggs was observed, but the features of the gallery of oviposition (total length, length before the first notch) showed no alteration. No mortality was detected.

  1. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  2. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2016-07-12

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  3. Predictors of Ips confusus Outbreaks During a Record Drought in Southwestern USA: Implications for Monitoring and Management

    NASA Astrophysics Data System (ADS)

    Santos, Maria J.; Whitham, Thomas G.

    2010-02-01

    In many ecosystems the effects of disturbance can be cryptic and disturbance may vary in subtle spatiotemporal ways. For instance, we know that bark beetle outbreaks are more frequent in temperate forests during droughts; however, we have little idea about why they occur in some locations and not others. Understanding biotic and abiotic factors promoting bark beetle outbreaks can be critical to predicting and responding to pest outbreaks. Here we address the environmental factors which are associated with Ips confusus outbreaks during the 2002 widespread drought within the distribution range of pinyon pine woodlands in Arizona. We used univariate statistics to test if whether tree characteristics, other herbivores, stand properties, soil type, wind, and topography were associated with I. confusus outbreak, and logistic regression to create a predictive model for the outbreaks. We found that I. confusus attacks occur in low elevation stands on steeper slopes, where favorable winds for I. confusus dispersion occur. I. confusus select larger trees, in high density stands with understory shrubs that exhibit phenotypic traits characteristic of resistance to stem-boring moths. The model was highly accurate, and explained 95% of the variability in occurrence (98% of the absences and 95% of the presences). Accurate prediction of the impacts of disturbance allow us to anticipate, minimize or mitigate for and eventually counteract its effects, especially those affecting diversity and ecosystem function. Identification of outbreak risk areas can guide regional and national management towards the reduction of infestation risk and enhancing conservation of pinyon-juniper woodlands.

  4. Efficacy of imidacloprid, trunk-injected into Acer platanoides, for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae).

    PubMed

    Ugine, Todd A; Gardescu, Sana; Lewis, Phillip A; Hajek, Ann E

    2012-12-01

    Feeding experiments with Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) in a quarantine laboratory were used to assess the effectiveness of imidacloprid in reducing adult fecundity and survival. The beetles were fed twigs and leaves cut between June-September 2010 from Norway maples (Acer platanoides L.) in the beetle-infested area of Worcester, MA. Treated trees had been trunk-injected once with imidacloprid in spring 2010 under the U.S. Department of Agriculture-Animal and Plant Health Inspection Service operational eradication program. The 21 d LC50 value for adult beetles feeding on twig bark from imidacloprid-injected trees was 1.3 ppm. Adult reproductive output and survival were significantly reduced when beetles fed on twig bark or leaves from treated trees. However, results varied widely, with many twig samples having no detectable imidacloprid and little effect on the beetles. When twigs with > 1 ppm imidacloprid in the bark were fed to mated beetles, the number of larvae produced was reduced by 94% and median adult survival was reduced to 14 d. For twigs with < 1 ppm imidacloprid, 68% of reproductively mature mated beetles survived 21 d and 56% of unmated recently eclosed beetles survived 42 d. For twigs with < 1 ppm, beetles ingested an average of 30 nanograms of imidacloprid per day. Bark consumption was reduced at higher imidacloprid levels (> 1 ppm). When given a choice of control twigs and twigs from injected trees, beetles did not show a strong preference.

  5. Structure of Phoretic Mite Assemblages Across Subcortical Beetle Species at a Regional Scale.

    PubMed

    Pfammatter, Jesse A; Coyle, David R; Gandhi, Kamal J K; Hernandez, Natalie; Hofstetter, Richard W; Moser, John C; Raffa, Kenneth F

    2016-02-01

    Mites associated with subcortical beetles feed and reproduce within habitats transformed by tree-killing herbivores. Mites lack the ability to independently disperse among these habitats, and thus have evolved characteristics that facilitate using insects as transport between resources. Studies on associations between mites and beetles have historically been beetle-centric, where an assemblage of mite species is characterized on a single beetle species. However, available evidence suggests there may be substantial overlap among mite species on various species of beetles utilizing similar host trees. We assessed the mite communities of multiple beetle species attracted to baited funnel traps in Pinus stands in southern Wisconsin, northern Arizona, and northern Georgia to better characterize mite dispersal and the formation of mite-beetle phoretic associations at multiple scales. We identified approximately 21 mite species totaling 10,575 individuals on 36 beetle species totaling 983 beetles. Of the mites collected, 97% were represented by eight species. Many species of mites were common across beetle species, likely owing to these beetles' common association with trees in the genus Pinus. Most mite species were found on at least three beetle species. Histiostoma spp., Iponemus confusus Lindquist, Histiogaster arborsignis Woodring and Trichouropoda australis Hirschmann were each found on at least seven species of beetles. While beetles had largely similar mite membership, the abundances of individual mite species were highly variable among beetle species within each sampling region. Phoretic mite communities also varied within beetle species between regions, notably for Ips pini (Say) and Ips grandicollis (Eichhoff).

  6. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado

  7. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado

  8. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.

    PubMed

    Goodsman, Devin W; Erbilgin, Nadir; Lieffers, Victor J

    2012-06-01

    In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae. PMID:22732605

  9. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.

    PubMed

    Goodsman, Devin W; Erbilgin, Nadir; Lieffers, Victor J

    2012-06-01

    In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae.

  10. Do Phoretic Mites Influence the Reproductive Success of Ips grandicollis (Coleoptera: Curculionidae)?

    PubMed

    Pfammatter, Jesse A; Raffa, Kenneth F

    2015-12-01

    Ips grandicollis (Eichhoff) can be an important pest of plantation trees in the Great Lakes region. Mites commonly occur in phoretic association with this beetle, but little is known about their effects on beetle population dynamics. We assessed the effects of phoretic mites on the reproductive success of I. grandicollis using complementary correlative and manipulative approaches. First, we allowed beetles to colonize Pinus resinosa (Ait) logs from sites across Wisconsin, reared them in a common environment, and related the species identities and abundances of mites with beetle production from each log. We found a positive relationship between I. grandicollis abundance and the presence of five mite species, Histiostoma spp., Dendrolaelaps quadrisetus (Berlese), Iponemus confusus (Lindquist), Trichouropoda australis Hirschmann, and Tarsonemus spp. While the abundance of individual mite species was positively correlated with beetle abundance, assessments of mite community structure did not explain beetle reproduction. Next, we introduced beetles that either had a natural complement of mites or whose mites were mechanically reduced into logs, and compared reproductive success between these beetles. We found no difference in colonization rates or beetle emergence between mite-present and mite-reduced treatments. Collectively, these results suggest a correlative, rather than causal, link between beetle reproductive success and mite incidence and abundances. These mites and beetles likely benefit from mutually suitable environments rather than exerting strong reciprocal impacts. Although mites may have some effects on I. grandicollis reproductive success, they likely play a minimal role compared to factors such as tree quality, beetle predation, and weather.

  11. Interruption of the semiochemical-based attraction of ambrosia beetles to ethanol-baited traps and ethanol-injected trap trees by Verbenone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the ability of verbenone, a bark beetle anti-aggregation pheromone, to interrupt the semiochemical-based attraction of ambrosia beetles. Field trapping studies conducted in Ohio showed that a verbenone dispenser with a release rate of 50 mg / d at 25 oC reduced the attraction of Anisandr...

  12. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2014-10-21

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001-2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0-2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3-10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks.

  13. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    NASA Astrophysics Data System (ADS)

    Bright, B. C.; Hicke, J. A.; Hudak, A. T.

    2012-12-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

  14. PVM and IP multicast

    SciTech Connect

    Dunigan, T.H.; Hall, K.A.

    1996-12-01

    This report describes a 1994 demonstration implementation of PVM that uses IP multicast. PVM`s one-to-many unicast implementation of its pvm{_}mcast() function is replaced with reliable IP multicast. Performance of PVM using IP multicast over local and wide-area networks is measured and compared with the original unicast implementation. Current limitations of IP multicast are noted.

  15. Amate Bark Designs

    ERIC Educational Resources Information Center

    Mazur, Matt

    2013-01-01

    Inspired by a beautiful bookmark one of the author's students made for him as a gift, he began a lesson exploring the vibrant bark paintings popular all over Mexico. The majority of his students have Mexican ancestry, so exploring the arts of Mexico is always popular and well received. Amate paintings can also be a great way to introduce the…

  16. Microsclerotia of Metarhizium brunneum F52 Applied in Hydromulch for Control of Asian Longhorned Beetles (Coleoptera: Cerambycidae).

    PubMed

    Goble, Tarryn A; Hajek, Ann E; Jackson, Mark A; Gardescu, Sana

    2015-04-01

    The entomopathogenic fungus Metarhizium brunneum (Petch) strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia (hyphal aggregates). Microsclerotia of strain F52 produced as granules and incorporated into hydromulch (hydro-seeding straw, water, and a natural glue) provides a novel mycoinsecticide that could be sprayed onto urban, forest, or orchard trees. We tested this formulation against adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) using three substrates (moistened bark, dry bark, absorbent bench liner) sprayed with a low rate (9 microsclerotia granules/cm2) of hydromulch. Median survival times of beetles continuously exposed to sprayed moist bark or absorbent liner were 17.5 and 19.5 d, respectively. Beetles exposed to sprayed dry bark, which had a lower measured water activity, lived significantly longer. When moist bark pieces were sprayed with increased rates of microsclerotia granules in hydromulch, 50% died by 12.5 d at the highest application rate, significantly sooner than beetles exposed to lower application rates (16.5-17.5 d). To measure fecundity effects, hydromulch with or without microsclerotia was sprayed onto small logs and pairs of beetles were exposed for a 2-wk oviposition period in containers with 98 or 66% relative humidity. At 98% humidity, oviposition in the logs was highest for controls (18.3±1.4 viable offspring per female) versus 3.9±0.8 for beetles exposed to microsclerotia. At 66% humidity, fecundities of controls and beetles exposed to microsclerotia were not significantly different. This article presents the first evaluation of M. brunneum microsclerotia in hydromulch applied for control of an arboreal insect pest.

  17. Microsclerotia of Metarhizium brunneum F52 Applied in Hydromulch for Control of Asian Longhorned Beetles (Coleoptera: Cerambycidae).

    PubMed

    Goble, Tarryn A; Hajek, Ann E; Jackson, Mark A; Gardescu, Sana

    2015-04-01

    The entomopathogenic fungus Metarhizium brunneum (Petch) strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia (hyphal aggregates). Microsclerotia of strain F52 produced as granules and incorporated into hydromulch (hydro-seeding straw, water, and a natural glue) provides a novel mycoinsecticide that could be sprayed onto urban, forest, or orchard trees. We tested this formulation against adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) using three substrates (moistened bark, dry bark, absorbent bench liner) sprayed with a low rate (9 microsclerotia granules/cm2) of hydromulch. Median survival times of beetles continuously exposed to sprayed moist bark or absorbent liner were 17.5 and 19.5 d, respectively. Beetles exposed to sprayed dry bark, which had a lower measured water activity, lived significantly longer. When moist bark pieces were sprayed with increased rates of microsclerotia granules in hydromulch, 50% died by 12.5 d at the highest application rate, significantly sooner than beetles exposed to lower application rates (16.5-17.5 d). To measure fecundity effects, hydromulch with or without microsclerotia was sprayed onto small logs and pairs of beetles were exposed for a 2-wk oviposition period in containers with 98 or 66% relative humidity. At 98% humidity, oviposition in the logs was highest for controls (18.3±1.4 viable offspring per female) versus 3.9±0.8 for beetles exposed to microsclerotia. At 66% humidity, fecundities of controls and beetles exposed to microsclerotia were not significantly different. This article presents the first evaluation of M. brunneum microsclerotia in hydromulch applied for control of an arboreal insect pest. PMID:26470154

  18. A Study Of Ips Typographus Pest Infestation With The Use Of Multi-Angular CHRIS-Proba Data

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar; Panayotov, Momchil; Ling, Feilong

    2013-12-01

    Insects' infestations of coniferous forests have been in the focus of the forestry community for decades. Research that is dealing with the assessment of the impacts on forests and assessment of the area affected by the infestations has been assisted by remotely sensed data after the onset of civilian remote sensing era and making the large archives of satellite data centres of NASA, ESA, and JAXA available to the researcher's community. The present study assesses the impact from European Bark beetle (Ips typhographus L.) outbreak on Norway Spruce (Picea abies L.) forests in the UNESCO MAB reserve Bistrishko Branishte in Bulgaria using the ESA's third-party mission multiangular satellite CHRIS/PROBA Mode 1 spectroradiometer data. The study aims at assessing the impact of the infestation by comparing the pre- and post-fire CHRIS/PROBA Mode 1 narrow-band vegetation indices (VIs). In order to achieve the study objective the ‘dead spruce forest' areas were extracted using eight target detection algorithms. Statistics from the CHRIS/PROBA Mode 1 VIs was drawn and compared with one another for the two dates of acquisition. It was found that the areas affected by pest infestation can be well differentiated on CHRIS/PROBA data but the results vary due to the date of acquisition, illumination conditions, and season changes. The results from the study suggest that continuous space monitoring of insect infested coniferous forests can be successfully carried out by employing present-day available hyperspectral satellite data.

  19. Boring in response to bark and phloem extracts from North American trees does not explain host acceptance behavior of Orthotomicus erosus (Coleoptera: Scolytidae).

    PubMed

    Walter, Abigail J; Kells, Stephen A; Venette, Robert C; Seybold, Steven J

    2010-04-01

    When invasive herbivorous insects encounter novel plant species, they must determine whether the novel plants are hosts. The Mediterranean pine engraver, Orthotomicus erosus (Wollaston), an exotic bark beetle poised to expand its range in North America, accepts hosts after contacting the bark. To test the hypothesis that O. erosus accepts hosts on the basis of gustatory cues, we prepared bark and phloem extracts from logs of four North American tree species that we had used in previous host acceptance experiments. Water, methanol, and hexane extracts of red pine, tamarack, balsam fir, and paper birch were presented alone and in combination on a neutral filter paper substrate in a section of a plastic drinking straw. Boring behavior in response to the three-extract combinations differed from the pattern of acceptance previously observed among species when the beetles were in contact with the bark surface. Only the aqueous extracts of tamarack, Larix laricina, increased the initiation and the extent of boring by O. erosus on the filter paper substrate. We conclude that the effects of extracted chemicals do not match the behavior of the beetles observed when penetrating excised bark and phloem discs, indicating that host selection by O. erosus may not be predictable from bark and phloem chemistry alone. Instead, host acceptance may be determined by nongustatory stimuli or by a combination of stimuli including gustatory and nongustatory cues.

  20. Antibothrus morimotoi Sasaji, an Old World cocoon-forming beetle (Coleoptera: Coccinelloidea: Bothrideridae) newly established in North America.

    PubMed

    Mcelrath, Thomas C; Androw, Robert A; Mchugh, Joseph V

    2016-01-01

    Antibothrus morimotoi Sasaji, a cocoon-forming beetle (Coccinelloidea: Bothrideridae) native to the Palearctic region, is newly reported from North America. In 2013 and 2015, several series of specimens were collected during an ongoing USDA/APHIS/PPQ exotic bark beetle survey in Franklin County, Ohio, U.S.A. This is the first confirmed record of the species and genus in the New World. The capture of these specimens suggests that the beetle is established in the greater Columbus, Ohio, metropolitan  area. PMID:27615843

  1. Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation. Forest Service research note

    SciTech Connect

    Amman, G.D.; Ryan, K.C.

    1994-01-01

    The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the basal circumference of lodgepole pines. When the peat moss was ignited, it simulated the smoldering of natural duff, generating temperatures that killed the cambium. The four treatments tested were uninjured tree, heat-injured tree, heat-injured tree treated with verbenone, and heat-injured tree treated with verbenone plus ipsdienol. Treatments were replicated 20 times. Mountain pine beetles were attracted into treatment blocks by placing mountain pine beetle tree baits on metal posts 3 to 5 meters from treated trees. Fisher's Extract Test showed that treatment and beetle infestation were not independent (P < 0.015). Check treatments contained more unattacked and mass-attacked trees, whereas pheromone treatments contained more unsuccessfully attacked trees.

  2. The Classroom Animal: Flour Beetles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  3. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    PubMed

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack. PMID:26256444

  4. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    PubMed

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack.

  5. Comparison of naturally and synthetically baited spruce beetle trapping systems in the central Rocky Mountains.

    PubMed

    Hansen, E M; Vandygriff, J C; Cain, R J; Wakarchuk, D

    2006-04-01

    We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we compared a naturally baited system ("bolt trap") with fallen trap trees and with synthetically baited funnel traps. Trap performance was evaluated by comparing total beetle captures and spillover of attacks into nearby host trees. Overall, the trap systems did not significantly differ in spruce beetle captures, although bolt traps caught 6 to 7 times more beetles than funnel traps during the first 4 wk of testing. Funnel traps with synthetic lures had significantly more spillover than either trap trees or bolt traps. The study was repeated in 2004 with modifications including an enhanced blend synthetic lure. Again, trap captures were generally similar among naturally and synthetically baited traps, but naturally baited traps had significantly less spillover. Although relatively labor-intensive, the bolt trap could be used to suppress preoutbreak beetle populations, especially when spillover is undesirable. Our work provides additional avenues for management of spruce beetles and suggests that currently used synthetic lures can be improved. PMID:16686135

  6. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2014-10-21

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001-2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0-2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3-10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  7. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies

    PubMed Central

    Harvey, Brian J.; Donato, Daniel C.; Turner, Monica G.

    2014-01-01

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0–2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3–10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  8. "Excess Water" Following Deforestation by Beetle Kill?

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Miller, S. N.; Anderson-Sprecher, R.; Ewers, B. E.; Speckman, H.

    2014-12-01

    Deforestation resulting from tree mortality by insects and disease may reduce transpiration demand and increase available water in mountain environments throughout. We tested this hypothesis using three large catchments (97-407 km2) located in the Snowy Mountains of Wyoming where hydrology is snowmelt dominated. An epidemic of spruce bark beetle and associated tree mortality emerged in 2006 and has since impacted 60 to 80% of basal area of the spruce-fir and mixed conifer forests. A 25-year continuous record (1998-2013) of daily snowfall, temperature, and stream discharge data between 1 April and 30 September of each year were available for each catchment. We used quantile regression and multivariate time series analysis first to control for the effects of temperature and snow water equivalent on the timing and magnitude of discharge and then to test for changes in discharge trends since 2006. We found no compelling evidence of changes in discharge trends associated with the onset of the beetle epidemic independent of snowmelt trends. Several factors could explain this apparent lack of "excess water" following tree mortality by insects and disease. Any increases in water may be scale dependent, a local phenomenon that does not transfer through large catchments. Other vegetation including young cohorts of affected tree species, shrubs, and herbaceous cover may respond robustly to the open canopy and utilize soil water previously consumed by the infected trees.

  9. The relative abundance of mountain pine beetle fungal associates through the beetle life cycle in pine trees.

    PubMed

    Khadempour, Lily; LeMay, Valerie; Jack, David; Bohlmann, Jörg; Breuil, Colette

    2012-11-01

    The mountain pine beetle (MPB) is a native bark beetle of western North America that attacks pine tree species, particularly lodgepole pine. It is closely associated with the ophiostomatoid ascomycetes Grosmannia clavigera, Leptographium longiclavatum, Ophiostoma montium, and Ceratocystiopsis sp.1, with which it is symbiotically associated. To develop a better understanding of interactions between beetles, fungi, and host trees, we used target-specific DNA primers with qPCR to assess the changes in fungal associate abundance over the stages of the MPB life cycle that occur in galleries under the bark of pine trees. Multivariate analysis of covariance identified statistically significant changes in the relative abundance of the fungi over the life cycle of the MPB. Univariate analysis of covariance identified a statistically significant increase in the abundance of Ceratocystiopsis sp.1 through the beetle life cycle, and pair-wise analysis showed that this increase occurs after the larval stage. In contrast, the abundance of O. montium and Leptographium species (G. clavigera, L. longiclavatum) did not change significantly through the MPB life cycle. From these results, the only fungus showing a significant increase in relative abundance has not been formally described and has been largely ignored by other MPB studies. Although our results were from only one site, in previous studies we have shown that the fungi described were all present in at least ten sites in British Columbia. We suggest that the role of Ceratocystiopsis sp.1 in the MPB system should be explored, particularly its potential as a source of nutrients for teneral adults.

  10. Lady beetles of South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...

  11. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  12. Anti-inflammatory activity of root bark and stem bark of Shyonaka

    PubMed Central

    Doshi, Krunal; Ilanchezhian, R; Acharya, Rabinarayan; Patel, B. R.; Ravishankar, B.

    2012-01-01

    Background: Shyonaka (Oroxylum indicum Vent.; Bignoniaceae) root bark is one of the ingredients of dashamoola (a group of 10 roots), and is used for its anti-inflammatory and analgesic action in a number of compound formulations in Ayurveda. Aim: Ayurvedic Pharmacopoeia of India (API) recommends using the stem bark instead of root bark. Material and Methods: An attempt has been made to study the anti-inflammatory activity of both root bark and stem bark kashaya (decoction) experimentally. Conclusion Results showed significant anti-inflammatory activity of root bark and stem bark decoction. PMID:23326090

  13. Lumber recovery and deterioration of beetle-killed douglas-fir and grand fir in the Blue Mountains of eastern Oregon. Forest Service general technical report

    SciTech Connect

    Parry, D.L.; Filip, G.M.; Willits, S.A.; Parks, C.G.

    1996-09-01

    The purpose of this study was to determine the effect of time since death over a 4-year period on the amount of usable product volume and value, and to determine the species of fungi associated with wood deterioration in the stems of Douglas-fir and grand fir trees killed by bark beetles in northeastern Oregon.

  14. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees.

    PubMed

    Bleiker, K P; Six, D L

    2009-01-01

    Despite overlap in niches, two fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae), Grosmannia clavigera and Ophiostoma montium, appear to coexist with one another and their bark beetle host in the phloem of trees. We sampled the percent of phloem colonized by fungi four times over 1 year to investigate the nature of the interaction between these two fungi and to determine how changing conditions in the tree (e.g., moisture) affect the interaction. Both fungi colonized phloem at similar rates; however, G. clavigera colonized a disproportionately larger amount of phloem than O. montium considering their relative prevalence in the beetle population. High phloem moisture appeared to inhibit fungal growth shortly after beetle attack; however, by 1 year, low phloem moisture likely inhibited fungal growth and survival. There was no inverse relationship between the percent of phloem colonized by G. clavigera only and O. montium only, which would indicate competition between the species. However, the percent of phloem colonized by G. clavigera and O. montium together decreased after 1 year, while the percent of phloem from which no fungi were isolated increased. A reduction in living fungi in the phloem at this time may have significant impacts on both beetles and fungi. These results indicate that exploitation competition occurred after a year when the two fungi colonized the phloem together, but we found no evidence of strong interference competition. Each species also maintained an exclusive area, which may promote coexistence of species with similar resource use.

  15. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  16. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  17. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  18. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.

    PubMed

    Giunta, A D; Runyon, J B; Jenkins, M J; Teich, M

    2016-08-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with consequences for wildfires. In this study, we measured chemical changes to Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) foliage in response to attack by Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) as trees die and crowns transitioned from green/healthy, to green-infested (year of attack), to yellow (year after attack), and red (2 yr after attack). We found large differences in volatile and within-needle terpene concentrations among crown classes and variation across a growing season. In general, emissions and concentrations of total and individual terpenes were greater for yellow and red needles than green needles. Douglas-fir beetle attack increased emissions and concentrations of terpene compounds linked to increased tree flammability in other conifer species and compounds known to attract beetles (e.g., [Formula: see text]-pinene, camphene, and D-limonene). There was little relationship between air temperature or within-needle concentrations of terpenes and emission of terpenes, suggesting that passive emission of terpenes (e.g., from dead foliage) does not fully explain changes in volatile emissions. The potential physiological causes and ecological consequences of these bark beetle-associated chemical changes are discussed. PMID:27231258

  19. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.

    PubMed

    Giunta, A D; Runyon, J B; Jenkins, M J; Teich, M

    2016-08-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with consequences for wildfires. In this study, we measured chemical changes to Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) foliage in response to attack by Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) as trees die and crowns transitioned from green/healthy, to green-infested (year of attack), to yellow (year after attack), and red (2 yr after attack). We found large differences in volatile and within-needle terpene concentrations among crown classes and variation across a growing season. In general, emissions and concentrations of total and individual terpenes were greater for yellow and red needles than green needles. Douglas-fir beetle attack increased emissions and concentrations of terpene compounds linked to increased tree flammability in other conifer species and compounds known to attract beetles (e.g., [Formula: see text]-pinene, camphene, and D-limonene). There was little relationship between air temperature or within-needle concentrations of terpenes and emission of terpenes, suggesting that passive emission of terpenes (e.g., from dead foliage) does not fully explain changes in volatile emissions. The potential physiological causes and ecological consequences of these bark beetle-associated chemical changes are discussed.

  20. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.

    PubMed

    Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir

    2015-10-01

    Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates. PMID:26037523

  1. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.

    PubMed

    Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir

    2015-10-01

    Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates.

  2. Hydrological Response to Mountain Pine Beetle Infestation in Western Subalpine Watersheds

    NASA Astrophysics Data System (ADS)

    Elder, K.; Porth, L.; Hubbard, R.; Rhoades, C.; Dixon, M.

