Science.gov

Sample records for barley seed proteomics

  1. Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining.

    PubMed

    Witzel, Katja; Surabhi, Giridara-Kumar; Jyothsnakumari, Gottimukkala; Sudhakar, Chinta; Matros, Andrea; Mock, Hans-Peter

    2007-04-01

    This paper describes the application of the recently introduced fluorescence stain Ruthenium(II)-tris-(bathophenanthroline-disulphonate) (RuBP) on a comparative proteome analysis of two phenotypically different barley lines. We carried out an analysis of protein patterns from 2-D gels of the parental lines of the Oregon Wolfe Barley mapping population DOM and REC and stained with either the conventional colloidal Coomassie Brilliant Blue (cCBB) or with the novel RuBP solution. We wished to experimentally verify the usefulness of such a stain in evaluating the complex pattern of a seed proteome, in comparison to the previously used cCBB staining technique. To validate the efficiency of visualization by both stains, we first compared the overall number of detected protein spots. On average, 790 spots were visible by cCBB staining and 1200 spots by RuBP staining. Then, the intensity of a set of spots was assessed, and changes in relative abundance were determined using image analysis software. As expected, staining with RuBP performed better in quantitation in terms of sensitivity and dynamic range. Furthermore, spots from a cultivar-specific region in the protein map were chosen for identification to asses the gain of biological information due to the staining procedure. From this particular region, eight spots were visualized exclusively by RuBP and identification was successful for all spots, proving the ability to identify even very low abundant proteins. Performance in MS analysis was comparable for both protein stains. Proteins were identified by MALDI-TOF MS peptide mass fingerprinting. This approach was not successful for all spots, due to the restricted entry number for barley in the database. Therefore, we subsequently used LC-ESI-Q-TOF MS/MS and de novo sequencing for identification. Because only an insufficient number of proteins from barley is annotated, an EST-based identification strategy was chosen for our experiment. We wished to test whether under

  2. Proteome Analysis of Grain Filling and Seed Maturation in Barley1

    PubMed Central

    Finnie, Christine; Melchior, Sabrina; Roepstorff, Peter; Svensson, Birte

    2002-01-01

    In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-Mr α-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation. PMID:12114584

  3. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  4. Seed proteomics.

    PubMed

    Miernyk, Ján A; Hajduch, Martin

    2011-04-01

    Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cell biologists, and many of the complicated aspects of their processing, assembly, and compartmentation are now well understood. Unfortunately, the abundance and complexity of the SSP requires that they be avoided or removed prior to gel-based analysis of non-SSP. While much of the extant data from MS-based proteomic analysis of seeds is descriptive, it has nevertheless provided a preliminary metabolic picture explaining much of their biology. Contemporary studies are moving more toward analysis of protein interactions and posttranslational modifications, and functions of metabolic networks. Many aspects of the biology of seeds make then an attractive platform for heterologous protein expression. Herein we present a broad review of the results from the proteomic studies of seeds, and speculate on a potential future research directions. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Soybean seed proteome rebalancing

    PubMed Central

    Herman, Eliot M.

    2014-01-01

    The soybean seed’s protein content and composition are regulated by both genetics and physiology. Overt seed protein content is specified by the genotype’s genetic framework and is selectable as a breeding trait. Within the genotype-specified protein content phenotype soybeans have the capacity to rebalance protein composition to create differing proteomes. Soybeans possess a relatively standardized proteome, but mutation or targeted engineering can induce large-scale proteome rebalancing. Proteome rebalancing shows that the output traits of seed content and composition result from two major types of regulation: genotype and post-transcriptional control of the proteome composition. Understanding the underlying mechanisms that specifies the seed proteome can enable engineering new phenotypes for the production of a high-quality plant protein source for food, feed, and industrial proteins. PMID:25232359

  6. Seed Proteomics"

    USDA-ARS?s Scientific Manuscript database

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  7. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  8. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content

    PubMed Central

    Guo, Baojian; Luan, Haiye; Lin, Shen; Lv, Chao; Zhang, Xinzhong; Xu, Rugen

    2016-01-01

    Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4–7 and 6–11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns. PMID:27200019

  9. The seed nuclear proteome.

    PubMed

    Repetto, Ombretta; Rogniaux, Hélène; Larré, Colette; Thompson, Richard; Gallardo, Karine

    2012-01-01

    Understanding the regulatory networks coordinating seed development will help to manipulate seed traits, such as protein content and seed weight, in order to increase yield and seed nutritional value of important food crops, such as legumes. Because of the cardinal role of the nucleus in gene expression, sub-proteome analyses of nuclei from developing seeds were conducted, taking advantage of the sequences available for model species. In this review, we discuss the strategies used to separate and identify the nuclear proteins at a stage when the seed is preparing for reserve accumulation. We present how these data provide an insight into the complexity and distinctive features of the seed nuclear proteome. We discuss the presence of chromatin-modifying enzymes and proteins that have roles in RNA-directed DNA methylation and which may be involved in modifying genome architecture in preparation for seed filling. Specific features of the seed nuclei at the transition between the stage of cell divisions and that of cell expansion and reserve deposition are described here which may help to manipulate seed quality traits, such as seed weight.

  10. Barley

    USDA-ARS?s Scientific Manuscript database

    The U.S. malting and brewing industries are America’s largest consumers of barley, purchasing more than one-half of the U.S. barley grain crop. More than 70% of the hectares seeded to barley are seeded to cultivars recommended by the American Malting Barley Association (AMBA). The malting and brewi...

  11. Search for endophytic diazotrophs in barley seeds

    PubMed Central

    Zawoznik, Myriam S.; Vázquez, Susana C.; Díaz Herrera, Silvana M.; Groppa, María D.

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR. PMID:25242949

  12. The Seed Proteome Web Portal

    PubMed Central

    Galland, Marc; Job, Dominique; Rajjou, Loïc

    2012-01-01

    The Seed Proteome Web Portal (SPWP; http://www.seed-proteome.com/) gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from two dimensional electrophoresis (2DE) maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition) about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35%) or a decreasing abundance (15%). Moreover, during radicle protrusion (24–48 h upon imbibition), 41% proteins display quantitative variations with an increased (23%) or a decreasing abundance (18%). In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r2 = 0.29) between the theoretical (predicted from Arabidopsis genome) and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis, and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthesized proteins radiolabeled by [35S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination. PMID

  13. Isolation and Proteomics Analysis of Barley Centromeric Chromatin Using PICh.

    PubMed

    Zeng, Zixian; Jiang, Jiming

    2016-06-03

    Identification of proteins that are directly or indirectly associated with a specific DNA sequence is often an important goal in molecular biology research. Proteomics of isolated chromatin fragments (PICh) is a technique used to isolate chromatin that contains homologous DNA sequence to a specific nucleic acid probe. All proteins directly and indirectly associated with the DNA sequences that hybridize to the probe are then identified by proteomics.1 We used the PICh technique to isolate chromatin associated with the centromeres of barley (Hordeum vulgare) by using a 2'-deoxy-2'fluoro-ribonucleotides (2'-F RNA) probe that is homologous to the AGGGAG satellite DNA specific to barley centromeres. Proteins associated with the barley centromeric chromatin were then isolated and identified by mass spectrometry. Both alpha-cenH3 and beta-cenH3, the two centromeric histone H3 variants associated with barley centromeres, were positively identified. Interestingly, several different H2A and H2B variants were recovered in the PIChed chromatin. The limitations and future potential of PICh in plant chromatin research are discussed.

  14. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  15. Involvement of Alternative Splicing in Barley Seed Germination.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3' splicing (34%-45%), intron retention (32%-34%) and alternative 5' splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.

  16. Mitochondrial Proteome Studies in Seeds during Germination

    PubMed Central

    Czarna, Malgorzata; Kolodziejczak, Marta; Janska, Hanna

    2016-01-01

    Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination. PMID:28248229

  17. Proteomic insights into seed germination in response to environmental factors.

    PubMed

    Tan, Longyan; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2013-06-01

    Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors.However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zeamays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α-amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor-responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor-responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination.

  18. Rapid cultivar identification of barley seeds through disjoint principal component modeling.

    PubMed

    Whitehead, Iain; Munoz, Alicia; Becker, Thomas

    2017-01-01

    Classification of barley varieties is a crucial part of the control and assessment of barley seeds especially for the malting and brewing industry. The correct classification of barley is essential in that a majority of decisions made regarding process specifications, economic considerations, and the type of product produced with the cereal are made based on the barley variety itself. This fact combined with the need to promptly assess the cereal as it is delivered to a malt house or production facility creates the need for a technique to quickly identify a barley variety based on a sample. This work explores the feasibility of differentiating between barley varieties based on the protein spectrum of barley seeds. In order to produce a rapid analysis of the protein composition of the barley seeds, lab-on-a-chip micro fluid technology is used to analyze the protein composition. Classification of the barley variety is then made using disjoint principle component models. This work included 19 different barley varieties. The varieties consisted of both winter and summer barley types. In this work, it is demonstrated that this system can identify the most likely barley variety with an accuracy of 95.9% based on cross validation and can screen summer barley with an accuracy of 95.2% and a false positive rate of 0.0% based on cross validation. This demonstrates the feasibility of the method to provide a rapid and relatively inexpensive method to verify the heritage of barley seeds.

  19. Proteomics and posttranslational proteomics of seed dormancy and germination.

    PubMed

    Rajjou, Loïc; Belghazi, Maya; Catusse, Julie; Ogé, Laurent; Arc, Erwann; Godin, Béatrice; Chibani, Kamel; Ali-Rachidi, Sonia; Collet, Boris; Grappin, Philippe; Jullien, Marc; Gallardo, Karine; Job, Claudette; Job, Dominique

    2011-01-01

    The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops.

  20. Identification of Microbial Metabolites Elevating Vitamin Contents in Barley Seeds.

    PubMed

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-08-19

    The current investigation analyzes metabolites of Acetobacter aceti to explore chemical compounds responsible for the induction of vitamins in barley seeds. A bioactivity guided assay of bacterial extracts and chromatographic analyses of barley produce revealed 13 chemical compounds, which were subjected to principal component analysis (PCA). PCA determined four chemical compounds (i.e., quinolinic acid, pyridoxic acid, p-aminobenzoate, and α-oxobutanoic acid) highly associated with increased quantities of vitamins. Further experimentations confirmed that quinolinic acid and p-aminobenzoate were the most efficient vitamin inducers. The results indicated chloroform/ethanol (4:1) as the best solvent system for the extraction of active compounds from crude metabolites of A. aceti. Significant quantities of mevalonic acid were detected in the extracted fraction, indicating the possible induction of the isoprenoid pathway. Altogether, the current investigation broadens the frontiers in plant-microbe interaction.

  1. Proteome Analysis of Poplar Seed Vigor.

    PubMed

    Zhang, Hong; Wang, Wei-Qing; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.

  2. Proteome Analysis of Poplar Seed Vigor

    PubMed Central

    Zhang, Hong; Wang, Wei-Qing; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Seed vigor is a complex property that determines the seed’s potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30°C and 75±5% relative humidity for different periods of time (0–90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue. PMID:26172265

  3. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo.

    PubMed

    Bønsager, Birgit C; Shahpiri, Azar; Finnie, Christine; Svensson, Birte

    2010-10-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity profiles were observed. No ascorbate peroxidase (APX) activity was present in mature seeds but activity was detected after 24 h PI and increased 14-fold up to 144 h PI. In contrast, dehydroascorbate reductase (DHAR) activity was present at 4h PI and first decreased by 9-fold until 72 h PI followed by a 5-fold increase at 144 h PI. Glutathione reductase and monodehydroascorbate reductase activities were also detected at 4 h PI, and showed modest increases of 1.8- and 2.7-fold, respectively, by 144 h PI. The combination of functional analysis with the proteomics approach enabled correlation of the activity profiles and protein abundance. While gel spots containing APX showed intensity changes consistent with the activity profile from 0 to 72 h PI, DHAR spot intensities indicated that post-translational regulation may be responsible for the observed changes in activity. Transcript profiling, 2D-western blotting and mass spectrometric characterization of multiple APX spots demonstrated the presence of APX1 and minor amounts of APX2.

  4. Enzymes Associated with Protein Bodies Isolated from Ungerminated Barley Seeds

    PubMed Central

    Ory, Robert L.; Henningsen, Knud W.

    1969-01-01

    Protein bodies were isolated intact from dormant barley seeds, Hordeum vulgare, var. Kenia, by a combination of buffer extractions and centrifugations over a sucrose gradient. Examination of the protein bodies pellet in the electron microscope shows 2 types of protein bodies in a wide variation of sizes. The majority of them stain evenly with osmium, are contained within a single membrane, and have no other structural components. The other type, mostly the larger particles, has a fine structure of orderly dark and light-stained layers attached to the protein bodies. Two acid hydrolases are associated with these particles: acid phosphatase activity, specific for sodium phytate but inactive on β-glycerol phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and adenosine triphosphate; and acid protease activity. Images PMID:5397495

  5. Enzymes associated with protein bodies isolated from ungerminated barley seeds.

    PubMed

    Ory, R L; Henningsen, K W

    1969-11-01

    Protein bodies were isolated intact from dormant barley seeds, Hordeum vulgare, var. Kenia, by a combination of buffer extractions and centrifugations over a sucrose gradient. Examination of the protein bodies pellet in the electron microscope shows 2 types of protein bodies in a wide variation of sizes. The majority of them stain evenly with osmium, are contained within a single membrane, and have no other structural components. The other type, mostly the larger particles, has a fine structure of orderly dark and light-stained layers attached to the protein bodies. Two acid hydrolases are associated with these particles: acid phosphatase activity, specific for sodium phytate but inactive on beta-glycerol phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and adenosine triphosphate; and acid protease activity.

  6. Viability of barley seeds after long-term exposure to outer side of international space station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  7. Proteomic analysis of differences in barley (Hordeum vulgare) malts with distinct filterability by DIGE.

    PubMed

    Jin, Zhao; Li, Xiao-Min; Gao, Fei; Sun, Jun-Yong; Mu, Yu-Wen; Lu, Jian

    2013-11-20

    Filterability is an essential quality parameter of barley malt and significantly impacts productive efficiency and quality of beer. In the study, differences of metabolic capability, rather than of initial contents of macromolecules in barleys, were found to be the main reason for malt filterability gap between the widely used cultivars Dan'er and Metcalfe in China. Comparative proteomics based on fluorescent difference gel electrophoresis (DIGE) was employed to quantitatively analyze proteins of four commercial malts belonging to the two cultivars, and 51 cultivar-differential spots were identified to 40 metabolic proteins by MALDI-TOF/TOF mass spectrometry, mainly including hydrolases and pathogen-related proteins. According to their function analysis and abundance comparison between cultivars, filterability-beneficial and -adverse proteins were putatively proposed. Two most remarkable differential proteins, β-amylase and serpin Z7, were further investigated to verify their effects on Dan'er malt filterability. These results provide biological markers for barley breeders and maltsters to improve malt filterability. To the best of our knowledge, this is the first report of comprehensive investigation of metabolic proteins related to wort filterability of barley malts, and sheds light on clues for filterability improvement. Visible differences in the expression level of metabolic proteins between Dan'er and Metcalfe malts using 2D-DIGE signify a valuable tool for cultivar comparison, illustration of key proteins responsible for filterability and even other qualities of barley malts. And with these explorations on biomarkers of malt filterability and other aspects, there will be higher efficiency and quality of beer brewing, less application of exogenous hydrolases and more expending market for Chinese malting barleys. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Proteomic analysis of mature Lagenaria siceraria seed.

    PubMed

    Kumari, Neha; Tajmul, Md; Yadav, Savita

    2015-04-01

    Lagenaria siceraria (bottle gourd) class belongs to Magnoliopsida family curcurbitaceae that is a traditionally used medicinal plant. Fruit of this plant are widely used as a therapeutic vegetable in various diseases, all over the Asia and Africa. Various parts of this plant like fruit, seed, leaf and root are used as alternative medicine. In the present study, primarily, we have focused on proteomic analysis of L. siceraria seed using phenol extraction method for protein isolation. Twenty-four colloidal coomassie blue stained protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) after resolving on two-dimensional gel electrophoresis. Out of 24 identified protein spots, four were grouped as unidentified proteins which clearly suggest that less work has been done in the direction of plant seed proteomics. These proteins have been found to implicate in various functions such as biosynthesis of plant cell wall polysaccharides and glycoproteins, serine/threonine kinase activity, plant disease resistance and transferase activity against insects by means of insecticidal and larval growth inhibitory, anti-HIV, antihelmintic and antimicrobial properties. By Blast2GO annotation analysis, amongst the identified proteins of L. siceraria, molecular function for majority of proteins has indispensable role in catalytic activity, few in binding activity and antioxidant activity; it is mostly distributed in cell, organelle, membrane and macromolecular complex. Most of them involved in biological process such as metabolic process, cellular process, response to stimulus, single organism process, signalling, biological recognition, cellular component organization or biogenesis and localization.

  9. Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys

    PubMed Central

    Dai, Huaxin; Cao, Fangbin; Chen, Xianhong; Zhang, Mian; Ahmed, Imrul Mosaddek; Chen, Zhong-Hua; Li, Chengdao; Zhang, Guoping; Wu, Feibo

    2013-01-01

    Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance. PMID:23691047

  10. Viability and Biological Properties of Barley Seeds Expose to Outside of International Space Station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi; Shagimardanova, Elena; Gusev, Oleg; Sychev, Vladimir; Levinskikh, Margarita; Novikova, Nataliya; Grigoriev, Anatoly

    Plants play an important role in supplying nutrients and oxygen to human under material recycle system in space as well as on earth, therefore, seed storage in space should be necessary to self-supply foods when number of astronauts would stay and investigate for a long-term habitation of orbit and the bases of the Moon and Mars. In order to understand the effect of real space environment on the preservation of seeds, the seeds of malting barley, Haruna Nijo, were exposed to outside of the Pier docking station of International Space Station in the framework of the Biorisk-MSN program. After exposure to outside of International Space Station for 13 months, the seeds (SP) were transported to Earth, soaked in water, and germinated on the filter paper filled with water. The germination ratio of SP was 82%, while that of the ground control was 96%, showing that the barley seeds survived cosmic radiation, vacuum, and temperature excursion in space. The germinated seeds of SP and ground control were transplanted to the Wagner pots filled with soil and grown for 5 months in the greenhouse. The agronomic character, such as number of main stem leaf and ear, straw weight, culm length, ear length, thousand kernel weight, and percentage of ripening, were not different significantly between SP and ground control. The germination ratio of the harvested SP was 96% as same as that of the harvested ground control. Genomic DNA and protein were extracted from leaves of the barleys and analyzed by AFLP and 2-DE, respectively. The results demonstrated no significant difference in genetic polymorphism and protein production in these barleys. From our results, barley seeds could survive real space environment for the long-term habitation without phenotypic and genotypic damages.

  11. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes.

    PubMed

    Dorsch, John A; Cook, Allen; Young, Kevin A; Anderson, Joseph M; Bauman, Andrew T; Volkmann, Carla J; Murthy, Pushpalatha P N; Raboy, Victor

    2003-03-01

    myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6) or "phytic acid") typically represents approximately 75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations are described. In seeds homozygous for M 635 and M 955 reductions in Ins P(6), approximately 75 and >90% respectively, are accompanied by reductions in other Ins phosphates and molar-equivalent increases in Pi. This phenotype suggests a block in supply of substrate Ins. In seeds homozygous for barley low phytic acid 1-1 (lpa1-1), a 45% decrease in Ins P(6) is mostly matched by an increase in Pi but also accompanied by small increases in Ins(1,2,3,4,6)P(5). In seeds homozygous for barley lpa2-1, reductions in seed Ins P(6) are accompanied by increases in both Pi and in several Ins phosphates, a phenotype that suggests a lesion in Ins phosphate metabolism, rather than Ins supply. The increased Ins phosphates in barley lpa2-1 seed are: Ins(1,2,3,4,6)P(5); Ins(1,2,4,6)P(4) and/or its enantiomer Ins(2,3,4,6)P(4); Ins(1,2,3,4)P(4) and/or its enantiomer Ins(1,2,3,6)P(4); Ins(1,2,6)P(3) and/or its enantiomer Ins(2,3,4)P(3); Ins(1,5,6)P(3) and/or its enantiomer Ins(3,4,5)P(3) (the methods used here cannot distinguish between enantiomers). This primarily "5-OH" series of Ins phosphates differs from the "1-/3-OH" series observed at elevated levels in seed of the maize lpa2 genotype, but previous chromosomal mapping data indicated that the maize and barley lpa2 loci might be orthologs of a single ancestral gene. Therefore one hypothesis that might explain the differing lpa2 phenotypes is that their common ancestral gene encodes a multi-functional, Ins phosphate kinase with both "1-/-3-" and "5-kinase" activities. A putative pyrophosphate-containing Ins phosphate, possibly an Ins P(7), was also observed in the mature seed of all barley genotypes except lpa2-1. Barley M

  12. Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific filial determinant of seed total phosphorus

    USDA-ARS?s Scientific Manuscript database

    In cultivated cereal and legume seed crops, inositol hexaphosphate (Ins P6 or “phytic acid”) typically accounts for 75% (±10%) of seed total phosphorus (P). Genetic blocks in seed Ins P6 accumulation in some cases can also alter the distribution or total amount of seed P. In non-mutant barley (Horde...

  13. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat.

  14. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions.

    PubMed

    Vítámvás, Pavel; Urban, Milan O; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T

    2015-01-01

    Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.

  15. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions

    PubMed Central

    Vítámvás, Pavel; Urban, Milan O.; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T.

    2015-01-01

    Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, 13C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments. PMID:26175745

  16. Molecular Clustering Interrelationships and Carbohydrate Conformation in Hull and Seeds Among Barley Cultivars

    SciTech Connect

    N Liu; P Yu

    2011-12-31

    The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1} (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy

  17. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination.

    PubMed

    Ishibashi, Yushi; Aoki, Nozomi; Kasa, Shinsuke; Sakamoto, Masatsugu; Kai, Kyohei; Tomokiyo, Reisa; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari

    2017-01-01

    Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and abscisic acid (ABA) in dormant and non-dormant barley seeds. The hydrogen peroxide (H2O2) level produced in barley seed embryos after imbibition was higher in non-dormant seeds than in dormant seeds. H2O2 regulated the ABA content in the embryos through ABA-8'-hydroxylase, an ABA catabolic enzyme. Moreover, compared with non-dormant seeds, in dormant seeds the activity of NADPH oxidase, which produces ROS, was lower, whereas the activity of catalase, which is a H2O2 scavenging enzyme, was higher, as was the expression of HvCAT2. Furthermore, precocious germination of isolated immature embryos was suppressed by the transient introduction of HvCAT2 driven by the maize (Zea mays) ubiquitin promoter. HvCAT2 expression was regulated through an ABA-responsive transcription factor (HvABI5) induced by ABA. These results suggest that the changing of balance between ABA and ROS is active in barley seed embryos after imbibition and regulates barley seed dormancy and germination.

  18. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination

    PubMed Central

    Ishibashi, Yushi; Aoki, Nozomi; Kasa, Shinsuke; Sakamoto, Masatsugu; Kai, Kyohei; Tomokiyo, Reisa; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari

    2017-01-01

    Seed dormancy is one of the adaptive responses in the plant life cycle and an important agronomic trait. Reactive oxygen species (ROS) release seed dormancy and promote seed germination in several cereal crops; however, the key regulatory mechanism of ROS-mediated seed dormancy and germination remains controversial. Here, we focused on the relationship between hydrogen peroxide (a ROS) and abscisic acid (ABA) in dormant and non-dormant barley seeds. The hydrogen peroxide (H2O2) level produced in barley seed embryos after imbibition was higher in non-dormant seeds than in dormant seeds. H2O2 regulated the ABA content in the embryos through ABA-8′-hydroxylase, an ABA catabolic enzyme. Moreover, compared with non-dormant seeds, in dormant seeds the activity of NADPH oxidase, which produces ROS, was lower, whereas the activity of catalase, which is a H2O2 scavenging enzyme, was higher, as was the expression of HvCAT2. Furthermore, precocious germination of isolated immature embryos was suppressed by the transient introduction of HvCAT2 driven by the maize (Zea mays) ubiquitin promoter. HvCAT2 expression was regulated through an ABA-responsive transcription factor (HvABI5) induced by ABA. These results suggest that the changing of balance between ABA and ROS is active in barley seed embryos after imbibition and regulates barley seed dormancy and germination. PMID:28377774

  19. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  20. Proteomics reveals potential biomarkers of seed vigor in sugarbeet.

    PubMed

    Catusse, Julie; Meinhard, Juliane; Job, Claudette; Strub, Jean-Marc; Fischer, Uwe; Pestsova, Elena; Westhoff, Peter; Van Dorsselaer, Alain; Job, Dominique

    2011-05-01

    To unravel biomarkers of seed vigor, an important trait conditioning crop yield, a comparative proteomic study was conducted with sugarbeet seed samples of varying vigor as generated by an invigoration treatment called hydropriming and an aging treatment called controlled deterioration. Comparative proteomics revealed proteins exhibiting contrasting behavior between seed samples. Thus, 18 proteins were up-regulated during priming and down-regulated during aging and further displayed an up-regulation upon priming of the aged seeds, meaning that down-regulation of these spot volumes during aging was reversible upon subsequent priming. Also, 11 proteins exhibited the converse behavior characterized by a decrease and an increase of the spot volumes during priming and aging of the control seeds, respectively, and a decrease in the spot volumes upon priming of the aged seeds. The results underpinned the role in seed vigor of several metabolic pathways involved in lipid and starch mobilization, protein synthesis or the methyl cycle. They also corroborate previous studies suggesting that the glyoxylate enzyme isocitrate lyase, the capacity of protein synthesis and components of abscisic acid signaling pathways are likely contributors of seed vigor. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination*

    PubMed Central

    Mei, Yu-qin; Song, Song-quan

    2010-01-01

    A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cross-tolerance of low-temperature pretreatment to high-temperature stress and the possible involvement of reactive oxygen species (ROS) scavenging enzymes in the cross-tolerance. After pretreatment at 0 °C for different periods of time, barley seeds were germinated at 35 °C, and the content of malondialdehyde (MDA) and the activities of ROS scavenging enzymes were measured by a spectrophotometer analysis. The results showed that barley seed germinated very poorly at 35 °C, and this inhibitive effect could be overcome by pretreatment at 0 °C. The MDA content varied, depending on the temperature at which seeds germinated, while barley seeds pretreated at 0 °C did not change the MDA content. Compared with seeds germinated directly at 35 °C, the seeds pretreated first at 0 °C and then germinated at 35 °C had markedly increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The SOD and APX activities of seeds germinated at 35 °C after 0 °C-pretreatment were even substantially higher than those at 25 °C, and GR activity was similar to that at 25 °C, at which the highest germination performance of barley seeds was achieved. These results indicate that low-temperature pretreatment can markedly increase the tolerance of barley seed to high temperature during germination, this being related to the increase in ROS scavenging enzyme activity. This may provide a new method for increasing seed germination under stress environments, and may be an excellent model system for the study of cross-tolerance. PMID:21121076

  2. Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination.

    PubMed

    Mei, Yu-qin; Song, Song-quan

    2010-12-01

    A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cross-tolerance of low-temperature pretreatment to high-temperature stress and the possible involvement of reactive oxygen species (ROS) scavenging enzymes in the cross-tolerance. After pretreatment at 0 °C for different periods of time, barley seeds were germinated at 35 °C, and the content of malondialdehyde (MDA) and the activities of ROS scavenging enzymes were measured by a spectrophotometer analysis. The results showed that barley seed germinated very poorly at 35 °C, and this inhibitive effect could be overcome by pretreatment at 0 °C. The MDA content varied, depending on the temperature at which seeds germinated, while barley seeds pretreated at 0 °C did not change the MDA content. Compared with seeds germinated directly at 35 °C, the seeds pretreated first at 0 °C and then germinated at 35 °C had markedly increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The SOD and APX activities of seeds germinated at 35 °C after 0 °C-pretreatment were even substantially higher than those at 25 °C, and GR activity was similar to that at 25 °C, at which the highest germination performance of barley seeds was achieved. These results indicate that low-temperature pretreatment can markedly increase the tolerance of barley seed to high temperature during germination, this being related to the increase in ROS scavenging enzyme activity. This may provide a new method for increasing seed germination under stress environments, and may be an excellent model system for the study of cross-tolerance.

  3. Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific, filial determinant of seed total phosphorus.

    PubMed

    Raboy, Victor; Cichy, Karen; Peterson, Kevin; Reichman, Sarah; Sompong, Utumporn; Srinives, Peerasak; Saneoka, Hirofumi

    2014-01-01

    Inositol hexaphosphate (Ins P6 or "phytic acid") typically accounts for 75 (± 10%) of seed total phosphorus (P). In some cases, genetic blocks in seed Ins P6 accumulation can also alter the distribution or total amount of seed P. In nonmutant barley (Hordeum vulgare L.) caryopses, ~80% of Ins P6 and total P accumulate in the aleurone layer, the outer layer of the endosperm, with the remainder in the germ. In barley low phytic acid 1-1 (Hvlpa1-1) seed, both endosperm Ins P6 and total P are reduced (~45% and ~25%, respectively), but germs are phenotypically wild type. This translates into a net reduction in whole-seed total P of ~15%. Nutrient culture studies demonstrate that the reduction in endosperm total P is not due to a reduction in the uptake of P into the maternal plant. Genetic tests (analyses of testcross and F2 seed) reveal that the Hvlpa1-1 genotype of the filial seed conditions the seed total P reduction; sibling seed in the same head of barley that differ in their Hvlpa1-1 genotype (heterozygous vs. homozygous recessive) differ in their total P (normal vs. reduced, respectively). Therefore, Hvlpa1 functions as a seed-specific or filial determinant of barley endosperm total P.

  4. Proteomic analysis of mature barley grains from C-hordein antisense lines.

    PubMed

    Schmidt, Daiana; Gaziola, Salete Aparecida; Boaretto, Luis Felipe; Azevedo, Ricardo Antunes

    2016-05-01

    Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phylogenetically distant barley legumains have a role in both seed and vegetative tissues.

