Science.gov

Sample records for barley grain development

  1. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  2. Spatiotemporal Profiling of Starch Biosynthesis and Degradation in the Developing Barley Grain1[W

    PubMed Central

    Radchuk, Volodymyr V.; Borisjuk, Ludmilla; Sreenivasulu, Nese; Merx, Kathleen; Mock, Hans-Peter; Rolletschek, Hardy; Wobus, Ulrich; Weschke, Winfriede

    2009-01-01

    Barley (Hordeum vulgare) grains synthesize starch as the main storage compound. However, some starch is degraded already during caryopsis development. We studied temporal and spatial expression patterns of genes coding for enzymes of starch synthesis and degradation. These profiles coupled with measurements of selected enzyme activities and metabolites have allowed us to propose a role for starch degradation in maternal and filial tissues of developing grains. Early maternal pericarp functions as a major short-term starch storage tissue, possibly ensuring sink strength of the young caryopsis. Gene expression patterns and enzyme activities suggest two different pathways for starch degradation in maternal tissues. One pathway possibly occurs via α-amylases 1 and 4 and β-amylase 1 in pericarp, nucellus, and nucellar projection, tissues that undergo programmed cell death. Another pathway is deducted for living pericarp and chlorenchyma cells, where transient starch breakdown correlates with expression of chloroplast-localized β-amylases 5, 6, and 7, glucan, water dikinase 1, phosphoglucan, water dikinase, isoamylase 3, and disproportionating enzyme. The suite of genes involved in starch synthesis in filial starchy endosperm is much more complex than in pericarp and involves several endosperm-specific genes. Transient starch turnover occurs in transfer cells, ensuring the maintenance of sink strength in filial tissues and the reallocation of sugars into more proximal regions of the starchy endosperm. Starch is temporally accumulated also in aleurone cells, where it is degraded during the seed filling period, to be replaced by storage proteins and lipids. PMID:19321714

  3. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping

    PubMed Central

    Maurer, Andreas; Draba, Vera; Pillen, Klaus

    2016-01-01

    Flowering time is a key agronomic trait that plays an important role in crop yield. There is growing interest in dissecting the developmental subphases of flowering to better understand and fine-tune plant development and maximize yield. To do this, we used the wild barley nested association mapping (NAM) population HEB-25, comprising 1420 BC1S3 lines, to map quantitative trait loci (QTLs) controlling five developmental traits, plant height, and thousand grain weight. Genome-wide association studies (GWAS) enabled us to locate a total of 89 QTLs that genetically regulate the seven investigated traits. Several exotic QTL alleles proved to be highly effective and potentially useful in barley breeding. For instance, thousand grain weight was increased by 4.5g and flowering time was reduced by 9.3 days by substituting Barke elite QTL alleles for exotic QTL alleles at the denso/sdw1 and the Ppd-H1 loci, respectively. We showed that the exotic allele at the semi-dwarf locus denso/sdw1 can be used to increase grain weight since it uncouples the negative correlation between shoot elongation and the ripening phase. Our study demonstrates that nested association mapping of HEB-25 can help unravel the genetic regulation of plant development and yield formation in barley. Moreover, since we detected numerous useful exotic QTL alleles in HEB-25, we conclude that the introgression of these wild barley alleles into the elite barley gene pool may enable developmental phases to be specifically fine-tuned in order to maximize thousand grain weight and, potentially, yield in the long term. PMID:26936829

  4. A Single Limit Dextrinase Gene Is Expressed Both in the Developing Endosperm and in Germinated Grains of Barley1

    PubMed Central

    Burton, Rachel A.; Zhang, Xiao-Qi; Hrmova, Maria; Fincher, Geoffrey B.

    1999-01-01

    The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain. PMID:10069825

  5. (/sup 14/C)sucrose uptake and labeling of starch in developing grains of normal segl barley

    SciTech Connect

    Felker, F.C.; Peterson, D.M.; Nelson, O.E.

    1984-01-01

    Previous work showed that the segl mutant of barley (Hordeum vulgare o Betzes) did not differ from normal Betzes in plant growth, photosynthesis, or fertility, but it produced only shrunken seeds regardless of pollen source. To determine whether defects in sucrose uptake or starch synthesis resulted in the shrunken condition, developing grains of Betzes and segl were cultured in (/sup 14/C)sucrose solutions after slicing transversely to expose the endosperm cavity and free space. In both young grains (before genotypes differed in dry weight) and older grains (17 days after anthesis, when segl grains were smaller than Betzes), sucrose uptake and starch synthesis were similar in both genotypes on a dry weight basis. To determine if sucrose was hydrolyzed during uptake, spikes of Betzes and segl were allowed to take up (fructose-U-/sup 14/C)sucrose 14 days after anthesis and the radioactivity of endosperm sugars was examined during 3 hours of incubation. Whereas less total radioactivity entered the endosperm and the endosperm cavity (free space) of segl, in both genotypes over 96% of the label of endosperm sugars was in sucrose, and there was no apparent initial or progressive randomization of label among hexose moieties of sucrose as compared to the free space sampled after 1 hour of incubation. The authors conclude that segl endosperms are capable of normal sucrose uptake and starch synthesis and that hydrolysis of sucrose is not required for uptake in either genotype. Evidence suggests abnormal development of grain tissue of maternal origin during growth of segl grains.

  6. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting.

    PubMed

    Chono, Makiko; Honda, Ichiro; Shinoda, Shoko; Kushiro, Tetsuo; Kamiya, Yuji; Nambara, Eiji; Kawakami, Naoto; Kaneko, Shigenobu; Watanabe, Yoshiaki

    2006-01-01

    To investigate whether the regulation of abscisic acid (ABA) content was related to germinability during grain development, two cDNAs for 9-cis-epoxycarotenoid dioxygenase (HvNCED1 and HvNCED2) and one cDNA for ABA 8'-hydroxylase (HvCYP707A1), which are enzymes thought to catalyse key regulatory steps in ABA biosynthesis and catabolism, respectively, were cloned from barley (Hordeum vulgare L.). Expression and ABA-quantification analysis in embryo revealed that HvNCED2 is responsible for a significant increase in ABA levels during the early to middle stages of grain development, and HvCYP707A1 is responsible for a rapid decrease in ABA level thereafter. The change in the embryonic ABA content of imbibing grains following dormancy release is likely to reflect changes in the expression patterns of HvNCEDs and HvCYP707A1. A major change between dormant and after-ripened grains occurred in HvCYP707A1; the increased expression of HvCYP707A1 in response to imbibition, followed by a rapid ABA decrease and a high germination percentage, was observed in the after-ripened grains, but not in the dormant grains. Under field conditions, HvNCED2 showed the same expression level and pattern during grain development in 2002, 2003, and 2004, indicating that HvNCED2 expression is regulated in a growth-dependent manner in the grains. By contrast, HvNCED1 and HvCYP707A1 showed a different expression pattern in each year, indicating that the expression of these genes is affected by environmental conditions during grain development. The varied expression levels of these genes during grain development and imbibition, which would have effects on the activity of ABA biosynthesis and catabolism, might be reflected, in part, in the germinability in field-grown barley.

  7. Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. malting and brewing industries are America’s largest consumers of barley, purchasing more than one-half of the U.S. barley grain crop. More than 70% of the hectares seeded to barley are seeded to cultivars recommended by the American Malting Barley Association (AMBA). The malting and brewi...

  8. Differential expression of two ß-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) endosperm-specific (Bmy1) and ubiquitous (Bmy2) ß-amylase were studied during the late maturation phase of seed development in four genotypes. Sequencing of Bmy2 from genomic DNA revealed six polymorphisms in the introns and two synonymous SNPs in the coding region. Acc...

  9. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains.

    PubMed

    Weier, Diana; Thiel, Johannes; Kohl, Stefan; Tarkowská, Danuše; Strnad, Miroslav; Schaarschmidt, Sara; Weschke, Winfriede; Weber, Hans; Hause, Bettina

    2014-10-01

    In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial-temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains.

  10. The production of recombinant proteins in transgenic barley grains.

    PubMed

    Horvath, H; Huang, J; Wong, O; Kohl, E; Okita, T; Kannangara, C G; von Wettstein, D

    2000-02-15

    The grain of the self-pollinating diploid barley species offers two modes of producing recombinant enzymes or other proteins. One uses the promoters of genes with aleurone-specific expression during germination and the signal peptide code for export of the protein into the endosperm. The other uses promoters of the structural genes for storage proteins deposited in the developing endosperm. Production of a protein-engineered thermotolerant (1, 3-1, 4)-beta-glucanase with the D hordein gene (Hor3-1) promoter during endosperm development was analyzed in transgenic plants with four different constructs. High expression of the enzyme and its activity in the endosperm of the mature grain required codon optimization to a C+G content of 63% and synthesis as a precursor with a signal peptide for transport through the endoplasmic reticulum and targeting into the storage vacuoles. Synthesis of the recombinant enzyme in the aleurone of germinating transgenic grain with an alpha-amylase promoter and the code for the export signal peptide yielded approximately 1 microgram small middle dotmg(-1) soluble protein, whereas 54 microgram small middle dotmg(-1) soluble protein was produced on average in the maturing grain of 10 transgenic lines with the vector containing the gene for the (1, 3-1, 4)-beta-glucanase under the control of the Hor3-1 promoter.

  11. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  12. Water uptake in barley grain: Physiology; genetics and industrial applications.

    PubMed

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries.

  13. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    PubMed

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change.

  14. Evolution of the Grain Dispersal System in Barley.

    PubMed

    Pourkheirandish, Mohammad; Hensel, Goetz; Kilian, Benjamin; Senthil, Natesan; Chen, Guoxiong; Sameri, Mohammad; Azhaguvel, Perumal; Sakuma, Shun; Dhanagond, Sidram; Sharma, Rajiv; Mascher, Martin; Himmelbach, Axel; Gottwald, Sven; Nair, Sudha K; Tagiri, Akemi; Yukuhiro, Fumiko; Nagamura, Yoshiaki; Kanamori, Hiroyuki; Matsumoto, Takashi; Willcox, George; Middleton, Christopher P; Wicker, Thomas; Walther, Alexander; Waugh, Robbie; Fincher, Geoffrey B; Stein, Nils; Kumlehn, Jochen; Sato, Kazuhiro; Komatsuda, Takao

    2015-07-30

    About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.

  15. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain compositional components impacting barley (Hordeum vulgare L.) use in food, feed and fuel products, must be combined with improved gronomic traits to produce a commercially viable barley cultivar. Little current information is available on grain composition and variability among winter barley ...

  16. Lysine metabolism in antisense C-hordein barley grains.

    PubMed

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A; Medici, Leonardo O; Vincze, Eva; Kozak, Marcin; Lea, Peter J; Azevedo, Ricardo A

    2015-02-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one aspartate-derived amino acid (threonine), but major changes were also detected in the metabolism of lysine and methionine. Modifications in the activities and regulation of aspartate kinase, dihydrodipicolinate synthase and homoserine dehydrogenase were observed in most transgenic lines. Furthermore the activities of lysine α-ketoglutarate reductase and saccharopine dehydrogenase were also altered, although the extent varied among the transgenic lines.

  17. Effect of the hull fraction on the beta-glucan contents of barley and oat grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hull fraction of barley and oat grains affects the beta-glucan (BG) content in whole grains. To evaluate the impact of the hull fraction on BG content in various genetic backgrounds and growth conditions, BG contents were analyzed in five hulled barley lines, seven hulled oat lines, and one F2 ...

  18. Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes

    PubMed Central

    Sun, Hongyan; Cao, Fangbin; Wang, Nanbo; Zhang, Mian; Mosaddek Ahmed, Imrul; Zhang, Guoping; Wu, Feibo

    2013-01-01

    To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low- grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2), trypsin inhibitor, dehydroascorbate reductase (DHAR), pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars. PMID:24260165

  19. Antioxidants, Enzyme Inhibitors, and Biogenic Compounds in Grain Extracts of Barleys.

    PubMed

    Maliar, Tibor; Slaba, Gabriela; Nemeček, Peter; Maliarová, Mária; Benková, Michaela; Havrlentová, Michaela; Ondrejovič, Miroslav; Kraic, Ján

    2015-11-01

    The content of biogenic compounds and the biological activities of barley (Hordeum vulgare L.)-grain extracts was evaluated. The sufficiently large and heterogeneous set of barley genotypes (100 accessions) enabled the selection of special genotypes interesting for potential industrial, pharmaceutical, and medicinal applications. Barley genotypes with the highest contents of phenols, phenolic acids, flavonoids, biogenic thiols, and amines, radical-scavenging activity, as well as inhibitory activities of trypsin, thrombin, collagenase, urokinase, and cyclooxygenase were identified.

  20. Quality of rolled barley flakes as affected by batch of grain and processing technique.

    PubMed

    Sundberg, B; Abrahamsson, L; Aman, P

    1994-02-01

    Rolled barely flakes were prepared from three different batches of grain by pearling, steaming and rolling. Autoclaved and malted barleys from the three batches were also processed in the same way. Analysis of the nine products showed that both batch of barley and process had significant effects on chemical composition and viscosity. Puddings were prepared from the products and mechanical consistency, juiciness and grain consistency were graded on both newly prepared and heated puddings by a sensory taste panel. Batch of barley had no effect on mechanical consistency but significant effects on juiciness and grain consistency. Type of processing had significant effect on all three parameters for both newly prepared and heated puddings.

  1. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.

    PubMed

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding.

  2. Acrylamide elution from roasted barley grains into mugicha and its formation during roasting.

    PubMed

    Mizukami, Yuzo; Yoshida, Mitsuru; Ono, Hiroshi

    2016-01-01

    This paper investigated acrylamide elution from roasted barley grain into mugicha and its formation during roasting of the grain. Mugicha is an infusion of roasted barley grains. Highly water-soluble acrylamide was easily extracted to mugicha from milled roasted barley grains in teabags. On the other hand, the acrylamide concentration in mugicha prepared from loose grain increased with longer simmering and steeping times. During roasting in a drum roaster, the acrylamide concentration of the grain increased as the surface temperature rose, reaching a maximum at 180-240°C. Above this temperature, the acrylamide concentration decreased with continued roasting, exhibiting an inverted 'U'-shaped curve. For most of the samples, the acrylamide concentration showed good correlation with the value of the colour space parameter L*. The dark-coloured roasted barley grains with lower L* values contained lower amounts of acrylamide as a result of deep roasting. The level of asparagine in barley grains was found to be a significant factor related to acrylamide formation in roasted barley products. The data are an important contribution to the mitigation of acrylamide intake from mugicha.

  3. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    PubMed

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.

  4. Effects of Break Crops on Yield and Grain Protein Concentration of Barley in a Boreal Climate

    PubMed Central

    Zou, Ling; Yli-Halla, Markku; Stoddard, Frederick L.; Mäkelä, Pirjo S. A.

    2015-01-01

    Rotation with dicotyledonous crops to break cereal monoculture has proven to be beneficial to successive cereals. In two fields where the soil had been subjected to prolonged, continuous cereal production, two 3-year rotation trials were established. In the first year, faba bean, turnip rape and barley were grown, as first crops, in large blocks and their residues tilled into the soil after harvest. In the following year, barley, buckwheat, caraway, faba bean, hemp and white lupin were sown, as second crops, in each block and incorporated either at flowering stage (except barley) or after harvest. In the third year, barley was grown in all plots and its yield and grain protein concentration were determined. Mineral N in the plough layer was determined two months after incorporation of crops and again before sowing barley in the following year. The effect of faba bean and turnip rape on improving barley yields and grain protein concentration was still detectable two years after they were grown. The yield response of barley was not sensitive to the growth stage of second crops when they were incorporated, but was to different second crops, showing clear benefits averaging 6-7% after white lupin, faba bean and hemp but no benefit from caraway or buckwheat. The effect of increased N in the plough layer derived from rotation crops on barley yields was minor. Incorporation of plants at flowering stage slightly increased third-year barley grain protein concentration but posed a great potential for N loss compared with incorporation of crop residues after harvest, showing the value of either delayed incorporation or using catch crops. PMID:26076452

  5. Acrylamide in roasted barley grains: presence, correlation with colour and decrease during storage.

    PubMed

    Mizukami, Yuzo; Yoshida, Mitsuru; Isagawa, Satoshi; Yamazaki, Kumiko; Ono, Hiroshi

    2014-01-01

    We investigated the presence of acrylamide in roasted barley grains, and assessed the correlation between acrylamide concentration and colour, and also examined acrylamide decrease during storage. Acrylamide concentrations in 45 commercially available roasted barley grains were analysed. The mean and standard deviation were 0.24 and 0.08 mg kg(-1), respectively. The CIE colour parameter a* value had little correlation with acrylamide concentration in roasted barley grains; however, the L* and b* values showed correlations with acrylamide concentration in the grains, yielding a correlation coefficient of 0.42 and 0.40, respectively. Darker-coloured roasted barley grains with lower L* values may contain lower amounts of acrylamide. Although acrylamide concentration decreased by 40% in the grains, and decreased by 36% in the milled grains (teabag form) after 309 days of storage at room temperature a significant difference in the rate of acrylamide decrease was not observed between the grain and teabag forms. The data obtained in this study are of importance to the risk assessment and management of acrylamide exposure in Japan.

  6. [The prediction of barley grain protein content based on hyperspectral data].

    PubMed

    Gu, Zhi-hong

    2012-02-01

    The prediction of crop grain protein by hyperspectral data has the nondestructive and quick advantages. At present, there are only a few reports about the prediction of barley grain protein by remote sensing. The present research focuses on the malt barley of Northeast China. Firstly, we analyzed the sensitive band area, compared many vegetation indexes related with the plant nitrogen. According to the mechanism of nitrogen transfer, the authors built the prediction model based on the hyperspectral vegetation indexes. Finally, we validated the results. It can meet the standard. The outcome shows that (1) the sensitive band region of barley plant nitrogen is 550-590 nm and 670-710 nm. (2) GRVI was significantly correlated with plant nitrogen. The relationship between GRVI and barley plant nitrogen had a coefficient of determination of R2 = 0.665 1. The results indicated that the prediction of barley grain protein by hyperspectral data is feasible. This research will be a strong scientific support for barley purchase.

  7. CoulArray electrochemical evaluation of tocopherol and tocotrienol isomers in barley, oat and spelt grains.

    PubMed

    Colombo, Maria L; Marangon, Katia; Bugatti, Carlo

    2009-02-01

    Hexane extracts obtained from Hordeum vulgare L. (barley), Avena sativa L. (oat), Triticum spelta Schrank and Triticum dicoccum Schrank ex Schübler (spelt or emmer) whole grains, were examined for their tocochromanol (tocopherol and tocotrienol) content. The analyses were carried out on fatty extracts by means of HPLC coupled with a coulometric array electrochemical detector (ECD). Due to the specific high selectivity of the detector, the sample can be directly injected without any preliminary treatment (e.g., saponification). Eight tocochromanol isomers have been detected in barley grains. Different barley cultivars examined showed a tocochromanol content ranging from 1620 to 1852 ng/g caryopses. Oat grains contained ca. 45 ng/g caryopses and Triticum species ca.1070 ng/g caryopses. The results are considered in view of a potential use of vitamin E derivatives as human health enhancer and as sources of antioxidants for food lipid preservation.

  8. Antioxidant activity in barley (Hordeum Vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology.

    PubMed

    Omwamba, Mary; Hu, Qiuhui

    2010-01-01

    Microwave processing and cooking of foods is a recent development that is gaining momentum in household as well as large-scale food applications. Barley contains phenol compounds which possess antioxidant activity. In this study the microwave oven roasting condition was optimized to obtain grains with high antioxidant activity measured as the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. Antioxidant activity of grains roasted under optimum conditions was assessed based on DPPH radical scavenging activity, reducing power and inhibition of oxidation in linoleic acid system. The optimum condition for obtaining roasted barley with high antioxidant activity (90.5% DPPH inhibition) was found to be at 600 W microwave power, 8.5 min roasting time, and 61.5 g or 2 layers of grains. The roasting condition influenced antioxidant activity both individually and interactively. Statistical analysis showed that the model was significant (P < 0.0001). The acetone extract had significantly high inhibition of lipid peroxidation and DPPH radical scavenging activity compared to the aqueous extract and alpha-tocopherol. The reducing power of acetone extracts was not significantly different from alpha-tocopherol. The acetone extract had twice the amount of phenol content compared to the aqueous extract indicating its high extraction efficiency. GC-MS analysis revealed the presence of phenol acids, amino phenols, and quinones. The aqueous extract did not contain 3,4-dihydroxybenzaldehyde and 4-hydroxycinnamic acid which are phenol compounds reported to contribute to antioxidant activity in barley grain.

  9. Feeding barley grain-rich diets altered electrophysiological properties and permeability of the ruminal wall in a goat model.

    PubMed

    Klevenhusen, F; Hollmann, M; Podstatzky-Lichtenstein, L; Krametter-Frötscher, R; Aschenbach, J R; Zebeli, Q

    2013-04-01

    ruminal pH associated with increased volatile fatty acids (such as propionate and butyrate) concentrations as well as altered epithelial properties in response to high-grain feeding, no signs of inflammation became apparent, as blood serum amyloid A concentrations remained unaffected by diet. However, greater amounts of grain in the diet were associated with a quadratic increase in lipopolysaccharide concentration in the serum. Also, increasing the amounts of barley grain in the diet resulted in a tendency to quadratically augment serum concentrations of β-hydroxybutyrate and, hence, the alimentary ketogenesis. Further studies are needed to clarify the role of barley inclusion in the development of subacute ruminal acidosis in relation to ruminal epithelial damage and the translocation of toxic compounds in vivo.

  10. cis-trans-Isomerization of unsaturated fatty acids during /γ-irradiation of barley grains

    NASA Astrophysics Data System (ADS)

    Geißler, Christian; Brede, Ortwin; Reinhardt, Jürgen

    2003-06-01

    Gamma-irradiating barley grains with doses of 10-100 kGy, a dose dependent isomerization of the naturally occurring cis-unsaturated fatty acids such as oleic, cis-vaccenic, linoleic and also of linolenic acid was found. Whereas the effect was negligible up to 10 kGy, at 50 kGy the trans-fatty acid level became comparable to that of other natural products like butter fat which means that there is no essential nutrition danger. The cis-trans-isomerization found in barley grains is explained mainly by a thiyl radical driven process rather than direct isomerization.

  11. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    PubMed

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  12. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  13. Proteome Analysis of Grain Filling and Seed Maturation in Barley1

    PubMed Central

    Finnie, Christine; Melchior, Sabrina; Roepstorff, Peter; Svensson, Birte

    2002-01-01

    In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-Mr α-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation. PMID:12114584

  14. Evaluation of in vitro models for predicting acidosis risk of barley grain in finishing beef cattle.

    PubMed

    Anele, U Y; Swift, M-L; McAllister, T A; Galyean, M L; Yang, W Z

    2015-10-01

    Our objective was to develop a model to predict the acidosis potential of barley based on the in vitro batch culture incubation of 50 samples varying in bulk density, starch content, processing method, growing location, and agronomic practices. The model was an adaptation of the acidosis index (calculated from a combination of in situ and in vitro analyses and from several components of grain chemical composition) developed in Australia for use in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. Of the independent variables considered, DM disappearance at 6 h of incubation (DMD6) using reduced-strength (20%) buffer in the batch culture accounted for 90.5% of the variation in the acidosis index with a root mean square error (RMSE) of 4.46%. To evaluate our model using independent datasets (derived from previous batch culture studies using full-strength [100%] buffer), we performed another batch culture study using full-strength buffer. The full-strength buffer model using in vitro DMD6 (DMD6-FS) accounted for 66.5% of the variation in the acidosis index with an RMSE of 8.30%. When the new full-strength buffer model was applied to 3 independent datasets to predict acidosis, it accounted for 20.1, 28.5, and 30.2% of the variation in the calculated acidosis index. Significant ( < 0.001) mean bias was evident in 2 of the datasets, for which the DMD6 model underpredicted the acidosis index by 46.9 and 5.73%. Ranking of samples from the most diverse independent dataset using the DMD6-FS model and the Black (2008) model (calculated using in situ starch degradation) indicated the relationship between the rankings using Spearman's rank correlation was negative (ρ = -0.30; = 0.059). When the reduced-strength buffer model was used, however, there were similarities in the acidosis index ranking of barley samples by the models as shown by the result of a correlation analysis between calculated (using the Australian model) and

  15. The detection of QTLs in barley associated with endosperm hardness, grain density, grain size and malting quality using rapid phenotyping tools.

    PubMed

    Walker, Cassandra K; Ford, Rebecca; Muñoz-Amatriaín, María; Panozzo, Joe F

    2013-10-01

    Using a barley mapping population, 'Vlamingh' × 'Buloke' (V × B), whole grain analyses were undertaken for physical seed traits and malting quality. Grain density and size were predicted by digital image analysis (DIA), while malt extract and protein content were predicted using near infrared (NIR) analysis. Validation of DIA and NIR algorithms confirmed that data for QTL analysis was highly correlated (R (2) > 0.82), with high RPD values (the ratio of the standard error of prediction to the standard deviation, 2.31-9.06). Endosperm hardness was measured on this mapping population using the single kernel characterisation system. Grain density and endosperm hardness were significantly inter-correlated in all three environments (r > 0.22, P < 0.001); however, other grain components were found to interact with the traits. QTL for these traits were also found on different genomic regions, for example, grain density QTLs were found on chromosomes 2H and 6H, whereas endosperm hardness QTLs were found on 1H, 5H, and 7H. In this study, the majority of the genomic regions associated with grain texture were also coincident with QTLs for grain size, yield, flowering date and/or plant development genes. This study highlights the complexity of genomic regions associated with the variation of endosperm hardness and grain density, and their relationships with grain size traits, agronomic-related traits, and plant development loci.

  16. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and ß-glucan in US barley breeding germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A renewed interest in breeding barley specifically for food end-uses is being driven by increased consumer interest in healthier foods. We conducted association mapping on physicochemical properties of barley that play a role in food quality and processing including, grain hardness, polyphenol oxid...

  17. Crop identification studies using Landsat data Separation of barley from other spring small grains and corn and soybean decision logic

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Register, D. T.; Abotteen, K. M.; Palmer, W. F.; Spikes, G. D.; Magness, E. R.; Wade, L. C.

    1980-01-01

    Two labeling procedures were developed which identify various agricultural crops through the use of Landsat data. One procedure separates barley from other spring small grains, and the other identifies corn and soybeans. For both procedures, a minimum data set (critical acquisition time) has been designated. Landsat data in both image format and various graphic displays were used along with ancillary data to obtain information which aided in labeling the spectral signatures. The corn and soybean procedure also employed a structured decision logic. Test results for the barley separation procedure emphasized the importance of obtaining a critical acquisition and showed some success especially in areas where spring crops followed the expected growth patterns. Two tests of the corn and soybean procedure produced good labeling accuracies. Problems with the procedure were easy to identify, and some solutions were implemented for the second test. Automation of various parts of the procedure and extension to other crops and regions were recommended.

  18. Comparison of barley and sorghum grain processed at different densities for lactating dairy cows.

    PubMed

    Santos, F A; Huber, J T; Theurer, C B; Swingle, R S; Wu, Z; Simas, J M; Chen, K H; Chan, S C; Santos, J; DePeters, E J

    1997-09-01

    To vary ruminally degradable starch, sorghum grain was dry-rolled or steam-flaked to different densities and compared with dry-rolled barley in total mixed diets fed to 40 lactating cows (111 d of lactation) assigned to five dietary treatments. Diets contained (percentage of dry matter) 35% alfalfa hay, 4.1% cottonseed hulls, 10% whole cottonseed, 2% fish meal, 4% soybean meal, and 4.9% of a molasses, mineral, and vitamin supplement. Treatments were 40% sorghum grain either dry-rolled or steam-processed at flake densities of 437, 360, and 283 g/L. A fifth diet containing 42% dry-rolled barley was fed. Cows were blocked according to pretreatment (14 d) milk yield and received experimental diets for 56 d. Increasing ruminal starch degradability by including steam-flaked sorghum grain or barley in the diet did not increase milk yield or milk protein percentage and yield, as was shown in eight previous studies. Steam-flaked sorghum or dry-rolled barley in the diet decreased dry matter intake, resulting in a 10 to 19% higher efficiency of conversion of feed dry matter to milk than that for dry-rolled sorghum. Milk urea N was decreased, and milk casein yield tended to be increased, by steam-flaking sorghum at the moderate density compared with dry-rolling or fine flaking. Dietary protein was more efficiently converted to milk protein and casein from flaked sorghum and dry-rolled barley than from dry-rolled sorghum. In this study, increasing ruminal starch degradability resulted in higher feed efficiency and lower feed intakes, bu optimal flake densities for steam-processed sorghum gain to maximize milk and milk protein yield were not clarified.

  19. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome

    PubMed Central

    De Angelis, Maria; Montemurno, Eustacchio; Vannini, Lucia; Cosola, Carmela; Cavallo, Noemi; Gozzi, Giorgia; Maranzano, Valentina; Di Cagno, Raffaella; Gesualdo, Loreto

    2015-01-01

    In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples. PMID:26386056

  20. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  1. GA Enhanced a-Amylase Synthesis in Halved Grains of Barley (Hordeum vulgare): A Simple Laboratory Demonstration

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1972-01-01

    A laboratory demonstration is suggested for the formation of a-amylase enzyme in halved grains of barley. Data presented in the article provide some information of the pattern of a- and b-amylase activity during germination. (PS)

  2. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Keinänen, Markku; Pappinen, Ari

    2013-10-01

    This study investigated the effects of pretreatment conditions, dilute sulfuric acid concentration and treatment time, on the carbohydrate solubility of a mixture of barley straw and grain. The conditions were expressed as combined severity (CS) to evaluate sugar recovery from pretreated samples. Enzymatic hydrolysates from the lignocellulose pretreatment residues were also included to the results. CS was positively correlating with glucose recovery in all conditions, but in higher acid concentrations CS did not predict xylose recovery. It appeared that the residual xylan better indicate the xylose release. An optimal fermentable sugar yield from the mixture of barley straw and grain was obtained by maintaining the CS at around 1.38, corresponding to an overall glucose yield of 96% and a xylose yield of 57%.

  3. Development of DNA markers associated with beer foam stability for barley breeding.

    PubMed

    Iimure, Takashi; Kihara, Makoto; Ichikawa, Seiichiro; Ito, Kazutoshi; Takeda, Kazuyoshi; Sato, Kazuhiro

    2011-01-01

    Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our

  4. In situ identification and quantification of protein-hydrolyzing ruminal bacteria associated with the digestion of barley and corn grain.

    PubMed

    Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A

    2016-12-01

    In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.

  5. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley.

    PubMed

    Mascher, Martin; Schuenemann, Verena J; Davidovich, Uri; Marom, Nimrod; Himmelbach, Axel; Hübner, Sariel; Korol, Abraham; David, Michal; Reiter, Ella; Riehl, Simone; Schreiber, Mona; Vohr, Samuel H; Green, Richard E; Dawson, Ian K; Russell, Joanne; Kilian, Benjamin; Muehlbauer, Gary J; Waugh, Robbie; Fahima, Tzion; Krause, Johannes; Weiss, Ehud; Stein, Nils

    2016-09-01

    The cereal grass barley was domesticated about 10,000 years before the present in the Fertile Crescent and became a founder crop of Neolithic agriculture. Here we report the genome sequences of five 6,000-year-old barley grains excavated at a cave in the Judean Desert close to the Dead Sea. Comparison to whole-exome sequence data from a diversity panel of present-day barley accessions showed the close affinity of ancient samples to extant landraces from the Southern Levant and Egypt, consistent with a proposed origin of domesticated barley in the Upper Jordan Valley. Our findings suggest that barley landraces grown in present-day Israel have not experienced major lineage turnover over the past six millennia, although there is evidence for gene flow between cultivated and sympatric wild populations. We demonstrate the usefulness of ancient genomes from desiccated archaeobotanical remains in informing research into the origin, early domestication and subsequent migration of crop species.

  6. Barley Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare) is an ancient grain that has was domesticated for use as a food. Currently only about 2% is used for food, about two thirds is used for animal feed and one third for malting. Because the oil content of most barley cultivars is low (<2%), obtaining oil from whole barley gra...

  7. Evaluation of the procedure for separating barley from other spring small grains. [North Dakota, South Dakota, Minnesota and Montana

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1980-01-01

    The success of the Transition Year procedure to separate and label barley and the other small grains was assessed. It was decided that developers of the procedure would carry out the exercise in order to prevent compounding procedural problems with implementation problems. The evaluation proceeded by labeling the sping small grains first. The accuracy of this labeling was, on the average, somewhat better than that in the Transition Year operations. Other departures from the original procedure included a regionalization of the labeling process, the use of trend analysis, and the removal of time constraints from the actual processing. Segment selection, ground truth derivation, and data available for each segment in the analysis are discussed. Labeling accuracy is examined for North Dakota, South Dakota, Minnesota, and Montana as well as for the entire four-state area. Errors are characterized.

  8. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    PubMed

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-01-18

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  9. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley

    PubMed Central

    Liu, Xiaohui; Mak, Michelle; Babla, Mohammad; Wang, Feifei; Chen, Guang; Veljanoski, Filip; Wang, Gang; Shabala, Sergey; Zhou, Meixue; Chen, Zhong-Hua

    2014-01-01

    Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field. PMID:25505473

  10. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley.

    PubMed

    Liu, Xiaohui; Mak, Michelle; Babla, Mohammad; Wang, Feifei; Chen, Guang; Veljanoski, Filip; Wang, Gang; Shabala, Sergey; Zhou, Meixue; Chen, Zhong-Hua

    2014-01-01

    Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field.

  11. Proteomic analysis of mature barley grains from C-hordein antisense lines.

    PubMed

    Schmidt, Daiana; Gaziola, Salete Aparecida; Boaretto, Luis Felipe; Azevedo, Ricardo Antunes

    2016-05-01

    Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.

  12. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation

    PubMed Central

    Hoang, Hai Ha; Bailly, Christophe; Corbineau, Françoise; Leymarie, Juliette

    2013-01-01

    In barley, primary dormant grains did not germinate at 30 °C in air and at 15 °C in an atmosphere containing less than 10% O2, while they germinated easily at 15 °C in air. O2 tension in embryos measured with microsensors was 15.8% at 15 °C but only 0.3% at 30 °C. Incubation of grains at 30 °C is known to induce secondary dormancy in barley, and it was shown here that secondary dormancy was also induced by a 3 d treatment in O2 tensions lower than 10% at 15 °C. After such treatments, the grains lost their ability to germinate subsequently at 15 °C in air. During seed treatment in 5% O2, embryo abscisic acid (ABA) content decreased more slowly than in air and was not altered after transfer into air. Hypoxia did not alter the expression of ABA metabolism genes after 1 d, and induction of HvNCED2 occurred only after 3 d in hypoxia. Embryo sensitivity to ABA was similar in both primary and hypoxia-induced secondary dormant grains. Gibberellic acid (GA) metabolism genes were highly regulated and regulated earlier by the hypoxia treatment, with major changes in HvGA2ox3, HvGA3ox2 and HvGA20ox1 expression after 1 d, resulting in reduced GA signalling. Although a high temperature has an indirect effect on O2 availability, the data showed that it did not affect expression of prolyl-4-hydroxylases and that induction of secondary dormancy by hypoxia at 15 °C or by high temperature in air involved separate signalling pathways. Induction by hypoxia at 15 °C appears to be more regulated by GA and less by ABA than the induction by high temperature. PMID:23519728

  13. Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR.

    PubMed

    Hatzack, F; Hübel, F; Zhang, W; Hansen, P E; Rasmussen, S K

    2001-03-01

    Inositol phosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference. Co-inciding retention times indicated the presence of phytate, D/L-Ins(1,2,3,4,5)P(5), Ins(1,2,3,4,6)P(5), D/L-(1,2,4,5,6)P(5), D/L-(1,2,3,4)P(4), D/L-Ins(1,2,5,6)P(4) and D/L-Ins(1,4,5,6)P(4) in PLP1B mutants as well as the parent variety. In grain extracts from mutant lines PLP1A, PLP2A and PLP3A unusual accumulations of D/L-Ins(1,3,4,5)P(4) were observed whereas phytate and the above-mentioned inositol phosphates were present in relatively small amounts. Assignment of D/L-Ins(1,3,4,5)P(4) was corroborated by precise co-chromatography with a commercial Ins(1,3,4,5)P(4) standard and by NMR spectroscopy. Analysis of inositol phosphates during grain development revealed accumulation of phytate and D/L-Ins(1,3,4,5)P(4), which suggested the tetrakisphosphate compound to be an intermediate of phytate synthesis. This assumption was strengthened further by phytate degradation assays showing that D/L-Ins(1,3,4,5)P(4) did not belong to the spectrum of degradation products generated by endogenous phytase activity. Metabolic scenarios leading to accumulation of D/L-Ins(1,3,4,5)P(4) in barley low-phytate mutants are discussed.

  14. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases.

    PubMed

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias; Fischer, Lutz

    2015-06-01

    The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers.

  15. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases

    PubMed Central

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias

    2015-01-01

    Summary The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers. PMID:27904341

  16. Release and Activity of Bound beta-Amylase in a Germinating Barley Grain.

    PubMed

    Sopanen, T; Laurière, C

    1989-01-01

    In resting grains of Triumph barley (Hordeum vulgare L. cv Triumph) about 40% of the beta-amylase could be extracted with a saline solution, the remaining 60% being in a bound form. During seedling growth (20 degrees C), the bound form was released mainly between days 1 and 3. When a preparation containing bound beta-amylase was incubated with an extract made of endosperms separated from germinating grains, release of bound beta-amylase took place and could be studied in vitro. The release was almost completely prevented by leupeptin and antipain, specific inhibitors of a group of SH-proteinases, but it was not inhibited by pepstatin A or EDTA, which inhibit some other barley proteinases. It is thus very likely that in a whole grain, at least the bulk of the bound beta-amylase is released by the proteolytic action of one or several SH-proteinases. When the bound beta-amylase was released by papain, its molecular weight was about 5000 daltons smaller than that of beta-amylase released by dithiothreitol. This indicates that the release is due to removal of a sequence of beta-amylase itself. A similar decrease in size took place during seedling growth. Bound beta-amylase showed some activity against native starch and it hydrolyzed maltotetraose at a rate that was about 70% of the rate the same amount of bound beta-amylase gave after release. Bound beta-amylase is thus not inactive and it is likely that the slower rate of hydrolysis is due to steric hindrances which prevent substrates from reaching the active site.

  17. Selection of barley grain affects ruminal fermentation, starch digestibility, and productivity of lactating dairy cows.

    PubMed

    Silveira, C; Oba, M; Yang, W Z; Beauchemin, K A

    2007-06-01

    The objective of this study was to evaluate the effects of 2 lots of barley grain cultivars differing in expected ruminal starch degradation on dry matter (DM) intake, ruminal fermentation, ruminal and total tract digestibility, and milk production of dairy cows when provided at 2 concentrations in the diet. Four primiparous ruminally cannulated (123 +/- 69 d in milk; mean +/- SD) and 4 multiparous ruminally and duodenally cannulated (46 +/- 14 d in milk) cows were used in a 4 x 4 Latin Square design with a 2 x 2 factorial arrangement of treatments with 16-d periods. Primiparous and multiparous cows were assigned to different squares. Treatments were 2 dietary starch concentrations (30 vs. 23% of dietary DM) and 2 lots of barley grain cultivars (Xena vs. Dillon) differing in expected ruminal starch degradation. Xena had higher starch concentration (58.7 vs. 50.0%) and greater in vitro 6-h starch digestibility (78.0 vs. 73.5%) compared with Dillon. All experimental diets were formulated to supply 18.3% crude protein and 20.0% forage neutral detergent fiber. Dry matter intake and milk yield were not affected by treatment. Milk fat concentration (3.55 vs. 3.29%) was greater for cows fed Dillon compared with Xena, but was not affected by dietary starch concentration. Ruminal starch digestion was greater for cows fed high-starch diets compared with those fed low-starch diets (4.55 vs. 2.49 kg/d), and tended to be greater for cows fed Xena compared with those fed Dillon (3.85 vs. 3.19 kg/d). Ruminal acetate concentration was lower, and propionate concentration was greater, for cows fed Xena or high-starch diets compared with cows fed Dillon or low-starch diets, respectively. Furthermore, cows fed Xena or high-starch diets had longer duration that ruminal pH was below 5.8 (6.6 vs. 4.0 and 6.4 vs. 4.2 h/d) and greater total tract starch digestibility (94.3 vs. 93.0 and 94.3 vs. 93.0%) compared with cows fed Dillon or low-starch diets, respectively. These results

  18. Measuring Meiotic Crossovers via Multi-Locus Genotyping of Single Pollen Grains in Barley.

    PubMed

    Dreissig, Steven; Fuchs, Jörg; Cápal, Petr; Kettles, Nicola; Byrne, Ed; Houben, Andreas

    2015-01-01

    The detection of meiotic crossovers in crop plants currently relies on scoring DNA markers in a segregating population or cytological visualization. We investigated the feasibility of using flow-sorted haploid nuclei, Phi29 DNA polymerase-based whole-genome-amplification (WGA) and multi-locus KASP-genotyping to measure meiotic crossovers in individual barley pollen grains. To demonstrate the proof of concept, we used 24 gene-based physically mapped single nucleotide polymorphisms to genotype the WGA products of 50 single pollen nuclei. The number of crossovers per chromosome, recombination frequencies along chromosome 3H and segregation distortion were analysed and compared to a doubled haploid (DH) population of the same genotype. The number of crossovers and chromosome wide recombination frequencies show that this approach is able to produce results that resemble those obtained from other methods in a biologically meaningful way. Only the segregation distortion was found to be lower in the pollen population than in DH plants.

  19. Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain.

    PubMed

    Rodrigo, Sara; Santamaria, Oscar; Chen, Yi; McGrath, Steve P; Poblaciones, Maria J

    2014-06-25

    Selenium (Se) biofortification of barley is a suitable strategy to increase the Se concentration in grain. In the present paper, the suitability of this Se-biofortified grain for making Se-enriched beer is analyzed. The aim of the present study was to evaluate the effect of different Se fertilizer doses (0, 10, and 20 g of Se ha(-1)) and forms (sodium selenate or sodium selenite) on the Se loss during the malting and brewing processes and Se speciation in grain, malt, wort, and beer. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS for total Se and speciation. Mashing-lautering was the process with the greatest Se loss (83.8%). After malting and brewing, only 7.3% of the initial Se was retained in beer, mainly in selenite form. Even so, the fertilizer application of sodium selenate at 20 g ha(-1) increased the total Se concentration almost 6-fold in the final beer in comparison to the use of grain derived from unfertilized barley. The present paper provides evidence that the use of Se-biofortified barley grain as a raw material to produce Se-enriched beer is possible, and the results are comparable to other methods in terms of efficiency.

  20. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  1. Effect of sprouted barley grain supplementation of an herbage or haylage diet on ruminal fermentation and methane output in continuous culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG), with a pasture (orchardgrass) or haylage diet, on nutrient digestibility, VFA production, bacterial protein synthesis, and methane production. Treatmen...

  2. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...

  3. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows.

    PubMed

    Iqbal, S; Zebeli, Q; Mazzolari, A; Bertoni, G; Dunn, S M; Yang, W Z; Ametaj, B N

    2009-12-01

    The objectives of the present in vivo and in situ trials were to evaluate whether feeding barley grain steeped in lactic acid (LA) would affect rumen fermentation patterns, in situ dry matter (DM) degradation kinetics, and milk production and composition in lactating dairy cows. The in vivo trial involved 8 rumen-fistulated Holstein cows fed once daily a total mixed ration containing rolled barley grain (27% in DM) steeped for 48 h in an equal quantity of tap water (CTR) or in 0.5% LA (TRT) in a 2 x 2 crossover design. The in situ trials consisted of incubation of untreated rolled barley grain in cows fed CTR or TRT diets and of incubation of 3 different substrates including CTR or barley grain steeped in 0.5% or 1.0% LA (TRT1 and TRT2, respectively) up to 72 h in the rumen. Results of the in vivo trial indicated that cows fed the TRT diet had greater rumen pH during most intensive fermentation phases at 10 and 12 h post-feeding. The latter effect was associated with a shorter duration in which rumen pH was below 5.8 for cows fed the TRT diet (2.4 h) compared with CTR diet (3.9 h). Furthermore, cows fed the TRT diet had lower concentrations of volatile fatty acids at 2 and 4 h post-feeding. In addition, concentrations of preprandial volatile fatty acids were lower in the rumen fluid of cows fed the TRT diet. Results also showed that molar proportion of acetate was lower, whereas propionate tended to increase by feeding cows the TRT diet. Cows fed the TRT diet demonstrated greater rumen in situ lag time of substrate DM degradation and a tendency to lower the fractional degradation rate. Other in situ results indicated a quadratic effect of LA on the effective rumen degradability of substrates whereby the latter variable was decreased from CTR to TRT1 but increased for TRT2 substrate. Although the diet did not affect actual milk yield, fat-corrected milk, percentages of milk protein, and lactose and concentration of milk urea nitrogen, cows fed the TRT diet increased

  4. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  5. Effects of Zn Fertilization on Hordein Transcripts at Early Developmental Stage of Barley Grain and Correlation with Increased Zn Concentration in the Mature Grain

    PubMed Central

    Uddin, Mohammad Nasir; Kaczmarczyk, Agnieszka; Vincze, Eva

    2014-01-01

    Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers) which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization. PMID:25250985

  6. Effects of Zn fertilization on hordein transcripts at early developmental stage of barley grain and correlation with increased Zn concentration in the mature grain.