    2008-12-01

    Water supply in western North America is controlled primarily by snow accumulation and melt in forested headwater basins. Trees impact runoff through wintertime canopy interception losses of snowfall and summertime transpiration losses. The mountain pine beetle (Dendroctonus ponderosae) epidemic attacking western pine forests will produce an estimated 90% mortality in lodgepole (Pinus contorta) stands, and will likely impact other tree species at significant levels over large areas of the US and Canada. Management studies suggest that changes in water quantity and quality will occur in response to beetle induced tree mortality. Hydrological responses in beetle killed forests are dependent on local climatology, forest age and species composition, understory response, and severity of infestation. Changes in discharge measured at the watershed level are typically quantified using statistical methods applied to time series data. Critical analysis elements are stationarity, and a sufficient data record for statistically significant detection of change. Short-term studies comparing statistical properties of flow often lack these critical elements and should be examined with caution. We show why short-term studies related to pine beetle impact on hydrology are unreliable. During the past five years, significant forest mortality has resulted from the current bark beetle epidemic, yet double mass plots using control basins and analysis of covariance (ANCOVA) show no significant response to date.

  3. Barking up the Right Tree

    ERIC Educational Resources Information Center

    Houston, Paul D.

    2006-01-01

    There is a childhood saying about a confused dog who thinks he sees a possum in a tree. The problem is that the possum is actually in a different tree so the dog barks up the wrong tree. American education is constantly playing both dog and possum. Sometimes they are the prey, and sometimes they are just confused about what and where the prey is.…

  4. Anticonvulsant effect of Rhus chirindensis (Baker F.) (Anacardiaceae) stem-bark aqueous extract in mice.

    PubMed

    Ojewole, John A O

    2008-04-17

    Extracts of Rhus chirindensis stem-bark are used extensively in South African traditional medicines for the treatment, management and/or control of an array of human ailments, including childhood convulsions and epilepsy. In this study, we investigated the anticonvulsant activity of the plant's stem-bark aqueous extract (RCE, 50-800 mg/kg i.p.) against pentylenetetrazole (PTZ)-, picrotoxin (PCT)- and bicuculline (BCL)-induced seizures in mice. Phenobarbitone and diazepam were used as reference anticonvulsant drugs for comparison. Single intraperitoneal injections of PTZ (90 mg/kg), PCT(10 mg/kg) or BCL (30 mg/kg) produced tonic-clonic seizures. Like the standard antiseizure drugs used, Rhus chirindensis stem-bark aqueous extract (RCE, 100-800 mg/kg i.p.) significantly delayed (p<0.05-0.001) the onset of, and antagonized pentylenetetrazole-induced seizures. The plant's stem-bark aqueous extract (RCE, 100-800 mg/kg i.p.) also profoundly antagonized picrotoxin-induced seizures, but only weakly antagonized bicuculline-induced seizures. Although the data obtained in the present study do not provide conclusive evidence, it would appear that RCE produces its antiseizure effect by enhancing GABAergic neurotransmission and/or action in the brain. The results of this laboratory animal study indicate that RCE possesses anticonvulsant activity in the mammalian experimental model used, and thus suggest that the plant may be used as a natural supplementary remedy in the management, control and/or treatment of childhood convulsions and epilepsy. In conclusion, the findings of this study lend pharmacological credence to the suggested folkloric, ethnomedical uses of Rhus chirindensis in the management of childhood convulsions and epilepsy in some rural communities of South Africa.

  5. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks.

    PubMed

    Hart, Sarah J; Schoennagel, Tania; Veblen, Thomas T; Chapman, Teresa B

    2015-04-01

    In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km(2) of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002-2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity. PMID:25831541

  6. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks

    PubMed Central

    Hart, Sarah J.; Schoennagel, Tania; Veblen, Thomas T.; Chapman, Teresa B.

    2015-01-01

    In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km2 of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002–2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity. PMID:25831541

  7. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks.

    PubMed

    Hart, Sarah J; Schoennagel, Tania; Veblen, Thomas T; Chapman, Teresa B

    2015-04-01

    In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km(2) of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002-2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity.

  8. Wave-making by whirligig beetles (gyrinidae).

    PubMed

    Tucker, V A

    1969-11-14

    Swimming whirligig beetles (Dineutes carolinus) either make no waves at all or make conspicuous circular or vee-shaped patterns of capillary waves. The beetle's swimming speed can be determined from these wave patterns (or lack of them). Capillary waves precede the beetle for several body lengths, and their reflections may help the beetle avoid solid objects by echolocation. The gravity waves produced by a beetle are always longer than the beetle's hull length. Hence the waves do not interact with the hull to impose an upper limit on speed as they do with conventional ships. Although the beetles swim at high speeds, they apparently do not hydroplane. PMID:17815756

  9. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    USGS Publications Warehouse

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  10. Simulating stand-level water and carbon fluxes in beetle-attacked conifer forests in the Western U.S

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Ewers, B. E.; Mackay, D. S.; Pendall, E. G.; Frank, J. M.; Massman, W. J.

    2013-12-01

    In recent decades, forest mortality due to bark beetle infestation in conifer forests of western North America has reached epidemic levels, which may have profound effects on both present and future water and carbon cycling. The responses of evaporation, transpiration, and net photosynthesis to changing climate and disturbance are a major concern as they control the carbon balance of forests and the hydrologic cycle in a region that relies on water from montane and subalpine forest systems. Tree mortality during bark beetle infestation in this region is due to hydraulic failure resulting from fungal infection spread by the beetles. We modified the terrestrial regional ecosystem exchange simulator (TREES) model to incorporate xylem-occlusion effects on hydraulic conductance to simulate beetle attack over the period 2005-2012 in a subalpine conifer forest at the Glacier Lakes Ecosystem Experiment Site (GLEES) and over 2008-2012 at a lodgepole pine dominated site in southeast Wyoming. Model simulations with and without beetle effects were compared to eddy-covariance and sap-flux data measured at the sites. The simulations were run at a 30-minute time step and covered the pre- to post-beetle infestation period. Simulated NEE at GLEES ranged from 200 to -625 g C m-2 yr-1, annual ET ranged from 250 to 800 mm yr-1 over the seven years and standard error in predicted half-hourly NEE was <3 μmol CO2 m-2 s-1 and <2e-05 mm s-1 for ET. The stand transitioned from a C sink to C source during the beetle attack and our modified model captured this dynamic, while simulations without the beetle effect did not (i.e. continued C sink). However, simulated NEE was underestimated compared to flux data later in the infestation period (2011) by over 100 g C m-2 yr-1. ET decreased during beetle attack in both the observed and simulated data, but the modified model underestimated ET in the later phase of attack (2010-2011). These results suggest that ET and NEE in these conifer forests may

  11. Effects of Extensive Beetle-Induced Forest Mortality on Aromatic Organic Carbon Loading and Disinfection Byproduct Formation Potential

    NASA Astrophysics Data System (ADS)

    Brouillard, B.; Mikkelson, K. M.; Dickenson, E.; Sharp, J.

    2015-12-01

    Recent drought and warmer temperatures associated with climate change have caused increased pest-induced forest mortality with impacts on biogeochemical and hydrologic processes. To better understand the seasonal impacts of bark beetle infestation on water quality, samples were collected regularly over two overlapping snow free seasons at surface water intakes of six water treatment facilities in the Rocky Mountain region of Colorado displaying varying levels of bark beetle infestation (high >40%, moderate 20-40%, and low <20%). Organic carbon concentrations were typically 3 to 6 times higher in waters sourced from high beetle-impacted watersheds compared to moderate and low impact watersheds, revealing elevated specific ultraviolet absorbance, fluorescence, and humic-like intensity indicative of elevated aromatic carbon signatures. Accordingly, an increase in disinfection byproduct (DBP) formation potential of 400 to 600% was quantified when contrasted with watersheds containing less tree mortality. Beetle impact exasperated seasonal increases in carbon loading and DBP formation potential following both runoff and precipitation events indicating windows when enhanced water treatment may be utilized by water providers in highly infested regions. Additionally, elevated carbon concentrations throughout the summer and fall along with peaks following precipitation events provide evidence of shifting hydrologic flow paths in areas experiencing high forest mortality from decreased tree water uptake and interception. Collectively, these results demonstrate the need for continued watershed protection and monitoring with a changing climate as the resultant perturbations can have adverse effects on biogeochemistry and water quality in heavily impacted areas.

  12. Camouflage by integumentary wetting in bark bugs.

    PubMed

    Silberglied, R; Aiello, A

    1980-02-15

    Unlike most insect integuments, the body surfaces of certain bark-inhabiting bugs are wettable. A thin film of water reduces the reflectivity of the insect, resulting in a close match with the wettable bark upon which it rests. Wettability probably aids in concealing the insects from predators.

  13. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah

    PubMed Central

    Lerch, Andrew P.; Pfammatter, Jesse A.

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks. PMID:27783632

  14. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  15. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence.

    PubMed

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C; Djordjevic, Julianne T

    2016-01-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence. PMID:27033523

  16. Medicinal Plants Used in Wound Care: A Study of Prosopis africana (Fabaceae) Stem Bark

    PubMed Central

    Ezike, A. C.; Akah, P. A.; Okoli, C. O.; Udegbunam, S.; Okwume, N.; Okeke, C.; Iloani, O.

    2010-01-01

    The effects of the methanol extract of the stem bark of Prosopis africana (Guill., Perrott. and Rich.) Taubert (Fabaceae) on bleeding/clotting and coagulation time, excision and dead space wounds were studied in rats. Also, the extract was subjected to antibacterial, and acute toxicity and lethality (LD50) tests. The extract significantly (P<0.05) reduced bleeding/clotting and coagulation time in rats. It also reduced epithelialization period of excision wounds in rats and inhibited the growth of laboratory strains of Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, Pseudomonas aeruginosa and Klebsiella pneumoniae to varying extents. Acute toxicity and lethality (LD50) test on the extract established an LD50 of 774 mg/kg (i.p) in mice while phytochemical analysis gave positive reactions for alkaloids, saponins, tannins, flavonoids, steroids, terpenoids and carbohydrates. The results of this study demonstrate the beneficial effects of the stem bark of P. africana in wound care. PMID:21188042

  17. DAB2IP in cancer

    PubMed Central

    Hsieh, Jer-Tsong; Gong, Jianping; Xie, Daxing

    2016-01-01

    DOC-2/DAB2 is a member of the disable gene family that features tumor-inhibiting activity. The DOC-2/DAB2 interactive protein, DAB2IP, is a new member of the Ras GTPase-activating protein family. It interacts directly with DAB2 and has distinct cellular functions such as modulating different signal cascades associated with cell proliferation, survival, apoptosis and metastasis. Recently, DAB2IP has been found significantly down regulated in multiple types of cancer. The aberrant alteration of DAB2IP in cancer is caused by a variety of mechanisms, including the aberrant promoter methylation, histone deacetylation, and others. Reduced expression of DAB2IP in neoplasm may indicate a poor prognosis of many malignant cancers. Moreover, DAB2IP stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of DAB2IP in cancer progression; the mechanisms underlying the dysregulation of DAB2IP; the gene functional mechanism and the prospects of DAB2IP in the future cancer research. PMID:26658103

  18. Photosynthetic bark: Use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans; Schlerf, Martin

    2013-08-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not available. We set out to assess Boswellia papyrifera tree bark chlorophyll content and to provide an appropriate bark chlorophyll estimation technique using hyperspectral remote sensing techniques. In contrast to the leaves, the bark of B. papyrifera has several outer layers masking the inner photosynthetic bark layer. Thus, our interest includes understanding how much light energy is transmitted to the photosynthetic inner bark and to what extent the inner photosynthetic bark chlorophyll activity could be remotely sensed during both the wet and the dry season. In this study, chlorophyll estimation using the chlorophyll absorption continuum index (CACI) yielded a higher R2 (0.87) than others indices and methods, such as the use of single band, simple ratios, normalized differences, and conventional red edge position (REP) based estimation techniques. The chlorophyll absorption continuum index approach considers the increase or widening in area of the chlorophyll absorption region, attributed to high concentrations of chlorophyll causing spectral shifts in both the yellow and the red edge. During the wet season B. papyrifera trees contain more bark layers than during the dry season. Having less bark layers during the dry season (leaf off condition) is an advantage for the plants as then their inner photosynthetic bark is more exposed to light, enabling them to trap light energy. It is concluded that B. papyrifera bark chlorophyll content can be reliably estimated using the chlorophyll absorption continuum index analysis. Further research on the use of bark signatures is recommended, in order to discriminate the deciduous B. papyrifera from other species during the dry season.

  19. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  20. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    PubMed

    Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  1. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  2. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  3. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  4. Hyperglycaemic effect of Artocarpus communis Forst (Moraceae) root bark aqueous extract in Wistar rats.

    PubMed

    Adewole, S O; Ojewole, J O

    2007-01-01

    Decoctions and infusions of Artocarpus communis (Forst) (family: Moraceae) root bark are traditionally used among the Yoruba-speaking people of western Nigeria as folk remedies for the management, control and treatment of an array of human diseases, including type 2 diabetes mellitus. Although numerous bioactive prenylflavonoids have been isolated from the roots, stem bark and leaves of A communis, to the best of our knowledge, the effects of the plant's root bark extract on animal models of diabetes mellitus have hitherto not been reported in the biomedical literature. In our pilot study, we observed that A communis root bark aqueous extract (ACE) raised blood glucose concentrations in rats. In view of this finding, the present study was undertaken to investigate the glycaemic effect of ACE in comparison with that of streptozotocin (STZ) in Wistar rats. Four groups (A, B, C and D) of Wistar rats, each group consisting of 10 rats, were used in this study. Group A rats received distilled water in quantities equivalent to the volume of ACE administered. Diabetes mellitus was induced in the animals in groups B and C by intraperitoneal (ip) injections of STZ (75 mg/kg body weight). The rats in group C were additionally treated with ACE (50 mg/kg body weight ip) from the third to the tenth day following STZ treatment. Group D rats received ACE (12.5-100 mg/kg body weight ip) only. The effects of ACE were compared with those of STZ on blood glucose concentrations, serum and pancreatic insulin levels, hepatic hexokinase (HXK) and glucokinase (GCK) activities, and hepatic glycogen contents in the experimental animal paradigm used. The rats in treated groups B, C and D exhibited pronounced polyuria, hypo-insulinaemia and hyperglycaemia. Group D rats developed significant hyperglycaemia (p < 0.05) immediately after ACE administration, whereas groups B and C rats became hyperglycaemic 24 to 72 hours post STZ and STZ + ACE treatments, when compared with the control group A

  5. Hyperglycaemic effect of Artocarpus communis Forst (Moraceae) root bark aqueous extract in Wistar rats.

    PubMed

    Adewole, S O; Ojewole, J O

    2007-01-01

    Decoctions and infusions of Artocarpus communis (Forst) (family: Moraceae) root bark are traditionally used among the Yoruba-speaking people of western Nigeria as folk remedies for the management, control and treatment of an array of human diseases, including type 2 diabetes mellitus. Although numerous bioactive prenylflavonoids have been isolated from the roots, stem bark and leaves of A communis, to the best of our knowledge, the effects of the plant's root bark extract on animal models of diabetes mellitus have hitherto not been reported in the biomedical literature. In our pilot study, we observed that A communis root bark aqueous extract (ACE) raised blood glucose concentrations in rats. In view of this finding, the present study was undertaken to investigate the glycaemic effect of ACE in comparison with that of streptozotocin (STZ) in Wistar rats. Four groups (A, B, C and D) of Wistar rats, each group consisting of 10 rats, were used in this study. Group A rats received distilled water in quantities equivalent to the volume of ACE administered. Diabetes mellitus was induced in the animals in groups B and C by intraperitoneal (ip) injections of STZ (75 mg/kg body weight). The rats in group C were additionally treated with ACE (50 mg/kg body weight ip) from the third to the tenth day following STZ treatment. Group D rats received ACE (12.5-100 mg/kg body weight ip) only. The effects of ACE were compared with those of STZ on blood glucose concentrations, serum and pancreatic insulin levels, hepatic hexokinase (HXK) and glucokinase (GCK) activities, and hepatic glycogen contents in the experimental animal paradigm used. The rats in treated groups B, C and D exhibited pronounced polyuria, hypo-insulinaemia and hyperglycaemia. Group D rats developed significant hyperglycaemia (p < 0.05) immediately after ACE administration, whereas groups B and C rats became hyperglycaemic 24 to 72 hours post STZ and STZ + ACE treatments, when compared with the control group A

  6. Locating POPs Sources with Tree Bark.

    PubMed

    Peverly, Angela A; Salamova, Amina; Hites, Ronald A

    2015-12-01

    Locating sources of persistent organic pollutants (POPs) to the atmosphere can sometimes be difficult. We suggest that tree bark makes an excellent passive atmospheric sampler and that spatial analysis of tree bark POPs concentrations can often pinpoint their sources. This is an effective strategy because tree bark is lipophilic and readily adsorbs and collects POPs from the atmosphere. As such, tree bark is an ideal sampler to find POPs sources globally, regionally, or locally. This article summarizes some work on this subject with an emphasis on kriged maps and a simple power-law model, both of which have been used to locate sources. Three of the four examples led directly to the pollutant's manufacturing plant. PMID:25629888

  7. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    PubMed

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention

  8. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    PubMed

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention

  9. New Insights into the Consequences of Post-Windthrow Salvage Logging Revealed by Functional Structure of Saproxylic Beetles Assemblages

    PubMed Central

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention

  10. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Yuen, Mack; Clark, Erin L; Fraser, Jordie D; Huber, Dezene P W; Liao, Nancy Y; Docking, T Roderick; Birol, Inanc; Chan, Simon K; Taylor, Greg A; Palmquist, Diana; Jones, Steven J M; Bohlmann, Joerg

    2012-08-01

    Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera.

  11. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon.

    PubMed

    Preisler, Haiganoush K; Hicke, Jeffrey A; Ager, Alan A; Hayes, Jane L

    2012-11-01

    Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales. This study used the observed number of trees killed by mountain pine beetles per square kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess the influence of climate and weather variables on beetle activity over longer time periods and larger scales than previously studied. Influences of temperature and precipitation in addition to process model output variables were assessed at annual and climatological time scales. The statistical analysis showed that new attacks are more likely to occur at locations with climatological mean August temperatures >15 degrees C. After controlling for beetle pressure, the variables with the largest effect on the odds of an outbreak exceeding a certain size were minimum winter temperature (positive relationship) and drought conditions in current and previous years. Precipitation levels in the year prior to the outbreak had a positive effect, possibly an indication of the influence of this driver on brood size. Two-year cumulative precipitation had a negative effect, a possible indication of the influence of drought on tree stress. Among the process model variables, cold tolerance was the strongest indicator of an outbreak increasing to epidemic size. A weather suitability index developed from the regression analysis indicated a 2.5x increase in the odds of outbreak at locations

  12. Model Analysis of Spatial Patterns in Mountain Pine Beetle Outbreaks.

    PubMed

    Logan; White; Bentz; Powell

    1998-06-01

    The mountain pine beetle [MPB, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae)] is an aggressive bark beetle, one that typically needs to kill host trees in order to successfully reproduce. This ecological adaptation has resulted in an organism that is both economically important and ecologically significant. Even though significant resources have been expended on MPB research, and a great deal of knowledge exists regarding individual aspects of MPB ecology, some of the most basic questions regarding outbreaks remain unanswered. In our opinion, one reason for the lack of synthesis and predictive power is the inadequate treatment of spatial dynamics in outbreak theories. This paper explicitly addresses the role of spatial dynamics in the precipitation and propagation of MPB outbreaks. We first describe a spatially dynamic model of the MPB/forest interaction that includes chemical ecology, spatial redistribution of beetles, attack, and resulting host mortality. The model is a system of 6 coupled, partial differential equations with 7 state variables and 20 parameters. It represents an attempt to capture the relatively complex predator/prey interaction between MPB and host trees by including the minimum phenomenological descriptions necessary for ecological credibility. This system of equations describes the temporal dynamics of: beetle attraction as a function of pheromone concentration; the change in numbers of flying and nesting beetles; tree resistance/susceptibility; and tree recovery from attack. Spatial dynamics are modeled by fluxes due to gradients in pheromones and kairomones, and the random redistribution of beetles in absence of semiochemicals. We then use the parameterized model to explore three issues central to the ecology of MPB/forest interaction. The first of these is in response to the need for objective ways to compare patterns of successful beetle attacks as they evolve in space. Simulation results indicate that at endemic levels, the

  13. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    PubMed

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624

  14. Mountain Pine Beetles Colonizing Historical and Naïve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism

    PubMed Central

    Adams, Aaron S.; Aylward, Frank O.; Adams, Sandye M.; Erbilgin, Nadir; Aukema, Brian H.; Currie, Cameron R.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624

  15. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    PubMed

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  16. Nitrogen concentration in mountain pine beetle larvae reflects nitrogen status of the tree host and two fungal associates.

    PubMed

    Cook, Stephen P; Shirley, Brian M; Zambino, Paul J

    2010-06-01

    Individual lodgepole pines (Pinus contorta) were fertilized with urea at nitrogen (N) inputs equivalent to 0, 315, or 630 kg/ha. Four months after application of the fertilizer, inner bark tissue N concentrations were significantly higher in the trees that had received the low dose (315 kg/ha) fertilization treatment than in the control trees; trees that had received the high-dose treatment (630 kg/ha) were intermediate and not significantly different from either of the other treatments. There was a significant positive correlation between N concentration in inner bark tissue and larval mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae). In vitro studies on synthetic growth media examined effects of temperature and N concentration on N concentration of two common fungal associates of the mountain pine beetle (Ophiostoma clavigerum and Ophiostoma montium). Increasing N concentration in growth media significantly increased fungal N concentrations in both O. clavigerum and O. montium. Furthermore, N concentration was consistently higher in O. clavigerum than in O. montium. Neither species had sufficient growth at 30 degrees C, nor did O. clavigerum at 15 degrees C, to test N concentration. However, for O. montium, increasing temperatures decreased fungal N concentrations. There was no correlation between N concentration of O. clavigerum and growth temperature. Potential impacts of ingestion of the fungal species by developing mountain pine beetle larvae-infesting trees under various environmental conditions such as increasing temperatures are discussed.

  17. Are stag beetles fungivorous?

    PubMed

    Tanahashi, Masahiko; Matsushita, Norihisa; Togashi, Katsumi

    2009-11-01

    Stag beetle larvae generally feed on decaying wood; however, it was unknown whether they can use wood-rotting fungi alone as food. Here, to clarify this, newly hatched larvae of Dorcus rectus (Motschulsky) (Coleoptera: Lucanidae) were reared for 14 days on artificial diets containing a fixed amount of freeze-dried mycelia of the following fungi: Bjerkandera adusta, Trametes versicolor, Pleurotus ostreatus, and Fomitopsis pinicola. The mean incremental gain in larval body mass was greatest on diets containing B. adusta, followed by T. versicolor, P. ostreatus, and F. pinicola. The growth rate of body mass correlated positively with mycelial nitrogen content of the different fungi. It also correlated positively with the mycelial content of B. adusta in the diet. Addition of antibiotics to diets with mycelia nearly halved larval growth, indicating that larvae were able to use fungal mycelia as food without the assistance of associated microbes although the microbes positively affected larval growth. Four newly hatched larvae reared on artificial diets containing B. adusta mycelia developed to the second instar in 21-34 days; and one developed to the third (=final) instar. This study provides evidence that fungi may constitute the bulk of the diet of D. rectus larvae. PMID:19607834

  18. Modification of the semitransparent Prunus serrula bark film: Making rubber out of bark

    SciTech Connect

    Xu, X.; Zaremba, C.; Stucky, G.D.; Schneider, E.; Wudl, F. |

    1998-11-01

    The authors report an extensive structural and mechanical characterization of the semitransparent bark of Prunus serrula. Variations in the properties were observed. Mechanical properties along the fiber axis of these films are strongly related to the cell dimensions. Several trends can be seen with increasing cell length: tensile strength and Young`s modulus increase; ductility decreases. Perpendicular to the fiber axis, similar radial dimensions of the bark cells contributes to similar mechanical properties. Plasticization not only shrinks the dimension of the bulk films along the tangential axis, which is unique, but also dramatically changes the mechanical properties. The authors have shown, for the first time, that the mechanical properties of the Prunus serrula bark can be effectively tailored with different plasticization and modification agents. The plastic bark can be successfully converted to rubberlike material either temporally or permanently, or it can be strengthened by tensile deformation of the plasticized bark.

  19. A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata.

    PubMed

    Yocum, George D; Buckner, James S; Fatland, Charlotte L

    2011-07-01

    The Colorado potato beetle, Leptinotarsa decemlineata, reared under diapause-inducing conditions will emerge from the soil as an adult and enter the diapause initiation phase, a period where metabolic reserves are stockpiled before the beetles enter the nonfeeding diapause maintenance phase. Internal and external lipids were characterized during the diapause initiation phase (IP) and compared to the lipid profiles of nondiapausing adults. The primary internal lipids of both diapause IP and nondiapausing adults are triacylglycerols. Only trace amounts of internal lipids were detected in day 1 diapause IP adults. A dramatic increase in internal lipids was observed between day 7 and day 15 post-emergence in the diapause IP adults. The majority of the triacylglycerol isomers were identified as C50, C52 and C54 chain lengths by GC-MS. There were no observed differences in the isomeric distribution of the major internal lipids between diapause IP and nondiapausing adults. External lipids were mainly methyl-branched alkanes containing a 25 to 53 carbon backbone. The quantity of external lipids increased from day 1 to day 7 post-emergence in both the diapause IP and nondiapausing adults, with the bulk of the increase occurring in the longer chain-length methylalkanes.

  20. Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA.

    PubMed

    Kolarík, Miroslav; Freeland, Emily; Utley, Curtis; Tisserat, Ned

    2011-01-01

    Widespread morbidity and mortality of Juglans nigra has occurred in the western USA over the past decade. Tree mortality is the result of aggressive feeding by the walnut twig beetle (Pityophthorus juglandis) and subsequent canker development around beetle galleries caused by a filamentous ascomycete in genus Geosmithia (Ascomycota: Hypocreales). Thirty-seven Geosmithia strains collected from J. californica, J. hindsii, J. major and J. nigra in seven USA states (AZ, CA, CO, ID, OR, UT, WA) were compared with morphological and molecular methods (ITS rDNA sequences). Strains had common characteristics including yellowish conidia en masse, growth at 37 C and absence of growth on Czapek-Dox agar and belonged to a single species described here as G. morbida. Whereas Geosmithia are common saprobes associated with bark beetles attacking hardwoods and conifers worldwide, G. morbida is the first species documented as a plant pathogen.