    PubMed

    Julián, Israel; Gandullo, Jacinto; Santos-Silva, Ludier K; Diaz, Isabel; Martinez, Manuel

    2013-07-01

    Legumains or vacuolar processing enzymes are cysteine peptidases (C13 family, clan CD) with increasingly recognized physiological significance in plants. They have previously been classified as seed and vegetative legumains. In this work, the entire barley legumain family is described. The eight members of this family belong to the two phylogenetic clades in which the angiosperm legumains are distributed. An in-depth molecular and functional characterization of a barley legumain from each group, HvLeg-2 and HvLeg-4, was performed. Both legumains contained a signal peptide and were located in the endoplasmic reticulum, were expressed in seeds and vegetative tissues, and when expressed as recombinant proteins showed legumain and caspase proteolytic activities. However, the role of each protein seemed to be different in their target tissues. HvLeg-2 responded in leaves to biotic and abiotic stimuli, such as salicylic acid, jasmonic acid, nitric oxide, abscisic acid, and aphid infestation, and was induced by gibberellic acid in seeds, where the protein is able to degrade storage globulins. HvLeg-4 responded in leaves to wounding, nitric oxide, and abscisic acid treatments, and had an unknown role in the germinating seed. From these results, a multifunctional role was assumed for these two phylogenetically distant legumains, achieving different physiological functions in both seed and vegetative tissues.

  6. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration

    PubMed Central

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P. C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (“OWB-D”), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec (“OWB-R”), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions. PMID:27066038

  7. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration.

    PubMed

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P C

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the "elevated partial pressure of oxygen" (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom ("OWB-D"), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec ("OWB-R"), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions.

  8. Physiological and proteomic analyses on artificially aged Brassica napus seed.

    PubMed

    Yin, Xiaojian; He, Dongli; Gupta, Ravi; Yang, Pingfang

    2015-01-01

    Plant seeds lose their viability when they are exposed to long term storage or controlled deterioration treatments, by a process known as seed aging. Based on previous studies, artificially aging treatments have been developed to accelerate the process of seed aging in order to understand its underlying mechanisms. In this study, we used Brassica napus seeds to investigate the mechanisms of aging initiation. B. napus seeds were exposed to artificially aging treatment (40°C and 90% relative humidity) and their physio-biochemical characteristics were analyzed. Although the treatment delayed germination, it did not increase the concentration of cellular reactive oxygen species (ROS). Comparative proteomic analysis was conducted among the control and treated seeds at different stages of germination. The proteins responded to the treatment were mainly involved in metabolism, protein modification and destination, stress response, development, and miscellaneous enzymes. Except for peroxiredoxin, no changes were observed in the accumulation of other antioxidant enzymes in the artificially aged seeds. Increased content of abscisic acid (ABA) was observed in the artificially treated seeds which might be involved in the inhibition of germination. Taken together, our results highlight the involvement of ABA in the initiation of seed aging in addition to the ROS which was previously reported to mediate the seed aging process.

  9. The study of a barley epigenetic regulator, HvDME, in seed development and under drought

    PubMed Central

    2013-01-01

    Background Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. Results An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5′ and 3′ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3′ downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. Conclusion A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation

  10. Proteomic analysis of arabidopsis seed germination and priming.

    PubMed

    Gallardo, K; Job, C; Groot, S P; Puype, M; Demol, H; Vandekerckhove, J; Job, D

    2001-06-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.

  11. Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust

    PubMed Central

    2012-01-01

    Background Leaf rust, caused by the biotrophic fungal pathogen Puccinia hordei, is one of the most important foliar disease of barley (Hordeum vulgare) and represents a serious threat in many production regions of the world. The leaf rust resistance gene Rph15 is of outstanding interest for resistance breeding because it confers resistance to over 350 Puccinia hordei isolates collected from around the world. Molecular and biochemical mechanisms responsible for the Rph15 effectiveness are currently not investigated. The aim of the present work was to study the Rph15-based defence responses using a proteomic approach. Results Protein pattern changes in response to the leaf rust pathogen infection were investigated in two barley near isogenic lines (NILs), Bowman (leaf rust susceptible) and Bowman-Rph15 (leaf rust resistant), differing for the introgression of the leaf rust resistance gene Rph15. Two infection time points, 24 hours and four days post inoculation (dpi), were analysed. No statistically significant differences were identified at the early time point, while at 4 dpi eighteen protein spots were significantly up or down regulated with a fold-change equal or higher than two in response to pathogen infection. Almost all the pathogen-responsive proteins were identified in the Bowman-Rph15 resistant NIL. Protein spots were characterized by LC-MS/MS analysis and found to be involved in photosynthesis and energy metabolism, carbohydrate metabolism, protein degradation and defence. Proteomic data were complemented by transcriptional analysis of the respective genes. The identified proteins can be related to modulation of the photosynthetic apparatus components, re-direction of the metabolism to sustain defence responses and deployment of defence proteins. Conclusions The identification of leaf rust infection-modulated defence responses restricted to the resistant NIL support the hypothesis that basal defence responses of Bowman, but not the Rph15 resistance gene

  12. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    PubMed Central

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  13. Proteomic analysis of Magnolia sieboldii K. Koch seed germination.

    PubMed

    Lu, Xiu-Jun; Zhang, Xiao-Lin; Mei, Mei; Liu, Guang-Lin; Ma, Bei-Bei

    2016-02-05

    Magnolia sieboldii is a deciduous tree native to China. This species has a deep dormancy characteristic. To better understand seed germination, we used protein analysis of changes in seed protein at 0, 65, 110 and 150 d of stratification. Comparative 2DE analysis of M. sieboldii seed protein profiles at 0, 65, 110 and 150 d of stratification revealed 80 differentially abundance protein species. Comparative analysis showed that ADP-glucose pyrophosphorylase small subunit was degraded during germination. In particular, it was degraded almost completely at 110 d of germination. Starch granules in the microstructure decreased after 65 d of stratification. Starch granules provided a sufficient amount of substrates and ATPs for subsequent germination. Four storage protein species were identified, of which all were down accumulated. Spots 44 and 46 had different MW and pI values, spots 36 and 46 had nearly the same MW with pI shift in the 2-DE gels, suggesting that they might be present as different isoforms of the same protein family and the post translational modification. Our results suggested that degradation of starch granules and storage protein species prepared the seed embryo for growth, as well as regulated seed germination. The present proteomics analysis provides novel insights into the mobilisation of nutrient reserves during the germination of M. sieboldii seeds. To better understand seed germination, a complex developmental process, we developed a proteome analysis of M. sieboldii seed. We performed the first comprehensive proteomic and microstructure analysis during different seed stratification stages of M. sieboldii. Among the 80 protein species, 26 were identified, 7 and 14 protein species were up or down accumulated significantly. Many of the identified key proteins were involved in embryo development, starch biosynthesis and energy metabolism, Microstructure of stratification seed analysis revealed degradation of starch was used for preparing the seed

  14. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    PubMed Central

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  15. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    PubMed

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  16. Proteomic analysis of rice (Oryza sativa) seeds during germination.

    PubMed

    Yang, Pingfang; Li, Xiaojuan; Wang, Xiaoqin; Chen, Hui; Chen, Fan; Shen, Shihua

    2007-09-01

    Although seed germination is a major subject in plant physiological research, there is still a long way to go to elucidate the mechanism of seed germination. Recently, functional genomic strategies have been applied to study the germination of plant seeds. Here, we conducted a proteomic analysis of seed germination in rice (Oryza sativa indica cv. 9311) - a model monocot. Comparison of 2-DE maps showed that there were 148 proteins displayed differently in the germination process of rice seeds. Among the changed proteins, 63 were down-regulated, 69 were up-regulated (including 20 induced proteins). The down-regulated proteins were mainly storage proteins, such as globulin and glutelin, and proteins associated with seed maturation, such as "early embryogenesis protein" and "late embryogenesis abundant protein", and proteins related to desiccation, such as "abscisic acid-induced protein" and "cold-regulated protein". The degradation of storage proteins mainly happened at the late stage of germination phase II (48 h imbibition), while that of seed maturation and desiccation associated proteins occurred at the early stage of phase II (24 h imbibition). In addition to alpha-amylase, the up-regulated proteins were mainly those involved in glycolysis such as UDP-glucose dehydrogenase, fructokinase, phosphoglucomutase, and pyruvate decarboxylase. The results reflected the possible biochemical and physiological processes of germination of rice seeds.

  17. Proteomics of seed development, desiccation tolerance, germination and vigor.

    PubMed

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  19. Proteomic Analysis of Seed Dormancy in Arabidopsis1[W

    PubMed Central

    Chibani, Kamel; Ali-Rachedi, Sonia; Job, Claudette; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2006-01-01

    The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [35S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium. PMID:17028149

  20. A Proteomic Analysis of Seed Development in Brassica campestri L

    PubMed Central

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants. PMID:23189193

  1. Proteomic analysis of early seed development in Pinus massoniana L.

    PubMed

    Zhen, Yan; Zhao, Zhen-Zhou; Zheng, Ren-Hua; Shi, Jisen

    2012-05-01

    Understanding seed development is important for large-scale propagation and germplasm conservation for the Masson pine. We undertook a proteomic analysis of Masson pine seeds during the early stages of embryogenesis. Two-dimensional difference gel electrophoresis (2D DIGE) was used to quantify the differences in protein expression during early seed development. Using electrospray ionization mass spectrometry/mass spectrometry, we identified proteins from 43 gel spots that had been excised from preparative "pick" gels. Proteins involved in carbon metabolism were identified and were predominantly expressed at higher levels during the cleavage polyembryony and columnar embryo stages. Functional annotation of one seed protein revealed it involvement in programmed cell death and translation of selective mRNAs, which may play an important role in subordinate embryo elimination and suspensor degeneration in polyembryonic seed gymnosperms. Other identified proteins were associated with protein folding, nitrogen metabolism, disease/defense response, and protein storage, synthesis and stabilization. The comprehensive protein expression profiles generated by this study will provide new insights into the complex developmental process of seed development in Masson pine.

  2. Proteomic comparison of near-isogenic barley (Hordeum vulgare L.) germplasm differing in the allelic state of a major senescence QTL identifies numerous proteins involved in plant pathogen defense.

    PubMed

    Mason, Katelyn E; Hilmer, Jonathan K; Maaty, Walid S; Reeves, Benjamin D; Grieco, Paul A; Bothner, Brian; Fischer, Andreas M

    2016-12-01

    Senescence is the last developmental phase of plant tissues, organs and, in the case of monocarpic senescence, entire plants. In monocarpic crops such as barley, it leads to massive remobilization of nitrogen and other nutrients to developing seeds. To further investigate this process, a proteomic comparison of flag leaves of near-isogenic late- and early-senescing barley germplasm was performed. Protein samples at 14 and 21 days past anthesis were analyzed using both two-dimensional gel-based and label-free quantitative mass spectrometry-based ('shotgun') proteomic techniques. This approach identified >9000 barley proteins, and one-third of them were quantified. Analysis focused on proteins that were significantly (p < 0.05; difference ≥1.5-fold) upregulated in early-senescing line '10_11' as compared to late-senescing variety 'Karl', as these may be functionally important for senescence. Proteins in this group included family 1 pathogenesis-related proteins, intracellular and membrane receptors or co-receptors (NBS-LRRs, LRR-RLKs), enzymes involved in attacking pathogen cell walls (glucanases), enzymes with possible roles in cuticle modification, and enzymes involved in DNA repair. Additionally, proteases and elements of the ubiquitin-proteasome system were upregulated in line '10_11', suggesting involvement of nitrogen remobilization and regulatory processes. Overall, the proteomic data highlight a correlation between early senescence and upregulated defense functions. This correlation emerges more clearly from the current proteomic data than from a previously performed transcriptomic comparison of 'Karl' and '10_11'. Our findings stress the value of studying biological systems at both the transcript and protein levels, and point to the importance of pathogen defense functions during developmental leaf senescence.

  3. Effect of soaking in water and rumen digeta solutions on metabolizable energy content and chemical composition of barley seeds for use in poultry diet.

    PubMed

    Tabatabee, S N; Sadeghi, G H; Tabeidian, S A

    2007-03-15

    An experiment was carried out to evaluate the effect of soaking in water and different rumen digesta solutions on nutritional value of dry barley seeds. Treatments were included distilled water as control and rumen digesta that diluted with distilled water to obtain 20, 40 and 60% digesta solutions. Solutions have added to 10 kg of barley seed samples to achieve final 30% moisture content. After 21 days the chemical composition and energy content of barley seed were determined. Gross energy of barley seeds did not affected by different experimental treatments. Use of 20% rumen digesta solution resulted to a significant (p<0.01) increase in AME and AMEn content of barley seeds. Barley seed that treated with 40% of rumen digesta solution had highest TME and TMEn content and its different from seeds that treated with 60 and 100% rumen digesta solutions was significant (p<0.05). The chemical composition such as dry matter, crud protein, crude fat, crud fiber, ash and NFE were found to be similar and there was no significant difference. However, soaking in rumen digesta solutions increased crud protein, ether extract, crude fiber and ash content of barley seeds numerically.

  4. Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare)

    PubMed Central

    Führs, Hendrik; Behrens, Christof; Gallien, Sébastien; Heintz, Dimitri; Van Dorsselaer, Alain; Braun, Hans-Peter; Horst, Walter J.

    2010-01-01

    Background and Aims Research on manganese (Mn) toxicity and tolerance indicates that Mn toxicity develops apoplastically through increased peroxidase activities mediated by phenolics and Mn, and Mn tolerance could be conferred by sequestration of Mn in inert cell compartments. This comparative study focuses on Mn-sensitive barley (Hordeum vulgare) and Mn-tolerant rice (Oryza sativa) as model organisms to unravel the mechanisms of Mn toxicity and/or tolerance in monocots. Methods Bulk leaf Mn concentrations as well as peroxidase activities and protein concentrations were analysed in apoplastic washing fluid (AWF) in both species. In rice, Mn distribution between leaf compartments and the leaf proteome using 2D isoelectic focusing IEF/SDS–PAGE and 2D Blue native BN/SDS–PAGE was studied. Key Results The Mn sensitivity of barley was confirmed since the formation of brown spots on older leaves was induced by low bulk leaf and AWF Mn concentrations and exhibited strongly enhanced H2O2-producing and consuming peroxidase activities. In contrast, by a factor of 50, higher Mn concentrations did not produce Mn toxicity symptoms on older leaves in rice. Peroxidase activities, lower by a factor of about 100 in the rice leaf AWF compared with barley, support the view of a central role for these peroxidases in the apoplastic expression of Mn toxicity. The high Mn tolerance of old rice leaves could be related to a high Mn binding capacity of the cell walls. Proteomic studies suggest that the lower Mn tolerance of young rice leaves could be related to Mn excess-induced displacement of Mg and Fe from essential metabolic functions. Conclusions The results provide evidence that Mn toxicity in barley involves apoplastic lesions mediated by peroxidases. The high Mn tolerance of old leaves of rice involves a high Mn binding capacity of the cell walls, whereas Mn toxicity in less Mn-tolerant young leaves is related to Mn-induced Mg and Fe deficiencies. PMID:20237113

  5. Genetic changes induced by space flight factors in barley seeds on Soyuz-5 and Soyuz-9 craft

    NASA Technical Reports Server (NTRS)

    Nuzhdin, N. I.; Dozortseva, R. L.

    1980-01-01

    Air-dry seeds of the barley Zimujuschij moscowskyi of the 1969 harvest were taken into space onboard the spaceships Soyuz-5 and Soyuz-9. A cytological study of the mitoses in meristemic cells in rootlet terminals revealed that space flight factors (SFF) in nonirradiated seeds induced about 3% of aberrant cells. After irradiation the effect of SFF increased over two-fold. Although the radio protectors ensured the seeds against from the SFF-induced damage either in irradiated or nonirradiated seed cells which is inconsistent with the previously obtained data.

  6. Protein repair L-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds.

    PubMed Central

    Mudgett, M B; Lowenson, J D; Clarke, S

    1997-01-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability. PMID:9414558

  7. Extraction of high-quality RNA from germinating barley (Hordeum vulgare L.) seeds containing high levels of starch.

    USDA-ARS?s Scientific Manuscript database

    Comparative evaluation of gene expression levels can lead to improved understanding of the gene networks underlying traits of economic importance. Extraction of high-quality RNA from germinating barley seeds that contain high levels of starch is of vital importance for analysing the expression of ca...

  8. A high-throughput RNA extraction for sprouted single-seed malting barley (Hordeum vulgare L.) rich in polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Germinated seed from cereal crops including barley (Hordeum vulgare L.) is an important tissue to extract RNA and analyze expression levels of genes that control aspects of germination. These tissues are rich in polysaccharides and most methods for RNA extraction are not suitable to handle the exces...

  9. Lens culinaris Medik. seed proteome: analysis to identify landrace markers.

    PubMed

    Ialicicco, Manuela; Viscosi, Vincenzo; Arena, Simona; Scaloni, Andrea; Trupiano, Dalila; Rocco, Mariapina; Chiatante, Donato; Scippa, Gabriella S

    2012-12-01

    Unlike modern cultivars selected for their growth performances in specific environmental conditions, local landraces have a high genetic variability that is an important resource for plant breeding. Consequent to their high adaptation to different environmental conditions, these landraces may have evolved adaptive gene complexes To promote the survival of endangered lentil landraces, we previously investigated the genetic relationship between two ancient landraces cultivated in the Molise region (Capracotta and Conca Casale, south-central Italy) and widely spread commercial varieties using an integrated approach consisting of morphological, DNA and protein characterization. In the present study, we used a proteomic approach to compare the mature seed proteomes of the Capracotta and Conca Casale lentil landraces. Multivariate analysis of 145 differentially expressed protein spots demonstrated that 52 proteins are required to discriminate among the two landraces. Therefore, these 52 proteins can be considered "landrace markers". The results of this study show that the combination of proteomics and multivariate analysis can be used to identify physiological and/or environmental markers, and is thus a powerful tool that complements the analysis of biodiversity in plant ecotypes.

  10. From metabolome to phenotype: GC-MS metabolomics of developing mutant barley seeds reveals effects of growth, temperature and genotype.

    PubMed

    Khakimov, Bekzod; Rasmussen, Morten Arendt; Kannangara, Rubini Maya; Jespersen, Birthe Møller; Munck, Lars; Engelsen, Søren Balling

    2017-08-15

    The development of crop varieties tolerant to growth temperature fluctuations and improved nutritional value is crucial due to climate change and global population growth. This study investigated the metabolite patterns of developing barley seed as a function of genotype and growth temperature for ideal vegetable protein production and for augmented β-glucan production. Seeds from three barley lines (Bomi, lys3.a and lys5.f) were sampled eight times during grain filling and analysed for metabolites using gas chromatography-mass spectrometry (GC-MS). The lys3.a mutation disrupts a regulator gene, causing an increase in proteins rich in the essential amino acid lysine, while lys5.f carries a mutation in an ADP-glucose transporter gene leading to a significant increase in production of mixed-linkage β-glucan at the expense of α-glucan. Unique metabolic patterns associated with the tricarboxylic acid cycle, shikimate-phenylpropanoid pathway, mevalonate, lipid and carbohydrate metabolism were observed for the barley mutants, whereas growth temperature primarily affected shikimate-phenylpropanoid and lipid metabolism. The study applied recently developed GC-MS metabolomics methods and demonstrated their successful application to link genetic and environmental factors with the seed phenotype of unique and agro-economically important barley models for optimal vegetable protein and dietary fibre production.

  11. Comparison of frequency distributions of doubled haploid and single seed descent lines in barley.

    PubMed

    Choo, T M; Reinbergs, E; Park, S J

    1982-09-01

    Both doubled haploid (DH) and single seed descent (SSD) methods were used to derive homozygous lines from two crosses of barley. The frequency distributions of grain yield, heading date, and plant height of the DH and SSD lines were compared by the Mann-Whitney U test, Kolmogorov-Smirnov twosample test and Wald-Wolfowitz runs test. It was found that the DH lines distributed in the same manner as the SSD lines with respect to the three characters. The results indicated that although the SSD method had more opportunity for recombination than the DH method, it did not produce a sample of recombinants which differed significantly from the DH sample; thus both methods were equally efficient for use in deriving homozygous lines from F1 hybrids in a relatively short time.

  12. Enhanced germination of barley (Hordeum vulgare L.) using chitooligosaccharide as an elicitor in seed priming to improve malt quality.

    PubMed

    Lan, Weiqiu; Wang, Wei; Yu, Zhimin; Qin, Yanxia; Luan, Jing; Li, Xianzhen

    2016-11-01

    To study enhanced barley germination by chitooligosaccharide as an elicitor for improving the quality of malt. Barley germination for both radical and leaf sprouts was enhanced when chitooligosaccharide was added to the steeping water in the first steeping cycle. The activities of hydrolases (α-/β-amylase, proteinase and β-glucanase) and antioxidases (superoxide dismutase and catalase) in the resultant malt were increased in a dose-dependent manner when chitooligosaccharide was supplemented in the steeping water. Maximal promotion was at 1 mg chitooligosaccharide/l for α-/β-amylase and proteinase, and at 10 mg/l for β-glucanase, superoxide dismutase and catalase. Malt quality, including free α-amino nitrogen content, Kolbach index, malt extract content, diastatic power, wort viscosity and the ratio of glucose, maltose and maltotriose, was significantly improved by chitooligosaccharide in seed priming at 1 mg/l. Application of chitooligosaccharide in the steeping water promotes barley germination and improves the quality of malt.

  13. Proteome analysis of embryo and endosperm from germinating tomato seeds.

    PubMed

    Sheoran, Inder S; Olson, Douglas J H; Ross, Andrew R S; Sawhney, Vipen K

    2005-09-01

    Proteome analysis of embryo and endosperm tissues from germinating tomato seed was conducted using 1-DE, 2-DE, and MS. Mobilization of the most abundant proteins, which showed similar profiles in the two tissues, occurred first in the endosperm. CBB R-250 staining of 2-DE gels revealed 352 and 369 major protein spots in the embryo and endosperm, respectively, at 0 h. Of these, 75 major spots were selected, excised, in-gel digested with trypsin, and analyzed by MALDI-TOF-MS and/or LC-ESI-Q/TOF-MS/MS. Peptide MS and MS/MS data were searched against publicly available protein and EST databases, and 47 proteins identified. Embryo-specific proteins included a BAC19.13 homologue, whereas four proteins specific to the endosperm were tomato mosaic virus coat proteins related to defense mechanisms. The most abundant proteins both in the embryo and endosperm were seed storage proteins, i.e., legumins (11 spots), vicilins (11 spots), albumin (2 spots). Housekeeping enzymes, actin-binding profilin, defense-related protein kinases, nonspecific lipid transfer protein, and proteins involved in general metabolism were also identified. The roles of some of the proteins identified in the embryo and endosperm are discussed in relation to seed germination in tomato.

  14. Radiation exposure of barley seeds can modify the early stages of plants' development.

    PubMed

    Geras'kin, Stanislav; Churyukin, Roman; Volkova, Polina

    2017-10-01

    The reactions of barley seeds (Nur and Grace varieties) in terms of the root and sprout lengths, germination and root mass were studied after γ-irradiation with doses in the range of 2-50 Gy. The dose range in which plants' growth stimulation occurs (16-20 Gy) was identified. It was shown that increased size of seedlings after irradiation with stimulating doses was due to the enhancing pace of development rather than an earlier germination. The activity of the majority of the enzymes studied increased in the range of doses that cause stimulation of seedlings development. The influences of the dose rate, the quality of seeds, their moisture and time interval between irradiation and initiation of germination on the manifestation of the effects of radiation were investigated. The experimental data on the effect of γ-irradiation on seedlings development were significantly better explained by mathematical models that take into account the hormetic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bykova, Natalia V; Igamberdiev, Abir U

    2016-01-01

    The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy.

  16. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    SciTech Connect

    Joshi, Anjali Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  17. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    NASA Astrophysics Data System (ADS)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  18. A High-Throughput RNA Extraction for Sprouted Single-Seed Barley (Hordeum vulgare L.) Rich in Polysaccharides

    PubMed Central

    Rashid, Abdur; Baldwin, Thomas; Gines, Michael; Bregitzer, Phil; Esvelt Klos, Kathy

    2016-01-01

    Germinated seed from cereal crops including barley (Hordeum vulgare L.) is an important tissue to extract RNA and analyze expression levels of genes that control aspects of germination. These tissues are rich in polysaccharides and most methods for RNA extraction are not suitable to handle the excess polysaccharides. Here, we compare the current methods for RNA extraction applicable to germinated barley tissue. We found that although some of these standard methods produced high-quality RNA, the process of extraction was drastically slow, mostly because the frozen seed tissue powder from liquid N2 grinding became recalcitrant to buffer mixing. Our suggested modifications to the protocols removed the need for liquid N2 grinding and significantly increased the output efficiency of RNA extraction. Our modified protocol has applications in other cereal tissues rich in polysaccharides, including oat. PMID:28025509

  19. A High-Throughput RNA Extraction for Sprouted Single-Seed Barley (Hordeum vulgare L.) Rich in Polysaccharides.

    PubMed

    Rashid, Abdur; Baldwin, Thomas; Gines, Michael; Bregitzer, Phil; Esvelt Klos, Kathy

    2016-12-22

    Germinated seed from cereal crops including barley (Hordeum vulgare L.) is an important tissue to extract RNA and analyze expression levels of genes that control aspects of germination. These tissues are rich in polysaccharides and most methods for RNA extraction are not suitable to handle the excess polysaccharides. Here, we compare the current methods for RNA extraction applicable to germinated barley tissue. We found that although some of these standard methods produced high-quality RNA, the process of extraction was drastically slow, mostly because the frozen seed tissue powder from liquid N₂ grinding became recalcitrant to buffer mixing. Our suggested modifications to the protocols removed the need for liquid N₂ grinding and significantly increased the output efficiency of RNA extraction. Our modified protocol has applications in other cereal tissues rich in polysaccharides, including oat.

  20. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method

    PubMed Central

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-01-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios

  1. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  2. Proteomic analysis of heterosis during maize seed germination.

    PubMed

    Fu, Zhiyuan; Jin, Xining; Ding, Dong; Li, Yongling; Fu, Zhongjun; Tang, Jihua

    2011-04-01

    Heterosis is observed for most phenotypic traits and developmental stages in many plants. In this study, the embryos, from germinating seeds after 24 h of soaking, for five elite maize hybrids and their parents were selected to unravel the genetic basis of heterosis using 2-D proteomic method. In total, 257 (80.06%), 363 (58.74%), 351 (79.95%), 242 (54.50%), and 244 (46.30%) nonadditively expressed proteins were identified in hybrids Zhengdan 958, Nongda 108, Yuyu 22, Xundan 20, and Xundan 18, respectively. The nonadditive proteins were divided into above high-parent (++; 811, 55.66%), high-parent (+; 121, 8.30%), partial dominance (+-; 249, 17.09%), low-parent (-; 30, 2.06%), below low-parent (- -; 62, 4.26%), and D (different; 184, 12.63%) expression patterns. The observed patterns indicate the important roles of dominance, partial dominance, and overdominance in regulating seed germination in maize. Additionally, 54 different proteins were identified by mass spectrometry and classified into nine functional groups: metabolism (9), cell detoxification (8), unknown functional proteins (8), chaperones (7), signal transduction (6), development process (5), other (5), transporter (3), and stress response (3). Of these, the most interesting are those involved with germination-related hormone signal transduction and the abscisic acid and gibberellin regulation networks.

  3. Long wavelength near-infrared transmission spectroscopy of barley seeds using a supercontinuum laser: Prediction of mixed-linkage beta-glucan content.

    PubMed

    Ringsted, Tine; Ramsay, Jacob; Jespersen, Birthe M; Keiding, Søren R; Engelsen, Søren B

    2017-09-15

    A supercontinuum laser was used to perform the first transmission measurements on intact seeds with long wavelength near-infrared spectroscopy. A total of 105 barley seeds from five different barley genotypes (Bomi, lys5.f, lys5.g, lys16 and lys95) were measured from 2275 to 2375 nm. The mixed-linkage (1→3,1→4)-β-D-glucan (BG) and protein content was measured with wet chemical analysis for each single seed. A partial least squares model correlated the BG % (w/w) with the spectral measurements with a R(2)CV and R(2)PRED of 0.83 and 0.90, respectively. The predictive model for BG could be improved by averaging spectra from the same seed and by replacing the individual seed BG content with the average BG of each barley genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Colonization Pattern of the Biocontrol Strain Pseudomonas chlororaphis MA 342 on Barley Seeds Visualized by Using Green Fluorescent Protein

    PubMed Central

    Tombolini, Riccardo; van der Gaag, Dirk Jan; Gerhardson, Berndt; Jansson, Janet K.

    1999-01-01

    Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain. PMID:10427065

  5. Proteomic analysis of seed germination under salt stress in soybeans*

    PubMed Central

    Xu, Xiao-yan; Fan, Rui; Zheng, Rui; Li, Chun-mei; Yu, De-yue

    2011-01-01

    Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop, and its production is severely affected by saline soils. Therefore, the response of soybean seeds to salt stress during germination was investigated at both physiological and proteomic levels. The salt-tolerant cultivar Lee68 and salt-sensitive cultivar N2899 were exposed to 100 mmol/L NaCl until radicle protrusion from the seed coat. In both cultivars, the final germination percentage was not affected by salt, but the mean germination times of Lee68 and N2899 were delayed by 0.3 and 1.0 d, respectively, compared with controls. In response to salt stress, the abscisic acid content increased, and gibberellic acid (GA1+3) and isopentenyladenosine decreased. Indole-3-acetic acid increased in Lee68, but remained unchanged in N2899. The proteins extracted from germinated seeds were separated using two-dimensional gel electrophoresis (2-DE), followed by Coomassie brilliant blue G-250 staining. About 350 protein spots from 2-DE gels of pH range 3 to 10 and 650 spots from gels of pH range 4 to 7 were reproducibly resolved, of which 18 protein spots showed changes in abundance as a result of salt stress in both cultivars. After matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of the differentially expressed proteins, the peptide mass fingerprint was searched against the soybean UniGene database and nine proteins were successfully identified. Ferritin and 20S proteasome subunit β-6 were up-regulated in both cultivars. Glyceraldehyde 3-phosphate dehydrogenase, glutathione S-transferase (GST) 9, GST 10, and seed maturation protein PM36 were down-regulated in Lee68 by salt, but still remained at a certain level. However, these proteins were present in lower levels in control N2899 and were up-regulated under salt stress. The results indicate that these proteins might have important roles in defense mechanisms against salt stress during soybean seed germination. PMID

  6. Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes

    PubMed Central

    Sun, Hongyan; Cao, Fangbin; Wang, Nanbo; Zhang, Mian; Mosaddek Ahmed, Imrul; Zhang, Guoping; Wu, Feibo

    2013-01-01

    To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low- grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2), trypsin inhibitor, dehydroascorbate reductase (DHAR), pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars. PMID:24260165

  7. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism.