    PubMed

    Uddin, Mohammad Nasir; Kaczmarczyk, Agnieszka; Vincze, Eva

    2014-01-01

    Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers) which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization.

  7. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN

    PubMed Central

    Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda

    2016-01-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  8. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  9. Effects of partial replacement of barley grain with beet pulp on performance, ruminal fermentation and plasma concentration of metabolites in transition dairy cows.

    PubMed

    Shahmoradi, A; Alikhani, M; Riasi, A; Ghorbani, G R; Ghaffari, M H

    2016-02-01

    The objective of this study was to determine the effect of partial replacement of barley grain with beet pulp (BP) on dry matter intake (DMI), ruminal fermentation, plasma concentration of metabolites and milk yield of transition dairy cows. Twenty-four multiparous Holstein cows [735 ± 26 kg of body weights and 3.5 ± 0.05 of body condition score (BCS)] were used in a randomized complete block design. Cows were assigned randomly on day 28 relative to expected parturition date to one of three treatments containing (i) 0% BP, (ii) 25% BP or (iii) 50% BP substituted for barley grain on a DM basis. During the pre-partum period, DMI and energy intake were greater (P < 0.01) in cows fed the BP diet compared with cows fed the barley grain diet. During the post-partum period, substituting BP for barley grain caused a response in DMI and energy intake, with the highest amount for the 25% BP diet and lowest for the 50% BP diet (P < 0.01). Milk yield was lowest (P < 0.01) for 50% BP diet than the other treatments. During the post-partum period, cows fed the 50% BP diets had greater rumen pH, molar proportion of butyrate and acetate: propionate ratio (P < 0.01) in the rumen compared with cows fed the 0% BP diets. In addition, cows fed the BP diets had greater (P < 0.01) plasma β-hydroxybutyrate and lower plasma glucose (P < 0.05) and blood urinary nitrogen (BUN) (P < 0.01) concentrations than cows fed the barley grain diets. Results showed that substituting BP for barley grain was effective in increasing DMI, but it did not have a significant effect on net energy balance during the post-partum period. However, replacing BP for barley grain at 50% had adverse effects on DMI, milk yield and metabolic status, as indicated by key blood metabolite concentrations.

  10. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  11. Rumen and post abomasal disappearance of amino acids and some nutrients of barley grain treated with sodium hydroxide, formaldehyde or urea in lactating cows.

    PubMed

    Dehghan-Banadaky, M; Nikkhah, A; Amanlo, H; Mesgaran, M Danesh; Mansori, H

    2007-05-01

    Four rumen and duodenum cannulated, Holstein lactating cows were used in a change-over design to determine the effects of NaOH, Formaldehyde or Urea treated barley on disappearance of Dry Matter (DM), Crude Protein (CP), Amino Acids (AA), NDF, ADF, hemicelluloses and starch in rumen, Post Abomasal Tract (PAT) and total tract by mobile nylon bag technique. Experimental treatments were coarse milled barley, barley treated with 3.5% NaOH, barley treated with 0.4% formaldehyde and barley treated with 3.5% urea that all chemical treated barley milled coarse before feeding. NaOH Treatment reduced concentrations of Lysine and Cystine in the barley grain. All chemical treatments decreased rumen disappearances of barley CP but only NaOH and Formaldehyde treatments also decrease total AA and some of the AA disappearances in the rumen. All chemical treatments increased DM, OM, CP, starch, NDF, ADF and hemicellulose disappearance of barley in the PAT. But only NaOH and Formaldehyde treatments increased total AA and most of AA disappearances in the PAT. Effect of chemical treatments on increase of disappearance of starch, Met and Gly in the total tract was significant (p < 0.05). Rumen disappearance of TAA was lower than CP but PAT disappearance of TAA was more than CP and finally total tract disappearance of TAA was more than CP. Individual AA in barley disappeared at different rates in the rumen and PAT. Consequently, the proportion of digesta CP and AA entering the intestine must be considered.

  12. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain.

    PubMed

    Sikdar, Md S I; Bowra, S; Schmidt, D; Dionisio, G; Holm, P B; Vincze, E

    2016-02-01

    C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7% reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS-PAGE electrophoresis, the protein band were excised and the proteins identified by quadrupole-time-of-flight mass spectrometry. Subsequent SDS-PAGE separation and analysis of the prolamin fraction of the transgenic lines revealed a reduction in the amounts of C-hordeins and increases in the content of other hordein family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C-hordein level. All transgenic lines that exhibited a reduction for C-hordein showed off-target effects: the lines exhibited increased level of B/γ-hordein while D-hordein level was reduced. Furthermore, the multicopy insertions correlated negatively with silencing.

  13. Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding1[W][OA

    PubMed Central

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-01-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations. PMID:22582132

  14. Milling, water uptake, and modification properties of different barley (Hordeum vulgare L.) lots in relation to grain composition and structure.

    PubMed

    Holopainen, Ulla R M; Pihlava, Juha-Matti; Serenius, Marjo; Hietaniemi, Veli; Wilhelmson, Annika; Poutanen, Kaisa; Lehtinen, Pekka

    2014-09-03

    Milling properties, water uptake, and modification in malting were studied in 14 barley (Hordeum vulgare L.) lots from two consecutive crop years. In all barley lots studied, grains with lower β-glucan and protein content and higher starch content produced finer flours upon milling. Grains with lower β-glucan content also hydrated more rapidly during steeping. A detailed study of two cultivars from two crop years indicated that similar environmental conditions could induce a higher β-glucan content and concentration of aggregated B hordein in the peripheral endosperm and a lower proportion of C hordein entrapped among aggregated hordeins deeper within the endosperm. These characteristics were associated with production of coarser flours during milling as well as with slower water uptake and lower modification. However, the data do not distinguish between the effect of β-glucan content and that of hordein localization. Distribution of β-glucan or total protein within the kernel was not linked to hydration or modification.

  15. Production of ethanol from newly developed and improved winter barley cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climates such as the mid-Atlantic and northeastern United States. Ten recently developed and improved winter barley cultivars and breeding lines, including five hulled and fiv...

  16. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products.

    PubMed

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance.

  17. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products

    PubMed Central

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance. PMID:26983120

  18. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  19. Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers’ Grains in Tibet

    PubMed Central

    Yuan, Xianjun; Yu, Chengqun; Shimojo, M.; Shao, Tao

    2012-01-01

    In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers’ grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%. PMID:25049588

  20. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose.

    PubMed

    Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J

    2002-02-05

    Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5

  1. QTL dissection of the loss of green colour during post-anthesis grain maturation in two-rowed barley.

    PubMed

    Emebiri, Livinus C

    2013-07-01

    Ability to genetically manipulate the loss of green colour during grain maturation has potentials for increasing productivity, disease resistance, and drought and heat tolerance in crop plants. Two doubled haploid, two-rowed barley populations (Vlamingh × Buloke and VB9524 × ND11231*12) were monitored over 2 years for loss of green colour during grain filling using a portable active sensor. The aims were to determine the genomic regions that control trait heritability by quantitative trait locus (QTL) analysis, and to examine patterns of QTL-environment interactions under different conditions of water stress. In the Vlamingh × Buloke cross, broad-sense heritability estimate for loss of green colour (measured as the difference in sensor readings taken at anthesis and maturity, ∆SRI) was 0.68, and 0.78 for the VB9524 × ND11231*12 population. In the VB9524 × ND11231*12 population, rapid loss of green colour was positively associated with grain yield and percent plump grains, but in the Vlamingh × Buloke population, a slower loss of green colour (low ∆SRI) was associated with increased grain plumpness. With the aid of a dense array of single nucleotide polymorphisms (SNPs) and EST-derived SSR markers, a total of nine QTLs were detected across the two populations. Of these, a single major locus on the short arm of barley chromosome 5H was consistently linked with trait variation across the populations and multiple environments. The QTL was independent of flowering time and explained between 5.4 and 15.4 % of the variation observed in both populations, depending on the environment, and although a QTL × E interaction was detected, it was largely due to a change in the magnitude of the effect, rather than a change in direction. The results suggest that loss of green colour during grain maturation may be under the control of a simple genetic architecture, but a careful study of target populations and environments would be required for breeding

  2. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  3. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins.

    PubMed

    Cambra, Ines; Martinez, Manuel; Dáder, Beatriz; González-Melendi, Pablo; Gandullo, Jacinto; Santamaría, M Estrella; Diaz, Isabel

    2012-07-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described.

  4. Molecular analysis of a mutation conferring the high-lysine phenotype on the grain of barley (Hordeum vulgare).

    PubMed

    Kreis, M; Shewry, P R; Forde, B G; Rahman, S; Miflin, B J

    1983-08-01

    We have analyzed the molecular nature of the Riso 56 mutation that occurs in barley. This mutation results in a depression of hordein accumulation in the grain and consequently in a higher overall lysine content. In particular, the amount of B hordein, which is encoded by the complex locus Hor-2, is decreased by about 75% because of the absence of the major components. The synthesis of certain minor polypeptides, with properties similar to the major B hordeins, remains unaffected. Analysis of endosperm RNA, by in vitro translation and hybridization to various cloned cDNAs derived from hordein mRNA, shows that mRNA for the major B hordeins is not present in the endosperm. Hybridization of a B hordein cDNA clone to gel-fractionated restriction digests of mutant and wild-type DNA indicates that at least 85 kb of DNA has been deleted from the Hor-2 locus in the high-lysine mutant.

  5. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Mock, Hans-Peter; Marko, Doris; Weschke, Winfriede; Matros, Andrea

    2016-01-01

    Oligofructans represent one of the most important groups of sucrose-derived water–soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed. PMID:26834760

  6. Expression of the Arabidopsis vacuolar H⁺-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field.

    PubMed

    Schilling, Rhiannon K; Marschner, Petra; Shavrukov, Yuri; Berger, Bettina; Tester, Mark; Roy, Stuart J; Plett, Darren C

    2014-04-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H⁺-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mM NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.

  7. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress.

  8. Effects of barley chromosome addition to wheat on behavior and development of Locusta migratoria nymphs.

    PubMed

    Suematsu, Shunji; Harano, Ken-ichi; Tanaka, Seiji; Kawaura, Kanako; Ogihara, Yasunari; Watari, Yasuhiko; Saito, Osamu; Tokuda, Makoto

    2013-01-01

    Locusta migratoria feeds on various Poaceae plants but barley. Barley genes related to feeding deterrence may be useful for developing novel resistant crops. We investigated the effects of barley cultivar Betzes, wheat cultivar Chinese Spring (CS), and six barley chromosome disomic addition lines of wheat (2H-7H) on locomotor activity, feeding behavior, survival and development of L. migratoria nymphs. Locomotor activity was similar in nymphs kept with wheat and 2H-7H in an actograph, whereas it was generally high in those kept with barely. No-choice and choice feeding tests suggested that barley genes related to inhibition of feeding by L. migratoria are located on barley chromosomes 5H and 6H and those related to the palatability of plants on chromosomes 2H, 5H and 6H. Rearing experiments suggested the presence of barley genes negatively affecting the survival and growth of locust nymphs on chromosomes 5H and 2H, respectively, and the effects are phase-dependent.

  9. Development of 5006 Full-Length CDNAs in Barley: A Tool for Accessing Cereal Genomics Resources

    PubMed Central

    Sato, Kazuhiro; Shin-I, Tadasu; Seki, Motoaki; Shinozaki, Kazuo; Yoshida, Hideya; Takeda, Kazuyoshi; Yamazaki, Yukiko; Conte, Matthieu; Kohara, Yuji

    2009-01-01

    A collection of 5006 full-length (FL) cDNA sequences was developed in barley. Fifteen mRNA samples from various organs and treatments were pooled to develop a cDNA library using the CAP trapper method. More than 60% of the clones were confirmed to have complete coding sequences, based on comparison with rice amino acid and UniProt sequences. Blastn homologies (E<1E-5) to rice genes and Arabidopsis genes were 89 and 47%, respectively. Of the 5028 possible amino acid sequences derived from the 5006 FLcDNAs, 4032 (80.2%) were classified into 1678 GreenPhyl multigenic families. There were 555 cDNAs showing low homology to both rice and Arabidopsis. Gene ontology annotation by InterProScan indicated that many of these cDNAs (71%) have no known molecular functions and may be unique to barley. The cDNAs showed high homology to Barley 1 GeneChip oligo probes (81%) and the wheat gene index (84%). The high homology between FLcDNAs (27%) and mapped barley expressed sequence tag enabled assigning linkage map positions to 151–233 FLcDNAs on each of the seven barley chromosomes. These comprehensive barley FLcDNAs provide strong platform to connect pre-existing genomic and genetic resources and accelerate gene identification and genome analysis in barley and related species. PMID:19150987

  10. Recent developments in the genetic engineering of barley

    SciTech Connect

    Mannonen, L.; Kauppinen, V.; Enari, T.M. )

    1994-01-01

    Cereals are the most important group of plants for human nutrition and animal feed. Partially due to the commercial value of crop plants, there has been an ever-increasing interest in using modern biotechnological methods for the improvement of the characteristics of cereals during the past decade. The rapid progress in molecular biology, plant cell culture techniques, and gene transfer technology has resulted in successful transformations of all the major cereals--maize, rice, wheat, and barley. This brings the biotechnological methods closer to the routine also in barley breeding. In this article, the current status of barley genetic engineering, including the patent situation, is reviewed. The needs aims, and possible applications of genetic engineering in barley breeding are discussed. 179 refs.

  11. miRNA regulation in the early development of barley seed

    PubMed Central

    2012-01-01

    Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835

  12. Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer

    SciTech Connect

    Basunia, M.A.; Abe, T.

    1999-07-01

    Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.

  13. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley.

    PubMed

    Nice, Liana M; Steffenson, Brian J; Brown-Guedira, Gina L; Akhunov, Eduard D; Liu, Chaochih; Kono, Thomas J Y; Morrell, Peter L; Blake, Thomas K; Horsley, Richard D; Smith, Kevin P; Muehlbauer, Gary J

    2016-07-01

    The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r(2) = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm.

  14. Response of lactating dairy cows to degree of steam-flaked barley grain in low-forage diets.

    PubMed

    Safaei, Kh; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Yang, W Z

    2016-09-25

    This study was conducted to investigate the effects of processing method (grinding vs. steam flaking) and increasing densities of steam-flaked barley grain on dry matter intake (DMI), rumen pH and fermentation characteristics, digestibility of dry matter in the total digestive tract (DDTT), and milk production of dairy cows. Eight multiparous mid-lactation Holstein cows averaging 103 ± 24 DIM, 44.5 ± 4.7 kg milk/day and weighing 611 ± 43 kg at the start of the experiment were used in a replicated 4 × 4 Latin square design with 21-day periods. Cows were fed diets consisting of (DM basis) 23.8% corn silage, 13.5% chopped alfalfa hay and 62.7% concentrate. The dietary treatments were either ground barley (GB) using a hammer mill or steam-flaked barley (SFB) - varying density at 390, 340 or 290 g/l. Processing method (GB vs. SFB) did not affect DMI (23.6 kg/day on average), DDTT (71.0% on average), milk yield (43.4 kg/day on average), milk components, rumen pH and molar proportions of acetate, propionate, butyrate and sorting activity. Ruminal isovalerate concentration tended (p = 0.06) to be higher for cows fed GB than those fed SFB-based diets. Decreasing the density of SFB from 390, 340 to 290 g/l tended to linearly increase DMI (p = 0.09), decrease total solids percentage of milk (p = 0.10) and linearly decreased milk urea nitrogen (12.8, 12.4 and 12.1 mg/dl; p = 0.04); also, the sorting index (SI) of the particles retained on the 19.0-mm sieve without affecting the SI of the particles retained on 8.0-mm, 1.18-mm or passed through 1.18-mm sieve (p = 0.05). These results indicated the limited effects of processing method (grinding vs. steam flaking) and densities of SFB (390, 290 or 290 g/l) on cows' performance and feed utilization for dairy cows fed low-forage diets. Therefore, both processing methods could be recommended under current feeding conditions of dairy cows.

  15. Partial replacement of barley grain and soybean meal by fleabane (Conyza bonariensis) in diets of growing Awassi lambs.

    PubMed

    Abo Omar, J M; Omar, M

    2012-07-01

    Effects of partial substitution of barley grain and soybean meal with fleabane (FB) Conyza bonariensis on growth performances and body compositions of 24 male local Awassi lambs were studied. All lambs were male with an average BW of 20.3 kg (s.d. = 2.0 kg) at the beginning of the experiment. Animals were randomly divided into four groups of six lambs each. Lambs in each group received individually their cereal-soybean-based total mixed rations with levels of FB: 0, 50, 100 and 150 g/kg dry matter (DM) diet, which replaced similar values of barley and soybean meal. All rations were isonitrogenous and isocaloric. The fattening experiment lasted 9 weeks, after which all lambs were slaughtered. The composition of nutrients in the C. bonariensis were 89.6%, 15.0%, 28.0%, 30.0% and 10% for organic matter, CP, NDF, ADF and lignin, respectively. At the end of the experiment, lambs fed 100 and 150 g FB/kg DM diets gained more weight (P < 0.05) than those fed the control and 50 g FB/kg DM diets. The DM intake was lower in lambs fed the highest level of FB compared with intakes of lambs in other treatments. Diet content of FB had significant effect (P < 0.05) on weights of empty body, carcass, gut and external (hide, head and feet) among all animals. However, FB had no effects on lambs' thoracic organs (lungs and heart) and liver. Muscle, bone, omental and mesenteric fat, subcutaneous, intermuscular, pelvic and kidney fat weights (g/kg empty BW) were not affected by FB feeding. Carcass fat was decreased (P < 0.05) by the increase of FB. Total body fat was the same in all animals of the experiment.

  16. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2016-10-01

    The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol) than those obtained on a semi-technical scale.

  17. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development.

    PubMed

    Fernández Gómez, José; Wilson, Zoe A

    2014-08-01

    Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development.

  18. S phase of the cell cycle: a key phase for the regulation of thermodormancy in barley grain.

    PubMed

    Gendreau, Emmanuel; Cayla, Thibaud; Corbineau, Françoise

    2012-09-01

    The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to thermodormancy in barley (Hordeum vulgare L., cv. Pewter) grains in relation with abscisic acid (ABA) by: (i) flow cytometry to determine the progression of the cell cycle; and (ii) reverse transcription-PCR to characterize the expression of some important genes involved in cell-cycle regulation. In dry embryos, cells are mostly (82%) arrested in G1 phase of the cell cycle, the remaining cells being in the G2 (17%) or S phase (0.9%). Germination at 20 °C was associated with an increase in the nuclei population in G2 and S (up to 32.5-44.5 and 9.2-11.3%, respectively, after 18-24h). At 30 °C, partial reactivation of the cell cycle occurred in embryos of dormant grains that did not germinate. Incubation with 50mM hydroxyurea suggests that thermodormancy resulted in a blocking of the nuclei in the S phase. In dry dormant grains, transcripts of CDKA1, CYCA3, KRP4, and WEE1 were present, while those of CDKB1, CDKD1, CYCB1, and CYCD4 were not detected. Incubation at 30 °C resulted in a strong reduction of CDKB1, CYCB1, and CYCD4 expression and overexpression of CDK1 and KRP4. ABA had a similar effect as incubation at 30 °C on the expression of CDKB1, CYCB1, and CYCD4, but did not increase that of CDK1 and KRP4. Patterns of gene expression are discussed with regard to thermodormancy expression and ABA.

  19. S phase of the cell cycle: a key phase for the regulation of thermodormancy in barley grain

    PubMed Central

    Corbineau, FranÇOise

    2012-01-01

    The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to thermodormancy in barley (Hordeum vulgare L., cv. Pewter) grains in relation with abscisic acid (ABA) by: (i) flow cytometry to determine the progression of the cell cycle; and (ii) reverse transcription-PCR to characterize the expression of some important genes involved in cell-cycle regulation. In dry embryos, cells are mostly (82%) arrested in G1 phase of the cell cycle, the remaining cells being in the G2 (17%) or S phase (0.9%). Germination at 20 °C was associated with an increase in the nuclei population in G2 and S (up to 32.5–44.5 and 9.2–11.3%, respectively, after 18–24h). At 30 °C, partial reactivation of the cell cycle occurred in embryos of dormant grains that did not germinate. Incubation with 50mM hydroxyurea suggests that thermodormancy resulted in a blocking of the nuclei in the S phase. In dry dormant grains, transcripts of CDKA1, CYCA3, KRP4, and WEE1 were present, while those of CDKB1, CDKD1, CYCB1, and CYCD4 were not detected. Incubation at 30 °C resulted in a strong reduction of CDKB1, CYCB1, and CYCD4 expression and overexpression of CDK1 and KRP4. ABA had a similar effect as incubation at 30 °C on the expression of CDKB1, CYCB1, and CYCD4, but did not increase that of CDK1 and KRP4. Patterns of gene expression are discussed with regard to thermodormancy expression and ABA. PMID:22859679

  20. Combining functional features of whole-grain barley and legumes for dietary reduction of cardiometabolic risk: a randomised cross-over intervention in mature women.

    PubMed

    Tovar, Juscelino; Nilsson, Anne; Johansson, Maria; Björck, Inger

    2014-02-01

    The usefulness of dietary strategies against cardiometabolic risk is increasingly being acknowledged. Legumes and whole grains can modulate risk markers associated with cardiometabolic diseases, but their possible additive/synergistic actions are unknown. The objective of the present study was to assess, in healthy subjects, the effect of a diet including specific whole-grain barley products and legumes with prior favourable outcomes on cardiometabolic risk parameters in semi-acute studies. A total of forty-six overweight women (50-72 years, BMI 25-33 kg/m² and normal fasting glycaemia) participated in a randomised cross-over intervention comparing a diet rich in kernel-based barley products, brown beans and chickpeas (D1, diet 1 (functional diet)) with a control diet (D2, diet 2 (control diet)) of similar macronutrient composition but lacking legumes and barley. D1 included 86 g (as eaten)/d brown beans, 82 g/d chickpeas, 58 g/d whole-grain barley kernels and 216 g/d barley kernel bread. Both diets followed the Nordic Nutrition Recommendations, providing similar amounts of dietary fibre (D1: 46·9 g/d; D2: 43·5 g/d), with wheat-based products as the main fibre supplier in D2. Each diet was consumed for 4 weeks under weight-maintenance conditions. Both diets decreased serum total cholesterol, LDL-cholesterol and HDL-cholesterol levels, but D1 had a greater effect on total cholesterol and LDL-cholesterol levels (P< 0·001 and P< 0·05, respectively). D1 also reduced apoB (P< 0·001) and γ-glutamyl transferase (P< 0·05) levels, diastolic blood pressure (P< 0·05) and the Framingham cardiovascular risk estimate (P< 0·05). D1 increased colonic fermentative activity, as judged from the higher (P< 0·001) breath hydrogen levels recorded. In conclusion, a specific barley/legume diet improves cardiometabolic risk-associated biomarkers in a healthy cohort, showing potential preventive value beyond that of a nutritionally well-designed regimen.

  1. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.

    PubMed

    Gangopadhyay, Nirupama; Rai, Dilip K; Brunton, Nigel P; Gallagher, Eimear; Hossain, Mohammad B

    2016-11-01

    In the present study, the relative contribution of individual/classes of polyphenols in barley, to its antioxidant properties, was evaluated. Flash chromatography was used to fractionate the total polyphenol extract of Irish barley cultivar 'Irina', and fractions with highest antioxidant properties were identified using total phenolic content and three in vitro antioxidant assays: DPPH, FRAP, and ORAC. Flavanols (catechin, procyanidin B, prodelphinidin B, procyanidin C) and a novel substituted flavanol (catechin dihexoside, C27H33O16(-), m/z 613.17), were identified as constituents of the fraction with highest antioxidant capacity. Upon identification of phenolics in the other active fractions, the order of most potent contributors to observed antioxidant capacity of barley extract were, flavanols>flavonols (quercetin)>hydroxycinnamic acids (ferulic, caffeic, coumaric acids). The most abundant polyphenol in the overall extract was ferulic acid (277.7μg/gdw barley), followed by procyanidin B (73.7μg/gdw barley).

  2. Understanding the Remodelling of Cell Walls during Brachypodium distachyon Grain Development through a Sub-Cellular Quantitative Proteomic Approach

    PubMed Central

    Francin-Allami, Mathilde; Lollier, Virginie; Pavlovic, Marija; San Clemente, Hélène; Rogniaux, Hélène; Jamet, Elisabeth; Guillon, Fabienne; Larré, Colette

    2016-01-01

    Brachypodium distachyon is a suitable plant model for studying temperate cereal crops, such as wheat, barley or rice, and helpful in the study of the grain cell wall. Indeed, the most abundant hemicelluloses that are in the B. distachyon cell wall of grain are (1-3)(1-4)-β-glucans and arabinoxylans, in a ratio similar to those of cereals such as barley or oat. Conversely, these cell walls contain few pectins and xyloglucans. Cell walls play an important role in grain physiology. The modifications of cell wall polysaccharides that occur during grain development and filling are key in the determination of the size and weight of the cereal grains. The mechanisms required for cell wall assembly and remodelling are poorly understood, especially in cereals. To provide a better understanding of these processes, we purified the cell wall at three developmental stages of the B. distachyon grain. The proteins were then extracted, and a quantitative and comparative LC-MS/MS analysis was performed to investigate the protein profile changes during grain development. Over 466 cell wall proteins (CWPs) were identified and classified according to their predicted functions. This work highlights the different proteome profiles that we could relate to the main phases of grain development and to the reorganization of cell wall polysaccharides that occurs during these different developmental stages. These results provide a good springboard to pursue functional validation to better understand the role of CWPs in the assembly and remodelling of the grain cell wall of cereals. PMID:28248231

  3. Effect of feeding diets containing barley, wheat and corn distillers dried grains with solubles on carcass traits and meat quality in growing rabbits.

    PubMed

    Alagón, Gilbert; Arce, Orlando; Serrano, Paula; Ródenas, Luis; Martínez-Paredes, Eugenio; Cervera, Concepción; Pascual, Juan José; Pascual, Mariam

    2015-03-01

    The effect of dietary inclusion of distillers dried grains with solubles (DDGS) on carcass and meat quality of longissimus muscle was studied in 100 growing rabbits from 28 to 59days old. Diets with no DDGS (C), barley (Db20), wheat (Dw20) and corn (Dc20) DDGS at 20% and corn (Dc40) DDGS at 40% were formulated. No effects on most of the carcass traits, texture and water holding capacity were found. Barley and corn DDGS led to a higher dissectible fat percentage. Meat redness was higher with Dw20 and pH was higher with Dw20 and Db20 than with Dc20. Protein and saturated fatty acids concentration declined as corn DDGS level increased. Dc40 led to the lowest saturated/unsaturated fatty acid ratio, atherogenic index and thrombogenic index. In conclusion, dietary inclusion of these DDGS at 20% did not affect most of the carcass and meat quality traits in rabbits.

  4. Production of Ethanol From Newly Developed and Improved Winter Barley Cultivars.

    PubMed

    Nghiem, Nhuan P; Brooks, Wynse S; Griffey, Carl A; Toht, Matthew J

    2016-11-23

    Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climate such as the mid-Atlantic and northeastern USA. Ten recently developed and improved winter barley cultivars and breeding lines including five hulled and five hull-less lines were experimentally evaluated for potential ethanol production. The five hulled barley lines included three released cultivars (Thoroughbred, Atlantic, and Secretariat) and two breeding lines (VA09B-34 and VA11B-4). The five hull-less lines also included three released cultivars (Eve, Dan, and Amaze 10) and two breeding lines (VA08H-65 and VA13H-34). On the average, the hull-less barley cultivars produced more ethanol per unit mass because of their higher starch and β-glucan contents. However, since the hulled barley cultivars had higher agronomic yield, the potential ethanol production per acre of land for the two types were approximately equal. Among the ten cultivars tested, the hull-less cultivar Amaze 10 was the best one for ethanol production. The ethanol yield values obtained for this cultivar were 2.61 gal per bushel and 292 gal per acre.

  5. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    PubMed

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  6. Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars.

    PubMed

    Powell, Adrian F; Paleczny, Andrea R; Olechowski, Henry; Emery, R J Neil

    2013-03-01

    The aim of the present study was to determine if relationships between cytokinin (CK) profiles and corresponding enzymatic regulation were consistent with differences in kernel yield among commercial barley (Hordeum vulgare L.) cultivars, differing in parameters relating to productivity and grown under agronomically-relevant field conditions. Quantification of the CKs at six distinct stages of kernel development by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) revealed a significant increase in CKs, especially trans-zeatin (tZ), during the stage when grain filling occurs, with a greater CK concentration observed in the cultivar with the greatest number of kernels per spike, which was also the highest yielding cultivar. High levels of the cis-zeatin (cZ) CK form were observed at the first developmental stage, indicating a possible role in early embryo development and viability. Cytokinin oxidase (CKX; EC 1.5.99.12) activity was evaluated at each stage through a colorimetric assay, as the enzyme provides a primary mechanism for the irreversible degradation and, thus, regulation of CKs. However, no peaks in CKX activity were observed and no differences were detected at the particular stages examined. Isopentenyl transferase (IPT) gene expression was also examined and suggests that biosynthesis contributes to regulation of CK concentrations in developing barley kernels.

  7. Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement.

    PubMed

    Johnston, Paul A; Timmerman-Vaughan, Gail M; Farnden, Kevin J F; Pickering, Richard

    2009-05-01

    A set of 110 diploid putative introgression lines (ILs) containing chromatin introgressed from the undomesticated species Hordeum bulbosum L. (bulbous barley grass) into cultivated barley (Hordeum vulgare L.) has been identified using a high-copy number retrotransposon-like PCR marker, pSc119.1, derived from rye (Secale cereale L.). To evaluate these lines, 92 EST-derived markers were developed by marker sequencing across four barley cultivars and four H. bulbosum genotypes. Single nucleotide polymorphisms and insertions/deletions conserved between the two species were then used to develop a set of fully informative cleaved amplified polymorphic sequence markers or size polymorphic insertion/deletion markers. Introgressed chromatin from H. bulbosum was confirmed and genetically located in 88 of these lines using 46 of the EST-derived PCR markers. A total of 96 individual introgressions were detected with most of them (94.8%) extending to the most distal marker for each respective chromosome arm. Introgressions were detected on all chromosome arms except chromosome 3HL. Interstitial or sub-distal introgressions also occurred, with two located on chromosome 2HL and one each on 3HS, 5HL and 6HS. Twenty-two putative ILs that were positive for H. bulbosum chromatin using pSc119.1 have not had introgressions detected with these single-locus markers. When all introgressions are combined, more than 36% of the barley genetic map has now been covered with introgressed chromatin from H. bulbosum. These ILs represent a significant germplasm resource for barley improvement that can be mined for diverse traits of interest to barley breeders and researchers.

  8. Dynamics of Nuclear DNA Quantities during Zygote Development in Barley.

    PubMed Central

    Mogensen, H. L.; Holm, P. B.

    1995-01-01

    Quantities of DNA were estimated in the nuclei of mechanically isolated egg and zygote protoplasts in two cultivars of barley using 4[prime],6-diamidino-2-phenylindole staining and microfluorometry. Unlike many previous studies on DNA amounts within the sex cells of flowering plants, we obtained consistent and unambiguous results indicating that the egg and sperm nuclei are at the 1C DNA level (basic haploid amount) at the time of karyogamy. Karyogamy was initiated within 60 min postpollination, and the male chromatin became completely integrated into the egg nucleus within 6 to 7 hr postpollination (hpp). Zygotic nuclear DNA levels began to increase at ~9 to 12 hpp in cultivar Alexis and at 12 to 15 hpp in cultivar Igri. The 4C DNA complement was reached in most zygotes by 22 to 26 hpp in cultivar Alexis and by 23 to 29 hpp in cultivar Igri. These data are fundamental to a better understanding of fertilization and zygote maturation in flowering plants. They are also relevant to studies in which the timing of zygotic DNA replication is of interest, such as ongoing investigations on genetic transformations in barley using the microinjection technique. PMID:12242375

  9. Microwave irradiation induced changes in protein molecular structures of barley grains: relationship to changes in protein chemical profile, protein subfractions, and digestion in dairy cows.

    PubMed

    Yan, Xiaogang; Khan, Nazir A; Zhang, Fangyu; Yang, Ling; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to evaluate microwave irradiation (MIR) induced changes in crude protein (CP) subfraction profiles, ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP), and protein molecular structures in barley (Hordeum vulgare) grains. Samples from hulled (n = 1) and hulless cultivars (n = 2) of barley, harvested from four replicate plots in two consecutive years, were evaluated. The samples were either kept as raw or irradiated in a microwave for 3 min (MIR3) or 5 min (MIR5). Compared to raw grains, MIR5 decreased the contents of rapidly degradable CP subfraction (from 45.22 to 6.36% CP) and the ruminal degradation rate (from 8.16 to 3.53%/h) of potentially degradable subfraction. As a consequence, the effective ruminal degradability of CP decreased (from 55.70 to 34.08% CP) and RUP supply (from 43.31 to 65.92% CP) to the postruminal tract increased. The MIR decreased the spectral intensities of amide 1, amide II, α-helix, and β-sheet and increased their ratios. The changes in protein spectral intensities were strongly correlated with the changes in CP subfractions and digestive kinetics. These results show that MIR for a short period (5 min) with a lower energy input can improve the nutritive value and utilization of CP in barely grains.

  10. Simultaneous Genetic Analysis of Winterhardiness Traits and Development of Winter Malting Barley Varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practical goal of this project is to develop winter malting barley varieties with superior cold tolerance. The basic goal is to advance our understanding of the genetics of low temperature tolerance and vernalization sensitivity. By addressing the question, “Is vernalization sensitivity required...

  11. Analysis of β-glucan molar mass from barley malt and brewer's spent grain with asymmetric flow field-flow fractionation (AF4) and their association to proteins.

    PubMed

    Zielke, Claudia; Teixeira, Cristina; Ding, Huihuang; Cui, Steve; Nyman, Margareta; Nilsson, Lars

    2017-02-10

    β-Glucan benefits are related with its molar mass and it would be of interest to better understand how this parameter can be changed by processing and variety for design of food with specific health effects. For this purpose, extracts from barley malts and brewers' spent grain, processed at different conditions, were analysed regarding β-glucan content, molar mass, and protein content. Molar mass distribution was assessed using asymmetric flow field-flow fractionation (AF4) with multiangle light scattering (MALS), differential refractive index (dRI) and fluorescence (FL) detection. β-Glucan was detected in a wide molar mass range, <2000 to approximately 6.7×10(6)g/mol. Differences in molar masses were more noticeable between barley varieties and steeping malting conditions than by mashing of malt. Barley products processed to preserve β-glucan contained more β-glucan of high molar mass with potential to shift the fermentation site to the distal colon. Enzymatic degradation of proteins indicated presence of aggregates containing β-glucan and protein.

  12. Development of barley (Hordeum vulgare L.) lines with altered starch granule size distribution.

    PubMed

    Jaiswal, Sarita; Båga, Monica; Ahuja, Geetika; Rossnagel, Brian G; Chibbar, Ravindra N

    2014-03-12

    Microscope analysis of starches prepared from 139 barley genotypes identified a Japanese genotype, Kinai Kyoshinkai-2 (KK-2), with altered starch granule size distribution. Compared to normal barley starch, KK-2 produced consistently higher volumes of starch granules with 5-15 μm diameter and reduced volumes of starch granules with >15 μm diameter when grown in different environments. A cross between KK-2 and normal starch cultivar CDC Kendall was made and led to the production of 154 F5 lines with alterations to the normal 7:3:1 distribution for A-:B-:C-type starch granule volumes. Three F5 lines showed unimodal starch granule size distribution due to apparent lack of very small (<5.0 μm diameter) C-type starch granules, but the phenotype was accompanied by reduced grain weight and total starch concentration. Five F5 lines produced a significantly larger population of large (>15 μm diameter) A-type starch granules as compared to normal starch and showed on average a 10:4:1 distribution for A-:B-:C-type starch granule volumes. The unusual starch phenotypes displayed by the F5 lines confirm starch granule size distribution in barley can be genetically altered.

  13. Developing transgenic wheat and barley that exhibit resistance to Fusarium graminearum via glucoside conjugation of trichothecene mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum infection of wheat and barley results in production of trichothecene mycotoxins including deoxynivalenol (DON) and nivalenol (NIV). These mycotoxins result in increased fungal virulence and reduce grain quality. Numerous transcriptomic studies have been conducted by our lab on t...

  14. The effect of free air carbon dioxide enrichment and nitrogen fertilisation on the chemical composition and nutritional value of wheat and barley grain.

    PubMed

    Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven

    2013-08-01

    A rising atmospheric CO2 concentration might influence the nutrient composition of feedstuffs and consequently the nutritional value for livestock. The present study investigates the effects of atmospheric CO2 enrichment on the chemical composition and nutritional value of winter wheat cv. "Batis" and winter barley cv. "Theresa". Both cereals were grown at two different atmospheric CO2 concentrations (ambient CO2 [AMBI]: 380 ppm and enriched CO2 [free air carbon dioxide enrichment, FACE]: 550 ppm) for two growing seasons. The influence of two different nitrogen (N) fertilisation levels (adequate N supply [N100] and nearly 50% of adequate N supply [N50]) were studied as well. A significant effect was observed for the crude protein content, which declined at FACE condition in a range of 8-16 g kg(-1) in wheat and of 10-20 g kg(-1) in barley. A reduced N fertilisation level resulted in a strong reduction of crude protein concentration in both cereal species. In wheat, a decrease in N supply significantly enhanced the concentration of starch and crude fibre. In barley, only the concentration of fructose increased under FACE condition and reduced N fertilisation. The FACE did not have major effects on the concentrations of minerals, while the influence of N fertilisation was different for both cereals. Whereas no effects could be observed for barley, a reduced N supply caused a significant reduction in concentrations of zinc, manganese and iron in wheat. Furthermore, an undirected effect of atmospheric CO2 and N fertilisation levels were found for the amino acid concentrations. Based on these results, future scenarios of climate change would have an impact on the nutritional value of cereal grains.

  15. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley.

    PubMed

    Chen, Zhiwei; Huang, Jianhua; Muttucumaru, Nira; Powers, Stephen J; Halford, Nigel G

    2013-09-01

    The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation.

  16. Transposable element junctions in marker development and genomic characterization of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  17. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS.

    PubMed

    Persson, Daniel P; Hansen, Thomas H; Laursen, Kristian H; Schjoerring, Jan K; Husted, Søren

    2009-09-01

    The increasing prevalence of iron (Fe) and zinc (Zn) deficiencies in human populations worldwide has stressed the need for more information about the distribution and chemical speciation of these elements in cereal products. In order to investigate these aspects, barley grains were fractionated into awns, embryo, bran and endosperm and analysed for Fe and Zn. Simultaneously, phosphorus (P) and sulfur (S) were determined since these elements are major constituents of phytic acid and proteins, respectively, compounds which are potentially involved in Fe and Zn binding. A novel analytical method was developed in which oxygen was added to the octopole reaction cell of the ICP-MS. This approach greatly improved the sensitivity of sulfur, measured as (48)SO(+). Simultaneously, Fe was measured as (72)FeO(+), P as (47)PO(+), and Zn as (66)Zn(+), enabling sensitive and simultaneous analysis of these four elements. The highest concentrations of Zn, Fe, S and P were found in the bran and embryo fractions. Further analysis of the embryo using SEC-ICP-MS revealed that the speciation of Fe and Zn differed. The majority of Fe co-eluted with P as a species with the apparent mass of 12.3 kDa, whereas the majority of Zn co-eluted with S as a 3 kDa species, devoid of any co-eluting P. Subsequent ion pairing chromatography of the Fe/P peak showed that phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate: IP(6)) was the main Fe binding ligand, with the stoichiometry Fe(4)(IP(6))(18). When incubating the embryo tissue with phytase, the enzyme responsible for degradation of phytic acid, the extraction efficiency of both Fe and P was doubled, whereas that of Zn and S was unaffected. Protein degradation on the other hand, using protease XIV, boosted the extraction of Zn and S, but not that of Fe and P. It is concluded that Fe and Zn have a different speciation in cereal grain tissues; Zn appears to be mainly bound to peptides, while Fe is mainly associated with phytic acid.

  18. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    PubMed

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  19. Quantitative trait loci of barley malting quality trait components in the Stellar/01Ab8219 mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malting barley is of high economic and scientific importance. Determining barley grains that are suitable for malting involves measuring malting quality, which is an expensive and complex process. In order to decrease the cost of phenotyping and accelerate the process of developing superior malting ...

  20. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination.

    PubMed

    Dionisio, Giuseppe; Holm, Preben B; Brinch-Pedersen, Henrik

    2007-03-01

    At present, little is known about the phytases of plant seeds in spite of the fact that this group of enzymes is the primary determinant for the utilization of the major phosphate storage compound in seeds, phytic acid. We report the cloning and characterization of complementary DNAs (cDNAs) encoding one of the groups of enzymes with phytase activity, the multiple inositol phosphate phosphatases (MINPPs). Four wheat cDNAs (TaPhyIIa1, TaPhyIIa2, TaPhyIIb and TaPhyIIc) and three barley cDNAs (HvPhyIIa1, HvPhyIIa2 and HvPhyIIb) were isolated. The open reading frames ranged from 1548 to 1554 bp and the level of homology between the barley and wheat proteins ranged from 90.5% to 91.9%. All cDNAs contained an N-terminal signal peptide encoding sequence, and a KDEL-like sequence, KTEL, was present at the C-terminal, indicating that the enzyme was targeted to and retained within the endoplasmic reticulum. Expression of TaPhyIIa2 and HvPhyIIb in Escherichia coli revealed that the MINPPs possessed a significant phytase activity with narrow substrate specificity for phytate. The pH and temperature optima for both enzymes were pH 4.5 and 65 degrees C, respectively, and the K(m) values for phytate were 246 and 334 microm for the wheat and barley recombinant enzymes, respectively. The enzymes were inhibited by several metal ions, in particular copper and zinc. The cDNAs showed significantly different temporal and tissue-specific expression patterns during seed development and germination. With the exception of TaPhyIIb, the cDNAs were present during late seed development and germination. We conclude that MINPPs constitute a significant part of the endogenous phytase potential of the developing and germinating barley and wheat seeds.

  1. Using a fibrolytic enzyme in barley-based diets containing wheat dried distillers grains with solubles: ruminal fermentation, digestibility, and growth performance of feedlot steers.

    PubMed

    He, Z X; He, M L; Walker, N D; McAllister, T A; Yang, W Z

    2014-09-01

    Two experiments were conducted to evaluate the effects of adding an exogenous fibrolytic enzyme (FE) on ruminal pH and fermentation, digestibility, and growth performance of feedlot beef cattle fed a finishing diet containing wheat dried distillers grains with solubles (DDGS). In Exp. 1, 4 ruminally cannulated Angus heifers (average BW of 807 ± 93.9 kg) were used in a replicated 4 × 4 Latin square design. Treatments were 1) control (CON; 10% barley silage and 90% barley grain-based concentrate), 2) CON diet substituting 30% wheat DDGS for barley grain (WDG), 3) WDG diet supplemented with low FE (WDGL), and 4) WDG diet supplemented with high FE (WDGH). Heifers fed WDG had less (P = 0.01) total tract DM digestibility than heifers fed CON. Increasing FE linearly (P < 0.05) increased starch digestibility without affecting digestibility of other nutrients. Addition of FE also reduced (P = 0.03) ruminal ammonia-N (NH3-N) concentration but did not affect VFA concentration. Moreover, application of FE to wheat DDGS linearly increased in situ ruminal DM (P < 0.01) and NDF (P = 0.02) disappearance after 48 h of incubation. In Exp. 2, 160 yearling steers (initial BW = 495 ± 37.9 kg) were fed the same diets as in Exp. 1. No differences in DMI, final BW, ADG, dietary NEg, or carcass characteristics were observed among diets. However, the steers fed WDG had less (P < 0.05) G:F and greater number of (P < 0.01) abscessed livers than steers fed CON. Increasing FE application in wheat DDGS diets did not affect DMI, final BW, or ADG but tended (P < 0.09) to linearly improve feed efficiency and decreased (P = 0.03) the incidence of abscessed livers. These results demonstrated adverse effects of including wheat DDGS in finishing diets on feed digestion, feed efficiency, and animal health. Application of FE in wheat DDGS-based diets potentially improved starch digestion, protein metabolism in the rumen, feed efficiency, and animal health.