  1. Quantum non-barking dogs

    NASA Astrophysics Data System (ADS)

    Imari Walker, Sara; Davies, Paul C. W.; Samantray, Prasant; Aharonov, Yakir

    2014-06-01

    Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.

  2. An Automated Instrument for the Measurement of Bark Microrelief

    NASA Astrophysics Data System (ADS)

    van Stan, J. T.; Jarvis, M.; Levia, D. F.

    2009-05-01

    Bark microrelief is of importance to the physiological ecology of forested ecosystems because it has been documented to influence the distribution of corticolous lichens, stemflow generation, and forest biogeochemical cycles. Hitherto no instrument existed to characterize the inherent variability of bark microrelief with high spatial resolution. Our newly-designed bark microrelief instrument, the LaserBarkTM, consists of a hinged ring, laser rangefinder, and motor linked to a standard laptop. The LaserBarkTM produces trunk cross- sections at a 0.33 degree horizontal resolution and detects bark ridge-to furrow heights at < 1 mm resolution. The LaserBarkTM was validated by comparing measurements of bark microrelief between the instrument and digital calipers. The mean absolute error of the instrument was 0.83 mm. Our bark microrelief instrument can supply critical requisite information of bark microstructure that be used by researchers to interpret the distribution of lichens and bryophytes on tree surfaces, relate stemflow yield and chemistry to bark microrelief, and provide detailed measurements of the changes of bark microrelief with stem dehydration. In short, the LaserBarkTM can be used to gain a more holistic understanding of the functional ecology of forest ecosystems.

  3. Running TCP/IP over ATM Networks.

    ERIC Educational Resources Information Center

    Witt, Michael

    1995-01-01

    Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)

  4. The bark, the howl and the bark-howl: Identity cues in dingoes' multicomponent calls.

    PubMed

    Déaux, Éloïse C; Charrier, Isabelle; Clarke, Jennifer A

    2016-08-01

    Dingoes (genus Canis) produce a stereotyped bark-howl vocalisation, which is a unimodal complex signal formed by the concatenation of two call types (a bark and a howl). Bark-howls may function as alarm signals, although there has been no empirical investigation of this vocalisation's structure or function. We quantified the content and efficacy of the bark and howl segments separately and when combined, using 140 calls from 10 individuals. We found that both segments are individually distinctive, although howl segments are more accurately classified, suggesting a higher level of individuality. Furthermore, howls convey signature characteristics that are conserved across different contexts of production, and thus may act as 'identity signals'. The individual distinctiveness of full bark-howls increases above that of isolated segments, which may be a result of selection on improved signal discriminability. Propagation tests revealed that bark-howls are best described as medium-range signals, with both segments potentially allowing for individual discrimination up to 200m regardless of environmental conditions. We discuss our findings regarding the fitness benefits of encoding identity cues in a potential alarm call and propose additional hypotheses for the function(s) of bark and howl segments. PMID:27343622

  5. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise

    2014-10-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H2O m-2 s-1. Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO2 exchange. These results agree with an emerging consensus in the literature demonstrating CO2 and H2O dynamics following large

  6. Large shift in symbiont assemblage in the invasive red turpentine beetle.

    PubMed

    Taerum, Stephen J; Duong, Tuan A; de Beer, Z Wilhelm; Gillette, Nancy; Sun, Jiang-Hua; Owen, Donald R; Wingfield, Michael J

    2013-01-01

    Changes in symbiont assemblages can affect the success and impact of invasive species, and may provide knowledge regarding the invasion histories of their vectors. Bark beetle symbioses are ideal systems to study changes in symbiont assemblages resulting from invasions. The red turpentine beetle (Dendroctonus valens) is a bark beetle species that recently invaded China from its native range in North America. It is associated with ophiostomatalean fungi in both locations, although the fungi have previously been well-surveyed only in China. We surveyed the ophiostomatalean fungi associated with D. valens in eastern and western North America, and identified the fungal species using multi-gene phylogenies. From the 307 collected isolates (147 in eastern North America and 160 in western North America), we identified 20 species: 11 in eastern North America and 13 in western North America. Four species were shared between eastern North America and western North America, one species (Ophiostoma floccosum) was shared between western North America and China, and three species (Grosmannia koreana, Leptographium procerum, and Ophiostoma abietinum) were shared between eastern North America and China. Ophiostoma floccosum and O. abietinum have worldwide distributions, and were rarely isolated from D. valens. However, G. koreana and L. procerum are primarily limited to Asia and North America respectively. Leptographium procerum, which is thought to be native to North America, represented >45% of the symbionts of D. valens in eastern North America and China, suggesting D. valens may have been introduced to China from eastern North America. These results are surprising, as previous population genetics studies on D. valens based on the cytochrome oxidase I gene have suggested that the insect was introduced into China from western North America.

  7. [Blister beetle dermatitis: Dermatitis linearis].

    PubMed

    Dieterle, R; Faulde, M; Erkens, K

    2015-05-01

    Several families of beetles cause toxic reactions on exposed human skin. Cantharidin provokes nearly asymptomatic vesicles and blisters, while pederin leads to itching and burning erythema with vesicles and small pustules, later crusts. Paederi are attracted by fluorescent light especially after rain showers and cause outbreaks in regions with moderate climate. Clinical findings and patient history lead to the diagnosis: dermatitis linearis.

  8. Raising Beetles in a Classroom.

    ERIC Educational Resources Information Center

    Hackett, Erla

    This guide is designed to provide elementary school teachers with a harmless, inexpensive, clean, odorless, and easy-to-care-for insect-rearing project for the classroom. The following topics are included: (1) instructions for the care and feeding of the beetle larvae; (2) student activities for observing larval characteristics and behavior…

  9. The Dung Beetle Dance: An Orientation Behaviour?

    PubMed Central

    Baird, Emily; Byrne, Marcus J.; Smolka, Jochen; Warrant, Eric J.; Dacke, Marie

    2012-01-01

    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path. PMID:22279572

  10. The dung beetle dance: an orientation behaviour?

    PubMed

    Baird, Emily; Byrne, Marcus J; Smolka, Jochen; Warrant, Eric J; Dacke, Marie

    2012-01-01

    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic "dance," in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path.

  11. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. PMID:26546596

  12. exo-Brevicomin biosynthesis in the fat body of the mountain pine beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Gorzalski, Andrew; Nguyen, Trang T; Liu, Xibei; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-02-01

    exo-Brevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive mountain pine beetle, Dendroctonus ponderosae. It also has been found in other insects and even in the African elephant. Despite its significance, little is known about its biosynthesis. In order to fill this gap and to identify new molecular targets for potential pest management methods, we performed gas chromatography-mass spectrometry analyses of cell cultures and in vitro assays of various D. ponderosae tissues with exo-brevicomin intermediates, analogs, and inhibitors. We confirmed that exo-brevicomin was synthesized by "unfed" males after emerging from the brood tree. Furthermore, in contrast to the paradigm established for biosynthesis of monoterpenoid pheromone components in bark beetles, exo-brevicomin was produced in the fat body, and not in the anterior midgut. The first committed step involves decarboxylation or decarbonylation of ω-3-decenoic acid, which is derived from a longer-chain precursor via β-oxidation, to (Z)-6-nonen-2-ol. This secondary alcohol is converted to the known precursor, (Z)-6-nonen-2-one, and further epoxidized by a cytochrome P450 to 6,7-epoxynonan-2-one. The keto-epoxide is stable at physiological pH, suggesting that its final cyclization to form exo-brevicomin is enzyme-catalyzed. exo-Brevicomin production is unusual in that tissue not derived from ectoderm apparently is involved. PMID:24532213

  13. exo-Brevicomin biosynthesis in the fat body of the mountain pine beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Gorzalski, Andrew; Nguyen, Trang T; Liu, Xibei; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-02-01

    exo-Brevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive mountain pine beetle, Dendroctonus ponderosae. It also has been found in other insects and even in the African elephant. Despite its significance, little is known about its biosynthesis. In order to fill this gap and to identify new molecular targets for potential pest management methods, we performed gas chromatography-mass spectrometry analyses of cell cultures and in vitro assays of various D. ponderosae tissues with exo-brevicomin intermediates, analogs, and inhibitors. We confirmed that exo-brevicomin was synthesized by "unfed" males after emerging from the brood tree. Furthermore, in contrast to the paradigm established for biosynthesis of monoterpenoid pheromone components in bark beetles, exo-brevicomin was produced in the fat body, and not in the anterior midgut. The first committed step involves decarboxylation or decarbonylation of ω-3-decenoic acid, which is derived from a longer-chain precursor via β-oxidation, to (Z)-6-nonen-2-ol. This secondary alcohol is converted to the known precursor, (Z)-6-nonen-2-one, and further epoxidized by a cytochrome P450 to 6,7-epoxynonan-2-one. The keto-epoxide is stable at physiological pH, suggesting that its final cyclization to form exo-brevicomin is enzyme-catalyzed. exo-Brevicomin production is unusual in that tissue not derived from ectoderm apparently is involved.

  14. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.

  15. The push-pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines.

    PubMed

    Gillette, Nancy E; Mehmel, Constance J; Mori, Sylvia R; Webster, Jeffrey N; Wood, David L; Erbilgin, Nadir; Owen, Donald R

    2012-12-01

    In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (Dendroctonus ponderosae Hopkins) in two studies. The first was conducted on replicated 4.04-ha plots in lodgepole pine stands (California, 2008) and the second on 0.81-ha plots in whitebark pine stands (Washington, 2010). In both studies, D. ponderosae population levels were moderate to severe. The treatments were 1) push-only (D. ponderosae antiaggregant semiochemicals alone); 2) push-pull (D. ponderosae antiaggregants plus perimeter traps placed at regular intervals, baited with four-component D. ponderosae aggregation pheromone); and 3) untreated controls. We installed monitoring traps baited with two-component D. ponderosae lures inside each plot to assess effect of treatments on beetle flight. In California, fewer beetles were collected in push-pull treated plots than in control plots, but push-only did not have a significant effect on trap catch. Both treatments significantly reduced the rate of mass and strip attacks by D. ponderosae, but the difference in attack rates between push-pull and push-only was not significant. In Washington, both push-pull and push-only treatments significantly reduced numbers of beetles caught in traps. Differences between attack rates in treated and control plots in Washington were not significant, but the push-only treatment reduced attack rates by 30% compared with both the control and push-pull treatment. We conclude that, at these spatial scales and beetle densities, push-only may be preferable for mitigating D. ponderosae attack because it is much less expensive, simpler, and adding trap-out does not appear to improve efficacy. PMID:23321106

  16. The push-pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines.

    PubMed

    Gillette, Nancy E; Mehmel, Constance J; Mori, Sylvia R; Webster, Jeffrey N; Wood, David L; Erbilgin, Nadir; Owen, Donald R

    2012-12-01

    In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (Dendroctonus ponderosae Hopkins) in two studies. The first was conducted on replicated 4.04-ha plots in lodgepole pine stands (California, 2008) and the second on 0.81-ha plots in whitebark pine stands (Washington, 2010). In both studies, D. ponderosae population levels were moderate to severe. The treatments were 1) push-only (D. ponderosae antiaggregant semiochemicals alone); 2) push-pull (D. ponderosae antiaggregants plus perimeter traps placed at regular intervals, baited with four-component D. ponderosae aggregation pheromone); and 3) untreated controls. We installed monitoring traps baited with two-component D. ponderosae lures inside each plot to assess effect of treatments on beetle flight. In California, fewer beetles were collected in push-pull treated plots than in control plots, but push-only did not have a significant effect on trap catch. Both treatments significantly reduced the rate of mass and strip attacks by D. ponderosae, but the difference in attack rates between push-pull and push-only was not significant. In Washington, both push-pull and push-only treatments significantly reduced numbers of beetles caught in traps. Differences between attack rates in treated and control plots in Washington were not significant, but the push-only treatment reduced attack rates by 30% compared with both the control and push-pull treatment. We conclude that, at these spatial scales and beetle densities, push-only may be preferable for mitigating D. ponderosae attack because it is much less expensive, simpler, and adding trap-out does not appear to improve efficacy.

  17. Attaching lures to multiple-funnel traps targeting saproxylic beetles (Coleoptera) in pine stands: inside or outside funnels?

    PubMed

    Miller, Daniel R; Crowe, Christopher M; Barnes, Brittany F; Gandhi, Kamal J K; Duerr, Donald A

    2013-02-01

    We conducted two field trapping experiments with multiple-funnel traps in 2008 and one experiment in 2010 to determine the effects of lure placement (inside or outside funnels) on catches of saproxylic species of beetles (Coleoptera). The experiments were conducted in southern pine (Pinus spp.) stands in central Georgia using combinations of ethanol, alpha-pinene, ipsenol, and ipsdienol lures. We report on a modification to the multiple-funnel trap that allows placement of large lures inside the confines of the funnels with minimal blockage. In general, catches of five species of common longhorn beetles (Cerambycidae), two species of regeneration weevils (Curculionidae), four species of bark beetles (Curculionidae: Scolytinae), and seven species of beetle predators and ectoparasites (Cleridae, Histeridae, Tenebrionidae, Trogossitidae, and Zopheridae) were higher in funnel traps with lures attached inside the funnels than in those with lures attached outside of the funnels. Catches of the remaining species were unaffected by lure placement. In no instance were catches of any species lower in funnel traps with lures attached inside the funnels than in those with lures attached outside of the funnels. For most species, catches in modified funnel traps with ethanol, alpha-pinene, ipsenol, and ipsdienol lures attached inside funnels were comparable with those in cross-vane panel traps.

  18. Antimicrobial triterpenes from the stem bark of Crossopteryx febrifuga.

    PubMed

    Chouna, Jean Rodolphe; Tamokou, Jean-de-Dieu; Nkeng-Efouet-Alango, Pépin; Lenta, Bruno Ndjakou; Sewald, Norbert

    2015-07-01

    Phytochemical investigation of the stem bark extract of Crossopteryx febrifuga resulted in the isolation of epimeric mixtures of 3β-urs-12,20(30)-diene-27,28-dioic acid and 18-epi-3β-urs-12,20(30)-diene-27,28-dioic acid (1), as well as: 3β-D-glucopyranosylurs-12,20(30)-diene-27,28-dioic acid and 18-epi-3β-D-glucopyranosylurs-12,20(30)-diene-27,28-dioic acid (2), together with some known compounds such as the monoglyceride of palmitic acid, as well as β-sitosterol and its glucoside. The structures of the isolated compounds were determined by application of spectroscopic methods. The MeOH extract and compounds 1 and 2 were examined for antimicrobial activity in in vitro assays against bacteria (Enterobacter aerogenes ATCC13048, Escherichia coli ATCC8739, Klebsiella pneumoniae ATCC11296, Staphylococcus aureus) and fungi (Candida parapsilosis, Candida albicans ATCC 9002 and Cryptococcus neoformans IP 90526). The tested samples showed selective activities. The antibacterial and antifungal activities of compound 2 (MIC=8-64 μg/mL) were in some cases equal to or even higher than those of the respective reference drugs chloramphenicol (MIC=16- 64 μg/mL) and nystatin (MIC=128-256 μg/mL). PMID:26352201

  19. Oedemerid blister beetle dermatosis: a review.

    PubMed

    Nicholls, D S; Christmas, T I; Greig, D E

    1990-05-01

    Blister beetle dermatosis is a distinctive vesiculobullous eruption that occurs after contact with three major groups of beetles (Order: Coleoptera). It is caused by a vesicant chemical contained in the body fluids of the beetles. The smallest and least known family is the Oedemeridae. Although there are few references in the medical literature, blister beetle dermatosis caused by oedemerids may be more common and widespread than currently recognized. The best known family is the Meloidae with numerous species worldwide causing blistering. The vesicant chemical in both Oedemeridae and Meloidae is cantharidin. The third group of blister beetles includes species of the genus Paederus (Family: Staphylinidae). The clinicopathologic picture differs because this genus contains a different vesicant agent, pederin. The clinicopathologic features of oedemerid blister beetle dermatosis are described. The world medical and relevant entomologic literature is reviewed.

  20. Oedemerid blister beetle dermatosis: a review.

    PubMed

    Nicholls, D S; Christmas, T I; Greig, D E

    1990-05-01

    Blister beetle dermatosis is a distinctive vesiculobullous eruption that occurs after contact with three major groups of beetles (Order: Coleoptera). It is caused by a vesicant chemical contained in the body fluids of the beetles. The smallest and least known family is the Oedemeridae. Although there are few references in the medical literature, blister beetle dermatosis caused by oedemerids may be more common and widespread than currently recognized. The best known family is the Meloidae with numerous species worldwide causing blistering. The vesicant chemical in both Oedemeridae and Meloidae is cantharidin. The third group of blister beetles includes species of the genus Paederus (Family: Staphylinidae). The clinicopathologic picture differs because this genus contains a different vesicant agent, pederin. The clinicopathologic features of oedemerid blister beetle dermatosis are described. The world medical and relevant entomologic literature is reviewed. PMID:2189910

  1. Continuously Connected With Mobile IP

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  2. Visualizing the mesothoracic spiracles in a bark beetle: The coffee berry borer, Hypothenemus hampei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a low-temperature scanning electron microscopy study aimed at determining whether the coffee berry borer (Hypothenemus hampei (Ferrari); Coleoptera: Curculionidae: Scolytinae) possesses mycangia, we fortuitously detected the mesothoracic spiracles, which are usually concealed. The mesothoracic s...

  3. Induced oleoresin biosynthesis in grand fir as a defense against bark beetles.

    PubMed Central

    Steele, C L; Lewinsohn, E; Croteau, R

    1995-01-01

    Grand fir (Abies grandis) saplings and derived cell cultures are useful systems for studying the regulation of defensive oleoresinosis in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced production of monoterpene olefins (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. The pathways and enzymes involved in monoterpene and diterpene resin acid biosynthesis are described, as are the coinduction kinetics following stem injury as determined by resin analysis, enzyme activity measurements, and immunoblotting. The effects of seasonal development, light deprivation, and water stress on constitutive and wound-induced oleoresinosis are reported. Future efforts, including a PCR-based cloning strategy, to define signal transduction in the wound response and the resulting gene activation processes are delineated. Images Fig. 6 PMID:7753778

  4. Historical demography and phylogeography of a specialist bark beetle, Dendroctonus pseudotsugae Hopkins (Curculionidae: Scolytinae).

    PubMed

    Ruiz, Enrico A; Rinehart, John E; Hayes, Jane L; Zuñiga, Gerardo

    2010-10-01

    Contemporary distribution of North American species has been shaped by past glaciation events during the Quaternary period. However, their effects were not as severe in the southern Rocky Mountains and Northern Mexico as elsewhere in North America. In this context, we test hypotheses about the historical demography of Dendroctonus pseudotsugae, based on 136 haplotypes of mitochondrial cytochrome oxidase I. The phylogenetic analysis yielded four haplogroups corresponding to northwestern United States and southwestern Canada (NUS), southwestern United States (Arizona, SUS), northwestern Mexico (Sierra Madre Occidental, SMOC), and northeastern Mexico (Sierra Madre Oriental, SMOR). Predictions of demographic expansion were examined through neutrality tests against population growth and mismatch distribution. Results showed that the NUS and SMOC haplogroups have experienced demographic expansion events, whereas the SUS and SMOR haplogroups have not. Divergence times between pairs of haplogroups were estimated from early to middle Pleistocene. The longer divergence time between NUS and all other haplogroups could be the result of refugia within the Pacific Northwest and northern Rocky Mountains and long-term isolation from southernmost populations in Mexico. The results obtained in this study are in agreement with the evolutionary history of the host Douglas-fir, as the warmer climates of interglacial periods pushed conifers northward of Colorado, New Mexico, and Arizona, whereas environmental changes reduced the population size of Douglas-fir and forced fragmentation of distribution range southward into northern Mexico. PMID:22546468

  5. Cryptic postzygotic isolation in an eruptive species of bark beetle (Dendroctonus ponderosae).

    PubMed

    Bracewell, Ryan R; Pfrender, Michael E; Mock, Karen E; Bentz, Barbara J

    2011-04-01

    Studies of postzygotic isolation often involve well-differentiated taxa that show a consistent level of incompatibility, thereby limiting our understanding of the initial stages and development of reproductive barriers. Dendroctonus ponderosae provides an informative system because recent evidence suggests that distant populations produce hybrids with reproductive incompatibilities. Dendroctonus ponderosae shows an isolation-by-distance gene flow pattern allowing us to characterize the evolution of postzygotic isolation (e.g., hybrid inviability, hybrid sterility) by crossing populations along a continuum of geographic/genetic divergence. We found little evidence of hybrid inviability among these crosses. However, crosses between geographically distant populations produced sterile males (consistent with Haldane's rule). This effect was not consistent with the fixation of mutations in an isolation-by-distance pattern, but instead is spatially localized. These reproductive barriers are uncorrelated with a reduction in gene flow suggesting their recent development. Crosses between geographically proximal populations bounding the transition from compatibility to hybrid male sterility showed evidence of unidirectional reduction in hybrid male fecundity. Our study describes significant postzygotic isolation occurring across a narrow and molecularly cryptic geographic zone between the states of Oregon and Idaho. This study provides a view of the early stages of postzygotic isolation in a geographically widespread species.

  6. Metals bioaccumulation mechanism in neem bark

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  7. Antioxidant activity of Rhizophora mangle bark.

    PubMed

    Sánchez, Janet; Melchor, Gleiby; Martínez, Gregorio; Escobar, Arturo; Faure, Roberto

    2006-02-01

    The antioxidant activity of Rhizophora mangle bark aqueous extract and its majoritary component and high molecular weight polyphenols' fraction were studied using deoxyribose assay. The total extract and its fraction showed scavenging activity of hydroxyl radicals and hability to chelate iron ions. PMID:16436316

  8. Climate Change Effects on Multiple Disturbance Interactions: Wildland Fire, Mountain Pine Beetles, and Blister Rust Simulations on a Yellowstone National Park Landscape

    NASA Astrophysics Data System (ADS)

    Keane, R. E.; Loehman, R.; Smithwick, E. A.

    2011-12-01

    Complex interactions between disturbance, climate, and vegetation will dramatically alter spatial patterns and ecosystem processes in the future, but the interactions between multiple disturbances may ultimately determine vegetation response and landscape dynamics. The frequency and extent of wildland fire, mountain pine beetles, and blister rust are predicted to increase with global warming, but the interactions and reciprocal feedbacks between these three disturbances could also alter landscape trajectories. We used the mechanistic, spatially explicit, landscape FireBGCv2 model parameterized for Yellowstone National Park to determine the extent to which climate altered ecosystem carbon storage, landscape composition and structure, and interacting disturbance regimes that include wildland fire, mountain pine beetles, and white pine blister rust for lodgepole and whitebark pine forests. Under two simulated future climate scenarios (B2 and A2) and three disturbance scenarios (fire only, fire and beetles/rust, beetles/rust only), it appears fire and bark beetle disturbance events interacted to moderate burn area and decrease insect/disease mortality. Landscape composition and structure was roughly the same across disturbance scenarios except whitebark pine disappears when rust is present in the simulation. Overall, we conclude that disturbance interactions are important to landscape dynamics under future climates and these interactions may overwhelm the direct effects of climate or single disturbances.

  9. Interruption of the semiochemical-based attraction of ambrosia beetles to ethanol-baited traps and ethanol-injected trap trees by verbenone.

    PubMed

    Ranger, Christopher M; Tobin, Patrick C; Reding, Michael E; Bray, Alicia M; Oliver, Jason B; Schultz, Peter B; Frank, Steven D; Persad, Anand B

    2013-06-01

    We examined the extent to which verbenone, a bark beetle antiaggregation pheromone, interrupted the semiochemical-based attraction of ambrosia beetles. Field trapping studies conducted in Ohio showed that a verbenone dispenser with a release rate of 50 mg/d at 25°C reduced the attraction of Anisandrus sayi Hopkins, Euwallacea validus (Eichhoff), Hypothenemus dissimilis (Zimmermann), Xylosandrus germanus (Blandford), and Xyleborinus saxesenii (Ratzeburg) to ethanol-baited traps. A verbenone dispenser attached to ethanol-injected Magnolia virginiana L. trap trees deployed in Ohio also reduced ambrosia beetle attacks compared to trap trees without a verbenone dispenser. Subsequent field trials demonstrated a direct relationship between distance from a verbenone dispenser and ambrosia beetle attacks on trap trees in Ohio in 2011 and 2012 and Tennessee in 2012, but not in Tennessee and Virginia in 2011. Assessment of the influence of verbenone on the probability of attacks above a density threshold found that although attacks occurred on trap trees regardless of their proximity to a verbenone dispenser, the higher density of attacks per tree occurred on trap trees farthest away from the verbenone source in Ohio and Tennessee. Verbenone alone could be somewhat useful for discouraging ambrosia beetle attacks on individual trees or on a small spatial scale, but deployment of verbenone might be most effective when integrated as part of a "push-pull" strategy.

  10. Snow distribution throughout small subalpine catchment post-insect infestation of spruce and pine beetle.

    NASA Astrophysics Data System (ADS)

    Beverly, D.; Ewers, B. E.; Hyde, K.; Ohara, N.; Speckman, H. N.