    PubMed

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-06-29

    Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins were subjected to protamine sulfate precipitation for the enrichment of low-abundance proteins and utilized for proteome analysis. A total of 14 differential proteins were identified on 2-DE, whereas label-free quantification resulted in the identification of 1626 non-redundant proteins. Of these identified proteins, 146 showed significant changes in protein abundance, where 5 and 141 had increased and decreased abundances, respectively while 352 proteins were completely degraded during CDT. Gene ontology and KEGG analyses suggested the association of differential proteins with primary metabolism, ROS detoxification, translation elongation and initiation, protein folding, and proteolysis, where most, if not all, had decreased abundance during CDT. Western blotting confirmed reduced level of antioxidant enzymes (DHAR, APx1, MDAR, and SOD) upon CDT. This in-depth integrated study reveals a major downshift in seed metabolism upon CDT. Reported data here serve as a resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality. Controlled deterioration treatment (CDT) is one of the major events that negatively affects the quality and nutrient composition of agricultural seeds. However, the molecular mechanism of CDT is largely unknown. A combination of gel-based and gel-free proteomic approach was utilized to investigate the effects of CDT in soybean seeds. Moreover, we utilized protamine sulfate precipitation method for enrichment of low-abundance proteins, which are generally masked due to the presence of high-abundance seed storage proteins. Reported data here serve as resource for its

  8. Purification and partial characterization of aminopeptidase from barley (Hordeum vulgare L.) seeds.

    PubMed

    Oszywa, Bartosz; Makowski, Maciej; Pawełczak, Małgorzata

    2013-04-01

    Aminopeptidases (EC 3.4.11) are proteolytic enzymes, which hydrolyze one amino acid from N-terminus of peptidic substrates. Inhibitors of plant aminopeptidases can find an application in agriculture as herbicides. Isolation and partial characterization of aminopeptidase from barley (Hordeum vulgare L.) seeds has been described. The enzyme was purified to molecular homogeneity using a six-step purification procedure (precipitation with (NH4)2SO4, followed by chromatography on Sephadex G-25, DEAE-Sepharose, Sephacryl HR 300, Macro-Prep Q and Phenyl-Sepharose HP columns). The enzyme was purified 365-fold with recovery above 18%. The molecular weight of the purified enzyme was determined by SDS-PAGE and gel filtration as 58 kDa, and was found to be a monomer. Its pH and temperature optima were 7.5 and 52 °C, respectively. The enzyme behaves as standard leucine aminopeptidase by preferring bulky amino acids at the N-terminus, with phenylalanine being of choice.

  9. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression

    PubMed Central

    Catusse, Julie; Strub, Jean-Marc; Job, Claudette; Van Dorsselaer, Alain; Job, Dominique

    2008-01-01

    Proteomic analysis of mature sugarbeet seeds led to the identification of 759 proteins and their specific tissue expression in root, cotyledons, and perisperm. In particular, the proteome of the perispermic storage tissue found in many seeds of the Caryophyllales is described here. The data allowed us to reconstruct in detail the metabolism of the seeds toward recapitulating facets of seed development and provided insights into complex behaviors such as germination. The seed appears to be well prepared to mobilize the major classes of reserves (the proteins, triglycerides, phytate, and starch) during germination, indicating that the preparation of the seed for germination is mainly achieved during its maturation on the mother plant. Furthermore, the data revealed several pathways that can contribute to seed vigor, an important agronomic trait defined as the potential to produce vigorous seedlings, such as glycine betaine accumulation in seeds. This study also identified several proteins that, to our knowledge, have not previously been described in seeds. For example, the data revealed that the sugarbeet seed can initiate translation either through the traditional cap-dependent mechanism or by a cap-independent process. The study of the tissue specificity of the seed proteome demonstrated a compartmentalization of metabolic activity between the roots, cotyledons, and perisperm, indicating a division of metabolic tasks between the various tissues. Furthermore, the perisperm, although it is known as a dead tissue, appears to be very active biochemically, playing multiple roles in distributing sugars and various metabolites to other tissues of the embryo. PMID:18635686

  10. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination

    PubMed Central

    Ma, Zhenguo; Marsolais, Frédéric; Bykova, Natalia V.; Igamberdiev, Abir U.

    2016-01-01

    The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0–48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy. PMID:26909088

  11. The defective seed5 (des5) mutant: effects on barley seed development and HvDek1, HvCr4, and HvSal1 gene regulation.

    PubMed

    Olsen, Lene T; Divon, Hege H; Al, Ronald; Fosnes, Kjetil; Lid, Stein Erik; Opsahl-Sorteberg, Hilde-Gunn

    2008-01-01

    Barley, one of the major small grain crops, is especially important in climatically demanding agricultural areas of the world, with multiple uses within food, feed, and beverage. The barley endosperm is further of special scientific interest due to its three aleurone cell layers, with the potential of bringing forward the molecular understanding of seed development and cell specification from Arabidopsis and maize. Work done in Arabidopsis and maize indicate the presence of conserved seed developmental pathways where Crinkly4 (Cr4), Defective kernel1 (Dek1), and Supernumerary aleurone layer1 (Sal1) are key players. With the use of microscopy, a comprehensive phenotypic characterization of the barley defective seed5 (des5) mutant is presented here. The analysis further extends to molecular quantification of gene expression changes in the des5 mutant by qRT-PCR. Moreover, full-length genomic sequences of the barley orthologues were generated and these were annotated as HvDek1, HvCr4, and HvSal1. The most striking results in this study are the patchy reduction in number of aleurone cells, rudimentary anticlinal aleurone cell walls, and the specific change of HvCr4 expression compared to HvDek1 and HvSal1. The data presented support the involvement of Hvdes5 in establishing aleurone cells. Finally, how these results might affect the current model of aleurone and epidermal cell identity and development is discussed with a speculation regarding a possible role of Des5 in regulating cell division/ secondary cell wall building.

  12. The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development

    PubMed Central

    2012-01-01

    Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental

  13. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development.

    PubMed

    Kapazoglou, Aliki; Engineer, Cawas; Drosou, Vicky; Kalloniati, Chrysanthi; Tani, Eleni; Tsaballa, Aphrodite; Kouri, Evangelia D; Ganopoulos, Ioannis; Flemetakis, Emmanouil; Tsaftaris, Athanasios S

    2012-09-17

    MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental stages as well as in barley

  14. The proteome of seed development in the model legume Lotus japonicus.

    PubMed

    Dam, Svend; Laursen, Brian S; Ornfelt, Jane H; Jochimsen, Bjarne; Staerfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B; Enghild, Jan J; Stougaard, Jens

    2009-03-01

    We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family.

  15. miRNA regulation in the early development of barley seed

    PubMed Central

    2012-01-01

    Background During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. Results Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. Conclusion Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways. PMID:22838835

  16. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

    PubMed

    Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

    2016-04-01

    Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Control of the Water Transport Activity of Barley HvTIP3;1 Specifically Expressed in Seeds.

    PubMed

    Utsugi, Shigeko; Shibasaka, Mineo; Maekawa, Masahiko; Katsuhara, Maki

    2015-09-01

    Tonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds. An immunochemical analysis showed that HvTIP3;1 strongly accumulated in the aleurone layers and outer layers of barley seeds. The water transport activities of HvTIP3;1 and HvTIP1;2, which also accumulated in seeds, were measured in the heterologous expression system of Xenopus oocytes. When they were expressed individually, HvTIP1;2 transported water, whereas HvTIP3;1 did not. However, HvTIP3;1 exhibited water transport activity when co-expressed with HvTIP1;2 in oocytes, and this activity was higher than when HvTIP1;2 was expressed alone. This is the first report to demonstrate that the water permeability of a TIP aquaporin was activated when co-expressed with another TIP. The split-yellow fluorescent protein (YFP) system in onion cells revealed that HvTIP3;1 interacted with HvTIP1;2 to form a heterotetramer in plants. These results suggest that HvTIP3;1 functions as an active water channel to regulate water movement through tissues during the periods of seed development and desiccation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach.

    PubMed

    Gupta, Ravi; Min, Chul Woo; Kim, So Wun; Wang, Yiming; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sang Gon; Lee, Byong Won; Ko, Jong Min; Baek, In Yeol; Bae, Dong Won; Kim, Sun Tae

    2015-05-01

    Seed coat color is an important attribute determining consumption of soybean seeds. Soybean cultivar Mallikong (M) has yellow seed coat while its naturally mutated cultivar Mallikong mutant (MM), has brown colored seed coat. We used integrated proteomics and metabolomics approach to investigate the differences between seed coats of M and MM during different stages of seed development (4, 5, and 6 weeks after flowering). 2DE profiling of total seed coat proteins from three stages showed 178 differentially expressed spots between M and MM of which 172 were identified by MALDI-TOF/TOF. Of these, 62 were upregulated and 105 were downregulated in MM compared with M, while five spots were detected only in MM. Proteins involved in primary metabolism showed downregulation in MM suggesting energy in MM might be utilized for proanthocyanidin biosynthesis via secondary metabolic pathways that leads to the development of brown seed coat color. Besides, downregulation of two isoforms of isoflavone reductase indicated reduced isoflavones in seed coat of MM that was confirmed by quantitative estimation of total and individual isoflavones using HPLC. We propose that low isoflavones level in MM may offer a high substrate for proanthocyanidin production that results in the development of brown seed coat in MM. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    PubMed

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  20. Synthesis and characterization of a stable humic-urease complex: application to barley seed encapsulation for improving N uptake.

    PubMed

    Mvila, Beaufray G; Pilar-Izquierdo, María C; Busto, María D; Perez-Mateos, Manuel; Ortega, Natividad

    2016-07-01

    Most N fertilizers added to soil are not efficiently used by plants and are lost to the atmosphere or leached from the soil, causing environmental pollution and increasing cost. Barley seed encapsulation in calcium alginate gels containing free or immobilized urease to enhance plant utilization of soil N was investigated. Urease was immobilized with soil humic acids (HA). A central composite face-centered design was applied to optimize the immobilization process, reaching an immobilization yield of 127%. Soil stability of urease was enhanced after the immobilization. Seed encapsulation with free urease (FU) and humic-urease complex (HUC) resulted in a urease activity retention in the coating layer of 46% and 24%, and in germination rates of 87% and 92%, respectively. Under pot culture conditions, the pots planted with seeds encapsulated with FU and HUC showed higher ammonium N (NH4 (+) -N) (26% and 64%, respectively) than the control soil at 28 days after planting (DAP). Moreover, the seed encapsulation with FU and HUC increased the N uptake 83% and 97%, respectively, at 35 DAP. Seed encapsulation with urease could substantially contribute to enhancing plant N nutrition in the early stages of seedling establishment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment.

    PubMed

    Demetriou, Kyproula; Kapazoglou, Aliki; Tondelli, Alessandro; Francia, Enrico; Stanca, Michele A; Bladenopoulos, Konstantinos; Tsaftaris, Athanasios S

    2009-07-01

    Epigenetic phenomena have been associated with modifications of chromatin structure. These are achieved, in part, by histone post-translational modifications including acetylations and deacetylations, the later being catalyzed by histone deacetylaces (HDACs). Eukaryotic HDACs are grouped into three major families, RPD3/HDA1, SIR2 and the plant-specific HD2. HDAC genes have been analyzed from model plants such as Arabidopsis, rice and maize and have been shown to be involved in various cellular processes including seed development, vegetative and reproductive growth and responses to abiotic and biotic stress, but reports on HDACs from other crops are limited. In this work two full-length cDNAs (HvHDAC2-1 and HvHDAC2-2) encoding two members of the plant-specific HD2 family, respectively, were isolated and characterized from barley (Hordeum vulgare), an agronomically important cereal crop. HvHDAC2-1 and HvHDAC2-2 were mapped on barley chromosomes 1H and 3H, respectively, which could prove useful in developing markers for marker-assisted selection in breeding programs. Expression analysis of the barley HD2 genes demonstrated that they are expressed in all tissues and seed developmental stages examined. Significant differences were observed among tissues and seed stages, and between cultivars with varying seed size, suggesting an association of these genes with seed development. Furthermore, the HD2 genes from barley were found to respond to treatments with plant stress-related hormones such as jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA) implying an association of these genes with plant resistance to biotic and abiotic stress. The expression pattern of HD2 genes suggests a possible role for these genes in the epigenetic regulation of seed development and stress response.

  2. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-03

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1.

  3. Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Miernyk, Ján A; Rashydov, Namik M; Berezhna, Valentyna V; Pret'ová, Anna; Hajduch, Martin

    2010-09-15

    The accident at the Chernobyl Nuclear Power Plant (CNPP) on April 26, 1986 is the most serious nuclear disaster in human history. Surprisingly, while the area proximal to the CNPP remains substantially contaminated with long-lived radioisotopes including (90)Sr and (137)Cs, the local ecosystem has been able to adapt. To evaluate plant adaptation, seeds of a local flax (Linum usitatissimum) variety Kyivskyi were sown in radio-contaminated and control fields of the Chernobyl region. A total protein fraction was isolated from mature seeds, and analyzed using 2-dimensional electrophoresis combined with tandem-mass spectrometry. Interestingly, growth of the plants in the radio-contaminated environment had little effect on proteome and only 35 protein spots differed in abundance (p-value of ≤0.05) out of 720 protein spots that were quantified for seeds harvested from both radio-contaminated and control fields. Of the 35 differentially abundant spots, 28 proteins were identified using state-of-the-art MS(E) method. Based on the observed changes, the proteome of seeds from plants grown in radio-contaminated soil display minor adjustments to multiple signaling pathways.

  4. Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality.

    PubMed

    Shewry, P R; Tatham, A S; Halford, N G; Barker, J H; Hannappel, U; Gallois, P; Thomas, M; Kreis, M

    1994-01-01

    Wheat and barley are the major temperate cereals, being used for food, feed and industrial raw material. However, in all cases the quality may be limited by the amount, composition and properties of the grain storage proteins. We describe how a combination of biochemical and molecular studies has led to an understanding of the molecular basis for breadmaking quality in wheat and feed quality in barley, and also provided genes encoding key proteins that determine quality. The control of expression of these genes has been studied in transgenic tobacco plants and by transient expression in cereal protoplasts, providing the basis for the production of transgenic cereals with improved quality characteristics.

  5. A beta-turn rich barley seed protein is correctly folded in Escherichia coli.

    PubMed

    Tamas, L; Greenfield, J; Halford, N G; Tatham, A S; Shewry, P R

    1994-08-01

    Wild-type and cysteine-containing mutant C hordeins from barley were expressed in Escherichia coli at high levels (> or = 30mg/liter). N-terminal sequence analysis, SDS-PAGE, RP-HPLC, cd spectroscopy, and small angle X-ray scattering demonstrated that their physicochemical properties were similar to those of C hordeins isolated from barley grain. This indicates that the expressed proteins were correctly folded. The cysteine-containing mutant showed evidence of polymer formation in E. coli, nonreduced preparations of the protein showing the presence of polymers that were replaced by a single protein when a reducing agent was added.

  6. Differential RNA Expression of Bmy1 During Late Seed Development in Wild and Cultivated Barley and the Association With ß-Amylase Activity

    USDA-ARS?s Scientific Manuscript database

    Four genotypes carrying different ß-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 DNA sequence, Bmy1 RNA expression, ß-amylase activity and protein, and total protein during late seed development. Wild barleys Ashqelon (Bmy1.c) and PI...

  7. Evaluation of allergenic potential for rice seed protein components utilizing a rice proteome database and an allergen database in combination with IgE-binding of recombinant proteins.

    PubMed

    Hirano, Kana; Hino, Shingo; Oshima, Kenzi; Nadano, Daita; Urisu, Atsuo; Takaiwa, Fumio; Matsuda, Tsukasa

    2016-01-01

    Among 131 rice endosperm proteins previously identified by MS-based proteomics, most of the proteins showed low or almost no sequence similarity to known allergens in databases, whereas nine proteins did it significantly. The sequence of two proteins showed high overall identity with Hsp70-like hazel tree pollen allergen (Cor a 10) and barley α-amylase (Hor v 16), respectively, whereas the others showed low identity (28-58%) with lemon germin-like protein (Cit l 1), corn zein (Zea m 50 K), wheat chitinase-like xylanase inhibitor (Tri a XI), and kinase-like pollen allergen of Russian thistle (Sal k 1). Immuno-dot blot analysis showed that recombinant proteins for these rice seed homologs were positive in the IgE-binding, but not necessarily similarity dependent, from some allergic patients. These results suggest that utilization of proteome and sequence databases in combination with IgE-binding analysis was effective to screen and evaluate allergenic potential of rice seed protein components.

  8. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus

    PubMed Central

    Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng

    2016-01-01

    The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus. PMID:27822216

  9. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus.

    PubMed

    Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng

    2016-01-01

    The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus.

  10. Proteome profiling of seed from inbred and mutant line of sorghum (Sorghum bicolor)

    USDA-ARS?s Scientific Manuscript database

    Grain sorghum is a major staple food, with fifth rank among the cereals world-wide, considering its importance for food and feed applications. Cereals are main part of human nutrition and strategic resources. In this study, we executed a comprehensive proteomic study to investigate the seed storage ...

  11. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics

    USDA-ARS?s Scientific Manuscript database

    Using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, we investigated the distribution of the low abundant proteins that are involved in soybean seed development in four wild and twelve cultivated soybean genotypes. We found proteomic variation of these proteins within and...

  12. Isolation and purification of a papain inhibitor from Egyptian genotypes of barley seeds and its in vitro and in vivo effects on the cowpea bruchid, Callosobruchus maculatus (F.).

    PubMed

    Abd El-Latif, Ashraf Oukasha

    2015-02-01

    The cysteine inhibitors that are known as cystatin have been identified and characterized from several plant species. In the current study, 44 barley (Hordeum vulgare) genotypes including 3 varieties and 41 promising lines were screened for their potential as protease inhibitors. The barley genotypes showed low inhibitory activity against trypsin and chymotrypsin enzymes with a mean of 4.15 TIU/mg protein and 4.40 CIU/mg protein. The barley variety, Giza 123, showed strong papain inhibitory activity of 97.09 PIU/mg proteins and was subjected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Barley purified proteins showed two bands on SDS-PAGE corresponding to a molecular mass of 12.4-54.8 kDa. The purified barley PI was found to be stable at a temperature below 80 °C and at a wide range of pH from 2 to 12. Barley PI was found to have higher potential inhibitory activity against papain enzyme compared to the standard papain inhibitor, E-64 with an IC50 value of 21.04 µg/ml and 25.62 µg/ml for barley PI and E-64, respectively. The kinetic analysis revealed a non-competitive type of inhibition with a Ki value of 1.95 × 10(-3 )µM. The antimetabolic effect of barley PI was evaluated against C. maculatus by incorporating the F30-60 protein of the purified inhibitor into the artificial diet using artificial seeds. Barley PI significantly prolonged the development of C. maculatus in proportion to PI concentration. Barley PI significantly increased the mortality of C. maculatus and caused a significant reduction in its fecundity. On the other hand, barley PI seemed to have non-significant effects on the adult longevity and the adult dry weight. The in vitro and in vivo results proved the efficiency of the papain inhibitory protein isolated from barley as a tool for managing the cowpea bruchid, C. maculatus.

  13. Metabolic profiling of early F. graminearum infection in barley seed spike tissues

    USDA-ARS?s Scientific Manuscript database

    Several studies have utilized microarray analysis to characterize gene expression occurring during infection of barley and wheat by the fungal pathogen Fusarium graminearum (F.g.). We have analyzed this plant-microbe interaction from the other extreme - the changes in the metabolome arising from th...

  14. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach.

  15. Characterization of quinoa seed proteome combining different protein precipitation techniques: Improvement of knowledge of nonmodel plant proteomics.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Piovesana, Susy; Stampachiacchiere, Serena; Ventura, Salvatore; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2015-03-01

    A shotgun proteomics approach was used to characterize the quinoa seed proteome. To obtain comprehensive proteomic data from quinoa seeds three different precipitation procedures were employed: MeOH/CHCl3 /double-distilled H2 O, acetone either alone or with trichloroacetic acid; the isolated proteins were then in-solution digested and the resulting peptides were analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. However, since quinoa is a nonmodel plant species, only a few protein sequences are included in the most widely known protein sequence databases. To improve the data reliability a UniProt subdatabase, containing only proteins of Caryophillales order, was used. A total of 352 proteins were identified and evaluated both from a qualitative and quantitative point of view. This combined approach is certainly useful to increase the final number of identifications, but no particular class of proteins was extracted and identified in spite of the different chemistries and the different precipitation protocols. However, with respect to the other two procedures, from the relative quantitative analysis, based on the number of spectral counts, the trichloroacetic acid/acetone protocol was the best procedure for sample handling and quantitative protein extraction. This study could pave the way to further high-throughput studies on Chenopodium Quinoa.

  16. Seeds in Chernobyl: the database on proteome response on radioactive environment.

    PubMed

    Klubicová, Katarína; Vesel, Martin; Rashydov, Namik M; Hajduch, Martin

    2012-01-01

    Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database "Seeds in Chernobyl" (http://www.chernobylproteomics.sav.sk) contains the information about the abundances of hundreds of proteins from on-going investigation of mature and developing seed harvested from plants grown in radioactive Chernobyl area. This database provides a useful source of information concerning the response of the seed proteome to permanently increased level of ionizing radiation in a user-friendly format.

  17. Seeds in Chernobyl: the database on proteome response on radioactive environment

    PubMed Central

    Klubicová, Katarína; Vesel, Martin; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database “Seeds in Chernobyl” (http://www.chernobylproteomics.sav.sk) contains the information about the abundances of hundreds of proteins from on-going investigation of mature and developing seed harvested from plants grown in radioactive Chernobyl area. This database provides a useful source of information concerning the response of the seed proteome to permanently increased level of ionizing radiation in a user-friendly format. PMID:23087698

  18. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.)

    PubMed Central

    von Korff, M.

    2013-01-01

    The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts. PMID:23918963

  19. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.).

    PubMed

    Rollins, J A; Habte, E; Templer, S E; Colby, T; Schmidt, J; von Korff, M

    2013-08-01

    The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts.

  20. Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release.

    PubMed

    Arc, Erwann; Chibani, Kamel; Grappin, Philippe; Jullien, Marc; Godin, Béatrice; Cueff, Gwendal; Valot, Benoit; Balliau, Thierry; Job, Dominique; Rajjou, Loïc

    2012-11-02

    Despite having very similar initial pools of stored mRNAs and proteins in the dry state, mature Arabidopsis seeds can either proceed toward radicle protrusion or stay in a dormant state upon imbibition. Dormancy breaking, a prerequisite to germination completion, can be induced by different treatments though the underlying mechanisms remain elusive. Thus, we investigated the consequence of such treatments on the seed proteome. Two unrelated dormancy-releasing treatments were applied to dormant seeds, namely, cold stratification and exogenous nitrates, in combination with differential proteomic tools to highlight the specificities of the imbibed dormant state. The results reveal that both treatments lead to highly similar proteome adjustments. In the imbibed dormant state, enzymes involved in reserve mobilization are less accumulated and it appears that several energetically costly processes associated to seed germination and preparation for subsequent seedling establishment are repressed. Our data suggest that dormancy maintenance is associated to an abscisic-acid-dependent recapitulation of the late maturation program resulting in a higher potential to cope with environmental stresses. The comparison of the present results with previously published -omic data sets reinforces and extends the assumption that post-transcriptional, translational, and post-translational regulations are determinant for seed germination.

  1. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.)

    PubMed Central

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  2. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.).

    PubMed

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.

  3. Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation.

    PubMed

    Chen, Qi; Yang, Liming; Ahmad, Parvaiz; Wan, Xiaochun; Hu, Xiangyang

    2011-03-01

    Tea seed is believed to be recalcitrant based on its sensitivity to chilling or drying stress. Reactive oxygen species (ROS) and alterations in cytosolic redox status have been implicated in intolerance to desiccation by recalcitrant seed, but there is little information available regarding how ROS are regulated in seeds susceptible to drying stress. We investigated changes in protein expression and activity in tea embryo in response to desiccation using physiological and proteomic methods. Results showed that desiccation treatment dramatically induced the accumulation of H(2)O(2) in tea embryos, accompanied by increased activities of antioxidant enzymes like ascorbate peroxidase (APX) and superoxide dismutase (SOD). Proteomic analyses also demonstrated that 23 proteins associated with defense response, metabolism and redox status were up-regulated following desiccation. Increase in antioxidants, ascorbic acid (AsA) and catalase (CAT) (H(2)O(2) scavengers) partially assuaged desiccation damage to tea seed, resulting in improved germination rates. Higher accumulation of H(2)O(2) aggravated desiccation damage to seeds leading to lower germination activity. We propose that desiccation causes an over-accumulation of ROS that are not efficiently scavenged by increased levels of antioxidant enzymes. High levels of ROS alter the redox status and are detrimental to seed viability. Reducing ROS to appropriate concentrations is an efficient way to reduce desiccation damage and improve germination rates of recalcitrant seeds.

  4. Production responses by early lactation cows to whole sunflower seed or tallow supplementation of a diet based on barley.

    PubMed

    Markus, S B; Wittenberg, K M; Ingalls, J R; Undi, M

    1996-10-01

    A 2-yr study to evaluate the effectiveness of whole sunflower seed as a source of fat was conducted with 18 primiparous and 31 multiparous Holstein cows. The three diets evaluated were a basal diet based on barley (control), a basal diet supplemented with 2.7% tallow, and a basal diet supplemented with 7.1% whole sunflower seeds. The DMI of lactating cows during the 16-wk test period was not influenced by supplementation with either sunflower seeds or tallow. Milk production was 34.4, 34.6, and 35.5 kg/d for cows fed the control diet or the diets supplemented with sunflower or tallow, respectively, and was not influenced by diet. The production and concentrations of milk protein, fat, and SNF also were not influenced by diet. The concentrations of C6:0 to C14:1 fatty acids were highest in the milk of cows fed the control diet. The concentrations of C10:0 to C16:1 were higher when cows were fed the diet with the tallow supplement than when they were fed the diet with the sunflower supplement. However, the concentrations of C18:0 to C18:2 and C20:0 were higher in the milk of cows that were fed the sunflower supplement than in the milk of cows that were fed the tallow supplement or the control diet. Concentrations of individual VFA and the ratio of acetate to propionate were not influenced by diet. Body weight, body condition score, and reproduction parameters were similar for all diets, suggesting that there were no effects on subsequent production. The performance of cows fed whole sunflower seeds as a source of energy appeared to be similar to the performance of cows fed traditional high energy diets based on barley. The fatty acid profile of the milk of cows fed diets supplemented with sunflower seeds was more favorable than that of the milk of cows fed diets supplemented with tallow.

  5. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Microspectroscopy

    PubMed Central

    Liu, Na; Yu, Peiqiang

    2013-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical–structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular–structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical–structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm−1) and II (ca. 1550 cm−1), cellulosic compounds (ca. 1240 cm−1), CHO component peaks (the first peak at the region ca. 1184–1132 cm−1, the second peak at ca. 1132–1066 cm−1, and the third peak at ca. 1066–950 cm−1). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups’ spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information

  6. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.

    PubMed

    Liu, Na; Yu, Peiqiang

    2010-07-14

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm(-1)) and II (ca. 1550 cm(-1)), cellulosic compounds (ca. 1240 cm(-1)), CHO component peaks (the first peak at the region ca. 1184-1132 cm(-1), the second peak at ca. 1132-1066 cm(-1), and the third peak at ca. 1066-950 cm(-1)). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups' spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information and the

  7. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.

    PubMed

    Chu, Pu; Chen, Huhui; Zhou, Yuliang; Li, Yin; Ding, Yu; Jiang, Liwen; Tsang, Edward W T; Wu, Keqiang; Huang, Shangzhi

    2012-06-01

    Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.

  8. Expression of fungal thermotolerant endo-1,4-beta-glucanase in transgenic barley seeds during germination.

    PubMed

    Nuutila, A M; Ritala, A; Skadsen, R W; Mannonen, L; Kauppinen, V

    1999-12-01

    The malting quality of two barley cultivars, Kymppi and Golden Promise, was modified to better meet the requirements of the brewing process. The egl1 gene, coding for fungal thermotolerant endo-1,4-beta-glucanase (EGI, cellulase), was transferred to the cultivars using particle bombardment, and transgenic plants were regenerated on bialaphos selection. Integration of the egl1 gene was confirmed by Southern blot hybridization. The transgenic seeds were screened for the expression of the heterologous EGI. Under the high-pI alpha-amylase promoter, the egl1 gene was expressed during germination. The heterologous enzyme was thermotolerant at 65 degrees C for 2 h, thus being suitable for mashing conditions. The amount of heterologous EGI produced by the seeds (ca. 0.025% of soluble seed protein), has been shown to be sufficient to reduce wort viscosity by decreasing the soluble beta-glucan content. A decrease in the soluble beta-glucan content in the wort improves the filtration rate of beer.

  9. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice.

    PubMed

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2016-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice.

  10. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice

    PubMed Central

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2017-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice. PMID:28105039

  11. Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare) and their expression during seed development and in response to vernalization.

    PubMed

    Papaefthimiou, Dimitra; Kapazoglou, Aliki; Tsaftaris, Athanasios S

    2012-09-01

    A number of genes are involved in the vernalization pathway, such as VRN1, VRN2 and VRN3/FT1, whose function has been studied in barley and wheat. However, the function of the flowering and vernalization integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) has not been well studied in Triticeae, and particularly in barley. Herein, we cloned and characterized two barley SOC1-like homologs, HvSOC1-like1 and HvSOC1-like2. Primary sequence analysis of the predicted HvSOC1-like1 and HvSOC1-like2 proteins showed that they are members of the type II MADS-box protein family. Phylogenetic analysis placed the predicted proteins with other SOC1 and SOC1-like proteins from different species neighboring those from other cereal plant species. Primary and secondary structures of the predicted proteins are conserved to each other and more distant to the recently identified barley ODDSOC1 proteins. Genomic organization of HvSOC1-like1 is very similar to the Arabidopsis and Brachypodium SOC1 genes and localized in highly syntenic chromosomal regions. Regulatory cis-acting elements detected in the HvSOC1-like1 promoter include the CArG-box, implicated in the regulation of SOC1 expression in Arabidopsis. Both HvSOC1-like1 and HvSOCI-like2 are expressed in vegetative and reproductive tissues and at different stages of seed development. Both are upregulated in a particular seed developmental stage suggesting their possible implication in seed development. Furthermore, HvSOC1-like1 was induced in two winter barley cultivars after vernalization treatment pointing to its probable involvement in the vernalization process. The study of the SOC1 genes reported here opens the way for a better understanding of both the vernalization process and seed development and germination in this important cereal crop.