  2. The defective seed5 (des5) mutant: effects on barley seed development and HvDek1, HvCr4, and HvSal1 gene regulation.

    PubMed

    Olsen, Lene T; Divon, Hege H; Al, Ronald; Fosnes, Kjetil; Lid, Stein Erik; Opsahl-Sorteberg, Hilde-Gunn

    2008-01-01

    Barley, one of the major small grain crops, is especially important in climatically demanding agricultural areas of the world, with multiple uses within food, feed, and beverage. The barley endosperm is further of special scientific interest due to its three aleurone cell layers, with the potential of bringing forward the molecular understanding of seed development and cell specification from Arabidopsis and maize. Work done in Arabidopsis and maize indicate the presence of conserved seed developmental pathways where Crinkly4 (Cr4), Defective kernel1 (Dek1), and Supernumerary aleurone layer1 (Sal1) are key players. With the use of microscopy, a comprehensive phenotypic characterization of the barley defective seed5 (des5) mutant is presented here. The analysis further extends to molecular quantification of gene expression changes in the des5 mutant by qRT-PCR. Moreover, full-length genomic sequences of the barley orthologues were generated and these were annotated as HvDek1, HvCr4, and HvSal1. The most striking results in this study are the patchy reduction in number of aleurone cells, rudimentary anticlinal aleurone cell walls, and the specific change of HvCr4 expression compared to HvDek1 and HvSal1. The data presented support the involvement of Hvdes5 in establishing aleurone cells. Finally, how these results might affect the current model of aleurone and epidermal cell identity and development is discussed with a speculation regarding a possible role of Des5 in regulating cell division/ secondary cell wall building.

  3. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development

    PubMed Central

    Chetouhi, Cherif; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges

    2014-01-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains. PMID:25663750

  4. Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique

    PubMed Central

    Bellucci, Andrea; Tondelli, Alessandro; Fangel, Jonatan U.; Torp, Anna Maria; Xu, Xin; Willats, William G. T.; Flavell, Andrew; Cattivelli, Luigi

    2017-01-01

    A collection of 112 winter barley varieties (Hordeum vulgare L.) was grown in the field for two years (2008/09 and 2009/10) in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV) strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD) for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09) and higher in 2010 (0.29). Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD). Overall, heritability (H2) was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD) and genome-wide association study (GWAS). Marker-trait associations (MTA) were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools. PMID:28301509

  5. Consolidated conversion of hulled barley into fermentable sugars using chemical, thermal, and enzymatic (CTE) treatment.

    PubMed

    Kim, Tae Hyun; Nghiem, Nhuan P; Taylor, Frank; Hicks, Kevin B

    2011-06-01

    A novel process using chemical, thermal, and enzymatic treatment for conversion of hulled barley into fermentable sugars was developed. The purpose of this process is to convert both lignocellulosic polysaccharides and starch in hulled barley grains into fermentable sugars simultaneously without a need for grinding and hull separation. In this study, hulled barley grains were treated with 0.1 and 1.0 wt.-% sulfuric acid at various temperatures ranging from 110 to 170 °C in a 63-ml flow-through packed-bed stainless steel reactor. After sulfuric acid pretreatment, simultaneous conversion of lignocellulose and starch in the barley grains into fermentable sugars was performed using an enzyme cocktail, which included α-amylase, glucoamylase, cellulase, and β-glucosidase. Both starch and non-starch polysaccharides in the pre-treated barley grains were readily converted to fermentable sugars. The treated hulled barley grains, including their hull, were completely hydrolyzed to fermentable sugars with recovery of almost 100% of the available glucose and xylose. The pretreatment conditions of this chemical, thermal, and enzymatic (CTE) process for achieving maximum yield of fermentable sugars were 1.0 wt.% sulfuric acid and 110 °C. In addition to starch, the acid pretreatment also retained most of the available proteins in solid form, which is essential for subsequent production of fuel ethanol and high protein distiller's dried grains with solubles co-product.

  6. Influence of Fe concentration in the medium on multicellular pollen grains and haploid plants induced by mannitol pretreatment in barley (Hordeum vulgare L.).

    PubMed

    Pulido, A; Bakos, F; Castillo, A; Vallés, M P; Barnabás, B; Olmedilla, A

    2006-08-01

    This study aims to clarify the short- and long-term effects of the iron concentration in the medium on androgenesis induced in barley by isolated microspore culture. The ultrastructural features and pectin composition of the intine wall were studied in the initial stages of androgenesis. The evolution of electron-dense iron deposits on the intine was analysed in multicellular pollen grains obtained by isolated microspore culture performed for 3, 6, and 9 days using various concentrations of FeNa(2) EDTA. Finally, the number of embryo-like structures and green plants obtained by microspore culture using different Fe concentrations was evaluated in order to estimate the optimum concentration for isolated microspore culture.

  7. Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm.

    PubMed

    Hilscher, Julia; Kapusi, Eszter; Stoger, Eva; Ibl, Verena

    2016-01-01

    The significance of the endosomal sorting complexes required for transport (ESCRT)-III in cereal endosperm has been shown by the identification of the recessive mutant supernumerary aleurone layer1 (SAL1) in maize. ESCRT-III is indispensable in the final membrane fission step during biogenesis of multivesicular bodies (MVBs), responsible for protein sorting to vacuoles and to the cell surface. Here, we annotated barley ESCRT-III members in the (model) crop Hordeum vulgare and show that all identified members are expressed in developing barley endosperm. We used fluorescently tagged core ESCRT-III members HvSNF7a/CHMP4 and HvVPS24/CHMP3 and the associated ESCRT-III component HvVPS60a/CHMP5 for transient localization studies in barley endosperm. In vivo confocal microscopic analyses show that the localization of recombinantly expressed HvSNF7a, HvVPS24 and HvVPS60a differs within barley endosperm. Whereas HvSNF7a induces large agglomerations, HvVPS24 shows mainly cytosolic localization in aleurone and subaleurone. In contrast, HvVPS60a localizes strongly at the plasma membrane in aleurone. In subaleurone, HvVPS60a was found to a lesser extent at the plasma membrane and at vacuolar membranes. These results indicate that the steady-state association of ESCRT-III may be influenced by cell layer-specific protein deposition or trafficking and remodelling of the endomembrane system in endosperm. We show that sorting of an artificially mono-ubiquitinated Arabidopsis plasma membrane protein is inhibited by HvVPS60a in aleurone. The involvement of HvVPS60a in different cell layer-specific trafficking pathways, reflected by localization of HvVPS60a at the plasma membrane in aleurone and at the PSV membrane in subaleurone, is discussed.

  8. The study of a barley epigenetic regulator, HvDME, in seed development and under drought

    PubMed Central

    2013-01-01

    Background Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. Results An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5′ and 3′ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3′ downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. Conclusion A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation

  9. Sprouted barley for dairy cows: Nutritional composition and digestibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  10. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  11. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  12. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  13. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  14. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  15. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach

    PubMed Central

    Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed

  16. Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Vepsäläinen, Jouko; Keinänen, Markku; Pappinen, Ari

    2015-03-01

    This study aims to efficiently use hemicellulose-based biomass for ABE (acetone-butanol-ethanol) production by co-fermentation with starch-based biomass. Two processes were investigated: (I) co-fermentation of sugars derived from hemicellulose and starch in a mixture of barley straw and grain that was pretreated with dilute acid; (II) co-fermentation of straw hemicellulosic hydrolysate and gelatinized grain slurry in which the straw was pretreated with dilute acid. The two processes produced 11.3 and 13.5 g/L ABE that contains 7.4 and 7.8 g/L butanol, respectively. In process I, pretreatment with 1.0% H2SO4 resulted in better ABE fermentability than with 1.5% H2SO4, but only 19% of pentoses were consumed. In process II, 95% of pentoses were utilized even in the hemicellulosic hydrolysate pretreated with more severe condition (1.5% H2SO4). The results suggest that process II is more favorable for hemicellulosic biomass utilization, and it is also attractive for sustainable biofuel production due to great biomass availability.

  17. Weather analysis and interpretation procedures developed for the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H. (Principal Investigator)

    1980-01-01

    Procedures and techniques for providing analyses of meteorological conditions at segments during the growing season were developed for the U.S./Canada Wheat and Barley Exploratory Experiment. The main product and analysis tool is the segment-level climagraph which depicts temporally meteorological variables for the current year compared with climatological normals. The variable values for the segment are estimates derived through objective analysis of values obtained at first-order station in the region. The procedures and products documented represent a baseline for future Foreign Commodity Production Forecasting experiments.

  18. Barley and oats: underutilized nutrition sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley and oats are two unique ancient crops. Their grains contain beta-glucan in substantial amounts, which can lower cholesterol levels and reduce glycemic response. Yet, food uses of barley and oats are rather limited due to lack of palatability of whole grain food or functionality of milled flou...

  19. Rapid assignment of malting barley varieties by matrix-assisted laser desorption-ionisation - Time-of-flight mass spectrometry.

    PubMed

    Šedo, Ondrej; Kořán, Michal; Jakešová, Michaela; Mikulíková, Renata; Boháč, Michal; Zdráhal, Zbyněk

    2016-09-01

    A method for discriminating malting barley varieties based on direct matrix-assisted laser desorption-ionisation - time-of-flight mass spectrometry (MALDI-TOF MS) fingerprinting of proteins was developed. Signals corresponding to hordeins were obtained by simple mixing of powdered barley grain with a MALDI matrix solution containing 12.5mgmL(-1) of ferulic acid in an acetonitrile:water:formic acid 50:33:17 v/v/v mixture. Compared to previous attempts at MALDI-TOF mass spectrometric analysis of barley proteins, the extraction and fractionation steps were practically omitted, resulting in a significant reduction in analytical time and costs. The discriminatory power was examined on twenty malting barley varieties and the practicability of the method was tested on sixty barley samples acquired from Pilsner Urquell Brewery. The method is proposed as a rapid tool for variety assignment and purity determination of malting barley that may replace gel electrophoresis currently used for this purpose.

  20. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: effects on nutrient digestion in cattle fed a barley grain diet.

    PubMed

    Hristov, A N; McAllister, T A; Cheng, K J

    2000-02-01

    The effects of supplying increasing ruminal doses of exogenous polysaccharide-degrading enzymes (EPDE) on rumen fermentation and nutrient digestion were studied using eight ruminally cannulated heifers, four of which were also duodenally cannulated, in a replicated Latin square. The heifers were fed a diet of 85.5% rolled barley grain and 14% barley silage (DM basis), and once daily they were given intraruminal doses of 0 (Control), 100, 200, or 400 g of a preparation containing polysaccharide-degrading enzymes. Enzyme treatment decreased ruminal pH (linear, P<.001) and increased ammonia N (quadratic, P<.001) concentration. The ruminally soluble fraction and effective degradability of feed DM in situ were increased (quadratic response, P<.001) by enzyme treatment. Ruminal administration of EPDE increased ruminal fluid carboxymethylcellulase and xylanase activities linearly (P<.001) and beta-glucanase activity quadratically (P<.01), decreased (quadratic response, P<.05) ruminal fluid viscosity, and did not affect (P>.05) ruminal fluid amylase activity. Elevated levels of fibrolytic activities in the rumen resulted in increased (quadratic, P<.001) carboxymethylcellulase, xylanase, and beta-glucanase (P<.01) activities in duodenal digesta. Duodenal amylase activity and reducing sugar concentration were also increased (quadratic responses, P<.001 and P<.05, respectively) by EPDE. Xylanase activity of fecal DM was increased linearly (P<.05) with increasing ruminal EPDE levels. Apparent digestibilities of DM, crude protein, and NDF were not affected by EPDE supplementation. Enzyme treatment did not affect (P>.05) urinary excretion of allantoin and uric acid, or concentrations of glucose and urea in blood.

  1. Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf.

    PubMed

    Richardson, Andrew; Wojciechowski, Tobias; Franke, Rochus; Schreiber, Lukas; Kerstiens, Gerhard; Jarvis, Mike; Fricke, Wieland

    2007-05-01

    The developing leaf three of barley provides an excellent model system for the direct determination of relationships between amounts of waxes and cutin and cuticular permeance. Permeance of the cuticle was assessed via the time-course of uptake of either toluidine blue or (14)C-labelled benzoic acid ([(14)C] BA) along the length of the developing leaf. Toluidine blue uptake only occurred within the region 0-25 mm from the point of leaf insertion (POLI). Resistance--the inverse of permeance--to uptake of [(14)C] BA was determined for four leaf regions and was lowest in the region 10-20 mm above POLI. At 20-30 and 50-60 mm above POLI, it increased by factors of 6 and a further 32, respectively. Above the point of emergence of leaf three from the sheath of leaf two, which was 76-80 mm above POLI, resistance was as high as at 50-60 mm above POLI. GC-FID/MS analyses of wax and cutin showed that: (1) the initial seven fold increase in cuticular resistance coincided with increase in cutin coverage and appearance of waxes; (2) the second, larger and final increase in cuticle resistance was accompanied by an increase in wax coverage, whereas cutin coverage remained unchanged; (3) cutin deposition in barley leaf epidermis occurred in parallel with cell elongation, whereas deposition of significant amounts of wax commenced as cells ceased to elongate.

  2. Senescence, nutrient remobilization, and yield in wheat and barley.

    PubMed

    Distelfeld, Assaf; Avni, Raz; Fischer, Andreas M

    2014-07-01

    Cereals including wheat and barley are of primary importance to ensure food security for the 21st century. A combination of lab- and field-based approaches has led to a considerably improved understanding of the importance of organ and particularly of whole-plant (monocarpic) senescence for wheat and barley yield and quality. A delicate balance between senescence timing, grain nutrient content, nutrient-use efficiency, and yield needs to be considered to (further) improve cereal varieties for a given environment and end use. The recent characterization of the Gpc-1 (NAM-1) genes in wheat and barley demonstrates the interdependence of these traits. Lines or varieties with functional Gpc-1 genes demonstrate earlier senescence and enhanced grain protein and micronutrient content but, depending on the environment, somewhat reduced yields. A major effort is needed to dissect regulatory networks centred on additional wheat and barley transcription factors and signalling pathways influencing the senescence process. Similarly, while important molecular details of nutrient (particularly nitrogen) remobilization from senescing organs to developing grains have been identified, important knowledge gaps remain. The genes coding for the major proteases involved in senescence-associated plastidial protein degradation are largely unknown. Membrane transport proteins involved in the different transport steps occurring between senescing organ (such as leaf mesophyll) cells and protein bodies in the endosperm of developing grains remain to be identified or further characterized. Existing data suggest that an improved understanding of all these steps will reveal additional, important targets for continued cereal improvement.

  3. Effects of Drought-Stress on Fusarium Crown Rot Development in Barley

    PubMed Central

    Liu, Xinlun; Liu, Chunji

    2016-01-01

    Fusarium crown rot (FCR), caused by various Fusarium species, is a chronic disease of cereals in many semi-arid regions worldwide. To clarify what effects drought-stress may have on FCR development, visual assessment, histological analysis and quantitative PCR were used to analyse the infection process of F. pseudograminearum in barley. This study observed for the first time that the severity of FCR symptom reflects the quantity of pathogens in infected tissues of barley under both drought-stressed and well-watered conditions. Drought-stress prolongs the initial infection phase but enhances the proliferation and spread of Fusarium pathogens after the initial infection phase. Under drought-stressed conditions, the invading hyphae were frequently observed to re-emerge from stomata and invade again the surrounding epidermis cells. Under the well-watered conditions, however, very few hyphae re-emerged from stomata and most infection was caused by hyphae intracellularly grown. It was also observed that drought-stress increased the length and density of trichomes dramatically especially in the susceptible genotypes, and that the length and density of trichomes were positively related to fungal biomass of F. pseudograminearum in plants. PMID:27936004

  4. Barley (Hordeum vulgare L.) transformation using immature embryos.

    PubMed

    Marthe, Cornelia; Kumlehn, Jochen; Hensel, Goetz

    2015-01-01

    Barley is a major crop species, and also has become a genetic model for the small grain temperate cereals. A draft barley genome sequence has recently been completed, opening many opportunities for candidate gene isolation and functionality testing. Thanks to the development of customizable endonucleases, also site-directed genome modification recently became feasible for higher plants, which marks the beginning of a new era of genetic engineering. The development of improved binary vectors and hypervirulent Agrobacterium tumefaciens strains has raised the efficiency of genetic transformation in barley to a level where the technique has become relatively routine. The transformation method described here involves immature barley embryos cocultivated with Agrobacterium after removal of their embryo axis. Critical adjustments to the protocol have included the supplementation of the cocultivation medium with the polyphenolic signaling compound acetosyringone at comparatively high concentration and the use of cysteine to reduce the extent of cellular oxidation upon agroinfection. In addition, the use of liquid, rather than solid, cocultivation medium promotes the throughput of the method. The protocol has delivered well over 10,000 transgenic barley plants over the past 10 years. Routine transformation efficiency, calculated on the basis of the recovery of independent transgenics per 100 explants, has reached about 25 % in cultivar (cv.) "Golden Promise". The protocol has proven effective for more than 20 barley cultivars, although some adjustments to the culture conditions have had to be made in some cases. The transformation efficiency of cv. "Golden Promise" remains higher than that of any other cultivar tested.

  5. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method

    PubMed Central

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-01-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios

  6. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development.

  7. Effect of including high-lipid by-product pellets in substitution for barley grain and canola meal in finishing diets for beef cattle on ruminal fermentation and nutrient digestibility.

    PubMed

    Górka, P; Castillo-Lopez, E; Joy, F; Chibisa, G E; McKinnon, J J; Penner, G B

    2015-10-01

    The objective was to determine the effect of replacing barley grain and canola meal with high-lipid by-product pellets (HLBP; 14.6% CP, 29.8% NDF, 9.0% fat, and 5.52 MJ NE/kg in DM) on DMI, ruminal fermentation, nutrient flow at the omasal canal, and nutrient digestibility. Four ruminally cannulated and ovariectomized Hereford × Gelbvieh heifers (initial BW of 631.9 ± 23.3 kg; mean ± SD) were used in a 4 × 4 Latin square design. Periods consisted of 28 d, including 10 d for diet transition, 11 d for dietary adaptation, and 7 d for measurements. Heifers were fed a typical finishing diet consisting of 89% of concentrate (barley grain and canola meal; CONT), 6% of barley silage, and 5% of mineral and vitamin supplement (on DM basis). Dietary treatments consisted of a CONT or diets where 30% (HLBP30), 60% (HLBP60), and 90% (HLBP90) of the barley grain and canola meal were replaced with HLBP. Dry matter intake was not affected by treatment ( > 0.10). Total short-chain fatty acid concentration and molar proportions of acetate, propionate, and butyrate ( > 0.10) among treatments and ruminal ammonia did not differ ( > 0.10) among treatments, and ruminal ammonia increased ( = 0.03) linearly with increasing HLBP inclusion rate in the diet. Mean and maximum pH increased, whereas the duration and area that pH was below 5.8, 5.5, and 5.2, thresholds used for mild, severe, and acute ruminal acidosis, respectively, decreased linearly ( ≤ 0.05) with increasing rates of inclusion of HLBP. Organic matter flow at the omasal canal increased linearly ( = 0.03) with increasing HLBP inclusion rate in the diet. However, OM digestibility coefficients and apparent ruminal NDF and ADF digestibility yielded negative values for some animals, especially those fed HLBP90, indicating that ruminal digestibility was underestimated. Total tract OM digestibility decreased linearly ( < 0.01) with increasing inclusion rates of HLBP. This study showed that HLBP inclusion in substitution for barley

  8. A description of the reformatted spring small grains labeling procedure used in test 2, part 2 of the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Magness, E. R. (Principal Investigator)

    1981-01-01

    The reformatted spring small grains labeling procedure is designed to be used for assigning crop identification labels to a predetermined and selected number of dots. The development and description of this procedure is presented.

  9. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley[OPEN

    PubMed Central

    2015-01-01

    Timing of the floral transition and inflorescence development strongly affect yield in barley (Hordeum vulgare). Therefore, we examined the effects of daylength and the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) on barley development and analyzed gene expression changes in the developing leaves and main shoot apices (MSAs) of barley by RNA sequencing. The daylength sensitivity of MSA development had two phases, floret primordia initiated under long and short days, whereas successful inflorescence development occurred only under long days. The transcripts associated with floral transition were largely regulated independently of photoperiod and allelic variation at Ppd-H1. The photoperiod- and Ppd-H1-dependent differences in inflorescence development and flower fertility were associated with the induction of barley FLOWERING LOCUS T orthologs: FT1 in leaves and FT2 in MSAs. FT1 expression was coregulated with transcripts involved in nutrient transport, carbohydrate metabolism, and cell cycle regulation, suggesting that FT1 might alter source-sink relationships. Successful inflorescence development correlated with upregulation of FT2 and transcripts related to floral organ development, phytohormones, and cell cycle regulation. Identification of photoperiod and stage-specific transcripts gives insights into the regulation of reproductive development in barley and provides a resource for investigation of the complexities of development and yield in temperate grasses. PMID:26307377

  10. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley.

    PubMed

    Digel, Benedikt; Pankin, Artem; von Korff, Maria

    2015-09-01

    Timing of the floral transition and inflorescence development strongly affect yield in barley (Hordeum vulgare). Therefore, we examined the effects of daylength and the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) on barley development and analyzed gene expression changes in the developing leaves and main shoot apices (MSAs) of barley by RNA sequencing. The daylength sensitivity of MSA development had two phases, floret primordia initiated under long and short days, whereas successful inflorescence development occurred only under long days. The transcripts associated with floral transition were largely regulated independently of photoperiod and allelic variation at Ppd-H1. The photoperiod- and Ppd-H1-dependent differences in inflorescence development and flower fertility were associated with the induction of barley FLOWERING LOCUS T orthologs: FT1 in leaves and FT2 in MSAs. FT1 expression was coregulated with transcripts involved in nutrient transport, carbohydrate metabolism, and cell cycle regulation, suggesting that FT1 might alter source-sink relationships. Successful inflorescence development correlated with upregulation of FT2 and transcripts related to floral organ development, phytohormones, and cell cycle regulation. Identification of photoperiod and stage-specific transcripts gives insights into the regulation of reproductive development in barley and provides a resource for investigation of the complexities of development and yield in temperate grasses.

  11. Development and Implementation of High-Throughput SNP Genotyping in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Pilot phase data from three barley doubled haploid mapping populations supported the production of an initial consensus map, ...

  12. Reducing grain storage losses in developing countries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the use of insecticide-treated material and modified atmosphere storage for reducing insect damage in stored maize. Results showed that insecticide treated netting and insecticide treated seed bags protected grain from insect damage for up to nine months if the grain was free from i...

  13. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  14. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  15. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    PubMed Central

    2011-01-01

    Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area. PMID:21711566

  16. Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration.

    PubMed

    Gendreau, Emmanuel; Romaniello, Sébastien; Barad, Sophie; Leymarie, Juliette; Benech-Arnold, Roberto; Corbineau, Françoise

    2008-01-01

    Various studies indicate that cell division is a post-germination phenomenon, with radicle protrusion occurring by cell elongation, while others demonstrate that induction of the cell cycle occurs in osmo-conditioned seeds prior to radicle growth. The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to grain hydration, using: (i) a flow cytometry technique to estimate the percentage of cell nuclei in G(1) and G(2) phases of the cell cycle; and (ii) reverse transcription-PCR (RT-PCR) in order to characterize the expression of the genes encoding cyclin-dependent kinases (CDKA1, CDKB1, and CDKD1) and cyclins (CYCA3, CYCB1, and CYCD4), the main genes involved in the cell cycle and its regulation. Radicle tips of embryos were isolated from seeds placed for various times on water at 30 degrees C and from grains partially hydrated at moisture contents ranging from 11% to 51% fresh weight (FW), which prevent radicle elongation. Abscisic acid (ABA) contents of the embryos during seed germination at 30 degrees C and after 48 h of partial hydration were also measured. In dry embryos, cells are mostly arrested in the G(1) phase of the cell cycle (82%), the remaining cells being in the G(2) phase, and the ABA content of the embryo was 432.7 ng g(-1) dry weight (DW). Seed imbibition was associated with a sharp decrease in ABA content as early as 5 h, while the cell cycle reactivation was a late process taking place approximately 4-6 h prior to radicle protrusion. Hydration of seeds resulted in a decrease in embryo ABA content, but it remained at a high level (207-273 ng g(-1) DW) even after 48 h at 0.41-0.51 g H2O g(-1) FW. The cell population of the radicle tips in the G(2) phase of the cell cycle, i.e. 4C nuclei, increased from 9% up to 34% at a moisture content of 51% FW. In dry seeds, CDKA1 and CDKD1 mRNAs were present at low levels, but transcripts of CDKB1, CYCA3, CYCB1, and CYCD4 were not detected. Radicle

  17. Starch Biosynthesis in Developing Wheat Grain 1

    PubMed Central

    Keeling, Peter L.; Wood, John R.; Tyson, R. Huw; Bridges, Ian G.

    1988-01-01

    We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in

  18. All About the Grains Group

    MedlinePlus

    ... the Grains Group? Any food made from wheat, rice, oats, cornmeal, barley or another cereal grain is ... bulgur (cracked wheat), oatmeal, whole cornmeal, and brown rice. Refined grains have been milled, a process that ...

  19. Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures.

    PubMed

    Otto, Ingrid; Müller, Andrea; Kumlehn, Jochen

    2015-01-01

    The temperate cereal barley is grown as a source of food, feed, and malt. The development of a broad range of genetic resources and associated technologies in this species has helped to establish barley as the prime model for the other Triticeae cereals. The specific advantage of the transformation method presented here is that transgene homozygosity is attained in the same generation as the transgenic event occurred through the coupling of haploid technology with Agrobacterium-mediated transformation. Pollen is haploid and, following transformation, can be induced to regenerate into haploid plantlets, which can subsequently subjected to colchicine treatment to obtain diploid, genetically fixed plants. The routine application of the method based on the winter-type barley cultivar 'Igri' over a period of over 10 years has achieved an average yield of about two transgenic plants per donor spike. The whole procedure from pollen isolation to non-segregating transgenic, mature grain takes less than 12 months.

  20. Thermal stress impacts reproductive development and grain yield in rice.

    PubMed

    Arshad, Muhammad Shakeel; Farooq, Muhammad; Asch, Folkard; Krishna, Jagadish S V; Prasad, P V Vara; Siddique, Kadambot H M

    2017-03-16

    Rice is highly sensitive to temperature stress (cold and heat), particularly during the reproductive and grain-filling stages. In this review, we discuss the effects of low- and high-temperature sensitivity in rice at various reproductive stages (from meiosis to grain development) and propose strategies for improving the tolerance of rice to terminal thermal stress. Cold stress impacts reproductive development through (i) delayed heading, due to its effect on anther respiration, which increases sucrose accumulation, protein denaturation and asparagine levels, and decreases proline accumulation, (ii) pollen sterility owing to tapetal hypertrophy and related nutrient imbalances, (iii) reduced activity of cell wall bound invertase in the tapetum of rice anthers, (iv) impaired fertilization due to inhibited anther dehiscence, stigma receptivity and ability of the pollen tube to germinate through the style towards the ovary, and (v) floret sterility, which increases grain abortion, restricts grain size, and thus reduces grain yield. Heat stress affects grain formation and development through (i) poor anther dehiscence due to restricted closure of the locules, leading to reduced pollen dispersal and fewer pollen on the stigma, (ii) changes in pollen proteins resulting in significant reductions in pollen viability and pollen tube growth, leading to spikelet sterility, (iii) delay in heading, (iv) reduced starch biosynthesis in developing grain, which reduces starch accumulation, (v) increased chalkiness of grain with irregular and round-shaped starch granules, and (vi) a shortened grain-filling period resulting in low grain weight. However, physiological and biotechnological tools, along with integrated management and adaptation options, as well as conventional breeding, can help to develop new rice genotypes possessing better grain yield under thermal stress during reproductive and grain-filling phases.

  1. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  2. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley.

    PubMed

    Füllner, K; Temperton, V M; Rascher, U; Jahnke, S; Rist, R; Schurr, U; Kuhn, A J

    2012-05-01

    We have detailed knowledge from controlled environment studies on the influence of root temperature on plant performance, growth and morphology. However, in all studies root temperature was kept spatially uniform, which motivated us to test whether a vertical gradient in soil temperature affected development and biomass production. Roots of barley seedlings were exposed to three uniform temperature treatments (10, 15 or 20°C) or to a vertical gradient (20-10°C from top to bottom). Substantial differences in plant performance, biomass production and root architecture occurred in the 30-day-old plants. Shoot and root biomass of plants exposed to vertical temperature gradient increased by 144 respectively, 297%, compared with plants grown at uniform root temperature of 20°C. Additionally the root system was concentrated in the upper 10cm of the soil substrate (98% of total root biomass) in contrast to plants grown at uniform soil temperature of 20°C (86% of total root biomass). N and C concentrations in plant roots grown in the gradient were significantly lower than under uniform growth conditions. These results are important for the transferability of 'normal' greenhouse experiments where generally soil temperature is not controlled or monitored and open a new path to better understand and experimentally assess root-shoot interactions.

  3. Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain

    PubMed Central

    Riehl, Simone; Pustovoytov, Konstantin E.; Weippert, Heike; Klett, Stefan; Hole, Frank

    2014-01-01

    The collapse and resilience of political systems in the ancient Near East and their relationship with agricultural development have been of wide interest in archaeology and anthropology. Despite attempts to link the archaeological evidence to local paleoclimate data, the precise role of environmental conditions in ancient agricultural production remains poorly understood. Recently, stable isotope analysis has been used for reconstructing site-specific ancient growing conditions for crop species in semiarid and arid landscapes. To open the discussion of the role of regional diversity in past agricultural production as a factor in societal development, we present 1.037 new stable carbon isotope measurements from 33 archaeological sites and modern fields in the geographic area of the Fertile Crescent, spanning the Aceramic Neolithic [10,000 calibrated years (cal) B.C.] to the later Iron Age (500 cal B.C.), alongside modern data from 13 locations. Our data show that drought stress was an issue in many agricultural settlements in the ancient Near East, particularly in correlation with the major Holocene climatic fluctuations, but its regional impact was diverse and influenced by geographic factors. Although cereals growing in the coastal areas of the northern Levant were relatively unaffected by Holocene climatic fluctuations, farmers of regions further inland had to apply irrigation to cope with increased water stress. However, inland agricultural strategies showed a high degree of variability. Our findings suggest that regional differences in climatic effects led to diversified strategies in ancient subsistence and economy even within spatially limited cultural units. PMID:25114225

  4. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley

    PubMed Central

    2013-01-01

    Background Flavonoids are an important class of secondary compounds in angiosperms. Next to certain biological functions in plants, they play a role in the brewing process and have an effect on taste, color and aroma of beer. The aim of this study was to reveal the haplotype diversity of candidate genes involved in the phenylpropanoid biosynthesis pathway in cultivated barley varieties (Hordeum vulgare L.) and to determine associations to kernel and malting quality parameters. Results Five genes encoding phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H) and dihydroflavonol reductase (DFR) of the phenylpropanoid biosynthesis pathway were partially resequenced in 16 diverse barley reference genotypes. Their localization in the barley genome, their genetic structure, and their genetic variation e.g. single nucleotide polymorphism (SNP) and Insertion/Deletion (InDel) patterns were revealed. In total, 130 SNPs and seven InDels were detected. Of these, 21 polymorphisms were converted into high-throughput pyrosequencing markers. The resulting SNP and haplotype patterns were used to calculate associations with kernel and malting quality parameters. Conclusions SNP patterns were found to be highly variable for the investigated genes. The developed high-throughput markers are applicable for assessing the genetic variability and for the determination of haplotype patterns in a set of barley accessions. The candidate genes PAL, C4H and F3H were shown to be associated to several malting properties like glassiness (PAL), viscosity (C4H) or to final attenuation (F3H). PMID:24088365

  5. 76 FR 61287 - Request for Public Comment on the United States Standards for Barley

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Public Comment on the United States Standards for Barley AGENCY: Grain Inspection, Packers and Stockyards....S.) Standards for Barley under the United States Grain Standards Act (USGSA). To ensure that... whether the current barley standards and grading practices need to be changed. DATES: Comments must...

  6. Biochemical heterogeneity of malt is caused by both biological variation and differences in processing: I. Individual grain analyses of biochemical parameters in differently steeped barley (Hordeum vulgare L.) malts.

    PubMed

    Kleinwächter, Maik; Müller, Christian; Methner, Frank-Jürgen; Selmar, Dirk

    2014-03-15

    Using individual grain analyses, the degree of inherent biological variation in germinating barley seeds has been established. Even under homogenous laboratory conditions, the activities of the germination-related enzymes α-amylase, β-amylase and β-glucanase varied by a factor of two to three. The comparison with single grain analyses of different industrially produced malts (steeping systems without aeration, with air suction and pressurised aeration) revealed that the heterogeneity of these malts nearly tripled. This increase may be due to the gradients in O2 and CO2 that arise in large industrial steeping vessels. The most homogenous malting in the industrial systems was achieved without any aeration during steeping. Therefore, to improve homogeneity, the common practise of steep aeration should be omitted. Germination progression was quite different within the three exhaustively aerated attempts, which indicated that gaseous composition was not the only factor affecting germination progression.

  7. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys.

    PubMed

    Dai, Fei; Qiu, Long; Xu, Yang; Cai, Shengguan; Qiu, Boyin; Zhang, Guoping

    2010-11-24

    The Qinghai-Tibetan Plateau in China is considered to be one of the original centers of cultivated barley. At present, little is known about the phytase activity (Phy) or phytic acid content (PA) in grains of Tibetan annual wild barley. Phy and PA were determined in grains of 135 wild and 72 cultivated barleys. Phy ranged from 171.3 to 1299.2 U kg(-1) and from 219.9 to 998.2 U kg(-1) for wild and cultivated barleys, respectively. PA and protein contents were much higher in wild barley than in cultivated barley. Tibetan annual wild barley showed a larger genetic diversity in phytase activity and phytic acid and protein contents and is of value for barley breeding. There is no significant correlation between phytase activity and phytic acid or protein content in barley grains, indicating that endogenous phytase activity had little effect on the accumulation of phytic acid.

  8. A comparison of two milling strategies to reduce the mycotoxin deoxynivalenol in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trichothecene mycotoxin deoxynivalenol (DON), a common contaminant of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) grain, is a threat to feed and food safety in the United States. New strategies to reduce the threat of DON need to be developed and implemented. Previous work has...

  9. Recent development in processing barley and oats into value-added ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley and oats are unique among cereals because they contain a higher amount (3-8%) of mixed linkage 1-3, 1-4 beta-D-glucan (BG), in addition to starch, protein and other fibers. BG is a water soluble dietary fiber and has been shown to lower serum cholesterol levels and reduce blood glucose respo...

  10. Grain boundary hierarchy development in a quartz mylonite

    NASA Astrophysics Data System (ADS)

    Trimby, Patrick W.; Prior, David J.; Wheeler, John

    1998-07-01

    Orientation contrast imaging using forescatter detectors and backscattered electron diffraction techniques in the scanning electron microscope have been used to investigate the boundary hierarchy characteristics of a quartz mylonite shear zone from Torridon, NW Scotland. The boundary hierarchy is defined as the relationship between the boundary misorientations, their enclosed domain size and their frequency distribution. By measuring the misorientation across every grain and subgrain boundary, the characteristics of the boundary hierarchy can be found. Two microstructural domains were studied: one partially recrystallized low strain domain with large relict grains and one fully recrystallized high strain mylonitic domain. Our results indicate that the processes of recovery, subgrain rotation and grain boundary migration recrystallization each produce identifiable boundary hierarchy signatures. In the relict quartz grains we have identified the processes of recovery and subgrain rotation; in the recrystallized quartz a cyclic steady state exists between these and other processes. Coupling these data with traditional microstructural observations allows a more rigorous investigation into the development of a high strain, fine grained mylonite from a coarse grained, undeformed protolith. We suggest that this type of detailed crystallographic microstructural analysis can greatly further our understanding of microstructural development in shear zones and may have implications for the effective use of (sub)grain size palaeopiezometers.

  11. Registration of Endeavor Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Endeavor’ (Reg. No. ______PI 654824); a two-rowed winter malting barley (Hordeum vulgare L.) was developed and submitted for release in 2007 by the Agricultural Research Service-USDA, Aberdeen, ID, in cooperation with the University of Idaho Agricultural Experiment Station. Endeavor is a selection...

  12. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner

    PubMed Central

    Wendt, Toni; Holme, Inger; Dockter, Christoph; Preuß, Aileen; Thomas, William; Waugh, Robbie; Braumann, Ilka

    2016-01-01

    Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield. PMID:28005988

  13. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.

    PubMed

    Dionisio, Giuseppe; Madsen, Claus K; Holm, Preben B; Welinder, Karen G; Jørgensen, Malene; Stoger, Eva; Arcalis, Elsa; Brinch-Pedersen, Henrik

    2011-07-01

    Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains.

  14. Whole Grains and Fiber

    MedlinePlus

    ... Oct 11,2016 Any food made from wheat, rice, oats, corn, or another cereal is a grain ... wheat, oats/oatmeal, rye, barley, corn, popcorn, brown rice, wild rice, buckwheat, triticale, bulgur (cracked wheat), millet, ...

  15. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley

    PubMed Central

    Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C.; Butler, Joshua; Chao, Shiaomen; Hole, David J.; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P.; Ullrich, Steven; Hayes, Patrick M.

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet. PMID:26208213

  16. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley.

    PubMed

    Graebner, Ryan C; Wise, Mitchell; Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C; Butler, Joshua; Chao, Shiaomen; Hole, David J; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P; Ullrich, Steven; Hayes, Patrick M

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet.

  17. Development of low-loss grain-oriented silicon steel

    SciTech Connect

    Ushigami, Y.; Masui, H.; Okazaki, Y.; Suga, Y.; Takahashi, N.

    1996-06-01

    Grain-oriented silicon steel has evolved through improvement of {l_brace}110{r_brace}<001> orientation, development of thinner-gage material, and development of magnetic domain refining techniques. Core loss in the material has been dramatically reduced over the past 40 years. To further improve core loss, mobile domain walls must be increased by reducing the pinning sites, and surface closure domains must be decreased by improving {l_brace}110{r_brace}<001> orientation. When these technologies are industrialized, a core-loss reduction of 25% is expected at 1.7 T for 0.23 mm thick grain-oriented silicon steel.

  18. From field barley to malt: detection and specification of microbial activity for quality aspects.

    PubMed

    Noots, I; Delcour, J A; Michiels, C W

    1999-01-01

    Barley grain carries a numerous, variable, and complex microbial population that mainly consists of bacteria, yeasts, and filamentous fungi and that can partly be detected and quantified using plating methods and microscopic and molecular techniques. The extent and the activity of this microflora are determined by the altering state of the grain and the environmental conditions in the malt production chain. Three ecological systems can be distinguished: the growing cereal in the field, the dry barley grain under storage, and the germinating barley kernel during actual malting. Microorganisms interact with the malting process both by their presence and by their metabolic activity. In this respect, interference with the oxygen uptake by the barley grain and secretion of enzymes, hormones, toxins, and acids that may affect the plant physiological processes have been studied. As a result of the interaction, microorganisms can cause important losses and influence malt quality as measured by brewhouse performance and beer quality. Of particular concern is the occurrence of mycotoxins that may affect the safety of malt. The development of the microflora during malt production can to a certain extent be controlled by the selection of appropriate process conditions. Physical and chemical treatments to inactivate the microbial population on the barley grain are suggested. Recent developments, however, aim to control the microbial activity during malt production by promoting the growth of desirable microbial cultures, selected either as biocontrol agents inhibiting mycotoxin-producing molds or as starter cultures actively contributing to malt modification. Such techniques may offer natural opportunities to improve the quality and safety of malt.

  19. DEVELOPMENT OF A ENERGY SAVING GRAIN DRYING INVENTION

    SciTech Connect

    STEVE SHIVVERS

    2005-09-30

    The project goal is to develop the world's best grain dryer, where best is defined in terms of energy efficiency, grain quality protection, and minimal environmental impact. A technique was developed to recapture enthalpy from a continuous flow drying system and to carry that energy back into the grain kernels. Process design assures that the recaptured energy is used to provide latent heat for evaporation of moisture from the kernels. Maximum kernel temperatures are tightly controlled by the design and can be selected through the system controls. The drying system process has been simulated, the mechanical design for a prototype was completed, and the prototype has been fabricated and installed. Simulation results show energy use that is a fraction of that required by the most efficient heat assisted grain dryer systems available at this time. Unfortunately, project time has expired, funding has been exhausted, and the system has yet to be fully run in order to validate the process design. Additional development work is required to run tests with the prototype, improve the simulation model, optimize the process and mechanical design, and bring this energy saving system to market.

  20. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  1. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  2. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  3. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  4. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  5. Differential RNA Expression of Bmy1 During Late Seed Development in Wild and Cultivated Barley and the Association With ß-Amylase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four genotypes carrying different ß-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 DNA sequence, Bmy1 RNA expression, ß-amylase activity and protein, and total protein during late seed development. Wild barleys Ashqelon (Bmy1.c) and PI...

  6. Development of PCR-Based DNA markers flanking three low phytic acid mutant loci in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid (PA) is the most abundant form of phosphorus (P) in cereal grains. PA chelates mineral cations to form an indigestible salt, and is thus regarded as an antinutritional agent and a contributor to water pollution. Grain with low phytic acid (lpa) genotypes could aid in mitigating this prob...

  7. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid, Rhopalosiphum padi L., is a serious pest of barley, Hordeum vulgare L., world-wide. It is the most efficient vector of barley yellow dwarf virus, the most important viral disease of small grains in the world. Not all bird cherry-oat aphids acquire the virus while feeding on ...

  8. The Metabolic Signature of Biomass Formation in Barley.

    PubMed

    Ghaffari, Mohammad R; Shahinnia, Fahimeh; Usadel, Björn; Junker, Björn; Schreiber, Falk; Sreenivasulu, Nese; Hajirezaei, Mohammad R

    2016-09-01

    The network analysis of genome-wide transcriptome responses, metabolic signatures and enzymes' relationship to biomass formation has been studied in a diverse panel of 12 barley accessions during vegetative and reproductive stages. The primary metabolites and enzymes involved in central metabolism that determine the accumulation of shoot biomass at the vegetative stage of barley development are primarily being linked to sucrose accumulation and sucrose synthase activity. Interestingly, the metabolic and enzyme links which are strongly associated with biomass accumulation during reproductive stages are related to starch accumulation and tricarboxylic acid (TCA) cycle intermediates citrate, malate, trans-aconitate and isocitrate. Additional significant associations were also found for UDP glucose, ATP and the amino acids isoleucine, valine, glutamate and histidine during the reproductive stage. A network analysis resulted in a combined identification of metabolite and enzyme signatures indicative for grain weight accumulation that was correlated with the activity of ADP-glucose pyrophosphorylase (AGPase), a rate-limiting enzyme involved in starch biosynthesis, and with that of alanine amino transferase involved in the synthesis of storage proteins. We propose that the mechanism related to vegetative and reproductive biomass formation vs. seed biomass formation is being linked to distinct fluxes regulating sucrose, starch, sugars and amino acids as central resources. These distinct biomarkers can be used to engineer biomass production and grain weight in barley.

  9. Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley.

    PubMed

    Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad

    2016-03-01

    The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide.

  10. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response.

    PubMed

    Tripet, Brian P; Mason, Katelyn E; Eilers, Brian J; Burns, Jennifer; Powell, Paul; Fischer, Andreas M; Copié, Valérie

    2014-12-23

    The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early-as compared to late-senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D (1)H-(15)N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5'-TTCTGX-3' with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.