    2015-12-01

    High elevation watersheds of the Rocky Mountains region contribute over 70% of the streamflow needed for infrastructure, agriculture, and ecological processes. Snow-water yields are heterogeneous in space and time and are driven by a multitude of snow distribution processes, including snowpack evolution driven by physical and biological factors. Quantifying heterogeneity of snowpack is further complicated by vegetation perturbations; much of the Rocky Mountains have experienced significant tree mortality due to bark beetle outbreaks. Reduction of living crown area decreases canopy interception while increasing radiation to snow surfaces, which alters snowpack distribution throughout the catchment. We hypothesize that, in a complex watershed, topographic variation (i.e., slope and aspect) will have a greater effect on snowpack evolution and distribution than densities of canopy mortality due to beetle infestation. The 120 ha No Name watershed, located in southern Wyoming at 3000 m elevation was divided into twenty-one 175 m2 parcels, in which plots were randomly assigned within each parcel. Peak snow was measured in April; in the 50 m2 plots, depths were measured every 2 m along north-south and east-west transects. Twenty-one snow pits were excavated to quantify snow densities in 10 cm increments throughout the pit profile. Forest inventories occurred the following summer. Peak snowpack levels occurred in April with mean depth of 92.3 ­­± 2.4 cm and peak SWE of 34.0 ± 0.84 cm. Binary decision trees accounted for 63% of the variability after including topographic indices, beetle condition of the trees, LAI, and basal area. Snow depth showed a slight positive relationship with increased in beetle mortality on slopes less than 11 degrees. Overall, topographic indices are greater drivers for snow distributions compared to effects of tree mortality.

  11. Pheromone production by axenically rearedDendroctonus ponderosae andIps paraconfusus (Coleoptera: Scolytidae).

    PubMed

    Conn, J E; Borden, J H; Hunt, D W; Holman, J; Whitney, H S; Spanier, O J; Pierce, H D; Oehlschlager, A C

    1984-02-01

    Mountain pine beetles,Dendroctonus ponderosae Hopkins, and California five-spined ips,Ips paraconfusus Lanier, were reared axenically from surface-sterilized eggs on aseptic pine phloem. After 24 hr in host logs, axenip femaleD. ponderosae and maleI. paraconfusus produced the aggregation pheromones,trans-verbenol (D. ponderosae), and ipsenol and ipsdienol (I. paraconfusus). Emergent, axenically reared maleD. ponderosae contained normal amounts of the pheromoneexo-brevicomin. Axenic femaleD. ponderosae treated with juvenile hormone or exposed to vapors of α-pinene, produced the pheromonetrans-verbenol. By 25-35 days after eclosion, axenic females exposed to α-pinene vapors produced over six times as muchtrans-verbenol as wild females, suggesting that while microorganisms in wild females may producetrans-verbenol, they may also inhibit production of the pheromone or use it as a substrate.

  12. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  13. VoIP in a Campus Environment

    ERIC Educational Resources Information Center

    Young, Dan

    2005-01-01

    Internet Protocol (IP) Telephony, or voice-over IP (VoIP), has proved to be a wise decision for many organizations. This technology crosses the boundaries of public and private networks, enterprise and residential markets, voice and data technologies, as well as local and long-distance services. The convergence of voice and data into a single,…

  14. Mountain pine beetle disturbance effects on soil respiration and nutrient pools

    NASA Astrophysics Data System (ADS)

    Trahan, N. A.; Moore, D. J.; Brayden, B. H.; Dynes, E.; Monson, R. K.

    2011-12-01

    Over the past decade, the mountain pine beetle Dendroctonos ponderosae has infested more than 86 million hectares of high elevation forest in the Western U.S.A. While bark beetles are endemic to western forests and important agents of regeneration, the current mountain pine beetle outbreak is larger than any other on record and the resulting tree mortality has significant consequences for nutrient cycling and regional carbon exchange. We established decade-long parallel disturbance chronosequences in two lodgepole pine (Pinus contorta) forests in Colorado: one composed of mountain pine beetle killed lodgepole stands and one consisting of trees where beetle mortality was simulated by stem girdling. Over the 2010 and 2011 growing season we measured plot level soil respiration fluxes, as well as soil extractable dissolved organic carbon, nitrogen, microbial biomass carbon and nitrogen, and pools of ammonium, nitrate and inorganic phosphorus. We show that soil respiration sharply declines with gross primary productivity after tree mortality, but rebounds during the next 4 years, then declines again from 6-8 years post-disturbance. Soil extractable dissolved organic carbon, microbial biomass carbon, and inorganic phosphorous pools follow the pattern observed in soil respiration fluxes across disturbance age classes for both sites, while patterns in total dissolved nitrogen exhibit site specific variation. Levels of detectable soil nitrate were low and did not significantly change across the chronosequence, while soil ammonium increased in a similar pattern with soil moisture in disturbed plots. These patterns in soil respiration and nutrient pools reflect the loss of autotrophic respiration and rhizodeposition immediately after tree mortality, followed by a pulse in soil efflux linked to the decomposition of older, less labile carbon pools. This pulse is likely controlled by the fall rate of litter, coarse woody debris and the relative impact of post-disturbance water

  15. Book review: Methods for catching beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...

  16. Standard methods for small hive beetle research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles, Aethina tumida, are parasites and scavengers of honey bee and other social bee colonies native to sub-Saharan Africa, where they are a minor pest only. In contrast, the beetles can be harmful parasites of European honey bee subspecies. Very rapidly after A. tumida established pop...

  17. Targeting red-headed flea beetle larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red-headed flea beetle (RHFB), Systena frontalis, is an emerging pest of cranberry that requires significant grower investment in monitoring and repeated applications of insecticides to reduce adult populations. The adult beetles are highly mobile and consume a broad range of host plants whereas t...

  18. Blister beetle dermatosis in New Zealand.

    PubMed

    Christmas, T I; Nicholls, D; Holloway, B A; Greig, D

    1987-08-26

    Seventy-four New Zealand Army personnel with a distinctive bullous dermatosis caused by an endemic beetle are described. These are the first reported cases of this condition in New Zealand. The beetle, Thelyphassa lineata (Fabricius) belonging to the family Oedemeridae was shown to be a vesicant species, as skin contact induced blisters in volunteers. This is a previously unrecognised property of this species.

  19. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profiles of different stages and responses to host allelochemicals.

    PubMed

    Dai, Lulu; Ma, Mingyuan; Wang, Chunyan; Shi, Qi; Zhang, Ranran; Chen, Hui

    2015-10-01

    Bark beetles oxidize the defensive allelochemicals from their host trees to both detoxify and convert these materials into components of their pheromone system. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYPs). Sixty-four sequences coding for P450s were identified, and most of the transcripts were found to be expressed in the larvae, pupae and adults of Dendroctonus armandi. To gain information on how these genes help D. armandi overcome the host defense, differential transcript levels of the CYP genes were observed between sexes and within the sexes. Significant differences were observed among developmental stages, in feeding on the phloem of Pinus armandi and in exposure to stimuli ((±)-α-pinene, (S)-(-)-α-pinene, (S)-(-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine oil) for 8 h. We investigated the effect of sex and generations on the survivorship of individual D. armandi that were exposed to host volatiles at concentrations comparable to constitutive and induced levels of defense using fumigant exposure to understand the ability of the beetles to tolerate host defensive chemicals. The differential transcript accumulation patterns of CYP genes of these bark beetle provided insight into the ecological interactions of D. armandi with its host pine. PMID:26319543

  20. Anemomenotatic orientation in beetles and scorpions

    NASA Technical Reports Server (NTRS)

    Linsenmair, K. E.

    1972-01-01

    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.

  1. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  2. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  3. Cardenolides from the bark of Calotropis gigantea.

    PubMed

    Van Khang, Pham; Zhang, Zhong-Guo; Meng, Yu-Hui; Guo, De-An; Liu, Xuan; Hu, Li-Hong; Ma, Lei

    2014-01-01

    Three new cardenolides (1-3) were isolated from the 90% ethanolic extract of the bark of a wild-type Calotropis gigantea. Their structures were determined by using NMR spectra and LC-MS analysis. Their inhibitory activities were evaluated against non-small cell lung carcinoma (A549) and human cervix epithelial adenocarcinoma (HeLa) cell lines. Compounds 1 and 3 exhibited strong inhibitory effect on two cancer cell lines.

  4. IP Profiling via Service Cluster Membership Vectors

    SciTech Connect

    Bartoletti, A

    2009-02-23

    This study investigates the feasibility of establishing and maintaining a system of compact IP behavioral profiles as a robust means of computer anomaly definition and detection. These profiles are based upon the degree to which a system's (IP's) network traffic is distributed among stable characteristic clusters derived of the aggregate session traffic generated by each of the major network services. In short, an IP's profile represents its degree of membership in these derived service clusters. The goal is to quantify and rank behaviors that are outside of the statistical norm for the services in question, or present significant deviation from profile for individual client IPs. Herein, we establish stable clusters for accessible features of common session traffic, migrate these clusters over time, define IP behavior profiles with respect to these clusters, migrate individual IP profiles over time, and demonstrate the detection of IP behavioral changes in terms of deviation from profile.

  5. Proteomics of nitrogen remobilization in poplar bark.

    PubMed

    Islam, Nazrul; Li, Gen; Garrett, Wesley M; Lin, Rongshuang; Sriram, Ganesh; Cooper, Bret; Coleman, Gary D

    2015-02-01

    Seasonal nitrogen (N) cycling in temperate deciduous trees involves the accumulation of bark storage proteins (BSPs) in phloem parenchyma and xylem ray cells. BSPs are anabolized using recycled N during autumn leaf senescence and later become a source of N during spring shoot growth as they are catabolized. Little is known about the catabolic processes involved in remobilization and reutilization of N from BSPs in trees. In this study, we used multidimensional protein identification technology (MudPIT) and spectral counting to identify protein changes that occur in the bark during BSP catabolism. A total of 4,178 proteins were identified from bark prior to and during BSP catabolism. The majority (62%) of the proteins were found during BSP catabolism, indicating extensive remodeling of the proteome during renewed shoot growth and N remobilization. Among these proteins were 30 proteases, the relative abundances of which increased during BSP catabolism. These proteases spanned a range of families including members of the papain-like cysteine proteases, serine carboxypeptidases, and aspartyl proteases. These data identify, for the first time, candidate proteases that could potentially provide hydrolase activity required for N remobilization from BSPs and provide the foundation for research to advance our knowledge of poplar N cycling.

  6. Metals Bioaccumulation Mechanism in Neem Bark.

    PubMed

    Krishnani, Kishore K; Boddu, Veera M; Moon, Deok Hyun; Ghadge, S V; Sarkar, Biplab; Brahmane, M P; Choudhary, K; Kathiravan, V; Meng, Xiaoguang

    2015-09-01

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as Hg(2+) < Cd(2+) < Pb(2+) ≅ Cu(2+). Surface properties of the biomaterial were characterized by X-ray photoelectron spectroscopy and X-ray diffraction techniques for their sorption mechanism. Whewellite (C2CaO4 · H2O) was identified in the biomaterial, which indicated that calcium ions are electrovalently bonded with carboxylate ions facilitating the ion exchange mechanism with metal ions. Bioaccumulation of metal ions was also studied by Fourier transform infrared spectroscopy, which indicated the presence of functional groups implicated in adsorbing metal ions. Biomaterial did not adsorb anionic As(III), As(V) and Cr(VI), because of their electrostatic repulsion with carboxylic functional groups. Neem bark can be used as bioindicators, bioaccumulators and biomonitors while determining environmental pressures. Metal bioaccumulative properties and structural investigation of plant bark has potential in providing quantitative information on the metal contamination in the surrounding environment. PMID:26193837

  7. Metals Bioaccumulation Mechanism in Neem Bark.

    PubMed

    Krishnani, Kishore K; Boddu, Veera M; Moon, Deok Hyun; Ghadge, S V; Sarkar, Biplab; Brahmane, M P; Choudhary, K; Kathiravan, V; Meng, Xiaoguang

    2015-09-01

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as Hg(2+) < Cd(2+) < Pb(2+) ≅ Cu(2+). Surface properties of the biomaterial were characterized by X-ray photoelectron spectroscopy and X-ray diffraction techniques for their sorption mechanism. Whewellite (C2CaO4 · H2O) was identified in the biomaterial, which indicated that calcium ions are electrovalently bonded with carboxylate ions facilitating the ion exchange mechanism with metal ions. Bioaccumulation of metal ions was also studied by Fourier transform infrared spectroscopy, which indicated the presence of functional groups implicated in adsorbing metal ions. Biomaterial did not adsorb anionic As(III), As(V) and Cr(VI), because of their electrostatic repulsion with carboxylic functional groups. Neem bark can be used as bioindicators, bioaccumulators and biomonitors while determining environmental pressures. Metal bioaccumulative properties and structural investigation of plant bark has potential in providing quantitative information on the metal contamination in the surrounding environment.

  8. Electroantennograms by mountain pine beetles,Dendroctonus ponderosae Hopkins, exposed to selected chiral semiochemicals.

    PubMed

    Whitehead, A T; Del Scott, T; Schmitz, R F; Mori, K

    1989-07-01

    Electroantennograms (EAGs) were recorded fromD. ponderosae to the enantiomers of the terpenoid bark-beetle pheromonestrans-verbenol,cis-verbenol, verbenone, and the bicyclic ketals frontalin,exo-brevicomin, andendo-brevicomin. Male and female responses to enantiomers of the terpenoids differed significantly only at the two highest concentrations. No sex differences were seen in response to the bicyclic ketals. Significantly different responses to the enantiomers of all the chemicals, except frontalin, were noted over at least part of the dosage-response ranges tested. The negative antipode for all of the terpenoids elicited higher responses, while for the bicyclic ketals, the positive antipode effected the largest responses except for the two highest concentrations ofexo-brevicomin.

  9. Phytochemical investigations of Lonchocarpus bark extracts from Monteverde, Costa Rica.

    PubMed

    Deskins, Caitlin E; Vogler, Bernhard; Dosoky, Noura S; Chhetria, Bhuwan K; Haber, William A; Setzer, William N

    2014-04-01

    The acetone bark extracts of three species of Lonchocarpus from Monteverde, Costa Rica, L. atropurpureus, L. oliganthus, and L. monteviridis, were screened for antibacterial, cytotoxic, and antioxidant activities. L. orotinus extract was antibacterial against Bacillus cereus (MIC = 39 microg/mL), while L. monteviridis exhibited the most antioxidant activity. None of the Lonchocarpus extracts showed cytotoxic activity against MCF-7 cells. Fatty acids and atraric acid were isolated and purified from L. atropurpureus bark, fatty acids and loliolide from L. oliganthus bark, and leonuriside A and beta-D-glucopyranos-1-yl N-methylpyrrole-2-carboxylate from L. monteviridis bark. Atraric acid showed cytotoxic and antimicrobial activities. PMID:24868870

  10. The 'WHY?' files: the case of the barking dog

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this program, students are invited to actively join the tree house detectives as they investigate the 'Case of the Barking Dogs.' The tree house detectives accept the challenge of determining why dogs in the surrounding neighborhoods have unexpectedly started barking early in the morning and late at night. Using scientific inquiry, our detectives discover what is causing the neighborhood dogs to bark. In determining the 'why,' the detectives learn about sound: what it is, how it is transmitted, how people and animals hear, and NASA's research on noise. While solving the case, the tree house detectives learn that determining the source of the barking requires the use of logic and 'sound' reasoning.

  11. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  12. Vaccines and IP Rights: A Multifaceted Relationship.

    PubMed

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution.

  13. Vaccines and IP Rights: A Multifaceted Relationship.

    PubMed

    Durell, Karen

    2016-01-01

    Just as there are many forms of vaccines and components to vaccines-particular compositions, delivery systems, components, and distribution networks-there are a variety of intellectual property (IP) protections applicable for vaccines. IP rights such as patent, copyright, trademarks, plant breeders' rights, and trade secrets may all be applicable to vaccines. Thus, discussion of IP rights and vaccines should not begin and end with the application of one IP right to a vaccine. The discussion should engage considerations of multiple IP rights applicable to a vaccine and how these can be utilized in an integrated manner in a strategy aimed at supporting the development and distribution of the vaccine. Such an approach to IP rights to vaccines allows for the integrated rights to be considered in light of the justifications for protecting vaccines with IP rights, as well as the issues relating to specific IP rights for vaccines, such as compulsory license regimes, available humanitarian purpose IP credits, etc. To view vaccines as the subject of multiple IP protections involves a refocusing, but the outcome can provide significant benefits for vaccine development and distribution. PMID:27076338

  14. Lunar orientation in a beetle.

    PubMed Central

    Dacke, Marie; Byrne, Marcus J.; Scholtz, Clarke H.; Warrant, Eric J.

    2004-01-01

    Many animals use the sun's polarization pattern to orientate, but the dung beetle Scarabaeus zambesianus is the only animal so far known to orientate using the million times dimmer polarization pattern of the moonlit sky. We demonstrate the relative roles of the moon and the nocturnal polarized-light pattern for orientation. We find that artificially changing the position of the moon, or hiding the moon's disc from the beetle's field of view, generally did not influence its orientation performance. We thus conclude that the moon does not serve as the primary cue for orientation. The effective cue is the polarization pattern formed around the moon, which is more reliable for orientation. Polarization sensitivity ratios in two photoreceptors in the dorsal eye were found to be 7.7 and 12.9, similar to values recorded in diurnal navigators. These results agree with earlier results suggesting that the detection and analysis of polarized skylight is similar in diurnal and nocturnal insects. PMID:15101694

  15. Antinociceptive effect of aqueous extracts from the bark of Croton guatemalensis Lotsy in mice.

    PubMed

    Del Carmen, Rejón-Orantes José; Willam, Hernández Macías John; Del Carmen, Grajales Morales Azucena; Nataly, Jiménez-García; Stefany, Coutiño Ochoa Samantha; Anahi, Cañas Avalos; Domingo, Parcero Torres Jorge; Leonardo, Gordillo Páez; Miguel, Pérez de la Mora

    2016-01-01

    Croton guatemalensis Lotsy (CGL), known as "copalchi" in Chiapas, Mexico, is used for the treatment of fever, abdominal pain and malaria and also as a remedy for chills and for treating rheumatism. The aim of this study was to evaluate whether aqueous extracts from the bark of this plant possesses indeed antinociceptive properties by using two different animal models of nociception, the acetic acid-induced writhing test and the hot plate model. The results showed that i.p. administration of this extract (0, 100, 200 and 400 mg/kg) 30 min prior testing had significant dose-dependent antinociceptive effects in the acetic acid-induced writhing test and that the reduction of writhings (85.5 % as compared to the control) at the highest dose tested is similar to that exhibited by dipyrone (250 mg/kg). This effect was not reversed by naloxone, a non-selective opioid receptor antagonist, suggesting that the endogenous opioid system does not underlie the antinociceptive effects of CGL in the acetic acid-induced writhing test. No effects were however observed in the hot-plate model. Our results indicate that aqueous extracts from Croton guatemalensis bark contain pharmacologically active constituents endowed with antinociceptive activity. It is suggested that cyclooxygenase inhibition might be at least partially involved in the antinociceptive effects of this extract.

  16. Antinociceptive effect of aqueous extracts from the bark of Croton guatemalensis Lotsy in mice.

    PubMed

    Del Carmen, Rejón-Orantes José; Willam, Hernández Macías John; Del Carmen, Grajales Morales Azucena; Nataly, Jiménez-García; Stefany, Coutiño Ochoa Samantha; Anahi, Cañas Avalos; Domingo, Parcero Torres Jorge; Leonardo, Gordillo Páez; Miguel, Pérez de la Mora

    2016-01-01

    Croton guatemalensis Lotsy (CGL), known as "copalchi" in Chiapas, Mexico, is used for the treatment of fever, abdominal pain and malaria and also as a remedy for chills and for treating rheumatism. The aim of this study was to evaluate whether aqueous extracts from the bark of this plant possesses indeed antinociceptive properties by using two different animal models of nociception, the acetic acid-induced writhing test and the hot plate model. The results showed that i.p. administration of this extract (0, 100, 200 and 400 mg/kg) 30 min prior testing had significant dose-dependent antinociceptive effects in the acetic acid-induced writhing test and that the reduction of writhings (85.5 % as compared to the control) at the highest dose tested is similar to that exhibited by dipyrone (250 mg/kg). This effect was not reversed by naloxone, a non-selective opioid receptor antagonist, suggesting that the endogenous opioid system does not underlie the antinociceptive effects of CGL in the acetic acid-induced writhing test. No effects were however observed in the hot-plate model. Our results indicate that aqueous extracts from Croton guatemalensis bark contain pharmacologically active constituents endowed with antinociceptive activity. It is suggested that cyclooxygenase inhibition might be at least partially involved in the antinociceptive effects of this extract. PMID:27051428

  17. Antinociceptive effect of aqueous extracts from the bark of Croton guatemalensis Lotsy in mice

    PubMed Central

    del Carmen, Rejón-Orantes José; Willam, Hernández Macías John; del Carmen, Grajales Morales Azucena; Nataly, Jiménez-García; Stefany, Coutiño Ochoa Samantha; Anahi, Cañas Avalos; Domingo, Parcero Torres Jorge; Leonardo, Gordillo Páez; Miguel, Pérez de la Mora

    2016-01-01

    Croton guatemalensis Lotsy (CGL), known as “copalchi” in Chiapas, Mexico, is used for the treatment of fever, abdominal pain and malaria and also as a remedy for chills and for treating rheumatism. The aim of this study was to evaluate whether aqueous extracts from the bark of this plant possesses indeed antinociceptive properties by using two different animal models of nociception, the acetic acid-induced writhing test and the hot plate model. The results showed that i.p. administration of this extract (0, 100, 200 and 400 mg/kg) 30 min prior testing had significant dose-dependent antinociceptive effects in the acetic acid-induced writhing test and that the reduction of writhings (85.5 % as compared to the control) at the highest dose tested is similar to that exhibited by dipyrone (250 mg/kg). This effect was not reversed by naloxone, a non-selective opioid receptor antagonist, suggesting that the endogenous opioid system does not underlie the antinociceptive effects of CGL in the acetic acid-induced writhing test. No effects were however observed in the hot-plate model. Our results indicate that aqueous extracts from Croton guatemalensis bark contain pharmacologically active constituents endowed with antinociceptive activity. It is suggested that cyclooxygenase inhibition might be at least partially involved in the antinociceptive effects of this extract. PMID:27051428

  18. Analysis of Handoff Mechanisms in Mobile IP

    NASA Astrophysics Data System (ADS)

    Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar

    2011-06-01

    One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.

  19. Barking seizure: acute episodes of barking in a 75-year-old previously healthy man.

    PubMed

    Harandi, Ali Amini; Kalanie, Hossein; Asadollahi, Marjan; Fatehi, Farzad; Pakdaman, Hossein; Gharagozli, Koroush

    2012-05-01

    A 75-year-old right-handed man was admitted to our emergency department complaining of recurrent episodes of involuntary 'barking' within the past 12h. The episodes had occurred after an initial two-minute attack from sleep involving tonic contraction of the upper extremities and jaw locking. By the time of admission, the patient had had a total of at least 7-10 'barking' episodes, each lasting 30-45 s. Seven months prior to his current admission, the patient had had a minor ischemic stroke causing mild left paresis, which had resolved completely. His awake EEG revealed a normal background pattern interrupted by runs of two per second slow waves mixed with low-voltage spikes in the left temporal lobe with a left mid-temporal emphasis. The patient was diagnosed with recurrent simple partial seizures, and treatment with intravenous valproic acid was initiated. He was discharged four days later without having experienced any further barking episodes. Atypical presentations of the epileptic seizures have been described in the literature, but ictal barking is very rare manifestation of epilepsy. PMID:22391466

  20. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  1. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  2. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  3. Internet topology: connectivity of IP graphs

    NASA Astrophysics Data System (ADS)

    Broido, Andre; claffy, kc

    2001-07-01

    In this paper we introduce a framework for analyzing local properties of Internet connectivity. We compare BGP and probed topology data, finding that currently probed topology data yields much denser coverage of AS-level connectivity. We describe data acquisition and construction of several IP- level graphs derived from a collection of 220 M skitter traceroutes. We find that a graph consisting of IP nodes and links contains 90.5% of its 629 K nodes in the acyclic subgraph. In particular, 55% of the IP nodes are in trees. Full bidirectional connectivity is observed for a giant component containing 8.3% of IP nodes.

  4. The Effects of Site Conditions and Mitigation Practices on Success of Establishing the Valley Elderberry Longhorn Beetle and Its Host Plant, Blue Elderberry

    NASA Astrophysics Data System (ADS)

    Holyoak, Marcel; Koch-Munz, Molly

    2008-09-01

    This study performed the first systematic evaluation of the success of habitat mitigation at establishing the threatened Valley elderberry longhorn beetle ( Desmocerus californicus dimorphus) and its host plant, blue elderberry ( Sambucus mexicana). Habitat mitigation performed through enforcement of the U.S. Endangered Species Act represents a tightly controlled form of habitat restoration, facilitating the evaluation of restoration practice. Restoration plantings of blue elderberry have been substantial in our study area, the Central Valley of California. Surveys of 30 mitigation sites and 16 nearby natural sites showed that mitigation sites were a fraction of the size of natural habitat areas (mean = 24%) and contained smaller shrubs. The beetle colonized 53% of mitigation sites and its populations were denser in sites with moderate levels of dead stems on elderberry shrubs, and moderate damage to elderberry stems and bark. This likely indicates that the beetle responds to stressed shrubs, which are likely to contain elevated levels of nitrogen. Beetle density also increased with the size and age of mitigation sites. This indicates a need to make restoration sites as large as possible and to monitor these sites for longer than current guidelines suggest, thereby allowing more time for convergence of natural and mitigation sites. Few factors examined here directly influenced the growth of elderberry shrubs, but elderberry grew more rapidly in sites closer to riparian areas, indicating that such sites should be favored for mitigation sites.

  5. Creosote production from beetle infested timber

    SciTech Connect

    Allen, J.F.; Maxwell, T.T.