  12. Proteomics of Arabidopsis Seed Germination. A Comparative Study of Wild-Type and Gibberellin-Deficient Seeds1

    PubMed Central

    Gallardo, Karine; Job, Claudette; Groot, Steven P.C.; Puype, Magda; Demol, Hans; Vandekerckhove, Joël; Job, Dominique

    2002-01-01

    We examined the role of gibberellins (GAs) in germination of Arabidopsis seeds by a proteomic approach. For that purpose, we used two systems. The first system consisted of seeds of the GA-deficient ga1 mutant, and the second corresponded to wild-type seeds incubated in paclobutrazol, a specific GA biosynthesis inhibitor. With both systems, radicle protrusion was strictly dependent on exogenous GAs. The proteomic analysis indicated that GAs do not participate in many processes involved in germination sensu stricto (prior to radicle protrusion), as, for example, the initial mobilization of seed protein and lipid reserves. Out of 46 protein changes detected during germination sensu stricto (1 d of incubation on water), only one, corresponding to the cytoskeleton component α-2,4 tubulin, appeared to depend on the action of GAs. An increase in this protein spot was noted for the wild-type seeds but not for the ga1 seeds incubated for 1 d on water. In contrast, GAs appeared to be involved, directly or indirectly, in controlling the abundance of several proteins associated with radicle protrusion. This is the case for two isoforms of S-adenosyl-methionine (Ado-Met) synthetase, which catalyzes the formation of Ado-Met from Met and ATP. Owing to the housekeeping functions of Ado-Met, this event is presumably required for germination and seedling establishment, and might represent a major metabolic control of seedling establishment. GAs can also play a role in controlling the abundance of a β-glucosidase, which might be involved in the embryo cell wall loosening needed for cell elongation and radicle extension. PMID:12068122

  13. Proteome balancing of the maize seed for higher nutritional value

    PubMed Central

    Wu, Yongrui; Messing, Joachim

    2014-01-01

    Most flowering plant seeds are composed of the embryo and endosperm, which are surrounded by maternal tissue, in particular the seed coat. Whereas the embryo is the dormant progeny, the endosperm is a terminal organ for storage of sugars and amino acids in proteins and carbohydrates, respectively. Produced in maternal leaves during photosynthesis, sugars, and amino acids are transported to developing seeds after flowering, and during germination they nourish early seedlings growth. Maize endosperm usually contains around 10% protein and 70% starch, and their composition ratio is rather stable, because it is strictly regulated through a pre-set genetic program that is woven by networks of many interacting or counteracting genes and pathways. Endosperm protein, however, is of low nutritional value due mainly to the high expression of the α-zein gene family, which encodes lysine-free proteins. Reduced levels of these proteins in the opaque 2 (o2) mutant and α-zein RNAi (RNA interference) transgenic seed is compensated by an increase of non-zein proteins, leading to the rebalancing of the nitrogen sink and producing more or less constant levels of total proteins in the seed. The same rebalancing of zeins and non-zeins has been observed for maize seeds bred for 30% protein. In contrast to the nitrogen sink, storage of sulfur is controlled through the accumulation of specialized sulfur-rich proteins in maize endosperm. Silencing the synthesis of α-zeins through RNAi fails to raise sulfur-rich proteins. Although overexpression of the methionine-rich δ-zein can increase the methionine level in seeds, it occurs at least in part at the expense of the cysteine-rich β- and γ-zeins, demonstrating a balance between cysteine and methionine in sulfur storage. Therefore, we propose that the throttle for the flow of sulfur is placed before the synthesis of sulfur amino acids when sulfur is taken up and reduced during photosynthesis. PMID:24910639

  14. Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance

    PubMed Central

    Chmielewska, Klaudia; Rodziewicz, Paweł; Swarcewicz, Barbara; Sawikowska, Aneta; Krajewski, Paweł; Marczak, Łukasz; Ciesiołka, Danuta; Kuczyńska, Anetta; Mikołajczak, Krzysztof; Ogrodowicz, Piotr; Krystkowiak, Karolina; Surma, Maria; Adamski, Tadeusz; Bednarek, Paweł; Stobiecki, Maciej

    2016-01-01

    In this study, proteomic and metabolomic changes in leaves and roots of two barley (Hordeum vulgare L.) genotypes, with contrasting drought tolerance, subjected to water deficit were investigated. Our two-dimensional electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF and MALDI-TOF/TOF) analyses revealed 121 drought-responsive proteins in leaves and 182 in roots of both genotypes. Many of the identified drought-responsive proteins were associated with processes that are typically severely affected during water deficit, including photosynthesis and carbon metabolism. However, the highest number of identified leaf and root proteins represented general defense mechanisms. In addition, changes in the accumulation of proteins that represent processes formerly unassociated with drought response, e.g., phenylpropanoid metabolism, were also identified. Our tandem gas chromatography – time of flight mass spectrometry (GC/MS TOF) analyses revealed approximately 100 drought-affected low molecular weight compounds representing various metabolite types with amino acids being the most affected metabolite class. We compared the results from proteomic and metabolomic analyses to search for existing relationship between these two levels of molecular organization. We also uncovered organ specificity of the observed changes and revealed differences in the response to water deficit of drought susceptible and tolerant barley lines. Particularly, our results indicated that several of identified proteins and metabolites whose accumulation levels were increased with drought in the analyzed susceptible barley variety revealed elevated constitutive accumulation levels in the drought-resistant line. This may suggest that constitutive biochemical predisposition represents a better drought tolerance mechanism than inducible responses. PMID:27512399

  15. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    PubMed

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  16. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination.

    PubMed

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-11-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds.

  17. Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley.

    PubMed

    Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad

    2016-03-01

    The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide.

  18. Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L) during natural aging.

    PubMed

    Gao, Jiadong; Fu, Hua; Zhou, Xinqiao; Chen, Zhongjian; Luo, Yi; Cui, Baiyuan; Chen, Guanghui; Liu, Jun

    2016-06-01

    Seed storability is considered an important trait in rice breeding; however, the underlying regulating mechanisms remain largely unknown. Here, we carried out a physiological and proteomic study to identify proteins possibly related to seed storability under natural conditions. Two hybrid cultivars, IIYou998 (IIY998) and BoYou998 (BY998), were analyzed in parallel because they share the same restorer line but have significant differences in seed storability. After a 2-year storage period, the germination percentage of IIY998 was significantly lower than that of BY998, whereas the level of malondialdehyde was reversed, indicating that IIY998 seeds may suffer from more severe damage than BY998 during storage. However, we did not find correlation between activities of antioxidant enzymes of superoxide dismutase, peroxidase, and catalase and seed storability. We identified 78 embryo proteins in embryo whose abundance varied more than 3-fold different during storage or between IIY998 and BY998. More proteins changed in abundance in IIY998 embryo (67 proteins) during storage than in BY998 (10 proteins). Several redox regulation proteins, mainly glutathione-related proteins, exhibited different degree of change during storage between BY998 and IIY998 and might play an important role protecting embryo proteins from oxidation. In addition, some disease/defense proteins, including DNA-damage-repair/toleration proteins, and a putative late embryogenesis abundant protein were significantly downregulated in IIY998, whereas their levels did not change in BY998, indicating that they might be correlated with seed storability. Further studies on these candidate seed storage proteins might help improve our understanding of seed aging.

  19. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling.

    PubMed

    Repetto, Ombretta; Rogniaux, Hélène; Firnhaber, Christian; Zuber, Hélène; Küster, Helge; Larré, Colette; Thompson, Richard; Gallardo, Karine

    2008-11-01

    Despite its importance in determining seed composition, and hence quality, regulation of the development of legume seeds is incompletely understood. Because of the cardinal role played by the nucleus in gene expression and regulation, we have characterized the nuclear proteome of Medicago truncatula at the 12 days after pollination (dap) stage that marks the switch towards seed filling. Nano-liquid chromatography-tandem mass spectrometry analysis of nuclear protein bands excised from one-dimensional SDS-PAGE identified 179 polypeptides (143 different proteins), providing an insight into the complexity and distinctive feature of the seed nuclear proteome and highlighting new plant nuclear proteins with possible roles in the biogenesis of ribosomal subunits (PESCADILLO-like) or nucleocytoplasmic trafficking (dynamin-like GTPase). The results revealed that nuclei of 12-dap seeds store a pool of ribosomal proteins in preparation for intense protein synthesis activity, occurring subsequently during seed filling. Diverse proteins of the molecular machinery leading to the synthesis of ribosomal subunits were identified along with proteins involved in transcriptional regulation, RNA processing or transport. Some had already been shown to play a role during the early stages of seed formation whereas for others the findings are novel (e.g. the DIP2 and ES43 transcriptional regulators or the RNA silencing-related ARGONAUTE proteins). This study also revealed the presence of chromatin-modifying enzymes and RNA interference proteins that have roles in RNA-directed DNA methylation and may be involved in modifying genome architecture and accessibility during seed filling and maturation.

  20. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    PubMed

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  1. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols.

    PubMed

    Rajjou, Loïc; Lovigny, Yoann; Groot, Steven P C; Belghazi, Maya; Job, Claudette; Job, Dominique

    2008-09-01

    A variety of mechanisms have been proposed to account for the extension of life span in seeds (seed longevity). In this work, we used Arabidopsis (Arabidopsis thaliana) seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time up to 7 d. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results revealed essential mechanisms for seed vigor, such as translational capacity, mobilization of seed storage reserves, and detoxification efficiency. Finally, this work shows that similar molecular events accompany artificial and natural seed aging.

  2. Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice.

    PubMed

    Gayen, Dipak; Paul, Soumitra; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-07-15

    Transgenic rice expressing the Xa21 gene have enhanced resistant to most devastating bacterial blight diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). However, identification of unintended modifications, owing to the genetic modification, is an important aspect of transgenic crop safety assessment. In this study, the nutritional compositions of seeds from transgenic rice plants expressing the Xa21 gene were compared against non-transgenic rice seeds. In addition, to detect any changes in protein translation levels as a result of Xa21 gene expression, rice seed proteome analyses were also performed by two-dimensional gel electrophoresis. No significant differences were found in the nutritional compositions (proximate components, amino acids, minerals, vitamins and anti-nutrients) of the transgenic and non-transgenic rice seeds. Although gel electrophoresis identified 11 proteins that were differentially expressed between the transgenic and non-transgenic seed, only one of these (with a 20-fold up-regulation in the transgenic seed) shows nutrient reservoir activity. No new toxins or allergens were detected in the transgenic seeds.

  3. Differential RNA expression of Bmy1 during barley seed development and the association with β-amylase accumulation, activity, and total protein.

    PubMed

    Vinje, Marcus A; Willis, David K; Duke, Stanley H; Henson, Cynthia A

    2011-01-01

    The objective of this study was to determine if developing barley (Hordeum vulgare L.) seeds had differences in β-amylase 1 (Bmy1) mRNA accumulation, β-amylase (EC 3.2.1.2) activity, β-amylase protein accumulation, and total protein levels during late seed development from genotypes with different Bmy1 intron III alleles. Two North American malting barley cultivars (Hordeum vulgare ssp. vulgare) were chosen to represent the Bmy1.a and Bmy1.b alleles and, due to limited Bmy1 intron III allele variation in North American cultivars, two wild barleys (Hordeum vulgare ssp. spontaneum) were chosen to represent the Bmy1.c and Bmy1.d alleles. Wild barleys Ashqelon (Bmy1.c) and PI 296897 (Bmy1.d) had 2.5- to 3-fold higher Bmy1 mRNA levels than cultivars Legacy (Bmy1.a) and Harrington (Bmy1.b). Levels of Bmy1 mRNA were not significantly different between cultivated or between wild genotypes. In all four genotypes Bmy1 mRNA levels increased from 17 to 19 days after anthesis (DAA) and remained constant from 19 to 21 DAA. Ashqelon and PI 296897 had more β-amylase activity on a fresh weight basis than Legacy and Harrington at all developmental stages. β-Amylase protein levels increased from 17 DAA to maturity in all genotypes. Total protein in grains from wild genotypes was significantly higher than cultivated genotypes at all developmental stages. Higher levels of total protein in Ashqelon and PI 296897 could explain their higher levels of β-amylase activity, when expressed on a fresh weight basis. When β-amylase activities are expressed on a protein basis there are no statistical differences between the wild and cultivated barleys at maturity. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination.

    PubMed

    Bai, Bin; Shi, Bo; Hou, Ning; Cao, Yanli; Meng, Yijun; Bian, Hongwu; Zhu, Muyuan; Han, Ning

    2017-09-06

    Small RNA and degradome sequencing have identified a large number of miRNA-target pairs in plant seeds. However, detailed spatial and temporal studies of miRNA-mediated regulation, which can reflect links between seed development and germination are still lacking. In this study, we extended our investigation on miRNAs-involved gene regulation by a combined analysis of seed maturation and germination in barley. Through bioinformatics analysis of small RNA sequencing data, a total of 1324 known miRNA families and 448 novel miRNA candidates were identified. Of those, 16 known miRNAs with 40 target genes, and three novel miRNAs with four target genes were confirmed based on degradome sequencing data. Conserved miRNA families such as miR156, miR168, miR166, miR167, and miR894 were highly expressed in embryos of developing and germinating seeds. A barley-specific miRNA, miR5071, which was predicted to target an OsMLA10-like gene, accumulated at a high level, suggesting its involvement in defence response during these two developmental stages. Based on target prediction and Kyoto Encyclopedia of Genes and Genomes analysis of putative targets, nine highly expressed miRNAs were found to be related to phytohormone signalling and hormone cross-talk. Northern blot and qRT-PCR analysis showed that these miRNAs displayed differential expression patterns during seed development and germination, indicating their different roles in hormone signalling pathways. In addition, we showed that miR393 affected seed development through targeting two genes encoding the auxin receptors TIR1/AFBs in barley, as over-expression of miR393 led to an increased length-width ratio of seeds, whereas target mimic (MIM393)-mediated inhibition of its activity decreased the 1000-grain weight of seeds. Furthermore, the expression of auxin-responsive genes, abscisic acid- and gibberellic acid-related genes was altered in miR393 misexpression lines during germination and early seedling growth. Our work

  5. Proteomic identification of Syzygium cumini seed extracts by MALDI-TOF/MS.

    PubMed

    Binita, Kumari; Kumar, Sanjay; Sharma, Vinay Kumar; Sharma, Veena; Yadav, Savita

    2014-02-01

    Syzygium cumini is traditionally used medicinal plant. The different part of the plant such as bark, leaves, seed and fruits are widely used as an alternative medicine in various diseases. Although the scientific community has a strong interest on S. cumini seed biochemistry focusing on metabolite composition, proteins have not yet been investigated. In the present study, we have applied a proteomic approach to study the proteome of the S. cumini seed using phenol extraction method for protein isolation, which were never analysed before. Fifteen brightly silver stained protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after resolving on two-dimensional gel electrophoresis. These proteins have been found to involve in various functions such as antifungal, sulphur metabolism, carbohydrate metabolism, fruit ripening and softening, dormancy breaking and seed germination, hormone signalling, secondary metabolite transport, defence and stress response, nitrogen metabolism, synthesis and stabilization. Amongst the identified protein, lactoferrin was a mammalian origin protein with high nutritious and pharmaceutical value, which was purified by different types of chromatographic techniques and confirmed by western blotting. The antibacterial activity of lactoferrin was assessed by disc diffusion assay. We suggest that the protein constituents of S. cumini may have role in various functions required for plant physiology and its dietary values.

  6. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming.

    PubMed

    Yacoubi, Rafika; Job, Claudette; Belghazi, Maya; Chaibi, Wided; Job, Dominique

    2011-09-02

    Alfalfa, the most widely grown leguminous crop in the world, is generally exposed to severe salinity stress in Tunisia, notably affecting its germination performance. Toward a better understanding of alfalfa seed vigor, we have used proteomics to characterize protein changes occurring during germination and osmopriming, a pretreatment that accelerates germination and improves seedling uniformity particularly under stress conditions. The data revealed that germination was accompanied by dynamic changes of 79 proteins, which are mainly involved in protein metabolism, cell structure, metabolism, and defense. Comparative proteomic analysis also revealed 63 proteins specific to osmopriming, 65 proteins preferentially varying during germination, and 14 proteins common to both conditions. Thus, the present study unveiled the unexpected finding that osmopriming cannot simply be considered as an advance of germination-related processes but involves other mechanisms improving germination such as the mounting of defense mechanisms enabling osmoprimed seeds to surmount environmental stresses potentially occurring during germination. The present results therefore provide novel avenues toward understanding the mechanisms of invigoration of low vigor seeds by priming treatments that are widely used both in commercial applications and in developing countries (on farm seed priming) to better control crop yields.

  7. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare.

    PubMed

    Cabello-Hurtado, Francisco; Keller, Jean; Ley, José; Sanchez-Lucas, Rosa; Jorrín-Novo, Jesús V; Aïnouche, Abdelkader

    2016-06-30

    Lupins have a variety of both traditional and modern uses. In the last decade, reports assessing the benefits of lupin seed proteins have proliferated and, nowadays, the pharmaceutical industry is interested in lupin proteins for human health. Modern genomics and proteomics have hugely contributed to describing the diversity of lupin storage genes and, above all, proteins. Most of these studies have been centered on few edible lupin species. However, Lupinus genus comprises hundreds of species spread throughout the Old and New Worlds, and these resources have been scarcely explored and exploited. We present here a detailed review of the literature on the potential of lupin seed proteins as nutraceuticals, and the use of -omic tools to analyze seed storage polypeptides in main edible lupins and their diversity at the Lupinus inter- and intra-species level. In this sense, proteomics, more than any other, has been a key approach. Proteomics has shown that lupin seed protein diversity, where post-translational modifications yield a large number of peptide variants with a potential concern in bioactivity, goes far beyond gene diversity. The future extended use of second and third generation proteomics should definitely help to go deeper into coverage and characterization of lupin seed proteome. Some important topics concerning storage proteins from lupin seeds are presented and analyzed in an integrated way in this review. Proteomic approaches have been essential in characterizing lupin seed protein diversity, which goes far beyond gene diversity since the protein level adds to the latter differential proteolytic cleavage of conglutin pro-proteins and a diverse array of glycosylation forms and sites. Proteomics has also proved helpful for screening and studying Lupinus germplasm with the future aim of exploiting and improving food production, quality, and nutritional values. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley.

    PubMed

    Nagel, Manuela; Kranner, Ilse; Neumann, Kerstin; Rolletschek, Hardy; Seal, Charlotte E; Colville, Louise; Fernández-Marín, Beatriz; Börner, Andreas

    2015-06-01

    Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background.

  9. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome.

    PubMed

    Dufoo-Hurtado, Miguel D; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P; Mercado-Silva, Edmundo M

    2015-01-01

    Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.

  10. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.

    PubMed

    Rajjou, Loïc; Belghazi, Maya; Huguet, Romain; Robin, Caroline; Moreau, Adrien; Job, Claudette; Job, Dominique

    2006-07-01

    The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.

  11. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley

    PubMed Central

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-01-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant–pathogen co-evolution in wild systems. PMID:25568056

  12. Proteomic Analysis of Embryogenesis and the Acquisition of Seed Dormancy in Norway Maple (Acer platanoides L.)

    PubMed Central

    Staszak, Aleksandra Maria; Pawłowski, Tomasz Andrzej

    2014-01-01

    The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association. PMID:24941250

  13. Proteomic analysis of embryogenesis and the acquisition of seed dormancy in Norway maple (Acer platanoides L.).

    PubMed

    Staszak, Aleksandra Maria; Pawłowski, Tomasz Andrzej

    2014-06-17

    The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association.

  14. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach.

    PubMed

    He, Dongli; Han, Chao; Yao, Jialing; Shen, Shihua; Yang, Pingfang

    2011-07-01

    Construction of metabolic and regulatory pathways from proteomic data can contextualize the large-scale data within the overall physiological scheme of an organism. It is an efficient way to predict metabolic phenotype or regulatory style. We did protein profiling in the germinating rice seeds through 1-DE via LC MS/MS proteomic shotgun strategy. In total, 673 proteins were identified, and could be sorted into 14 functional groups. The largest group was metabolism related. The metabolic proteins were integrated into different metabolic pathways to show the style of reserves mobilization and precursor preparation during the germination. Analysis of the regulatory proteins indicated that regulation of redox homeostasis and gene expression also play important roles for the rice seed germination. Although transcription is unnecessary for the germination, it could ensure the rapidity and uniformity of germination. On the contrary, translation with the stored mRNA is required for the germination. This study will help us to further understand the metabolic style, regulation of redox homeostasis, and gene expression during rice seed germination.

  15. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions

    PubMed Central

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  16. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    PubMed

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p < 0.05) whereas that in 16% MC seeds increased significantly (p < 0.05) during heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p < 0.05) decline occurred in 16% MC seeds at 45°C. Proteome analysis revealed 21 significantly different proteins, including 19 down-regulated and two up-regulated proteins. The down-regulated proteins, notably six heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in

  17. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    USDA-ARS?s Scientific Manuscript database

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  18. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed.

    PubMed

    Kottapalli, Kameswara Rao; Zabet-Moghaddam, Masoud; Rowland, Diane; Faircloth, Wilson; Mirzaei, Mehdi; Haynes, Paul A; Payton, Paxton

    2013-11-01

    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. A comprehensive understanding of seed metabolism and the effects of water-deficit stress on the incorporation of the main storage reserves in seeds, such as proteins, fatty acids, starch, and secondary metabolites, will enhance our ability to improve seed quality and yield through molecular breeding programs. In the present study, we employed a label-free quantitative proteomics approach to study the functional proteins altered in the midmature (65-70 days postanthesis) peanut seed grown under water-deficit stress conditions. We created a pod-specific proteome database and identified 93 nonredundant, statistically significant, and differentially expressed proteins between well-watered and drought-stressed seeds. Mapping of these differential proteins revealed three candidate biological pathways (glycolysis, sucrose and starch metabolism, and fatty acid metabolism) that were significantly altered due to water-deficit stress. Differential accumulation of proteins from these pathways provides insight into the molecular mechanisms underlying the observed physiological changes, which include reductions in pod yield and biomass, reduced germination, reduced vigor, decreased seed membrane integrity, increase in storage proteins, and decreased total fatty acid content. Some of the proteins encoding rate limiting enzymes of biosynthetic pathways could be utilized by breeders to improve peanut seed production during water-deficit conditions in the field. The data have been deposited to the ProteomeXchange with identifier PXD000308.

  19. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis.

    PubMed

    Majumdar, Sanghamitra; Almeida, Igor C; Arigi, Emma A; Choi, Hyungwon; VerBerkmoes, Nathan C; Trujillo-Reyes, Jesica; Flores-Margez, Juan P; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-11-17

    The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.

  20. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    PubMed

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  1. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.).

    PubMed

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit; Soares, Emanuela L; Soares, Arlete A; Roepstorff, Peter; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748 could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP that are differentially expressed during seed development.

  2. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.

  3. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level

    PubMed Central

    Borg, Søren

    2015-01-01

    In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments

  4. Proteomic analysis of cytoskeleton-associated RNA binding proteins in developing rice seed.

    PubMed

    Doroshenk, Kelly A; Crofts, Andrew J; Morris, Robert T; Wyrick, John J; Okita, Thomas W

    2009-10-01

    In eukaryotes, RNA binding proteins (RBPs) play an integral role not only in RNA processing within the nucleus, but also in the cytoplasmic events of RNA transport, localization, translation, storage and degradation. While many studies have been done, relatively little is known about RBPs in plants. As part of our continuing efforts to understand cytoplasmic gene expression events in developing rice seed (Oryza sativa L.), a proteomics approach was used to identify cytoplasmic-localized, cytoskeletal-associated RBPs. The nucleic acid binding fraction from a cytoskeletal-enriched rice seed extract was isolated by Poly(U)-Sepharose affinity chromatography and analyzed using 2D gel electrophoresis. Analysis of 162 excised protein spots using mass spectrometry led to the identification of 148 distinct proteins, in addition to the highly abundant globulin and glutelin seed storage proteins. Identified proteins include those involved in RNA processing, translation, protein modification, cell signaling, and metabolism, as well as a number of hypothetical proteins. Proteins of particular interest with roles in RNA metabolism are discussed. These results have been deposited within the Rice RNA Binding Protein Database as part of an integrated study of plant cytoskeletal-associated RBPs using developing rice seed as a model.

  5. 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds.

    PubMed

    De La Fuente, M; Borrajo, A; Bermúdez, J; Lores, M; Alonso, J; López, M; Santalla, M; De Ron, A M; Zapata, C; Alvarez, G

    2011-02-01

    Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption. Proteomic studies in legumes have increased significantly in the last years but few studies have been performed to date in P. vulgaris. We report here a proteomic analysis of bean seeds by two-dimensional electrophoresis (2-DE). Three different protein extraction methods (TCA-acetone, phenol and the commercial clean-up kit) were used taking into account that the extractome can have a determinant impact on the level of quality of downstream protein separation and identification. To demonstrate the quality of the 2-DE analysis, a selection of 50 gel spots was used in protein identification by mass spectrometry (MALDI-TOF MS and MALDI-TOF/TOF). The results showed that a considerable proportion of spots (70%) were identified in spite of incomplete genome/protein databases for bean and other legume species. Most identified proteins corresponded to storage protein, carbohydrate metabolism, defense and stress response, including proteins highly abundant in the seed of P. vulgaris such as the phaseolin, the phytohemagglutinin and the lectin-related α-amylase inhibitor.

  6. The proteome of lentil (Lens culinaris Medik.) seeds: discriminating between landraces.

    PubMed

    Scippa, Gabriella Stefania; Rocco, Mariapina; Ialicicco, Manuela; Trupiano, Dalila; Viscosi, Vincenzo; Di Michele, Michela; Arena, Simona; Chiatante, Donato; Scaloni, Andrea

    2010-01-01

    Lentil (Lens culinaris Medik.) is one of the most ancient crops of the Mediterranean region used for human nutrition; an extensive differentiation of L. culinaris over millennia has resulted in a number of different landraces. As a consequence of environmental and socio-economic issues, the disappearance of many of them occurred in more recent times. To investigate the potential of proteomics as a tool in phylogenetic studies, testing the possibility to identify specific markers of different plant landraces, 2-D gel electrophoretic maps of mature seeds were obtained from seven lentil populations belonging to a local ecotype (Capracotta) and five commercial varieties (Turca Rossa, Canadese, Castelluccio di Norcia, Rascino and Colfiorito). 2-DE analysis resolved hundreds of protein species in each lentil sample, among which only 122 were further identified by MALDI-TOF PMF and/or nanoLC-ESI-LIT-MS/MS, probably as a result of the poor information available on L. culinaris genome. A comparison of these maps revealed that 103 protein spots were differentially expressed within and between populations. The multivariate statistical analyses carried out on these variably expressed spots showed that 24 protein species were essential for population discrimination, thus determining their proposition as landrace markers. Besides providing the first reference map of mature lentil seeds, our data confirm previous studies based on morphological/genetic observations and further support the valuable use of proteomic techniques as phylogenetic tool in plant studies.

  7. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination.

    PubMed

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.

  8. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    PubMed Central

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  9. Proteome analysis of plastids from developing seeds of Jatropha curcas L.

    PubMed

    Pinheiro, Camila B; Shah, Mohibullah; Soares, Emanoella L; Nogueira, Fábio C S; Carvalho, Paulo C; Junqueira, Magno; Araújo, Gabriel D T; Soares, Arlete A; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we performed a proteomic analysis of plastids isolated from the endosperm of developing Jatropha curcas seeds that were in the initial stage of deposition of protein and lipid reserves. Proteins extracted from the plastids were digested with trypsin, and the peptides were applied to an EASY-nano LC system coupled inline to an ESI-LTQ-Orbitrap Velos mass spectrometer, and this led to the identification of 1103 proteins representing 804 protein groups, of which 923 proteins were considered as true identifications, and this considerably expands the repertoire of J. curcas proteins identified so far. Of the identified proteins, only five are encoded in the plastid genome, and none of them are involved in photosynthesis, evidentiating the nonphotosynthetic nature of the isolated plastids. Homologues for 824 out of 923 identified proteins were present in PPDB, SUBA, or PlProt databases while homologues for 13 proteins were not found in any of the three plastid proteins databases but were marked as plastidial by at least one of the three prediction programs used. Functional classification showed that proteins belonging to amino acids metabolism comprise the main functional class, followed by carbohydrate, energy, and lipid metabolisms. The small and large subunits of Rubisco were identified, and their presence in the plastids is considered to be an adaptive feature counterbalancing for the loss of one-third of the carbon as CO2 as a result of the conversion of carbohydrate to oil through glycolysis. While several enzymes involved in the biosynthesis of several precursors of diterpenoids were identified, we were unable to identify any terpene synthase/cyclase, which suggests that the plastids isolated from the endosperm of developing seeds do not synthesize phorbol esters. In conclusion, our study provides insights into the major biosynthetic pathways and certain unique features of the plastids from the endosperm of developing seeds at the whole proteome

  10. [The influence of root excretions of germinating barley seed (Hordeum vulgare L.) on qualitative and quantitative composition of soil organic components].

    PubMed

    Volkov, O I

    2010-01-01

    The data from scientific publications on excretory activity of herbs root endings were analyzed, along with the data on the role of polyvalent metals cations in stabilization of humus substances (HS) of soil organic mineral complex. On the base of the analysis a working hypothesis was proposed considering root endings influence on fractional composition of soil organic components. To detect the changes taking place in soil HS, the chromatographic fractionation method was chosen. The soil aggregates stuck to root endings of germinating barley seed were washed off, and the washouts were used as the samples for the analysis. The soil from the weighed portion was dissolved directly with extenuating concentrations of LiCl and Li2SO4 alkaline solution. The fractionation was carried out in a chromatographic column. Some changes were detected in optical density of chernozem and dark-grey forest soil leached out after 1-2 days of barley seeds germination. Besides, the experiment showed that the content of organic carbon in HS changes as well.

  11. Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition.

    PubMed

    Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki

    2006-11-01

    Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.

  12. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling

    PubMed Central

    Lv, Yangyong; Zhang, Shuaibing; Wang, Jinshui; Hu, Yuansen

    2016-01-01

    Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly

  13. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling.

    PubMed

    Lv, Yangyong; Zhang, Shuaibing; Wang, Jinshui; Hu, Yuansen

    2016-01-01

    Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly

  14. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality

    PubMed Central

    2011-01-01

    Background The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. Results The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II) and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. Conclusion The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought. PMID:21205309

  15. Differential RNA Expression of ßm1 during Late Seed Development in Cultivated and Wild Barleys Carrying Different ßmy1 Intron III Alleles and the Association with Beta-Amylase Activity

    USDA-ARS?s Scientific Manuscript database

    Four genotypes carrying different beta-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 mRNA accumulation, beta-amylase activity and protein, and total protein during late seed development. Wild barleys (Hordeum vulgare ssp. spontaneum) ...