  11. Structural and Biochemical Analysis of the Hordeum vulgare L. HvGR-RBP1 Protein, a Glycine-Rich RNA-Binding Protein Involved in the Regulation of Barley Plant Development and Stress Response

    PubMed Central

    2015-01-01

    The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early—as compared to late—senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D 1H–15N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5′-TTCTGX-3′ with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress. PMID:25495582

  12. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions.

    PubMed

    Guglielmetti, Simone; Basilico, Roberto; Taverniti, Valentina; Arioli, Stefania; Piagnani, Claudia; Bernacchi, Andrea

    2013-11-01

    In order to preserve environmental quality, alternative strategies to chemical-intensive agriculture are strongly needed. In this study, we characterized in vitro the potential plant growth promoting (PGP) properties of a gamma-proteobacterium, named MIMR1, originally isolated from apple shoots in micropropagation. The analysis of the 16S rRNA gene sequence allowed the taxonomic identification of MIMR1 as Luteibacter rhizovicinus. The PGP properties of MIMR1 were compared to Pseudomonas chlororaphis subsp. aurantiaca DSM 19603(T), which was selected as a reference PGP bacterium. By means of in vitro experiments, we showed that L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603(T) have the ability to produce molecules able to chelate ferric ions and solubilize monocalcium phosphate. On the contrary, both strains were apparently unable to solubilize tricalcium phosphate. Furthermore, the ability to produce 3-indol acetic acid by MIMR1 was approximately three times higher than that of DSM 19603(T). By using fluorescent recombinants of strains MIMR1 and DSM 19603(T), we also demonstrated that both bacteria are able to abundantly proliferate and colonize the barley rhizosphere, preferentially localizing on root tips and in the rhizoplane. Finally, we observed a negative effect of DSM 19603(T) on barley seed germination and plant growth, whereas MIMR1, compared to the control, determined a significant increase of the weight of aerial part (+22 %), and the weight and length of roots (+53 and +32 %, respectively). The results obtained in this work make L. rhizovicinus MIMR1 a good candidate for possible use in the formulation of bio-fertilizers.

  13. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare

    PubMed Central

    Mock, Hans-Peter; Kukoeva, Tatjana V.; Börner, Andreas; Khlestkina, Elena K.

    2016-01-01

    Barley grain at maturity can have yellow, purple, blue, and black pigmentations which are suggested to play a protective role under stress conditions. The first three types of the colors are caused by phenolic compounds flavonoids; the last one is caused by phytomelanins, oxidized and polymerized phenolic compounds. Although the genetic basis of the flavonoid biosynthesis pathway in barley has been thoroughly studied, there is no data yet on its regulation in purple and black barley grains. In the current study, genetic model of Hordeum vulgare ‘Bowman’ near-isogenic lines (NILs) was used to investigate the regulation of the flavonoid biosynthesis in white, purple, and black barley grains. Microsatellite genotyping revealed donor segments in the purple- and black-grained lines on chromosomes 2H (in region of the Ant2 gene determining purple color of grains) and 1H (in region of the Blp gene determining black lemma and pericarp), respectively. The isolated dominant Ant2 allele of the purple-grained line has high level of sequence similarity with the recessive Bowman’s ant2 in coding region, whereas an insertion of 179 bp was detected in promoter region of ant2. This structural divergence between Ant2 and ant2 alleles may underlie their different expression in grain pericarp: Bowman’s Ant2 is not transcribed, whereas it was up-regulated in the purple-grained line with coordinately co-expressed flavonoid biosynthesis structural genes (Chs, Chi, F3h, F3’h, Dfr, Ans). This led to total anthocyain content increase in purple-grained line identified by ultra-performance liquid chromatography (HPLC). Collectively, these results proved the regulatory function of the Ant2 gene in anthocyanin biosynthesis in barley grain pericarp. In the black-grained line, the specific transcriptional regulation of the flavonoid biosynthesis pathway genes was not detected, suggesting that flavonoid pigments are not involved in development of black lemma and pericarp trait. PMID

  14. Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare) and their expression during seed development and in response to vernalization.

    PubMed

    Papaefthimiou, Dimitra; Kapazoglou, Aliki; Tsaftaris, Athanasios S

    2012-09-01

    A number of genes are involved in the vernalization pathway, such as VRN1, VRN2 and VRN3/FT1, whose function has been studied in barley and wheat. However, the function of the flowering and vernalization integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) has not been well studied in Triticeae, and particularly in barley. Herein, we cloned and characterized two barley SOC1-like homologs, HvSOC1-like1 and HvSOC1-like2. Primary sequence analysis of the predicted HvSOC1-like1 and HvSOC1-like2 proteins showed that they are members of the type II MADS-box protein family. Phylogenetic analysis placed the predicted proteins with other SOC1 and SOC1-like proteins from different species neighboring those from other cereal plant species. Primary and secondary structures of the predicted proteins are conserved to each other and more distant to the recently identified barley ODDSOC1 proteins. Genomic organization of HvSOC1-like1 is very similar to the Arabidopsis and Brachypodium SOC1 genes and localized in highly syntenic chromosomal regions. Regulatory cis-acting elements detected in the HvSOC1-like1 promoter include the CArG-box, implicated in the regulation of SOC1 expression in Arabidopsis. Both HvSOC1-like1 and HvSOCI-like2 are expressed in vegetative and reproductive tissues and at different stages of seed development. Both are upregulated in a particular seed developmental stage suggesting their possible implication in seed development. Furthermore, HvSOC1-like1 was induced in two winter barley cultivars after vernalization treatment pointing to its probable involvement in the vernalization process. The study of the SOC1 genes reported here opens the way for a better understanding of both the vernalization process and seed development and germination in this important cereal crop.

  15. Intelligent classification methods of grain kernels using computer vision analysis

    NASA Astrophysics Data System (ADS)

    Lee, Choon Young; Yan, Lei; Wang, Tianfeng; Lee, Sang Ryong; Park, Cheol Woo

    2011-06-01

    In this paper, a digital image analysis method was developed to classify seven kinds of individual grain kernels (common rice, glutinous rice, rough rice, brown rice, buckwheat, common barley and glutinous barley) widely planted in Korea. A total of 2800 color images of individual grain kernels were acquired as a data set. Seven color and ten morphological features were extracted and processed by linear discriminant analysis to improve the efficiency of the identification process. The output features from linear discriminant analysis were used as input to the four-layer back-propagation network to classify different grain kernel varieties. The data set was divided into three groups: 70% for training, 20% for validation, and 10% for testing the network. The classification experimental results show that the proposed method is able to classify the grain kernel varieties efficiently.

  16. Temporal development of the barley leaf metabolic response to Pi limitation.

    PubMed

    Alexova, Ralitza; Nelson, Clark J; Millar, A Harvey

    2016-12-20

    The response of plants to Pi limitation involves interplay between root uptake of Pi , adjustment of resource allocation to different plant organs, and increased metabolic Pi use efficiency. To identify potentially novel, early-responding, metabolic hallmarks of Pi limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 days of Pi stress, and the relationship of primary metabolites with leaf Pi levels and leaf biomass. The abundance of leaf Pi , Tyr, and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low Pi . Combining these data with (15) N metabolic labeling, we show that over the first 48 hours of Pi limitation metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in Pi stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external Pi is low.

  17. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  18. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle.

    PubMed

    Zhang, X; Yu, P

    2012-06-01

    The objectives of this study were to reveal protein molecular structure in relation to rumen degradation kinetics and intestinal availability in combined feeds of hulless barley with bioethanol coproduct [pure wheat dried distillers grains with solubles (DDGS)] at 5 different ratios (100:0, 75:25, 50:50, 25:75, and 0:100) in dairy cattle. The parameters assessed included 1) protein chemical profiles, 2) protein subfractions partitioned by the Cornell Net Carbohydrate and Protein System, 3) in situ protein degradation kinetics, 4) truly absorbed protein supply in the small intestine (DVE), metabolizable protein characteristics and degraded protein balance (OEB), 5) protein molecular structure spectral profiles, and 6) correlation between protein molecular structure and protein nutrient profiles and metabolic characteristics. We found that 1) with increasing inclusion of wheat DDGS in feed combinations, protein chemical compositions of crude protein (CP), neutral detergent-insoluble CP, acid detergent-insoluble CP, and nonprotein N were increased, whereas soluble CP was decreased linearly; CP subfractions A, B₃, and C were increased linearly, but CP subfractions B₁ and B₂ were decreased; truly digestible CP increased but total digestible nutrients at 1× maintenance decreased linearly; protein degradation rate was decreased without affecting potentially soluble, potentially degradable, and potentially undegradable fractions, and both rumen-degradable protein and rumen-undegradable protein were increased; by using the DVE/OEB system, the DVE and OEB values were increased from 98 to 226 g/kg of dry matter and -1 to 105 g/kg of dry matter, respectively; 2) by using the molecular spectroscopy technique, the spectral differences in protein molecular structure were detected among the feed combinations; in the original combined feeds, amide I and II peak area and ratio of amide I to II were increased linearly; although no difference existed in α-helix and

  19. Low-Cost,Portable Multispectral Radiometer For Assessment Of Onset And Severity Of Foliar Disease Of Barley

    NASA Astrophysics Data System (ADS)

    Pederson, Vernyl D.; Nutter, Forrest W.

    1983-06-01

    A low-cost, hand-held multiband radiometer was used to measure reflected sunlight from barley canopies with varying levels of spot blotch, a foliar disease of barley. Spectrora-diometric measurements indicated that reflection of light in the .75 - .9 μm range was significantly less (P = < .01) from diseased canopies than from healthy ones. Yield of grain from the susceptible cultivar 'Larker' was correlated positively with amount of reflectance in the .75 - .9 μm range (P < .01). The results suggest the instrument may be useful for the objective assessment of foliar disease and the possible development of models to estimate losses from foliar disease.

  20. Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt.

    PubMed

    Oliveira, Pedro M; Mauch, Alexander; Jacob, Fritz; Waters, Deborah M; Arendt, Elke K

    2012-05-01

    Barley infection with Fusarium species has been a long standing problem for the malting and brewing industries. In this study, we evaluate the impact of Fusarium culmorum infected raw barley on the final malt quality. Barley grains were infected for 5 days at optimum fungal growth conditions. Grains were fully characterized and compared to standard barley grains. Due to fungal infection, germinative energy of infected barley grains decreased by 45%; its water sensitivity increased dramatically, and grains accumulated 199 μg/kg of deoxynivalenol (DON). Barley grains were subsequently malted for 8 days, fully characterized and compared to standard malt grains. Fungal growth behavior was evaluated during malting using a PCR-based assay and mycotoxins were measured using HPLC. Fungal biomass increased in grains, during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Kernel ultrastructure was evaluated using scanning electron and confocal laser scanning microscopy. Infected malt grains were characterized by extreme structural proteolytic, (hemi)-cellulolytic and starch deterioration with increased friability and fragmentation. Infected grains had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt in comparison to the control. The results of this study revealed that 20% F. culmorum infected barley kernels lead to a significant reduction in malt quality as well as mycotoxin formation.

  1. Characterization of shrunken endosperm mutants in barley.

    PubMed

    Ma, Jian; Jiang, Qian-Tao; Wei, Long; Wang, Ji-Rui; Chen, Guo-Yue; Liu, Ya-Xi; Li, Wei; Wei, Yu-Ming; Liu, Chunji; Zheng, You-Liang

    2014-04-10

    Despite numerous studies on shrunken endosperm mutants caused by either maternal tissues (seg) or kernel per se (sex) in barley, the molecular mechanism for all of the eight seg mutants (seg1-seg8) and some sex mutants is yet to be uncovered. In this study, we determined the amylose content, characterized granule-binding proteins, analyzed the expression of key genes involved in starch synthesis, and examined starch granule structure of both normal (Bowman and Morex) and shrunken endosperm (seg1, seg3, seg4a, seg4b, seg5, seg6, seg7, and sex1) barley accessions. Our results showed that amylose contents of shrunken endosperm mutants ranged from 8.9% (seg4a) to 25.8% (seg1). SDS-PAGE analysis revealed that 87 kDa proteins corresponding to the starch branching enzyme II (SBEII) and starch synthase II (SSII) were not present in seg1, seg3, seg6, and seg7 mutants. Real-time quantitative PCR (RT-qPCR) analysis indicated that waxy expression levels of seg1, seg3, seg6, and seg7 mutants decreased in varying degrees to lower levels until 27 days after anthesis (DAA) after reaching the peak at 15-21 DAA, which differed from the pattern of normal barley accessions. Further characterization of waxy alleles revealed 7 non-synonymous single nucleotide polymorphisms (SNPs) in the coding sequences and 16 SNPs and 8 indels in the promoter sequences of the mutants. Results from starch granule by scanning electron microscopy (SEM) indicated that, in comparison with normal barley accessions, seg4a, seg4b, and sex1 had fewer starch granules per grain; seg3 and seg6 had less small B-type granules; some large A-type granules in seg7 had a hollow surface. These results improve our understanding about effects of seg and sex mutants on starch biosynthesis and granule structure during endosperm development and provide information for identification of key genes responsible for these shrunken endosperm mutants.

  2. FR-H3: a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance.

    PubMed

    Fisk, Scott P; Cuesta-Marcos, Alfonso; Cistué, Luis; Russell, Joanne; Smith, Kevin P; Baenziger, Stephen; Bedo, Zoltán; Corey, Ann; Filichkin, Tanya; Karsai, Ildikó; Waugh, Robbie; Hayes, Patrick M

    2013-02-01

    Fall-sown barley will be increasingly important in the era of climate change due to higher yield potential and efficient use of water resources. Resistance/tolerance to abiotic stresses will be critical, and foremost among the abiotic stresses is low temperature. Simultaneous gene discovery and breeding will accelerate the development of agronomically relevant fall-sown barley germplasm with resistance to low temperature. We developed two doubled haploid mapping populations using two lines from the University of Nebraska (NE) and one line from Oregon State University (OR): NB3437f/OR71 (facultative × facultative) and NB713/OR71 (winter × facultative). Both were genotyped with a custom 384 oligonucleotide pool assay (OPA). QTL analyses were performed for low temperature tolerance (LTT) and vernalization sensitivity (VS). The role of VRN-H2 in VS was confirmed and a novel alternative winter allele at VRN-H3 was discovered in the Nebraska germplasm. FR-H2 was identified as a probable determinant of LTT and a new QTL, FR-H3, was discovered on chromosome 1H that accounted for up to 48 % of the phenotypic variation in field survival at St. Paul, MN, USA. The discovery of FR-H3 is a significant advancement in barley LTT genetics and will assist in developing the next generation of fall-sown varieties.

  3. The development and evaluation of single cell suspension from wheat and barley as a model system; a first step towards functional genomics application

    PubMed Central

    2010-01-01

    Background The overall research objective was to develop single cell plant cultures as a model system to facilitate functional genomics of monocots, in particular wheat and barley. The essential first step towards achieving the stated objective was the development of a robust, viable single cell suspension culture from both species. Results We established growth conditions to allow routine culturing of somatic cells in 24 well microtiter plate format. Evaluation of the wheat and barley cell suspension as model cell system is a multi step process. As an initial step in the evaluation procedure we chose to study the impact of selected abiotic stress elicitors at the physiological, biochemical and molecular level. We report the results of osmotic stress imposed by NaCl and PEG. As proline is an important osmoprotectant of the cereal cells, colorimetric assay for proline detection was developed for small volumes (200 μl). We performed RT-PCR experiments to study the change in the expression of the genes encoding Δ1-pyrroline-5-carboxylate synthetase (P5CS) and Δ1-pyrroline-5-carboxylate reductase (PC5R) in response to abiotic stress. Conclusions We found differences between the wheat and barley suspension cultures, barley being more tolerant to the applied osmotic stresses. We suggested a model to explain the obtained differences in stress tolerance between the two species. The suspension cell cultures have proven useful for determining changes in proline concentration and expression level of genes (P5CS, P5CR) under various treatments and we suggest that the cells can be used as a model host system to study gene expression and regulation in monocots. PMID:21054876

  4. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication[OPEN

    PubMed Central

    Hua, Lei; Zhao, Xinhui; Zhang, Weifeng; Liu, Fengxia; Fu, Yongcai; Cai, Hongwei; Sun, Xianyou; Gu, Ping; Xie, Daoxin

    2016-01-01

    Cultivated rice (Oryza sativa) was domesticated from wild rice (Oryza rufipogon), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains, and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication. PMID:27634315

  5. Analysis of volatile compounds from various types of barley cultivars.

    PubMed

    Cramer, Anne-Chrystelle J; Mattinson, D Scott; Fellman, John K; Baik, Byung-Kee

    2005-09-21

    We identified volatile compounds of barley flour and determined the variation in volatile compound profiles among different types and varieties of barley. Volatile compounds of 12 barley and two wheat cultivars were analyzed using solid phase microextraction (SPME) and gas chromatography. Twenty-six volatiles comprising aldehydes, ketones, alcohols, and a furan were identified in barley. 1-Octen-3-ol, 3-methylbutanal, 2-methylbutanal, hexanal, 2-hexenal, 2-heptenal, 2-nonenal, and decanal were identified as key odorants in barley as their concentration exceeded their odor detection threshold in water. Hexanal (46-1269 microg/L) and 1-pentanol (798-1811 microg/L) were the major volatile compounds in barley cultivars. In wheat, 1-pentanol (723-748 microg/L) was a major volatile. Hulled barley had higher total volatile, aldehyde, ketone, alcohol, and furan contents than hulless barley, highlighting the importance of the husk in barley grain aroma. The proanthocyanidin-free varieties generally showed higher total volatile and aldehyde contents than wild-type varieties, potentially due to decreased antioxidant activity by the absence of proanthocyanidins.

  6. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.).

    PubMed

    Hua, Wei; Zhang, Xiao-Qi; Zhu, Jinghuan; Shang, Yi; Wang, Junmei; Jia, Qiaojun; Zhang, Qisen; Yang, Jianming; Li, Chengdao

    2016-01-01

    Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence.

  7. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Hua, Wei; Zhang, Xiao-Qi; Zhu, Jinghuan; Shang, Yi; Wang, Junmei; Jia, Qiaojun; Zhang, Qisen; Yang, Jianming; Li, Chengdao

    2016-01-01

    Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence. PMID:27028408

  8. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity.

  9. AgRISTARS: Foreign commodity production forecasting. The 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1981-01-01

    The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.

  10. The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation.

    PubMed

    Kosová, Klára; Tom Prásil, Ilja; Prásilová, Pavla; Vítámvás, Pavel; Chrpová, Jana

    2010-03-15

    The dynamics of a long-term cold acclimation (CA) was studied in spring barley cultivar Atlas 68, winter barley cultivar Igri and a set of doubled haploid (DH) lines derived from an Atlas 68xIgri cross. The aim was to evaluate the effect of plant development on the ability to induce frost tolerance (FT) and to accumulate dehydrin 5 (DHN5) during CA. The plant developmental stage was evaluated by phenological development of the shoot apex and by determination of days to heading after a certain period of CA. FT was determined by direct frost tests. Plant winter survival was also determined. DHN5 was evaluated by densitometric analysis of protein gel blots. Cold led to the induction of increased FT and to the accumulation of DHN5 in both spring and winter lines. However, with the progression of CA, differences between the growth habits occurred as the winter lines were able to maintain increased FT and DHN5 levels for a significantly longer period of time than the spring lines. After vegetative/reproductive transition, a significant decrease in DHN5 accumulation was found in all lines; however, a discrepancy between the acquired FT level and DHN5 accumulation in vernalized winter barley plants was found. A correlation between DHN5 accumulation and plant winter survival was found when the studied lines were differentiated according to their developmental stage and DHN5 level. Possible explanations for these phenomena are provided.

  11. Development of a Multi-Species Biotic Ligand Model Predicting the Toxicity of Trivalent Chromium to Barley Root Elongation in Solution Culture

    PubMed Central

    Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing

    2014-01-01

    Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics. PMID:25119269

  12. Appearance and development of P700 oxidation and photosystem I activity in etio-chloroplasts prepared from greening barley leaves.

    PubMed

    Egnéus, H; Selldén, G; Andersson, L

    1976-01-01

    The development of photosystem I activity of plastids isolated from greening barley (Hordeum distichum, L.) leaves was studied. The electron transport activity in photosystem I was measured as anthraquinone-mediated oxygen uptake and as light induced absorbance changes of the reaction centre molecule P700. P700 oxidation was observed after one hour of greening though an electron transport leading to oxygen uptake was observed after 30 minutes. Phenazine methosulphate had no effect on the oxidation of P700 until after four hours of greening. The ratio chlorophyll/P700 decreased from about 2300/l at one hour to 640/l at sixteen hours of greening. The light intensity dependence of the electron transport of photosystem I showed that the photosynthetic units gradually increased in size as the greening proceeded. The increase of the rate of the oxygen uptake, calculated on plastid basis, decreased after eight hours while the P700 content, calculated on plastid basis, increased continuously between three and sixteen hours. Chromatographic separations and fluorimetric analyses of the chlorophyll pigments showed that the reaction centre molecule could not be protochlorophyllide or chlorophyllide.

  13. Factors determining accumulation of mycotoxin producers in cereal grain during harvesting.

    PubMed

    Lugauskas, Albinas; Raila, Algirdas; Zvicevicius, Egidijus; Railiene, Marija; Novosinskas, Henrikas

    2007-01-01

    During the meteorologically contrasting period of 2003-2005, the contamination of winter wheat, malt barley and fodder barley grain with micromycetes during grain harvesting and preparation for storage was investigated. Micromycetes of over 70 species ascribed to 16 genera were isolated and identified, the density of their populations in grain was determined. Micromycetes with a population density of >50% were attributed to dominant species. Short biological characteristic, ecological peculiarities of the dominating micromycetes are provided; factors determining intensity of their development and abilities to synthesise and excrete toxic metabolites are indicated. The importance of grain drying for stabilisation of its contamination with micromycete propagules is highlighted. It is noted that in grain dried in shaft dryer using air at 90 degrees C the number of cfu (colony forming units) was reduced from 2.2 to 8.2 times. When active ventilation is applied, conditions favourable for the development of micromycetes remain longest in the upper layers of the mound. The airflow passing through the layer of damp grain inhibits the development of micromycetes, but an increase of comparative air flow for more than 500 m3x(txh)(-1) did not reduce the abundance of micromycete cfu. After drying Alternaria alternata, Fusarium avenaceum, F. culmorum, Penicillum verrucosum dominated in wheat grain; Aspergillus flavus, Bipolaris sorokiniana, Fusarium chlamydosporum, F. culmorum, F. tricinctum in malts barley grain; Fusarium avenaceum, F. culmorum, F. tricinctum, Alternaria alternata in fodder barley grain. It has been determined that all micromycetes recorded on grain after drying are potential producers of toxic metabolites, i.e. are hazardous to human health.

  14. Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers.

    PubMed

    Ye, Lingzhen; Dai, Fei; Qiu, Long; Sun, Dongfa; Zhang, Guoping

    2011-07-13

    The formation of haze is a serious quality problem in beer production. It has been shown that the use of silica elute (SE)-ve malt (absence of molecular weight (MW) ∼14000 Da) for brewing can improve haze stability in the resultant beer, and the protein was identified as a barley trypsin inhibitor of the chloroform/methanol type (BTI-CMe). The objectives of this study were to determine (1) the allelic diversity of the gene controlling BTI-CMe in cultivated and Tibetan wild barley and (2) allele-specific (AS) markers for screening SE protein type. A survey of 172 Tibetan annual wild barley accessions and 71 cultivated barley genotypes was conducted, and 104 wild accessions and 35 cultivated genotypes were identified as SE+ve and 68 wild accessions and 36 cultivated genotypes as SE-ve. The allelic diversity of the gene controlling BTI-CMe was investigated by cloning, alignment, and association analysis. It was found that there were significant differences between the SE+ve and SE-ve types in single-nucleotide polymorphisms at 234 (SNP(234)), SNP(313), and SNP(385.) Furthermore, two sets of AS markers were developed to screen SE protein type based on SNP(313). AS-PCR had results very similar to those obtained by immunoblot method. Mapping analysis showed that the gene controlling the MW∼14 kDa band was located on the short arm of chromosome 3H, at the position of marker BPB-0527 (33.302 cM) in the Franklin/Yerong DH population.

  15. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition

    PubMed Central

    Beloshapka, Alison N.; Buff, Preston R.; Fahey, George C.; Swanson, Kelly S.

    2016-01-01

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets. PMID:28231117

  16. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition.

    PubMed

    Beloshapka, Alison N; Buff, Preston R; Fahey, George C; Swanson, Kelly S

    2016-03-25

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets.

  17. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling.

    PubMed

    Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans

    2015-03-01

    During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits.

  18. Barley stripe rust resistance QTL: Development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) linked with seedling and field resistance to barley stripe rust were mapped in 156 recombinant inbred lines (RILs) derived from a Lenetah by Grannelose Zweizeilige (GZ) cross. A major QTL for seedling resistance on chromosome 4H (LOD = 15.94 at 97.19 cM) was identified,...

  19. Comparison of the potential rate of population increase of brown and green color morphs of Sitobion avenae (Homoptera: Aphididae) on barley infected and uninfected with Barley yellow dwarf virus.

    PubMed

    Hu, Zu-Qing; Zhao, Hui-Yan; Thieme, Thomas

    2014-06-01

    Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 ± 1°C, 65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infected with virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performed significantly better when fed on BYDV-infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore, when fed on BYDV-infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There were no significant differences in this respect between the two color morphs of S. avenae when they were reared on virus-free plants that either had been or not been previously infested with aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs of S. avenae tested, particularly the green color morph.

  20. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley

    PubMed Central

    Deshmukh, Sachin; Hückelhoven, Ralph; Schäfer, Patrick; Imani, Jafargholi; Sharma, Monica; Weiss, Michael; Waller, Frank; Kogel, Karl-Heinz

    2006-01-01

    Fungi of the recently defined order Sebacinales (Basidiomycota) are involved in a wide spectrum of mutualistic symbioses (including mycorrhizae) with various plants, thereby exhibiting a unique potential for biocontrol strategies. The axenically cultivable root endophyte Piriformospora indica is a model organism of this fungal order. It is able to increase biomass and grain yield of crop plants. In barley, the endophyte induces local and systemic resistance to fungal diseases and to abiotic stress. To elucidate the lifestyle of P. indica, we analyzed its symbiotic interaction and endophytic development in barley roots. We found that fungal colonization increases with root tissue maturation. The root tip meristem showed no colonization, and the elongation zone showed mainly intercellular colonization. In contrast, the differentiation zone was heavily infested by inter- and intracellular hyphae and intracellular chlamydospores. The majority of hyphae were present in dead rhizodermal and cortical cells that became completely filled with chlamydospores. In some cases, hyphae penetrated cells and built a meshwork around plasmolyzed protoplasts, suggesting that the fungus either actively kills cells or senses cells undergoing endogenous programmed cell death. Seven days after inoculation, expression of barley BAX inhibitor-1 (HvBI-1), a gene capable of inhibiting plant cell death, was attenuated. Consistently, fungal proliferation was strongly inhibited in transgenic barley overexpressing GFP-tagged HvBI-1, which shows that P. indica requires host cell death for proliferation in differentiated barley roots. We suggest that the endophyte interferes with the host cell death program to form a mutualistic interaction with plants. PMID:17116870

  1. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

    PubMed Central

    Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.

    2015-01-01

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768

  2. Process development for producing fine-grain casting in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Malik, R. K.

    1975-01-01

    Assessment of grain growth kinetics at temperatures near the melting point and investigation into the use of potential nucleating agents in combination with the naturally occurring BeO led to the definition of critical low-g experiments which would help to determine whether one or both of these possibilities are valid and whether space processing would be able to yield fine grain ingot beryllium.

  3. Development and application of coarse-grained models for lipids

    NASA Astrophysics Data System (ADS)

    Cui, Qiang

    2013-03-01

    I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang

  4. The Discovery of Resistant Sources of Spring Barley, Hordeum vulgare ssp. spontaneum, and Unique Greenbug Biotypes.

    PubMed

    Armstrong, J Scott; Mornhinweg, Dolores W; Payton, Mark E; Puterka, Gary J

    2016-02-01

    The genetic sources for host-plant resistance to the greenbug (Schizaphis graminum Rondani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for the complex of greenbug biotypes. We evaluated four new barley lines from the Wild Barley Diversity Collection (WBDC) that previously showed potential for greenbug resistance. Three of those entries, WBDC 53, WBDC 117, WBDC 336, exhibited very dominant sources of resistance to older known biotypes B, C, E, F, H, I, and TX1, which also add to the host-plant differentials used to separate these greenbug biotypes. We also re-evaluated the earlier known set of greenbug biotypes that have been in culture for several years against the known host-plant differentials, and included seven newer greenbug isolates collected from Wyoming to the full complement of small grain differentials. This resulted in the discovery of five new greenbug biotypes, WY10 MC, WY81, WY10 B, WY12 MC, and WY86. Wyoming isolates WY4 A and WY4 B were identical in their phenotypic profile, and should be combined as a single unique greenbug biotype. These barley trials resulted in finding new sources of host-plant resistance, although more research needs to be conducted on what type of resistance was found, and how it can be used. We also document that the Wheatland, Wyoming area serves as a very conducive environment for the development of new greenbug biotypes.

  5. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta

    PubMed Central

    Chapagain, Tejendra; Good, Allen

    2015-01-01

    Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management. The objective of this study was to determine wheat (Triticum spp. L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) yields and production gaps in Alberta. We used 10 years of data (2005–2014) to understand yield variability and input efficiency at a farmers’ specified level of management, and the yield potential under optimal management to suggest appropriate pathways for closing yield gaps. Significant management gaps were observed between attainable and actual yields of rainfed wheat (24%), barley (25%), and canola (30%). In addition, genetic gaps (i.e., gaps due to genetic selection) in wheat, barley, and canola were 18, 12, and 5%, respectively. Genetic selection with optimal crop management could increase yields of wheat, barley, and canola significantly, with estimated yield gains of 3.42, 1.92, and 1.65 million tons, respectively, each year under rainfed conditions in Alberta. This paper identifies yield gaps and offers suggestions to improve efficiency in crop production. PMID:26635824

  6. Registration of 'Rasmusson' Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rasmusson’ (Reg. No. CV-345, PI 658495) is a spring, six-rowed, malting barley (Hordeum vulgare L.) released by the Minnesota Agricultural Experiment Station in January 2008. It was named after Donald Rasmusson, who worked as a barley breeder at the University of Minnesota from 1958 to 2000. Rasmuss...

  7. Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations.

    PubMed

    Tanner, Gregory J; Blundell, Malcolm J; Colgrave, Michelle L; Howitt, Crispin A

    2016-04-01

    Coeliac disease is a well-defined condition that is estimated to affect approximately 1% of the population worldwide. Noncoeliac gluten sensitivity is a condition that is less well defined, but is estimated to affect up to 10% of the population, and is often self-diagnosed. At present, the only remedy for both conditions is a lifelong gluten-free diet. A gluten-free diet is often expensive, high in fat and low in fibre, which in themselves can lead to adverse health outcomes. Thus, there is an opportunity to use novel plant breeding strategies to develop alternative gluten-free grains. In this work, we describe the breeding and characterization of a novel ultra-low gluten (ULG) barley variety in which the hordein (gluten) content was reduced to below 5 ppm. This was achieved using traditional breeding strategies to combine three recessive alleles, which act independently of each other to lower the hordein content in the parental varieties. The grain of the initial variety was shrunken compared to wild-type barleys. We implemented a breeding strategy to improve the grain size to near wild-type levels and demonstrated that the grains can be malted and brewed successfully. The ULG barley has the potential to provide novel healthy foods and beverages for those who require a gluten-free diet.

  8. Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines.

    PubMed

    Colgrave, Michelle L; Byrne, Keren; Blundell, Malcolm; Heidelberger, Sibylle; Lane, Catherine S; Tanner, Gregory J; Howitt, Crispin A

    2016-09-20

    Celiac disease (CD) is a disease of the small intestine that occurs in genetically susceptible subjects triggered by the ingestion of cereal gluten proteins for which the only treatment is strict adherence to a life-long gluten-free diet. Barley contains four gluten protein families, and the existence of barley genotypes that do not accumulate the B-, C-, and D-hordeins paved the way for the development of an ultralow gluten phenotype. Using conventional breeding strategies, three null mutations behaving as recessive alleles were combined to create a hordein triple-null barley variety. Proteomics has become an invaluable tool for characterization and quantification of the protein complement of cereal grains. In this study multiple reaction monitoring (MRM) mass spectrometry, viewed as the gold standard for peptide quantification, was compared to the data-independent acquisition strategy known as SWATH-MS (sequential window acquisition of all theoretical mass spectra). SWATH-MS was comparable (p < 0.001) to MRM-MS for 32/33 peptides assessed across the four families of hordeins (gluten) in eight barley lines. The results of SWATH-MS analysis further confirmed the absence of the B-, C-, and D-hordeins in the triple-null barley line and showed significantly reduced levels ranging from <1% to 16% relative to wild-type (WT) cv Sloop for the minor γ-hordein class. SWATH-MS represents a valuable tool for quantitative proteomics based on its ability to generate reproducible data comparable with MRM-MS, but has the added benefits of allowing reinterrogation of data to improve analytical performance, ask new questions, and in this case perform quantification of trypsin-resistant proteins (C-hordeins) through analysis of their semi- or nontryptic fragments.

  9. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    PubMed Central

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara; O’Shea, Charlotte; Lindemose, Søren; Møllegaard, Niels Erik; Holme, Inger B.; Hebelstrup, Kim; Skriver, Karen; Gregersen, Per L.

    2016-01-01

    The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005 is associated with developmental senescence. It was significantly up-regulated following ABA treatment, supported by ABA-responsive elements in its promoter, but it was not up-regulated during dark-induced senescence. The C-termini of proteins closely related to HvNAC005 showed overall high divergence but also contained conserved short motifs. A serine- and leucine-containing central motif was essential for transcriptional activity of the HvNAC005 C-terminus in yeast. Over-expression of HvNAC005 in barley resulted in a strong phenotype with delayed development combined with precocious senescence. The over-expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein–DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence and so is an obvious target for the fine-tuning of gene expression in future attempts to improve nutrient remobilization related to the senescence process in barley. PMID:27436280

  10. Barley and Oat beta-Glucan content measured by Calcofluor fluorescence in a microplate assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-glucans, linear glucan polymers of mixed linkage, are important constituents of cereal cell walls. They have important health benefits in the human diet, but also can negatively affect the use of barley grain as an animal feed. High beta-glucans in barley malt can also cause problems in brewi...

  11. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  12. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  13. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  14. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  15. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  16. Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.).

    PubMed

    Goodall, Andrew J; Kumar, Pankaj; Tobin, Alyson K

    2013-04-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise). Quantitation of gene expression, localization and response to N supply revealed that each gene plays a non-redundant role in different tissues and during development. Localization of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that it is important in N transport and remobilization. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localized to the leaf mesophyll cells, in the cortex and pericycle of roots, and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in leaves with an increasing supply of N, suggesting its role in the primary assimilation of N. HvGS1_3 was specifically and predominantly localized in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH(+)4, suggesting that it has a primary role in grain N assimilation and also in the protection against ammonium toxicity in roots. The expression of HvGS1 genes is directly correlated with protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley.

  17. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain

    PubMed Central

    Bonnot, Titouan; Bancel, Emmanuelle; Chambon, Christophe; Boudet, Julie; Branlard, Gérard; Martre, Pierre

    2015-01-01

    Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999. PMID:26579155

  18. Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations

    SciTech Connect

    Hodgdon, A.L.; Marcus, A.H.; Arenaz, P.; Rosichan, J.L.; Bogyo, T.P.; Nilan, R.A.

    1981-01-01

    Clustering of mutant pollen grains in a population of normal pollen due to premeiotic mutational events complicates translating mutation frequencies into rates. Embryo ontogeny in barley will be described and used to illustrate the formation of such mutant clusters. The nature of the statistics for mutation frequency will be described from a study of the reversion frequencies of various waxy mutants in barley. Computer analysis by a ''jackknife'' method of the reversion of a waxy mutant treated with the mutagen sodium azide showed a significantly higher reversion frequency than untreated material. Problems of the computer analysis suggest a better experimental design for pollen mutation experiments. Preliminary work on computer modeling for pollen development and mutation will be described.

  19. Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations

    SciTech Connect

    Hodgdon, A.L.; Marcus, A.H.; Arenaz, P.; Rosichan, J.L.; Bogyo, T.P.; Nilan, R.A.

    1980-05-29

    Clustering of mutant pollen grains in a population of normal pollen due to premeiotic mutational events complicates translating mutation frequencies into rates. Embryo ontogeny in barley will be described and used to illustrate the formation of such mutant clusters. The nature of the statistics for mutation frequency will be described from a study of the reversion frequencies of various waxy mutants in barley. Computer analysis by a jackknife method of the reversion frequencies of a waxy mutant treated with the mutagen sodium azide showed a significantly higher reversion frequency than untreated material. Problems of the computer analysis suggest a better experimental design for pollen mutation experiments. Preliminary work on computer modeling for pollen development and mutation will be described.

  20. Development and validation of a micromethod for fast quantification of 5-n-alkylresorcinols in grains and whole grain products.

    PubMed

    Sampietro, D A; Jimenez, C M; Belizán, M M; Vattuone, M A; Catalán, C A N

    2013-12-15

    A 96-well plate micromethod was developed to measure 5-n-alkylresorcinols (5nARs) in cereal grains and food derived products. The 5nARs reacted in alkaline alcoholic medium with Fast Blue RR ½ZnCl2 salt to yield coloured azo-derivatives. The highest sensitivity for 5nARs was obtained at 490 nm with 0.025% ethanolic Fast Blue RR and 5% K2CO3. This reaction showed good linearity for olivetol (0.05-0.20 μg). Contents of 5nARs determined in cereal grains and derived products by the new Fast Blue RR micromethod were highly correlated (R(2)=0.9944) with those obtained by a Fast Blue B method currently used. A Bland-Altman analysis indicated a small positive bias near to zero (R(2)=0.0401), suggesting that the methods can be interchangeably used. The new reaction is completed in 15 min and the coloured products are read within the 15 min after completion. The micromethod offers a fast analysis of 5nARs in cereal grains and derived products with low consumption of reagents and solvents.

  1. Small Farm Grain Storage. Appropriate Technologies for Development. Manual M-2.

    ERIC Educational Resources Information Center

    Lindblad, Carl; Druben, Laurel

    Designed as a working and teaching tool for development workers in their field activities, this manual combines in one volume the basic principles of grain storage and the practical solutions currently being used and tested around the world to combat grain storage problems. Each of six sections begins with informative material on the topic to be…

  2. Brachypodium seed - a potential model for studying grain development of cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of small grains are important resources for human and animal food. The understanding of seed biology is essential for crop improvement by increasing grain yields and nutritional value. In the last decade, Brachypodium distachyon has been developed as a model plant for temperate cereal grasses...

  3. The 1980 US/Canada wheat and barley exploratory experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    The results from the U.S./Canada Wheat and Barley Exploratory Experiment which was completed during FY 1980 are presented. The results indicate that the new crop identification procedures performed well for spring small grains and that they are conductive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology. However, the crop calendars will require additional development and refinements prior to integration into automated area estimation technology. The evaluation showed the integrated technology to be capable of producing accurate and consistent spring small grains proportion estimates. However, barley proportion estimation technology was not satisfactorily evaluated. The low-density segments examined were judged not to give indicative or unequivocal results. It is concluded that, generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analyses to a variety of agricultural and meteorological conditions representative of the global environment. It is further concluded that a strong potential exists for establishing a highly efficient technology or spring small grains.

  4. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles.

    PubMed

    Rico, Cyren M; Barrios, Ana C; Tan, Wenjuan; Rubenecia, Rosnah; Lee, Sang Chul; Varela-Ramirez, Armando; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-07-01

    A soil microcosm study was performed to examine the impacts of cerium oxide nanoparticles (nCeO2) on the physiology, productivity, and macromolecular composition of barley (Hordeum vulgare L.). The plants were cultivated in soil treated with nCeO2 at 0, 125, 250, and 500 mg kg(-1) (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). Accumulation of Ce in leaves/grains and its effects on plant stress and nutrient loading were analyzed. The data revealed that nCeO2-H promoted plant development resulting in 331 % increase in shoot biomass compared with the control. nCeO2 treatment modified the stress levels in leaves without apparent signs of toxicity. However, plants exposed to nCeO2-H treatment did not form grains. Compared with control, nCeO2-M enhanced grain Ce accumulation by as much as 294 % which was accompanied by remarkable increases in P, K, Ca, Mg, S, Fe, Zn, Cu, and Al. Likewise, nCeO2-M enhanced the methionine, aspartic acid, threonine, tyrosine, arginine, and linolenic acid contents in the grains by up to 617, 31, 58, 141, 378, and 2.47 % respectively, compared with the rest of the treatments. The findings illustrate the beneficial and harmful effects of nanoceria in barley.

  5. Expression Analysis of Ethylene Biosynthesis and Receptor Genes From Barley Embryo and Tissue Culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene affects regeneration of green plants from barley tissue culture. With the availability of the HarvEST barley database and barley GeneChip, genome-wide expression studies have focused on differential development between Morex and Golden Promise at various stages of plant growth. The data f...

  6. Radioimmunoassay of nivalenol in barley.

    PubMed Central

    Teshima, R; Hirai, K; Sato, M; Ikebuchi, H; Ichinoe, M; Terao, T

    1990-01-01

    Antibodies against nivalenol (NIV) tetraacetate (Tetra-Ac-NIV) were prepared by immunizing rabbits with a hemisuccinate derivative of 8-hydroxy-3,4,7,15-tetraacetyl-12, 13-epoxytrichothece-9-en conjugated to bovine serum albumin. A radioimmunoassay system with one of these sera was developed to measure NIV contamination in barley. The detection limit for Tetra-Ac-NIV was about 0.5 ng/ml. The relative cross-reactivities of the antiserum with Tetra-Ac-NIV, acetyl T-2 toxin, and scirpenol triacetate, which were determined by the competitive radioimmunoassay, were 1, 0.78, and 0.56, respectively. Other derivatives showed no cross-reactivity. For the determination of NIV in a barley sample, NIV was extracted from the sample with acetonitrile-water (7:3), defatted with hexane, and then acetylated with acetic anhydride to form Tetra-Ac-NIV. The reaction mixture was loaded onto a C18 cartridge to remove excess reagents and impurities. Tetra-Ac-NIV was eluted from the cartridge with 50% methanol in water, and the eluate was subjected to radioimmunoassay. Analysis of six naturally contaminated barley samples for NIV revealed that radioimmunoassay results agreed well with gas chromatographic analyses. PMID:2317045

  7. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    PubMed

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia

  8. Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley.

    PubMed

    Alqudah, Ahmad M; Sharma, Rajiv; Pasam, Raj K; Graner, Andreas; Kilian, Benjamin; Schnurbusch, Thorsten

    2014-01-01

    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley.

  9. Determination of ergosterol levels in barley and malt varieties in the Czech Republic via HPLC.

    PubMed

    Jedlicková, Lenka; Gadas, David; Havlová, Pavla; Havel, Josef

    2008-06-11

    Ergosterol is considered to be a suitable indicator of mold infestation in barley and malt. In this study ergosterol levels in different varieties of barley and malt produced in the Czech Republic were determined. A modified high-performance liquid chromatography (HPLC) method was statistically processed, validated (Effivalidation program), and applied to 124 samples of barley and malt. Ergosterol was isolated by extraction and saponification, and the quantification was performed using HPLC with diode array detection. The content of ergosterol ranged between the limit of detection (LOD) and 36.3 mg/kg in barley and between the LOD and 131.1 mg/kg in malt. Ergosterol is presumably connected with metabolites generated when barley grain is attacked by pathogens, and such barley often shows a high overfoaming (gushing) value. However, it was found that the content of ergosterol does not correlate with the degree of beer gushing.

  10. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat.

    PubMed

    Carvalho, Pedro; Azam-Ali, Sayed; Foulkes, M John

    2014-05-01

    In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought. One spring barley (Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars (Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil-column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley (47%) than durum wheat (30%, Hourani). Root-to-shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response to drought but decreased for barley. The critical root length density (RLD) and root volume density (RVD) for 90% available water capture for wheat were similar to (cv. Hourani) or lower than (cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.