    1982-01-01

    Wood-tar creosote accumulation in stove pipes and chimneys following burning of beetle-killed southern pine, green pine, seasoned hardwood totalled 6.21, 3.21, 4.27 and 3.73 lb/ton DM respectively. Tests showed that accumulation depends more on air supply to the stove than type or moisture content of wood burned. It is suggested that beetle-killed pine should not be rejected as a fuelwood on the basis of creosote production.

  6. Polychlorinated biphenyl accumulation in tree bark and wood growth rings

    SciTech Connect

    Meredith, M.L.; Hites, R.A.

    1987-07-01

    Polychlorinated biphenyls (PCBs) were found in the bark of black walnut and tulip poplar trees growing near a PCB-contaminated landfill. PCBs were also found in the bark of white oak trees growing 14 km away from the landfill. The concentration of individual congeners in the bark averaged 18 ppb at the landfill and 0.5 ppb at the other site. The PCB congeners were accumulated into the bark in proportion to their lipophilicity (as measured by octanol-water partition coefficients). The authors findings suggest that tree bark could be used for biomonitoring of lipophilic organic pollutants in the atmosphere. There is little evidence that PCBs are present in the wood of trees. The signal to blank ratios are always less than 3, and the relative concentrations between 20-year time intervals do not show trends that correlate with the known inputs of PCBs in Bloomington, IN. 2 tables.

  7. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  8. Modeling net ecosystem exchange of carbon dioxide in a beetle-attacked subalpine forest using a data-constrained ecosystem model

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Ewers, B. E.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Ryan, M. G.; Scott, H.; Pendall, E.

    2012-12-01

    The mountain pine and spruce bark beetles and associated blue-stain fungi have caused widespread mortality in the forests of the western U.S. during the past decade, impacting over 1.6 Mha in Northern Colorado and Southeast Wyoming alone. Both the beetles and fungi they carry block tree xylem and eventually cause mortality due to hydraulic failure. Previous studies of bark beetle mortality in Canadian forests have suggested a net loss of carbon following beetle attack. This study aimed to determine if forests in the southern Rocky Mountains showed a similar response. We simulated carbon fluxes over a time period of six years (2005-2010) at the Glacier Lakes Ecosystem Experiment sites (GLEES) Ameriflux site using the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. This time period included a beetle infestation during the last three years that resulted in mortality of 51% of the spruce trees that accounted for 90% of the spruce basal area. Model estimates of net ecosystem exchange of CO2 (NEE) were compared to eddy-covariance measurements before, during, and after beetle attack. Model predictions of NEE were generated two ways, 1) using the standard set of maintenance respiration coefficients, and 2) constraining modeled respiration using equations derived from field measurements of stem, leaf, and soil respiration at GLEES, and were compared to NEE observations before, during, and after the presence of bark beetles. Model changes included both simple modification of the exponential temperature response curve (Q10) and adding new equations based on both temperature and live tissue nitrogen content. Pre-beetle observed growing season mean NEE averaged -1.49 μmol C m-2 s-1 and simulation means ranged from -4.10 to 0.64 μmol C m-2 s-1. Changing the model's computation of maintenance respiration to incorporate site-specific temperature response (Q10) resulted in an over-prediction of nighttime NEE by up to 100%, but a 10-30% improvement during the day

  9. The impact of beetle-induced conifer death on stand-scale canopy snow interception

    NASA Astrophysics Data System (ADS)

    Pugh, E. T.; Small, E. E.

    2011-12-01

    Snow that falls on a forest either passes through the canopy to the ground or is intercepted by the canopy on needles, branches or bark. The interception of snowfall in forest canopies impacts the water budget because intercepted snow is more likely to sublimate than subcanopy snow. Because forest canopy characteristics are a primary control of canopy snow interception, which in turn controls subcanopy snow accumulation, reductions in canopy density have important implications for snow accumulation on the forest floor. Forest structure can be drastically and rapidly altered by forest disturbance, such as insect attack, wildfire and blowdown. Here, we look at the impact that changing forest characteristics associated with beetle infestation have on canopy snow interception. The mountain pine beetle is currently impacting more than 100,000 km2 of pine forest in western North America. Trees killed by bark beetles eventually lose the majority of their canopy material. We hypothesize that tree death significantly reduces available interception platforms, leading to greater subcanopy snow accumulation than pre-infestation conditions. These potential impacts on snow accumulation are especially important for water resources in the western U.S., where the hydrologic cycle is dominated by snowmelt. We test this hypothesis using extensive data collected from adjacent living and grey phase dead stands. We employ multiple methods to measure canopy snow interception, at both the storm- and season-scales. During the winter of 2011, we made more than 10,000 spatially distributed measurements of subcanopy snow accumulation in three living and two dead lodgepole pine stands as well as three clearings. Measurements were made daily as well as immediately prior to and following storm events, allowing us to calculate storm-scale canopy interception. Interception is estimated by comparing subcanopy snow accumulation in clearings and forests. Additionally, by taking repeated daily

  10. VoIP to the Rescue

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    Voice over Internet Protocol (VoIP) is everywhere. The technology lets users make and receive phone calls over the Internet, transporting voice traffic alongside data traffic such as instant messages (IMs) and e-mail. While the number of consumer customers using VoIP increases every week, the technology is finding its way into K-12 education as…

  11. Volatile emissions from the lesser mealworm beetle Alphitobius diaperinus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lesser mealworm beetle Alphitobius diaperinus (Panzer) is a serious, cosmopolitan pest in poultry production facilities, consuming grain, carrying disease organisms, and causing structural damage in poultry house walls. Pheromones have been described for many economically important beetle speci...

  12. Do Pine Beetles Fan the Flames in Western Forests?

    NASA Video Gallery

    As mountain pine beetles damage whole regions of Western forests, some worry that the dead trees left behind have created a tinderbox ready to burn. But do pine beetles really increase fire risk? I...

  13. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  14. Comparative characterization of two intracellular Ca²⁺-release channels from the red flour beetle, Tribolium castaneum.

    PubMed

    Liu, Yaping; Li, Chengjun; Gao, Jingkun; Wang, Wenlong; Huang, Li; Guo, Xuezhu; Li, Bin; Wang, Jianjun

    2014-10-21

    Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are members of a family of tetrameric intracellular Ca(2+)-release channels (CRCs). While it is well known in mammals that RyRs and IP3Rs modulate multiple physiological processes, the roles of these two CRCs in the development and physiology of insects remain poorly understood. In this study, we cloned and functionally characterized RyR and IP3R cDNAs (named TcRyR and TcIP3R) from the red flour beetle, Tribolium castaneum. The composite TcRyR gene contains an ORF of 15,285 bp encoding a protein of 5,094 amino acid residues. The TcIP3R contains an 8,175 bp ORF encoding a protein of 2,724 amino acids. Expression analysis of TcRyR and TcIP3R revealed significant differences in mRNA expression levels among T. castaneum during different developmental stages. When the transcript levels of TcRyR were suppressed by RNA interference (RNAi), an abnormal folding of the adult hind wings was observed, while the RNAi-mediated knockdown of TcIP3R resulted in defective larval-pupal and pupal-adult metamorphosis. These results suggested that TcRyR is required for muscle excitation-contraction (E-C) coupling in T. castaneum, and that calcium release via IP3R might play an important role in regulating ecdysone synthesis and release during molting and metamorphosis in insects.

  15. New data on flea beetle management in cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Report of two trials conducted this summer for flea beetle management. The first one, conducted in the greenhouse, compares efficacy of native WI nematodes to chemical insecticides for flea beetle control. In this trial, nematodes provided similar control for flea beetles as both insecticides (Belay...

  16. Antidepressant-Like Effects of Sanggenon G, Isolated from the Root Bark of Morus alba, in Rats: Involvement of the Serotonergic System.

    PubMed

    Lim, Dong Wook; Jung, Jae-Woo; Park, Ji-Hae; Baek, Nam-In; Kim, Yun Tai; Kim, In-Ho; Han, Daeseok

    2015-01-01

    The root bark of Morus alba is commonly used as an alternative medicine due to its numerous health benefits in humans. However, the antidepressant effects of various active components from M. alba have not been fully elucidated. In this study, we aimed to determine whether sanggenon G, an active compound isolated from the root bark of M. alba, exhibited antidepressant-like activity in rats subjected to forced swim test (FST)-induced depression. Acute treatment of rats with sanggenon G (30 mg/kg, intraperitoneally (i.p.)) significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with sanggenon G also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA) axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hypothalamic paraventricular nucleus (PVN). In addition, the antidepressant-like effects of sanggenon G were significantly inhibited by WAY100635 (1 mg/kg, i.p.; a selective 5-hydroxytryptamine1A (5-HT1A) receptor antagonist), but not SCH23390 (0.05 mg/kg, i.p.; a dopamine D1 receptor antagonist). Our findings suggested that the antidepressant-like effects of sanggenon G were mediated by an interaction with the serotonergic system. Further studies are needed to evaluate the potential of sanggenon G as an alternative therapeutic approach for the treatment of depression. PMID:26289125

  17. Antidepressant-Like Effects of Sanggenon G, Isolated from the Root Bark of Morus alba, in Rats: Involvement of the Serotonergic System.

    PubMed

    Lim, Dong Wook; Jung, Jae-Woo; Park, Ji-Hae; Baek, Nam-In; Kim, Yun Tai; Kim, In-Ho; Han, Daeseok

    2015-01-01

    The root bark of Morus alba is commonly used as an alternative medicine due to its numerous health benefits in humans. However, the antidepressant effects of various active components from M. alba have not been fully elucidated. In this study, we aimed to determine whether sanggenon G, an active compound isolated from the root bark of M. alba, exhibited antidepressant-like activity in rats subjected to forced swim test (FST)-induced depression. Acute treatment of rats with sanggenon G (30 mg/kg, intraperitoneally (i.p.)) significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with sanggenon G also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA) axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hypothalamic paraventricular nucleus (PVN). In addition, the antidepressant-like effects of sanggenon G were significantly inhibited by WAY100635 (1 mg/kg, i.p.; a selective 5-hydroxytryptamine1A (5-HT1A) receptor antagonist), but not SCH23390 (0.05 mg/kg, i.p.; a dopamine D1 receptor antagonist). Our findings suggested that the antidepressant-like effects of sanggenon G were mediated by an interaction with the serotonergic system. Further studies are needed to evaluate the potential of sanggenon G as an alternative therapeutic approach for the treatment of depression.

  18. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  19. 77 FR 33227 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... SECURITY Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT) AGENCY... Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Sector Outreach and...--Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT). DHS...

  20. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  1. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  2. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  3. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G. )

    1989-10-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes the authors software and hardware support for TCP/IP on VAX/VMS, VME/rhoSOS, FASTBUS/rhoSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software.

  4. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G.

    1989-05-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes our software and hardware support for TCP/IP on VAX/VMS, VME/pSOS, FASTBUS/pSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software. 8 refs., 3 figs.

  5. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  6. Antibacterial and cytotoxic compounds from the bark of Cananga odorata.

    PubMed

    Rahman, M Mukhlesur; Lopa, Simin S; Sadik, Golam; Harun-Or-Rashid; Islam, Robiul; Khondkar, Proma; Alam, A H M Khurshid; Rashid, Mohammad A

    2005-12-01

    O-Methylmoschatoline, liriodenine and 3,4-dihydroxybenzoic acid isolated from the barks of Cananga odorata showed antibacterial activities against a number of Gram (+) and Gram (-) bacteria. The compounds also showed antifungal and cytotoxic activities. PMID:16242266

  7. Patterns on the iridescent beetle, Chrysina gloriosa

    NASA Astrophysics Data System (ADS)

    Park, Jung Ok; Sharma, Vivek; Crne, Matija; Srinivasarao, Mohan

    2009-03-01

    The brilliant metallic color of a beetle Chrysina gloriosa has been known to occur due to selective reflectance from a cholesteric structure on the exoskeleton. The surface also appears to have hexagonally packed structures. Crystallographic concepts and Voronoi analysis were used to determine the degree of order in different regions of the beetle. Along the hexagons in the Voronoi diagram, many clustered pentagons and heptagons were observed. Due to the surface curvature, the number of pentagons was found to be higher than the number of heptagons. The cells appear yellow in the center surrounded by a green region with a yellow edge. Confocal microscopy was used to image the underlying structure, which was found to consist of concentric arcs on a surface of a shallow cone. The observed structures resemble the defects on a cholesteric phase with a free surface, and provide an interesting explanation of structural color development in beetles, along with inspiration for the design of chiral photonic structures.

  8. Loss of flight promotes beetle diversification.

    PubMed

    Ikeda, Hiroshi; Nishikawa, Masaaki; Sota, Teiji

    2012-01-31

    The evolution of flight is a key innovation that may enable the extreme diversification of insects. Nonetheless, many species-rich, winged insect groups contain flightless lineages. The loss of flight may promote allopatric differentiation due to limited dispersal power and may result in a high speciation rate in the flightless lineage. Here we show that loss of flight accelerates allopatric speciation using carrion beetles (Coleoptera: Silphidae). We demonstrate that flightless species retain higher genetic differentiation among populations and comprise a higher number of genetically distinct lineages than flight-capable species, and that the speciation rate with the flightless state is twice that with the flight-capable state. Moreover, a meta-analysis of 51 beetle species from 15 families reveals higher genetic differentiation among populations in flightless compared with flight-capable species. In beetles, which represent almost one-fourth of all described species, repeated evolution of flightlessness may have contributed to their steady diversification since the Mesozoic era.

  9. IP-1 Certification of Cargo Containers

    SciTech Connect

    Hagler, Lisle

    2010-10-05

    The purpose and scope of this engineering note is to demonstrate that the structural design of the cargo container complies with the IP-1 container requirements of 49 CFR 173.410 as required by CFR 173.411.

  10. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus.

    PubMed

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M; Erbilgin, Nadir

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle's historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  11. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus.

    PubMed

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M; Erbilgin, Nadir

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle's historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects.

  12. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae)

    PubMed Central

    Pitt, Caitlin; Carroll, Allan L.; Lindgren, B. Staffan; Huber, Dezene P.W.

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to

  13. Comparative calibration of IP scanning equipment

    NASA Astrophysics Data System (ADS)

    Ingenito, F.; Andreoli, P.; Batani, D.; Boutoux, G.; Cipriani, M.; Consoli, F.; Cristofari, G.; Curcio, A.; De Angelis, R.; Di Giorgio, G.; Ducret, J.; Forestier-Colleoni, P.; Hulin, S.; Jakubowska, K.; Rabhi, N.

    2016-05-01

    Imaging Plates (IP) are diagnostic devices which contain a photostimulable phosphor layer that stores the incident radiation dose as a latent image. The image is read with a scanner which stimulates the decay of electrons, previously excited by the incident radiation, by exposition to a laser beam. This results in emitted light, which is detected by photomultiplier tubes; so the latent image is reconstructed. IPs have the interesting feature that can be reused many times, after erasing stored information. Algorithms to convert signals stored in the detector to Photostimulated luminescence (PSL) counts depend on the scanner and are not available on every model. A comparative cross-calibration of the IP scanner Dürr CR35 BIO, used in ABC laboratory, was performed, using the Fujifilm FLA 7000 scanner as a reference, to find the equivalence between grey-scale values given by the Dürr scanner to PSL counts. Using an IP and a 55Fe β-source, we produced pairs of samples with the same exposition times, which were analysed by both scanners, placing particular attention to fading times of the image stored on IPs. Data analysis led us to the determine a conversion formula which can be used to compare data of experiments obtained in different laboratories and to use IP calibrations available, till now, only for Fujifilm scanners.

  14. Bark thickness across the angiosperms: more than just fire.

    PubMed

    Rosell, Julieta A

    2016-07-01

    Global variation in total bark thickness (TBT) is traditionally attributed to fire. However, bark is multifunctional, as reflected by its inner living and outer dead regions, meaning that, in addition to fire protection, other factors probably contribute to TBT variation. To address how fire, climate, and plant size contribute to variation in TBT, inner bark thickness (IBT) and outer bark thickness (OBT), I sampled 640 species spanning all major angiosperm clades and 18 sites with contrasting precipitation, temperature, and fire regime. Stem size was by far the main driver of variation in thickness, with environment being less important. IBT was closely correlated with stem diameter, probably for metabolic reasons, and, controlling for size, was thicker in drier and hotter environments, even fire-free ones, probably reflecting its water and photosynthate storage role. OBT was less closely correlated with size, and was thicker in drier, seasonal sites experiencing frequent fires. IBT and OBT covaried loosely and both contributed to overall TBT variation. Thickness variation was higher within than across sites and was evolutionarily labile. Given high within-site diversity and the multiple selective factors acting on TBT, continued study of the different drivers of variation in bark thickness is crucial to understand bark ecology. PMID:26890029

  15. BOREAS TE-8 Aspen Bark Spectral Reflectance Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Spencer, Shannon L.; Rock, Barrett N.

    2000-01-01

    The BOREAS TE-08 team collected in-lab spectral reflectance data for aspen bark and leaves from three sites within the BOREAS SSA from 24-May-1994 to 16-Jun-1994 (IFC 1), 19-Jul-1994 to 08-Aug-1994 (IFC 2), and 30-Aug-1994 to 19-Sep-1994 (IFC 3). One to nine trees from each site were sampled during the three IFCs. Each tree was sampled in five different locations for bark spectral properties: BS, US, BR, BT, and BO. Additionally, a limited number of LV were collected. Bark samples were removed from the stem of the tree and placed in ziplock bags for transport to UNH, where they were scanned with a spectroradiometer in a controlled environment. Each sample was scanned twice: the first set of measurements was made with the bark surface moistened, and the second set was made with the bark surface air-dried for a period of 30 minutes. These data represent continuous spectra of bark reflectance. Each sample was scanned three times, rotating the sample when possible. The reported values for each sample are an average over the three scans. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth

    PubMed Central

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166

  17. Management, morphological, and environmental factors influencing Douglas-fir bark furrows in the Oregon Coast Range

    USGS Publications Warehouse

    Sheridan, Christopher D.; Puettmann, Klaus J.; Huso, Manuela M.P.; Hagar, Joan C.; Falk, Kristen R.

    2013-01-01

    Many land managers in the Pacific Northwest have the goal of increasing late-successional forest structures. Despite the documented importance of Douglas-fir tree bark structure in forested ecosystems, little is known about factors influencing bark development and how foresters can manage development. This study investigated the relative importance of tree size, growth, environmental factors, and thinning on Douglas-fir bark furrow characteristics in the Oregon Coast Range. Bark furrow depth, area, and bark roughness were measured for Douglas-fir trees in young heavily thinned and unthinned sites and compared to older reference sites. We tested models for relationships between bark furrow response and thinning, tree diameter, diameter growth, and environmental factors. Separately, we compared bark responses measured on trees used by bark-foraging birds with trees with no observed usage. Tree diameter and diameter growth were the most important variables in predicting bark characteristics in young trees. Measured environmental variables were not strongly related to bark characteristics. Bark furrow characteristics in old trees were influenced by tree diameter and surrounding tree densities. Young trees used by bark foragers did not have different bark characteristics than unused trees. Efforts to enhance Douglas-fir bark characteristics should emphasize retention of larger diameter trees' growth enhancement.

  18. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  19. A catalogue of Lithuanian beetles (Insecta, Coleoptera).

    PubMed

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research.Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this category

  20. Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles.

    PubMed

    Yee, Donald A; Taylor, Stacy; Vamosi, Steven M

    2009-05-01

    Dispersal can influence population dynamics, species distributions, and community assembly, but few studies have attempted to determine the factors that affect dispersal of insects in natural populations. Consequently, little is known about how proximate factors affect the dispersal behavior of individuals or populations, or how an organism's behavior may change in light of such factors. Adult predaceous diving beetles are active dispersers and are important predators in isolated aquatic habitats. We conducted interrelated studies to determine how several factors affected dispersal in two common pond-inhabiting species in southern Alberta, Canada: Graphoderus occidentalis and Rhantus sericans. Specifically, we (1) experimentally tested the effect of plant and beetle densities on dispersal probabilities in ponds; (2) surveyed ponds and determined the relationships among beetle densities and plant densities and water depth; and (3) conducted laboratory trials to determine how beetle behavior changed in response to variation in plant densities, conspecific densities, food, and water depth. Our field experiment determined that both species exhibited density dependence, with higher beetle densities leading to higher dispersal probabilities. Low plant density also appeared to increase beetle dispersal. Consistent with our experimental results, densities of R. sericans in ponds were significantly related to plant density and varied also with water depth; G. occidentalis densities did not vary with either factor. In the laboratory, behavior varied with plant density only for R. sericans, which swam at low density but were sedentary at high density. Both species responded to depth, with high beetle densities eliciting beetles to spend more time in deeper water. The presence of food caused opposite responses for G. occidentalis between experiments. Behavioral changes in response to patch-level heterogeneity likely influence dispersal in natural populations and are expected

  1. Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles.

    PubMed

    Yee, Donald A; Taylor, Stacy; Vamosi, Steven M

    2009-05-01

    Dispersal can influence population dynamics, species distributions, and community assembly, but few studies have attempted to determine the factors that affect dispersal of insects in natural populations. Consequently, little is known about how proximate factors affect the dispersal behavior of individuals or populations, or how an organism's behavior may change in light of such factors. Adult predaceous diving beetles are active dispersers and are important predators in isolated aquatic habitats. We conducted interrelated studies to determine how several factors affected dispersal in two common pond-inhabiting species in southern Alberta, Canada: Graphoderus occidentalis and Rhantus sericans. Specifically, we (1) experimentally tested the effect of plant and beetle densities on dispersal probabilities in ponds; (2) surveyed ponds and determined the relationships among beetle densities and plant densities and water depth; and (3) conducted laboratory trials to determine how beetle behavior changed in response to variation in plant densities, conspecific densities, food, and water depth. Our field experiment determined that both species exhibited density dependence, with higher beetle densities leading to higher dispersal probabilities. Low plant density also appeared to increase beetle dispersal. Consistent with our experimental results, densities of R. sericans in ponds were significantly related to plant density and varied also with water depth; G. occidentalis densities did not vary with either factor. In the laboratory, behavior varied with plant density only for R. sericans, which swam at low density but were sedentary at high density. Both species responded to depth, with high beetle densities eliciting beetles to spend more time in deeper water. The presence of food caused opposite responses for G. occidentalis between experiments. Behavioral changes in response to patch-level heterogeneity likely influence dispersal in natural populations and are expected

  2. Quantifying the effects of mountain pine beetle infestation on water and biogeochemical cycles at multiple spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Somor, A. J.; Troch, P. A.; Gochis, D. J.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Reed, D.; Barnard, H. R.; Whitehouse, F.; Aston, T.; Borkhuu, B.

    2010-12-01

    Unprecedented levels of bark beetle infestation over the last decade have radically altered forest structure across millions of hectares of Western U.S. montane environments. The widespread extent of this disturbance presents a major challenge for governments and resource managers who lack a predictive understanding of how water and biogeochemical cycles will respond to this disturbance over various temporal and spatial scales. There is a widespread perception, largely based on hydrological responses to fire or logging, that a reduction in both transpiration and interception following tree death will increase soil water availability and catchment water yield. However, few studies have directly addressed the effects of insect-induced forest decline on water and biogeochemical cycling. We address this knowledge gap using observations and modeling at scales from 100 to 109 m2 across study sites in CO and WY that vary in the intensity and timing of beetle infestation and tree death. Our focus on multiple sites with different levels of impact allows us to address two broad, organizing questions: How do changes in vegetation structure associated with MPB alter the partitioning of energy and water? And How do these changes in energy and water availability affect local to regional scale water and biogeochemical cycles? This presentation will focus primarily on energy balance and water partitioning, providing context for ongoing biogeochemical work. During the growing season, stand-scale transpiration declines rapidly and soil moisture increases following infestation, consistent with streamflow data from regional catchments that shows an increase in baseflow following widespread attack. During the winter and spring, stand scale snow surveys and continuous snow depth sensors suggested that the variability in snow cover decreased as the severity of beetle impact increases, but there were no significant stand-scale differences in snow depth among levels of impact. This is due

  3. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  4. Systematics of Fusaria associated with Ambrosia beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here, I summarize research efforts directed at characterizing ambrosia beetle-associated fusaria, including the species responsible for avocado wilt in Israel (Mendel et al., Phytoparasitica 2012) and branch dieback in California (Eskalen et al., Pl. Dis. 2012). Our multilocus molecular phylogenetic...

  5. Tiger beetle's pursuit of prey depends on distance

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    2015-03-01

    Tiger beetles are fast predators capable of chasing prey under closed-loop visual guidance. We investigated their control system using high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Analysis reveals that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The system gain is shown to depend on the beetle-prey distance in a pattern indicating three hunting phases over the observed distance domain. We show that to explain this behavior the tiger beetle must be capable of visually determining the distance to its target and using that to adapt the gain in its proportional control law. We will end with a discussion on the possible methods for distance detection by the tiger beetle and focus on two of them. Motion parallax, using the natural head sway induced by the walking gait of the tiger beetle, is shown to have insufficient distance range. However elevation in the field of vision, using the angle with respect to the horizon at which a target is observed, has a much larger distance range and is a prime candidate for the mechanism of visual distance detection in the tiger beetle.

  6. The fossil record and macroevolutionary history of the beetles.

    PubMed

    Smith, Dena M; Marcot, Jonathan D

    2015-04-22

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous-Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today.

  7. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...

  8. Regulation of IP 3 Receptors by IP 3 and Ca 2+

    NASA Astrophysics Data System (ADS)

    Taylor, Colin W.; Swatton, Jane E.

    Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.

  9. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  10. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  11. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  12. Bark flammability as a fire-response trait for subalpine trees

    PubMed Central

    Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher

    2013-01-01

    Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473

  13. Antihyperglycaemic activity of the stem-bark extract of Tamarindus indica L. on experimentally induced hyperglycaemic and normoglycaemic Wistar rats.