  16. Radioactive Chernobyl environment has produced high-oil flax seeds that show proteome alterations related to carbon metabolism during seed development.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Rashydov, Namik M; Hajduch, Martin

    2013-11-01

    Starting in 2007, we have grown soybean (Glycine max [L.] Merr. variety Soniachna) and flax (Linum usitatissimum, L. variety Kyivskyi) in the radio-contaminated Chernobyl area and analyzed the seed proteomes. In the second-generation flax seeds, we detected a 12% increase in oil content. To characterize the bases for this increase, seed development has been studied. Flax seeds were harvested in biological triplicate at 2, 4, and 6 weeks after flowering and at maturity from plants grown in nonradioactive and radio-contaminated plots in the Chernobyl area for two generations. Quantitative proteomic analyses based on 2-D gel electrophoresis (2-DE) allowed us to establish developmental profiles for 199 2-DE spots in both plots, out of which 79 were reliably identified by tandem mass spectrometry. The data suggest a statistically significant increased abundance of proteins associated with pyruvate biosynthesis via cytoplasmic glycolysis, L-malate decarboxylation, isocitrate dehydrogenation, and ethanol oxidation to acetaldehyde in early stages of seed development. This was followed by statistically significant increased abundance of ketoacyl-[acylcarrier protein] synthase I related to condensation of malonyl-ACP with elongating fatty acid chains. On the basis of these and previous data, we propose a preliminary model for plant adaptation to growth in a radio-contaminated environment. One aspect of the model suggests that changes in carbon assimilation and fatty acid biosynthesis are an integral part of plant adaptation.

  17. A quantitative assessment of the importance of barley seed alpha-amylase, beta-amylase, debranching enzyme, and alpha-glucosidase in starch degradation.

    PubMed

    Sun, Z T; Henson, C A

    1991-02-01

    Extracts of germinated barley (Hordeum vulgare L.) seeds of 41 different genotypes were analyzed for their activities of alpha-amylase, beta-amylase, alpha-glucosidase, and debranching enzyme and for their abilities to hydrolyze boiled soluble starch, nonboiled soluble starch, and starch granules extracted from barley seeds with water. Linear correlation analysis, used to quantitate the interactions between the seven parameters, revealed that boiled soluble starch was not a good substrate for predicting activities of enzymes functioning in in vivo starch hydrolysis as the extracts' abilities to hydrolyze boiled soluble starch was not correlated with their abilities to hydrolyze native starch granules. Activities of alpha-amylase and alpha-glucosidase were positively and significantly correlated with the seed extracts' abilities to hydrolyze all three starches. beta-Amylase was only significantly correlated with hydrolysis of boiled soluble starch. No significant correlations existed between debranching enzyme activity and hydrolysis of any of the three starches. Interactions between the four enzymes as they functioned together to hydrolyze the three types of starch were evaluated by path coefficient analysis. alpha-Amylase contributed to hydrolyses of all three starches primarily by its direct effect (noninteractive component). This direct contribution increased as the substrate progressed from the completely artificial boiled soluble starch, to the most physiologically significant substrate, native starch granules. alpha-Glucosidase contributed to the hydrolysis of boiled soluble starch primarily by its direct effect (noninteractive) yet contributed to starch granule hydrolysis primarily via its interaction with alpha-amylase (indirect effect). The contribution of beta-amylase to hydrolysis of boiled soluble starch was direct and it did not contribute significantly to hydrolysis of native starch granules.

  18. Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production.

    PubMed

    Zhang, Na; Zhang, Hai-Jun; Sun, Qian-Qian; Cao, Yun-Yun; Li, Xingsheng; Zhao, Bing; Wu, Ping; Guo, Yang-Dong

    2017-03-29

    Seed germination is a critical and complex process in the plant life cycle. Although previous studies have found that melatonin can promote seed germination under salt stress, the involvement of melatonin in the regulation of proteomic changes remains poorly understood. In this study, a total of 157 proteins were significantly influenced (ratio ≥ 2 or ≤ -2) by melatonin during seed germination under salt stress using a label-free quantitative technique. Our GO analysis revealed that several pathways were obviously regulated by melatonin, including ribosome biosynthesis, lipid metabolism, carbohydrate metabolism, and storage protein degradation. Not only stress-tolerant proteins but also proteins that produce ATP as part of glycolysis, the citric acid cycle, and the glyoxylate cycle were upregulated by melatonin. Overall, this study provides new evidence that melatonin alleviates the inhibitory effects of NaCl stress on seed germination by promoting energy production. This study is the first to provide insights at the proteomic level into the molecular mechanism of melatonin in response to salt stress in cucumber seeds. This may be helpful to further understand the role of melatonin in cucumber seed germination under stress conditions.

  19. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids

    PubMed Central

    Pawłowski, Tomasz A

    2009-01-01

    Background Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. Results A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. Conclusion In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed

  20. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination.

    PubMed

    He, Miao; Zhu, Chong; Dong, Kun; Zhang, Ting; Cheng, Zhiwei; Li, Jiarui; Yan, Yueming

    2015-04-08

    Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and

  1. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids.

    PubMed

    Pawłowski, Tomasz A

    2009-05-04

    Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed dormancy breaking involves

  2. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  3. Leaf proteomic analysis of three rice heritable mutants after seed space flight

    NASA Astrophysics Data System (ADS)

    Wang, W.; Gu, D. P.; Zheng, Q.; Sun, Y. Q.

    2008-09-01

    To explore the proteomic changes of heritable variant rice plants induced by space environment, three mutants were selected after seed space flight by comparing the phenotypes with their on-ground controls. R955 grew more tillers and became dwarf, 971-5 acquired higher grain yield and better stress resistance, 974-5 matured earlier. Leaf proteins were extracted during the tiller development and analyzed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). More than 300 proteins were detected as reproducible Coomassie Brilliant Blue stained spots with p I values from around 4.0 to 7.0. Five proteins that changed significantly over the controls were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The main functions of these proteins were photosynthesis, stress defense and metabolism including RuBisCO activase, glycine rich RNA binding protein, peroxidase, triosephosphate isomerase and phosphoenolpyruvate carboxylase, which might be probably associated with the altered phenotypes. Quantitative analyses were also applied: less total protein spots and more down-regulated protein spots were detected in the mutants, indicating there might be a major loss of protein in heritable variant rice plants after seed space flight. These results may provide new insights to understand the biological effects of space environment to rice.

  4. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    PubMed

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding.

  5. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  6. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.

    PubMed

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-04-01

    Germination and thermoinhibition in lettuce (Lactuca sativa 'Jianyexianfeng No. 1') seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P<0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions.

    PubMed

    Abraham, Zamira; Iglesias-Fernández, Raquel; Martínez, Manuel; Rubio-Somoza, Ignacio; Díaz, Isabel; Carbonero, Pilar; Vicente-Carbajosa, Jesús

    2016-04-01

    The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions1

    PubMed Central

    Abraham, Zamira; Iglesias-Fernández, Raquel; Carbonero, Pilar

    2016-01-01

    The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana. HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination. PMID:26858366

  9. Two traditional maize inbred lines of contrasting technological abilities are discriminated by the seed flour proteome.

    PubMed

    Pinheiro, Carla; Sergeant, Kjell; Machado, Cátia M; Renaut, Jenny; Ricardo, Cândido P

    2013-07-05

    The seed proteome of two traditional maize inbred lines (pb269 and pb369) contrasting in grain hardness and in preferable use for bread-making was evaluated. The pb269 seeds, of flint type (i.e., hard endosperm), are preferably used by manufacturers, while pb369 (dent, soft endosperm) is rejected. The hypothesis that the content and relative amounts of specific proteins in the maize flour are relevant for such discrimination of the inbred lines was tested. The flour proteins were sequentially extracted following the Osborne fractionation (selective solubilization), and the four Osborne fractions were submitted to two-dimensional electrophoresis (2DE). The total amount of protein extracted from the seeds was not significantly different, but pb369 flour exhibited significantly higher proportions of salt-extracted proteins (globulins) and ethanol-extracted proteins (alcohol-soluble prolamins). The proteome analysis allowed discrimination between the two inbred lines, with pb269 demonstrating higher heterogeneity than pb369. From the 967 spots (358 common to both lines, 208 specific to pb269, and 401 specific to pb369), 588 were submitted to mass spectrometry (MS). Through the combined use of trypsin and chymotrypsin it was possible to identify proteins in 436 spots. The functional categorization in combination with multivariate analysis highlighted the most discriminant biological processes (carbohydrate metabolic process, response to stress, chitin catabolic process, oxidation-reduction process) and molecular function (nutrient reservoir activity). The inbred lines exhibited quantitative and qualitative differences in these categories. Differences were also revealed in the amounts, proportions, and distribution of several groups of storage proteins, which can have an impact on the organization of the protein body and endosperm hardness. For some proteins (granule-bound starch synthase-1, cyclophilin, zeamatin), a change in the protein solubility rather than in the

  10. Barley Oil

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare) is an ancient grain that has was domesticated for use as a food. Currently only about 2% is used for food, about two thirds is used for animal feed and one third for malting. Because the oil content of most barley cultivars is low (<2%), obtaining oil from whole barley gra...

  11. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds.

    PubMed

    Xu, Heng-Heng; Liu, Shu-Jun; Song, Shun-Hua; Wang, Rui-Xia; Wang, Wei-Qing; Song, Song-Quan

    2016-06-01

    Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQ synthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination.

  12. Expression of enzymatically active, recombinant barley alpha-glucosidase in yeast and immunological detection of alpha-glucosidase from seed tissue.

    PubMed

    Tibbot, B K; Henson, C A; Skadsen, R W

    1998-10-01

    An alpha-glucosidase cDNA clone derived from barley aleurone tissue was expressed in Pichia pastoris and Escherichia coli. The gene was fused with the N-terminal region of the Saccharomyces cerevisiae alpha-factor secretory peptide and placed under control of the Pichia AOX1 promoter in the vector pPIC9. Enzymatically active, recombinant alpha-glucosidase was synthesized and secreted from the yeast upon induction with methanol. The enzyme hydrolyzed maltose > trehalose > nigerose > isomaltose. Maltase activity occurred over the pH range 3.5-6.3 with an optimum at pH 4.3, classifying the enzyme as an acid alpha-glucosidase. The enzyme had a Km of 1.88 mM and Vmax of 0.054 micromol/min on maltose. The recombinant alpha-glucosidase expressed in E. coli was used to generate polyclonal antibodies. The antibodies detected 101 and 95 kDa forms of barley alpha-glucosidase early in seed germination. Their levels declined sharply later in germination, as an 81 kDa alpha-glucosidase became prominent. Synthesis of these proteins also occurred in isolated aleurones after treatment with gibberellin, and this was accompanied by a 14-fold increase in alpha-glucosidase enzyme activity.

  13. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi

    PubMed Central

    Wang, Hui; Wu, Keke; Liu, Yan; Wu, Yunfeng; Wang, Xifeng

    2015-01-01

    Barley yellow dwarf virus-GPV (BYDV-GPV) is transmitted by Rhopalosiphum padi and Schizaphis graminum in a persistent nonpropagative manner. To improve our understanding of its transmission mechanism by aphid vectors, we used two approaches, isobaric tags for relative and absolute quantitation (iTRAQ) and yeast two-hybrid (YTH) system, to identify proteins in R. padi that may interact with or direct the spread of BYDV-GPV along the circulative transmission pathway. Thirty-three differential aphid proteins in viruliferous and nonviruliferous insects were identified using iTRAQ coupled to 2DLC-MS/MS. With the yeast two-hybrid system, 25 prey proteins were identified as interacting with the readthrough protein (RTP) and eight with the coat protein (CP), which are encoded by BYDV-GPV. Among the aphid proteins identified, most were involved in primary energy metabolism, synaptic vesicle cycle, the proteasome pathway and the cell cytoskeleton organization pathway. In a systematic comparison of the two methods, we found that the information generated by the two methods was complementary. Taken together, our findings provide useful information on the interactions between BYDV-GPV and its vector R. padi to further our understanding of the mechanisms regulating circulative transmission in aphid vectors. PMID:26161807

  14. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Synchrotron-Based Infrared

    SciTech Connect

    Liu, N.; Yu, P

    2010-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm{sup -1}) and II (ca. 1550 cm{sup -1}), cellulosic compounds (ca. 1240 cm{sup -1}), CHO component peaks (the first peak at the region ca. 1184-1132 cm{sup -1}, the second peak at ca. 1132-1066 cm{sup -1}, and the third peak at ca. 1066-950 cm{sup -1}). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic

  15. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions.

    PubMed

    Zhang, Peng; Liu, Di; Shen, Hailong; Li, Yuhua; Nie, Yuzhe

    2015-03-02

    Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low

  16. Back to Osborne. Sequential protein extraction and LC-MS analysis for the characterization of the Holm oak seed proteome.

    PubMed

    Romero-Rodríguez, M Cristina; Maldonado-Alconada, Ana M; Valledor, Luis; Jorrin-Novo, Jesus V

    2014-01-01

    It is impossible to capture in just one experiment all or most of the total set of protein species that constitute the cell's proteome. Thus, according to our results, and even considering that they depend on the experimental system carried out (plant, yeast, fungi, or bacteria), the best protein extraction protocol yielded less than 20 % of the total amount of proteins, as determined by the Kjeldahl method. For this reason, protein cataloguing and the whole proteome characterization require the use of firstly, fractionation techniques at the cellular, subcellular, protein, or peptide level, and secondly, the use of complementary approaches.Within our current research on Holm oak (Quercus ilex subsp. ballota), we aim to characterize its seed proteome. For that we have optimized an experimental workflow in which the Osborne sequential protein extraction (Osborne, Science 28:417-427, 1908) is combined with downstream electrophoretic protein separation or shotgun MS analysis. In general, it can be used to study any plant seed, as well as to investigate on seed maturation and germination, genotype characterization, allergens identification, food traceability, and substantial equivalence, among others.

  17. Pancreatic islet proteome profile in Zucker fatty rats chronically treated with a grape seed procyanidin extract.

    PubMed

    Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Ubaida Mohien, Ceereena; Baiges, Isabel; Blay, Mayte; Ardévol, Anna; Pinent, Montserrat

    2012-12-01

    Grape seed procyanidin extract (GSPE) has been reported to modify glucose metabolism and β-cell functionality through its lipid-lowering effects in a diet-induced obesity model. The objective of the present study was to evaluate the effects of chronically administrated GSPE on the proteomic profile of pancreatic islets from Zucker fatty (ZF) rats. An isobaric tag for relative and absolute quantitation (iTRAQ) experiment was conducted and 31 proteins were found to be differentially expressed in ZF rats treated with GSPE compared to untreated ZF rats. Of these proteins, five subcategories of biological processes emerged: hexose metabolic processes, response to hormone stimulus, apoptosis and cell death, translation and protein folding, and macromolecular complex assembly. Gene expression analysis supported the role of the first three biological processes, concluding that GSPE limits insulin synthesis and secretion and modulates factors involved in apoptosis, but these molecular changes are not sufficient to counteract the genetic background of the Zucker model at a physiological level. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Proteomics analysis of rat brain protein modulations by grape seed extract.

    PubMed

    Deshane, Jessy; Chaves, Lisa; Sarikonda, Kiran Varma; Isbell, Scott; Wilson, Landon; Kirk, Marion; Grubbs, Clinton; Barnes, Stephen; Meleth, Sreelatha; Kim, Helen

    2004-12-29

    Dietary supplements such as grape seed extract (GSE) enriched in proanthocyanidins (PA) (oligomeric polyphenols) have been suggested to have multiple health benefits, due to antioxidant and other beneficial activities of the PA. However, a systematic analysis of the molecular basis of these benefits has not been demonstrated. Because the brain is vulnerable to age-related oxidative damage and other insults including inflammation, it was hypothesized that rats ingesting GSE would experience changes in expression or modifications of specific brain proteins that might protect against pathologic events. Normal adult female rats were fed diets supplemented with 5% GSE for 6 weeks. Proteomics analysis (2D electrophoresis and mass spectrometry) of brain homogenates from these animals identified 13 proteins that were altered in amount and/or charge. Because many of these changes were quantitatively in the opposite direction from previous findings for the same proteins in either Alzheimer disease or mouse models of neurodegeneration, the data suggest that these identified proteins may mediate the neuroprotective actions of GSE. This is the first identification and quantitation of specific proteins in mammalian tissues modulated by a dietary supplement, as well as the first to demonstrate links of such proteins with any disease.

  19. Regulation of Phosphoenolpyruvate Carboxylase Phosphorylation by Metabolites and Abscisic Acid during the Development and Germination of Barley Seeds1[C][W

    PubMed Central

    Feria, Ana-Belén; Alvarez, Rosario; Cochereau, Ludivine; Vidal, Jean; García-Mauriño, Sofía; Echevarría, Cristina

    2008-01-01

    During barley (Hordeum vulgare) seed development, phosphoenolpyruvate carboxylase (PEPC) activity increased and PEPC-specific antibodies revealed housekeeping (103-kD) and inducible (108-kD) subunits. Bacterial-type PEPC fragments were immunologically detected in denatured protein extracts from dry and imbibed conditions; however, on nondenaturing gels, the activity of the recently reported octameric PEPC (in castor [Ricinus communis] oil seeds) was not detected. The phosphorylation state of the PEPC, as judged by l-malate 50% inhibition of initial activity values, phosphoprotein chromatography, and immunodetection of the phosphorylated N terminus, was found to be high between 8 and 18 d postanthesis (DPA) and during imbibition. In contrast, the enzyme appeared to be in a low phosphorylation state from 20 DPA up to dry seed. The time course of 32/36-kD, Ca2+-independent PEPC kinase activity exhibited a substantial increase after 30 DPA that did not coincide with the PEPC phosphorylation profile. This kinase was found to be inhibited by l-malate and not by putative protein inhibitors, and the PEPC phosphorylation status correlated with high glucose-6-phosphate to malate ratios, thereby suggesting an in vivo metabolic control of the kinase. PEPC phosphorylation was also regulated by photosynthate supply at 11 DPA. In addition, when fed exogenously to imbibing seeds, abscisic acid significantly increased PEPC kinase activity. This was further enhanced by the cytosolic protein synthesis inhibitor cycloheximide but blocked by protease inhibitors, thereby suggesting that the phytohormone acts on the stability of the kinase. We propose that a similar abscisic acid-dependent effect may contribute to produce the increase in PEPC kinase activity during desiccation stages. PMID:18753284

  20. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  1. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    PubMed Central

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  2. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase.

    PubMed

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob; Svensson, Birte; Hägglund, Per

    2015-05-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl hydroperoxide, but is more sensitive to inactivation by hydrogen peroxide. Treatment of the monomer with hydrogen peroxide results in dimer formation. This observed new behavior of a plant glutathione peroxidase suggests a mechanism involving a switch from a highly catalytically competent monomer to a less active, but more oxidation-resistant dimer. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Probing heat-stable water-soluble proteins from barley to malt and beer.

    PubMed

    Perrocheau, Ludivine; Rogniaux, Hélène; Boivin, Patrick; Marion, Didier

    2005-07-01

    Proteins determine the quality of barley in malting and brewing end-uses. In this regard, water-soluble barley proteins play a major role in the formation, stability, and texture of head foams. Our objective was to survey the barley seed proteins that could be involved in the foaming properties of beer. Therefore, two-dimensional (2-D) electrophoresis and mass spectrometry were combined to highlight the barley proteins that could resist the heating treatments occurring during malting and brewing processes. As expected, from barley to malt and to beer, most of the heat-stable proteins are disulfide-rich proteins, implicated in the defense of plants against their bio-aggressors, e.g., serpin-like chymotrypsin inhibitors (protein Z), amylase and amylase-protease inhibitors, and lipid transfer proteins (LTP1 and LTP2). For LTP1s, the complex pattern displayed in 2-D electrophoresis could be related to some chemical modifications already described elsewhere, such as acylation or glycation through Maillard reactions, which occur on malting. Our proteomics approach allowed the identification of the numerous proteins present in beer in addition to the major ones already described. The involvement of these proteins in the quality of beer foam can now be evaluated.

  4. Agricultural recovery of a formerly radioactive area: II. Systematic proteomic characterization of flax seed development in the remediated Chernobyl area.

    PubMed

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Hricová, Andrea; Rashydov, Namik M; Hajduch, Martin

    2011-08-12

    Molecular characterization of crop plants grown in remediated, formerly radioactive, areas could establish a framework for future agricultural use of these areas. Recently, we have established a quantitative reference map for mature flax seed proteins (Linum usitatissimum L.) harvested from a remediated plot in Chernobyl town. Herein we describe results from our ongoing studies of this subject, and provide a proteomics-based characterization of developing flax seeds harvested from same field. A quantitative approach, based on 2-dimensional electrophoresis (2-DE) and tandem mass spectrometry, yielded expression profiles for 379 2-DE spots through seed development. Despite the paucity of genomic resources for flax, the identity for 102 proteins was reliably determined. These proteins were sorted into 11 metabolic functional classes. Proteins of unknown function comprise the largest group, and displayed a pattern of decreased abundance throughout seed development. Analysis of the composite expression profiles for metabolic protein classes revealed specific expression patterns during seed development. For example, there was an overall decrease in abundance of the glycolytic enzymes during seed development. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Qualitative and quantitative changes in barley seed protein patterns during the malting process analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with respect to malting quality.

    PubMed

    Weiss, W; Postel, W; Görg, A

    1992-01-01

    Seeds of two barley cultivars, similar in total protein content and malt extract yield but different in their final attenuation values, were malted. Samples taken at daily intervals during the malting process were extracted sequentially with Tris-HCl buffer, aqueous 2-propanol, aqueous 2-propanol containing 0.5% dithiothreitol, and 4 M urea, containing 0.5% dithiothreitol and 1% Nonidet P-40. The protein composition of these extracts was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and computer densitometry to determine whether differences observed in the rate or extent of protein modification are related to the malting quality character final attenuation. It was found that, common to both cultivars, the albumin and globulin proteins were relatively resistant to proteolysis, whereas the hordeins suffered a dramatic breakdown during malting, with the D hordein being degraded most rapidly, followed by the B and C hordeins. Besides these similarities, differences between both cultivars were observed in the relative rates of D hordein degradation, as this rate was considerably higher in the cultivar with high malting quality. Similar, but much less distinct kinetics were seen with certain B hordeins. Since a possible relationship might exist between the rate of proteolysis of the D hordeins and the character final attenuation, we analyzed a larger number of barley cultivars with different final attenuation values with a simplified technique. For the ten cultivars examined, differences during germination were again seen in the rates of modification of the D hordeins. However, significant correlations between the D hordein breakdown and final attenuation values were not obtained, so that we propose that there exists at best a loose correlation between the relative rate of proteolysis of these proteins and the malting quality character final attenuation.

  6. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress.

    PubMed

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Laganà, Aldo

    2014-08-28

    Seed priming with ascorbic acid improves salt tolerance in durum wheat. For understanding the potential mechanisms underlying this priming effect a gel-free shotgun proteomic analysis was performed comparing unprimed to ascorbate-primed wheat seed during germination under saline and non-saline conditions. Since seed germination is the result of interplay or cross-talk between embryo and embryo-surrounding tissues, we studied the variation of metabolic proteome in both tissues separately. 167 of 697 identified and 69 of 471 identified proteins increase or decrease in abundance significantly in response to priming and/or salinity compared to untreated, unstressed control in embryo and embryo-surrounding tissues, respectively. In untreated wheat embryo salt stress was accompanied by change in 129 proteins, most of which are belonging to metabolism, energy, disease/defense, protein destination and storage categories. Ascorbate pretreatment prevents and counteracts the effects of salinity upon most of these proteins and changes specifically the abundance of 35 others proteins, most of which are involved in metabolism, protein destination and storage categories. Hierarchical clustering analysis revealed three and two major clusters of protein expression in embryo and embryo-surrounding tissues, respectively. This study opens promising new avenues to understand priming-induced salt tolerance in plants. To clearly understand how ascorbate-priming enhance the salt tolerance of durum wheat during germination, we performed for the first time a comparative shotgun proteomic analysis between unprimed and ascorbate-primed wheat seeds during germination under saline and non-saline conditions. Furthermore, since seed germination is the result of interplay or cross-talk between embryo and embryo-surrounding tissues we analyzed the variation of metabolic proteome in both tissues separately. 1168 proteins exhibiting greater molecular weight diversity (ranging from 5 to 258kDa) were

  7. A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea

    PubMed Central

    Liu, Yongbo; Zhang, Ying-Xue; Song, Song-Quan; Li, Junsheng; Neal Stewart Jr., C.; Wei, Wei; Zhao, Yujie; Wang, Wei-Qing

    2015-01-01

    Transgene insertions might have unintended side effects on the transgenic host, both crop and hybrids with wild relatives that harbor transgenes. We employed proteomic approaches to assess protein abundance changes in seeds from Bt-transgenic oilseed rape (Brassica napus) and its hybrids with wild mustard (B. juncea). A total of 24, 15 and 34 protein spots matching to 23, 13 and 31 unique genes were identified that changed at least 1.5 fold (p < 0.05, Student’s t-test) in abundance between transgenic (tBN) and non-transgenic (BN) oilseed rape, between hybrids of B. juncea (BJ) × tBN (BJtBN) and BJ × BN (BJBN) and between BJBN and BJ, respectively. Eight proteins had higher abundance in tBN than in BN. None of these proteins was toxic or nutritionally harmful to human health, which is not surprising since the seeds are not known to produce toxic proteins. Protein spots varying in abundance between BJtBN and BJBN seeds were the same or homologous to those in the respective parents. None of the differentially-accumulated proteins between BJtBN and BJBN were identical to those between tBN and BN. Results indicated that unintended effects resulted from transgene flow fell within the range of natural variability of hybridization and those found in the native host proteomes. PMID:26486652

  8. Novel seminal fluid proteins in the seed beetle Callosobruchus maculatus identified by a proteomic and transcriptomic approach.

    PubMed

    Bayram, H; Sayadi, A; Goenaga, J; Immonen, E; Arnqvist, G

    2017-02-01

    The seed beetle Callosobruchus maculatus is a significant agricultural pest and increasingly studied model of sexual conflict. Males possess genital spines that increase the transfer of seminal fluid proteins (SFPs) into the female body. As SFPs alter female behaviour and physiology, they are likely to modulate reproduction and sexual conflict in this species. Here, we identified SFPs using proteomics combined with a de novo transcriptome. A prior 2D-sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis identified male accessory gland protein spots that were probably transferred to the female at mating. Proteomic analysis of these spots identified 98 proteins, a majority of which were also present within ejaculates collected from females. Standard annotation workflows revealed common functional groups for SFPs, including proteases and metabolic proteins. Transcriptomic analysis found 84 transcripts differentially expressed between the sexes. Notably, genes encoding 15 proteins were highly expressed in male abdomens and only negligibly expressed within females. Most of these sequences corresponded to 'unknown' proteins (nine of 15) and may represent rapidly evolving SFPs novel to seed beetles. Our combined analyses highlight 44 proteins for which there is strong evidence that they are SFPs. These results can inform further investigation, to better understand the molecular mechanisms of sexual conflict in seed beetles.

  9. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach.

    PubMed

    Barba-Espín, Gregorio; Diaz-Vivancos, Pedro; Job, Dominique; Belghazi, Maya; Job, Claudette; Hernández, José Antonio

    2011-11-01

    In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels. © 2011 Blackwell Publishing Ltd.

  10. Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches.

    PubMed

    Rodríguez de Francisco, Luis; Romero-Rodríguez, Ma Cristina; Navarro-Cerrillo, Rafael M; Miniño, Virgilio; Perdomo, Omar; Jorrín-Novo, Jesús V

    2016-06-30

    This work presents an analysis of Pinus occidentalis pollen and seed proteomes, in which both gel-based and gel-free approaches have been used. Proteins were extracted from P. occidentalis seeds and pollen by using the TCA/acetone/phenol precipitation protocol, and protein extracts were subjected to 1- and 2-DE coupled to MALDI-TOF-TOF as well as to shotgun (nLC-LTQ-Orbitrap) analysis. All bands (1-DE) and the most abundant spots (2-DE) were excised, trypsin digested and the resulting peptides analyzed by MALDI TOF/TOF. In order to increase the proteome coverage, a gel free approach was used. Proteins were identified from mass spectra by using three different databases, including UniProtKB, NCBI and a Pinus spp. custom database [2]. The gel-based approach resulted in 42 (seeds) and 94 (pollen) protein identifications, while the shotgun approach permitted the identification of 187 (seed) and 960 (pollen) proteins. Proteins were classified based on their corresponding functional categories. In seeds, storage proteins were the most abundant ones, and some allergens and proteases were also identified. In pollen proteins related to general metabolism were the most predominant. Data are compared and discussed from a methodological and biological point of view, taking into account the particularities of the seed and pollen organs. In this work we characterized P. occidentalis proteome with seeds and pollen samples implementing two complementary approaches for the analysis. We found a high content of storage protein, stress response and metabolism related proteins in the seed proteome. Similarly, in the pollen proteome we found predominant groups of proteins related to metabolism and stress response. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo Nucifera Gaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome

    PubMed Central

    Moro, Carlo F.; Fukao, Yoichiro; Shibato, Junko; Rakwal, Randeep; Agrawal, Ganesh Kumar; Shioda, Seiji; Kouzuma, Yoshiaki; Yonekura, Masami

    2015-01-01

    Lotus (Nelumbo nucifera Gaertn.) seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed’s development. One-dimensional gel electrophoresis (SDS-PAGE) linked with tandem mass spectrometry provided a protein inventory of the immature endosperm (122 non-redundant proteins) and embryo (141 non-redundant proteins) tissues. Comparing with the previous mature endosperm dataset (66 non-redundant proteins), a total of 206 non-redundant proteins were identified across all three tissues of the lotus seed. Results revealed some significant differences in proteome composition between the three lotus seed tissues, most notably between the mature endosperm and its immature developmental stage shifting the proteins from nutrient production to nutrient storage. PMID:28248268

  12. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera)

    PubMed Central

    Zhi, Yao; Taylor, Matthew C.; Campbell, Peter M.; Warden, Andrew C.; Shrestha, Pushkar; El Tahchy, Anna; Rolland, Vivien; Vanhercke, Thomas; Petrie, James R.; White, Rosemary G.; Chen, Wenli; Singh, Surinder P.; Liu, Qing

    2017-01-01

    Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues. PMID:28824675

  13. Barley seed radiosensitivity following post-hydration in oxygen-, nitrogen- and nitrous oxide-saturated water. I. Influence of caffeine and t-butyl alcohol.

    PubMed

    Singh, S P; Kesavan, P C

    1990-06-01

    Dry (approximately 3.5 and 4.0 per cent moisture content) barley seeds were exposed to 350 Gy of 60Co- gamma-rays in vacuo and post-hydrated at 4 degrees C for 8 h in O2-, N2-, or N2O-saturated water. The effect of caffeine and t-butyl alcohol (t-BuOH) dissolved in the post-hydration medium on the magnitude of damage developing under these three different gaseous circumstances was studied. The post-irradiation damage and its modification by caffeine and t-BuOH was assessed in terms of 8-day-old seedling injury, peroxidase activity and total peroxides in the 8-day-old seedlings. Post-irradiation O2-saturated hydration caused maximal 8-day-old seedling injury, and increased peroxidase activity with concomitant reduction in total peroxides. Both caffeine and t-BuOH afforded significant radioprotection against post-irradiation O2-dependent damage. Post-irradiation N2O-saturated hydration was even more significantly radioprotective than the N2-saturated post-hydration. Under these circumstances, t-BuOH exerted no effect whatsoever on the N2- and N2O-mediated post-irradiation damage. Caffeine, on the other hand, significantly potentiated these two components of damage. A brief consideration of the physicochemical events which possibly account for the observed effects is presented.