  11. Overexpression of Cytokinin Dehydrogenase Genes in Barley (Hordeum vulgare cv. Golden Promise) Fundamentally Affects Morphology and Fertility

    PubMed Central

    Mrízová, Katarína; Jiskrová, Eva; Vyroubalová, Šárka; Novák, Ondřej; Ohnoutková, Ludmila; Pospíšilová, Hana; Frébort, Ivo; Harwood, Wendy A.; Galuszka, Petr

    2013-01-01

    Barley is one of the most important cereal crops grown worldwide. It has numerous applications, but its utility could potentially be extended by genetically manipulating its hormonal balances. To explore some of this potential we identified gene families of cytokinin dehydrogenases (CKX) and isopentenyl transferases, enzymes that respectively irreversibly degrade and synthesize cytokinin (CK) plant hormones, in the raw sequenced barley genome. We then examined their spatial and temporal expression patterns by immunostaining and qPCR. Two CKX-specific antibodies, anti-HvCKX1 and anti-HvCKX9, predominantly detect proteins in the aleurone layer of maturing grains and leaf vasculature, respectively. In addition, two selected CKX genes were used for stable, Agrobacterium tumefaciens-mediated transformation of the barley cultivar Golden Promise. The results show that constitutive overexpression of CKX causes morphological changes in barley plants and prevents their transition to flowering. In all independent transgenic lines roots proliferated more rapidly and root-to-shoot ratios were higher than in wild-type plants. Only one transgenic line, overexpressing CKX under the control of a promoter from a phosphate transporter gene, which is expressed more strongly in root tissue than in aerial parts, yielded progeny. Analysis of several T1-generation plants indicates that plants tend to compensate for effects of the transgene and restore CK homeostasis later during development. Depleted CK levels during early phases of development are restored by down-regulation of endogenous CKX genes and reinforced de novo biosynthesis of CKs. PMID:24260147

  12. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility.

    PubMed

    Mrízová, Katarína; Jiskrová, Eva; Vyroubalová, Šárka; Novák, Ondřej; Ohnoutková, Ludmila; Pospíšilová, Hana; Frébort, Ivo; Harwood, Wendy A; Galuszka, Petr

    2013-01-01

    Barley is one of the most important cereal crops grown worldwide. It has numerous applications, but its utility could potentially be extended by genetically manipulating its hormonal balances. To explore some of this potential we identified gene families of cytokinin dehydrogenases (CKX) and isopentenyl transferases, enzymes that respectively irreversibly degrade and synthesize cytokinin (CK) plant hormones, in the raw sequenced barley genome. We then examined their spatial and temporal expression patterns by immunostaining and qPCR. Two CKX-specific antibodies, anti-HvCKX1 and anti-HvCKX9, predominantly detect proteins in the aleurone layer of maturing grains and leaf vasculature, respectively. In addition, two selected CKX genes were used for stable, Agrobacterium tumefaciens-mediated transformation of the barley cultivar Golden Promise. The results show that constitutive overexpression of CKX causes morphological changes in barley plants and prevents their transition to flowering. In all independent transgenic lines roots proliferated more rapidly and root-to-shoot ratios were higher than in wild-type plants. Only one transgenic line, overexpressing CKX under the control of a promoter from a phosphate transporter gene, which is expressed more strongly in root tissue than in aerial parts, yielded progeny. Analysis of several T1-generation plants indicates that plants tend to compensate for effects of the transgene and restore CK homeostasis later during development. Depleted CK levels during early phases of development are restored by down-regulation of endogenous CKX genes and reinforced de novo biosynthesis of CKs.

  13. Evaluation of the US/Canada wheat and barley exploratory experiment shakedown test analyst labeling results

    NASA Technical Reports Server (NTRS)

    Carnes, J. G. (Principal Investigator)

    1981-01-01

    Labeling accuracies using the reformatted labeling procedure are evaluated. The procedure is described and the decision logic applied to six LANDSAT segments from the 1978 crop year. Small grains and nonsmall grains are labeled, and small grains differentiated from barley. An error analysis was performed. Recommended changes to the reformatted procedure are presented.

  14. Differential RNA Expression of ßm1 during Late Seed Development in Cultivated and Wild Barleys Carrying Different ßmy1 Intron III Alleles and the Association with Beta-Amylase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four genotypes carrying different beta-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 mRNA accumulation, beta-amylase activity and protein, and total protein during late seed development. Wild barleys (Hordeum vulgare ssp. spontaneum) ...

  15. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  16. Genetic Mapping Reveals Broader Role of Vrn-H3 Gene in Root and Shoot Development beyond Heading in Barley

    PubMed Central

    Bungartz, Annemarie; Muzammil, Shumaila; P. Afsharyan, Nazanin; Léon, Jens; Naz, Ali Ahmad

    2016-01-01

    The aim of the present study was to dissect the genetic inheritance and interplay of root, shoot and heading attributes for a better understanding of these traits in crop production. For this, we utilized quantitative trait loci (QTL) and candidate gene analysis approach using a second filial (F2) population originated from a cross between spring cultivar Cheri and wild barley accession ICB181160. The F2 population comprising 182 plants was phenotyped for root dry weight (RDW), root volume (RV), root length (RL) and shoot dry weight (SDW), tiller number per plant (TIL) and days to heading (HEA). In parallel, this population was genotyped using polymerase chain reaction (PCR) based cleaved amplified polymorphic sequence (CAPS) markers distributed across the whole genome. Marker by trait analysis revealed 16 QTL for root and shoot traits localized on chromosomes 1H, 3H, 4H, 5H and 7H. The strongest and a common QTL effect for root, shoot and heading traits was identified on chromosome 7H at the putative region of Vrn-H3 gene. Later, we have established PCR based gene specific marker HvVrnH3 revealing polymorphism for early heading Vrn-H3 allele in Cheri and late heading allele vrn-H3 in ICB181160. Genotyping of these alleles revealed a clear co-segregation of early heading Vrn-H3 allele with lower root and shoot attributes, while late heading vrn-H3 allele with more TIL and higher root biomass suggesting a primary insight on the function of Vrn-H3 gene beyond flowering. Genetic interactions of vernalization genes Vrn-H3 with Vrn-H2 and Vrn-H1 also suggested the major role of Vrn-H3 alleles in determining root and shoot trait variations in barley. We believe, these data provide an opportunity for further research to test a precise significance of early heading on yield components and root associated sustainability in crops like barley and wheat. PMID:27442506

  17. Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Land Institute is developing a new perennial grain by domesticating the perennial grass Thinopyrum intermedium (intermediate wheatgrass). In 1983, intermediate wheatgrass was selected for domestication by the Rodale Research Center (Kutztown, Penn., USA). Nearly 100 species of perennial grasse...

  18. The Genetic Architecture of Barley Plant Stature

    PubMed Central

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  19. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  20. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development.

    PubMed

    Boscari, Alexandre; Clément, Mathilde; Volkov, Vadim; Golldack, Dortje; Hybiak, Jolanta; Miller, Anthony J; Amtmann, Anna; Fricke, Wieland

    2009-12-01

    It is not known how the uptake and retention of the key osmolyte K(+) in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K(+) channels (HvAKT1, HvAKT2, HvKCO1/HvTPK1), and of one gene which encodes a putative K(+) transporter (HvHAK4). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K(+) channels which are inhibited by Cs(+). Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase (AtCIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis, showing cross-species complementation of function. In planta, HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K(+) or salinity, despite major changes in K(+) concentrations and osmolality of cells. Possible contributions of HvAKT1, HvAKT2, HvKCO1 and HvHAK4 to regulation of K(+) relations of growing barley leaf cells are discussed.

  1. Developments on the cereal grains Digitaria exilis (acha) and Digitaria iburua (iburu).

    PubMed

    Jideani, I A; Jideani, V A

    2011-06-01

    Research and development on these indigenous African cereal grains, acha (Digitaria exilis Stapf) and iburu (D. iburua Stapf), is experiencing renewed interest not just in Africa but the rest of the world. It is believed that acha and iburu may have nutraceutical properties, as it is used in some areas for managing diabetes. Value addition and exploitation of fonio (acha and iburu) in the development of health or speciality foods like acha-bread, biscuit, cookies, sour dough, traditional drinks, nonfermented steamed and granulated dumpling products are gaining interest. These grains may also contribute in addressing some very relevant challenges in today's food formulation-both from functionality and health perspectives. The constraint of low yield is receiving attention in cereal breeding programmes which may give rise to a new generation of 'healthy' cereal grains in future. Further research on acha and iburu whole grains will hopefully lead to increase understanding of the health effects of grain components and to increase the intake of health-protective grain components. Moreover, with strong consumer demand for these grains due to their potential nutritional and health benefits, and because they help to satisfy the demand for a more varied cereal diet, efforts should be made to tackle the obstacles militating against production, improved quality, competitiveness and value-addition.

  2. Mapping of QTL for Tolerance to Cereal Yellow Dwarf Virus in Two-rowed Spring Barley

    PubMed Central

    Gallagher, L.; Falk, B. W.; Brown-Guedira, G.; Pellerin, E.; Dubcovsky, J.

    2016-01-01

    Cereal yellow dwarf virus (CYDV-RPV) causes a serious viral disease affecting small grain crops around the world. In the United States, it frequently is present in California where it causes significant yield losses, and when infections start early in development, plant death. CYDV is transmitted by aphids, and it has been a major impediment to developing malting barley in California. To identify chromosome locations associated with tolerance/resistance to CYDV, a segregating population of 184 recombinant inbred lines (RIL) from a cross of the California adapted malting barley line Butta 12 with the CYDV tolerant Madre Selva was used to construct a genetic map including 180 polymorphic markers mapping to 163 unique loci. Tolerance to CYDV was evaluated in replicated experiments where plants were challenged by aphid mediated inoculation with the isolate CYDV-RPV in a controlled environment. Quantitative trait loci (QTL) analysis revealed the presence of two major QTL for CYDV tolerance from Madre Selva on chromosomes 2H (Qcyd.MaBu-1) and 7H (Qcyd.MaBu-2), and 4 minor QTL from Butta 12 on chromosomes 3H, 4H, and 2H. This paper discusses the contribution of each QTL and their potential value to improve barley tolerance to CYDV. PMID:27212713

  3. The Wheat Grain Contains Pectic Domains Exhibiting Specific Spatial and Development-Associated Distribution

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Bouchet, Brigitte; Alvarado, Camille; Bakan, Bénédicte; Guillon, Fabienne

    2014-01-01

    Cell walls are complex structures surrounding plant cells with a composition that varies among species and even within a species between organs, cell types and development stages. For years, cell walls in wheat grains were described as simple walls consisting mostly of arabinoxylans and mixed-linked beta glucans. Proteomic and transcriptomic studies identified enzyme families involved in the synthesis of many more cell wall polysaccharides in the wheat grains. Here we describe the discovery of pectic domains in wheat grain using monoclonal antibodies and enzymatic treatment to degrade the major cell wall polymers. Distinct spatial distributions were observed for rhamnogalacturonan I present in the endosperm and mostly in the aleurone layer and homogalacturonan especially found in the outer layers, and tight developmental regulations were unveiled. We also uncovered a massive deposition of homogalacturonan via large vesicular bodies in the seed coat (testa) beneath a thick cuticle during development. Our findings raise questions about the function of pectin in wheat grain. PMID:24586916

  4. Calcium homeostasis in barley aleurone

    SciTech Connect

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  5. Development and characterization of food-grade tracers for the global grain tracing and recall system.

    PubMed

    Lee, Kyung-Min; Armstrong, Paul R; Thomasson, J Alex; Sui, Ruixiu; Casada, Mark; Herrman, Timothy J

    2010-10-27

    Tracing grain from the farm to its final processing destination as it moves through multiple grain-handling systems, storage bins, and bulk carriers presents numerous challenges to existing record-keeping systems. This study examines the suitability of coded caplets to trace grain, in particular, to evaluate methodology to test tracers' ability to withstand the rigors of a commercial grain handling and storage systems as defined by physical properties using measurement technology commonly applied to assess grain hardness and end-use properties. Three types of tracers to dispense into bulk grains for tracing the grain back to its field of origin were developed using three food-grade substances [processed sugar, pregelatinized starch, and silicified microcrystalline cellulose (SMCC)] as a major component in formulations. Due to a different functionality of formulations, the manufacturing process conditions varied for each tracer type, resulting in unique variations in surface roughness, weight, dimensions, and physical and spectroscopic properties before and after coating. The applied two types of coating [pregelatinized starch and hydroxypropylmethylcellulose (HPMC)] using an aqueous coating system containing appropriate plasticizers showed uniform coverage and clear coating. Coating appeared to act as a barrier against moisture penetration, to protect against mechanical damage of the surface of the tracers, and to improve the mechanical strength of tracers. The results of analysis of variance (ANOVA) tests showed the type of tracer, coating material, conditioning time, and a theoretical weight gain significantly influenced the morphological and physical properties of tracers. Optimization of these factors needs to be pursued to produce desirable tracers with consistent quality and performance when they flow with bulk grains throughout the grain marketing channels.

  6. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.)

    PubMed Central

    2012-01-01

    Background The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. Results Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. Conclusions Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed

  7. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known so...

  8. Effects of grain development on formation of resistant starch in rice.

    PubMed

    Shu, Xiaoli; Sun, Jian; Wu, Dianxing

    2014-12-01

    Three rice mutants with different contents of resistant starch (RS) were selected to investigate the effects of grain filling process on the formation of resistant starch. During grain development, the content of RS was increased with grain maturation and showed negative correlations with the grain weight and the starch molecular weight (Mn, Mw) and a positive correlation with the distribution of molecular mass (polydispersity, Pd). The morphologies of starch granules in high-RS rice were almost uniform in single starch granules and exhibited different proliferation modes from common rice. The lower activities of ADP-glucose pyrophosphorylase and starch branching enzyme and the higher activity of starch synthase and starch de-branching enzyme observed in high-RS rice might be responsible for the formation of small irregular starch granules with large spaces between them. In addition, the lower molecular weight and the broad distribution of molecular weights lead to differences in the physiochemical properties of starch.

  9. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    NASA Astrophysics Data System (ADS)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  10. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    PubMed Central

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  11. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett.

    PubMed

    Yang, Fen; Jensen, Jens D; Svensson, Birte; Jørgensen, Hans J L; Collinge, David B; Finnie, Christine

    2010-11-01

    A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 days after inoculation. This coincided with the appearance of discrete F. graminearum-induced proteolytic fragments of β-amylase. Based on these results, analysis of grain proteome changes prior to extensive proteolysis enabled identification of barley proteins responding early to infection by the fungus. In total, the intensity of 51 protein spots was significantly changed in F. graminearum-infected spikelets and all but one were identified. These included pathogenesis-related proteins, proteins involved in energy metabolism, secondary metabolism and protein synthesis. A single fungal protein of unknown function was identified. Quantitative real-time RT-PCR analysis of selected genes showed a correlation between high gene expression and detection of the corresponding proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during 1-3 days after inoculation, making them candidates for generation of the observed β-amylase fragments. These fragments have potential to be developed as proteome-level markers for fungal infection that are also informative about grain protein quality.

  12. Modified microwave-assisted extraction of ergosterol for measuring fungal biomass in grain cultures.

    PubMed

    Zhang, Huimin; Wolf-Hall, Charlene; Hall, Clifford

    2008-12-10

    Ergosterol is a measure for fungal biomass. The recovery rates using a previously described microwave-assisted-extraction (MAE) method for ergosterol analysis tended to be low for grain cultures (pure culture in sterilized 40% moisture content grain) inoculated with Fusarium graminearum . An improved MAE method for measuring ergosterol in grain cultures was developed and compared. Modification to the original MAE included alterations in duration of microwave exposure and extraction solvents. Four autoclaved grains (wheat, rice, barley, and corn) were inoculated with F. graminearum or spiked with ergosterol at concentrations from 0.88 to 100 microg/g and extracted with both methods. The ergosterol recovery rates were significantly different (p < 0.05) for the two methods in assaying both the spiked and grain culture samples. The modified method provided greater recovery rates than the previously reported MAE method for the spiked samples and F. graminearum grain cultures.

  13. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.

    PubMed

    Liu, Na; Yu, Peiqiang

    2010-07-14

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm(-1)) and II (ca. 1550 cm(-1)), cellulosic compounds (ca. 1240 cm(-1)), CHO component peaks (the first peak at the region ca. 1184-1132 cm(-1), the second peak at ca. 1132-1066 cm(-1), and the third peak at ca. 1066-950 cm(-1)). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups' spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information and the

  14. Registration of 'Eve' winter hulless barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Eve’ (Reg. No. CV- PI 659067 ), a six-row winter hulless barley (Hordeum vulgare L.) developed and tested as VA01H-68 by the Virginia Agricultural Experiment Station was released in May 2007. Eve was derived from the cross SC860974 / VA94-42-13. Eve is widely adapted and provides producers with ...

  15. Registration of ‘Tetonia’ barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Tetonia’, a spring two-rowed feed barley (Hordeum vulgare L.) was developed by the Agricultural Research Service-USDA, Aberdeen, ID in cooperation with the University of Idaho Agriculture Experiment Station. Tetonia has performed particularly well in trials at the University of Idaho experiment sta...

  16. Registration of ‘Lenetah’ barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Lenetah’ (reg. No. , PI ) two-rowed spring feed barley (Hordeum vulgare L.) was developed by the Agricultural Research Service, Aberdeen, ID, in cooperation with the Idaho Agricultural Experimental Station and released in December 2007. It was released due to its superior yield and test we...

  17. The transfer of {sup 137}Cs from barley to beer

    SciTech Connect

    Proehl, G.; Mueller, H.; Voigt, G.

    1997-01-01

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  18. Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley.

    PubMed

    Ren, Xifeng; Wang, Yonggang; Yan, Songxian; Sun, Dongfa; Sun, Genlou

    2014-04-01

    Spike morphology is a key characteristic in the study of barley genetics, breeding, and domestication. Variation at the six-rowed spike 1 (vrs1) locus is sufficient to control the development and fertility of the lateral spikelet of barley. To study the genetic variation of vrs1 in wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley (Hordeum vulgare subsp. vulgare), nucleotide sequences of vrs1 were examined in 84 wild barleys (including 10 six-rowed) and 20 cultivated barleys (including 10 six-rowed) from four populations. The length of the vrs1 sequence amplified was 1536 bp. A total of 40 haplotypes were identified in the four populations. The highest nucleotide diversity, haplotype diversity, and per-site nucleotide diversity were observed in the Southwest Asian wild barley population. The nucleotide diversity, number of haplotypes, haplotype diversity, and per-site nucleotide diversity in two-rowed barley were higher than those in six-rowed barley. The phylogenetic analysis of the vrs1 sequences partially separated the six-rowed and the two-rowed barley. The six-rowed barleys were divided into four groups.

  19. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P; Blanchard, James; Moehs, Charles P

    2016-06-28

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement-but not remission-of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm-by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea-all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches.

  20. Supplementation of Reduced Gluten Barley Diet with Oral Prolyl Endopeptidase Effectively Abrogates Enteropathy-Associated Changes in Gluten-Sensitive Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Liu, David X.; Alvarez, Xavier; Laine, David; Clarke, Adam; Doyle, Anthony; Aye, Pyone P.; Blanchard, James; Moehs, Charles P.

    2016-01-01

    Celiac disease (CD) is an autoimmune disorder that affects approximately three million people in the United States. Furthermore, non-celiac gluten sensitivity (NCGS) affects an estimated additional 6% of the population, e.g., 20 million in the U.S. The only effective treatment of CD and NCGS requires complete removal of gluten sources from the diet. While required adherence to a gluten-free diet (GFD) is extremely difficult to accomplish, efforts to develop additional supportive treatments are needed. To facilitate these efforts, we developed a gluten-sensitive (GS) rhesus macaque model to study the effects of novel therapies. Recently reported results from phase one of this project suggest that partial improvement—but not remission—of gluten-induced disease can be accomplished by 100-fold reduction of dietary gluten, i.e., 200 ppm—by replacement of conventional dietary sources of gluten with a mutant, reduced gluten (RG) barley (lys3a)-derived source. The main focus of this (phase two) study was to determine if the inflammatory effects of the residual gluten in lys3a mutant barley grain could be further reduced by oral supplementation with a prolylendopeptidase (PE). Results reveal that PE supplementation of RG barley diet induces more complete immunological, histopathological and clinical remission than RG barley diet alone. The combined effects of RG barley diet and PE supplementation resulted in a further decrease of inflammatory mediators IFN-γ and TNF secretion by peripheral lymphocytes, as well as decreased plasma anti-gliadin and anti-intestinal tissue transglutaminase (TG2) antibodies, diminished active caspase production in small intestinal mucosa, and eliminated clinical diarrhea—all comparable with a gluten-free diet induced remission. In summary, the beneficial results of a combined RG barley and PE administration in GS macaques may warrant the investigation of similar synergistic approaches. PMID:27367722

  1. A kinetic and microautoradiographic study of sup 14 C-sucrose translocation into developing wheat grains

    SciTech Connect

    Ning Wang; Fisher, D.B. )

    1991-05-01

    The kinetics of {sup 14}C-photosynthate import by developing wheat grains was followed after pulse-labeling the flag leaf with {sup 14}CO{sub 2}. Samples were collected from four successive points along the transport pathway to and within the grain: exuding aphid stylets on the peduncle, exuding grain pedicels, the grain crease tissues, and the liquid contents of the endosperm cavity. In addition, microautoradiographs were prepared of the grain crease tissues during movement of the {sup 14}C pulse into the grain. At all times, sucrose accounted for 93 to 97% of the total {sup 14}C present at all four sampling sites. The main features of the {sup 14}C kinetics could be accounted for by a simple compartmental model consisting of sucrose pools in series. Microautoradiographs of the crease tissues showed fairly uniform labeling of vascular parenchyma at all times, with a sharp gradient in labeling across the chalaza to the nucellus. Thus the principal resistance to post-phloem solute transport through the maternal tissues appears to be in the symplastic pathway across the chalaza.

  2. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine.

    PubMed

    Veum, T L; Raboy, V

    2016-03-01

    A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in a

  3. A comprehensive overview of grain development in Brachypodium distachyon variety Bd21.

    PubMed

    Guillon, F; Larré, C; Petipas, F; Berger, A; Moussawi, J; Rogniaux, H; Santoni, A; Saulnier, L; Jamme, F; Miquel, M; Lepiniec, L; Dubreucq, B

    2012-01-01

    A detailed and comprehensive understanding of seed reserve accumulation is of great importance for agriculture and crop improvement strategies. This work is part of a research programme aimed at using Brachypodium distachyon as a model plant for cereal grain development and filling. The focus was on the Bd21-3 accession, gathering morphological, cytological, and biochemical data, including protein, lipid, sugars, starch, and cell-wall analyses during grain development. This study highlighted the existence of three main developmental phases in Brachypodium caryopsis and provided an extensive description of Brachypodium grain development. In the first phase, namely morphogenesis, the embryo developed rapidly reaching its final morphology about 18 d after fertilization (DAF). Over the same period the endosperm enlarged, finally to occupy 80% of the grain volume. During the maturation phase, carbohydrates were continuously stored, mainly in the endosperm, switching from sucrose to starch accumulation. Large quantities of β-glucans accumulated in the endosperm with local variations in the deposition pattern. Interestingly, new β-glucans were found in Brachypodium compared with other cereals. Proteins (i.e. globulins and prolamins) were found in large quantities from 15 DAF onwards. These proteins were stored in two different sub-cellular structures which are also found in rice, but are unusual for the Pooideae. During the late stage of development, the grain desiccated while the dry matter remained fairly constant. Brachypodium exhibits some significant differences with domesticated cereals. Beta-glucan accumulates during grain development and this cell wall polysaccharide is the main storage carbohydrate at the expense of starch.

  4. Effect of feeding corn, hull-less or hulled barley on fermentation by mixed cultures of ruminal microorganisms.

    PubMed

    Fellner, V; Burns, J C; Marshall, D S

    2008-05-01

    Increased demands for corn grain warrant the evaluation of alternative grain types for ruminant production systems. This study was conducted to determine the effects of hulled and hull-less barley (Hordeum vulgare L.) cultivars compared with corn (Zea mays L.) as an alternative grain type on fermentation in cultures of mixed ruminal microorganisms. Three continuous fermentors were fed 14 g of dry feed per day (divided equally between 2 feedings) consisting of alfalfa (Medicago sativa L.) hay pellets (40% of dry matter) and 1) ground corn, 2) hulled barley, or 3) hull-less barley concentrate (60% of dry matter) in each fermentor. Following an adaptation period of 5 d, culture samples were taken at 2 h after the morning feeding on d 6, 7, and 8 of each period for analysis. A second run of the fermentors followed the same treatment sequence to provide replication. Culture pH was reduced with corn (5.55) and did not differ between barley cultivars (average pH 5.89). Total volatile fatty acid concentration and acetate to propionate ratio were not different across grain type or barley cultivar with the exception of greater total volatile fatty acid concentrations with hull-less barley. Corn produced less methane (14.6 mmol/d) and ammonia-N (7.3 mg/100 mL) compared with barley (33.1 mmol/d and 22 mg/100 mL, respectively); methane was greater with hull-less barley but ammonia-N concentration was similar between the 2 barley cultivars. Hull-less barley had greater digestibility compared with hulled barley, and corn had reduced digestibility compared with barley. Concentrations of C18:0 were greater and those of C18:1 and C18:2 lesser in cultures fed hulled and hull-less barley compared with corn. Our data indicate that grain type and barley cultivar have an impact on ruminal fermentation. The lesser starch concentration of barley minimized the drop in culture pH and improved digestibility.

  5. Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain.

    PubMed

    Simkin, Andrew J; Kuntz, Marcel; Moreau, Helene; McCarthy, James

    2010-06-01

    Roasted coffee contains a complex array of volatile organic compounds (VOCs) which make an important contribution to the characteristic flavour and aroma of the final beverage. It is thought that a few of the potent coffee aroma components, such as "beta-damascenone", could be derived from carotenoid precursors. In order to further investigate the potential link between carotenoids and coffee aroma profiles, we have measured the carotenoid content in developing coffee grain. The data obtained confirms the presence of lutein in the grain, and additionally shows that the immature coffee grain also contains significant amounts of beta-carotene, alpha-carotene, violaxanthin, and neoxanthin. Complimentary quantitative gene expression analysis revealed that all the carotenoid biosynthetic genes examined are expressed in the grain, and that the transcript levels are gene and stage dependent. Furthermore, consistent with the reduction of the carotenoid levels at the last stage of grain development (mature-red), most of the transcript levels were also found to be lower at the final developmental stage. Quantitative expression analysis of the carotenoid genes was also carried out for the developing pericarp tissue of the coffee cherries. Again, all the genes examined were expressed, and in most cases, the highest transcript levels were detected around the large green-yellow stages, a period when carotenoid synthesis is probably greatest.

  6. Analysis of grain quality at receival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With an emphasis on wheat and to a lesser extent, barley, we describe the series of post harvest transfer stages of grain between the first point of sale and the export terminal. At each transfer point, a document accompanies a grain consignment that pertains to its quality (class, purity, sanitatio...

  7. Removal and isolation of germ-rich fractions from hull-less barley using a fitzpatrick comminuting mill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A process was developed to produce a germ-enriched fraction from hull-less barley using a Fitzpatrick Comminuting Mill followed by sieving. Hulled and hull-less barleys contain 1.5-2.5% oil and, like wheat kernels which contain wheat germ oil, much of the oil in barley kernels is in the germ fracti...

  8. A region of barley chromosome 6H harbors multiple major genes associated with net type blotch resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net type of net blotch (NTNB) on barley, caused by Pyrenophora teres f. teres Drechs. is prevalent in barley growing regions worldwide and is particularly damaging under cool, wet conditions. A population of 118 doubled haploid (DH) lines developed from a cross between barley cultivars ‘Rika’ and ‘K...

  9. [Features of crossability, haploidy and polyembryony in hybrid combinations between common barley Hordeum vulgare L. (2n = 14) and wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya].

    PubMed

    Pershina, L A; Belova, L I; Deviatkina, E P; Rakovtseva, T S; Kravtsova, L A; Shchapova, A I

    2005-06-01

    The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between common barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters--frequency of set grains and frequency of grains with embryos--was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1 R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare x T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between common barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.

  10. Development of a mobile sensor for robust assessment of river bed grain forces

    NASA Astrophysics Data System (ADS)

    Maniatis, G.; Hoey, T.; Sventek, J.; Hodge, R. A.

    2013-12-01

    The forces experienced by sediment grains at entrainment and during transport, and those exerted on river beds, are significant for the development of river systems and landscape evolution. The assessment of local grain forces has been approached using two different methodologies. The first approach uses static impact sensors at points or cross-sections to measure velocity and/or acceleration. A second approach uses mobile natural or artificial 'smart' pebbles instrumented with inertia micro-sensors for directly measuring the local forces experienced by individual grains. The two approaches have yielded significantly different magnitudes of impact forces. Static sensors (piezoelectric plates connected to accelerometers) temporally smooth the impacts from several grains and infrequently detect the higher forces (up to ×100g) generated by direct single-grain impacts. The second method is currently unable to record the full range of impacts in real rivers due to the low measurement range of the deployed inertia sensors (×3g). Laboratory applications have required only low-range accelerometers, so excluding the magnitude of natural impacts from the design criteria. Here we present the first results from the development of a mobile sensor, designed for the purpose of measuring local grain-forces in a natural riverbed. We present two sets of measurements. The first group presents the calibration of a wide range micro-accelerometer from a set of vertical drop experiments (gravitational acceleration) and further experiments on a shaking table moving with pre-defined acceleration. The second group of measurements are from incipient motion experiments performed in a 9m x0.9m flume (slope 0.001 to 0.018) under steadily increasing discharge. Initially the spherical sensor grain was placed on an artificial surface of hemispheres of identical diameter to the sensor (111mm). Incipient motion was assessed under both whole and half-diameter exposure for each slope. Subsequently

  11. Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching.

    PubMed

    Liller, Corinna Brit; Neuhaus, René; von Korff, Maria; Koornneef, Maarten; van Esse, Wilma

    2015-01-01

    Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants), in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a) or reduced tillering only at full maturity (group 1b). Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b) is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2) suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.

  12. Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application

    NASA Astrophysics Data System (ADS)

    StJohn, D. H.; Easton, M. A.; Qian, M.; Taylor, J. A.

    2013-07-01

    This paper builds on the "Grain Refinement of Mg Alloys" published in 2005 and reviews the grain refinement research on Mg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy's as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment.

  13. Development and evaluation of a fluidized bed system for wheat grain disinfection.

    PubMed

    Dhillon, B; Wiesenborn, D; Dhillon, H; Wolf-Hall, C

    2010-08-01

    Durum wheat grain from the field is naturally contaminated with bacteria, yeast, and mold. The reduction in aerobic plate count (APC) and yeast and mold count (YMC) is often necessary before processing wheat. Gaseous ozone, ozonated water, and acetic acid solution are nontraditional antimicrobial agents for grains and are safe for humans and the environment. Better disinfection may be possible by applying antimicrobial agents to grain in a fluidized state. Fluidization increases the exposure of grain surfaces, resulting in uniform and quick contact of grain with antimicrobial agents. Therefore, a fluidized bed was developed with automated spraying system (to spray treatment waters), and a port for gaseous ozone injection. The pressures and velocities within the fluidized bed system were measured to characterize the system. The treatments used on fluidized grain were: distilled water (control), gaseous ozone (6 ppm), ozonated water (23 mg/L), gaseous ozone + ozonated water (6 ppm, 23 mg/L), acetic acid solution (0.5%), acetic acid + ozonated water (0.5%, 26 mg/L), and gaseous ozone + acetic acid + ozonated water (6 ppm, 0.5%, 26 mg/L). The last of these treatments was most effective with 1.7 and 3.3 log reduction in APC and YMC, respectively. This combined treatment can be used to replace the chlorinated water that industry uses during tempering of grain. Ozonated water alone resulted in a 0.3 log reduction in both APC and YMC. Gaseous ozone alone did not cause a significant reduction in APC and YMC.

  14. Composition and Functional Lipid Profiles of Low-Phyate Barleys and Related Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley, one of the earliest cultivated cereal grains in the world, is gaining renewed interest for use in food, feed and as a bioethanol feedstock. Like other grains, its high phytate content is undesirable since phytate affects mineral bioavailability and contributes to P pollution to environment....

  15. Computational study of textured ferroelectric polycrystals: Texture development during templated grain growth

    NASA Astrophysics Data System (ADS)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-02-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the first two aspects are presented here, while an accompanying paper of this work reports findings on the third aspect. In this paper, grain microstructure evolution in the polycrystalline matrix with different template volume fractions and seed sizes is simulated. To quantitatively characterize the crystallographic texture development during templated grain growth processing, a numerical algorithm is developed to compute the diffraction peak intensities and Lotgering factor of the simulated polycrystals during grain microstructure evolution. This novel approach provides a direct link between phase field simulation and diffraction experiment. This computational study clarifies the effects of the template volume fraction and template seed size on the final grain microstructure and texture. It is found that, while the degree of crystallographic texture generally increases with increasing template volume fraction, it is the average distance between template seeds that plays an important role. This finding suggests that reducing the template seed size and shortening the seed distance is an effective way to achieve higher texture at a lower template volume fraction, which is highly desired for enhancing the piezoelectric properties of ferroelectric polycrystals. The computational results are compared with complementary experiments, where good agreement is

  16. Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Dai, Fei; Qiu, Long; Ye, Lingzhen; Wu, Dezhi; Zhou, Meixue; Zhang, Guoping

    2011-01-01

    Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains. PMID:21533044

  17. Development and evaluation of an automatic labeling technique for spring small grains

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Malila, W. A. (Principal Investigator)

    1981-01-01

    A labeling technique is described which seeks to associate a sampling entity with a particular crop or crop group based on similarity of growing season and temporal-spectral patterns of development. Human analyst provide contextual information, after which labeling decisions are made automatically. Results of a test of the technique on a large, multi-year data set are reported. Grain labeling accuracies are similar to those achieved by human analysis techniques, while non-grain accuracies are lower. Recommendations for improvments and implications of the test results are discussed.

  18. Developing a standard definition of whole-grain foods for dietary recommendations: summary report of a multidisciplinary expert roundtable discussion.

    PubMed

    Ferruzzi, Mario G; Jonnalagadda, Satya S; Liu, Simin; Marquart, Len; McKeown, Nicola; Reicks, Marla; Riccardi, Gabriele; Seal, Chris; Slavin, Joanne; Thielecke, Frank; van der Kamp, Jan-Willem; Webb, Densie

    2014-03-01

    Although the term "whole grain" is well defined, there has been no universal standard of what constitutes a "whole-grain food," creating challenges for researchers, the food industry, regulatory authorities, and consumers around the world. As part of the 2010 Dietary Guidelines for Americans, the U.S. Dietary Guidelines Technical Advisory Committee issued a call to action to develop definitions for whole-grain foods that could be universally accepted and applied to dietary recommendations and planning. The Committee's call to action, and the lack of a global whole-grain food definition, was the impetus for the Whole Grain Roundtable held 3-5 December 2012 in Chicago, Illinois. The objective was to develop a whole-grain food definition that is consistent with the quartet of needs of science, food product formulation, consumer behavior, and label education. The roundtable's expert panel represented a broad range of expertise from the United States and Europe, including epidemiology and dietary intervention researchers, consumer educators, government policy makers, and food and nutrition scientists from academia and the grain food industry. Taking into account the totality, quality, and consistency of available scientific evidence, the expert panel recommended that 8 g of whole grain/30 g serving (27 g/100 g), without a fiber requirement, be considered a minimum content of whole grains that is nutritionally meaningful and that a food providing at least 8 g of whole grains/30-g serving be defined as a whole-grain food. Having an established whole-grain food definition will encourage manufacturers to produce foods with meaningful amounts of whole grain, allow consistent product labeling and messaging, and empower consumers to readily identify whole-grain foods and achieve whole-grain dietary recommendations.

  19. Evaluation of oat cultivars and lines under infection with barley yellow dwarf virus.

    PubMed

    Mozhaeva, K A; Domier, L; Kastalyeva, T B; Magurov, P F; Yakovleva, I N

    2004-01-01

    Thirteen domestic and foreign oat cultivars and eight breeding lines bred from the University of Illinois were evaluated for resistance to barley yellow dwarf (BYD) using artificial inoculation with Rhopalosiphum padi viruliferous for an isolate of Barley yellow dwarf virus-PAV endemic to Moscow region origin. Cultivar Blaze and six Illinois lines showed the best grain yields under disease pressure that resembled a BYD epidemic.

  20. Potential CO2 emission reduction by development of non-grain-based bioethanol in China.

    PubMed

    Li, Hongqiang; Wang, Limao; Shen, Lei

    2010-10-01

    Assessment of the potential CO(2) emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO(2) reduction coefficient of bioethanol, and assessment model of CO(2) emission reduction potential of bioethanol are proposed and established to assess the potential CO(2) emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO(2) with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

  1. Potential CO2 Emission Reduction by Development of Non-Grain-Based Bioethanol in China

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Wang, Limao; Shen, Lei

    2010-10-01

    Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China’s greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

  2. Rice grain vitamin-E homologs and g-Oryzanol: effects of grain development and cultural practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bran layer of the whole grain rice contains potential health-beneficial compounds. These include vitamin E homologs (tocopherols, tocotrienols), gamma-Oryzanols, simple phenolics and poly-phenolics. These are antioxidants which are believed to provide protection against diseases such as cancer a...

  3. Molecular Mechanisms Underlying Hull-Caryopsis Adhesion/Separation Revealed by Comparative Transcriptomic Analysis of Covered/Naked Barley (Hordeum vulgare L.).

    PubMed

    Duan, Ruijun; Xiong, Huiyan; Wang, Aidong; Chen, Guoxiong

    2015-06-23

    The covered/naked caryopsis trait of barley is an important agronomic trait because it is directly linked to dietary use. The formation of covered/naked caryopsis is controlled by an NUD transcription factor, which is involved in pericarp cuticle development. However, the molecular mechanism underlying this trait remains so far largely unknown. In this study, comparative transcriptomes of grains three weeks after anthesis of Tibetan Hulless barley landrace Dulihuang and covered barley Morex were analyzed using RNA-seq technique. A total of 4031 differentially expressed genes (DEGs) were identified. The Nud gene was overexpressed in Morex, with trace expression in Dulihuang. Among seventeen cuticle related DEGs, sixteen were down regulated and one up regulated in Morex. These results suggest that the Nud gene in covered caryopsis might down regulate cuticle related genes, which may cause a permeable cuticle over pericarp, leading to a hull-caryopsis organ fusion. A functional cuticle covering the pericarp of naked caryopsis might be the result of deletion or low expression level of the Nud gene. The functional cuticle defines a perfect boundary to separate the caryopsis from the hull in naked barley.

  4. Mutational breeding and genetic engineering in the development of high grain protein content.

    PubMed

    Wenefrida, Ida; Utomo, Herry S; Linscombe, Steve D

    2013-12-04

    Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important

  5. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical

  6. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    PubMed Central

    2011-01-01

    Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629

  7. Development Support Environment of Business ApplicationsBased on a Multi-Grain-Size Repository

    NASA Astrophysics Data System (ADS)

    Terai, Koichi; Izumi, Noriaki; Yamaguchi, Takahira

    In order to build the Web-based application as a shopping site on the Web, various ideas from the different viewpoints are required, such as enterprise modeling, workflow modeling, software development, and so on. From the above standpoint, this paper proposes an integrated environment to support the whole development process of analysis, design and implementation of business application. In order to reuse know-hows of various ideas in the business application development, we device a multi-grain-size repository, which consists of coarse-, middle-, and fine-grain-size repositories that correspond to the enterprise models, workflow models, and software models, respectively. We also provide a methodology that rebuilds heterogeneous information resources required for the business applications development into a multi-grain-size repository based on ontologies. The contents of the repositories are modeled by the is-a, has-a, and E-R relations, and described by the XML language. We have implemented Java-based prototype environment with the tools dealing with the multi-layered repository and confirmed that it supports us in various phases of business application development including business model manifestation, detailed business model definition and an implementation of business software applications.

  8. Development of Large Grain/Single Crystal Niobium Cavity Technology at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Myneni, G. R.; Ciovati, G.; Sekutowicz, J.; Carneiro, T.

    2007-08-01

    Approximately two years ago we started to develop high performance niobium accelerating cavities based on large grain or single crystal high purity niobium. We have fabricated and tested 15 single cell cavities of various shapes and frequencies between 1300 MHz and 2300 MHz using material from a total of 9 different very large grain niobium ingots from four niobium suppliers. The materials differed not only in grain sizes, but also in RRR — value and in the amount of Ta contained in the material. In one ingot supplied by CBMM the central grain exceeded 7 inches in diameter and this was used to fabricate two 2.2 GHz cavities. A single crystal 1300 MHz mono-cell cavity was also produced at DESY by rolling out a single crystal to the size required for this cavity. It was sent to Jlab for surface treatment and testing. In addition, we have fabricated three 7-cell cavities: two of the Jlab high gradient (HG) shape and one of the ILC Low Loss shape. Two 9-cell TESLA shape cavities are presently in fabrication at Jlab and are close to completion.

  9. Development of Large Grain/Single Crystal Niobium Cavity Technology at Jefferson Lab

    SciTech Connect

    Kneisel, P.; Myneni, G. R.; Ciovati, G.; Sekutowicz, J.; Carneiro, T.

    2007-08-09

    Approximately two years ago we started to develop high performance niobium accelerating cavities based on large grain or single crystal high purity niobium. We have fabricated and tested 15 single cell cavities of various shapes and frequencies between 1300 MHz and 2300 MHz using material from a total of 9 different very large grain niobium ingots from four niobium suppliers. The materials differed not only in grain sizes, but also in RRR - value and in the amount of Ta contained in the material. In one ingot supplied by CBMM the central grain exceeded 7 inches in diameter and this was used to fabricate two 2.2 GHz cavities. A single crystal 1300 MHz mono-cell cavity was also produced at DESY by rolling out a single crystal to the size required for this cavity. It was sent to Jlab for surface treatment and testing. In addition, we have fabricated three 7-cell cavities: two of the Jlab high gradient (HG) shape and one of the ILC Low Loss shape. Two 9-cell TESLA shape cavities are presently in fabrication at Jlab and are close to completion.

  10. Development of large Grain/Single Crystal Niobium Cavity Technology at Jefferson Lab

    SciTech Connect

    Peter Kneisel; J. Sekutowicz; T. Carneiro; G. Ciovati

    2006-10-31

    Approximately two years ago we started to develop high performance niobium accelerating cavities based on large grain or single crystal high purity niobium. We have fabricated and tested 15 single cell cavities of various shapes and frequencies between 1300 MHz and 2300 MHz using material from a total of 9 different very large grain niobium ingots from four niobium suppliers. The materials differed not only in grain sizes, but also in RRR ? value and in the amount of Ta contained in the material. In one ingot supplied by CBMM the central grain exceeded 7 inches in diameter and this was used to fabricate two 2.2 GHz cavities. A single crystal 1300 MHz mono-cell cavity was also produced at DESY by rolling out a single crystal to the size required for this cavity. It was sent to Jlab for surface treatment and testing. In addition, we have fabricated three 7-cell cavities: two of the Jlab high gradient (HG) shape and one of the ILC Low Loss shape. Two 9-cell TESLA shape cavities are presently in fabrication at Jlab and are close to completion.

  11. Development of a nutrient-dense complementary food using amaranth-sorghum grains.

    PubMed

    Okoth, Judith Kanensi; Ochola, Sophie Atieno; Gikonyo, Nicholas K; Makokha, Anselimo

    2017-01-01

    Thin porridge from cereals and starchy tubers is a common complementary food in Sub Saharan Africa. It may be high in antinutrients, low in energy, and nutrient density hence inadequate in providing infants' high energy and nutrients requirements per unit body weight. Consequently, undernourishment levels among children under 5 years are high. Therefore, there is need to avail nutrient-dense complementary foods especially for children in low-resource settings. The study was aimed at developing a nutrient-dense complementary food from amaranth and sorghum grains. Amaranth grain, a pseudocereal, though rarely used as a complementary food in Kenya has a higher nutritional quality than other staples. Plant-based foods are known to have high levels of antinutrients. Steeping and germination were used to reduce the levels of antinutrients and enhance the bioavailability of minerals in the grains. Various steeped and germinated amaranth and sorghum grains formulations were made to find the ratio with the highest nutrient content and lowest antinutrient levels. The 90% amaranth-sorghum grains formulation had significantly (F = 32.133, P < 0.05) higher energy (5 kcal per g on dry weight basis) than the other formulations and a protein content of 14.4%. This is higher than the estimated protein needs from complementary foods even for a 12-23 months child of low breast milk intake (9.1 g/d). Antinutrients could not be detected which could imply enhanced nutrient bioavailability. Therefore, a nutrient-dense complementary food product was developed from steeped and germinated amaranth and sorghum grains with 90% amaranth grain. In ready to eat form, it would give an energy content of 1.7 kcal per g (dilution of 1:2 amaranth-sorghum flour to water) and 1.2 kcal per g (dilution of 1:4 amaranth-sorghum flour to water). It can be used as a nutrient-dense complementary food and for other vulnerable groups.