    PubMed

    Yerima, M; Anuka, J A; Salawu, O A; Abdu-Aguye, I

    2014-02-01

    Diabetes is the most common endocrine disease and its prevalence is reaching epidemic proportion worldwide. In 2002, WHO Expert Committee on diabetes mellitus recommended an urgent and further evaluation of the folkloric methods of managing the disease. In response to this recommendation, several medicinal plants are currently being investigated for their hypoglycaemic activity and one of such plants is Tamarindus indica. Tamarindus indica is a slow growing tree that is resistant to strong winds and perennial. The stem-bark extract of the plant is used locally for the management of diabetes. The stem-bark extract of Tamarindus indica L. was investigated for its hypoglycemic action on experimentally induced hyperglycaemic Wistar rats using a single dose of alloxan monohydrate (150 mg kg(-1) IP). The oral LD50 of the extract was found to be greater than 5,000 mg kg(-1). Phytochemical screening revealed the presence of carbohydrates, glycosides, saponins, flavonoids, cardiac glycosides, tannins, alkaloids and triterpenes. The 1000 mg kg(-1) dose of the extract lowered the blood glucose level significantly (p < 0.05) at the 4th, 8th and 16th h. The 500 mg kg(-1) lowered the BGL significantly (p < 0.05) throughout the study. In the oral glucose load method the 1000 mg kg(-1) dose of the extract significantly (p < 0.05) lowered elevated blood glucose at the 3rd and 5th. The 500 mg kg(-1) lowered the blood glucose from the 1st to the 5th, while the 250 mg kg(-1) also lowered the blood glucose level but only significantly at the 5th h. The extract is practically non toxic when administered orally. The stem-bark extract of Tamarindus indica Linn significantly lowered elevated Blood Glucose concentration (BGL) in the experimental animal models, while the crude extract was able to prevent an elevation in BGL when used in the oral glucose load model.

  14. Evaluation of the antidiabetic and antioxidant properties of Morinda lucida stem bark extract in streptozotocin intoxicated rats.

    PubMed

    Domekouo, Ulrich L F; Longo, Frida; Tarkang, Protus A; Tchinda, Alembert T; Tsabang, Nole; Donfagsiteli, Nehemie T; Tamze, Victorine; Kamtchouing, Pierre; Agbor, Gabriel A

    2016-05-01

    The present research evaluated the antidiabetic and antioxidant properties of M. lucida stem bark (50 and 500mg/kg) and glibenclamide (25mg/kg, standard drug) in acute (Oral glucose tolerance test) and sub-acute (Streptozotocin 60mg/kg, i.p. diabetic model) administration. A group of healthy rats constituted the normal control. The sub-acute experiment lasted 28 days during which water, food intake and weight gain were measured and biochemical parameters analyzed in both plasma and erythrocytes at the end of the experiment. The chemical substances present in M. lucida bark extract were determined. In the Oral glucose tolerance test, the reduction of blood glucose level was statistically significant for both M. lucida extracts and glibenclamide. However, in the diabetic rats acute administration of 500mg/kg extract had better blood sugar lowering effect than glibenclamide, which was better than 50mg/kg extract. Streptozotocin diabetic animal model was characterized by a decrease in weight gain, erythrocyte SOD and CAT activities and an increase in water and food consumption, lipid peroxidation, cholesterol, triglycerides, plasma glucose, creatinine and urea concentrations, and transaminases activities. M. lucida extract and glibenclamide significantly prevented the alteration of these parameters, thus indicating a corrective effect on diabetes and its complications. This study justifies the traditional claim and provides a rationale for the use of M. lucida to treat diabetes. Its antioxidant properties may serve to curb oxidative stress and hence prevent the diabetic complications related to oxidative stress. Chemical substances, which may be accountable for the antidiabetic and antioxidant properties of M. lucida were detected in the aqueous extract of M. lucida bark. PMID:27166555

  15. A survey of IP over ATM architectures

    SciTech Connect

    Chen, H.; Tsang, R.; Brandt, J.; Hutchins, J.

    1997-07-01

    Over the past decade, the Internet has burgeoned into a worldwide information highway consisting of approximately 5 million hosts on over 45,000 interconnected networks. This unprecedented growth, together with the introduction of multimedia workstations, has spurred the development of innovative applications that require high speed, low latency, and real-time transport. Today`s Internet can neither scale in its bandwidth nor guarantee the Quality of Services (QoS) necessary to meet these performance requirements. Many network researchers propose to use the Asynchronous Transfer Mode (ATM) technology as the underlying infrastructure for the next generation of workgroup, campus, and enterprise IP networks. Since ATM is significantly different from today`s legacy network technologies, efficient implementation of IP over ATM is especially challenging. This tutorial paper covers several existing proposals that integrate IP over ATM.

  16. 76 FR 81955 - Assessment Questionnaire-IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... SECURITY Assessment Questionnaire--IP Sector Specific Agency Risk Self Assessment Tool (IP-SSARSAT) AGENCY... Protection and Programs Directorate (NPPD), Office of Infrastructure Protection (IP), Sector Specific Agency.../IP/SSA EMO, 245 Murray Lane SW., Mail Stop 0640, Arlington, VA 20598-0630. Emailed requests should...

  17. Utilization of flavonoid compounds from bark and wood: a review.

    PubMed

    Yazaki, Yoshikazu

    2015-03-01

    Flavonoid compounds, which are extracted from bark and wood and used commercially, are flavan 3-ols as monomers and their polymers, which are called "condensed tannins". Reactions of the condensed tannins with formaldehyde are the basis for wood adhesives. In the late 1940s, tannin research for wood adhesives was begun and the world-first commercial use of wattle tannin from black wattle (Acacia mearnsii) bark as wood adhesives occurred in Australia in the 1960s. In addition, wattle tannin-based adhesives were further developed in South Africa and the uses of these adhesives have been continuing to date. The success of wattle tannin in wood adhesives is demonstrated by the collaboration of the ACIAR with the CAF in the early 1990s. Although radiata pine bark (Pinus radiata) could be a useful resource for the production of wood adhesives, three problems prevented its use in this application: low extractive yields from the bark, variable quality of the tannin extracts and excessive viscosity of the formulated tannin adhesives. In order to overcome these problems, various extraction methods have been proposed. Studies on tannin adhesives from bark of other pine species are also described. Furthermore, the use of the tannin in the bark without extraction is described as "bark adhesives" from radiata pine and black wattle. The use of radiata tannin without formaldehyde for moulded wood products is also described. Owing to the strong antioxidant activity of flavonoid compounds, bark extracts from French maritime pine (Pinus pinaster, synonym P. maritima) and radiata pine have been commercialized as nutritional supplements: Pycnogenol and Enzogenol, respectively. The background and the development of Pycnogenol and the basic difference in the preparation processes between Pycnogenol and Enzogenol are described. On the basis of the discovery that the SOSA value for wattle tannin is approximately 10 times that of extracts from pine bark supplements (Pycnogenol and Enzogenol

  18. Efficacy and Safety of White Willow Bark (Salix alba) Extracts.

    PubMed

    Shara, Mohd; Stohs, Sidney J

    2015-08-01

    Willow bark extract has been used for thousands of years as an anti-inflammatory, antipyretic, and analgesic. In spite of its long history of use, relatively few human and animal studies have been published that confirm anecdotal observations. A small number of clinical studies have been conducted that support the use of willow bark extracts in chronic lower back and joint pain and osteoarthritis. Willow bark extracts also are widely used in sports performance and weight loss products presumably because of anti-inflammatory and analgesic activities, although no human studies have been published that specifically and directly document beneficial effects. In recent years, various in vitro and animal studies have demonstrated that the anti-inflammatory activity of willow bark extract is associated with down regulation of the inflammatory mediators tumor necrosis factor-α and nuclear factor-kappa B. Although willow bark extracts are generally standardized to salicin, other ingredients in the extracts including other salicylates as well as polyphenols, and flavonoids may also play prominent roles in the therapeutic actions. Adverse effects appear to be minimal as compared to non-steroidal anti-inflammatory drugs including aspirin. The primary cause for concern may relate to allergic reactions in salicylate-sensitive individuals.

  19. Hepatoprotective activity of Mammea africana ethanol stem bark extract

    PubMed Central

    Okokon, Jude Efiom; Bawo, Michael Burata; Mbagwu, Herbert Orji

    2016-01-01

    Objective: The stem bark of Mammea africana Sabine (Guttiferae), (M. africana) a common plant that has been traditionally used to treat various diseases and ailments was evaluated for hepatoprotective potentials against paracetamol-induced liver injury in rats. Materials and Methods: The hepatoprotective effect of the stem bark extract (30-90 mg/kg) was evaluated by the assay of liver function parameters, namely total and direct bilirubin, serum protein and albumin, total cholesterol, alanine aminotransaminase (ALT), aspartate aminotransaminase (AST), and alkaline phosphatase activities (ALP), antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and histopathological study of the liver. Results: Administration of the stem bark extract caused a significant (p<0.05 – 0.001) dose-dependent reduction of high levels of liver enzymes (ALT, AST and ALP), total cholesterol, direct and total bilirubin as well as elevation of serum levels of total protein, albumin and antioxidant enzymes (SOD, CAT, GPx and GSH). Histology of the liver sections of extract and silymarin-treated animals showed reductions in the pathological features compared to the paracetamol-treated animals. The chemical pathological changes were consistent with histopathological observations suggesting marked hepatoprotective effect of the stem bark extract of M. africana. Conclusion: The results show that the stem bark extract of M. africana has hepatoprotective potential which may be due to its antioxidant activity. PMID:27222838

  20. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater. PMID:27179811

  1. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater.

  2. A structured threshold model for mountain pine beetle outbreak.

    PubMed

    Lewis, Mark A; Nelson, William; Xu, Cailin

    2010-04-01

    A vigor-structured model for mountain pine beetle outbreak dynamics within a forest stand is proposed and analyzed. This model explicitly tracks the changing vigor structure in the stand. All model parameters, other than beetle vigor preference, were determined by fitting model components to empirical data. An abrupt threshold for tree mortality to beetle densities allows for model simplification. Based on initial beetle density, model outcomes vary from decimation of the entire stand in a single year, to inability of the beetles to infect any trees. An intermediate outcome involves an initial infestation which subsequently dies out before the entire stand is killed. A model extension is proposed for dynamics of beetle aggregation. This involves a stochastic formulation.

  3. Toxicity of the Essential Oil of Illicium difengpi Stem Bark and Its Constituent Compounds Towards Two Grain Storage Insects

    PubMed Central

    Sha Chu, Sha; Fang Wang, Cheng; Shan Du, Shu; Liang Liu, Shao; Long Liu, Zhi

    2011-01-01

    During our screening program for new agrochemicals from Chinese medicinal herbs, the essential oil of Illicium difengpi stem bark was found to possess strong insecticidal activities against the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) and red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). A total of 37 components of the essential oil of I. difengpi were identified. The main components of the essential oil were safrole (23.61%), linalool (12.93%), and germacrene D (5.35%). Bioactivities-directed chromatographic separation on repeated silica gel columns led to the isolation of two compounds: safrole and linalool. Safrole showed pronounced contact toxicity against both insect species and (LD50 = 8.54 for S. zeamais; 4.67 µg/adult for T. castaneum) and was more toxic than linalool (LD50 = 24.88 for S. zeamais; 8.12 µg/adult for T. castaneum). The essential oil acting against the two species of insects showed LD50 values of 13.83 and 6.33 µg/adult, respectively. Linalool also possessed strong fumigant toxicity against both insect species (LC50 = 10.02 for S. zeamais; 9.34 mg/L for T. castaneum) and was more toxic than safrole (LD50 = 32.96 and 38.25 mg/L), while the crude essential oil acting against the two species of insects showed LC50 values of 14.62 and 16.22 mg/L, respectively. These results suggest that the essential oil of I. difengpi stem bark and the two compounds may be used in grain storage to combat insect pests. PMID:22236213

  4. Toxicity of the essential oil of Illicium difengpi stem bark and its constituent compounds towards two grain storage insects.

    PubMed

    Chu, Sha Sha; Wang, Cheng Fang; Du, Shu Shan; Liu, Shao Liang; Liu, Zhi Long

    2011-01-01

    During our screening program for new agrochemicals from Chinese medicinal herbs, the essential oil of Illicium difengpi stem bark was found to possess strong insecticidal activities against the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) and red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). A total of 37 components of the essential oil of I. difengpi were identified. The main components of the essential oil were safrole (23.61%), linalool (12.93%), and germacrene D (5.35%). Bioactivities-directed chromatographic separation on repeated silica gel columns led to the isolation of two compounds: safrole and linalool. Safrole showed pronounced contact toxicity against both insect species and (LD₅₀ = 8.54 for S. zeamais; 4.67 µg/adult for T. castaneum) and was more toxic than linalool (LD₅₀ = 24.88 for S. zeamais; 8.12 µg/adult for T. castaneum). The essential oil acting against the two species of insects showed LD₅₀ values of 13.83 and 6.33 µg/adult, respectively. Linalool also possessed strong fumigant toxicity against both insect species (LC₅₀ = 10.02 for S. zeamais; 9.34 mg/L for T. castaneum) and was more toxic than safrole (LD₅₀ = 32.96 and 38.25 mg/L), while the crude essential oil acting against the two species of insects showed LC₅₀ values of 14.62 and 16.22 mg/L, respectively. These results suggest that the essential oil of I. difengpi stem bark and the two compounds may be used in grain storage to combat insect pests.

  5. Quantifying widespread canopy cover decline through the course of a beetle kill epidemic in Colorado with remote sensing of snow

    NASA Astrophysics Data System (ADS)

    Baker, E. H.; Raleigh, M. S.; Molotch, N. P.

    2014-12-01

    Since the mid-1990s, outbreaks of aggressive bark beetle species have caused extensive forest morality across 600,000 km2 of North-American forests, killing over 17,800 km2 of forest in Colorado alone. This mortality has resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack. In the Western United States, where approximately 70-80% of total annual runoff originates as mountain snowmelt, it is important to monitor and quantify changes in forest canopy in snow-dominated catchments. To quantify annual values of forest canopy cover, this research develops a metric from time series of daily fractional snow covered area (FSCA) from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where soil and rock are completely snow-covered, a land pixel is composed only of forest canopy and snow. Following a snowfall event, FSCA initially rises rapidly, as snow is intercepted in the canopy, and then declines, as snow unloads from the canopy. The lower of these local minima form a threshold representative of snow-free canopy conditions, which serves as a spatially explicit metric of forest canopy. Investigation of a site in southern Colorado with over 40% spruce beetle mortality shows a statistically significant decrease of canopy cover, from 76 (±4)% pre-infestation to 55 (±8)% post-infestation (t=-5.1, p<0.01). Additionally, this yearly parameterization of forest canopy is well correlated (ρ=0.76, p<0.01) with an independent product of yearly crown mortality derived from U.S. Forest Service Aerial Detection Surveys. Future work will examine this relationship across varied ecologic settings and geographic locations, and incorporate field measurements of species-specific canopy change after beetle kill.

  6. Integrating models to investigate critical phenological overlaps in complex ecological interactions: the mountain pine beetle-fungus symbiosis.

    PubMed

    Addison, Audrey; Powell, James A; Bentz, Barbara J; Six, Diana L

    2015-03-01

    The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures. One critical phase for MPB-fungus symbiosis occurs just before dispersal of teneral (new) adult beetles, when fungi are acquired and transported in specialized structures (mycangia). Before dispersal, fungi must capture sufficient spatial resources within the tree to ensure contact with teneral adults and get packed into mycangia. Mycangial packing occurs at an unknown time during teneral feeding. We adapt thermal models predicting fungal growth and beetle development to predict overlap between the competing fungi and MPB teneral adult feeding windows and emergence. We consider a spectrum of mycangial packing strategies and describe them in terms of explicit functions with unknown parameters. Rates of growth are fixed by laboratory data, the unknown parameters describing various packing strategies, as well as the degree to which mycangial growth is slowed in woody tissues as compared to agar, are determined by maximum likelihood and two years of field observations. At the field location used, the most likely fungus acquisition strategy for MPB was packing mycangia just prior to emergence. Estimated model parameters suggested large differences in the relative growth rates of the two fungi in trees at the study site, with the most likely model estimating that G. clavigera grew approximately twenty-five times faster than O. montium under the bark, which is completely unexpected in comparison with observed fungal growth on agar.

  7. Integrating models to investigate critical phenological overlaps in complex ecological interactions: the mountain pine beetle-fungus symbiosis.

    PubMed

    Addison, Audrey; Powell, James A; Bentz, Barbara J; Six, Diana L

    2015-03-01

    The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures. One critical phase for MPB-fungus symbiosis occurs just before dispersal of teneral (new) adult beetles, when fungi are acquired and transported in specialized structures (mycangia). Before dispersal, fungi must capture sufficient spatial resources within the tree to ensure contact with teneral adults and get packed into mycangia. Mycangial packing occurs at an unknown time during teneral feeding. We adapt thermal models predicting fungal growth and beetle development to predict overlap between the competing fungi and MPB teneral adult feeding windows and emergence. We consider a spectrum of mycangial packing strategies and describe them in terms of explicit functions with unknown parameters. Rates of growth are fixed by laboratory data, the unknown parameters describing various packing strategies, as well as the degree to which mycangial growth is slowed in woody tissues as compared to agar, are determined by maximum likelihood and two years of field observations. At the field location used, the most likely fungus acquisition strategy for MPB was packing mycangia just prior to emergence. Estimated model parameters suggested large differences in the relative growth rates of the two fungi in trees at the study site, with the most likely model estimating that G. clavigera grew approximately twenty-five times faster than O. montium under the bark, which is completely unexpected in comparison with observed fungal growth on agar. PMID:25556687

  8. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.

  9. Endozoochory by beetles: a novel seed dispersal mechanism

    PubMed Central

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L.; Herrera, Carlos M.; Talavera, Salvador

    2011-01-01

    Background and Aims Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles. Methods Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet. Key Results The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits. Conclusions A novel plant–animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds. PMID:21303784

  10. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  11. A small animal model study of perlite and fir bark dust on guinea pig lungs.

    PubMed

    McMichael, R F; DiPalma, J R; Blumenstein, R; Amenta, P S; Freedman, A P; Barbieri, E J

    1983-05-01

    Fir bark (Abies) and perlite (noncrystalline silicate) dusts have been reported to cause pulmonary disease in humans. Guinea pigs were exposed to either fir bark or perlite dust in a special chamber. Severe pathologic changes occurred in the lungs, consisting of lymphoid aggregated and a perivascular inflammatory response. Both dusts caused similar changes although one was vegetable (fir bark) and the other mineral (perlite). Fir bark and perlite dust appeared to be more than just nuisance dusts.

  12. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    PubMed

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  13. Colorado potato beetle toxins revisited: evidence the beetle does not sequester host plant glycoalkaloids.

    PubMed

    Armer, Christine A

    2004-04-01

    The Colorado potato beetle feeds only on glycoalkaloid-laden solanaceous plants, appears to be toxic to predators, and has aposematic coloration, suggesting the beetle may sequester alkaloids from its host plants. This study tested 4th instars and adults, as well as isolated hemolymph and excrement, to determine if the beetles sequester, metabolize, or excrete alkaloids ingested from their host plants. HPLC analysis showed: that neither the larvae nor the adults sequestered either solanine or chaconine from potato foliage; that any alkaloids in the beetles were at concentrations well below 1 ppm; and that alkaloids were found in the excrement of larvae at approximately the same concentrations as in foliage. Analysis of alkaloids in the remains of fed-upon leaflet halves plus excreta during 24 hr feeding by 4th instars, as compared to alkaloids in the uneaten halves of the leaflets, showed that equal amounts of alkaloids were excreted as were ingested. The aposematic coloration probably warns of a previously-identified toxic dipeptide instead of a plant-derived alkaloid, as the Colorado potato beetle appears to excrete, rather than sequester or metabolize, the alkaloids from its host plants.

  14. Isolation of a dihydrobenzofuran lignan, icariside E4, with an antinociceptive effect from Tabebuia roseo-alba (Ridley) Sandwith (Bignoniaceae) bark.

    PubMed

    Ferreira-Júnior, Jesu C; Conserva, Lucia M; Lyra Lemos, Rosangela P; de Omena-Neta, Genilda C; Cavalcante-Neto, Araken; Barreto, Emiliano

    2015-06-01

    The antinociceptive activity of icariside E4, a dihydrobenzofuran-type lignan isolated from Tabebuia roseo-alba (Ridley) Sandwith (Bignoniaceae) bark, was evaluated in mice by using chemical and thermal models of nociception. Intraperitoneal (i.p.) administration of crude T. roseo-alba bark extract and its methanol fraction inhibited acetic acid-induced abdominal constriction in mice. Furthermore, i.p. administration of 0.1, 1, and 10 mg/kg of icariside E4 reduced the number of writhes evoked by acetic acid injection by 46.9, 82.3, and 66.6%, respectively. Icariside E4 administration had no effect in the first phase of the formalin test, but it reduced nociceptive behavior in the second phase as indicated by a reduction in the licking time. Icariside E4 did not modify thermal nociception in the hot-plate test model, suggesting that it had a peripheral antinociceptive action. The antinociceptive effect of icariside E4 in the writhing test was reversed by pre-administration of glibenclamide, but not of naloxone, atropine, yohimbine, or haloperidol. Together, these results indicated that the antinociceptive activity of icariside E4 from T. roseo-alba in models of chemical pain occurred through ATP-sensitive K(+) channel-dependent mechanisms.

  15. IP validation in remote microelectronics testing

    NASA Astrophysics Data System (ADS)

    Osseiran, Adam; Eshraghian, Kamran; Lachowicz, Stefan; Zhao, Xiaoli; Jeffery, Roger; Robins, Michael

    2004-03-01

    This paper presents the test and validation of FPGA based IP using the concept of remote testing. It demonstrates how a virtual tester environment based on a powerful, networked Integrated Circuit testing facility, aimed to complement the emerging Australian microelectronics based research and development, can be employed to perform the tasks beyond the standard IC test. IC testing in production consists in verifying the tested products and eliminating defective parts. Defects could have a number of different causes, including process defects, process migration and IP design and implementation errors. One of the challenges in semiconductor testing is that while current fault models are used to represent likely faults (stuck-at, delay, etc.) in a global context, they do not account for all possible defects. Research in this field keeps growing but the high cost of ATE is preventing a large community from accessing test and verification equipment to validate innovative IP designs. For these reasons a world class networked IC teletest facility has been established in Australia under the support of the Commonwealth government. The facility is based on a state-of-the-art semiconductor tester operating as a virtual centre spanning Australia and accessible internationally. Through a novel approach the teletest network provides virtual access to the tester on which the DUT has previously been placed. The tester software is then accessible as if the designer is sitting next to the tester. This paper presents the approach used to test and validate FPGA based IPs using this remote test approach.

  16. Operational Space Weather Products at IPS

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  17. 75 FR 13235 - IP-Enabled Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... 47 CFR 63.60(a) and (f), published on August 7, 2009 (74 FR 39551), were approved by the Office of... published a document in the Federal Register, 74 FR 39551, August 7, 2009, that sets forth an effective date... COMMISSION 47 CFR Part 63 IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final...

  18. EQuIP-ped for Success

    ERIC Educational Resources Information Center

    Ewing, Molly

    2015-01-01

    The Educators Evaluating the Quality of Instructional Products (EQuIP) Rubric for science is a new tool for science educators that provides criteria by which to examine the alignment and overall quality of lessons and units with respect to the "Next Generation Science Standards" ("NGSS"). The rubric criteria are divided into…

  19. How To: Be VoIP-Savvy

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    Cablevision, Comcast, Verizon, and many other high-speed broadband Internet providers are now also offering telephone services through "Voice over Internet Protocol" (VoIP). This technology sends ordinary telephone calls over the Internet rather than over telephone lines. While impractical without the use of a broadband Internet connection, with…

  20. Call progress time measurement in IP telephony

    NASA Astrophysics Data System (ADS)

    Khasnabish, Bhumip

    1999-11-01

    Usually a voice call is established through multiple stages in IP telephony. In the first stage, a phone number is dialed to reach a near-end or call-originating IP-telephony gateway. The next stages involve user identification through delivering an m-digit user-id to the authentication and/or billing server, and then user authentication by using an n- digit PIN. After that, the caller is allowed (last stage dial tone is provided) to dial a destination phone number provided that authentication is successful. In this paper, we present a very flexible method for measuring call progress time in IP telephony. The proposed technique can be used to measure the system response time at every stage. It is flexible, so that it can be easily modified to include new `tone' or a set of tones, or `voice begin' can be used in every stage to detect the system's response. The proposed method has been implemented using scripts written in Hammer visual basic language for testing with a few commercially available IP telephony gateways.

  1. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species

    PubMed Central

    Dossa, Gbadamassi G. O.; Paudel, Ekananda; Cao, Kunfang; Schaefer, Douglas; Harrison, Rhett D.

    2016-01-01

    Organic matter decomposition represents a vital ecosystem process by which nutrients are made available for plant uptake and is a major flux in the global carbon cycle. Previous studies have investigated decomposition of different plant parts, but few considered bark decomposition or its role in decomposition of wood. However, bark can comprise a large fraction of tree biomass. We used a common litter-bed approach to investigate factors affecting bark decomposition and its role in wood decomposition for five tree species in a secondary seasonal tropical rain forest in SW China. For bark, we implemented a litter bag experiment over 12 mo, using different mesh sizes to investigate effects of litter meso- and macro-fauna. For wood, we compared the decomposition of branches with and without bark over 24 mo. Bark in coarse mesh bags decomposed 1.11–1.76 times faster than bark in fine mesh bags. For wood decomposition, responses to bark removal were species dependent. Three species with slow wood decomposition rates showed significant negative effects of bark-removal, but there was no significant effect in the other two species. Future research should also separately examine bark and wood decomposition, and consider bark-removal experiments to better understand roles of bark in wood decomposition. PMID:27698461

  2. (BOREAS) BOREAS TE-8 Aspen Bark Chemistry Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Spencer, Shannon L.; Rock, Barrett N.