  14. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    PubMed

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  15. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    PubMed Central

    Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei

    2014-01-01

    ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661

  16. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis.

    PubMed

    Natarajan, Savithiry S; Xu, Chenping; Bae, Hanhong; Caperna, Thomas J; Garrett, Wesley M

    2006-04-19

    A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of beta-conglycinin were well-separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools.

  17. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation.

    PubMed

    Gallardo, Karine; Le Signor, Christine; Vandekerckhove, Joël; Thompson, Richard D; Burstin, Judith

    2003-10-01

    We utilized a proteomic approach to investigate seed development in Medicago truncatula, cv Jemalong, line J5 at specific stages of seed filling corresponding to the acquisition of germination capacity and protein deposition. One hundred twenty proteins differing in kinetics of appearance were subjected to matrix-assisted laser desorption ionization time of flight mass spectrometry. These analyses provided peptide mass fingerprint data that identified 84 of them. Some of these proteins had previously been shown to accumulate during seed development in legumes (e.g. legumins, vicilins, convicilins, and lipoxygenases), confirming the validity of M. truncatula as a model for analysis of legume seed filling. The study also revealed proteins presumably involved in cell division during embryogenesis (beta-tubulin and annexin). Their abundance decreased before the accumulation of the major storage protein families, which itself occurs in a specific temporal order: vicilins (14 d after pollination [DAP]), legumins (16 DAP), and convicilins (18 DAP). Furthermore, the study showed an accumulation of enzymes of carbon metabolism (e.g. sucrose synthase, starch synthase) and of proteins involved in embryonic photosynthesis (e.g. chlorophyll a/b binding), which may play a role in providing cofactors for protein/lipid synthesis or for CO2 refixation during seed filling. Correlated with the reserve deposition phase was the accumulation of proteins associated with cell expansion (actin 7 and reversibly glycosylated polypeptide) and of components of the precursor accumulating vesicles, which give rise to a trypsin inhibitor on maturation. Finally, we revealed a differential accumulation of enzymes involved in methionine metabolism (S-adenosyl-methionine synthetase and S-adenosylhomo-cysteine hydrolase) and propose a role for these enzymes in the transition from a highly active to a quiescent state during seed development.

  18. Proteome Reference Maps of Vegetative Tissues in Pea. An Investigation of Nitrogen Mobilization from Leaves during Seed Filling1

    PubMed Central

    Schiltz, Séverine; Gallardo, Karine; Huart, Myriam; Negroni, Luc; Sommerer, Nicolas; Burstin, Judith

    2004-01-01

    A proteomic approach was used to analyze protein changes during nitrogen mobilization (N mobilization) from leaves to filling seeds in pea (Pisum sativum). First, proteome reference maps were established for mature leaves and stems. They displayed around 190 Coomassie Blue-stained spots with pIs from 4 to 7. A total of 130 spots were identified by mass spectrometry as corresponding to 80 different proteins implicated in a variety of cellular functions. Although the leaf proteome map contained more abundant spots, corresponding to proteins involved in energy/carbon metabolism, than the stem map, their comparison revealed a highly similar protein profile. Second, the leaf proteome map was used to analyze quantitative variations in leaf proteins during N mobilization. Forty percent of the spots showed significant changes in their relative abundance in the total protein extract. The results confirmed the importance of Rubisco as a source of mobilizable nitrogen, and suggested that in pea leaves the rate of degradation of Rubisco may vary throughout N mobilization. Correlated with the loss of Rubisco was an increase in relative abundance of chloroplastic protease regulatory subunits. Concomitantly, the relative abundance of some proteins related to the photosynthetic apparatus (Rubisco activase, Rubisco-binding proteins) and of several chaperones increased. A role for these proteins in the maintenance of a Rubisco activation state and in the PSII repair during the intense proteolytic activity within the chloroplasts was proposed. Finally, two 14-3-3-like proteins, with a potential regulatory role, displayed differential expression patterns during the massive remobilization of nitrogen. PMID:15299134

  19. Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling.

    PubMed

    Schiltz, Séverine; Gallardo, Karine; Huart, Myriam; Negroni, Luc; Sommerer, Nicolas; Burstin, Judith

    2004-08-01

    A proteomic approach was used to analyze protein changes during nitrogen mobilization (N mobilization) from leaves to filling seeds in pea (Pisum sativum). First, proteome reference maps were established for mature leaves and stems. They displayed around 190 Coomassie Blue-stained spots with pIs from 4 to 7. A total of 130 spots were identified by mass spectrometry as corresponding to 80 different proteins implicated in a variety of cellular functions. Although the leaf proteome map contained more abundant spots, corresponding to proteins involved in energy/carbon metabolism, than the stem map, their comparison revealed a highly similar protein profile. Second, the leaf proteome map was used to analyze quantitative variations in leaf proteins during N mobilization. Forty percent of the spots showed significant changes in their relative abundance in the total protein extract. The results confirmed the importance of Rubisco as a source of mobilizable nitrogen, and suggested that in pea leaves the rate of degradation of Rubisco may vary throughout N mobilization. Correlated with the loss of Rubisco was an increase in relative abundance of chloroplastic protease regulatory subunits. Concomitantly, the relative abundance of some proteins related to the photosynthetic apparatus (Rubisco activase, Rubisco-binding proteins) and of several chaperones increased. A role for these proteins in the maintenance of a Rubisco activation state and in the PSII repair during the intense proteolytic activity within the chloroplasts was proposed. Finally, two 14-3-3-like proteins, with a potential regulatory role, displayed differential expression patterns during the massive remobilization of nitrogen.

  20. Low Phytic Acid Barley Responses to Phosphorus Rates

    USDA-ARS?s Scientific Manuscript database

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  1. Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins.

    PubMed

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Svensson, Birte; Henriksen, Anette

    2010-11-12

    Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)(8)-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites +1 and +2. A glycerol and three water molecules mimic a glucose residue at subsite -1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite -4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.

  2. Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration.

    PubMed

    Gendreau, Emmanuel; Romaniello, Sébastien; Barad, Sophie; Leymarie, Juliette; Benech-Arnold, Roberto; Corbineau, Françoise

    2008-01-01

    Various studies indicate that cell division is a post-germination phenomenon, with radicle protrusion occurring by cell elongation, while others demonstrate that induction of the cell cycle occurs in osmo-conditioned seeds prior to radicle growth. The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to grain hydration, using: (i) a flow cytometry technique to estimate the percentage of cell nuclei in G(1) and G(2) phases of the cell cycle; and (ii) reverse transcription-PCR (RT-PCR) in order to characterize the expression of the genes encoding cyclin-dependent kinases (CDKA1, CDKB1, and CDKD1) and cyclins (CYCA3, CYCB1, and CYCD4), the main genes involved in the cell cycle and its regulation. Radicle tips of embryos were isolated from seeds placed for various times on water at 30 degrees C and from grains partially hydrated at moisture contents ranging from 11% to 51% fresh weight (FW), which prevent radicle elongation. Abscisic acid (ABA) contents of the embryos during seed germination at 30 degrees C and after 48 h of partial hydration were also measured. In dry embryos, cells are mostly arrested in the G(1) phase of the cell cycle (82%), the remaining cells being in the G(2) phase, and the ABA content of the embryo was 432.7 ng g(-1) dry weight (DW). Seed imbibition was associated with a sharp decrease in ABA content as early as 5 h, while the cell cycle reactivation was a late process taking place approximately 4-6 h prior to radicle protrusion. Hydration of seeds resulted in a decrease in embryo ABA content, but it remained at a high level (207-273 ng g(-1) DW) even after 48 h at 0.41-0.51 g H2O g(-1) FW. The cell population of the radicle tips in the G(2) phase of the cell cycle, i.e. 4C nuclei, increased from 9% up to 34% at a moisture content of 51% FW. In dry seeds, CDKA1 and CDKD1 mRNAs were present at low levels, but transcripts of CDKB1, CYCA3, CYCB1, and CYCD4 were not detected. Radicle

  3. Proteomic and Carbonylation Profile Analysis at the Critical Node of Seed Ageing in Oryza sativa

    PubMed Central

    Yin, Guangkun; Xin, Xia; Fu, Shenzao; An, Mengni; Wu, Shuhua; Chen, Xiaoling; Zhang, Jinmei; He, Juanjuan; Whelan, James; Lu, Xinxiong

    2017-01-01

    The critical node (CN), which is the transition from the plateau phase to the rapid decreasing phase of seed ageing, is extremely important for seed conservation. Although numerous studies have investigated the oxidative stress during seed ageing, information on the changes in protein abundance at the CN is limited. In this study, we aimed to investigate the abundance and carbonylation patterns of proteins at the CN of seed ageing in rice. The results showed that the germination rate of seeds decreased by less than 20% at the CN; however, the abundance of 112 proteins and the carbonylation levels of 68 proteins markedly changed, indicating oxidative damage. The abundance and activity of mitochondrial, glycolytic, and pentose phosphate pathway proteins were reduced; consequently, this negatively affected energy production and germination. Proteins related to defense, including antioxidant system and heat shock proteins, also reduced in abundance. Overall, energy metabolism was reduced at the CN, leading to a decrease in the antioxidant capacity, whereas seed storage proteins were up-regulated and carbonylated, indicating that the seed had a lower ability to utilize seed storage proteins for germination. Thus, the significant decrease in metabolic activities at the CN might accelerate the loss of seed viability. PMID:28094349

  4. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization

    PubMed Central

    2010-01-01

    Background Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole. Results In the present study, we demonstrated that the Sultr4;1 gene is expressed in developing Arabidopsis seeds to a level over 10-fold higher than the Sultr4;2 gene. A characterization of dry mature seeds from a Sultr4;1 T-DNA mutant revealed a higher sulphate content, implying a function for this transporter in developing seeds. A fine dissection of the Sultr4;1 seed proteome identified 29 spots whose abundance varied compared to wild-type. Specific metabolic features characteristic of an adaptive response were revealed, such as an up-accumulation of various proteins involved in sugar metabolism and in detoxification processes. Conclusions This study revealed a role for SULTR4;1 in determining sulphate content of mature Arabidopsis seeds. Moreover, the adaptive response of sultr4;1 mutant seeds as revealed by proteomics suggests a function of SULTR4;1 in redox homeostasis, a mechanism that has to be tightly controlled during development of orthodox seeds. PMID:20426829

  5. Grain sorghum proteomics: An integrated approach towards characterization of seed storage proteins in kafirin allelic variants

    USDA-ARS?s Scientific Manuscript database

    Seed protein composition determines quality traits, such as value for food, feedstock and biomaterials uses. Sorghum seed proteins are predominantly prolamins known as kafirins. Located primarily on the periphery of storage protein bodies, cysteine-rich ß- and gama-kafirins are thought to prevent en...

  6. A Proteomics-Based Platform for Systems Biology Analysis of Soybean Seed Development

    USDA-ARS?s Scientific Manuscript database

    A system based on fresh weight and color was used to define eight stages of soybean (Glycine max (L.) Merrill, cv. Jack) seed development. Storage protein, oil, and starch were quantified from each stage, and used along with the morphological characteristics to establish a first-stage model of seed...

  7. Shotgun label-free quantitative proteomics of developing peanut (Arachis hypogaea L.) seed

    USDA-ARS?s Scientific Manuscript database

    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. Owing to their importance in global food security, it is necessary to understand the genetic, biochemical, and physiological mechanisms controlling seed quality and nutritive attributes. A comprehens...

  8. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release.

    PubMed

    Pawłowski, Tomasz Andrzej; Staszak, Aleksandra Maria

    2016-05-20

    Acer pseudoplatanus seeds are characterized by a deep physiological embryo dormancy that requires a few weeks of cold stratification in order to promote germination. Understanding the function of proteins and their related metabolic pathways, in conjunction with the plant hormones implicated in the breaking of seed dormancy, would expand our knowledge pertaining to this process. In this study, a proteomic approach was used to analyze the changes occurring in seeds in response to cold stratification, which leads to dormancy release. In addition, the involvement of abscisic (ABA) and gibberellic acids (GA) was also examined. Fifty-three proteins showing significant changes were identified by mass spectrometry. An effect of ABA on protein variation was observed at the beginning of stratification, while the influence of GA on protein abundance was observed during the middle phase of stratification. The majority of proteins associated with dormancy breaking in the presence of only water, and also ABA or GA, were classified as being involved in metabolism and genetic information processing. For metabolic-related proteins, the effect of ABA on protein abundance was stimulatory for half of the proteins and inhibitory for half of the proteins. On the other hand, the effect on genetic information processing related proteins was stimulatory. GA was found to upregulate both metabolic-related and genetic information processing-related proteins. While seed dormancy breaking depends on proteins involved in a variety of processes, proteins associated with methionine metabolism (adenosine kinase, methionine synthase) and glycine-rich RNA binding proteins appear to be of particular importance.

  9. Proteins with High Turnover Rate in Barley Leaves Estimated by Proteome Analysis Combined with in Planta Isotope Labeling1[W][OPEN

    PubMed Central

    Nelson, Clark J.; Alexova, Ralitza; Jacoby, Richard P.; Millar, A. Harvey

    2014-01-01

    Protein turnover is a key component in cellular homeostasis; however, there is little quantitative information on degradation kinetics for individual plant proteins. We have used 15N labeling of barley (Hordeum vulgare) plants and gas chromatography-mass spectrometry analysis of free amino acids and liquid chromatography-mass spectrometry analysis of proteins to track the enrichment of 15N into the amino acid pools in barley leaves and then into tryptic peptides derived from newly synthesized proteins. Using information on the rate of growth of barley leaves combined with the rate of degradation of 14N-labeled proteins, we calculate the turnover rates of 508 different proteins in barley and show that they vary by more than 100-fold. There was approximately a 9-h lag from label application until 15N incorporation could be reliably quantified in extracted peptides. Using this information and assuming constant translation rates for proteins during the time course, we were able to quantify degradation rates for several proteins that exhibit half-lives on the order of hours. Our workflow, involving a stringent series of mass spectrometry filtering steps, demonstrates that 15N labeling can be used for large-scale liquid chromatography-mass spectrometry studies of protein turnover in plants. We identify a series of abundant proteins in photosynthesis, photorespiration, and specific subunits of chlorophyll biosynthesis that turn over significantly more rapidly than the average protein involved in these processes. We also highlight a series of proteins that turn over as rapidly as the well-known D1 subunit of photosystem II. While these proteins need further verification for rapid degradation in vivo, they cluster in chlorophyll and thiamine biosynthesis. PMID:25082890

  10. Lipogenesis Is Decreased by Grape Seed Proanthocyanidins According to Liver Proteomics of Rats Fed a High Fat Diet*

    PubMed Central

    Baiges, Isabel; Palmfeldt, Johan; Bladé, Cinta; Gregersen, Niels; Arola, Lluís

    2010-01-01

    Bioactive proanthocyanidins have been reported to have several beneficial effects on health in relation to metabolic syndrome, type 2 diabetes, and cardiovascular disease. We studied the effect of grape seed proanthocyanidin extract (GSPE) in rats fed a high fat diet (HFD). This is the first study of the effects of flavonoids on the liver proteome of rats suffering from metabolic syndrome. Three groups of rats were fed over a period of 13 weeks either a chow diet (control), an HFD, or a high fat diet supplemented for the last 10 days with GSPE (HFD + GSPE). The liver proteome was fractionated, using a Triton X-114-based two-phase separation, into soluble and membrane protein fractions so that total proteome coverage was considerably improved. The data from isobaric tag for relative and absolute quantitation (iTRAQ)-based nano-LC-MS/MS analysis revealed 90 proteins with a significant (p < 0.05) minimal expression difference of 20% due to metabolic syndrome (HFD versus control) and 75 proteins due to GSPE treatment (HFD + GSPE versus HFD). The same animals have previously been studied (Quesada, H., del Bas, J. M., Pajuelo, D., Díaz, S., Fernandez-Larrea, J., Pinent, M., Arola, L., Salvadó, M. J., and Bladé, C. (2009) Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 33, 1007–1012), and GSPE was shown to correct dyslipidemia observed in HFD-fed rats probably through the repression of hepatic lipogenesis. Our data corroborate those findings with an extensive list of proteins describing the induction of hepatic glycogenesis, glycolysis, and fatty acid and triglyceride synthesis in HFD, whereas the opposite pattern was observed to a large extent in GSPE-treated animals. GSPE was shown to have a wider effect than previously thought, and putative targets of GSPE involved in the reversal of the symptoms of metabolic syndrome were revealed. Some

  11. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment.

    PubMed

    Danchenko, Maksym; Skultety, Ludovit; Rashydov, Namik M; Berezhna, Valentyna V; Mátel, L'ubomír; Salaj, Terézia; Pret'ová, Anna; Hajduch, Martin

    2009-06-01

    The explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive. The aim of this study was to investigate plant adaptation mechanisms toward permanently increased level of radiation using a quantitative high-throughput proteomics approach. Soybeans of a local variety (Soniachna) were sown in contaminated and control fields in the Chernobyl region. Mature seeds were harvested and the extracted proteins were subjected to two-dimensional gel electrophoresis (2-DE). In total, 9.2% of 698 quantified protein spots on 2-D gel were found to be differentially expressed with a p-value seed storage proteins are involved in plant adaptation mechanism to radioactivity in the Chernobyl region.

  12. Investigation of relationships between barley stress peptides and beer gushing using SDS-PAGE and MS screening.

    PubMed

    Hégrová, Blanka; Farková, Marta; Macuchová, Simona; Havel, Josef; Preisler, Jan

    2009-12-01

    The relationship between gushing and antifungal peptides in barley and malt kernels was examined for five barley varieties produced in the Czech Republic with four conditions of infection and treatment. Proteome changes during pathogen-seed interaction were observed with SDS-PAGE and MALDI-TOF MS. These methods were applied as a fast screening for observing the relationship between gushing and peptides/proteins. It was found that the presence of basic peptides, presumably hordothionins and non-specific lipid transfer protein type 1, did not correlate with the degree of gushing for malt (/r/ in <0.07, 0.34>), (/r/ in <0.01, 0.49>), respectively, as detected by both methods.

  13. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L.

    PubMed

    D'Hooghe, Philippe; Dubousset, Lucie; Gallardo, Karine; Kopriva, Stanislav; Avice, Jean-Christophe; Trouverie, Jacques

    2014-05-01

    In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate

  14. Evidence for Proteomic and Metabolic Adaptations Associated with Alterations of Seed Yield and Quality in Sulfur-limited Brassica napus L*

    PubMed Central

    D'Hooghe, Philippe; Dubousset, Lucie; Gallardo, Karine; Kopriva, Stanislav; Avice, Jean-Christophe; Trouverie, Jacques

    2014-01-01

    In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate

  15. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins.

    PubMed

    Natarajan, Savithiry; Xu, Chenping; Caperna, Thomas J; Garrett, Wesley M

    2005-07-15

    Extraction of soybean seed proteins for two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry analysis is challenging and inconsistent. In this study, we compared four different protein extraction/solubilization methods-urea, thiourea/urea, phenol, and a modified trichloroacetic acid (TCA)/acetone-to determine their efficacy in separating soybean seed proteins by 2D-PAGE. In all four methods, seed storage proteins were well separated by 2D-PAGE with minor variations in the intensity of the spots. The thiourea/urea and TCA methods showed higher protein resolution and spot intensity of all proteins compared with the other two methods. In addition, several less abundant and high molecular weight proteins were clearly resolved and strongly detected using the thiourea/urea and TCA methods. Protein spots obtained from the TCA method were subjected to mass spectrometry analysis to test their quality and compatibility. Fifteen protein spots were selected, digested with trypsin, and analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography mass spectrometry (LC-MS). The proteins identified were beta-conglycinin, glycinin, Kunitz trypsin inhibitor, alcohol dehydrogenase, Gly m Bd 28K allergen, and sucrose binding proteins. These results suggest that the thiourea/urea and TCA methods are efficient and reliable methods for 2D separation of soybean seed proteins and subsequent identification by mass spectrometry.

  16. Digging deeper into the seed proteome: Pre-fractionation of total proteins

    USDA-ARS?s Scientific Manuscript database

    Seeds are a common experimental system for many reasons. Among these they occupy a major niche in agriculture and human nutrition, they are a rich source of critical genetic information, and they are a near-ideal system for the study of phytohormone action or the transition from either dormancy or ...

  17. Proteomic Analysis of Phosphoproteins in the Rice Nucleus During the Early Stage of Seed Germination.

    PubMed

    Li, Ming; Yin, Xiaojian; Sakata, Katsumi; Yang, Pingfang; Komatsu, Setsuko

    2015-07-02

    The early stage of seed germination is the first step in the plant life cycle without visible morphological change. To investigate the mechanism controlling the early stage of rice seed germination, we performed gel-and label-free nuclear phosphoproteomics. A total of 3467 phosphopeptides belonging to 102 nuclear phosphoproteins from rice embryos were identified. Protein-synthesis-related proteins were mainly phosphorylated. During the first 24 h following imbibition, 115 nuclear phosphoproteins were identified, and significant changes in the phosphorylation level over time were observed in 29 phosphoproteins. Cluster analysis indicated that nucleotide-binding proteins and zinc finger CCCH- and BED-type proteins increased in abundance during the first 12 h of imbibition and then decreased. The in silico protein-protein interactions for 29 nuclear phosphoproteins indicated that the Sas10/Utp3 protein, which functions in snoRNA binding and gene silencing, was the center of the phosphoprotein network in nuclei. The germination rate of seeds was significantly slowed with phosphatase inhibitor treatment. The mRNA expression of the zinc finger CCCH-type protein did not change, and the zinc finger BED-type protein was upregulated in rice embryos during the early stage of germination with phosphatase inhibitor treatment. These results suggest that the phosphorylation and dephosphorylation of nuclear proteins are involved in rice seed germination. Furthermore, transcription factors such as zinc finger CCCH- and BED-type proteins might play a key role through nuclear phosphoproteins, and Sas10/Utp3 protein might interact with nuclear phosphoproteins in rice embryos to mediate the early stage of seed germination.

  18. The proteome of exudates from germinating Lupinus albus seeds is secreted through a selective dual-step process and contains proteins involved in plant defence.

    PubMed

    Scarafoni, Alessio; Ronchi, Alessandro; Prinsi, Bhakti; Espen, Luca; Assante, Gemma; Venturini, Giovanni; Duranti, Marcello

    2013-03-01

    The general knowledge of defence activity during the first steps of seed germination is still largely incomplete. The present study focused on the proteins released in the exudates of germinating white lupin seeds. During the first 24 h, a release of proteins was observed. Initially (i.e. during the first 12 h), the proteins found in exudates reflected the composition of the seed, indicating a passive extrusion of pre-formed proteins. Subsequently, when the rate of protein release was at its highest, the composition of the released proteome changed drastically. This transition occurred in a short time, indicating that more selective and regulated events, such as secretory processes, took place soon after the onset of germination. The present study considered: (a) the characterization of the proteome accumulated in the germinating medium collected after the appearance of the post-extrusion events; (b) the biosynthetic origin and the modalities that are the basis of protein release outside the seeds; and (c) an assessment of antifungal activity of these exudates. The most represented protein in the exudate was chitinase, which was synthesized de novo. The other proteins are involved in the cellular mechanisms responding to stress events, including biotic ones. This exudate was effectively able to inhibit fungal growth. The results of the present study indicate that seed exudation is a dual-step process that leads to the secretion of selected proteins and thus is not a result of passive leakage. The released proteome is involved in protecting the spermosphere environment and thus may act as first defence against pathogens.

  19. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

    PubMed

    Guo, Baojian; Chen, Yanhong; Zhang, Guiping; Xing, Jiewen; Hu, Zhaorong; Feng, Wanjun; Yao, Yingyin; Peng, Huiru; Du, Jinkun; Zhang, Yirong; Ni, Zhongfu; Sun, Qixin

    2013-01-01

    In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.

  20. Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants

    PubMed Central

    Okekeogbu, Ikenna; Ye, Zhujia; Sangireddy, Sasikiran Reddy; Li, Hui; Bhatti, Sarabjit; Hui, Dafeng; Zhou, Suping; Howe, Kevin J.; Fish, Tara; Yang, Yong; Thannhauser, Theodore W.

    2014-01-01

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis. PMID:28250376

  1. Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery.

    PubMed

    Badowiec, Anna; Weidner, Stanisław

    2014-03-15

    Plants respond to different environmental cues in a complex way, entailing changes at the cellular and physiological levels. An important step to understand the molecular foundation of stress response in plants is the analysis of stress-responsive proteins. In this work we attempted to investigate and compare changes in the abundance of proteins in the roots of bean (Phaseolus vulgaris L.) germinating under long continuous chilling conditions (10°C, 16 days), exposed to short rapid chilling during germination (10°C, 24h), as well as subjected to recovery from stress (25°C, 24h). The results we obtained indicate that germination under continuous chilling causes alterations in the accumulation of the proteins involved in stress response, energy production, translation, vesicle transport, secondary metabolism and protein degradation. The subsequent recovery influences the accumulation of the proteins implicated in calcium-dependent signal transduction pathways, secondary metabolism and those promoting cell division and expansion. Subjecting the germinating bean seeds to short rapid chilling stress resulted in a transient changes in the relative content of the proteins taking part in energy production, DNA repair, RNA processing and translation. Short stress triggers also the mechanisms of protection against oxidative stress and promotes expression of anti-stress proteins. Subjecting bean seeds to the subsequent recovery influences the abundance of the proteins involved in energy metabolism, protection against stress and production of phytohormones. The exposure to long and short chilling did not result in the alterations of any proteins common to both treatments. The same situation was observed with respect to the recovery after stresses. Bean response to chilling is therefore strongly correlated with the manner and length of exposure to low temperature, which causes divergent proteomic alterations in the roots.

  2. Studies on the molecular mechanisms of seed germination.

    PubMed

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination.

  3. Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis.

    PubMed

    Gomes, Luciana S; Senna, Raquel; Sandim, Vanessa; Silva-Neto, Mário A C; Perales, Jonas E A; Zingali, Russolina B; Soares, Márcia R; Fialho, Eliane

    2014-02-12

    Soybeans have several functional properties due to their composition and may exert beneficial health effects that are attributed to proteins and their derivative peptides. The present study aimed to analyze the protein profiles of four new conventional soybean seeds (BRS 257, BRS 258, BRS 267, and Embrapa 48) with the use of proteomic tools. Two-dimensional (2D) and one-dimensional (1D) gel electrophoreses were performed, followed by MALDI-TOF/TOF and ESI-Q-TOF mass spectrometry analyses, respectively. These two different experimental approaches allowed the identification of 117 proteins from 1D gels and 46 differentially expressed protein spots in 2D gels. BRS 267 showed the greatest diversity of identified spots in the 2D gel analyses. In the 1D gels, the major groups were storage (25-40%) and lipid metabolism (11-25%) proteins. The differences in protein composition between cultivars could indicate functional and nutritional differences and could direct the development of new cultivars.

  4. Serine proteinases from barley malt may degrade beta-amylase

    USDA-ARS?s Scientific Manuscript database

    Barley seed proteinases are critically important to seed germination and malting in that they generate amino acids from seed N reserves, supporting embryo growth during germination and yeast fermentation during brewing. However, relatively little is known regarding the endogenous protein substrate ...

  5. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    PubMed

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  6. 21 CFR 2.25 - Grain seed treated with poisonous substances; color identification to prevent adulteration of...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... treated wheat, corn, oats, rye, barley, and sorghum seed had been mixed with untreated seed and sent to... wheat, corn, oats, rye, barley, and sorghum bearing a poisonous treatment in excess of a...

  7. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV).

    PubMed

    Cerna, Hana; Černý, Martin; Habánová, Hana; Šafářová, Dana; Abushamsiya, Kifah; Navrátil, Milan; Brzobohatý, Břetislav

    2017-02-05

    Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this

  8. Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring cry1AcF and cry2Aa Genes and Their Nontransgenic Counterparts.

    PubMed

    Mishra, Pragya; Singh, Shweta; Rathinam, Maniraj; Nandiganti, Muralimohan; Ram Kumar, Nikhil; Thangaraj, Arulprakash; Thimmegowda, Vinutha; Krishnan, Veda; Mishra, Vagish; Jain, Neha; Rai, Vandna; Pattanayak, Debasis; Sreevathsa, Rohini

    2017-02-22

    Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.

  9. Microflora of Barley Kernels1

    PubMed Central

    Follstad, M. N.; Christensen, C. M.

    1962-01-01

    Numbers and kinds of microflora were determined in 160 samples of barley grown in different regions of the United States; microflora were more abundant in the grains grown in the central states than in those grown in the western states. During steeping and germination in micromalting equipment, the number of colonies of filamentous fungi increased from two to five times, colonies of yeasts from five to ten times, and bacteria from 50 to more than 100 times the numbers present in the grain before malting. Kiln drying according to a commercial schedule reduced the number of all types of microflora below the number present before kilning, but all were present in larger numbers in the kilned malt than in the original grain. In barley stored at room temperature and at a moisture content of 15 to 18%, members of the Aspergillus glaucus group increased with increasing time and increasing moisture content, and germination percentage of the seeds decreased. Stored free of storage fungi at room temperature, barley with a moisture content just over 15% retained a high germination percentage for 5 months, but at a moisture content of 16% the germination decreased to zero. PMID:13893856

  10. Quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Cramer, Rainer

    2011-02-01

    Quantitation is an inherent requirement in comparative proteomics and there is no exception to this for plant proteomics. Quantitative proteomics has high demands on the experimental workflow, requiring a thorough design and often a complex multi-step structure. It has to include sufficient numbers of biological and technical replicates and methods that are able to facilitate a quantitative signal read-out. Quantitative plant proteomics in particular poses many additional challenges but because of the nature of plants it also offers some potential advantages. In general, analysis of plants has been less prominent in proteomics. Low protein concentration, difficulties in protein extraction, genome multiploidy, high Rubisco abundance in green tissue, and an absence of well-annotated and completed genome sequences are some of the main challenges in plant proteomics. However, the latter is now changing with several genomes emerging for model plants and crops such as potato, tomato, soybean, rice, maize and barley. This review discusses the current status in quantitative plant proteomics (MS-based and non-MS-based) and its challenges and potentials. Both relative and absolute quantitation methods in plant proteomics from DIGE to MS-based analysis after isotope labeling and label-free quantitation are described and illustrated by published studies. In particular, we describe plant-specific quantitative methods such as metabolic labeling methods that can take full advantage of plant metabolism and culture practices, and discuss other potential advantages and challenges that may arise from the unique properties of plants.