  12. Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley.

    PubMed

    Linkmeyer, Andrea; Hofer, Katharina; Rychlik, Michael; Herz, Markus; Hausladen, Hans; Hückelhoven, Ralph; Hess, Michael

    2016-01-01

    Fusarium head blight (FHB) of small cereals is a disease of global importance with regard to economic losses and mycotoxin contamination harmful to human and animal health. In Germany, FHB is predominantly associated with wheat and F. graminearum is recognised as the major causal agent of the disease, but little is known about FHB of barley. Monitoring of the natural occurrence of FHB on Bavarian barley revealed differences for individual Fusarium spp. in incidence and severity of grain infection between years and between spring and winter barley. Parallel measurement of fungal DNA content in grain and mycotoxin content suggested the importance of F. graminearum in winter barley and of F. langsethiae in spring barley for FHB. The infection success of these two species was associated with certain weather conditions and barley flowering time. Inoculation experiments in the field revealed different effects of five Fusarium spp. on symptom formation, grain yield and mycotoxin production. A significant association between fungal infection of grain and mycotoxin content was observed following natural or artificial infection with the type B trichothecene producer F. culmorum, but not with the type A trichothecene-producing species F. langsethiae and F. sporotrichioides. Trichothecene type A toxin contamination also occurred in the absence of significant damage to grain and did not necessarily promote fungal colonisation.

  13. Experimental study of grain interactions on rolling texture development in face-centered cubic metals

    NASA Astrophysics Data System (ADS)

    Kumar Ray, Atish

    There exists considerable debate in the texture community about whether grain interactions are a necessary factor to explain the development of deformation textures in polycrystalline metals. Computer simulations indicate that grain interactions play a significant role, while experimental evidence shows that the material type and starting orientation are more important in the development of texture and microstructure. A balanced review of the literature on face-centered cubic metals shows that the opposing viewpoints have developed due to the lack of any complete experimental study which considers both the intrinsic (material type and starting orientation) and extrinsic (grain interaction) factors. In this study, a novel method was developed to assemble ideally orientated crystalline aggregates in 99.99% aluminum (Al) or copper (Cu) to experimentally evaluate the effect of grain interactions on room temperature deformation texture. Ideal orientations relevant to face-centered cubic rolling textures, Cube {100} <001>, Goss {110} <001>, Brass {110} <11¯2> and Copper {112} <111¯> were paired in different combinations and deformed by plane strain compression to moderate strain levels of 1.0 to 1.5. Orientation dependent mechanical behavior was distinguishable from that of the neighbor-influenced behavior. In interacting crystals the constraint on the rolling direction shear strains (gammaXY , gammaXZ) was found to be most critical to show the effect of interactions via the evolution of local microstructure and microtexture. Interacting crystals with increasing deformations were observed to gradually rotate towards the S-component, {123} <634>. Apart from the average lattice reorientations, the interacting crystals also developed strong long-range orientation gradients inside the bulk of the crystal, which were identified as accumulating misorientations across the deformation boundaries. Based on a statistical procedure using quaternions, the orientation and

  14. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l.

    PubMed

    Nghiem, Nhuan P; Taylor, Frank; Johnston, David B; Shetty, Jay K; Hicks, Kevin B

    2011-10-01

    A fermentation process, which was designated the enhanced dry grind enzymatic (EDGE) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial β-glucanases were used to hydrolyze (1,3)(1,4)-β-D: -glucans to smaller molecules, thus reducing the viscosity of the mash to levels sufficiently low to allow transport and mixing in commercial equipment. Another enzyme, a developmental β-glucosidase, then was used to hydrolyze the resulting oligomers to glucose, which subsequently was fermented to produce additional ethanol. The EDGE process was developed with Thoroughbred, a winter hulled barley, using a shake flask model. To move toward commercialization, it is necessary to prove that the developed process would be applicable to other barley varieties and also to demonstrate its scalability. Experiments were performed in 7.5, 70, and 300-l fermentors using Thoroughbred and Eve, a winter hull-less barley. It was shown that the process was scalable for both barley varieties. Low levels of glucose throughout the course of the fermentations demonstrated the high efficiency of the simultaneous saccharification and fermentation process. Final ethanol concentrations of 14% (v/v) were achieved for initial total solids of 28.5-30% (w/w), which gave an ethanol yield of 83-87% of the theoretical values. The distillers dried grains with solubles co-products contained very low levels of β-glucans and thus were suitable for use in feed formulations for all animal species.

  15. Separability study of wheat and small grains

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Marquina, N. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.

  16. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  17. A comparison of two milling strategies to reduce the mycotoxin deoxynivalenol in barley.

    PubMed

    Khatibi, Piyum A; Berger, Greg; Wilson, Jhanel; Brooks, Wynse S; McMaster, Nicole; Griffey, Carl A; Hicks, Kevin B; Nghiem, Nhuan P; Schmale, David G

    2014-05-07

    Winter barley (Hordeum vulgare L.), a potential feedstock for fuel ethanol production, may be contaminated with the trichothecene mycotoxin deoxynivalenol (DON). DON is a threat to feed and food safety in the United States and may become concentrated during the production of distillers dried grains with solubles (DDGS). DDGS is a coproduct of fuel ethanol production and is increasingly being used as feed for domestic animals. Therefore, new strategies to reduce the threat of DON in DDGS need to be developed and implemented for grain destined for fuel ethanol production. It is known that large concentrations of DON accumulate in the hulls of wheat and barley. Consequently, improved methods are needed to carefully remove the hull from the grain and preserve the starchy endosperm. Whole kernels from five Virginia winter barley genotypes were used to evaluate the abilities of two different milling strategies (roller milling and precision milling (FitzMill)) for their ability to remove the hull-enriched tissue from the kernel while maintaining starch levels and reducing DON levels in the endosperm-enriched tissue. After whole kernels were milled, DON and starch levels were quantified in the hull-enriched fractions and endosperm-enriched fractions. Initial milling experiments demonstrated that the precision mill system (6 min run time) is able to reduce more DON than the roller mill but with higher starch losses. The average percent DON removed from the kernel with the roller mill was 36.7% ± 5.5 and the average percent DON removed from the dehulled kernel with the precision mill was 85.1% ± 9.0. Endosperm-enriched fractions collected from the roller mill and precision mill contained starch levels ranging from 49.0% ± 12.1 to 59.1% ± 0.5 and 58.5% ± 1.6 to 65.3% ± 3.9, respectively. On average, the precision mill removed a mass of 23.1% ± 6.8 and resulted in starch losses of 9.6% ± 6.3, but produced an endosperm-enriched fraction with relatively very little

  18. Identification and characterization of a partially functional mutation of the cellulose-synthase-like (CslF6) gene in barley (Hordeum vulgare L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical induced barley mutant m351 was first selected for its low level of mixed-linkage (1,3), (1,4) beta-D-glucan (MLG) in an effort to find barley lines with varied grain MLG contents. The MLG decrease in m351 was associated with thinned endosperm cell walls and increased levels of fructans ...

  19. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries

    PubMed Central

    Kumar, Deepak; Kalita, Prasanta

    2017-01-01

    While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers’ livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%–60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%–2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail. PMID:28231087

  20. Leaf development and phytochrome modulate the activation ofpsbD-psbC transcription by high-fluence blue light in barley chloroplasts.

    PubMed

    Christopher, D A

    1996-03-01

    Activation ofpsbD transcription by light assists in maintaining the synthesis of the PS II reaction center protein, D2, which is photodamaged in plants exposed to high light. In this study, the photosensory pathways and mechanisms that regulate the expression of thepsbD-psbC light-responsive promoter, LRP, were investigated during barley (Hordeum vulgare L.) seedling development. Accumulation ofpsbD-psbC mRNAs in response to light was observed in apical sections of primary leaves with little or no increase in mRNAs in basal sections. In both 4.5- and 7.5-day-old etiolated seedlings, blue light was most effective for activating mRNA accumulation from thepsbD-psbC LRP. However, the response of the LRP to red light increased 7-fold in 7.5-day relative to 4.5-day-old seedlings. Blue light preferentially activatedpsbD-psbC transcription, while red light was most effective for activating total plastid transcription and the expression of genes encoding the small (RbcS) and large (rbcL) subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase and Chl-a/b-binding protein (Lhcb). The stimulatory effects of red light onpsbD-psbC expression were partially reversed, and of blue light were not reversed, by subsequent pulses of far-red light. In contrast, continuous far-red light given together with blue light enhancedpsbD-psbC transcription in a synergistic manner. These observations indicate that phytochrome modulates the effects of high-fluence blue light onpsbD-psbC transcription by affecting total plastid transcription.

  1. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    SciTech Connect

    Liu, N.; Yu, P

    2010-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic

  2. Compositional equivalence of barleys differing only in low and normal phytate levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent breeding advances have led to the development of several barley lines with reduced levels of phytate. One of them was further developed and released as a hulless low phytate cultivar (Clearwater). Because barley oil contains high levels of tocotrienols and other functional lipids, we conduc...

  3. Near-infrared analysis of whole kernel barley: comparison of three spectrometers.

    PubMed

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Griffey, Carl A; Brooks, Wynse; Hicks, Kevin B

    2008-04-01

    This study was conducted to develop calibration models for determining quality parameters of whole kernel barley using a rapid and nondestructive near-infrared (NIR) spectroscopic method. Two hundred and five samples of whole barley grains of three winter-habit types (hulled, malt, and hull-less) produced over three growing seasons and from various locations in the United States were used in this study. Among these samples, 137 were used for calibration and 68 for validation. Three NIR instruments with different resolutions, one Fourier transform instrument (4 cm(-1) resolution), and two dispersive instruments (8 nm and 10 nm bandpass) were utilized to develop calibration models for six components (moisture, starch, beta-glucan, protein, oil, and ash) and the results were compared. Partial least squares regression was used to build models, and various methods for preprocessing of spectral data were used to find the best model. Our results reveal that the coefficient of determination for calibration models (NIR predicted versus reference values) ranged from 0.96 for moisture to 0.79 for beta-glucan. The level of precision of the model developed for each component was sufficient for screening or classification of whole kernel barley, except for beta-glucan. The higher resolution Fourier transform instrument gave better results than the lower resolution instrument for starch and beta-glucan analysis. The starch model was most improved by the increased resolution. There was no advantage of using a higher resolution instrument over a lower resolution instrument for other components. Most of the components were best predicted using first-derivative processing, except for beta-glucan, where second-derivative processing was more informative and precise.

  4. Effect of High Temperature on Albumin and Globulin Accumulation in the Endosperm Proteome of the Developing Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high temperature during grain fill on the accumulation of KCl-soluble/methanol-insoluble albumins and globulins was investigated in the endosperm of developing wheat (Triticum aestivum, L. cv. Butte 86) grain. Plants were grown under a moderate (24°C/17°C, day/night) or a high temperat...

  5. Development and characterization of thermoplastic films from sorghum distillers dried grains grafted with various methacrylates.

    PubMed

    Reddy, Narendra; Shi, Zhen; Temme, Lisa; Xu, Helan; Xu, Lan; Hou, Xiuliang; Yang, Yiqi

    2014-03-19

    Distillers Dried Grains (DDG) obtained during production of ethanol from grain sorghum were grafted with methacrylates and compression molded into films with good dry and wet tensile properties. Since sorghum DDG contains up to 45% proteins that are indigestible by animals, it is necessary to find alternative applications to make sorghum ethanol economically competitive. In this research, sorghum DDG was grafted with methyl, ethyl, and butyl methacrylates, the grafted DDG was compression molded into films, and the properties of the grafted DDG and films were studied. At a grafting ratio of 40%, butyl methacrylate (BMA) grafted films had a strength of 4.8 MPa and elongation of 1.8% when dry and 3.1 MPa and 8.1% when wet, indicating that the films had good strength and wet stability. Films developed from grafted DDG show the potential to overcome the brittleness and poor water stability of biopolymer-based films and be useful for various applications.

  6. The effect of fungicidal treatment on selected quality parameters of barley and malt.

    PubMed

    Havlová, Pavla; Lancová, Katerina; Vánová, Marie; Havel, Josef; Hajslová, Jana

    2006-02-22

    Protection of barley grain against contamination by fungi such as Fusarium spp., particularly by those producing mycotoxins, secondary metabolites with adverse health effects, is of principal importance. Fungicides applied immediately after full heading of spring barley is one method of direct protection. In this work, extensive two-year field experiments combined with a detailed chemical laboratory analysis (barley and malt) were performed with the aim to study the effect of previous crops, different fungicides, and other conditions on the selected barley and malt quality parameters (content of beta-glucans, pentosans, oxalic acid, deoxynivalenol, and gushing), while the main task was to follow the effect of the fungicide (used as a treatment to protect against pathogens, mostly Fusarium) on changes of the chemical composition in barley and malt, and gushing. It was found that the relationship between the studied factors and the parameters usually applied to the evaluation of barley and malt quality is quite complex and not straightforward. The responses show typical features of a multifactorial influence with both positive and negative correlations resulting in a decrease or increase in grain quality (concentrations of beta-glucans, pentosans, deoxynivalenol, and other studied parameters). The role of previous crops was also found to be important. The fungicides should be applied at the time of heading but not at the very beginning of this period.

  7. Archaeogenetic Evidence of Ancient Nubian Barley Evolution from Six to Two-Row Indicates Local Adaptation

    PubMed Central

    Palmer, Sarah A.; Moore, Jonathan D.; Clapham, Alan J.; Rose, Pamela; Allaby, Robin G.

    2009-01-01

    Background Archaeobotanical samples of barley (Hordeum vulgare L.) found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. Methodology and Findings We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. Conclusions The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures. PMID:19623249

  8. Identification and phenotypic description of new wheat: six-rowed winter barley disomic additions.

    PubMed

    Molnár-Láng, Márta; Kruppa, Klaudia; Cseh, András; Bucsi, Julianna; Linc, Gabriella

    2012-04-01

    To increase the allelic variation in wheat-barley introgressions, new wheat-barley disomic addition lines were developed containing the 2H, 3H, 4H, 6H, and 7H chromosomes of the six-rowed Ukrainian winter barley 'Manas'. This cultivar is agronomically much better adapted to Central European environmental conditions than the two-rowed spring barley 'Betzes' previously used. A single 'Asakaze' × 'Manas' wheat × barley hybrid plant was multiplied in vitro and one backcross plant was obtained after pollinating 354 regenerant hybrids with wheat. The addition lines were selected from the self-fertilized seeds of the 16 BC(2) plants using genomic in situ hybridization. The addition lines were identified by fluorescence in situ hybridization using repetitive DNA probes (HvT01, GAA, pTa71, and Afa family), followed by confirmation with barley SSR markers. The addition lines were grown in the phytotron and in the field, and morphological parameters (plant height, fertility, tillering, and spike characteristics) were measured. The production of the disomic additions will make it possible to incorporate the DNA of six-rowed winter barley into the wheat genome. Addition lines are useful for genetic studies on the traits of six-rowed winter barley and for producing new barley dissection lines.

  9. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development

    PubMed Central

    Whan, Alex; Dielen, Anne-Sophie; Mieog, Jos; Bowerman, Andrew F.; Robinson, Hannah M.; Byrne, Keren; Colgrave, Michelle; Larkin, Philip J.; Howitt, Crispin A.; Morell, Matthew K.; Ral, Jean-Philippe

    2014-01-01

    Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling. PMID:25053646

  10. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development.

    PubMed

    Whan, Alex; Dielen, Anne-Sophie; Mieog, Jos; Bowerman, Andrew F; Robinson, Hannah M; Byrne, Keren; Colgrave, Michelle; Larkin, Philip J; Howitt, Crispin A; Morell, Matthew K; Ral, Jean-Philippe

    2014-10-01

    Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling.

  11. Abiotic stress and control of grain number in cereals.

    PubMed

    Dolferus, Rudy; Ji, Xuemei; Richards, Richard A

    2011-10-01

    Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.

  12. Quantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley

    PubMed Central

    Reuscher, Stefan; Kolter, Andreas; Hoffmann, Astrid; Pillen, Klaus

    2016-01-01

    The concentrations of both essential nutrients and chemically similar toxic analogues accumulated in cereal grains have a major impact on the nutritional quality and safety of crops. Naturally occurring genetic diversity can be exploited for the breeding of improved varieties through introgression lines (ILs). In this study, multi-element analysis was conducted on vegetative leaves, senesced flag leaves and mature grains of a set of 54 ILs of the wild ancestral Hordeum vulgare ssp. spontaneum in the cultivated variety Hordeum vulgare ssp. vulgare cv. Scarlett. Plants were cultivated on an anthropogenically heavy metal-contaminated soil collected in an agricultural field, thus allowing simultaneous localization of quantitative trait loci (QTL) for the accumulation of both essential nutrients and toxic trace elements in barley as a model cereal crop. For accumulation of the micronutrients Fe and Zn and the interfering toxin Cd, we identified 25, 16 and 5 QTL, respectively. By examining the gene content of the introgressions, we associated QTL with candidate genes based on homology to known metal homeostasis genes of Arabidopsis and rice. Global comparative analyses suggested the preferential remobilization of Cu and Fe, over Cd, from the flag leaf to developing grains. Our data identifies grain micronutrient filling as a regulated and nutrient-specific process, which operates differently from vegetative micronutrient homoeostasis. In summary, this study provides novel QTL for micronutrient accumulation in the presence of toxic analogues and supports a higher degree of metal specificity of trace element partitioning during grain filling in barley than previously reported for other cereals. PMID:27078500

  13. Near-infrared analysis of ground barley for use as a feedstock for fuel ethanol production.

    PubMed

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Griffey, Carl A; Brooks, Wynse; Hicks, Kevin B

    2007-11-01

    The objective of this study was to explore the potential of near-infrared spectroscopy for determining the compositional quality properties of barley as a feedstock for fuel ethanol production and to compare the prediction accuracy between calibration models obtained using a Fourier transform near-infrared system (FT-NIR) and a dispersive near-infrared system. The total sample set contained 206 samples of three types of barley, hull-less, malt, and hulled varieties, which were grown at various locations in the eastern U.S. from 2002 to 2005 years. A new hull-less barley variety, Doyce, which was specially bred for potential use in ethanol production, was included in the sample set. One hundred and thirty-eight barley samples were used for calibration and sixty-eight were used for validation. Ground barley samples were scanned on both a FTNIR spectrometer (10 000 to 4000 cm(-1) at 4 cm(-1) resolution) and a dispersive NIR spectrometer (400 to 2498 nm at 10 nm resolution), respectively. Six grain components, moisture, starch, beta-glucan, protein, oil, and ash content, were analyzed as parameters of barley quality. Principal component analysis showed that barley samples could be classified by their types: hull-less, malt, and hulled. Partial least squares regression indicated that both FT-NIR and dispersive NIR spectroscopy have the potential to determine quality properties of barley with an acceptable accuracy, except for beta-glucan content. There was no predictive advantage in using a high-resolution FT-NIR instrument over a dispersive system for most components of barley.

  14. Recent development in grain-oriented electrical steel with low magnetostriction

    SciTech Connect

    Yabumoto, M.; Arai, S.; Kawamata, R.; Mizokami, M.; Kubota, T.

    1997-12-01

    For precise evaluations of magnetostriction properties, a new magnetostriction measuring system using a laser vibrometer was developed. Frequency analysis of magnetostriction under non-sinusoidal magnetization revealed a nonlinear relation between harmonics in flux and those in magnetostriction. Transformer core vibration was investigated in order to clarify the relations between magnetostriction and transformer noise and to realize low-noise transformers. Resonance was proved to have an important role for core vibration. Domain-refined, grain-oriented electrical steel, which fulfills low loss and low magnetostriction properties simultaneously, is also explained.

  15. Investigation of a His-rich arabinogalactan-protein for micronutrient biofortification of cereal grain.

    PubMed

    Aizat, Wan M; Preuss, James M; Johnson, Alexander A T; Tester, Mark A; Schultz, Carolyn J

    2011-11-01

    The micronutrient content of most cereal grains is low and responsible for malnutrition deficiencies in millions of people who rely on grains as their primary food source. Any strategy that can increase the micronutrient content of grain will have significant benefits to world health. We identified a gene from barley encoding a cell wall protein with multiple histidine (His)-rich motifs interspersed with short arabinogalactan-protein (AGP) domains and have called it Hordeum vulgare His-rich AGP (HvHRA1). Sequence analysis shows that His-rich AGPs are rare in plants and that the number of His-rich and AGP domains differ between cereals and dicots. The barley and wheat encoded proteins have more than 13 His-rich domains, whereas the putative rice orthologue has only 5 His-rich regions. His-rich motifs are well-established metal-binding motifs; therefore, we developed transgenic (Tx) rice plants that constitutively overexpress barley HvHRA1. There was no significant effect on plant growth or grain yield in Tx plants. Purification of AGPs from wild-type and Tx plants showed that only Tx plants contained detectable levels of a His-rich AGP. Calcein assay shows that the AGP fraction from Tx plants had increased binding affinity for Cu(2+) . Micronutrient analysis of brown and white rice showed that the grain nutrient yield for Fe, Zn and Cu was higher in two Tx lines compared to their respective nulls, although the differences were not statistically significant. This approach highlights the potential of the plant apoplast (cell wall) for storage of key nutrients through overexpression of genes for metal-binding proteins.

  16. Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley.

    PubMed

    Sato, Kazuhiro; Close, Timothy J; Bhat, Prasanna; Muñoz-Amatriaín, María; Muehlbauer, Gary J

    2011-05-01

    Single nucleotide polymorphism (SNP) genotyping is useful for assessing genetic variation in germplasm collections, genetic map development and detection of alien chromosome substitutions. In this study, a diversity analysis using 1,301 SNPs on a set of 37 barley accessions was conducted. This analysis showed a high polymorphism rate between the malting barley cultivar 'Haruna Nijo' and the food barley cultivar 'Akashinriki'. Haruna Nijo and Akashinriki are donors of the barley expressed sequence tag (EST) collections. A doubled haploid (DH) population derived from the cross between Haruna Nijo and Akashinriki was genotyped with 1,448 SNPs. Of these 1,448 SNPs, 734 were polymorphic and distributed on barley linkage groups (chromosomes) as follows: 1H (86), 2H (125), 3H (120), 4H (100), 5H (127), 6H (88) and 7H (88). By using cMAP, we integrated the SNP markers across high-density maps. The SNPs were also used to genotype 98 BC(3)F(4) recombinant chromosome substitution lines (RCSLs) developed from the same cross (Haruna Nijo/Akashinriki). These data were used to create graphical genotypes for each line and thus estimate the location, extent and total number of introgressions from Akashinriki in the Haruna Nijo background. The 35 selected RCSLs sample most of the Akashinriki food barley genome, with only a few missing segments. These resources bring new alleles into the malting barley gene pool from food barley.

  17. Development of DPD coarse-grained models: From bulk to interfacial properties

    NASA Astrophysics Data System (ADS)

    Solano Canchaya, José G.; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-01

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

  18. Development of DPD coarse-grained models: From bulk to interfacial properties.

    PubMed

    Solano Canchaya, José G; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-07

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

  19. Early season spring small grains direct proportion estimation - Development and evaluation of a Landsat based methodology

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.; Trichel, M. C.

    1983-01-01

    The Inventory Technology Development (ITD) project of the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) program has developed an accurate, automated technology for early season estimation of spring small grains areal proportion from Landsat MSS data. The design criteria for an early season procedure included estimates available within the first 30 days of the growing season, low data processing/preprocessing requirements and no need for scene-to-scene registration. The prototype estimator which meets the design goals is based on a constrained linear model in which the observed spectral response of an entire scene is modeled as a linear combination of the major constituent elements in the scene. The procedure was evaluated over 100 sample segments collected for crop years 1976 through 1979 in the U.S. Northern Great Plains. Analysis of the test results indicated accuracy that compare favorably with both the automated at-harvest technologies tested during the FY81-82 AgRISTARS Spring Small Grains Pilot experiments and earlier analyst-intensive at-harvest technologies.

  20. Machine vision methods for use in grain variety discrimination and quality analysis

    NASA Astrophysics Data System (ADS)

    Winter, Philip W.; Sokhansanj, Shahab; Wood, Hugh C.

    1996-12-01

    Decreasing cost of computer technology has made it feasible to incorporate machine vision technology into the agriculture industry. The biggest attraction to using a machine vision system is the computer's ability to be completely consistent and objective. One use is in the variety discrimination and quality inspection of grains. Algorithms have been developed using Fourier descriptors and neural networks for use in variety discrimination of barley seeds. RGB and morphology features have been used in the quality analysis of lentils, and probability distribution functions and L,a,b color values for borage dockage testing. These methods have been shown to be very accurate and have a high potential for agriculture. This paper presents the techniques used and results obtained from projects including: a lentil quality discriminator, a barley variety classifier, a borage dockage tester, a popcorn quality analyzer, and a pistachio nut grading system.

  1. A comparison of factors involved in starch degradation in barley germination under laboratory and malting conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grains of the malting barley cultivar Legacy were laboratory germinated (LG) or micromalted (MM) and sampled daily from 0 to 5 days after imbibition/steeping. Alpha-amylase and beta-amylase activities and protein levels along with starch, osmolyte concentration (OC), and sugar (glucose, sucrose, fr...

  2. Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a devastating disease of barley, causing reductions in yield and quality. Marker-based selection for resistance to FHB and lowered deoxynivalenol (DON) grain concentration would save considerable costs and time associated with phenotyping. A comprehensive marker-based s...

  3. Molecular and chemical characterization of a new waxy allele in barley (Hordeum vulgare L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley M38 mutant was first selected for its high level of mixed-linkage (1,3), (1,4) beta-D-glucan (MLG) in the grain. This elevated level of MLG was found to be associated with thickened endosperm cell wall and reduced amylose accumulation. The M38 mutation was mapped to a genetic locus flanked by...

  4. Impact of removing straw from wheat and barley fields: A literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sustainability of straw removal from wheat and barley fields from the standpoint of its effects on soil properties and nutrient cycling is a concern. A recent literature review reveals that there is no negative effect of small grain straw removal on soil organic carbon (SOC) content with irriga...

  5. Gamma irradiation treatment of cereal grains for chick diets

    SciTech Connect

    Campbell, G.L.; Classen, H.L.; Ballance, G.M.

    1986-04-01

    Wheat (W), triticale (T), hulled barley (HB), hull-less barley (HLB), hulled oats (HO), and hull-less oats (HLO) were gamma irradiated (/sup 60/Co) at 0, 3, 6 and 9 Mrad to study the effect of irradiation on the nutritional value of cereal grains for chicks. A significant curvilinear relationship between radiation dose and 3-wk body weight of chicks fed irradiated cereals was noted for T, HB, HLB, HO and HLO. Chicks fed W or T showed no effect or lower body weight, respectively, while body weights of chicks fed barley or oat samples were higher with irradiation. The improvement tended to be maximal at the 6 Mrad level. Irradiation significantly improved the gain-to-feed ratio for chicks fed either HO or HLO. Apparent fat retention and tibia ash were higher in chicks fed irradiated HLO than in those fed untreated HLO. In a second experiment chick body weight, apparent amino acid and fat retention, tibia ash, and gain-to-feed ratios were lower in chicks fed autoclaved (121 degrees C for 20 min) barley than in those fed untreated barley. Irradiation (6 Mrad) subsequent to autoclaving barley samples eliminated these effects. Irradiation appears to benefit cereals containing soluble or mucilagenous fiber types as typified by beta-glucan of barley and oats. These fibers appear prone to irradiation-induced depolymerization, as suggested by increased beta-glucan solubility and reduced extract viscosity for irradiated barley and oat samples.

  6. Genome-Wide Comparative Analysis of Flowering-Related Genes in Arabidopsis, Wheat, and Barley

    PubMed Central

    Peng, Fred Y.; Hu, Zhiqiu; Yang, Rong-Cai

    2015-01-01

    Early flowering is an important trait influencing grain yield and quality in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in short-season cropping regions. However, due to large and complex genomes of these species, direct identification of flowering genes and their molecular characterization remain challenging. Here, we used a bioinformatic approach to predict flowering-related genes in wheat and barley from 190 known Arabidopsis (Arabidopsis thaliana (L.) Heynh.) flowering genes. We identified 900 and 275 putative orthologs in wheat and barley, respectively. The annotated flowering-related genes were clustered into 144 orthologous groups with one-to-one, one-to-many, many-to-one, and many-to-many orthology relationships. Our approach was further validated by domain and phylogenetic analyses of flowering-related proteins and comparative analysis of publicly available microarray data sets for in silico expression profiling of flowering-related genes in 13 different developmental stages of wheat and barley. These further analyses showed that orthologous gene pairs in three critical flowering gene families (PEBP, MADS, and BBX) exhibited similar expression patterns among 13 developmental stages in wheat and barley, suggesting similar functions among the orthologous genes with sequence and expression similarities. The predicted candidate flowering genes can be confirmed and incorporated into molecular breeding for early flowering wheat and barley in short-season cropping regions. PMID:26435710

  7. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process

    PubMed Central

    2010-01-01

    Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal

  8. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley.

    PubMed

    Högy, Petra; Poll, Christian; Marhan, Sven; Kandeler, Ellen; Fangmeier, Andreas

    2013-02-15

    Spring barley was grown in a field experiment under moderately elevated soil temperature and changed summer precipitation (amount and frequency). Elevated temperature affected the performance and grain quality characteristics more significant than changes in rainfall. Except for the decrease in thousand grain weight, warming had no impacts on aboveground biomass and grain yield traits. In grains, several proteinogenic amino acids concentrations were increased, whereas their composition was only slightly altered. Concentration and yield of total protein remained unaffected under warming. The concentrations of total non-structural carbohydrates, starch, fructose and raffinose were lower in plants grown at high temperatures, whereas maltose was higher. Crude fibre remained unaffected by warming, whereas concentrations of lipids and aluminium were reduced. Manipulation of precipitation only marginally affected barley grains: amount reduction increased the concentrations of several minerals (sodium, copper) and amino acids (leucine). The projected climate changes may most likely affect grain quality traits of interest for different markets and utilisation requirements.

  9. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  10. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars

    PubMed Central

    Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta

    2016-01-01

    In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi). PMID:27227880

  11. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars.

    PubMed

    Mikołajczak, Krzysztof; Ogrodowicz, Piotr; Gudyś, Kornelia; Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta

    2016-01-01

    In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi).

  12. NEAMS FPL M2 Milestone Report: Development of a UO₂ Grain Size Model using Multicale Modeling and Simulation

    SciTech Connect

    Tonks, Michael R; Zhang, Yongfeng; Bai, Xianming

    2014-06-01

    This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO₂ fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

  13. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Lim, C. S.; Hong, S. T.; Yi, J. K.; Choi, S. G.; Oh, K. J.; Nagata, Y.; Yamada, H.; Hamada, N.

    2007-03-21

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully.

  14. An EBSD study of texture development and hybrid deformation mechanisms in fine grained calcite aggregates deformed in direct shear

    NASA Astrophysics Data System (ADS)

    Maeder, X.; Trullenque, G.; Drury, M. R.; de Bresser, J.

    2007-12-01

    Understanding of texture development and its relation to grain size sensitive (GSS) deformation mechanism is of great importance since the rheological behavior of rocks varies substantially depending on which deformation mechanisms are controlling. Recent studies on naturally and experimentally deformed calcite and olivine aggregates have demonstrated that even fine grained materials that are expected to deform by grain size sensitive (GSS) mechanisms, develop a weak but distinct LPO (texture) at high strain. To investigate this behavior we conducted new deformation experiments on Solnhofen limestone in direct shear. This study is part of a wider investigation on large strain deformation in different deformation modes from G. Trullenque, in collaboration with D.L. Kohlstedt (Minneapolis, USA), R. Heilbronner and H. Stuenitz (Basel, Switzerland) and the Utrecht group. The samples have been deformed to high strain both in the conditions of the transition between the GSS and GSI creep regime and in the GSS creep regime. We used Electron Backscatter Diffraction (EBSD) to determine the texture strength of the samples, the distribution of misorientation axes and the grain size distributions. The results show an oblique shape preferred orientation at 35° to 40° to the shear plane and a moderate LPO. The c-axis preferred orientation shows a girdle with one main maximum at a high angle to the shear plane, displaced towards the shortening direction of the imposed shear. The a-axes present a weak girdle perpendicular to the c-axis. Grain growth occurred during high deformation. The misorientation angle distribution has a main peak at low angle. This is due to the progressive subgrain formation and rotation which occurred mainly in the larger grains. Subgrain rotation with misorientations up to 10° occured but most boundaries are low angle (< 5°). This shows the formation of new high angle boundaries and grain size reduction. The formation of subgrains and subgrain

  15. [Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-triticum aestivum].

    PubMed

    Pershina, L A; Deviatkina, E P; Belova, L I; Trubacheeva, N V; Arbuzova, V S; Kravtsova, L A

    2009-10-01

    Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1Hmr((IB), 5Hmar(5D), and 7Hmar(7D), and the disomic-substituted line 7Hma(7D). The lines were constructed on the basis of individual plants from BCIF8- and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) x T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HLma' isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D) or the alloplasmic line 7HLmar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.

  16. Long-term influence of feeding barley treated with lactic acid and heat on performance and energy balance in dairy cows.

    PubMed

    Gruber, Leonhard; Khol-Parisini, Annabella; Humer, Elke; Abdel-Raheem, Sherief M; Zebeli, Qendrim

    2017-02-01

    The study evaluated the long-term influence of feeding ground barley treated with lactic acid (LA) alone or with LA and heat on performance, energy and protein balance in dairy cows. Thirty cows were fed three diets differing in the treatment of barley grain, either unprocessed ground barley (Control), ground barley steeped in 1% LA at room temperature (LA-treated barley) or ground barley steeped in 1% LA with an additional heating at 55°C (LAH-treated barley). Cows were studied from week 3 to 17 post-partum. Dry matter intake (DMI), milk yield and composition and body weight (BW) were measured daily. Estimated energy and protein balances were calculated and blood samples were collected three times during the experiment and analysed for common metabolites of energy and lipid metabolism. Digestibility of different treated barley and other dietary ingredients was investigated in vivo using four wethers. The treatment of barley with LA and LAH increased the digestibility of organic matter (OM) by approximately 5% and the content of metabolisable energy by 0.5-0.6 MJ/kg DM. Data showed no effect of feeding diets containing LA- or LAH-treated barley at 39% of DM on overall DMI, BW, BW change, milk production and composition and on the blood variables studied. Diet influenced the estimated balances of net energy of lactation (p < 0.01) and the content of utilisable protein at the duodenum (p = 0.07) with cows fed the diet with LA-treated barley showing improved balances. In conclusion, feeding diets containing LA- or LAH-treated barley had no influence on performance, milk composition and blood metabolites, but LA treatment without heat seems to improve the energy balance of cows.

  17. Registration of Harriman low-phytate, hulled spring barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, U.S. Department of Agriculture (USDA-ARS), has released 'Harriman', (Hordeum vulgare L.) (Reg. No. xxxxxx, P.I. xxxxxx). Harriman is a hulled, low-phytate barley, the second to be developed and released by the USDA-ARS. Compared to the previously released hulled, l...

  18. Registration of ‘Merem’ spring malting barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Merem’ is a two-rowed spring malting barley (Hordeum vulgare L.) developed by the USDA-ARS, Aberdeen, ID, in cooperation with the University of Idaho Agricultural Experiment Station. Merem has been tested in USDA-ARS, and all other cooperative trials as “02Ab17271”. ‘02Ab17271’ is a selection fro...

  19. Registration of ‘Muir’ spring feed barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Muir’ (Reg. No. CV-357, PI 674172) is a two-row, spring, hulled feed barley (Hordeum vulgare L.) cultivar developed and evaluated as 07WA-601.6, and released in 2013 by Washington State University (WSU). Muir was derived from the cross ‘Baronesse’/‘Bob’ and selected through singleseed descent from ...

  20. Structural and Functional Characterization of a Winter Malting Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of winter malting barley (Hordeum vulgare L.) varieties is emerging as a worldwide priority due to the numerous advantages of these varieties over spring types. However, the complexity of both malting quality and winter hardiness phenotypes makes simultaneous improvement a challenge....

  1. Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality.

    PubMed

    Shewry, P R; Tatham, A S; Halford, N G; Barker, J H; Hannappel, U; Gallois, P; Thomas, M; Kreis, M

    1994-01-01

    Wheat and barley are the major temperate cereals, being used for food, feed and industrial raw material. However, in all cases the quality may be limited by the amount, composition and properties of the grain storage proteins. We describe how a combination of biochemical and molecular studies has led to an understanding of the molecular basis for breadmaking quality in wheat and feed quality in barley, and also provided genes encoding key proteins that determine quality. The control of expression of these genes has been studied in transgenic tobacco plants and by transient expression in cereal protoplasts, providing the basis for the production of transgenic cereals with improved quality characteristics.

  2. A beta-turn rich barley seed protein is correctly folded in Escherichia coli.

    PubMed

    Tamas, L; Greenfield, J; Halford, N G; Tatham, A S; Shewry, P R

    1994-08-01

    Wild-type and cysteine-containing mutant C hordeins from barley were expressed in Escherichia coli at high levels (> or = 30mg/liter). N-terminal sequence analysis, SDS-PAGE, RP-HPLC, cd spectroscopy, and small angle X-ray scattering demonstrated that their physicochemical properties were similar to those of C hordeins isolated from barley grain. This indicates that the expressed proteins were correctly folded. The cysteine-containing mutant showed evidence of polymer formation in E. coli, nonreduced preparations of the protein showing the presence of polymers that were replaced by a single protein when a reducing agent was added.

  3. WHOLE GRAIN INTAKE, DEFINITION AND DATABASE DEVELOPMENT: THE BALTIMORE LONGITUDINAL STUDY OF AGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to identify major dietary sources of whole grains, show changes in intakes over time, and describe the construction of a database of whole grain content of foods. Dietary data were collected using 7-d diet records during four time periods (1961-1965; 1968-1975; 1984-...

  4. Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins

    PubMed Central

    Mundy, John; Hejgaard, Jørn; Hansen, Annette; Hallgren, Lars; Jorgensen, Kim G.; Munck, Lars

    1986-01-01

    To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA3. B and C hordein polypeptides and the salt-soluble proteins β-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2), the α-amylase/subtilisin inhibitor (ASI) and the inhibitor of animal cell-free protein synthesis systems (PSI) were synthesized with mRNA from developing starchy endosperm tissue. Of these proteins, β-amylase, protein Z, and CI- 1 and 2 were also synthesized with mRNA from developing aleurone cells, but ASI, PSI, and protein C were not. CI-1 and also a probable amylase/protease inhibitor (PAPI) were synthesized at high levels with mRNAs from late developing and mature aleurone. These results show that mRNAs encoding PAPI and CI-1 survive seed dessication and are long-lived in aleurone cells. Thus, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment. In contrast, synthesis of α-amylase (included as control) and of ASI showed antagonistic hormonal control: while GA promotes and ABA reduces accumulation of mRNA for α-amylase, these hormones have the opposite effect on ASI mRNA levels. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16664868

  5. Screening of the aerodynamic and biophysical properties of barley malt

    NASA Astrophysics Data System (ADS)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  6. Chromosomal loci associated with endosperm hardness in a malting barley cross.

    PubMed

    Walker, Cassandra K; Panozzo, J F; Ford, R; Eckermann, P; Moody, D; Lehmensiek, A; Appels, R

    2011-01-01

    A breeding objective for the malting barley industry is to produce lines with softer, plumper grain containing moderate protein content (9-12%) as they are more likely to imbibe water readily and contain more starch per grain, which in turn produces higher levels of malt extract. In a malting barley mapping population, 'Arapiles' × 'Franklin', the most significant and robust quantitative trait locus (QTL) for endosperm hardness was observed on the short arm of chromosome 1H, across three environments over two growing seasons. This accounted for 22.6% (Horsham 2000), 26.8% (Esperance 2001), and 12.0% (Tarranyurk 2001) of the genetic variance and significantly increased endosperm hardness by 2.06-3.03 SKCS hardness units. Interestingly, Arapiles and Franklin do not vary in Ha locus alleles. Therefore, this region, near the centromere on chromosome 1H, may be of great importance when aiming to manipulate endosperm hardness and malting quality. Interestingly, this region, close to the centromere on chromosome 1H, in our study, aligns with the region of the genome that includes the HvCslF9 and the HvGlb1 genes. Potentially, one or both of these genes could be considered to be candidate genes that influence endosperm hardness in the barley grain. Additional QTLs for endosperm hardness were detected on chromosomes 2H, 3H, 6H and 7H, confirming that the hardness trait in barley is complex and multigenic, similar to many malting quality traits of interest.

  7. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake.

    PubMed

    Juan, C; Berrada, H; Mañes, J; Oueslati, S

    2017-02-27

    A study on raw barley and derived products (barley soup and beers) was carried out to determine the natural presence of twenty-four mycotoxins by both liquid chromatography and gas chromatography coupled to tandem mass spectrometry (MS/MS). The developed multi-mycotoxin procedure was based on both SLE and QuEChERS extraction steps. 66% of analyzed samples presented mycotoxin contamination and only one sample, which was soup of barley (6 ng/g), exceeded the maximum level (ML) established by EU for OTA (5 ng/g). Raw barley was the most contaminated matrix (62%), which concentrations ranged from 1.70 to 287.13 ng/g) and type of detected mycotoxins (DON, 15AcDON, NEO, NIV, HT2, FB1, OTA, ENA, ENA1, ENB and ENB1). DON was the most detected mycotoxin with an incidence of 56%, 29% and 23% in beer, soup of barley and barley, respectively. However, the highest levels detected were for ENA, in raw barley with 287 ng/g. In beer and soup of barley samples, the mycotoxins with highest level were 15AcDON (15.6 ng/g) and ENB1 (55.1 ng/g), respectively. Furthermore, 80% of positive soup of barley samples showed co-occurrence. No toxicological concern was associated to mycotoxins exposure for consumers.

  8. iTAG Barley: A 9-12 classroom module to explore gene expression and segregation using Oregon Wolfe Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oregon Wolfe Barleys (OWBs) are a model resource for genetics research and instruction (http://barleyworld.org/oregonwolfe ; http://wheat.pw.usda.gov/ggpages/OWB_gallery/ISS-OWB/index.htm). The population of 94 doubled haploid lines was developed from an F1 of a cross between dominant and reces...

  9. Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy

    NASA Astrophysics Data System (ADS)

    Song, Jie; Field, Robert; Konitzer, Doug; Kaufman, Michael

    2017-02-01

    In this study, the morphology and development of precipitate-free zones (PFZs) near grain boundaries (GBs) in low coefficient of thermal expansion (CTE) Ni-Mo-Cr-W alloys (based on Haynes 244) have been investigated as a function of thermal history and composition using electron microscopy techniques. It is shown that the formation of wide, continuous PFZs adjacent to GBs can be largely attributed to a vacancy depletion mechanism. It is proposed that variations in the vacancy distributions that develop after solution heat treatment (SHT) and subsequent quenching and aging greatly influence the development of the γ'-Ni2(Mo,Cr) precipitates during the aging process and result in the development of PFZs of varying sizes. The relatively large (5 to 10 μm) PFZs are distinct from the smaller, more common PFZs that result from solute depletion due to GB precipitation that are typically observed after prolonged aging. During the course of this investigation, heat treatment parameters, such as aging time, SHT temperature, cooling rate after SHT, and heating rate to the aging temperature—all of which change vacancy concentration and distribution adjacent to GBs—were investigated and observed to have significant influence on both the size and morphology of the observed PFZs. In contrast to results from other Ni-based alloys studied previously, PFZ development in the current alloys was observed across a broad range of aging temperatures. This appears to be due to the high misfit strain energy of the γ' precipitates, resulting in a nucleation process that is sensitive to vacancy concentration. It is also shown that a slightly modified alloy with higher Mo concentrations develops smaller, more typical PFZs; this is presumably due to an increased driving force for γ' precipitation which overshadows the influence of misfit strain energy, thereby decreasing the sensitivity of precipitation on vacancy concentration.