    2000-01-01

    The BOREAS TE-8 team collected pigment density data from aspen bark and leaves from four sites within the BOREAS SSA from 24-May-1994 to 16-Jun-1994 (IFC-1), 19-Jul-1994 to 08-Aug- 1994 (IFC-2), and 30-Aug-1994 to 19-Sep-1994 (IFC-3). One to nine trees from each site were sampled during the three IFCs. Each tree was sampled in five different locations for bark pigment properties: basal stem section, which was any bark sample taken below one-half the tree height; upper stem section, which was any bark sample taken from the main stem above one-half the tree height; bark taken from branches up to 3 years old; a 2-year-old branch segment, and a 1-year-old branch segment. Additionally, a limited number of leaves were collected. Bark samples were removed from the stem of the tree, placed in ziplock bags, and transported to UNH, where they were processed and analyzed by a spectrophotometer. In each data file, samples are identified by Site, Date, Tree#, and Sample Location (see I st paragraph above. Pigment density values are normalized to mg/m2. Density values for the following pigments are provided: Chi a, Chi b, Total Chi (Chi a+b), Carotenoids, Chi a to b ratio, and the Total Chi to carotenoids ratio. The data are stored in ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  3. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    PubMed Central

    Chun, Man Young

    2014-01-01

    Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data. PMID:25116365

  4. Using VoIP to compete.

    PubMed

    Werbach, Kevin

    2005-09-01

    Internet telephony, or VoIP, is rapidly replacing the conventional kind. This year, for the first time, U.S. companies bought more new Internet-phone connections than standard lines. The major driver behind this change is cost. But VoIP isn't just a new technology for making old-fashioned calls cheaper, says consultant Kevin Werbach. It is fundamentally changing how companies use voice communications. What makes VoIP so powerful is that it turns voice into digital data packets that can be stored, copied, combined with other data, and distributed to virtually any device that connects to the Internet. And it makes it simple to provide all the functionality of a corporate phone-call features, directories, security-to anyone anywhere there's broadband access. That fosters new kinds of businesses such as virtual call centers, where widely dispersed agents work at all hours from their homes. The most successful early adopters, says Werbach, will focus more on achieving business objectives than on saving money. They will also consider how to push VoIP capabilities out to the extended organization, making use of everyone as a resource. Deployment may be incremental, but companies should be thinking about where VoIP could take them. Executives should ask what they could do if, on demand, they could bring all their employees, customers, suppliers, and partners together in a virtual room, with shared access to every modern communications and computing channel. They should take a fresh look at their business processes to find points at which richer and more customizable communications could eliminate bottlenecks and enhance quality. The important dividing line won't be between those who deploy Vol P and those who don't, or even between early adopters and laggards. It will be between those who see Vol P as just a new way to do the same old things and those who use itto rethink their entire businesses.

  5. Aqueous stem bark extract of Stereospermum kunthianum (Cham, Sandrine Petit) protects against generalized seizures in pentylenetetrazole and electro-convulsive models in rodents.

    PubMed

    Ching, F P; Omogbai, E K I; Otokiti, I O

    2009-01-01

    Stereospermum kunthianum, Cham Sandrine Petit (Bignoniaceae) known in English as pink jacaranda is used in traditional medicine to treat an array of ailments including febrile convulsions in infants and young children by the rural dwellers in Nigeria. This study examined the anticonvulsant activity of its aqueous stem bark extract (100 - 400mg/kg) against maximal electroshock and pentylenetetrazole-induced seizures in rodents. Phenobarbitone and ethosuximide were used as reference anticonvulsant drugs for comparison. Stereospermum kunthianum extract (200 - 400mg/kg, i.p.) remarkably protected (76.9% and 84.6 % respectively) the rats against electroshock-induced seizures. However, the extract (200- 400mg/kg) when administered orally showed a comparatively less effect (33.3% and 55.6% respectively) to the intraperitoneally administered extract in the maximal electroshock test. The extract (100-400mg/kg, i.p.) significantly delayed (p<0.05) the onset of pentylenetetrazole-induced clonic seizures but only slightly prolonged the time of death of the mice. Although the findings in the present study do not provide conclusive evidence, it appears that the aqueous stem bark extract of Stereospermum kunthianum produces its antiseizure effect by enhancing GABAergic neurotransmission and/or action in the brain. The results indicate that the aqueous extract possesses anticonvulsant activity in rodents and therefore tend to suggest that the shrub may be used as a natural supplementary remedy in the management, control and/or treatment of childhood convulsions. It can be concluded that the aqueous stem bark extract possesses anticonvulsant activity and therefore lend pharmacological credence to the traditionally claimed use in the treatment of childhood convulsions.

  6. Atlas of Iberian water beetles (ESACIB database).

    PubMed

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format.

  7. Resource release in lodgepole pine across a chronosequence of mountain pine beetle disturbance

    NASA Astrophysics Data System (ADS)

    Brayden, B. H.; Trahan, N. A.; Dynes, E.; Beatty, S. W.; Monson, R. K.

    2011-12-01

    Over the past decade and a half Western North America has experienced a mountain pine beetle (Dendroctonus ponderosae) outbreak on a scale not previously recorded. Millions of hectares of lodgepole pine (Pinus contorta) in high elevation forests have been devastated. Although bark beetles are an important part of the endemic disturbance and regeneration regime in this region, the current unprecedented level of tree mortality will have a significant impact on resources and light availability to surviving trees. We established a decade-long chronosequence of mountain pine beetle disturbance, in a lodgepole stand, composed of three age classes: recent, intermediate, and longest (approximately 2-4, 5-7, 8-10 years respectively) time since initial infestation, as well as a control group. The focus of the study was a healthy tree and it's area of influence (1m radius from the bole), each located in a cluster of the respective chronosequence classes. In the 2011 growing season we have looked at rates of photosynthesis, and water potentials for the healthy trees, as well as soil respiration flux and gravimetric moisture in their areas of influence. We are also in the process of analyzing soil extractable dissolved organic carbon and nitrogen, ammonium, nitrate, and inorganic phosphorus, and plan to take hemispherical photographs and analyze tree-ring stable isotopes to determine if there is any reallocation of soil water use by the trees. Our data shows that photosynthetic rates in the youngest infestation class increase 10 percent over the control group and then falls well bellow the control by the oldest class. The mineral soil gravimetric moisture drastically increases between the control and the recent class and then maintains a consistently higher level through the remaining classes. In contrast, moisture in the organic soil significantly declines between the control and recent class before rebounding to pre-infestation levels in the two older classes. Soil

  8. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    PubMed

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra.

  9. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    PubMed

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra. PMID:25499796

  10. Beetle horns and horned beetles: emerging models in developmental evolution and ecology.

    PubMed

    Kijimoto, Teiya; Pespeni, Melissa; Beckers, Oliver; Moczek, Armin P

    2013-01-01

    Many important questions in developmental biology increasingly interface with related questions in other biological disciplines such as evolutionary biology and ecology. In this article, we review and summarize recent progress in the development of horned beetles and beetle horns as study systems amenable to the integration of a wide range of approaches, from gene function analysis in the laboratory to population ecological and behavioral studies in the field. Specifically, we focus on three key questions at the current interface of developmental biology, evolutionary biology and ecology: (1) the developmental mechanisms underlying the origin and diversification of novel, complex traits, (2) the relationship between phenotypic diversification and the diversification of genes and transcriptomes, and (3) the role of behavior as a leader or follower in developmental evolution. For each question we discuss how work on horned beetles is contributing to our current understanding of key issues, as well as highlight challenges and opportunities for future studies.

  11. Water capture by a desert beetle.

    PubMed

    Parker, A R; Lawrence, C R

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

  12. Water capture by a desert beetle

    NASA Astrophysics Data System (ADS)

    Parker, Andrew R.; Lawrence, Chris R.

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

  13. Development of New IP Cores for Spacecraft Avionics

    NASA Astrophysics Data System (ADS)

    Isomaki, Marko; Ekergarn, Jonas; Hjorth, Magnus; Wessman, Nils-Johan; Habinc, Sandi

    2010-08-01

    The GRLIB IP library is an integrated set of reusable IP cores, designed for system-on-chip (SOC) development. The IP cores are centered around a common on-chip bus, and use a coherent method for simulation and synthesis. The library is vendor independent, with support for different CAD tools and target technologies. The success of any IP core library is highly dependent on the constantly increasing number of IP cores and the improvement of existing IP cores. This paper will cover both these aspects, presenting some new developments as well as some improvements of existing items.

  14. Effects of habitat characteristics and interspecific interactions on co-occurrence patterns of saproxylic beetles breeding in tree boles after forest fire: null model analyses.

    PubMed

    Azeria, Ermias T; Ibarzabal, Jacques; Hébert, Christian

    2012-04-01

    It is often suggested that habitat attributes and interspecific interactions can cause non-random species co-occurrence patterns, but quantifying their contributions can be difficult. Null models that systematically exclude and include habitat effects can give information on the contribution of these factors to community assembly. In the boreal forest, saproxylic beetles are known to be attracted to recently burned forests where they breed in dead and dying trees. We examined whether species co-occurrences of saproxylic beetles that develop in, and emerge from, boles of recently burned trees show non-random patterns. We also estimated the extent to which both the post-fire habitat attributes and interspecific interactions among beetles contribute to such patterns. We sampled tree boles encompassing key attributes (tree species, tree size/dbh and burn severity) that are thought to characterize species-habitat associations of saproxylic beetles, a proposition that we tested using indicator species analysis. Two null models with no habitat constraints ("unconstrained") indicated that a total of 29.4% of the species pairs tested had significant co-occurrence patterns. Habitat-constrained null models indicated that most of the detected species aggregations (72%) and segregations (59%) can be explained by shared and distinct species-habitat relationships, respectively. The assembly pattern was also driven by interspecific interactions, of which some were modulated by habitat; for example, predator and prey species tended to co-occur in large-sized trees (a proxy of available bark/wood food resource primarily for the prey). In addition, some species segregation suggesting antagonistic, competitive, or prey-predator interactions were evident after accounting for the species' affinities for the same tree species. Overall, our results suggest that an intimate link between habitat and interspecific interactions can have important roles for community assembly of saproxylic

  15. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus

    PubMed Central

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  16. Diagnosing the influence of model structure on the simulation of water, energy and carbon fluxes on bark beetle infested forests

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Gutmann, E. D.; Brooks, P. D.; Reed, D. E.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Harpold, A. A.; Barnard, H. R.; Hu, J.

    2011-12-01

    Forest dynamics induced by insect infestation can have a significant, local impact on plant physiological regulation of water, energy and carbon fluxes. Rapid mortality succeeded by more gradually varying land cover changes are presently thought to initiate a cascade of changes to water, energy and carbon budgets at the forest stand scale. Initial model sensitivity results have suggested very strong changes in land-atmosphere exchanges of these variables. Specifically, model results from the Noah land surface model, a relatively simple model, have suggested that loss of transpiration function may result in a nearly 50% increase in seasonal soil moisture values and similar increases in runoff production for locations in the central Rocky Mountains. However, differing model structures, such as the representation of plant canopy architecture, snowpack dynamics, dynamic vegetation and hillslope hydrologic processes, may significantly confound the synthesis of results from different modeling systems. We assess the performance of new suite of model simulations from three different land surface models of differing model structures and complexity levels against a comprehensive set of field observations of land surface flux and state variables. The focus of the analysis is in diagnosing how model structure influences changes in energy, water and carbon budget partitioning prior to and following insect infestation. Specific emphasis in this presentation is placed on verifying variables that characterize top of canopy and within canopy energy and water fluxes. We conclude the presentation with a set of recommendations about the advantages and disadvantages of various model structures in their simulation of insect driven forest dynamics.

  17. Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis.

    PubMed

    Yaman, M; Ertürk, O; Aslan, I

    2010-01-01

    Some bacteria were isolated from Dendroctonus micans and its specific predator, Rhizophagus grandis. Six bacteria from D. micans were identified as Bacillus pumilus, Enterobacter intermedius, Citrobacter freundii, Cellulomonas flavigena, Microbacterium liquefaciens and Enterobacter amnigenus, three bacteria from R. grandis as Klebsiella pneumoniae, Pantoea agglomerans and Serratia grimesii, on the basis of fatty acid methyl ester analysis and carbon utilization profile by using Microbial Identification and Biolog Microplate Systems. Their insecticidal effects were tested on larvae and adults of D. micans.

  18. Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Analogues of IP3

    PubMed Central

    Saleem, Huma; Tovey, Stephen C.; Rahman, Taufiq; Riley, Andrew M.; Potter, Barry V. L.; Taylor, Colin W.

    2013-01-01

    Most animal cells express mixtures of the three subtypes of inositol 1,4,5-trisphosphate receptor (IP3R) encoded by vertebrate genomes. Activation of each subtype by different agonists has not hitherto been examined in cells expressing defined homogenous populations of IP3R. Here we measure Ca2+ release evoked by synthetic analogues of IP3 using a Ca2+ indicator within the lumen of the endoplasmic reticulum of permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R. Phosphorylation of (1,4,5)IP3 to (1,3,4,5)IP4 reduced potency by ∼100-fold. Relative to (1,4,5)IP3, the potencies of IP3 analogues modified at the 1-position (malachite green (1,4,5)IP3), 2-position (2-deoxy(1,4,5)IP3) or 3-position (3-deoxy(1,4,5)IP3, (1,3,4,5)IP4) were similar for each IP3R subtype. The potency of an analogue, (1,4,6)IP3, in which the orientations of the 2- and 3-hydroxyl groups were inverted, was also reduced similarly for all three IP3R subtypes. Most analogues of IP3 interact similarly with the three IP3R subtypes, but the decrease in potency accompanying removal of the 1-phosphate from (1,4,5)IP3 was least for IP3R3. Addition of a large chromophore (malachite green) to the 1-phosphate of (1,4,5)IP3 only modestly reduced potency suggesting that similar analogues could be used to measure (1,4,5)IP3 binding optically. These data provide the first structure-activity analyses of key IP3 analogues using homogenous populations of each mammalian IP3R subtype. They demonstrate broadly similar structure-activity relationships for all mammalian IP3R subtypes and establish the potential utility of (1,4,5)IP3 analogues with chromophores attached to the 1-position. PMID:23372785

  19. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  20. Customer choice test is running well for IP

    SciTech Connect

    1996-06-01

    As of May 4, eight of the 21 eligible Illinois Power Company (IP) electricity customers had chosen to buy some of their power from an entity other than IP. They are free to do this because IP is conducting an experiment in customer choice, the first of its kind in the country, according to the utility. Although it is still very early, the experiment seems to be working well. {open_quotes}Our experience so far has been very good,{close_quotes} said John Dewey, a spokesman for IP. {open_quotes}Some of our customers say they expect to see substantial savings.{close_quotes} IP expects to gain knowledge of what it takes to retain customers and, when the entire industry becomes competitive, to gain new customers. IP`s own marketing affiliate, Illinova Power Marketing, based in Salt Lake City, Utah, is participating: It arranged for 4 MWe of power from another supplier to be shipped across IP`s transmission system to one of IP`s customers. IP`s tariff for such use of its transmission lines, as approved by the Federal Energy Regulatory Commission, is between 0.3 and 0.5 cents/kWh.

  1. Optimization of OSPF Routing in IP Networks

    NASA Astrophysics Data System (ADS)

    Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan

    The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs) autonomous system AS . They all rely on the Internet Protocol (IP) internet protocol IP for transport of packets across the network. And most of them use shortest path routing protocols shortest path routing!protocols , such as OSPF or IS-IS, to control the routing of IP packets routing!of IP packets within an AS. The idea of the routing is extremely simple — every packet is forwarded on IP links along the shortest route between its source and destination nodes of the AS. The AS network administrator can manage the routing of packets in the AS by supplying the so-called administrative weights of IP links, which specify the link lengths that are used by the routing protocols for their shortest path computations. The main advantage of the shortest path routing policy is its simplicity, allowing for little administrative overhead. From the network engineering perspective, however, shortest path routing can pose problems in achieving satisfactory traffic handling efficiency. As all routing paths depend on the same routing metric routing!metric , it is not possible to configure the routing paths for the communication demands between different pairs of nodes explicitly or individually; the routing can be controlled only indirectly and only as a whole by modifying the routing metric. Thus, one of the main tasks when planning such networks is to find administrative link weights that induce a globally efficient traffic routing

  2. Differential impacts of the southern pine beetle, Dendroctonus frontalis, on Pinus palustris and Pinus taeda

    USGS Publications Warehouse

    Friedenberg, N.A.; Whited, B.M.; Slone, D.H.; Martinson, S.J.; Ayres, M.P.

    2007-01-01

    Patterns of host use by herbivore pests can have serious consequences for natural and managed ecosystems but are often poorly understood. Here, we provide the first quantification of large differential impacts of the southern pine beetle, Dendroctonus frontalis Zimmermann, on loblolly pine, Pinus taeda L., and longleaf pine, Pinus palustris P. Mill., and evaluate putative mechanisms for the disparity. Spatially extensive survey data from recent epidemics indicate that, per square kilometre, stands of loblolly versus longleaf pine in four forests (380-1273 km2) sustained 3-18 times more local infestations and 3-116 times more tree mortality. Differences were not attributable to size or age structure of pine stands. Using pheromone-baited traps, we found no differences in the abundance of dispersing D. frontalis or its predator Thanasimus dubius Fabricius between loblolly and longleaf stands. Trapping triggered numerous attacks on trees, but the pine species did not differ in the probability of attack initiation or in the surface area of bark attacked by growing aggregations. We found no evidence for postaggregation mechanisms of discrimination or differential success on the two hosts, suggesting that early colonizers discriminate between host species before a pheromone plume is present. ?? 2007 NRC.

  3. Electroantennogram responses by mountain pine beetles,Dendroctonus ponderosae Hopkins, exposed to selected semiochemicals.

    PubMed

    Whitehead, A T

    1986-07-01

    Electroantennograms (EAGs) were obtained forD. ponderosae to the bark beetle pheromonestrans-verbenol,cis-verbenol,exo-brevicomin,endo-brevicomin, frontalin, verbenone; to the kairomones, α-pinene, β-pinene, camphene, Δ-3-carene, limonene, myrcene; to a blend (1∶1∶1) oftrans-verbenol,exo-brevicomin, and myrcene; and to diacetone-alcohol. Male and female responses, in general, did not differ significantly over the whole EAG dose-response curves but differed at a few concentrations on many of the curves. There were more differences noted for pheromones than kairomones. The blend yielded among the largest EAGs in both sexes and appeared to show synergism. Responses of females were lower than those for males in most instances. Significant differences in responses by the two sexes were much fewer for the kairomones than the pheromones. EAG recovery rates tested at only one concentration showed significant differences between males and females for three pheromones,trans-verbenol,cis-verbenol, and verbenone, and two kairomones, camphene and Δ-3-carene. Thresholds were quite low for most of the odorants exceptcis-verbenol, camphene, verbenone, and diacetone-alcohol in females, andcis-verbenol, verbenone, α-pinene, and diacetone-alcohol in males. The results, using at least one EAG parameter, support behavioral and field studies involvingexo-brevicomin,trans-verbenol, frontalin, and the blend.

  4. Ursane Triterpenoids from the Bark of Terminalia arjuna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five ursane type triterpene glucosyl esters including a new one, 2a,3ß-dihydroxyurs-12,18-dien-28-oic acid 28-O-ß-D-glucopyranosyl ester (1) were isolated from the bark of Terminalia arjuna, along with two known phenolic compounds. It is the first report of ursane type of triterpenoids from this spi...

  5. Ellagitannins and complex tannins from Quercus petraea bark.

    PubMed

    König, M; Scholz, E; Hartmann, R; Lehmann, W; Rimpler, H

    1994-10-01

    The ellagitannins 2,3-(S)-hexahydroxydiphenoyl-glucose, pedunculagin, vescalagin, and castalagin; the flavanoellagitannins acutissimin A, acutissimin B, eugenigrandin A, guajavin B, and stenophyllanin C; and the procyanidinoellagitannin mongolicanin have been isolated from the bark of Quercus petraea. The ellagitannin fraction had a weak antisecretory effect.

  6. The Bark Myxomycetes--Their Collection, Culture and Identification

    ERIC Educational Resources Information Center

    Mitchell, David W.

    1977-01-01

    Describes a technique for isolating slime molds from tree bark and outlines projects for working with slime molds in the laboratory. Diagrams of 26 of the more common British species and a key to the Orders of Myxomcetes are given. (CS)

  7. The proteomics of nitrogen remobilization in poplar bark

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal nitrogen (N) cycling in temperate deciduous trees involves the accumulation of bark storage proteins (BSPs), a class of vegetative storage proteins in phloem parenchyma and xylem ray cells. BSPs are anabolized using recycled N in the form of amino acids after autumn leaf senescence and lat...

  8. New 2-arylbenzofurans from the root bark of Artocarpus lakoocha.

    PubMed

    Sritularak, Boonchoo; Tantrakarnsakul, Kullasap; Likhitwitayawuid, Kittisak; Lipipun, Vimolmas

    2010-09-17

    Three new prenylated 2-arylbenzofurans - artolakoochol, 4-hydroxy-artolakoochol and cycloartolakoochol - have been isolated from the root bark of Artocarpus lakoocha Roxb., Their structures were elucidated through analysis of their spectroscopic data, and their antiherpetic potential was evaluated by the plaque reduction assay.

  9. Nitrogen Availability in Fresh and Aged Douglas Fir Bark

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if there are growth differences in geranium (Pelargonium ×hortorum Bailey 'Maverick Red') produced in either fresh or aged Douglas fir [Pseudotsuga menziesii (Mirbel) Franco] bark (DFB). A second objective was to document nitrogen immobilization and deco...

  10. Relationship between tree bark surface temperature and selected meteorological elements

    NASA Astrophysics Data System (ADS)

    Středa, Tomáš; Litschmann, Tomáš; Středová, Hana

    2015-12-01

    The results were obtained by measurements in 2014 and 2015 in an apple orchard in Starý Lískovec and Těšetice (South Moravia, Czech Republic, Central Europe) into fertile planting of apple trees. The results show that the bark surface temperature during the year slightly differs from the surrounding air temperature. In addition, it is in average a few tenths of a °C higher in the period before the onset of the vegetation and several tenths of a degree lower during vegetation. Causes of these differences appear to be associated with the flow of sap as well as with foliage. Although it can be reasonably assumed that the temperature of the bark surface on the south side will be significantly affected by the global radiation, our measurements did not demonstrate this dependency. It appears that the wind speed had significantly larger influence on the temperature differences in the non-vegetation period as at speeds over 3.5 m s-1, the drop of temperature is so significant that the bark surface is colder than the surrounding air. Comparison of the development of sums of daily and hourly effective temperatures above 10 °C has shown that where daily values do not show significant differences, hourly values differed so prominently that the calculated date of emergence of adult codling moth in the bark surface was approximately one week earlier than with the use of data for air temperatures.

  11. Two new tetracyclic triterpenoids from the barks of Melia azedarach.

    PubMed

    Ge, Jun-Jun; Wang, Ling-Tian; Chen, Pian; Zhang, Yan; Lei, Xin-Xiang; Ye, Xiao-Xia

    2016-01-01

    Two new tetracyclic triterpenoids, together with 21 known compounds, were isolated from the barks of Melia azedarach. The structures of new compounds were elucidated by the means of HRESIMS, 1D NMR, 2D NMR, and X-ray crystallography analysis. PMID:26727712

  12. Bioactive prenylated flavonoids from the stem bark of Artocarpus kemando.

    PubMed

    Seo, Eun-Kyoung; Lee, Dongho; Shin, Young Geun; Chai, Hee-Byung; Navarro, Hernán A; Kardono, Leonardus B S; Rahman, Ismail; Cordell, Geoffrey A; Farnsworth, Norman R; Pezzuto, John M; Kinghorn, A Douglas; Wani, Mansukh C; Wall, Monroe E

    2003-02-01

    Four known prenylated flavonoids, artonins E (1) and O (2), artobiloxanthone (3), and cycloartobiloxanthone (4), were isolated from the stem bark of Artocarpus kemando by bioassay-guided fractionation using the DNA strand-scission and the KB cytotoxicity assays as monitors. Compounds 1 and 3 exhibited strong DNA strand-scission activity, and all four compounds were found to be cytotoxic.

  13. Endocrine control of exaggerated traits in rhinoceros beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  14. Cantharidin Poisoning due to Blister Beetle Ingestion in Children

    PubMed Central

    Al-Binali, Ali M.; Shabana, Medhat; Al-Fifi, Suliman; Dawood, Sami; Shehri, Amer A.; Al-Barki, Ahmed

    2010-01-01

    Cantharidin is an intoxicant found in beetles in the Meloidae (Coleoptera) family. Ingestion may result in haematemesis, impaired level of consciousness, electrolyte disturbance, haematurea and renal impairment. Here, we report two paediatric cases of meloid beetle ingestion resulting in cantharidin poisoning and the clinical presentation of the ensuing intoxication. PMID:21509239

  15. Simulation model of the red flour beetle in flour mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red flour beetle (Tribolium castaneum) is one of the most common insect pests infesting wheat flour mills. Structural treatments such as methyl bromide, sulfuryl fluoride and heat, are used to control the red flour beetle. The structural treatments do not provide any residual action and, thus, any s...