  11. Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance.

    PubMed

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna I; Jensen, Ole Nørregaard; Møller, Ian Max; Song, Song-Quan

    2014-02-07

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p < 0.05) in abundance during maturation drying in embryo and endosperm, respectively. Fewer proteins (48 and 59 in embryo and endosperm, respectively) changed in abundance during prematurely imposed drying. A number of proteins, 33 and 38 in embryo and endosperm, respectively, changed similarly in abundance during both maturation and prematurely imposed drying. Storage proteins were abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively.

  12. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera)

    PubMed Central

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development. PMID:27375629

  13. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera).

    PubMed

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development.

  14. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed.

    PubMed

    He, Dongli; Wang, Qiong; Li, Ming; Damaris, Rebecca Njeri; Yi, Xingling; Cheng, Zhongyi; Yang, Pingfang

    2016-03-04

    Regulation of rice seed germination has been shown to mainly occur at post-transcriptional levels, of which the changes on proteome status is a major one. Lysine acetylation and succinylation are two prevalent protein post-translational modifications (PTMs) involved in multiple biological processes, especially for metabolism regulation. To investigate the potential mechanism controlling metabolism regulation in rice seed germination, we performed the lysine acetylation and succinylation analyses simultaneously. Using high-accuracy nano-LC-MS/MS in combination with the enrichment of lysine acetylated or succinylated peptides from digested embryonic proteins of 24 h after imbibition (HAI) rice seed, a total of 699 acetylated sites from 389 proteins and 665 succinylated sites from 261 proteins were identified. Among these modified lysine sites, 133 sites on 78 proteins were commonly modified by two PTMs. The overlapped PTM sites were more likely to be in polar acidic/basic amino acid regions and exposed on the protein surface. Both of the acetylated and succinylated proteins cover nearly all aspects of cellular functions. Ribosome complex and glycolysis/gluconeogenesis-related proteins were significantly enriched in both acetylated and succinylated protein profiles through KEGG enrichment and protein-protein interaction network analyses. The acetyl-CoA and succinyl-CoA metabolism-related enzymes were found to be extensively modified by both modifications, implying the functional interaction between the two PTMs. This study provides a rich resource to examine the modulation of the two PTMs on the metabolism pathway and other biological processes in germinating rice seed.

  15. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts.

    PubMed

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.

  16. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    PubMed Central

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner. PMID:27242857

  17. Registration of 'Rasmusson' Barley

    USDA-ARS?s Scientific Manuscript database

    Rasmusson’ (Reg. No. CV-345, PI 658495) is a spring, six-rowed, malting barley (Hordeum vulgare L.) released by the Minnesota Agricultural Experiment Station in January 2008. It was named after Donald Rasmusson, who worked as a barley breeder at the University of Minnesota from 1958 to 2000. Rasmuss...

  18. A Comparison Of Barley Malt Amylolytic Enzyme Thermostabilities As Indicators Of Malt Sugar Concentrations

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to test the hypothesis that barley malt amylolytic enzyme thermostabilities would correlate negatively with malt sugar concentrations. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germinated in a micromalter for 6 days. At 2...

  19. A Comparison of Barley Malt Amylolytic Enzyme Activities and Malt Sugar Concentrations

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to test the hypothesis that barley malt alpha-amylase activity would correlate better with malt sugar concentrations than the activities of beta-amylase, or limit dextrinase. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germin...

  20. A Comparison of Barley Malt Amylolytic Enzyme Activities and Malt Sugar Concentrations

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to test the hypothesis that barley malt alpha-amylase activity would correlate better with malt sugar concentrations than the activities of beta-amylase, or limit dextrinase. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germi...

  1. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds

    PubMed Central

    Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M.; Song, Song-Quan

    2016-01-01

    Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation. PMID:27708655

  2. Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds.

    PubMed

    Zhang, Ying-Xue; Xu, Heng-Heng; Liu, Shu-Jun; Li, Ni; Wang, Wei-Qing; Møller, Ian M; Song, Song-Quan

    2016-01-01

    Seed aging is a process that results in a delayed germination, a decreased germination percentage, and finally a total loss of seed viability. However, the mechanism of seed aging is poorly understood. In the present study, Yliangyou 2 hybrid rice (Oryza sativa L.) seeds were artificially aged at 100% relative humidity and 40°C, and the effect of artificial aging on germination, germination time course and the change in protein profiles of embryo and endosperm was studied to understand the molecular mechanism behind seed aging. With an increasing duration of artificial aging, the germination percentage and germination rate of hybrid rice seeds decreased. By comparing the protein profiles from the seeds aged for 0, 10 and 25 days, a total of 91 and 100 protein spots were found to show a significant change of more than 2-fold (P < 0.05) in abundance, and 71 and 79 protein spots were identified, in embryos and endosperms, respectively. The great majority of these proteins increased in abundance in embryos (95%) and decreased in abundance in endosperms (99%). In embryos, most of the identified proteins were associated with energy (30%), with cell defense and rescue (28%), and with storage protein (18%). In endosperms, most of the identified proteins were involved in metabolism (37%), in energy (27%), and in protein synthesis and destination (11%). The most marked change was the increased abundance of many glycolytic enzymes together with the two fermentation enzymes pyruvate decarboxylase and alcohol dehydrogenase in the embryos during aging. We hypothesize that the decreased viability of hybrid rice seeds during artificial aging is caused by the development of hypoxic conditions in the embryos followed by ethanol accumulation.

  3. Peroxidase changes in barley induced by ionizing and thermal radiation.

    PubMed

    Sah, N K; Pramanik, S; Raychaudhuri, S S

    1996-01-01

    Thermal and ionizing (gamma-ray) radiations were used to induce damage to barley seeds (IB65). The activity and isozyme banding patterns of peroxidase were compared. It was found that both physical agents caused damage to barley seeds (as observed from seedling height), but their action on peroxidase activity is not similar. Gamma-Rays enhance peroxidase activity. Thermal radiation, on the other hand, tends to reduce it but fails to alter the number of peroxidase isozymes. It is conjectured that the pathways of damage by thermal and ionizing radiations are not the same.

  4. Proteomic analysis of anti-nutritional factors (ANF’s) in soybean seeds as affected by environmental and genetic factors

    USDA-ARS?s Scientific Manuscript database

    The genotype (G), environment (E), and the relationship between G and E on soybean seed anti-nutritional factors (ANFs) were examined under three different agro-climatic conditions. The field trials were conducted at Maryland, South Carolina, and South Dakota using nine region specific genotypes. At...

  5. Effect of aluminum treatment on proteomes of radicles of seeds derived from Al-treated tomato plants

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive A1 3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 uM AlK(SO4)2. Seeds harv...

  6. Comparing the Effect of Visceral Fat and Barley Seed Ash (Hordeum Vulgare L) With Silversulfadiazine on Burn Wound Healing in Rats

    PubMed Central

    Azadi, Mohammad; Foruozandeh, Hossein; Karami, Leila; Khodayar, Mohammad Javad; Rashidi Nooshabadi, Mohamadreza; Kalantar, Mojtaba; Gudarzi, Mehdi; Pirouzi, Aliyar

    2015-01-01

    Background: Skin burn is one of the most common complications and remains a major public health issue worldwide. Objectives: This experiment was conducted to study the effects of traditional medicine (Visceral Fat and Barely Seed Ash) compared with silversulfadiazine (SSD) cream on healing burn wounds in rats. Materials and Methods: Sixty adult male Wistar rats were randomly divided into four groups of equal numbers; each group consisted of 15 animals. After sedation, type II of skin burn with 1.5 cm diameter circle was created on the back of rats with a heated metal in boiling water. Group one was not treated and considered as control. The burned areas in the second, third and fourth groups were applied twice a day with normal saline, SSD cream and traditional preparation, respectively. Percentage of the burn wound concentration and histopathological examinations were used as parameters of our study on days 4, 9and 14. Obtained data were compared between the groups and days. Results: SSD cream and traditional preparation had better effects on burnt wound healing compared with control group. Furthermore, on the final day of study, the average percentage of wound concentration in traditional medicine group was significantly greater than other groups (P < 0.05). This finding was supported and confirmed by histological examination as well. Conclusions: Traditional preparation significantly decreased inflammation and accelerated wound healing in treated rats. Furthermore, the findings of this study can be applied clinically in the future. PMID:25866721

  7. Efficacy of imidacloprid for control of cereal leaf beetle (Coleoptera: Chrysomelidae) in barley.

    PubMed

    Tharp, C; Blodgett, S L; Johnson, G D

    2000-02-01

    The toxicity of imidacloprid to the cereal leaf beetle, Oulema melanopus (L.), was measured under laboratory and field conditions. Insect mortality and plant damage were determined from artificial and natural infestations of O. melanopus applied to various growth stages of barley. All rates of imidacloprid formulated and applied as a seed treatment caused >90% mortality to cereal leaf beetle larvae when barley was infested with eggs at the 4-leaf stage, but were ineffective when barley was infested with eggs at the early tillering or flag-leaf stages of barley. This window of susceptibility influenced results obtained in field trials where peak larval emergence did not occur until the early tillering stage of barley. The resulting mortality in plants from treated seeds never exceeded 40% in the field. Foliar imidacloprid, however, caused >90% mortality in the field, and may be another option in the management of the cereal leaf beetle.

  8. The Importance of Barley Genetics and Domestication in a Global Perspective

    PubMed Central

    Pourkheirandish, Mohammad; Komatsuda, Takao

    2007-01-01

    Background Archaeological evidence has revealed that barley (Hordeum vulgare) is one of the oldest crops used by ancient farmers. Studies of the time and place of barley domestication may help in understanding ancient human civilization. Scope The studies of domesticated genes in crops have uncovered the mechanisms which converted wild and unpromising wild species to the most important food for humans. In addition to archaeological studies, molecular studies are finding new insights into the process of domestication. Throughout the process of barley domestication human selection on wild species resulted in plants with more harvestable seeds. One of the remarkable changes during barley domestications was the appearance of six-rowed barley. The gene associated with this trait results in three times more seed per spike compared with ancestral wild barley. This increase in number of seed resulted in a major dichotomy in the evolution of barley. The identification of the six-rowed spike gene provided a framework for understanding how this character was evolved. Some important barley domestication genes have been discovered and many are currently being investigated. Conclusions Identification of domestication genes in crops revealed that most of the drastic changes during domestication are the result of functional impairments in transcription factor genes, and creation of new functions is rare. Isolation of the six-rowed spike gene revealed that this trait was domesticated more than once in the domestication history of barley. Six-rowed barley is derived from two-rowed ancestral forms. Isolation of photoperiod-response genes in barley and rice revealed that different genes belonging to similar genetic networks partially control this trait. PMID:17761690

  9. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins

    PubMed Central

    Tian, Bin; Harrison, Roland; Morton, James; Deb-Choudhury, Santanu

    2015-01-01

    Thaumatin-like proteins (TLPs) and chitinases are the main constituents of so-called protein hazes which can form in finished white wine and which is a great concern of winemakers. These soluble pathogenesis-related (PR) proteins are extracted from grape berries. However, their distribution in different grape tissues is not well documented. In this study, proteins were first separately extracted from the skin, pulp and seed of Sauvignon Blanc grapes, followed by trypsin digestion and analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Proteins identified included 75 proteins from Sauvignon Blanc grape skin, 63 from grape pulp and 35 from grape seed, mostly functionally classified as associated with metabolism and energy. Some were present exclusively in specific grape tissues; for example, proteins involved in photosynthesis were only detected in grape skin and proteins found in alcoholic fermentation were only detected in grape pulp. Moreover, proteins identified in grape seed were less diverse than those identified in grape skin and pulp. TLPs and chitinases were identified in both Sauvignon Blanc grape skin and pulp, but not in the seed. To relatively quantify the PR proteins, the protein extracts of grape tissues were seperated by HPLC first and then analysed by SDS-PAGE. The results showed that the protein fractions eluted at 9.3 min and 19.2 min under the chromatographic conditions of this study confirmed that these corresponded to TLPs and chitinases seperately. Thus, the relative quantification of TLPs and chitinases in protein extracts was carried out by comparing the area of corresponding peaks against the area of a thamautin standard. The results presented in this study clearly demonstrated the distribution of haze-forming PR proteins in grape berries, and the relative quantification of TLPs and chitinases could be applied in fast tracking of changes in PR proteins during grape growth and determination of PR

  10. A role for seed storage proteins in Arabidopsis seed longevity

    PubMed Central

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. PMID:26184996

  11. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    PubMed Central

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  12. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber.

    PubMed

    Chakraborty, Subhra; Chakraborty, Niranjan; Agrawal, Lalit; Ghosh, Sudip; Narula, Kanika; Shekhar, Shubhendu; Naik, Prakash S; Pande, P C; Chakrborti, Swarup Kumar; Datta, Asis

    2010-10-12

    Protein deficiency is the most crucial factor that affects physical growth and development and that increases morbidity and mortality especially in developing countries. Efforts have been made to improve protein quality and quantity in crop plants but with limited success. Here, we report the development of transgenic potatoes with enhanced nutritive value by tuber-specific expression of a seed protein, AmA1 (Amaranth Albumin 1), in seven genotypic backgrounds suitable for cultivation in different agro-climatic regions. Analyses of the transgenic tubers revealed up to 60% increase in total protein content. In addition, the concentrations of several essential amino acids were increased significantly in transgenic tubers, which are otherwise limited in potato. Moreover, the transgenics also exhibited enhanced photosynthetic activity with a concomitant increase in total biomass. These results are striking because this genetic manipulation also resulted in a moderate increase in tuber yield. The comparative protein profiling suggests that the proteome rebalancing might cause increased protein content in transgenic tubers. Furthermore, the data on field performance and safety evaluation indicate that the transgenic potatoes are suitable for commercial cultivation. In vitro and in vivo studies on experimental animals demonstrate that the transgenic tubers are also safe for human consumption. Altogether, these results emphasize that the expression of AmA1 is a potential strategy for the nutritional improvement of food crops.

  13. Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism.

    PubMed

    Decourcelle, Mathilde; Perez-Fons, Laura; Baulande, Sylvain; Steiger, Sabine; Couvelard, Linhdavanh; Hem, Sonia; Zhu, Changfu; Capell, Teresa; Christou, Paul; Fraser, Paul; Sandmann, Gerhard

    2015-06-01

    The aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line. In-depth analysis of the data, including changes of metabolite pools and increased enzyme and transcript concentrations, gave a first insight into the metabolic variation precipitated by the higher up-stream metabolite demand by the extended biosynthesis capacities for terpenoids and fatty acids. An integrative model is put forward to explain the metabolic regulation for the increased provision of terpenoid and fatty acid precursors, particularly glyceraldehyde 3-phosphate and pyruvate or acetyl-CoA from imported fructose and glucose. The model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway. Although pyruvate and acetyl-CoA utilization was higher in the engineered line, pyruvate kinase activity was lower. A sufficient provision of both metabolites may be supported by a by-pass in a reaction sequence involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme.

  14. Beer and wort proteomics.

    PubMed

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro

    2014-01-01

    Proteome analysis provides a way to identify proteins related to the quality traits of beer. A number of protein species in beer and wort have been identified by two-dimensional gel electrophoresis combined with enzyme digestion such as trypsin, followed by mass spectrometry analyses and/or liquid chromatography mass/mass spectrometry. In addition, low molecular weight polypeptides in beer have been identified by the combination of non-enzyme digestion and mass analyses. These data sets of various molecular weight polypeptides (i.e., proteomes) provide a platform for analyzing protein functions in beer. Several novel proteins related to beer quality traits such as foam stability and haze formation have been identified by analyzing these proteomes. Some of the proteins have been applied to the development of efficient protein or DNA markers for trait selection in malting barley breeding. In this chapter, recent proteome studies of beer and wort are reviewed, and the methods and protocols of beer and wort proteome analysis are described.

  15. Proteomic analysis of anti-nutritional factors (ANF's) in soybean seeds as affected by environmental and genetic factors.

    PubMed

    Maria John, K M; Khan, Farooq; Luthria, Davanand L; Garrett, Wesley; Natarajan, Savithiry

    2017-03-01

    The genotype (G), environment (E), and the relationship between G and E on soybean seed anti-nutritional factors (ANF's) were examined under three different agro-climatic conditions. The field trials were conducted at Maryland, South Carolina and South Dakota using nine region specific genotypes. At each location, the nine genotypes were grown with two planting/sowing dates. Differentially expressed protein spots from the two-dimensional gel electrophoresis were analyzed using mass spectrometry. Seven ANF's corresponding to soybean agglutinin and Kunitz trypsin inhibitor were identified based on the statistical significance levels at p<0.005. The G and E conditions (planting/sowing season) influences the ANF's content. This initial study suggests that early sowing reduces the total ANF's content irrespective of genotypes and their growing locations.

  16. Identification and phenotypic description of new wheat: six-rowed winter barley disomic additions.

    PubMed

    Molnár-Láng, Márta; Kruppa, Klaudia; Cseh, András; Bucsi, Julianna; Linc, Gabriella

    2012-04-01

    To increase the allelic variation in wheat-barley introgressions, new wheat-barley disomic addition lines were developed containing the 2H, 3H, 4H, 6H, and 7H chromosomes of the six-rowed Ukrainian winter barley 'Manas'. This cultivar is agronomically much better adapted to Central European environmental conditions than the two-rowed spring barley 'Betzes' previously used. A single 'Asakaze' × 'Manas' wheat × barley hybrid plant was multiplied in vitro and one backcross plant was obtained after pollinating 354 regenerant hybrids with wheat. The addition lines were selected from the self-fertilized seeds of the 16 BC(2) plants using genomic in situ hybridization. The addition lines were identified by fluorescence in situ hybridization using repetitive DNA probes (HvT01, GAA, pTa71, and Afa family), followed by confirmation with barley SSR markers. The addition lines were grown in the phytotron and in the field, and morphological parameters (plant height, fertility, tillering, and spike characteristics) were measured. The production of the disomic additions will make it possible to incorporate the DNA of six-rowed winter barley into the wheat genome. Addition lines are useful for genetic studies on the traits of six-rowed winter barley and for producing new barley dissection lines.

  17. Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases.

    PubMed

    Romero-Rodríguez, M Cristina; Pascual, Jesús; Valledor, Luis; Jorrín-Novo, Jesús

    2014-06-13

    ), as we demonstrated analyzing Quercus seeds and Pine needles. The proposed approach based on the building of a custom database is not difficult or time consuming, so we recommend its routine use when working with non-model species. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The effect of gamma irradiation on the viscosity of two barley cultivars for broiler chicks

    NASA Astrophysics Data System (ADS)

    Al-Kaisey, Mahdi T.; Mohammed, Mahmoud A.; Alwan, Abdul-Kader H.; Mohammed, Manal H.

    2002-03-01

    Seeds of two barley cultivars (Local Black and Shoaa) were gamma irradiated at 0, 10, 50, 100, 150 and 200 kGy doses using Cobalt-60 source to decrease the viscosity. The viscosity was determined in the flour of the seeds using Ostwald U-tube viscometer. The viscosity values were reduced by 25%, 50%, 65%, 72% and 74% in Local Black barley cultivar, while, in Shoaa cultivar the reductions were 15%, 30%, 52%, 69% and 67% at 10, 50, 100, 150 and 200 kGy, respectively. The chemical compositions of the seeds were determined in all treatments.

  19. Biochemistry, Structure and Function of Non-Wheat Proteins: Case Study of Barley ß-Amylase

    USDA-ARS?s Scientific Manuscript database

    The importance of a protein is not always evident and may be due to its multifunctional nature. ß-Amylase in seeds of barley (Hordeum vulgare L.) constitutes approximately 2% of the total protein in mature seeds and is assumed to be important when storage proteins are mobilized to support protein s...

  20. A comparison of barley malt amylolytic enzyme thermostabilities and wort sugars produced during mashing

    USDA-ARS?s Scientific Manuscript database

    The industrial process that converts seed starch to fermentable sugars, known as mashing, takes place at high temperatures. Barley seed is typically germinated for 4 – 6 days during the malting process during which time the enzymes that convert starch to sugars are either synthetized and/or activat...

  1. Registration of Endeavor Barley

    USDA-ARS?s Scientific Manuscript database

    ‘Endeavor’ (Reg. No. ______PI 654824); a two-rowed winter malting barley (Hordeum vulgare L.) was developed and submitted for release in 2007 by the Agricultural Research Service-USDA, Aberdeen, ID, in cooperation with the University of Idaho Agricultural Experiment Station. Endeavor is a selection...

  2. Effect of pH and recombinant barley (Hordeum vulgare L.) endoprotease B2 on degradation of proteins in soaked barley.

    PubMed

    Christensen, Jesper Bjerg; Dionisio, Giuseppe; Poulsen, Hanne Damgaard; Brinch-Pedersen, Henrik

    2014-08-27

    Nonfermented soaking of barley feedstuff has been established as an in vitro procedure prior to the feeding of pigs as it can increase protein digestibility. In the current study, two feed cultivars of barley (Finlissa and Zephyr) were soaked in vitro either nonbuffered or buffered at pH 3.6 and 4.3. Solubilized and degraded proteins evaluated by biuret, SDS-PAGE, and differential proteomics revealed that pH 4.3 had the greatest impact on both solubilization and degradation. In order to boost proteolysis, the recombinant barley endoprotease B2 (rec-HvEP-B2) was included after 8 h using the pH 4.3 regime. Proteolysis evaluated by SDS-PAGE and differential proteomics confirmed a powerful effect of adding rec-HvEP-B2 to the soaked barley, regardless of the genotype. Our study addresses the use of rec-HvEP-B2 as an effective feed enzyme protease. HvEP-B2 has the potential to increase the digestibility of protein in the pig, either supplied as recombinant additive or as possible new selection criterion in barley breeding.

  3. Comparisons of barley malt amylolytic enzyme thermostabilities to wort osmolyte concentrations, malt extract, ASBC measures of malt quality, and initial enzyme activities

    USDA-ARS?s Scientific Manuscript database

    In this study the hypothesis that wort osmolyte concentration (OC) would correlate much better than malt extract (ME) with barley amylolytic enzyme thermostabilities of malts produced over several days of germination was tested. Seeds of 4 two-row and 4 six-row North American elite barley cultivars ...

  4. Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5'-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein.

    PubMed

    Nakase, M; Hotta, H; Adachi, T; Aoki, N; Nakamura, R; Masumura, T; Tanaka, K; Matsuda, T

    1996-05-08

    A genomic clone encoding the rice endosperm major globulin (alpha-globulin) with an apparent molecular mass of 26 kDa was isolated, and its nucleotide (nt) sequence and transcription start point (tsp) were determined. The tsp was identical to that of the gene encoding the wheat high-molecular-weight (HMW) glutenin subunit. The consensus '-300 element' and an A + T-rich sequence exist upstream from the TATA box in the 5'-flanking region. A nt sequence of about 130 bp in the 5'-flanking region was found to be markedly homologous to those of the genes encoding the wheat HMW glutenin subunit and barley D hordein.

  5. A role for seed storage proteins in Arabidopsis seed longevity.

    PubMed

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-10-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Investigation of the effect of nitrogen on severity of Fusarium head blight in barley.

    PubMed

    Yang, Fen; Jensen, Jens D; Spliid, Niels Henrik; Svensson, Birte; Jacobsen, Susanne; Jørgensen, Lise Nistrup; Jørgensen, Hans J L; Collinge, David B; Finnie, Christine

    2010-02-10

    The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100kgha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly in response either to N level or Fg, whereas eighty protein spots in the water-soluble albumin fraction increased and 108 spots decreased more than two-fold in intensity in response to Fg. Spots with greater intensity in infected plants contained fungal proteins (9 spots) and proteolytic fragments of plant proteins (65 spots). Identified fungal proteins included two superoxide dismutases, L-xylulose reductase in two spots, peptidyl prolyl cis-trans isomerase and triosephosphate isomerase, and proteins of unknown function. Spots decreasing in intensity in response to Fg contained plant proteins possibly degraded by fungal proteases. Greater spot volume changes occurred in response to Fg in plants grown with low nitrogen, although proteomes of uninfected plants were similar for both treatments. Correlation of proteome changes with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that increased Fusarium infection occurred in barley with low N and suggests control of N fertilization as a possible way to minimise FHB in barley.

  7. Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway.

    PubMed

    Marsolais, Frédéric; Pajak, Agnieszka; Yin, Fuqiang; Taylor, Meghan; Gabriel, Michelle; Merino, Diana M; Ma, Vanessa; Kameka, Alexander; Vijayan, Perumal; Pham, Hai; Huang, Shangzhi; Rivoal, Jean; Bett, Kirstin; Hernández-Sebastià, Cinta; Liu, Qiang; Bertrand, Annick; Chapman, Ralph

    2010-06-16

    A deficiency in major seed storage proteins is associated with a nearly two-fold increase in sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris). Their mature seed proteome was compared by an approach combining label-free quantification by spectral counting, 2-DE, and analysis of selective extracts. Lack of phaseolin, phytohemagglutinin and arcelin was mainly compensated by increases in legumin, alpha-amylase inhibitors and mannose lectin FRIL. Along with legumin, albumin-2, defensin and albumin-1 were major contributors to the elevated sulfur amino acid content. Coordinate induction of granule-bound starch synthase I, starch synthase II-2 and starch branching enzyme were associated with minor alteration of starch composition, whereas increased levels of UDP-glucose 4-epimerase were correlated with a 30% increase in raffinose content. Induction of cell division cycle protein 48 and ubiquitin suggested enhanced ER-associated degradation. This was not associated with a classical unfolded protein response as the levels of ER HSC70-cognate binding protein were actually reduced in the mutant. Repression of rab1 GTPase was consistent with decreased traffic through the secretory pathway. Collectively, these results have implications for the nutritional quality of common bean, and provide information on the pleiotropic phenotype associated with storage protein deficiency in a dicotyledonous seed.

  8. Heterogeneity of Powdery Mildew Resistance Revealed in Accessions of the ICARDA Wild Barley Collection

    PubMed Central

    Dreiseitl, Antonin

    2017-01-01

    The primary genepool of barley comprises two subspecies – wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley H. vulgare. subsp. vulgare. The former originated 5.5 million years ago in southwest Asia and is the immediate ancestor of cultivated barley, which arose around 10,000 years ago. In this study, the specific resistance of a set of 146 wild barley accessions, maintained by the International Center for Agriculture Research in the Dry Areas (ICARDA), to 32 isolates of barley powdery mildew caused by Blumeria graminis f. sp. hordei was evaluated. The set comprised 146 heterogeneous accessions of a previously tested collection. Seed was obtained by single seed descent and each accession was usually represented by five single plant progenies. In total, 687 plant progenies were tested. There were 211 phenotypes of resistance among the accessions, 87 of which were found in single plants, while 202 plants contained the eight most common phenotypes. The most frequent phenotype was found in 56 plants that were susceptible to all pathogen isolates, whereas the second most frequent phenotype, which occurred in 46 plants, was resistant to all isolates. The broad resistance diversity that was revealed is of practical importance and is an aid to determining the extent and role of resistance in natural ecosystems. PMID:28261253

  9. Proteomics analysis in mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritive, and allergenic proteins

    USDA-ARS?s Scientific Manuscript database

    Protein profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano electrospray ionization liquid chromatography tandem mass ...

  10. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains.

    PubMed

    Holme, Inger Baeksted; Dionisio, Giuseppe; Madsen, Claus Krogh; Brinch-Pedersen, Henrik

    2017-04-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2 -generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature grains as feed to increase the release of bio-available phosphate and minerals bound to the phytate of the grains; secondly, the utilization of the powdered straw either directly or phytase extracted hereof as a supplement to high phytate feed or food; and finally, the use of the stubble to be ploughed into the soil for mobilizing phytate-bound phosphate for plant growth. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS.

    PubMed

    Colgrave, Michelle L; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A

    2016-09-16

    Consumers, especially those with allergies and/or intolerances, should have confidence in two critical areas of food safety: foods should be correctly labelled and free from contamination. To this end, global proteomic analysis employing LC-MS/MS of gluten-enriched extracts derived from 12 barley cultivars was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of barley contamination in foods. Subsequently, a number of candidate barley-specific peptide markers were evaluated by multiple-reaction monitoring MS. From an initial panel of 26, 9 peptide markers were unique to barley, yet present in a wide range of barley varieties. The analytical method was then used to examine a range of breakfast cereals and was able to detect barley in a barley-based breakfast cereal and a muesli, but additionally allowed detection of contamination of cereals that were comprised of ancient grains and in commercially-sourced flours, including amaranth, chia, buckwheat, millet, rice, corn, oats, rye, spelt and green wheat (0.01-0.08%). LC-MS/MS provides an alternative to ELISA approaches to monitor food safety and the identification of robust and sensitive cereal-specific peptide markers is the first step toward the adoption of this technology. Coeliac disease is a serious health issue affecting up to 70million people globally for which there is no cure. The only treatment is a life-long gluten-free diet. Contamination of foods can occur at many stages of food production from farm to fork. As such, accurate quantification and identification of the source (i.e. cereal) and type (e.g. gluten) of contamination is critical to the health and well-being of a subset of the population, including those affected by coeliac disease and non-coeliac gluten sensitivity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.).

    PubMed

    Gao, Feng; Rampitsch, Christof; Chitnis, Vijaya R; Humphreys, Gavin D; Jordan, Mark C; Ayele, Belay T

    2013-10-01

    Wheat seeds can be released from a dormant state by after-ripening; however, the underlying molecular mechanisms are still mostly unknown. We previously identified transcriptional programmes involved in the regulation of after-ripening-mediated seed dormancy decay in wheat (Triticum aestivum L.). Here, we show that seed dormancy maintenance and its release by dry after-ripening in wheat is associated with oxidative modification of distinct seed-stored mRNAs that mainly correspond to oxidative phosphorylation, ribosome biogenesis, nutrient reservoir and α-amylase inhibitor activities, suggesting the significance of post-transcriptional repression of these biological processes in regulating seed dormancy. We further show that after-ripening induced seed dormancy release in wheat is mediated by differential expression of specific proteins in both dry and hydrated states, including those involved in proteolysis, cellular signalling, translation and energy metabolism. Among the genes corresponding to these proteins, the expression of those encoding α-amylase/trypsin inhibitor and starch synthase appears to be regulated by mRNA oxidation. Co-expression analysis of the probesets differentially expressed and oxidized during dry after-ripening along with those corresponding to proteins differentially regulated between dormant and after-ripened seeds produced three co-expressed gene clusters containing more candidate genes potentially involved in the regulation of seed dormancy in wheat. Two of the three clusters are enriched with elements that are either abscisic acid (ABA) responsive or recognized by ABA-regulated transcription factors, indicating the association between wheat seed dormancy and ABA sensitivity.