  10. Modeling grain size adjustments in the downstream reach following run-of-river development

    NASA Astrophysics Data System (ADS)

    Fuller, Theodore K.; Venditti, Jeremy G.; Nelson, Peter A.; Palen, Wendy J.

    2016-04-01

    Disruptions to sediment supply continuity caused by run-of-river (RoR) hydropower development have the potential to cause downstream changes in surface sediment grain size which can influence the productivity of salmon habitat. The most common approach to understanding the impacts of RoR hydropower is to study channel changes in the years following project development, but by then, any impacts are manifest and difficult to reverse. Here we use a more proactive approach, focused on predicting impacts in the project planning stage. We use a one-dimensional morphodynamic model to test the hypothesis that the greatest risk of geomorphic change and impact to salmon habitat from a temporary sediment supply disruption exists where predevelopment sediment supply is high and project design creates substantial sediment storage volume. We focus on the potential impacts in the reach downstream of a powerhouse for a range of development scenarios that are typical of projects developed in the Pacific Northwest and British Columbia. Results indicate that increases in the median bed surface size (D50) are minor if development occurs on low sediment supply streams (<1 mm for supply rates 1 × 10-5 m2 s-1 or lower), and substantial for development on high sediment supply streams (8-30 mm for supply rates between 5.5 × 10-4 and 1 × 10-3 m2 s-1). However, high sediment supply streams recover rapidly to the predevelopment surface D50 (˜1 year) if sediment supply can be reestablished.

  11. Feeding performance and life table parameters of Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on various barley cultivars.

    PubMed

    Golizadeh, A; Abedi, Z

    2017-03-14

    The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a common pest of cereal grains and other stored products. In this study, the effects of ten barley cultivars (Abidar, Bahman, Line20, Line22, Line30, Lisuei, Lokht11, Makuyi, Sahand, and Sahraa) were evaluated on life table parameters and nutritional indices of T. granarium under the following laboratory conditions: 33 ± 1°C, 60 ± 5% RH, and a photoperiod of 14: 10 (L: D) h. Life history parameters of T. granarium could be appropriate indices in resistance and susceptibility evaluation of barley cultivars. The maximum survival rate of immature stages was observed on Makuyi and Lisuei cultivars and the minimum rate was on Abidar and Line22 cultivars. The shortest development time was on Makuyi cultivar and the longest on Line22 cultivar. Pupal weight was ranged from 2.56 mg on Lokht11 to 4.86 mg on Makuyi. Fecundity and egg-hatching rates were highest on Lisuei cultivar and the adults were long-lived on Makuyi cultivar. The highest r m values were observed on Makuyi and Lisuei cultivars but lower value of it resulted from rearing of T. granarium on Line22 cultivar (0.0350 female per female day-1). The results showed that T. granarium larvae fed on Makuyi cultivar had higher values of relative consumption rate and relative growth rate. The results indicated that Makuyi and Lisuei cultivars were relatively susceptible barley cultivars and Line22 was the most inappropriate cultivar for feeding of T. granarium, which could prove useful in the development of Integrated Pest Management programs for this pest.

  12. Application of Molecular Genetics and Transformation to Barley Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter of the new barley monograph summarizes current applications of molecular genetics and transformation to barley improvement. The chapter describes recent applications of molecular markers including association genetics, QTL mapping and marker assisted selection in barley programs, and in...

  13. Development of a supervisory control strategy for the optimal operation of grain dryers

    SciTech Connect

    Vasconcelos, L.G.S.; Filho, R.M.

    1998-10-01

    In spite of the importance and especially high energy demands of grain dryers, relatively few studies have been carried out to discover the optimal conditions for their operation. High performance operation can only be achieved if an adequate operating strategy is developed. For its implementation, a reliable control structure is required, and some of the limitations of the conventional control strategies normally used in dryers are observed. These strategies are SISO; the control normally used presents low performance and the disturbance is characterized by several amplitudes and frequencies. A possible way to minimize this difficulty consists of defining the multilevel structure such that each level acts at a given amplitude and frequency. In order to implement this multilevel structure, an optimization problem was developed to function as a supervisory control and a predictive algorithm (DMC) was used for servo or regulatory control. The proposed DMC algorithm presented satisfactory results for the load rejection and set-point variation, only when a small disturbance was applied. For a larger disturbance an optimization procedure was necessary. The routine efficiently maintained the optimal operational conditions of the dryer and could be used in the supervisory control of the system.

  14. Barley cultivar, kernel composition, and processing affect the glycemic index.

    PubMed

    Aldughpassi, Ahmed; Abdel-Aal, El-Sayed M; Wolever, Thomas M S

    2012-09-01

    Barley has a low glycemic index (GI), but it is unknown whether its GI is affected by variation in carbohydrate composition in different cultivars and by food processing and food form. To examine the effect of these factors on GI, 9 barley cultivars varying in amylose and β-glucan content were studied in 3 experiments in separate groups of 10 healthy participants. In Expt. 1, 3 barley cultivars underwent 2 levels of processing: hull removal [whole-grain (WG)] and bran, germ, and crease removal [white pearled (WP)]. GI varied by cultivar (CDC Fibar vs. AC Parkhill, [mean ± SEM]: 26 ± 3 vs. 53 ± 4, respectively; P < 0.05) and pearling (WG vs. WP: 26 ± 4 vs. 35 ± 3, respectively; P < 0.05) with no cultivar × pearling interaction. In Expt. 2, the GI of 7 WG cultivars ranged from 21 ± 4 to 36 ± 8 (P = 0.09). In Expt. 3, WG and WP AC Parkhill and Celebrity cultivars were ground and made into wet pasta. The GI of AC Parkhill pasta (69 ± 3) was similar to that of Celebrity pasta (64 ± 4) but, unlike in Expt. 1, the GI of WP pasta (61 ± 3) was less than that of WG pasta (72 ± 4) (P < 0.05). Pooled data from Expts. 1 and 2 showed that GI was correlated with total fiber (r = -0.75, P = 0.002) but not with measures of starch characteristics. We conclude that the GI of barley is influenced by cultivar, processing, and food form but is not predicted by its content of amylose or other starch characteristics.

  15. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds.

    PubMed

    Begcy, Kevin; Walia, Harkamal

    2015-11-01

    Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat.

  16. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].

    PubMed

    Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu

    2012-11-01

    Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.

  17. Should wheat, barley, rye, and/or gluten be avoided in a 6-food elimination diet?

    PubMed

    Kliewer, Kara L; Venter, Carina; Cassin, Alison M; Abonia, J Pablo; Aceves, Seema S; Bonis, Peter A; Dellon, Evan S; Falk, Gary W; Furuta, Glenn T; Gonsalves, Nirmala; Gupta, Sandeep K; Hirano, Ikuo; Kagalwalla, Amir; Leung, John; Mukkada, Vincent A; Spergel, Jonathan M; Rothenberg, Marc E

    2016-04-01

    Eosinophilic esophagitis (EoE), a food antigen-mediated disease, is effectively treated with the dietary elimination of 6 foods commonly associated with food allergies (milk, wheat, egg, soy, tree nuts/peanuts, and fish/shellfish). Because wheat shares homologous proteins (including gluten) with barley and rye and can also be processed with these grains, some clinicians have suggested that barley and rye might also trigger EoE as a result of cross-reaction and/or cross-contamination with wheat. In this article, we discuss the theoretical risks of cross-reactivity and cross-contamination among wheat, barley, and rye proteins (including gluten); assess common practices at EoE treatment centers; and provide recommendations for dietary treatment and future studies of EoE.

  18. Mobile bag starch prececal disappearance and postprandial glycemic response of four forms of barley in horses.

    PubMed

    Philippeau, C; Varloud, M; Julliand, V

    2014-05-01

    To determine prececal starch digestibili-ty and estimate glucose uptake from the digestion of 4 forms of barley in the small intestine, 4 mature cecally fistulated geldings (449 ± 41 kg BW) fed a 62:38 (wt/wt) meadow hay:concentrate diet at 1.7 kg DM/100 kg BW were included in a 4 × 4 Latin square design experiment. During each period, horses received 80% DM of their concentrate as 1 of the 4 forms of a same batch of barley, whole grain, 2.5 mm ground, steam flaked, and pelleted. Hay was offered in 2 equal meals and concentrate in 2 unequal meals. The starch supply in the morning meal amounted 2.7 g starch/kg BW. At each period, mobile bag DM and starch disappearance was determined. Except for ground barley, each form of barley was 4 mm ground before being introduced in the bag. Nylon bags containing each substrate were intubated in the horse receiving the pelleted barley. Bags were collected in the cecum for 10 h postintubation. At each period, postprandial glycemia was measured on blood samples collected on the 4 horses via an indwelling jugular catheter just before the concentrate morning meal and for 8 h. No hay in the morning meal was given the day of the measurements. Whole blood glucose was analyzed with a portable blood glucose meter. Mobile bag prececal DM disappearance and starch disappearance depended (P < 0.01) on barley form. Prececal starch disappearance of whole barley was the lowest but no difference (P > 0.05) was detected among the 3 processed grains. No significant effect of barley form was found whatever the glycemic parameters. No significant correlation was reported between glycemic parameters and the amount of prececal mobile bag disappeared starch calculated as the starch intake in the morning meal by the mobile bag starch disappearance. To conclude, the whole form of barley exhibited the lowest prececal mobile bag starch disappearance whereas, in relationship with large individual variations, no significant variation has been shown in

  19. Barley 4H QTL confers NFNB resistance to a global set of P. teres f. teres isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net form net blotch (NFNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley-growing regions worldwide. A population of 132 recombinant inbred lines (RILs) developed from a cross of the barley varieties 'Falcon' and 'Azhul' were used to evaluate resistance to NFNB due to their di...

  20. Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....

  1. Free choice feeding of whole grains in meat-type pigeons: 1. effect on performance, carcass traits and organ development.

    PubMed

    Xie, P; Jiang, X-Y; Bu, Z; Fu, S-Y; Zhang, S-Y; Tang, Q-P

    2016-10-11

    The effects of 5 different feeding systems on the performance, carcass traits and organ development were studied in pigeon squabs. The 5 treatments were (1) whole grains of maize, pea and wheat plus concentrate feed; (2)whole grains of maize and wheat plus concentrate feed (CWC); (3) whole grains of maize and pea plus concentrate feed; (4)whole grain of maize plus concentrate feed (CC); and (5) compound feed (CF). Feed intake of parent pigeons increased significantly from 0 to 21 d and it was higher in the CF treatment. Body weight of squabs in the CWC treatment was the highest among the 5 treatments in 4 weeks. Body weight losses of parental pigeons during the rearing period were not significantly different among the 5 treatments. Protein intake in CC and CWC treatments was lower than that of the other three treatments. The CWC treatment had the highest daily weight gain and the lowest feed conversion ratio. Treatments were statistically similar in the relative weight of carcass, breast and thigh. CF had the lower relative weight of abdominal fat. Relative weight of gizzard in the CF treatment was significantly lower than that of CWC. It was concluded that the application of free choice feeding of whole grains of maize and wheat plus concentrate feed increased the body weight of 28-d-old pigeon squabs and decreased the feed conversion rate of parent pigeons. This feeding strategy could be commercially interesting in meat-type pigeon production.

  2. Marketing Farm Grain Crops.

    ERIC Educational Resources Information Center

    Ridenour, Harlan E.

    This vocational agriculture curriculum on grain marketing contains three parts: teacher guide, student manual, and student workbook. All three are coordinated and cross-referenced. The course is designed to give students of grain marketing a thorough background in the subject and provide practical help in developing grain marketing strategies for…

  3. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of the developing wheat (Triticum aestivum L.) grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature during grain fill reduces wheat yield and alters flour quality. Starchy endosperm cell morphology was investigated in wheat (Triticum aestivum L. ‘Butte 86’) grain produced under a 24/17 °C or 37/28 °C day/night regimen imposed from anthesis to maturity to identify changes in cell s...

  4. Identification of Quantitative Trait Loci for the Phenolic Acid Contents and Their Association with Agronomic Traits in Tibetan Wild Barley.

    PubMed

    Cai, Shengguan; Han, Zhigang; Huang, Yuqing; Hu, Hongliang; Dai, Fei; Zhang, Guoping

    2016-02-03

    Phenolic acids have been of considerable interest in human nutrition because of their strong antioxidative properties. However, even in a widely grown crop, such as barley, their genetic architecture is still unclear. In this study, genetic control of two main phenolic acids, ferulic acid (FA) and p-coumaric acid (p-CA), and their associations with agronomic traits were investigated among 134 Tibetan wild barley accessions. A genome-wide association study (GWAS) identified three DArT markers (bpb-2723, bpb-7199, and bpb-7273) associated with p-CA content and one marker (bpb-3653) associated with FA content in 2 consecutive years. The contents of the two phenolic acids were positively correlated with some agronomic traits, such as the first internode length, plant height, and some grain color parameters, and negatively correlated with the thousand-grain weight (TGW). This study provides DNA markers for barley breeding programs to improve the contents of phenolic acids.

  5. Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products.

    PubMed

    Gibreel, Amera; Sandercock, James R; Lan, Jingui; Goonewardene, Laksiri A; Zijlstra, Ruurd T; Curtis, Jonathan M; Bressler, David C

    2009-03-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility.

  6. Fermentation of Barley by Using Saccharomyces cerevisiae: Examination of Barley as a Feedstock for Bioethanol Production and Value-Added Products ▿

    PubMed Central

    Gibreel, Amera; Sandercock, James R.; Lan, Jingui; Goonewardene, Laksiri A.; Zijlstra, Ruurd T.; Curtis, Jonathan M.; Bressler, David C.

    2009-01-01

    The objective of this study was to examine the ethanol yield potential of three barley varieties (Xena, Bold, and Fibar) in comparison to two benchmarks, corn and wheat. Very high gravity (VHG; 30% solids) fermentations using both conventional and Stargen 001 enzymes for starch hydrolysis were carried out as simultaneous saccharification and fermentation. The grains and their corresponding dried distiller's grain with solubles (DDGS) were also analyzed for nutritional and value-added characteristics. A VHG traditional fermentation approach utilizing jet-cooking fermentation revealed that both dehulled Bold and Xena barley produced ethanol concentrations higher than that produced by wheat (12.3, 12.2, and 11.9%, respectively) but lower than that produced by corn (13.8%). VHG-modified Stargen-based fermentation of dehulled Bold barley demonstrated comparable performance (14.3% ethanol) relative to that of corn (14.5%) and wheat (13.3%). Several important components were found to survive fermentation and were concentrated in DDGS. The highest yield of phenolics was detected in the DDGS (modified Stargen 001, 20% solids) of Xena (14.6 mg of gallic acid/g) and Bold (15.0 mg of gallic acid/g) when the hull was not removed before fermentation. The highest concentration of sterols in DDGS from barley was found in Xena (3.9 mg/g) when the hull was included. The DDGS recovered from corn had the highest concentration of fatty acids (72.6 and 77.5 mg/g). The DDGS recovered from VHG jet-cooking fermentations of Fibar, dehulled Bold, and corn demonstrated similar levels of tocopherols and tocotrienols. Corn DDGS was highest in crude fat but was lowest in crude protein and in vitro energy digestibility. Wheat DDGS was highest in crude protein content, similar to previous studies. The barley DDGS was the highest in in vitro energy digestibility. PMID:19114516

  7. Developing a Standard Definition of Whole-Grain Foods for Dietary Recommendations: Summary Report of a Multidisciplinary Expert Roundtable Discussion12

    PubMed Central

    Ferruzzi, Mario G.; Jonnalagadda, Satya S.; Liu, Simin; Marquart, Len; McKeown, Nicola; Reicks, Marla; Riccardi, Gabriele; Seal, Chris; Slavin, Joanne; Thielecke, Frank; van der Kamp, Jan-Willem; Webb, Densie

    2014-01-01

    Although the term “whole grain” is well defined, there has been no universal standard of what constitutes a “whole-grain food,” creating challenges for researchers, the food industry, regulatory authorities, and consumers around the world. As part of the 2010 Dietary Guidelines for Americans, the U.S. Dietary Guidelines Technical Advisory Committee issued a call to action to develop definitions for whole-grain foods that could be universally accepted and applied to dietary recommendations and planning. The Committee’s call to action, and the lack of a global whole-grain food definition, was the impetus for the Whole Grain Roundtable held 3–5 December 2012 in Chicago, Illinois. The objective was to develop a whole-grain food definition that is consistent with the quartet of needs of science, food product formulation, consumer behavior, and label education. The roundtable’s expert panel represented a broad range of expertise from the United States and Europe, including epidemiology and dietary intervention researchers, consumer educators, government policy makers, and food and nutrition scientists from academia and the grain food industry. Taking into account the totality, quality, and consistency of available scientific evidence, the expert panel recommended that 8 g of whole grain/30 g serving (27 g/100 g), without a fiber requirement, be considered a minimum content of whole grains that is nutritionally meaningful and that a food providing at least 8 g of whole grains/30-g serving be defined as a whole-grain food. Having an established whole-grain food definition will encourage manufacturers to produce foods with meaningful amounts of whole grain, allow consistent product labeling and messaging, and empower consumers to readily identify whole-grain foods and achieve whole-grain dietary recommendations. PMID:24618757

  8. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate. [Triticum aestivum

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1987-06-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and /sup 32/P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.

  9. [Features of the formation of self-fertile euploid lines (2n = 42) by self-pollination of the 46-chromosome barley-wheat BC1 hybrid Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) x Triticum aestivum L. (2n = 42)].

    PubMed

    Pershina, L A; Trubacheeva, N V; Rakovtseva, T S; Belova, L I; Deviatkina, E P; Kravtsova, L A

    2006-12-01

    We studied some features of the development of self-fertile 42-chromosome lines on the base of self-pollination progeny of 46-chromosome plants obtained by backcrossing of barley--wheat hybrids Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) x Triticum aestivum L. (2n = 42). The stabilization of karyotypes, resulting in 42-chromosome plants of the wheat type was generally completed by generation BC1F10. The plants of all self-pollination progenies, including BC1F10, showed some phenotypic traits characteristic of wild barley. Plants of BC1F10 with the chromosome sets 2n = 42 and 2n = 42 + t were analyzed by RAPD with a set of 115 primers. Fragments of the wild barley genome were detected in RAPD patterns with 19 primers. Cross-hybridization confirmed that these fragments belonged to the wild barley genome. We raised four phenotypically different 42-chromosome lines from grains obtained from plants of generation BC1F10, and these lines proved to be cytogenetically stable and self-fertile when grown in the field.

  10. Mississippi Valley Uniform Regional Barley Nursery 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is a cooperative venture involving state agricultural experiment stations and the Agricultural Research Service. The purpose of the nursery is to evaluate advanced barley germplasm for suitability as malting barley for the upper Midwestern U.S. Eight locations contributed useable data ...

  11. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.

    PubMed

    Krishnan, Prameela; Chopra, Usha Kiran; Verma, Ajay Pal Singh; Joshi, Devendra Kumar; Chand, Ishwar

    2014-04-01

    Changes in water status of developing grains of maize (Zea mays L.) grown under different nitrogen levels were characterized by nuclear magnetic resonance (NMR) spectroscopy. There were distinct changes in water status of grains due to the application of different levels of nitrogen (0, 120 and 180 kg N ha(-1)). A comparison of the grain developmental characteristics, composition and physical properties indicated that, not only the developmental characteristics like grain weight, grain number/ear, and rate of grain filling increased, but also bound water characterized by the T2 component of NMR relaxation increased with nitrogen application (50-70%) and developmental stages leading to maturation (10-60%). The consistency in the patterns of responses to free water and intermediate water to increasing levels of nitrogen application and grain maturity suggested that nitrogen application resulted in more proportion of water to both bound- and intermediate states and less in free state. These changes are further corroborated by the concomitant increases in protein and starch contents in grains from higher nitrogen treatments as macromolecules like protein and starch retain more amount of water in the bound state. The results of the changes in T2 showed that water status during grain development was not only affected by developmental processes but also by nitrogen supply to plants. This study strongly indicated a clear nutrient and developmental stage dependence of grain tissue water status in maize.

  12. Transgenic wheat carrying a barley UDP-glucosyltransferase exhibit high levels of Fusarium head blight resistance by detoxifying trichothecenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a worldwide disease of wheat and barley, mainly caused by Fusarium graminearum. During infection, the fungal pathogen produces trichothecene mycotoxins, such as deoxynivalenol (DON) and nivalenol (NIV) that increase fungal virulence. Moreover, grains contaminated with t...

  13. Understanding consumer preference for functional tortillas including whole barley flour using sensory and demographic/behavioral data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. population has failed to incorporate sufficient amounts of whole grains and soluble fiber into their diet. The main objectives of this study were to investigate consumer acceptance of soluble fiber-enriched and low-fat tortillas made with blends of different particle size whole barley flour...

  14. Analysis of alkylresorcinols in wheat germ oil and barley germ oil via HPLC and flourescence detection: Cochromatography with tocols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkylresorcinols are long chain phenolic compounds that have been reported to be localized in the outer layers of the kernels of wheat, rye, barley and other grains. A sensitive HPLC method with fluorescence detection was recently reported for the quantitative analysis of alkylresorcinols in cereal...

  15. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    PubMed

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  16. Historical development of grain moisture measurement and other food quality sensing through electrical properties.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of the use of electrical properties of agricultural products for sensing moisture content and other qualities shows that their use for rapid measurements of the moisture content in grain and seed has been the most successful application. Discovery of useful correlations between the moistur...

  17. Sucrose Concentration Gradients along the Post-Phloem Transport Pathway in the Maternal Tissues of Developing Wheat Grains.

    PubMed Central

    Fisher, D. B.; Wang, N.

    1995-01-01

    Sucrose concentrations were measured in serial frozen sections of the post-phloem transport pathway in developing wheat (Triticum aestivum L.) grains. In normally importing grains, there was an approximately linear concentration gradient along the pathway, with a difference between the ends of the pathway of about 180 mM. This indicates an unusually low resistance for cell-to-cell transport, due perhaps to the large size-exclusion limit for the pathway. However, the existence of concentration gradients raises presently unresolvable questions about the relative contributions of diffusion versus bulk flow to transport within the symplast. The concentration gradient disappeared when sucrose movement ceased (i.e. in excised grains or when endosperm cavities of attached grains were perfused with p-chloromercuribenzene sulfonate [PCMBS] or with 1660 mOsm sorbitol). PCMBS appeared to block solute release into the endosperm cavity, whereas the sorbitol treatment, previously shown to cause localized plasmolysis in the chalaza, appeared to block movement across the chalaza. Sieve element/companion cell unloading appears to be an important control point for assimilate import. The sucrose concentration gradient and, probably, turgor and osmotic gradients are extremely steep there. PCMBS blocked import without affecting the sucrose concentration in the vascular parenchyma around the phloem. Thus, blockage of unloading was more complex than a simple "backing up" of solutes in the vascular parenchyma. PMID:12228615

  18. Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases.

    PubMed

    Suneja, Yadhu; Gupta, Anil K; Sharma, Achla; Bains, Navtej S

    2015-04-01

    Wheat, staple food crop of the world, is sensitive to drought, especially during the grain-filling period. Water soluble carbohydrates (WSCs), stem reserve mobilization and higher invertase activity in the developing grains are important biochemical traits for breeding wheat to enhance tolerance to terminal drought. These traits were studied for three accessions of Triticum dicoccoides(a tetraploid wheat progenitor species) - acc 7054 (EC 171812), acc 7079 (EC 171837) and acc 14004 (G-194-3 M-6 M) selected previously on the basis of grain filling characteristics. Check wheat cultivars- PBW-343 (a popular bread wheat cultivar for irrigated environments) and C-306 (widely adapted variety for rain-fed agriculture) were also included in this set. Analysis of variance revealed significant genotypic differences for the content of water soluble carbohydrates, activity of acid invertase and alkaline invertase. Acc 7079 was found to be a very efficient mobilizer of water soluble carbohydrates (236.43 mg g(-1) peduncle DW) when averaged over irrigated and rain-fed conditions. Acid invertase activity revealed marked genotypic differences between wild and cultivated wheats. Alkaline invertase activity was highest in Acc 7079 when pooled across both the environments. On the whole, acc 7079 qualifies as a suitable donor for enhancing tolerance of bread wheat to terminal drought. The association of physio-biochemical differences observed with grain filling attributes on one hand and molecular markers on the other could be of use in improving wheat for water stress conditions.

  19. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    PubMed Central

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  20. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions

  1. Transgenic barley expressing a protein-engineered, thermostable (1,3-1,4)-beta-glucanase during germination.

    PubMed Central

    Jensen, L G; Olsen, O; Kops, O; Wolf, N; Thomsen, K K; von Wettstein, D

    1996-01-01

    The codon usage of a hybrid bacterial gene encoding a thermostable (1,3-1,4)-beta-glucanase was modified to match that of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene. Both the modified and unmodified bacterial genes were fused to a DNA segment encoding the barley high-pI alpha-amylase signal peptide downstream of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene promoter. When introduced into barley aleurone protoplasts, the bacterial gene with adapted codon usage directed synthesis of heat stable (1,3-1,4)-beta-glucanase, whereas activity of the heterologous enzyme was not detectable when protoplasts were transfected with the unmodified gene. In a different expression plasmid, the codon modified bacterial gene was cloned downstream of the barley high-pI alpha-amylase gene promoter and signal peptide coding region. This expression cassette was introduced into immature barley embryos together with plasmids carrying the bar and the uidA genes. Green, fertile plants were regenerated and approximately 75% of grains harvested from primary transformants synthesized thermostable (1,3-1,4)-beta-glucanase during germination. All three trans genes were detected in 17 progenies from a homozygous T1 plant. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8622963

  2. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings.

    PubMed

    Deng, Weiwei; Clausen, Jenni; Boden, Scott; Oliver, Sandra N; Casao, M Cristina; Ford, Brett; Anderssen, Robert S; Trevaskis, Ben

    2015-01-01

    The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  3. Impact of barley form on equine total tract fibre digestibility and colonic microbiota.

    PubMed

    Philippeau, C; Sadet-Bourgeteau, S; Varloud, M; Julliand, V

    2015-12-01

    This study aimed at assessing the impact of four barley forms on total tract apparent digestibility of dietary fibre in horses fed a large amount of starch in the morning meal (0.27% BW). Processed barley forms had a greater pre-caecal starch digestibility than the whole form. Based on this result, we hypothesised that using barley-processing methods would limit the potential dumping of undegraded starch in the hindgut of horses and, consequently, the potential negative effect on fibre degradation in the hindgut. In a 4×4 latin square design, four mature geldings fitted with a right ventral colon-fistula were fed a meadow hay : concentrate (62 : 38; dry matter (DM) basis) diet at 1.7% BW. The concentrate was made of 80% barley distributed either as whole grain or as processed forms: 2.5 mm ground, pelleted or steam-flaked. For each period, total tract apparent digestibilities of DM, NDF and ADF were determined over 3 consecutive days by total faecal collection, whereas pH, volatile fatty acids (VFA) concentrations and cultural functional bacteria counts (total anaerobic, cellulolytic bacteria, lactic acid producers, amylolytic bacteria and lactic acid utilisers) in colonic content were evaluated on 1 day 4 h after the morning meal. Total tract apparent digestibility of DM and dietary fibre was influenced (P<0.05) by barley form. Diets including thermo-mechanically treated barley forms led to a higher (P<0.05) total tract apparent digestibility of NDF than those constituted of ground barley and also led to a greater (P<0.05) total tract apparent digestibility of ADF than those made of whole or ground barley forms. However, no significant difference was observed in colonic pH, VFA concentrations and cultural bacteria concentrations. Owing to a high starch supply in the morning meal, the concentration of the functional bacteria in the colonic content averaged 7.8 log CFU/ml, 5.9 NPM/ml, 6.9 and 7.3 CFU/ml for total anaerobic, cellulolytic, amylolytic and lactic acid

  4. Greening etiolated barley plants under clinorotation

    NASA Astrophysics Data System (ADS)

    Syvash, O. O.; Dovbysh, E. P.; Zolotareva, E. K.

    Plants are capable to react to change of a gravitational field and have sensitive and selective mechanisms, allowing to be guided in a field of gravitation of the Earth. It is known, that changes of gravitational conditions (hyper- or hypogravity) influence metabolic processes in alive organisms. One of the important problems of space biology is studying influence of microgravity on development of the photosynthetic apparatus. Damaging action of weightlessness on photosynthetic processes in plants was shown in a lot of space experiments. However, results of these experiments are inconsistent and do not allow to conclude how varied conditions of weight influence photosynthesis and in particular biosynthesis of chlorophyll. The aim of the communication is an analysis of clinorotation effects on the pigment accumulation and photochemical characteristics of the photosynthetic apparatus during its formation at greening of barley seedlings. Barley plants were grown on a slow horizontal clinostat (2 rpm) and in vertical control at room temperature for 7-8 days (6 days in the dark and 1 or 2 day on white light, ˜ 90 μ Mm-2s-1). Protochlorophyllide (Pchld) and carotenoid (β -carotene, lutein, neoxantin, violaxantin) content in dark grown plants, as well as photosynthetic pigment content after 24 and 48h of greening was determined by TLC. It was found that the content of β -carotene, lutein and neoxantin in clinorotated etiolated plants was on 9-25% higher compared to control. Pchld and violaxantin level was less on 9-11% in clinorotated etiolated plants. The content of Chl a, b and carotenoids in control after 24h greening of barley seedlings exceeded on 10-20% their level in clinorotated variant. After 48h greening the total level of pigments doubled and the difference in the pigment content between control and clinorotated leaves averaged 0-12%, i.e. distinction in pigment content between control and clinorotated variants smoothed out in the greening process. No

  5. Quantifying the impact of exogenous abscisic acid and gibberellins on pre-maturity α-amylase formation in developing wheat grains

    PubMed Central

    Kondhare, Kirtikumar R.; Hedden, Peter; Kettlewell, Peter S.; Farrell, Aidan D.; Monaghan, James M.

    2014-01-01

    To study the role of abscisic acid (ABA) and gibberellins (GA) in pre-maturity α-amylase (PMA) formation in developing wheat grain, two glasshouse experiments were conducted under controlled conditions in the highly PMA-susceptible genotype Rialto. The first, determined the relative efficacy of applying hormone solutions by injection into the peduncle compared to direct application to the intact grain. The second, examined the effects of each hormone, applied by either method, at mid-grain development on PMA in mature grains. In the first experiment, tritiated ABA (3H-ABA) and gibberellic acid (3H-GA3) were diluted with unlabelled ABA (100 µM) and GA3 (50 µM), respectively, and applied at mid-grain development using both methods. Spikes were harvested after 24, 48 and 72 h from application, and hormone taken up by grains was determined. After 72 h, the uptake per grain in terms of hormones applied was approximately 13% for ABA and 8% for GA3 when applied onto the grains, and approximately 17% for ABA and 5% for GA3 when applied by injection. In the second experiment, applied ABA reduced, whereas applied GA3 increased α-amylase activity. This confirmed that exogenously applied ABA and GA were absorbed in sufficient amounts to alter grain metabolism and impact on PMA. PMID:24942128

  6. Evaluation of assembly strategies using RNA-seq data associated with grain development of wheat (Triticum aestivum L.).

    PubMed

    Li, Huai-Zhu; Gao, Xiang; Li, Xiao-Yan; Chen, Qi-Jiao; Dong, Jian; Zhao, Wan-Chun

    2013-01-01

    Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes. However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a high-quality transcriptome from RNA sequencing data.

  7. Newly developed techniques for the analysis of micrometer-sized interplanetary dust particles and comet grains

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    1991-04-01

    Electron transparent sections (30-100 nm thick) of interplanetary dust particles and other fine-grained meteoric materials are produced using an ultramicrotome equipped with a diamond knife. An analytical electron microscope (AEM) is employed to examine indigenous physical properties (e.g., porosity), mineralogy, and petrography. Large data sets of quantitative point count analysis obtained from thin sections enable direct mineralogical comparison of IDPs and Halley.

  8. Technologies for Developing Predictive Atomistic and Coarse-Grained Force Fields for Ionic Liquid Property Prediction

    DTIC Science & Technology

    2008-07-29

    Coarse- 5a. CONTRACT NUMBER FA9550-07-C-0159 Grained Force Fields for Ionic Liquid Property Prediction 5b. GRANT NUMBER 5c. PROGRAM ELEMENT ...constant element for the N-C-N ring angle is punched to be ~3 Hartree/rad2, with several off-diagonal couplings of the same magnitude. This may be...for the study of materials that exhibit non-linear optical properties or for materials that contain transition metals, lanthanides, and actinides

  9. The development of reactive fuel grains for pyrophoric relight of in-space hybrid rocket thrusters

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew Wellington

    This study presents and investigates a novel hybrid fuel grain that reacts pyrophorically with gaseous oxidizer to achieve restart of a hybrid rocket motor propulsion system while reducing cost and handling concerns. This reactive fuel grain (RFG) relies on the pyrophoric nature of finely divided metal particles dispersed in a solid dicyclopentadiene (DCPD) binder, which has been shown to encapsulate air-sensitive additives until they are exposed to combustion gases. An RFG is thus effectively inert in open air in the absence of an ignition source, though the particles encapsulated within remain pyrophoric. In practice, this means that an RFG that is ignited in the vacuum of space and then extinguished will expose unoxidized pyrophoric particles, which can be used to generate sufficient heat to relight the propellant when oxidizer is flowed. The experiments outlined in this work aim to develop a suitable pyrophoric material for use in an RFG, demonstrate pyrophoric relight, and characterize performance under conditions relevant to a hybrid rocket thruster. Magnesium, lithium, calcium, and an alloy of titanium, chromium, and manganese (TiCrMn) were investigated to determine suitability of pure metals as RFG additives. Additionally, aluminum hydride (AlH3), lithium aluminum hydride (LiAlH4), lithium borohydride (LiBH4), and magnesium hydride (MgH2) were investigated to determine suitability of metals hydrides as RFG additives or as precursors for pure-metal RFG additives. Pyrophoric metals have been previously investigated as additives for increasing the regression rate of hybrid fuels, but to the author's knowledge, these materials have not been specifically investigated for their ability to ignite a propellant pyrophorically. Commercial research-grade metals were obtained as coarse powders, then ball-milled to attempt to reduce particle size below a critical diameter needed for pyrophoricity. Magnesium hydride was ball-milled and then cycled in a hydride cycling

  10. EST-SSR markers derived from an elite barley cultivar (Hordeum vulgare L. 'Morex'): polymorphism and genetic marker potential.

    PubMed

    Emebiri, Livinus C

    2009-08-01

    Microsatellites or simple sequence repeats have become the markers of choice for marker-assisted selection because of their low template DNA requirement, high reproducibility, and high level of polymorphism. This study investigated a new set of barley (Hordeum vulgare L.) EST-derived SSR markers designed to target gene sequences expressed during grain development, as they are more likely to be important in determining grain quality. The EST sequences (HVSMEh and HVSMEi) were derived from cDNA libraries of the elite six-rowed cultivar Morex, made from spikes harvested at 5 to 45 days after pollination. Approximately half of the 110 SSR markers derived from the ESTs were polymorphic in a panel of 8 diverse barley genotypes, with PIC values between 0.19 and 0.79. Twenty of the new markers were mapped to chromosomal locations using 2 doubled haploid populations. To demonstrate marker potential, quantitative trait locus (QTL) analyses were carried out with phenotypic data on wort beta-glucan content and beta-glucanase activity, two traits with a long history of genetic studies. Most of the EST-SSR markers mapped to within 10 cM of the cellulose synthase (HvCesA) and cellulose synthase-like (HvCslF) genes, which provides highly informative functional markers for tracking these genes in breeding programs. It was also observed that on any given chromosome, the QTL for beta-glucan content and beta-glucanase activity were rarely coincident but tended to occur in adjacent intervals along chromosomal regions, which agreed with their independent genetic basis; the adjacent localization may be important for coordination of cell wall degradation during germination and malting.

  11. In vitro digestion characteristics of unprocessed and processed whole grains and their components.

    PubMed

    Hernot, David C; Boileau, Thomas W; Bauer, Laura L; Swanson, Kelly S; Fahey, George C

    2008-11-26

    Chemical composition and in vitro digestion properties of select whole grains, before and after processing, and their components were measured. Substrates included barley, corn, oat, rice, and wheat. In addition to whole grain flours, processed substrates also were tested as were corn bran, oat bran, wheat bran, and wheat germ. Processing of most substrates resulted in higher dry matter and digestible starch and lower resistant starch concentrations. Dietary fiber fractions varied among substrates with processing. Digestion profiles for most substrates correlated well with their chemical composition. Corn bran and rice substrates were the least fermentable. Extrusion rendered barley, corn, and wheat more hydrolytically digestible and barley and oat more fermentatively digestible. Except for corn bran, all components had greater or equal fermentability compared with their native whole grains. Understanding digestion characteristics of whole grains and their components will allow for more accurate utilization of these ingredients in food systems.

  12. Biomarker of whole grain wheat intake associated lower BMI in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkylresorcinols (AR) are phenolic lipids in the bran fraction of some whole grains (wheat, rye and barley). Plasma AR reflect recent intake of these whole grains. We examined the cross-sectional associations between plasma AR (measured by LCMS/ MS), whole wheat intake, and body mass index (BMI) in ...

  13. Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley.

    PubMed

    Rallabhandi, Prasad; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2015-02-18

    Gluten proteins in wheat, rye and barley cause celiac disease, an autoimmune disorder of the small intestine, which affects approximately 1% of the world population. Gluten is comprised of prolamin and glutelin. Since avoidance of dietary gluten is the only option for celiac patients, a sensitive gluten detection and quantitation method is warranted. Most regulatory agencies have set a threshold of 20 ppm gluten in foods labeled gluten-free, based on the currently available ELISA methods. However, these methods may exhibit differences in gluten quantitation from different gluten-containing grains. In this study, prolamin and glutelin fractions were isolated from wheat, rye, barley, oats and corn. Intact and pepsin-trypsin (PT)-digested prolamin and glutelin fractions were used to assess their immunoreactivity and gluten recovery by three sandwich and two competitive ELISA kits. The Western blots revealed varied affinity of ELISA antibodies to gluten-containing grain proteins and no reactivity to oat and corn proteins. ELISA results showed considerable variation in gluten recoveries from both intact and PT-digested gluten fractions among different kits. Prolamin fractions showed higher gluten recovery compared to their respective glutelin fractions. Among prolamins, barley exhibited higher recovery compared to wheat and rye with most of the ELISA kits used. Hydrolysis resulted in reduced gluten recovery of most gluten fractions. These results suggest that the suitability of ELISA for accurate gluten quantitation is dependent upon various factors, such as grain source, antibody specificity, gluten proteins and the level of their hydrolysis in foods.

  14. [Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat].

    PubMed

    Li, Xiang-dong; Zhang, De-qi; Wang, Han-fang; Shao, Yun-hui; Fang, Bao-ting; Lyu, Feng-rong; Yue, Jun-qin; Ma, Fu-ju

    2015-03-01

    The effect of temperature increment before the over-wintering period on winter wheat development and grain yield was evaluated in an artificial climate chamber (TPG 1260, Australia) from 2010 to 2011. Winter wheat cultivar 'Zhengmai 7698' was used in this study. Three temperature increment treatments were involved in this study, i.e., temperature increment last 40, 50 and 60 days, respectively, before the over-wintering period. Control was not treated by temperature increment. The results showed that temperature increment before the over-wintering period had no significant effect on earlier phase spike differentiation. But an apparent effect on later phase spike differentiation was observed. High temperature effect on spike differentiation disappeared when the difference of effective accumulated temperature between the temperature increment treatment and the control was lower than 25 °C. However, the foliar age at the jointing stage was enhanced more than 0.8, heading and physiological ripening were advanced 1 day each, when the effective accumulated temperature before the over-wintering period increased 60 °C. Higher effective accumulated temperature before the over-wintering period accelerated winter wheat growth and development, which resulted in a short spike differentiation period. Winter wheat was easy to suffer freeze damage, which lead to floret abortion and spikelet death in spring under this situation. Meanwhile, higher effective accumulated temperature before the over-wintering period also reduced, photosynthetic capacity of flag leaf, shortened the grain filling period, and led to wheat grain yield reduction.

  15. N2O emission from organic barley cultivation as affected by green manure treatment

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Hansen, S.; Bleken, M.; Dörsch, P.

    2012-04-01

    Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM). Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and replacement as biogas residue to a subsequent barley crop. Grass-clover ley had significantly higher N2O emissions as compared with a non fertilized cereal reference during the GM year (2009). Mulching of herbage induced significantly more N2O emission (+ 0.37 kg N2O-N ha-1) throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM) resulting in generally higher N2O emissions during barley production. Addition of biogas residue (80 kg N ha-1) in 2010 to previously non mulched GM and unfertilized cereal plots (2009) had no significant effect on cumulative N2O emissions relative to a treatment receiving the same amount of N in form of mulched aboveground GM. Ley management (mulching vs. removing biomass in 2009) had no effect on N2O emissions during barley production in 2010. In general, organic amendments (previously mulched or harvested GM, biorest) increased N2O emissions relative to a reference treatment with low mineral N fertilisation (80 kg N ha-1). Organic cereal production emitted 95 g N2O-N kg-1 N yield in barley grain, which was substantially higher than in the reference treatment with 80 kg mineral N fertilization in 2010 (47 g N2O-N kg-1 N yield in barley grain).

  16. N2O emission from organic barley cultivation as affected by green manure management

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Hansen, S.; Azzaroli Bleken, M.; Dörsch, P.

    2012-02-01

    Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM). Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and replacement as biogas residue to a subsequent barley crop. Grass-clover ley had small but significantly higher N2O emissions as compared with a non-fertilized cereal reference during the year of green manure (GM) production in 2009. Mulching of herbage induced significantly more N2O emission (+0.37 kg N2O-N ha-1) throughout the growing season than removing herbage. In spring 2010 all plots were ploughed (with and without GM) and sown with barley, resulting in generally higher N2O emissions than during the previous year. Application of biogas residue (110 kg N ha-1) before sowing did not increase emissions neither when applied to previous ley plots nor when applied to previously unfertilized cereal plots. Ley management (mulching vs. removing biomass in 2009) had no effect on N2O emissions during barley production in 2010. In general, GM ley (mulched or harvested) increased N2O emissions relative to a cereal reference with low mineral N fertilisation (80 kg N ha-1). Organic cereal production emitted 95 g N2O-N kg-1 N yield in barley grain, which was substantially higher than in the cereal reference treatment with 80 kg mineral N fertilization in 2010 (47 g N2O-N kg-1 N yield in barley grain).

  17. N2O emission from organic barley cultivation as affected by green manure management

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Hansen, S.; Azzaroli Bleken, M.; Dörsch, P.

    2012-07-01

    Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM). Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and return as biogas residue to a subsequent barley crop. Grass-clover ley had small but significantly higher N2O emissions as compared with a non-fertilised cereal reference during the year of green manure (GM) production in 2009. Mulching of herbage induced significantly more N2O emission (+0.37 kg N2O-N ha-1) throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM) and sown with barley, resulting in generally higher N2O emissions than during the previous year. Application of biogas residue (60 kg NH4+-N + 50 kg organic N ha-1) before sowing did not increase emissions neither when applied to previous ley plots nor when applied to previously unfertilised cereal plots. Ley management (mulching vs. removing biomass in 2009) had no effect on N2O emissions during barley production in 2010. In general, GM ley (mulched or harvested) increased N2O emissions relative to a cereal reference with low mineral N fertilisation (80 kg N ha-1). Based on measurements covering the growing season 2010, organic cereal production emitted 95 g N2O-N kg-1 N yield in barley grain, which was substantially higher than in the cereal reference treatment with 80 kg mineral N fertilisation (47 g N2O-N kg-1 N yield in barley grain).