  16. The management of fluid and wave resistances by whirligig beetles.

    PubMed

    Voise, Jonathan; Casas, Jérôme

    2010-02-01

    Whirligig beetles (Coleoptera: Gyrinidae) are semi-aquatic insects with a morphology and propulsion system highly adapted to their life at the air-water interface. When swimming on the water surface, beetles are subject to both fluid resistance and wave resistance. The purpose of this study was to analyse swimming speed, leg kinematics and the capillarity waves produced by whirligig beetles on the water surface in a simple environment. Whirligig beetles of the species Gyrinus substriatus were filmed in a large container, with a high-speed camera. Resistance forces were also estimated. These beetles used three types of leg kinematics, differing in the sequence of leg strokes: two for swimming at low speed and one for swimming at high speed. Four main speed patterns were produced by different combinations of these types of leg kinematics, and the minimum speed for the production of surface waves (23 cm s(-1)) corresponded to an upper limit when beetles used low-speed leg kinematics. Each type of leg kinematics produced characteristic capillarity waves, even if the beetles moved at a speed below 23 cm s(-1). Our results indicate that whirligig beetles use low- and high-speed leg kinematics to avoid maximum drag and swim at speed corresponding to low resistances.

  17. Callosobruchus maculatus: A Seed Beetle with a Future in Schools.

    ERIC Educational Resources Information Center

    Dockery, Michael

    1997-01-01

    Recommends the use of seed beetles for studying animal behavior and provides suggestions for practical and project assignments. Sources for obtaining the beetles and a list of the equipment needed for their study and maintenance are provided. Answers to common concerns are addressed. (DDR)

  18. Formulating entompathogens for control of boring beetles in avocado orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  19. A culture method for darkling beetles, Blapstinus spp. (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (> 500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for ...

  20. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  1. Male-specific sesquiterpenes from Phyllotreta flea beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  2. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark.

    PubMed

    Li, Yungui; Chen, Baoliang; Zhu, Lizhong

    2010-10-01

    To enhance removal efficiency of natural sorbent with polycyclic aromatic hydrocarbons (PAHs), single-solute and bi-solute sorption of phenanthrene and pyrene onto raw and modified pine bark were investigated. Pine bark was modified using Soxhlet extraction, saponification and acid hydrolysis, yielding six bark fractions with different chemical compositions. Raw pine bark exhibited high affinities with PAHs, and sorption was dominated by partitioning. The relatively nonlinear sorption isotherms of modified bark were attributed to the specific interaction between sorbate and aromatic core of sorbent. Comparison with lipid and suberin, lignin was the most powerful sorption medium, but which was almost completely suppressed by coexisting polysaccharide. After consuming polysaccharide by acid hydrolysis, sorption of pine bark fractions was notably increased (4-17 folds); and sorption of pyrene just decreased 16-34% with phenanthrene as a competitor. These observations suggest that pine bark is of great potential for PAHs removal and can be significantly promoted by acid hydrolysis for environmental application.

  3. The use of tree bark as long term biomonitor of (137)Cs deposition.

    PubMed

    Cosma, Constantin; Iurian, Andra-Rada; Incze, Reka; Kovacs, Tibor; Žunić, Zora S

    2016-03-01

    Airborne (137)Cs originated from the nuclear tests in the atmosphere and from the Chernobyl nuclear disaster was retained by the trees biomass and nowadays it can still be found in various concentrations in tree barks from Romania and other European countries. This study brings the first results of (137)Cs presence in tree bark from Romania on different considerations: (i) data dispersion in spruce and oak bark from NW, SW and central Romania, and the spatial variability of (137)Cs within oak and spruce bark from a natural protected forest area from Balvanyos area (Covasna County), known to be highly affected by the Chernobyl nuclear release; (ii) comparison of (137)Cs content in different tree bark species (oak, spruce, poplar and cherry); (iii) differences in (137)Cs concentrations with the bark depth layers and around the tree trunk; and (iv) comparison of mean (137)Cs values in spruce/oak bark from Romania with data from other European countries. PMID:26771244

  4. IPS - Instrument pointing system for Spacelab payloads

    NASA Astrophysics Data System (ADS)

    Hammesfahr, A.

    An instrument pointing system (IPS) will be flown for the first time with Spacelab 2 in Oct. 1984. The IPS is a three-axis gimbal system with payload clamp units for mounting on the Spacelab pallets. Power to drive the units comes from an integrated electronic power and digital control system and Spacelab subsystems. Control originates in either Spacelab, the Shuttle, or from the ground. An intermediate gimbal system is provided with explosive bolts in order to jettison the payload in critical situations. The system covers a conical field-of-view of 120 deg aperture with 180 deg possible in both directions of the roll axis. A block diagram is furnished for the electrical circuitry. Loads are interchangeable so long as they interface with clamps which hold the package to the Orbiter. A maximum weight of up to three tons is allowable.

  5. China IP expanding with self-sufficiency.

    PubMed

    2000-07-01

    This article reports the proceedings of the two National Workshops on the Integrated Project (IP), held in two cities in China. These workshops were organized by the National Steering Committee (NSC) of the Integrated Family Planning Project in China. About 70 representatives, project personnel from the first to the fourth cycle project areas, attended the Taicang workshop, while about 60 representatives from the fifth and sixth cycle project areas attended the Pingyao workshop. Workshop agendas included reports from the NSC, lectures by experts on new developments of reproductive health, summary report of the evaluation for the fifth cycle project, and presentation and discussion on selected project areas. The participants from each workshop took part in field trips to Taicang and Pingyao followed by discussions summarizing the trips. Overall, it is noted that pilot IP projects must not be conducted only within the pilot county, but also outside, as a model projects with appropriate directions and strategies.

  6. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  7. IP- -: A Reduced Internet Protocol for Optical Packet Networking

    NASA Astrophysics Data System (ADS)

    Ohta, Masataka; Fujikawa, Kenji

    IP- - is proposed as an Internet Protocol suitable for optical packet networking. As optical routers require much faster control than electric ones and lack of optical buffers other than those by fiber delay lines requires fixed time control, Internet Protocols must be at least as simple as IPv4 and much simpler than IPv6. IP- - also addresses issues of IP address space exhaustion and IP routing table explosion.

  8. Generation of iPS Cells from Granulosa Cells.

    PubMed

    Mao, Jian; Liu, Lin

    2016-01-01

    Various types of somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells. Somatic stem cells may generate iPS cells more efficiently than do differentiated cells. We show that granulosa cells exhibit characteristic of somatic stem cells and can be reprogrammed to iPS cells more efficiently or with few factors. Here, we describe generation of mouse and pig iPS cells from granulosa cells with high efficiency.

  9. IP-based storage of image information

    NASA Astrophysics Data System (ADS)

    Fu, Xianglin; Xie, Changsheng; Liu, Zhaobin

    2001-09-01

    With the fast growth of data in multispectral image processing, the traditional storage architecture was challenged. It is currently being replaced by Storage Area Networks (SAN), which makes storage devices externalized from servers. A SAN is a separate network for storage, isolated from the messaging network and optimized for the movement of data between servers and storage devices. Nowadays, most of current SAN use Fibre Channel to move data between servers and storage devices (FC-SAN), but because of the drawbacks of the FC-SAN: for interoperability, lack of skilled professional and management tools, high implementation cost and so on, the development and application of FC-SAN was obstructed. In this paper, we introduce an IP-based Storage Area Networks architecture, which has the good qualities of FC- SAN but overcomes the shortcoming of it. The principle is: use IP technology to move data between servers and storage devices, build a SAN with the IP-based network devices (not the FC-based network device), and through the switch, SAN is attached to the LAN(Local Area Network) through multiple access. Especially, these storage devices are acted as commercial NAS devices and PC.

  10. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  11. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference.

    PubMed

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  12. Microorganisms in the gut of beetles: evidence from molecular cloning.

    PubMed

    Zhang, Ning; Suh, Sung-Oui; Blackwell, Meredith

    2003-11-01

    We have regularly cultured yeasts from the gut of certain beetles in our ongoing research. In this study cloned PCR products amplified from the gut contents of certain mushroom-feeding and wood-ingesting beetles in four families (Erotylidae, Tenebrionidae, Ciidae, and Passalidae) were sequenced and compared with culture results. Cultural techniques detected some yeasts present in the gut of the beetles, including a Pichia stipitis-like yeast associated with wood-ingesting passalid beetles. Clone sequences similar to several ascomycete yeasts and Malassezia restricta, a fastidious basidiomycetous yeast requiring special growth media, however, were not detected by culturing. Unexpectedly, phylogenetic analysis of additional clone sequences discovered from passalid beetles showed similarity to members of the Parabasalia, protists known from other wood-ingesting insects, termites, and wood roaches. Examination of all gut regions of living passalids, however, failed to reveal parabasalids, and it is possible that they were parasites in the gut tissue present in low numbers.

  13. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference

    PubMed Central

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  14. Bark ecology of twigs vs. main stems: functional traits across eighty-five species of angiosperms.

    PubMed

    Rosell, Julieta A; Castorena, Matiss; Laws, Claire A; Westoby, Mark

    2015-08-01

    Although produced by meristems that are continuous along the stem length, marked differences in bark morphology and in microenvironment would suggest that main stem and twig bark might differ ecologically. Here, we examined: (1) how closely associated main stem and twig bark traits were, (2) how these associations varied across sites, and (3) used these associations to infer functional and ecological differences between twig and main stem bark. We measured density, water content, photosynthesis presence/absence, total, outer, inner, and relative thicknesses of main stem and twig bark from 85 species of angiosperms from six sites of contrasting precipitation, temperature, and fire regimes. Density and water content did not differ between main stems and twigs across species and sites. Species with thicker twig bark had disproportionately thicker main stem bark in most sites, but the slope and degree of association varied. Disproportionately thicker main stem bark for a given twig bark thickness in most fire-prone sites suggested stem protection near the ground. The savanna had the opposite trend, suggesting that selection also favors twig protection in these fire-prone habitats. A weak main stem-twig bark thickness association was observed in non fire-prone sites. The near-ubiquity of photosynthesis in twigs highlighted its likely ecological importance; variation in this activity was predicted by outer bark thickness in main stems. It seems that the ecology of twig bark can be generalized to main stem bark, but not for functions depending on the amount of bark, such as protection, storage, or photosynthesis.

  15. A Survey of Voice over IP Security Research

    NASA Astrophysics Data System (ADS)

    Keromytis, Angelos D.

    We present a survey of Voice over IP security research. Our goal is to provide a roadmap for researchers seeking to understand existing capabilities and, and to identify gaps in addressing the numerous threats and vulnerabilities present in VoIP systems. We also briefly discuss the implications of our findings with respect to actual vulnerabilities reported in a variety VoIP products.

  16. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  17. Covert Channels in SIP for VoIP Signalling

    NASA Astrophysics Data System (ADS)

    Mazurczyk, Wojciech; Szczypiorski, Krzysztof

    In this paper, we evaluate available steganographic techniques for SIP (Session Initiation Protocol) that can be used for creating covert channels during signaling phase of VoIP (Voice over IP) call. Apart from characterizing existing steganographic methods we provide new insights by introducing new techniques. We also estimate amount of data that can be transferred in signalling messages for typical IP telephony call.

  18. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them

    PubMed Central

    Eisner, Thomas; Schroeder, Frank C.; Snyder, Noel; Grant, Jacqualine B.; Aneshansley, Daniel J.; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Summary Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. PMID:18698369

  19. A Geospatial Assessment of Mountain Pine Beetle Infestations and Their Effect on Forest Health in Okanogan-Wenatchee National Forest

    NASA Astrophysics Data System (ADS)

    Allain, M.; Nguyen, A.; Johnson, E.; Williams, E.; Tsai, S.; Prichard, S.; Freed, T.; Skiles, J. W.

    2010-12-01

    Fire-suppression over the past century has resulted in an accumulation of forest litter and increased tree density. As nutrients are sequestered in forest litter and not recycled by forest fires, soil nutrient concentrations have decreased. The forests of Northern Washington are in poor health as a result of these factors coupled with sequential droughts. The mountain pine beetle (MPB) thrives in such conditions, giving rise to an outbreak in Washington’s Okanogan-Wenatchee National Forest. These outbreaks occur in three successive stages— the green, red, and gray stages. Beetles first infest the tree in the green phase, leading to discoloration of needles in the red phase and eventually death in the gray phase. With the use of geospatial technology, these outbreaks can be better mapped and assessed to evaluate forest health. Field work on seventeen randomly selected sites was conducted using the point-centered quarter method. The stratified random sampling technique ensured that the sampled trees were representative of all classifications present. Additional measurements taken were soil nutrient concentrations (sodium [Na+], nitrate [NO3-], and potassium [K+]), soil pH, and tree temperatures. Satellite imagery was used to define infestation levels and geophysical parameters, such as land cover, vegetation classification, and vegetation stress. ASTER images were used with the Ratio Vegetation Index (RVI) to explore the differences in vegetation, while MODIS images were used to analyze the Disturbance Index (DI). Four other vegetation indices from Landsat TM5 were used to distinguish the green, red and gray phases. Selected imagery from the Hyperion sensor was used to run a minimum distance supervised classification in ENVI, thus testing the ability of Hyperion imagery to detect the green phase. The National Agricultural Imagery Program (NAIP) archive was used to generate accurate maps of beetle-infested regions. This algorithm was used to detect bark beetle

  20. Research and Simulation on Application of the Mobile IP Network

    NASA Astrophysics Data System (ADS)

    Yibing, Deng; Wei, Hu; Minghui, Li; Feng, Gao; Junyi, Shen

    The paper analysed the mobile node, home agent, and foreign agent of mobile IP network firstly, some key technique, such as mobile IP network basical principle, protocol work principle, agent discovery, registration, and IP packet transmission, were discussed. Then a network simulation model was designed, validating the characteristic of mobile IP network, and some advantages, which were brought by mobile network, were testified. Finally, the conclusion is gained: mobile IP network could realize the expectation of consumer that they can communicate with others anywhere.

  1. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.

    PubMed

    Carroll, Thomas S; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency.

  2. Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data

    PubMed Central

    Carroll, Thomas S.; Liang, Ziwei; Salama, Rafik; Stark, Rory; de Santiago, Ines

    2014-01-01

    With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium's large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency. PMID:24782889

  3. Predatory aquatic beetles, suitable trace elements bioindicators.

    PubMed

    Burghelea, Carmen I; Zaharescu, Dragos G; Hooda, Peter S; Palanca-Soler, Antonio

    2011-05-01

    Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status.

  4. Neuropharmacological effects of standardized aqueous stem bark extract of Parkia biglobossa in Wistar rats

    PubMed Central

    Yahaya, Tijani Adeniyi; Okhale, Samuel Ehiabhi; Adeola, Salawu Oluwakanyinsola

    2014-01-01

    Objective: Parkia biglobossa stem bark decoction is a popular medicinal plant preparation used as calming agent for tensed patients in traditional medicine. The aim of this study was to evaluate the effects of aqueous stem bark extract of Parkia biglobossa (AEPB) and its active fraction AEPBF3 on anxiety, spontaneous alternation behavior, and locomotor activity. The open field apparatus was used to evaluate effects of AEPB and AEPBF3 on locomotion. The APBE and the active fraction AEPBF3 were standardized using reverse phase high performance liquid chromatography to establish finger print to ascertain identity and stability of the extracts over time. Materials and Methods: The oral median lethal doses (LD50) of AEPB and AEPBF3 were evaluated using modified Lorke’s method in rats. The effect of APBE (50-200 mg/kg p.o.), APBEF3 (25 and 50 mg/kg p.o.), diazepam (2.5 mg/kg, i.p.), and 10 ml normal saline/kg on anxiety-like behavior, spontaneous alternation behavior, and locomotion activity were evaluated in rats on elevated plus maze (EPM), Zero-maze, Y-maze, and open field apparatus, respectively. The oral LD50 values of AEPB and AEPBF3 were estimated to be 5000 mg/kg and 3800 mg/kg body weight in rats, respectively. Results: AEPB and AEPBF3 significantly (F6, 41=2342, p<0.0001) increased time spent in the open arm of EPM and significantly (F6, 41=2323, p<0.0001) increased time spent in open arms of the Zero maze. The AEPB and AEPBF3 administration produced significant increase (F5, 35=154, p<0.0001) in spontaneous alternation behavior in rats. The AEPB extract and its fraction AEPBF3 significantly increased total locomotor activity (F6, 41=413, p<0.0001) and rearing (F6, 41=150, p<0.0001) in the open field apparatus. Conclusion: The results of the present study provided evidence for anxiolytic and nootropic effects of the AEPB and AEPBF3, thus providing scientific basis for its continuous use in the management of neuropsychiatric disorders characterized by

  5. Brilliant Whiteness in Ultrathin Beetle Scales

    NASA Astrophysics Data System (ADS)

    Vukusic, Pete; Hallam, Benny; Noyes, Joe

    2007-01-01

    The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness.

  6. Brilliant whiteness in ultrathin beetle scales.

    PubMed

    Vukusic, Pete; Hallam, Benny; Noyes, Joe

    2007-01-19

    The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness. PMID:17234940

  7. Potency of Massoia Bark in Combating Immunosuppressed-related Infection

    PubMed Central

    Hertiani, Triana; Pratiwi, Sylvia Utami Tunjung; Yuswanto, Agustinus; Permanasari, Prisci

    2016-01-01

    Background: As part of our search for new potential natural resources to eradicate infection, we have revealed the prominent potency of massoia bark (Massoia aromatica Becc, Lauraceae) in combating immunosuppressed-related infection. Materials and Methods: The extract was prepared by macerating the pulverized dried bark in ethanol 95%, followed by solvent evaporation. The oil was extracted from the dried bark by steam-hydrodistillation of which preparative thin-layer chromatography was performed on the oil to isolate the active constituent, C-10 massoia lactone (ML). Anti-biofilm assay against Candida albicans was conducted on polystyrene 96 wells microtiter plates, followed by a confocal laser scanning microscope observation to get three-dimensional profiles of the affected biofilms. Effects on the hyphae development inoculated on RPMI-1640 agar plates were observed for 7 days. Influences of samples on mice macrophage phagocytosis were examined by an in vitro technique. Samples concentration tested were in the range of 2.0–0.0625 mg/mL and done in triplicate. Results: Massoia bark extracts (oil and solid phase) and ML exhibited promising activities as anti-biofilm against C. albicans at IC50 0.074% v/v, 271 μg/mL and 0.026 μg/mL, respectively. The ML did not inhibit the hyphae development at the concentration tested; however, the extracts showed inhibition at 62.5 μg/mL. Macrophage phagocytosis stimulation was correlated to the ML content. Conclusion: Massoia bark is potential to be developed as anti-infective in immunosuppressed condition of which the C10 ML (C10H16O2) plays a major role in exerting activity. SUMMARY Massoia bark extracts (oily and solid phase) and C-10 Massoia lactone exhibited promising activities as antibiofilm against Candida albicans at IC50 are 0.074 %v/v, 271 μg/mL and 0.026 μg/mL respectively. The major constituent, C-10 Massoia lactone (C10H16O2) plays major role in exerting anticandida activity and potentially acts as an

  8. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  9. Source identification of the Arctic sea ice proxy IP25.

    PubMed

    Brown, T A; Belt, S T; Tatarek, A; Mundy, C J

    2014-06-18

    Analysis of the organic geochemical biomarker IP25 in marine sediments is an established method for carrying out palaeo sea ice reconstructions for the Arctic. Such reconstructions cover timescales from decades back to the early Pleistocene, and are critical for understanding past climate conditions on Earth and for informing climate prediction models. Key attributes of IP25 include its strict association with Arctic sea ice together with its ubiquity and stability in underlying marine sediments; however, the sources of IP25 have remained undetermined. Here we report the identification of IP25 in three (or four) relatively minor (<5%) sea ice diatoms isolated from mixed assemblages collected from the Canadian Arctic. In contrast, IP25 was absent in the dominant taxa. Chemical and taxonomical investigations suggest that the IP25-containing taxa represent the majority of producers and are distributed pan-Arctic, thus establishing the widespread applicability of the IP25 proxy for palaeo Arctic sea ice reconstruction.

  10. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    PubMed Central

    Ibarretxe, Gaskon; Alvarez, Antonia; Cañavate, Maria-Luz; Hilario, Enrique; Aurrekoetxea, Maitane; Unda, Fernando

    2012-01-01

    The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration. PMID:22690226

  11. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  12. Dung beetles ignore landmarks for straight-line orientation.

    PubMed

    Dacke, Marie; Byrne, Marcus; Smolka, Jochen; Warrant, Eric; Baird, Emily

    2013-01-01

    Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle's orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.

  13. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  14. Understanding Boswellia papyrifera tree secondary metabolites through bark spectral analysis

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans

    2015-07-01

    Decision makers are concerned whether to tap or rest Boswellia Papyrifera trees. Tapping for the production of frankincense is known to deplete carbon reserves from the tree leading to production of less viable seeds, tree carbon starvation and ultimately tree mortality. Decision makers use traditional experience without considering the amount of metabolites stored or depleted from the stem-bark of the tree. This research was designed to come up with a non-destructive B. papyrifera tree metabolite estimation technique relevant for management using spectroscopy. The concentration of biochemicals (metabolites) found in the tree bark was estimated through spectral analysis. Initially, a random sample of 33 trees was selected, the spectra of bark measured with an Analytical Spectral Device (ASD) spectrometer. Bark samples were air dried and ground. Then, 10 g of sample was soaked in Petroleum ether to extract crude metabolites. Further chemical analysis was conducted to quantify and isolate pure metabolite compounds such as incensole acetate and boswellic acid. The crude metabolites, which relate to frankincense produce, were compared to plant properties (such as diameter and crown area) and reflectance spectra of the bark. Moreover, the extract was compared to the ASD spectra using partial least square regression technique (PLSR) and continuum removed spectral analysis. The continuum removed spectral analysis were performed, on two wavelength regions (1275-1663 and 1836-2217) identified through PLSR, using absorption features such as band depth, area, position, asymmetry and the width to characterize and find relationship with the bark extracts. The results show that tree properties such as diameter at breast height (DBH) and the crown area of untapped and healthy trees were strongly correlated to the amount of stored crude metabolites. In addition, the PLSR technique applied to the first derivative transformation of the reflectance spectrum was found to estimate the

  15. Constituents of twig bark of pear cultivars (Pyrus species).

    PubMed

    Tomosaka, Hideyuki; Tamimoto, Hideaki; Tsukagoshi, Yuki; Suzuki, Yasutsugu; Ooka, Hisako; Ota, Michiya

    2012-08-01

    Organic solvent extracts from fresh twig bark of Japanese pear cultivars (Pyrus serotina) Shinko and Nijisseiki, and European pear cultivar (P. communis) Le Lectier were obtained by maceration with n-hexane and EtOAc, and analyzed in GC-EIMS experiments. In these two Japanese cultivars, the lupeol, betulin, epifriedelinol, friedelin and arbutin contents of Nijisseiki were higher than those of Shinko. In the case of the lupane-type triterpenes, lupeol and betulin, the lupeol content of Japanese pears Shinko and Nijisseiki was higher than that of European pear Le Lectier. The betulin content of Le Lectier was higher than those of Shinko and Nijisseiki. Friedelane-type triterpenes, epifriedelinol and friedelin, were not detected in twig bark of Le Lectier. Quantitative and qualitative differences in the constituents of these three pear cultivars were observed.

  16. Anti-inflammatory activity of Syzygium cumini bark.

    PubMed

    Muruganandan, S; Srinivasan, K; Chandra, S; Tandan, S K; Lal, J; Raviprakash, V

    2001-05-01

    The ethanolic extract of the bark of Syzygium cumini was investigated for its anti-inflammatory activity in animal models. The extract did not show any sign of toxicity up to a dose of 10.125 g/kg, p.o. in mice. Significant anti-inflammatory activity was observed in carrageenin (acute), kaolin-carrageenin (subacute), formaldehyde (subacute)-induced paw oedema and cotton pellet granuloma (chronic) tests in rats. The extract did not induce any gastric lesion in both acute and chronic ulcerogenic tests in rats. Thus, the present study demonstrated that S. cumini bark extract has a potent anti-inflammatory action against different phases of inflammation without any side effect on gastric mucosa. PMID:11395258

  17. Red List of beetles of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Mahler, V.; Suikat, R.; Aßmann, Th.

    1996-10-01

    As no data on beetles in the Wadden Sea area are available from The Netherlands, the trilateral status of threat only refers to the Danish and German part of the Wadden Sea. In this area, in total, 238 species of beetles are threatened in at least one subregion. Of these, 189 species are threatened in the entire area and are therefore placed on the trilateral Red List. 4 species are (probably) extinct in the entire Wadden Sea area. The status of 24 species of beetles is (probably) critical, 46 species are (probably) endangered, the status of 86 species is (probably) vulnerable and of 29 species (probably) susceptible.

  18. Atlas of Iberian water beetles (ESACIB database).

    PubMed

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  19. Dew condensation on desert beetle skin.

    PubMed

    Guadarrama-Cetina, J; Mongruel, A; Medici, M-G; Baquero, E; Parker, A R; Milimouk-Melnytchuk, I; González-Viñas, W; Beysens, D

    2014-11-01

    Some tenebrionind beetles inhabiting the Namib desert are known for using their body to collect water droplets from wind-blown fogs. We aim to determine whether dew water collection is also possible for desert insects. For this purpose, we investigated the infra-red emissivity, and the wetting and structural properties, of the surface of the elytra of a preserved specimen of Physasterna cribripes (Tenebrionidæ) beetle, where the macro-structure appears as a series of "bumps", with "valleys" between them. Dew formation experiments were carried out in a condensation chamber. The surface properties (infra-red emissivity, wetting properties) were dominated by the wax at the elytra surface and, to a lower extent, its micro-structure. We performed scanning electron microscope on histological sections and determined the infra-red emissivity using a scanning pyrometer. The emissivity measured (0.95±0.07 between 8-14 μm) was close to the black body value. Dew formation occurred on the insect's elytra, which can be explained by these surface properties. From the surface coverage of the condensed drops it was found that dew forms primarily in the valleys between the bumps. The difference in droplet nucleation rate between bumps and valleys can be attributed to the hexagonal microstructure on the surface of the valleys, whereas the surface of the bumps is smooth. The drops can slide when they reach a critical size, and be collected at the insect's mouth.

  20. Atlas