  18. Assessment and introduction of quantitative resistance to Fusarium head blight in elite spring barley.

    PubMed

    Linkmeyer, A; Götz, M; Hu, L; Asam, S; Rychlik, M; Hausladen, H; Hess, M; Hückelhoven, R

    2013-12-01

    Breeding for resistance is a key task to control Fusarium head blight (FHB), a devastating disease of small cereals leading to economic losses and grain contamination with mycotoxins harmful for humans and animals. In the present work, FHB resistance of the six-rowed spring barley 'Chevron' to FHB in Germany was compared with those of adapted German spring barley cultivars. Both under natural infection conditions and after spray inoculation with conidia of Fusarium culmorum, F. sporotrichioides, and F. avenaceum under field conditions, Chevron showed a high level of quantitative resistance to the infection and contamination of grain with diverse mycotoxins. This indicates that Chevron is not only a little susceptible to deoxynivalenol-producing Fusarium spp. but also to Fusarium spp. producing type A trichothecenes and enniatins. Monitoring the initial infection course of F. culmorum on barley lemma tissue by confocal laser-scanning microscopy provided evidence that FHB resistance of Chevron is partially mediated by a preformed penetration resistance, because direct penetration of floral tissue by F. culmorum was observed rarely on Chevron but was common on susceptible genotypes. Alternatively, F. culmorum penetrated Chevron lemma tissue via stomata, which was unusual for susceptible genotypes. We generated double-haploid barley populations segregating for the major FHB resistance quantitative trait loci (QTL) Qrgz-2H-8 of Chevron. Subsequently, we characterized these populations by spray inoculation with conidia of F. culmorum and F. sporotrichioides. This suggested that Qrgz-2H-8 was functional in the genetic background of European elite barley cultivars. However, the degree of achieved resistance was very low when compared with quantitative resistance of the QTL donor Chevron, and the introgression of Qrgz-2H-8 was not sufficient to mediate the cellular resistance phenotype of Chevron in the European backgrounds.

  19. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    PubMed

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  20. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays).

    PubMed

    Lehman, R Michael; Rosentrater, Kurt A

    2007-09-01

    Distillers grains are coproduced with ethanol and carbon dioxide during the production of fuel ethanol from the dry milling and fermentation of corn grain, yet there is little basic microbiological information on these materials. We undertook a replicated field study of the microbiology of distillers wet grains (DWG) over a 9 day period following their production at an industrial fuel ethanol plant. Freshly produced DWG had a pH of about 4.4, a moisture content of about 53.5% (wet mass basis), and 4 x 10(5) total yeast cells/g dry mass, of which about 0.1% were viable. Total bacterial cells were initially below detection limits (ca. 10(6) cells/g dry mass) and then were estimated to be approximately 5 x 10(7) cells/g dry mass during the first 4 days following production. Culturable aerobic heterotrophic organisms (fungi plus bacteria) ranged between 10(4) and 10(5) CFU/g dry mass during the initial 4 day period, and lactic acid bacteria increased from 36 to 10(3) CFU/g dry mass over this same period. At 9 days, total viable bacteria and yeasts and (or) molds topped 10(8) CFU/g dry mass and lactic acid bacteria approached 10(6) CFU/g dry mass. Community phospholipid fatty acid analysis indicated a stable microbial community over the first 4 days of storage. Thirteen morphologically distinct isolates were recovered, of which 10 were yeasts and molds from 6 different genera, 2 were strains of the lactic-acid-producing Pediococcus pentosaceus and only one was an aerobic heterotrophic bacteria, Micrococcus luteus. The microbiology of DWG is fundamental to the assessment of spoilage, deleterious effects (e.g., toxins), or beneficial effects (e.g., probiotics) in its use as feed or in alternative applications.

  1. The effect of dispersion in alumina slurry on the development of grain orientation during the sintering process

    NASA Astrophysics Data System (ADS)

    Furushima, R.; Tanaka, S.; Kato, Z.; Uematsu, K.

    2011-10-01

    This paper demonstrated the effect of dispersibility in alumina slurry on the change in the distribution of orientation for the particle-oriented compact during a sintering process. The orientain was developed with increasing the sintering temperature. The variation of density and microstructure with sintering temparature clarified that both densification and grain growth contributed to development of the oriented structure. The difference in slurry dipersion affected the degree of orientation in sintered bodies. This result suggests that proper dispersion in slurry is necessary to obtain a material with highly oriented structure when it needs forming methods involving slurries and subsequent sintering.

  2. Removal of the four C-terminal glycine-rich repeats enhances the thermostability and substrate binding affinity of barley beta-amylase.

    PubMed

    Ma, Y F; Eglinton, J K; Evans, D E; Logue, S J; Langridge, P

    2000-11-07

    Barley beta-amylase undergoes proteolytic cleavage in the C-terminal region after germination. The implication of the cleavage in the enzyme's characteristics is unclear. With purified native beta-amylases from both mature barley grain and germinated barley, we found that the beta-amylase from germinated barley had significantly higher thermostability and substrate binding affinity for starch than that from mature barley grain. To better understand the effect of the proteolytic cleavage on the enzyme's thermostability and substrate binding affinity for starch, recombinant barley beta-amylases with specific deletions at the C-terminal tail were generated. The complete deletion of the four C-terminal glycine-rich repeats significantly increased the enzyme's thermostability, but an incomplete deletion with one repeat remaining did not change the thermostability. Although different C-terminal deletions affect the thermostability differently, they all increased the enzyme's affinity for starch. The possible reasons for the increased thermostability and substrate binding affinity, due to the removal of the four C-terminal glycine-rich repeats, are discussed in terms of the three-dimensional structure of beta-amylase.

  3. Characterization of grain-specific peptide markers for the detection of gluten by mass spectrometry.

    PubMed

    Fiedler, Katherine L; McGrath, Sara C; Callahan, John H; Ross, Mark M

    2014-06-25

    Global and targeted mass spectrometry-based proteomic approaches were developed to discover, evaluate, and apply gluten peptide markers to detect low parts per million (ppm) wheat contamination of oats. Prolamins were extracted from wheat, barley, rye, and oat flours and then reduced, alkylated, and digested with chymotrypsin. The resulting peptides were subjected to LC-MS/MS analysis and database matching. No peptide markers common to wheat, barley, and rye were identified that could be used for global gluten detection. However, many grain-specific peptide markers were identified, and a set of these markers was selected for gluten detection and grain differentiation. Wheat flour was spiked into gluten-free oat flour at concentrations of 1-100,000 ppm and analyzed to determine the lowest concentration at which the wheat "contaminant" could be confidently detected in the mixture. The same 2D ion trap instrument that was used for the global proteomics approach was used for the targeted proteomics approach, providing a seamless transition from target discovery to application. A powerful, targeted MS/MS method enabled detection of two wheat peptide markers at the 10 ppm wheat flour-in-oat flour concentration. Because gluten comprises approximately 10% of wheat flour protein, the reported wheat gluten-specific peptides can enable detection of approximately 1 ppm of wheat gluten in oats.

  4. Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes.

    PubMed

    Osorio, C; Wen, N; Gemini, R; Zemetra, R; von Wettstein, D; Rustgi, S

    2012-08-01

    The prolamin peptides in wheat gluten and in the homologous storage proteins of barley and rye cause painful chronic erasure of microvilli of the small intestine epithelium in celiac patients. If untreated, it can lead to chronic diarrhea, abdominal distension, osteoporosis, weight-loss due to malabsorption of nutrients, and anemia. In addition to congenital cases, life-long exposure to gluten proteins in bread and pasta can also induce development of celiac sprue in adults. To date, the only effective treatment is life-long strict abstinence from the staple food grains. Complete exclusion of dietary gluten is, however, difficult due to use of wheat in many foods, incomplete labeling and social constraints. Thus, finding alternative therapies for this most common foodborne disease remained an active area of research, which has led to many suggestions in last few years. The pros and cons associated with these therapies were reviewed in the present communication. As different celiac patients are immunogenic to different members of the undigestible proline/glutamine rich peptides of ~149 gliadins and low molecular weight glutenin subunits as well as the six high molecular weight glutenin subunits, an exhaustive digestion of the immunogenic peptides in the stomach, duodenum, jejunum, and ileum of celiacs is required. In view of the above, we evaluated the capacity of cereal grains to synthesize and store the enzymes prolyl endopeptidase from Flavobacterium meningosepticum and the barley cysteine endoprotease B2, which in combination are capable of detoxifying immunogenic gluten peptides in a novel treatment of celiac disease.

  5. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome.

    PubMed

    Muñoz-Amatriaín, María; Lonardi, Stefano; Luo, MingCheng; Madishetty, Kavitha; Svensson, Jan T; Moscou, Matthew J; Wanamaker, Steve; Jiang, Tao; Kleinhofs, Andris; Muehlbauer, Gary J; Wise, Roger P; Stein, Nils; Ma, Yaqin; Rodriguez, Edmundo; Kudrna, Dave; Bhat, Prasanna R; Chao, Shiaoman; Condamine, Pascal; Heinen, Shane; Resnik, Josh; Wing, Rod; Witt, Heather N; Alpert, Matthew; Beccuti, Marco; Bozdag, Serdar; Cordero, Francesca; Mirebrahim, Hamid; Ounit, Rachid; Wu, Yonghui; You, Frank; Zheng, Jie; Simková, Hana; Dolezel, Jaroslav; Grimwood, Jane; Schmutz, Jeremy; Duma, Denisa; Altschmied, Lothar; Blake, Tom; Bregitzer, Phil; Cooper, Laurel; Dilbirligi, Muharrem; Falk, Anders; Feiz, Leila; Graner, Andreas; Gustafson, Perry; Hayes, Patrick M; Lemaux, Peggy; Mammadov, Jafar; Close, Timothy J

    2015-10-01

    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.

  6. Is schizophrenia rare if grain is rare?

    PubMed

    Dohan, F C; Harper, E H; Clark, M H; Rodrigue, R B; Zigas, V

    1984-03-01

    If, as hypothesized, neuroactive peptides from grain glutens are the major agents evoking schizophrenia in those with the genotype(s), it should be rare if grain is rare. To test this, we analyzed the results of our clinical examinations (e.g., kuru) and observations of anthropologists on peoples consuming little or no grain. Only two overtly insane chronic schizophrenics were found among over 65,000 examined or closely observed adults in remote regions of Papua New Guinea (PNG, 1950-1967) and Malaita , Solomon Islands (1980-1981), and on Yap , Micronesia (1947-1948). In preneuroleptic Europe over 130 would have been expected. When these peoples became partially westernized and consumed wheat, barley beer, and rice, the prevalence reached European levels. Our findings agree with previous epidemiologic and experimental results indicating that grain glutens are harmful to schizophrenics.

  7. Grain fever syndrome induced by inhalation of airborne grain dust.

    PubMed

    doPico, G A; Flaherty, D; Bhansali, P; Chavaje, N

    1982-05-01

    To study the clinical and physiologic manifestations of the grain fever syndrome and the potentially pathogenic role of complement activation, 12 subjects (six grain workers and six healthy non-grain workers) underwent inhalation provocations with airborne grain dust. The clinical response was characterized by facial warmth, headache, malaise, myalgias, feverish sensation, chilliness, throat and tracheal burning sensation, chest tightness, dyspnea, cough, and expectoration. Fever developed in four grain workers and two controls. Leukocytosis, ranging between 11,700 and 24,300 leukocytes/mm3 with left shift, developed in five grain workers and five controls. There was no evidence of complement activation by the classical or alternate pathway. None of the subjects had serum precipitins to grain dust. The pulmonary response was characterized by a decrease in FEV1, FVC, MMF, Vmax50, and Vmax75, with significant rise in pulmonary resistance and consistent change in dynamic compliance but without changes in static compliance or diffusing capacity. Hence, grain dust inhalation induced diffuse airways obstruction without detectable parenchymal reaction. The airways response to high concentrations of grain dust inhalation were unrelated to the presence of immediate skin hypersensitivity. Although we cannot exclude the etiopathogenetic role of an immunologic reaction to grain dust, our data do not support the hypothesis that the grain fever syndrome is a precipitin-mediated allergic pneumonitis. More likely, the manifestations of grain fever probably reflect the host reaction to grain dust bacterial endotoxins and/or nonallergic mediator release by grain or grain dust constituents.

  8. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein.

    PubMed

    Zhu, Xiaolei; Liang, Wanqi; Cui, Xiao; Chen, Mingjiao; Yin, Changsong; Luo, Zhijing; Zhu, Jiaying; Lucas, William J; Wang, Zhiyong; Zhang, Dabing

    2015-05-01

    Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over-expression of the BR-synthesis gene D11 or a BR-signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non-transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop.

  9. Nitrogen-metabolism related genes in barley - haplotype diversity, linkage mapping and associations with malting and kernel quality parameters

    PubMed Central

    2013-01-01

    Background Several studies report about intra-specific trait variation of nitrogen-metabolism related traits, such as N(itrogen)-use efficiency, protein content, N-storage and remobilization in barley and related grass species. The goal of this study was to assess the intra-specific genetic diversity present in primary N-metabolism genes of barley and to investigate the associations of the detected haplotype diversity with malting and kernel quality related traits. Results Partial sequences of five genes related to N-metabolism in barley (Hordeum vulgare L.) were obtained, i.e. nitrate reductase 1, glutamine synthetase 2, ferredoxin-dependent glutamate synthase, aspartate aminotransferase and asparaginase. Two to five haplotypes in each gene were discovered in a set of 190 various varieties. The development of 33 SNP markers allowed the genotyping of all these barley varieties consisting of spring and winter types. Furthermore, these markers could be mapped in several doubled haploid populations. Cluster analysis based on haplotypes revealed a more uniform pattern of the spring barleys as compared to the winter barleys. Based on linear model approaches associations to several malting and kernel quality traits including soluble N and protein were identified. Conclusions A study was conducted to investigate the presence of sequence variation of several genes related to the primary N-metabolism in barley. The detected diversity could be related to particular phenotypic traits. Specific differences between spring and winter barleys most likely reflect different breeding aims. The developed markers can be used as tool for further genetic studies and marker-assisted selection during breeding of barley. PMID:24007272

  10. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation

    PubMed Central

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-01-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34–22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. PMID:27342224

  11. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.

  12. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2017-03-16

    The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl3) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows.

  13. Developing ISM Dust Grain Models with Precision Elemental Abundances from IXO

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Smith, R. K.; Juet, A.

    2009-01-01

    The exact nature of interstellar dust grains in the Galaxy remains mysterious, despite their ubiquity. Many viable models exist, based on available IR-UV data and assumed elemental abundances. However, the abundances, which are perhaps the most stringent constraint, are not well known: modelers must use proxies in the absence of direct measurements for the diffuse interstellar medium (ISM). Recent revisions of these proxy values have only added to confusion over which is the best representative for the diffuse ISM, and highlighted the need for direct, high signal-to-noise measurements from the ISM itself. The International X-ray Observatory's superior facilities will enable high-precision elemental abundance measurements. We ill show how these results will measure both the overall ISM abundances and challenge dust models, allowing us to construct a more realistic picture of the ISM.

  14. Development of an analytical method for the determination of sterigmatocystin in grains using LCMS after immunoaffinity column purification.

    PubMed

    Sasaki, R; Hossain, M Z; Abe, N; Uchigashima, M; Goto, T

    2014-05-01

    The mycotoxin sterigmatocystin (STC) is produced mainly by some Aspergillus and Penicillium fungi; it naturally contaminates cereals, peanuts, and products derived from these crops, and is both mutagenic and carcinogenic. As an intermediate of aflatoxin (AF) biosynthesis, its structure is similar to that of AF. Although immunoaffinity columns (IACs) are a popular approach to sample clean-up, no IAC is commercially available for STC, but a commercially available IAC for AF shows cross reactivity to STC. We here developed a new method for analyzing STC in grains using such an IAC and liquid chromatography mass spectrometry (LCMS), and validated this method using six different grains. The STC limit of detection (signal-to-noise ratio, S/N = 3) was 2.5 pg (1.0 μg/kg in the product), and the calibration curve was linear in the range of 7.5-375 pg (3.0-150 μg/kg in the product). The within-day recovery of STC from samples spiked with STC at 5.0 and 50 μg/kg was 83.2-102.5% and the RSDr (relative standard deviation of repeatability) of these samples was 1.9-6.5%; the RSDr of STC-pretreated grain samples was 3.1-14.0%. Average recovery of STC from samples spiked with STC in the range of 5.0-100 μg/kg STC was 83.2-102.5%, with an RSDr of 0.24-6.5%; the RSDr of STC-pretreated grain samples was 2.4-14.0%. In an intermediate precision study, the average STC recovery from STC-spiked samples by three analysts was 95.2-107.5%, with RSDRi (intermediate precision) of 4.0-7.1%; the RSDRi of the STC-pretreated samples was 4.8-10.4%. Thus, the proposed method was effective for STC analysis in grains, and holds potential for a novel application of a commercial IAC, intended for AFs, in STC analysis.

  15. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial

    PubMed Central

    Sawicki, Caleigh M.; McKay, Diane L.; McKeown, Nicola M.; Dallal, Gerard; Chen, C. -Y. Oliver; Blumberg, Jeffrey B.

    2016-01-01

    While dietary fiber plays an important role in the health benefits associated with whole grain consumption, other ingredients concentrated in the outer bran layer, including alkylresorcinols, lignans, phenolic acids, phytosterols, and tocols, may also contribute to these outcomes. To determine the acute bioavailability and pharmacokinetics of the major phytochemicals found in barley and oats, we conducted a randomized, three-way crossover trial in 13 healthy subjects, aged 40–70 years with a body mass index (BMI) of 27–35.9 kg/m2. After a two-day run-in period following a diet low in phytochemicals, subjects were randomized to receive muffins made with either 48 g whole oat flour, whole barley flour, or refined wheat flour plus cellulose (control), with a one-week washout period between each intervention. At the same time, an oral glucose tolerance test was administered. In addition to plasma phytochemical concentrations, glucose and insulin responses, biomarkers of antioxidant activity, lipid peroxidation, inflammation, and vascular remodeling were determined over a 24-h period. There was no significant effect on acute bioavailability or pharmacokinetics of major phytochemicals. Administered concurrently with a glucose bolus, the source of whole grains did not attenuate the post-prandial response of markers of glucoregulation and insulin sensitivity, inflammation, nor vascular remodeling compared to the refined grain control. No significant differences were observed in the bioavailability or postprandial effects between whole-oat and whole-barley compared to a refined wheat control when administered with a glucose challenge. These null results may be due, in part, to the inclusion criteria for the subjects, dose of the whole grains, and concurrent acute administration of the whole grains with the glucose bolus. PMID:27983687

  16. Phytochemical Pharmacokinetics and Bioactivity of Oat and Barley Flour: A Randomized Crossover Trial.

    PubMed

    Sawicki, Caleigh M; McKay, Diane L; McKeown, Nicola M; Dallal, Gerard; Chen, C -Y Oliver; Blumberg, Jeffrey B

    2016-12-15

    While dietary fiber plays an important role in the health benefits associated with whole grain consumption, other ingredients concentrated in the outer bran layer, including alkylresorcinols, lignans, phenolic acids, phytosterols, and tocols, may also contribute to these outcomes. To determine the acute bioavailability and pharmacokinetics of the major phytochemicals found in barley and oats, we conducted a randomized, three-way crossover trial in 13 healthy subjects, aged 40-70 years with a body mass index (BMI) of 27-35.9 kg/m². After a two-day run-in period following a diet low in phytochemicals, subjects were randomized to receive muffins made with either 48 g whole oat flour, whole barley flour, or refined wheat flour plus cellulose (control), with a one-week washout period between each intervention. At the same time, an oral glucose tolerance test was administered. In addition to plasma phytochemical concentrations, glucose and insulin responses, biomarkers of antioxidant activity, lipid peroxidation, inflammation, and vascular remodeling were determined over a 24-h period. There was no significant effect on acute bioavailability or pharmacokinetics of major phytochemicals. Administered concurrently with a glucose bolus, the source of whole grains did not attenuate the post-prandial response of markers of glucoregulation and insulin sensitivity, inflammation, nor vascular remodeling compared to the refined grain control. No significant differences were observed in the bioavailability or postprandial effects between whole-oat and whole-barley compared to a refined wheat control when administered with a glucose challenge. These null results may be due, in part, to the inclusion criteria for the subjects, dose of the whole grains, and concurrent acute administration of the whole grains with the glucose bolus.

  17. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  18. Barley Germplasm STARS-9577B lacks a Russian Wheat Aphid Resistance Allele at a Quantitative Trait Locus Present in STARS-9301B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia Kurdjumov) infestations of barley (Hordeum vulgare L.) in the western U.S.A. have reduced yield and quality of barley since its introduction in 1986. Resistant germplasm lines have been released and used for cultivar development, including ‘STARS-9577B’, a s...

  19. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  20. A comparison of cadmium and zinc accumulation by four cultivars of barley grown in sludge-amended soils

    SciTech Connect

    Chang, A.C.; Page, A.L.; Foster, K.W.; Jones, T.E.

    1982-07-01

    A greenhouse experiment was conducted to compare the plant-tissue accumulation of Cd and Zn by four cultivars of barley (Hordeum vulgare L.) grown on three soils amended with 20 and 100 t/ha dried Imhoff tank sludges. Results indicated that metal uptakes by four cultivars of barley (Barsoy, Briggs, Florida 103, and Larker) were not significantly different when they were grown on both sludge-treated and non-sludge-treated (control) soils. The Cd and Zn concentrations of the plant tissue from sludge-treated soils, however, were significantly influenced by the sludge application and the soil type. For four cultivars of barley grown on the Ramona sandy loam soil, the Cd content of grain averaged <0.04 (<0.04-0.03) ..mu..g/g at the control and increased to 0.38 (0.19-0.53) ..mu..g/g at the 100-t/ha sludge treatment. Under the same conditions, the average Zn concentrations of barley grain were 41, 67, and 92 ..mu..g/g for the control, 20-t/ha, and 100-t/ha treatments, respectively. Both soil texture and pH influenced Cd and Zn contents of barley. Crops grown on the Domino loam soil (fine, mixed, thermic Xerollic Calciorthid) accumulated the least amounts of Cd and Zn. At heavy sludge applications, higher levels of plant-tissue Cd and Zn were often found in barley grown on soils of coarser texture (Ramona sandy loam (fine, mixed, thermic Typic Haploxeralf) and Greenfield sandy loam (coarse, mixed, thermic Typic Haploxeralf)) and lower pH (Ramona sand loam, pH = 6.0).

  1. QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes.

    PubMed

    Ogrodowicz, Piotr; Adamski, Tadeusz; Mikołajczak, Krzysztof; Kuczyńska, Anetta; Surma, Maria; Krajewski, Paweł; Sawikowska, Aneta; Górny, Andrzej G; Gudyś, Kornelia; Szarejko, Iwona; Guzy-Wróbelska, Justyna; Krystkowiak, Karolina

    2017-02-01

    Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880-2547, in the vicinity of Ppd-H1 gene. SNP 5880-2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.

  2. Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes.

    PubMed

    Mikołajczak, Krzysztof; Kuczyńska, Anetta; Krajewski, Paweł; Sawikowska, Aneta; Surma, Maria; Ogrodowicz, Piotr; Adamski, Tadeusz; Krystkowiak, Karolina; Górny, Andrzej G; Kempa, Michał; Szarejko, Iwona; Guzy-Wróbelska, Justyna; Gudyś, Kornelia

    2017-02-01

    High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to 'response to stress' were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.

  3. Identification and Expression Analysis of the Barley (Hordeum vulgare L.) Aquaporin Gene Family.

    PubMed

    Hove, Runyararo M; Ziemann, Mark; Bhave, Mrinal

    2015-01-01

    Aquaporins (AQPs) are major intrinsic proteins (MIPs) that mediate bidirectional flux of water and other substrates across cell membranes, and play critical roles in plant-water relations, dehydration stress responses and crop productivity. However, limited data are available as yet on the contributions of these proteins to the physiology of the major crop barley (Hordeum vulgare). The present work reports the identification and expression analysis of the barley MIP family. A comprehensive search of publicly available leaf mRNA-seq data, draft barley genome data, GenBank transcripts and sixteen new annotations together revealed that the barley MIP family is comprised of at least forty AQPs. Alternative splicing events were likely in two plasma membrane intrinsic protein (PIP) AQPs. Analyses of the AQP signature sequences and specificity determining positions indicated a potential of several putative AQP isoforms to transport non-aqua substrates including physiological important substrates, and respond to abiotic stresses. Analysis of our publicly available leaf mRNA-seq data identified notable differential expression of HvPIP1;2 and HvTIP4;1 under salt stress. Analyses of other gene expression resources also confirmed isoform-specific responses in different tissues and/or in response to salinity, as well as some potentially inter-cultivar differences. The work reports systematic and comprehensive analysis of most, if not all, barley AQP genes, their sequences, expression patterns in different tissues, potential transport and stress response functions, and a strong framework for selection and/or development of stress tolerant barley varieties. In addition, the barley data would be highly valuable for genetic studies of the evolutionarily closely related wheat (Triticum aestivum L.).

  4. Diversity and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.)

    PubMed Central

    Andersen, Ethan J.; Ali, Shaukat; Reese, R. Neil; Yen, Yang; Neupane, Surendra; Nepal, Madhav P.

    2016-01-01

    Plant disease resistance genes (R-genes) play a critical role in the defense response to pathogens. Barley is one of the most important cereal crops, having a genome recently made available, for which the diversity and evolution of R-genes are not well understood. The main objectives of this research were to conduct a genome-wide identification of barley Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) genes and elucidate their evolutionary history. We employed a Hidden Markov Model using 52 Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic relationships, structural variation, and gene clustering. We identified 175 barley CNL genes nested into three clades, showing (a) evidence of an expansion of the CNL-C clade, primarily due to tandem duplications; (b) very few members of clade CNL-A and CNL-B; and (c) a complete absence of clade CNL-D. Our results also showed that several of the previously identified mildew locus A (MLA) genes may be allelic variants of two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in the extra-pericentromeric regions on six of the seven chromosomes; more than half of the clustered genes were located on chromosomes 1H and 7H. Higher average numbers of exons and multiple splice variants in barley relative to those in Arabidopsis and rice may have contributed to a diversification of the CNL-C members. These results will help us understand the evolution of R-genes with potential implications for developing durable resistance in barley cultivars. PMID:27168720

  5. Effect of soaking, germination, and enzyme treatment of whole barley on nutritional value and digestive tract parameters of broiler chickens.

    PubMed

    Svihus, B; Newman, R K; Newman, C W

    1997-09-01

    1. An experiment was carried out to determine the effect of soaking at 0 degrees C, soaking at room temperature, germination, or enzyme treatment of whole barley on feeding value and digestive tract parameters of 2- to 4-week old broiler chickens given diets with 700g/kg whole barley. 2. Soaking or germination decreased the soluble and total beta-glucan content (P < 0.05) and, except for soaking at 0 degrees C, the acid extract viscosity of the grain also decreased (P < 0.05). Germination and soaking in the presence of enzymes produced the lowest beta-glucan content and viscosity. 3. Except for soaking in cold water, the soaking, germination and enzyme treatments increased weight gain and decreased food:gain ratio (P < 0.05). Correspondingly, the digestibility of protein, fat, and ash, and the digestible energy content, increased (P < 0.05) after enzyme treatment or germination. 4. Chickens fed on enzyme-treated or germinated barley diets had intestinal contents with a greater proportion of dry matter and lower viscosity than chickens fed on untreated barley (P < 0.05). Consequently, the cages and chickens were cleaner (P < 0.05) and the weight of digestive organs as proportion of live weight was lower. 5. Particle size analysis of excreta revealed that whole barley was efficiently ground by the gizzards of 16-d-old chickens, and very few whole kernels were found.

  6. Anomalous D-Log E curve with high contrast developer Kodak D8 on ultra fine grain emulsion BB640.

    PubMed

    Ulibarrena, M; Mendez, M; Blaya, S; Fimia, A

    2001-12-03

    D-Log E curves, also known as H-D curves, are used since the XIX century as a tool for describing the characteristics of silver halide emulsions. This curve has a very standard shape, with a linear region, a toe, a shoulder and a solarization region. In this work we present a distortion of the usual curve due to the action of a high contrast developer, Kodak D8, on an ultra fine grain emulsion, BB640\\cite{ov04}. The solarization effect is replaced by a linear zone where developed densities increase with increasing exposures, until all silver halide present in the emulsion is reduced by developer D8 to metallic silver. Densities higher than 11 have been obtained.

  7. Characterization of Antibodies for Grain-Specific Gluten Detection.

    PubMed

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation.

  8. Current patents and future development underlying marker-assisted breeding in major grain crops.

    PubMed

    Utomo, Herry S; Linscombe, Steve D

    2009-01-01

    Genomics and molecular markers provide new tools to assemble and mobilize important traits from different genetic backgrounds, including breeding lines and cultivars from different parts of the world and their related wild ancestors, to improve the quality and yield of the existing commercial cultivars to meet the increasing challenges of global food demand. The basic techniques of marker-assisted breeding, such as isolating DNA, amplifying DNA of interest using publicly available primers, and visualizing DNA fragments using standard polyacrylamid gel, have been described in the literature and, therefore, are available to scientists and breeders without any restrictions. A more sophisticated high-throughput system that includes proprietary chemicals and reagents, parts and equipments, software, and methods or processes, has been a subject of intensive patents and trade secrets. The high-throughput systems offer a more efficient way to discover associated QTLs for traits of economic importance. Therefore, an increasing number of patents of highly valued genes and QTLs is expected. This paper will discuss and review current patents associated with genes and QTLs utilized in marker-assisted breeding in major grain crops. The availability of molecular markers for important agronomic traits combined with more efficient marker detection systems will help reach the full benefit of MAS in the breeding effort to reassemble potential genes and recapture critical genes among the breeding lines that were lost during domestication to help boost crop production worldwide.

  9. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  10. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  11. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  12. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  13. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  14. Development of a microwave-assisted-extraction-based method for the determination of aflatoxins B1, G1, B2, and G2 in grains and grain products.

    PubMed

    Chen, Si; Zhang, Hong

    2013-02-01

    This article describes the use of microwave-assisted extraction (MAE) as a pretreatment technique for the determination of aflatoxins B(1), G(1), B(2), and G(2) in grains and grain products. The optimal operation parameters, including extraction solvent, temperature, and time, were identified to be acetonitrile as the extraction solvent at 80 °C with 15 min of MAE. The extracts were cleaned up using solid-phase extraction followed by derivatization with trifluoroacetic acid and were determined by liquid chromatography-fluorescence detection. A Sep-Pak cartridge was chosen over Oasis HLB and Bond Elut cartridges. By the use of aflatoxin M(1) as an internal standard, relative recoveries of the aflatoxins ranged from 90.7 to 105.7 % for corn and from 88.1 to 103.4 % for wheat, with relative standard deviations between 2.5 and 8.7 %. A total of 36 samples from local markets were analyzed, and aflatoxin B(1) was found to be the predominant toxin, with concentrations ranging from 0.42 to 3.41 μg/kg.

  15. Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones.

    PubMed

    Mark, Christina; Zór, Kinga; Heiskanen, Arto; Dufva, Martin; Emnéus, Jenny; Finnie, Christine

    2016-12-15

    Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.

  16. Computer image analysis in caryopses quality evaluation as exemplified by malting barley

    NASA Astrophysics Data System (ADS)

    Koszela, K.; Raba, B.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Przybył, J.

    2015-07-01

    One of the purposes to employ modern technologies in agricultural and food industry is to increase the efficiency and automation of production processes, which helps improve productive effectiveness of business enterprises, thus making them more competitive. Nowadays, a challenge presents itself for this branch of economy, to produce agricultural and food products characterized by the best parameters in terms of quality, while maintaining optimum production and distribution costs of the processed biological material. Thus, several scientific centers seek to devise new and improved methods and technologies in this field, which will allow to meet the expectations. A new solution, under constant development, is to employ the so-called machine vision which is to replace human work in both quality and quantity evaluation processes. An indisputable advantage of employing the method is keeping the evaluation unbiased while improving its rate and, what is important, eliminating the fatigue factor of the expert. This paper elaborates on the topic of quality evaluation by marking the contamination in malting barley grains using computer image analysis and selected methods of artificial intelligence [4-5].

  17. Comparative Systems Biology Reveals Allelic Variation Modulating Tocochromanol Profiles in Barley (Hordeum vulgare L.)

    PubMed Central

    Oliver, Rebekah E.; Islamovic, Emir; Obert, Donald E.; Wise, Mitchell L.; Herrin, Lauri L.; Hang, An; Harrison, Stephen A.; Ibrahim, Amir; Marshall, Juliet M.; Miclaus, Kelci J.; Lazo, Gerard R.; Hu, Gongshe; Jackson, Eric W.

    2014-01-01

    Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles. PMID:24820172

  18. Fungi and the natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.).

    PubMed

    Piacentini, Karim C; Savi, Geovana D; Pereira, Maria E V; Scussel, Vildes M

    2015-11-15

    The industrial use of barley grain has experienced continuous growth, mainly due to its economic importance for malt production. From a technological perspective, fungal persistence can reduce product marketability and cause economic losses. In this sense, the aim of the present study was to determine the presence and identification of mycoflora and the occurrence of deoxynivalenol (DON) and fumonisins (FBs) in malting barley. The samples presented a low count of fungal colonies, with values ranging from 10.5 to 0.5 × 10(1)CFU g(-1) and the species most found were Fusarium graminearum and Fusarium verticillioides with 26% and 12% of incidence, respectively. In the samples analyzed for mycotoxins occurrence, DON and FBs were present in 18% and 12%, respectively. The high concentrations of toxins found in the malting samples may be strongly influenced by agricultural practices and the weather conditions during critical phases of plant growth.

  19. Development of a Grain Boundary Pinning Model that Considers Particle Size Distribution Using the Phase Field Method

    SciTech Connect

    Michael R Tonks; Yongfeng Zhang; Xian-Ming Bai

    2015-04-01

    Grain boundary (GB) migration significantly impacts material behavior. However, GB migration is slowed or even halted by resistive pressure applied by pores or particles. Zener’s original investigation of particle pinning, and subsequent modifications by other researchers, describe the resistive pressure for various spatial distributions of particles with respect to GBs. In this work, we develop a pinning model that considers the impact of the particle size distribution and we verify it by comparing to mesoscale phase field and Monte Carlo simulations. Resistive pressure expressions are developed that are functions of the percentage of GB area covered by particles and of the particle volume fraction for any spatial distribution of particles. In both expressions, the mean value of the resistive pressure decreases with increasing standard deviation of the particle radius.

  20. Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures.

    PubMed

    Beyene, Yoseph; Semagn, Kassa; Mugo, Stephen; Prasanna, Boddupalli M; Tarekegne, Amsal; Gakunga, John; Sehabiague, Pierre; Meisel, Barbara; Oikeh, Sylvester O; Olsen, Michael; Crossa, Jose

    A marker-assisted recurrent selection (MARS) program was undertaken in sub-Saharan Africa to improve grain yield under drought-stress in 10 biparental tropical maize populations. The objectives of the present study were to evaluate the performance of C1S2-derived hybrids obtained after three MARS cycles (one cycle of recombination (C1), followed by two generations of selfing (S2), and to study yield stability under both drought-stress (DS) and well-watered (WW) conditions. For each of the 10 populations, we evaluated hybrids developed by crossing 47-74 C1S2 lines advanced through MARS, the best five S5 lines developed through pedigree selection, and the founder parents with a single-cross tester from a complementary heterotic group. The hybrids and five commercial checks were evaluated in Kenya under 1-3 DS and 3-5 WW conditions with two replications. Combined across DS locations, the top 10 C1S2-derived hybrids from each of the 10 biparental populations produced 0.5-46.3 and 11.1-55.1 % higher mean grain yields than hybrids developed using pedigree selection and the commercial checks, respectively. Across WW locations, the best 10 hybrids derived from C1S2 of each population produced 3.4-13.3 and 7.9-36.5 % higher grain yields than hybrids derived using conventional pedigree breeding and the commercial checks, respectively. Mean days to anthesis of the best 10 C1S2 hybrids were comparable to those of hybrids developed using the pedigree method, the founder parents and the commercial checks, with a maximum difference of 3.5 days among the different groups. However, plant height was significantly (P < 0.01) different in most pairwise comparisons. Our results showed the superiority of MARS over pedigree selection for improving diverse tropical maize populations as sources of improved lines for stress-prone environments and thus MARS can be effectively integrated into mainstream maize breeding programs.

  1. 7 CFR 457.118 - Malting barley crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Malting barley crop insurance. 457.118 Section 457.118..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.118 Malting barley crop insurance. The malting barley crop insurance provisions for the 1996 and succeeding crop years are as follows:...

  2. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  3. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  4. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  5. Boron stress responsive microRNAs and their targets in barley.

    PubMed

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress.

  6. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond.

    PubMed

    Mascher, Martin; Richmond, Todd A; Gerhardt, Daniel J; Himmelbach, Axel; Clissold, Leah; Sampath, Dharanya; Ayling, Sarah; Steuernagel, Burkhard; Pfeifer, Matthias; D'Ascenzo, Mark; Akhunov, Eduard D; Hedley, Pete E; Gonzales, Ana M; Morrell, Peter L; Kilian, Benjamin; Blattner, Frank R; Scholz, Uwe; Mayer, Klaus F X; Flavell, Andrew J; Muehlbauer, Gary J; Waugh, Robbie; Jeddeloh, Jeffrey A; Stein, Nils

    2013-11-01

    Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes.

  7. Cereal grains, alpha tocotrienol and cholesterol metabolism in the rat.

    PubMed

    McIntosh, G H; Bulman, F H; Russell, G R

    1992-06-01

    The influence of alpha (α)-tocotrienol, the main vitamer of vitamin E in barley and oats, on cholesterol synthesis has been studied in laboratory rats. Both oats and barley lowered plasma cholesterol relative lo wheat, which had no such effect, and the change has been attributed to an inhibitory influence of a -tocotrienol on cholesterol synthesis rate. Vitamin E was stripped from oats and barley by a petroleum ether extraction procedure and the grains compared with their unstripped equivalents. In the oats feeding experiment this resulted in a higher plasma cholesterol and lower liver cholesterol synthesis rate. The barley experiment produced no significant response. Pure α-tocotrienol was gavaged into rats fed a semipurified diet without vitamin E, at the rate of 380 μg/rat/day for 28 days. There was no significant influence on plasma cholesterol level or on liver cholesterol synthesis rate. From these studies it is concluded that a -tocotrienol does not influence cholesterol synthesis rate significantly. Therefore, it is unlikely lo be a factor in oats and barley responsible for the plasma cholesterol lowering observed.

  8. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.

    PubMed

    Li, Dandan; Liu, Zongcai; Gao, Lei; Wang, Lifang; Gao, Meijuan; Jiao, Zhujin; Qiao, Huili; Yang, Jianwei; Chen, Min; Yao, Lunguang; Liu, Renyi; Kan, Yunchao

    2016-01-01

    The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7-2 collected 4-6, 7-9, 12-14, and 18-23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12-14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18-23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.

  9. Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically destructive pathogens of these grains worldwide. Recent population genetic studies of the pathogen obtained from wheat in North America supported population subdivision in part c...

  10. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  11. Barley germplasm conservation and resources. Chapter 7 in barley: improvement, production, and uses. Blackwell Publishing, ED.S.E. Ullrich

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history and current status of barley germplasm preservation activities is presented on a global scale and specifically for the United States. Total of barley germplasm holdings at 47 major barley collections (those with more than 500 accessions) worldwide is approximately 402,000 accessions. I...

  12. Effect of rising atmospheric carbon dioxide concentration on the protein composition of cereal grain.

    PubMed

    Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven

    2014-07-16

    The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.

  13. Evaluation of the Effect of Two Volatile Organic Compounds on Barley Pathogens.

    PubMed

    Kaddes, Amine; Parisi, Olivier; Berhal, Chadi; Ben Kaab, Sofiene; Fauconnier, Marie-Laure; Nasraoui, Bouzid; Jijakli, M Haissam; Massart, Sébastien; De Clerck, Caroline

    2016-08-26

    This study aimed to determine the effect of Volatile Organic Compounds (VOCs) on some pathogens, these VOCs were emitted during interactions of barley with Fusarium culmorum Schltdl and/or Cochliobolus sativus Shoemaker, two common root rot pathogens. Our work shows that two organic esters: methyl propanoate (MP) and methyl prop-2-enoate (MA) significantly reduced the development of fungi in vitro. Additional tests showed that the esters significantly inhibited spore germination of these pathogens. The activity of these VOCs on a wide range of fungal and bacterial pathogens was also tested in vitro and showed inhibitory action. The effect of the VOCs on infected barley seeds also showed plantlets growing without disease symptoms. MA and MP seem to have potential value as alternative plant protection compounds against barley bioagressors.

  14. Development of Secondary Recrystallization in high permeability grain oriented Silicon steel produced by Thin Slab Casting and Rolling process

    NASA Astrophysics Data System (ADS)

    Fan, L. F.; Liu, S. M.; Guo, F.; He, J. Z.; Lu, B.; Dong, R. F.

    2017-02-01

    Texture evolution during high temperature annealing process in high permeability grain oriented(Hi-B)silicon steel, produced by Thin Slab Casting and Rolling(TSCR) process, was investigated using macro-/microtexture analysis. Goss texture appears in ODF at 800°C, the intensity of Goss texture is very weak until 950°CGoss grains grow abnormally during 980°C∼1000°C, grain size reached centimeter level at 1000°C instead of Primary Grains, Goss grains were obtained fully at 1020°C, Secondary recrystallization completed at 1040°C The deviation angle of Goss grain orientation decreases gradually with increasing temperature, and it reached the minimum at 1040°C.

  15. Grain processing effects on starch utilization by ruminants.

    PubMed

    Theurer, C B

    1986-11-01

    Starch utilization may be markedly enhanced by proper grain processing; however, extent of improvement is primarily dependent upon the ruminant species, grain source and method of processing. Grain processing has less impact on starch digestion by sheep than cattle. The magnitude of improvement is inverse to the starch digestion values for nonprocessed (or minimally processed) grains. Utilization of sorghum grain starch is improved most by extensive processing, and then corn, with little improvement in barley starch digestion. Studies comparing processing effects on barley or wheat starch utilization by cattle were not found. Steam-flaking consistently improves digestibility of starch by cattle fed corn- or sorghum grain-based diets over whole, ground or dry-rolled processes. Other extensive processing methods appear to enhance starch digestibility of corn and sorghum grain to a similar extent as steam-flaking, but comparative data are too limited to quantitate adequately effects of these methods. This improvement in starch utilization appears to be the primary reason for enhanced feed conversion of cattle fed diets high in these processed grains. The major site of cereal grain starch digestion is usually the rumen. Processing increases microbial degradation of starch in the rumen and decreases amounts of starch digested post-ruminally. Rates of in vitro amylolytic attack of starch in cereal grains by both ruminal microbial and pancreatic enzyme sources are improved by processing methods employing proper combinations of moisture, heat and pressure. In vitro and in situ studies suggest that much of the increase in ruminal starch fermentation with steam-flaking is due to changes in starch granular structure, which produces additive effects beyond those of decreasing particle size. Thus, efficiency of ruminal starch fermentation by cattle appears to be improved by proper processing of corn and sorghum grain. Processing and grain source studies both suggest that

  16. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK.

    PubMed

    Nielsen, L K; Cook, D J; Edwards, S G; Ray, R V

    2014-06-02

    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium

  17. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK

    PubMed Central

    Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V.

    2014-01-01

    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium

  18. Structural and expressional analysis of the B-hordein genes in Tibetan hull-less barley.

    PubMed

    Han, Zhaoxue; Wu, Fang; Deng, Guangbing; Qian, Gang; Yu, Maoqun; Jia, Yulin

    2010-02-01

    The B-hordein gene family was analyzed from two Tibetan hull-less barley cultivars Z09 and Z26 (Hordeum vulgare subsp. vulgare). Fourteen B-hordein genes, designated BZ09-2 to BZ09-5 (from Z09) and BZ26-1 to BZ26-10 (from Z26), were sequenced. Seven of them, similar to a previously reported BZ09-1 from Z09, were predicted to encode putative active proteins each with a signal peptide, a repetitive domain, and a C-terminal region; seven of them were predicted to be pseudogenes. The B-hordein gene family was analyzed using all known representatives of B-hordein sequences and two most similar LMW-GSs of Triticum aestivum. Alignment of these seven putative proteins with known B-hordeins and two most similar LMW-GSs of T. aestivum revealed that they shared a common motif. A large variation was observed between numbers of repeat units of predicted B-hordeins of Z26 and Z09. Phylogenetic analysis revealed that all BZ26 clones were clustered in a subgroup, and BZ09-1 formed another subgroup by itself in the putative eight active genes. In addition, six 5'-upstream regulatory sequences of the B-hordein genes were isolated from the two accessions by a single oligonucleotide nested PCR, and several different mutations were identified in the cis-acting element GLM and two distinctive sequences (Z09P-2 and Z26P-3). Phylogenetic analysis of 5'-upstream regulatory regions of the B-hordein genes showed that members from the same accession were clustered together except for two distinct members. Quantitative real time PCR analysis indicated distinct expression levels of B-hordein genes in four developing stages of developing grains in two accessions. These findings suggest B-hordein genes have intrinsic differences between accessions, and this knowledge will be useful for incorporating the B-hordeins protein in barley breeding programs.

  19. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis

    PubMed Central<