  13. Effects of arsenate and arsenite on germination and some physiological attributes of barley Hordeum vulgare L.

    PubMed

    Sanal, Filiz; Seren, Gülay; Güner, Utku

    2014-04-01

    Arsenic (As) is toxic to plants and animals. We tested the effects of arsenite and arsenate (0-16 mg/L) on seed germination, and on relative root and shoot length, α-amylase activity, reducing sugars and soluble total protein contents, and malondialdehyde content in barley seedlings. We also measured As accumulation in barley stems and roots. The α-amylase activity, relative root and shoot length, and seed germination decreased with increasing concentrations of arsenate and arsenite. The reducing sugars content in barley seedlings increased after 4 days of growth on media containing As. In general, the protein content in roots and seedlings decreased with increasing doses of As. Arsenic in the tissues was quantified by hydride generation-atomic absorption spectrophotometry. To confirm the accuracy of the method, we analyzed the certified reference material WEPAL-IPE-168. The limit of detection was 1.2 μg/L and the relative standard deviation was <2.0 %.

  14. Assessment of Genetic Diversity among Barley Cultivars and Breeding Lines Adapted to the US Pacific Northwest, and Its Implications in Breeding Barley for Imidazolinone-Resistance

    PubMed Central

    Mejías, Jaime H.; Gemini, Richa; Brew-Appiah, Rhoda A. T.; Wen, Nuan; Osorio, Claudia; Ankrah, Nii; Murphy, Kevin M.; von Wettstein, Diter

    2014-01-01

    Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the ‘Bob’ barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the ‘Bob’ AHAS mutant. The six selected genotypes were used to make 29–53 crosses with the AHAS mutant and a range of 358–471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158–2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%–90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed. PMID

  15. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    PubMed

    Rustgi, Sachin; Matanguihan, Janet; Mejías, Jaime H; Gemini, Richa; Brew-Appiah, Rhoda A T; Wen, Nuan; Osorio, Claudia; Ankrah, Nii; Murphy, Kevin M; von Wettstein, Diter

    2014-01-01

    Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  16. Registration of ‘Lyon’, a two-row, spring feed barley

    USDA-ARS?s Scientific Manuscript database

    ‘Lyon’ (Reg. No. CV-356, PI 673045), a spring, two-row, hulled feed barley (Hordeum vulgare L.) cultivar developed and tested as 05WA-316.K, was released in 2013 by Washington State University (WSU). Lyon was derived from the cross ‘Baronesse’/‘Spaulding’ and selected through single-seed descent fro...

  17. Comparative expression analysis of hordein and beta-amylase in developing barley grains

    USDA-ARS?s Scientific Manuscript database

    Hordeins are the major seed storage proteins (SSP) in the barley grain. They account for the majority of all proteins in the mature grain. Hordeins accumulate and are stored during grain development. Their primary function is to act as nitrogen, carbon, and sulfur reserves. Beta-amylase is a starch ...

  18. Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil.

    PubMed

    Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling

    2016-07-01

    The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS).

  19. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds

    PubMed Central

    Gorim, Linda; Asch, Folkard

    2017-01-01

    Seed coating is a technology to improve germination and homogenize stand establishment. Although coating often results in lower germination rates, seeds that do germinate grow more vigorously and show strongly reduced respiratory losses during reserve mobilization. We hypothesize that the higher mobilization efficiency is due to a shift in the enzymatic cleavage of sucrose from invertase to sucrose synthase in the embryonic tissue caused by a reduced oxygen availability induced by oversaturation with water caused by the coating during early germination. We investigated the effect of coating on barley, rye, and wheat seed imbibition during the first 30 h after seeds were placed in moisture. We profiled oxygen in the embryos and measured sucrose and acid invertase levels as imbibition progressed. We found that seeds within coatings absorbed significantly more moisture than uncoated seeds. Coating resulted in near anoxic oxygen concentrations in the developing embryonic tissues in all three species. In barley, sucrose was not cleaved via the invertase pathway, despite the fact that invertase activity in coated seeds was increased. In rye and wheat, invertase activities were significantly lower in embryos from coated seeds without significantly changing the sugar composition. PMID:28538658

  20. Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds.

    PubMed

    Le Signor, Christine; Aimé, Delphine; Bordat, Amandine; Belghazi, Maya; Labas, Valérie; Gouzy, Jérôme; Young, Nevin D; Prosperi, Jean-Marie; Leprince, Olivier; Thompson, Richard D; Buitink, Julia; Burstin, Judith; Gallardo, Karine

    2017-06-01

    Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  1. Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines.

    PubMed

    Colgrave, Michelle L; Byrne, Keren; Blundell, Malcolm; Heidelberger, Sibylle; Lane, Catherine S; Tanner, Gregory J; Howitt, Crispin A

    2016-09-20

    Celiac disease (CD) is a disease of the small intestine that occurs in genetically susceptible subjects triggered by the ingestion of cereal gluten proteins for which the only treatment is strict adherence to a life-long gluten-free diet. Barley contains four gluten protein families, and the existence of barley genotypes that do not accumulate the B-, C-, and D-hordeins paved the way for the development of an ultralow gluten phenotype. Using conventional breeding strategies, three null mutations behaving as recessive alleles were combined to create a hordein triple-null barley variety. Proteomics has become an invaluable tool for characterization and quantification of the protein complement of cereal grains. In this study multiple reaction monitoring (MRM) mass spectrometry, viewed as the gold standard for peptide quantification, was compared to the data-independent acquisition strategy known as SWATH-MS (sequential window acquisition of all theoretical mass spectra). SWATH-MS was comparable (p < 0.001) to MRM-MS for 32/33 peptides assessed across the four families of hordeins (gluten) in eight barley lines. The results of SWATH-MS analysis further confirmed the absence of the B-, C-, and D-hordeins in the triple-null barley line and showed significantly reduced levels ranging from <1% to 16% relative to wild-type (WT) cv Sloop for the minor γ-hordein class. SWATH-MS represents a valuable tool for quantitative proteomics based on its ability to generate reproducible data comparable with MRM-MS, but has the added benefits of allowing reinterrogation of data to improve analytical performance, ask new questions, and in this case perform quantification of trypsin-resistant proteins (C-hordeins) through analysis of their semi- or nontryptic fragments.

  2. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  3. Hulless winter barley for ethanol production

    USDA-ARS?s Scientific Manuscript database

    Hulless barley is viable feedstock alternative to corn for ethanol production in areas where small grains are produced. The first barley-based ethanol plant in the US is currently under construction by Osage BioEnergy LLC in Hopewell, VA. New hulless winter barley varieties developed by Virginia T...

  4. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    PubMed Central

    2011-01-01

    Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed

  5. [Metabolic control of seed germination].

    PubMed

    Catusse, Julie; Strub, Jean-Marc; Job, Claudette; Van Dorsselaer, Alain; Job, Dominique

    2008-01-01

    We have used proteomics to better characterize germination and early seedling vigor in sugarbeet. Our strategy includes (1) construction of proteome reference maps for dry and germinating seeds of a high-vigor reference seed lot; (2) investigation of the specific tissue accumulation of proteins (root, cotyledon, perisperm); (3) investigation of changes in protein expression profiles detected in the reference seed lot subjected to different vigor-modifying treatments, e.g. aging and/or priming. More than 1 000 sugarbeet seed proteins have been identified by LC/MS-MS mass spectrometry (albumins, globulins and glutelins have been analyzed separately). Due to the conservation of protein sequences and the quality of MS sequencing (more than 10 000 peptide sequences have been obtained), the success rate of protein identification was on the average of 80%. This is to our knowledge the best detailed proteome analysis ever carried out in seeds. The data allowed us to build a detailed metabolic chart of the sugarbeet seed, generating new insights into the molecular mechanisms determining the development of a new seedling. Also, the proteome of a seed-storage tissue as the perisperm is described for the first time.

  6. Identification of proteins associated with ion homeostasis and salt tolerance in barley.

    PubMed

    Wu, Dezhi; Shen, Qiufang; Qiu, Long; Han, Yong; Ye, Linzheng; Jabeen, Zahra; Shu, Qingyao; Zhang, Guoping

    2014-06-01

    Identification and characterization of proteins involved in salt tolerance are imperative for revealing its genetic mechanisms. In this study, ionic and proteomic responses of a Tibetan wild barley XZ16 and a well-known salt-tolerant barley cv. CM72 were analyzed using inductively coupled plasma-optical emission spectrometer, 2DE, and MALDI-TOF/TOF MS techniques to determine salt-induced differences in element and protein profiles between the two genotypes. In total, 41 differentially expressed proteins were identified in roots and leaves, and they were associated with ion homeostasis, cell redox homeostasis, metabolic process, and photosynthesis. Under salinity stress, calmodulin, Na/K transporters, and H(+) -ATPases were involved in establishment of ion homeostasis for barley plants. Moreover, ribulose-1,5-bisphosphate carboxylase/oxygenase activase and oxygen-evolving enhancer proteins were significantly upregulated under salinity stress, indicating the great impact of salinity on photosynthesis. In comparison with CM72, XZ16 had greater relative dry weight and lower Na accumulation in the shoots under salinity stress. A higher expression of HvNHX1 in the roots, and some specific proteins responsible for ion homeostasis and cell redox homeostasis, was also found in XZ16 exposed to salt stress. The current results showed that Tibetan wild barley XZ16 and cultivated barley cultivar CM72 differ in the mechanism of salt tolerance.

  7. Proteomic analysis of kidney and protective effects of grape seed procyanidin B2 in db/db mice indicate MFG-E8 as a key molecule in the development of diabetic nephropathy.

    PubMed

    Zhang, Zhen; Li, Bao-Ying; Li, Xiao-Li; Cheng, Mei; Yu, Fei; Lu, Wei-da; Cai, Qian; Wang, Jun-Fu; Zhou, Rui-Hai; Gao, Hai-Qing; Shen, Lin

    2013-06-01

    Diabetic nephropathy, as a severe microvascular complication of diabetic mellitus, has become the leading cause of end-stage renal diseases. However, no effective therapeutic strategy has been developed to prevent renal damage progression to end stage renal disease. Hence, the present study evaluated the protective effects of grape seed procyanidin B2 (GSPB2) and explored its molecular targets underlying diabetic nephropathy by a comprehensive quantitative proteomic analysis in db/db mice. Here, we found that oral administration of GSPB2 significantly attenuated the renal dysfunction and pathological changes in db/db mice. Proteome analysis by isobaric tags for relative and absolute quantification (iTRAQ) identified 53 down-regulated and 60 up-regulated proteins after treatment with GSPB2 in db/db mice. Western blot analysis confirmed that milk fat globule EGF-8 (MFG-E8) was significantly up-regulated in diabetic kidney. MFG-E8 silencing by transfection of MFG-E8 shRNA improved renal histological lesions by inhibiting phosphorylation of extracellular signal-regulated kinase1/2 (ERK1⁄2), Akt and glycogen synthase kinase-3beta (GSK-3β) in kidneys of db/db mice. In contrast, over-expression of MFG-E8 by injection of recombinant MFG-E8 resulted in the opposite effects. GSPB2 treatment significantly decreased protein levels of MFG-E8, phospho-ERK1/2, phospho-Akt, and phospho-GSK-3β in the kidneys of db/db mice. These findings yield insights into the pathogenesis of diabetic nephropathy, revealing MFG-E8 as a new therapeutic target and indicating GSPB2 as a prospective therapy by down-regulation of MFG-E8, along with ERK1/2, Akt and GSK-3β signaling pathway.

  8. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  9. The Metabolic Signature of Biomass Formation in Barley.

    PubMed

    Ghaffari, Mohammad R; Shahinnia, Fahimeh; Usadel, Björn; Junker, Björn; Schreiber, Falk; Sreenivasulu, Nese; Hajirezaei, Mohammad R

    2016-09-01

    The network analysis of genome-wide transcriptome responses, metabolic signatures and enzymes' relationship to biomass formation has been studied in a diverse panel of 12 barley accessions during vegetative and reproductive stages. The primary metabolites and enzymes involved in central metabolism that determine the accumulation of shoot biomass at the vegetative stage of barley development are primarily being linked to sucrose accumulation and sucrose synthase activity. Interestingly, the metabolic and enzyme links which are strongly associated with biomass accumulation during reproductive stages are related to starch accumulation and tricarboxylic acid (TCA) cycle intermediates citrate, malate, trans-aconitate and isocitrate. Additional significant associations were also found for UDP glucose, ATP and the amino acids isoleucine, valine, glutamate and histidine during the reproductive stage. A network analysis resulted in a combined identification of metabolite and enzyme signatures indicative for grain weight accumulation that was correlated with the activity of ADP-glucose pyrophosphorylase (AGPase), a rate-limiting enzyme involved in starch biosynthesis, and with that of alanine amino transferase involved in the synthesis of storage proteins. We propose that the mechanism related to vegetative and reproductive biomass formation vs. seed biomass formation is being linked to distinct fluxes regulating sucrose, starch, sugars and amino acids as central resources. These distinct biomarkers can be used to engineer biomass production and grain weight in barley. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Determination of useful barley selections in an improvement program for increased lysine content by larvae of Tenebrio molitor L.

    PubMed

    Davis, G R; Sosulski, F W

    1977-12-01

    Larvae of the yellow mealworm, Tenebrio molitor L., Gembloux strain, race F, were reared for 4 weeks at 27 +/- 0.25 degrees C and 65 +/- 5% relative humidity. They were fed on each of 22 cultivars of barley, at the protein level occurring in harvested seed and at a protein level of 10% of dietary protein. Growth and body composition of the larvae were correlated positively and significantly with the concentrations of basic amino acids in the barleys and negatively and significantly with the concentrations of leucine. The percentage of crude protein in larval tissues can be used as a measure of available lysine in barley cultivars, and gains in fresh weight of larvae as indices of arginine concentrations. Differences were evident between the biological and chemical estimations of these amino acids. Several of the Saskatoon barley selections, derived from crosses with Hiproly, were equal to Hiproly or Risø varieties in the amounts of lysine available to the larvae.

  11. Exploring the Plant-Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains.

    PubMed

    Sultan, Abida; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2016-04-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC-MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment.

  12. Evaluation of the Effect of Two Volatile Organic Compounds on Barley Pathogens.

    PubMed

    Kaddes, Amine; Parisi, Olivier; Berhal, Chadi; Ben Kaab, Sofiene; Fauconnier, Marie-Laure; Nasraoui, Bouzid; Jijakli, M Haissam; Massart, Sébastien; De Clerck, Caroline

    2016-08-26

    This study aimed to determine the effect of Volatile Organic Compounds (VOCs) on some pathogens, these VOCs were emitted during interactions of barley with Fusarium culmorum Schltdl and/or Cochliobolus sativus Shoemaker, two common root rot pathogens. Our work shows that two organic esters: methyl propanoate (MP) and methyl prop-2-enoate (MA) significantly reduced the development of fungi in vitro. Additional tests showed that the esters significantly inhibited spore germination of these pathogens. The activity of these VOCs on a wide range of fungal and bacterial pathogens was also tested in vitro and showed inhibitory action. The effect of the VOCs on infected barley seeds also showed plantlets growing without disease symptoms. MA and MP seem to have potential value as alternative plant protection compounds against barley bioagressors.

  13. Comparative Systems Biology Reveals Allelic Variation Modulating Tocochromanol Profiles in Barley (Hordeum vulgare L.)

    PubMed Central

    Oliver, Rebekah E.; Islamovic, Emir; Obert, Donald E.; Wise, Mitchell L.; Herrin, Lauri L.; Hang, An; Harrison, Stephen A.; Ibrahim, Amir; Marshall, Juliet M.; Miclaus, Kelci J.; Lazo, Gerard R.; Hu, Gongshe; Jackson, Eric W.

    2014-01-01

    Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles. PMID:24820172

  14. Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching.

    PubMed

    Liller, Corinna Brit; Neuhaus, René; von Korff, Maria; Koornneef, Maarten; van Esse, Wilma

    2015-01-01

    Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore the role of genetic correlations between different yield components in small grain cereals. In this work, we studied pleiotropic effects of row type genes on seed size, seed number per spike, thousand grain weight, and tillering in barley to better understand the genetic correlations between individual yield components. Allelic mutants of nine different row type loci (36 mutants), in the original spring barley varieties Barke, Bonus and Foma and introgressed in the spring barley cultivar Bowman, were phenotyped under greenhouse and outdoor conditions. We identified two main mutant groups characterized by their relationships between seed and tillering parameters. The first group comprises all mutants with an increased number of seeds and significant change in tiller number at early development (group 1a) or reduced tillering only at full maturity (group 1b). Mutants in the second group are characterized by a reduction in seeds per spike and tiller number, thus exhibiting positive correlations between seed and tiller number. Reduced tillering at full maturity (group 1b) is likely due to resource limitations. In contrast, altered tillering at early development (groups 1a and 2) suggests that the same genes or regulatory modules affect inflorescence and shoot branching. Understanding the genetic bases of the trade-offs between these traits is important for the genetic manipulation of individual yield components.

  15. Application of Molecular Genetics and Transformation to Barley Improvement

    USDA-ARS?s Scientific Manuscript database

    This chapter of the new barley monograph summarizes current applications of molecular genetics and transformation to barley improvement. The chapter describes recent applications of molecular markers including association genetics, QTL mapping and marker assisted selection in barley programs, and in...

  16. Selection screen for novel photorespiratory mutants of barley

    SciTech Connect

    Hall, N.P.; Kendall, A.C.; Turner, J.C.; Wallsgrove R.M.; Keys, A.J.

    1987-04-01

    Selfed seed from a catalase mutant of barley (RPr 79/4) was treated with the mutagen N-nitroso-N-methyl urea, which is known to induce mutations in both chloroplast and nuclear genomes. Treated seed was grown to maturity at 0.8% CO/sub 2/, until the second leaf emerged, then plants were transferred to air under high light intensity for 5 days. Those plants which did not show the characteristic phenotype of the catalase mutant, silvering of the leaves, were selected and maintained in high CO/sub 2/. These should include plants with mutations upstream catalase (i.e. non-producers of H/sub 2/O/sub 2/); for example, those affecting glycollate oxidase, phosphoglycollate phosphatase and RuBP oxygenase, in addition to catalase revertants. Preliminary experiments showed a high (7%) frequency of pigment mutations and one plant was selected for further study.

  17. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    NASA Technical Reports Server (NTRS)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  18. [Employment of associative bacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium].

    PubMed

    Belimov, A A; Kunakova, A M; Safronova, V I; Stepanok, V V; Iudkin, L Iu; Alekseev, Iu V; Kozhemiakov, A P

    2004-01-01

    In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens 7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal-resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.

  19. Jekyll encodes a novel protein involved in the sexual reproduction of barley.

    PubMed

    Radchuk, Volodymyr; Borisjuk, Ljudmilla; Radchuk, Ruslana; Steinbiss, Hans-Henning; Rolletschek, Hardy; Broeders, Sylvia; Wobus, Ulrich

    2006-07-01

    Cereal seed development depends on the intimate interaction of filial and maternal tissues, ensuring nourishment of the new generation. The gene jekyll, which was identified in barley (Hordeum vulgare), is preferentially expressed in the nurse tissues. JEKYLL shares partial similarity with the scorpion Cn4 toxin and is toxic when ectopically expressed in Escherichia coli and tobacco (Nicotiana tabacum). In barley, jekyll is upregulated in cells destined for autolysis. The gene generates a gradient of expression in the nucellar projection, which mediates the maternal-filial interaction during seed filling. Downregulation of jekyll by the RNA interference technique in barley decelerates autolysis and cell differentiation within the nurse tissues. Flower development and seed filling are thereby extended, and the nucellar projection no longer functions as the main transport route for assimilates. A slowing down in the proliferation of endosperm nuclei and a severely impaired ability to accumulate starch in the endosperm leads to the formation of irregular and small-sized seeds at maturity. Overall, JEKYLL plays a decisive role in the differentiation of the nucellar projection and drives the programmed cell death necessary for its proper function. We further suggest that cell autolysis during the differentiation of the nucellar projection allows the optimal provision of basic nutrients for biosynthesis in endosperm and embryo.

  20. Jekyll Encodes a Novel Protein Involved in the Sexual Reproduction of Barley[W][OA

    PubMed Central

    Radchuk, Volodymyr; Borisjuk, Ljudmilla; Radchuk, Ruslana; Steinbiss, Hans-Henning; Rolletschek, Hardy; Broeders, Sylvia; Wobus, Ulrich

    2006-01-01

    Cereal seed development depends on the intimate interaction of filial and maternal tissues, ensuring nourishment of the new generation. The gene jekyll, which was identified in barley (Hordeum vulgare), is preferentially expressed in the nurse tissues. JEKYLL shares partial similarity with the scorpion Cn4 toxin and is toxic when ectopically expressed in Escherichia coli and tobacco (Nicotiana tabacum). In barley, jekyll is upregulated in cells destined for autolysis. The gene generates a gradient of expression in the nucellar projection, which mediates the maternal–filial interaction during seed filling. Downregulation of jekyll by the RNA interference technique in barley decelerates autolysis and cell differentiation within the nurse tissues. Flower development and seed filling are thereby extended, and the nucellar projection no longer functions as the main transport route for assimilates. A slowing down in the proliferation of endosperm nuclei and a severely impaired ability to accumulate starch in the endosperm leads to the formation of irregular and small-sized seeds at maturity. Overall, JEKYLL plays a decisive role in the differentiation of the nucellar projection and drives the programmed cell death necessary for its proper function. We further suggest that cell autolysis during the differentiation of the nucellar projection allows the optimal provision of basic nutrients for biosynthesis in endosperm and embryo. PMID:16766690

  1. Differential expression of two ß-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare L.) endosperm-specific (Bmy1) and ubiquitous (Bmy2) ß-amylase were studied during the late maturation phase of seed development in four genotypes. Sequencing of Bmy2 from genomic DNA revealed six polymorphisms in the introns and two synonymous SNPs in the coding region. Acc...

  2. Differential expression of two ß-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare L.) endosperm-specific (Bmy1) and ubiquitous (Bmy2) ß-amylase were studied during the late maturation phase of seed development in four genotypes. Sequencing of Bmy2 from genomic DNA revealed six polymorphisms in the introns and two synonymous SNPs in the coding region. Acc...

  3. Phenotypic, physiological and malt quality analyses of US barley varieties subjected to short periods of heat and drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought and heat are major abiotic stresses that significantly reduce crop yield and seed quality. In this study, we examined the impact of heat, drought and combined effect of heat and drought stress imposed during the grain filling stage in 18 US spring barley varieties. These impacts were assesse...

  4. Radioimmunoassay of nivalenol in barley.

    PubMed Central

    Teshima, R; Hirai, K; Sato, M; Ikebuchi, H; Ichinoe, M; Terao, T

    1990-01-01

    Antibodies against nivalenol (NIV) tetraacetate (Tetra-Ac-NIV) were prepared by immunizing rabbits with a hemisuccinate derivative of 8-hydroxy-3,4,7,15-tetraacetyl-12, 13-epoxytrichothece-9-en conjugated to bovine serum albumin. A radioimmunoassay system with one of these sera was developed to measure NIV contamination in barley. The detection limit for Tetra-Ac-NIV was about 0.5 ng/ml. The relative cross-reactivities of the antiserum with Tetra-Ac-NIV, acetyl T-2 toxin, and scirpenol triacetate, which were determined by the competitive radioimmunoassay, were 1, 0.78, and 0.56, respectively. Other derivatives showed no cross-reactivity. For the determination of NIV in a barley sample, NIV was extracted from the sample with acetonitrile-water (7:3), defatted with hexane, and then acetylated with acetic anhydride to form Tetra-Ac-NIV. The reaction mixture was loaded onto a C18 cartridge to remove excess reagents and impurities. Tetra-Ac-NIV was eluted from the cartridge with 50% methanol in water, and the eluate was subjected to radioimmunoassay. Analysis of six naturally contaminated barley samples for NIV revealed that radioimmunoassay results agreed well with gas chromatographic analyses. PMID:2317045

  5. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  6. Role of H₂O₂ in pea seed germination.

    PubMed

    Barba-Espín, Gregorio; Hernández, José Antonio; Diaz-Vivancos, Pedro

    2012-02-01

    The imbibition of pea seeds with hydrogen peroxide H₂O₂ increased the germination as well as the seedling growth, producing an invigoration of the seeds. We propose that H₂O₂ could acts as signaling molecule in the beginning of seed germination involving specific changes at proteomic, transcriptomic and hormonal levels. These findings have practical implication in the context of seed priming technologies to invigorate low vigour seeds.

  7. Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots

    PubMed Central

    2011-01-01

    Background The NAC transcription factor family is involved in the regulation of traits in both monocots and dicots of high agronomic importance. Understanding the precise functions of the NAC genes can be of utmost importance for the improvement of cereal crop plants through plant breeding. For the cereal crop plant barley (Hordeum vulgare L.) only a few NAC genes have so far been investigated. Results Through searches in publicly available barley sequence databases we have obtained a list of 48 barley NAC genes (HvNACs) with 43 of them representing full-length coding sequences. Phylogenetic comparisons to Brachypodium, rice, and Arabidopsis NAC proteins indicate that the barley NAC family includes members from all of the eight NAC subfamilies, although by comparison to these species a number of HvNACs still remains to be identified. Using qRT-PCR we investigated the expression profiles of 46 HvNACs across eight barley tissues (young flag leaf, senescing flag leaf, young ear, old ear, milk grain, late dough grain, roots, and developing stem) and two hormone treatments (abscisic acid and methyl jasmonate). Conclusions Comparisons of expression profiles of selected barley NAC genes with the published functions of closely related NAC genes from other plant species, including both monocots and dicots, suggest conserved functions in the areas of secondary cell wall biosynthesis, leaf senescence, root development, seed development, and hormone regulated stress responses. PMID:21851648

  8. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett.

    PubMed

    Yang, Fen; Jensen, Jens D; Svensson, Birte; Jørgensen, Hans J L; Collinge, David B; Finnie, Christine

    2010-11-01

    A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 days after inoculation. This coincided with the appearance of discrete F. graminearum-induced proteolytic fragments of β-amylase. Based on these results, analysis of grain proteome changes prior to extensive proteolysis enabled identification of barley proteins responding early to infection by the fungus. In total, the intensity of 51 protein spots was significantly changed in F. graminearum-infected spikelets and all but one were identified. These included pathogenesis-related proteins, proteins involved in energy metabolism, secondary metabolism and protein synthesis. A single fungal protein of unknown function was identified. Quantitative real-time RT-PCR analysis of selected genes showed a correlation between high gene expression and detection of the corresponding proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during 1-3 days after inoculation, making them candidates for generation of the observed β-amylase fragments. These fragments have potential to be developed as proteome-level markers for fungal infection that are also informative about grain protein quality.

  9. Control of stripe rust of spring barley with foliar fungicides, 2009

    USDA-ARS?s Scientific Manuscript database

    The study was conducted in a field with Palouse silt loam near Pullman, WA. Urea (46-0-0) was applied at 60 lb/A at the time of cultivation. Susceptible ‘Morex’ spring barley was seeded in rows spaced 14 in. apart at 60 lb/A (99% germination rate) with a drill planter on 30 Apr 09. Harmony Extra 0.3...

  10. Mississippi Valley Uniform Regional Barley Nursery 2014

    USDA-ARS?s Scientific Manuscript database

    This report is a cooperative venture involving state agricultural experiment stations and the Agricultural Research Service. The purpose of the nursery is to evaluate advanced barley germplasm for suitability as malting barley for the upper Midwestern U.S. Eight locations contributed useable data ...

  11. Barley and oats: underutilized nutrition sources

    USDA-ARS?s Scientific Manuscript database

    Barley and oats are two unique ancient crops. Their grains contain beta-glucan in substantial amounts, which can lower cholesterol levels and reduce glycemic response. Yet, food uses of barley and oats are rather limited due to lack of palatability of whole grain food or functionality of milled flou...

  12. Impact of carbon nanotube exposure to seeds of valuable crops.

    PubMed

    Lahiani, Mohamed H; Dervishi, Enkeleda; Chen, Jihua; Nima, Zeid; Gaume, Alain; Biris, Alexandru S; Khodakovskaya, Mariya V

    2013-08-28

    Multiwalled carbon nanotubes (MWCNTs) affected seed germination, growth, and the development of three important crops (barley, soybean, corn). Early seed germination and activation of growth in exposed seedlings was observed when MWCNTs were added to sterile agar medium. Similarly, seed germination was activated for all tested crop species when MWCNTs were deposited on seed surfaces. The ability of MWCNTs to penetrate the seed coats of corn, barley, and soybean was proven by detection of nanotube agglomerates inside MWCNT-exposed seeds using Raman spectroscopy and transmission electron microscopy (TEM). Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the expression of genes encoding several types of water channel proteins was increased in soybean, corn, and barley seeds coated with MWCNTs compared with uncoated control seeds. Our results indicate that the positive effect of MWCNTs on the germination and growth of seedlings is reproducible between crop species and can be observed for different methods of delivering carbon nanotubes. Such studies could prove the significant potential of carbon nanotubes as regulators of germination and plant growth.

  13. Calcium homeostasis in barley aleurone

    SciTech Connect

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  14. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  15. Tibet as a Potential Domestication Center of Cultivated Barley of China

    PubMed Central

    Ren, Xifeng; Nevo, Eviatar; Sun, Dongfa; Sun, Genlou

    2013-01-01

    The importance of wild barley from Qinghai-Tibet Plateau in the origin and domestication of cultivated barley has long been underestimated. Population-based phylogenetic analyses were performed to study the origin and genetic diversity of Chinese domesticated barley, and address the possibility that the Tibetan region in China was an independent center of barley domestication. Wild barley (Hordeum vulgare ssp. spontaneum) populations from Southwest Asia, Central Asia, and Tibet along with domesticated barley from China were analyzed using two nuclear genes. Our results showed that Tibetan wild barley distinctly diverged from Southwest Asian (Near East) wild barley, that Central Asian wild barley is related to Southwest Asian wild barley, and that Chinese domesticated barley shares the same haplotypes with Tibetan wild barley. Phylogenetic analysis showed a close relationship between Chinese domesticated barley and the Tibetan wild barley, suggesting that Tibetan wild barley was the ancestor of Chinese domesticated barley. Our results favor the polyphyletic origin for cultivated barley. PMID:23658764

  16. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  17. Surface interactions of Fusarium graminearum on barley.

    PubMed

    Imboden, Lori; Afton, Drew; Trail, Frances

    2017-09-21

    The filamentous fungus Fusarium graminearum, a devastating pathogen of barley (Hordeum vulgare L.), produces mycotoxins that pose a health hazard. To investigate the surface interactions of F. graminearum with barley, we focused on barley florets, as the most important infection site leading to grain contamination. The fungus interacted with silica accumulating cells (trichomes and silica/cork cell pairs) on the host surface. We identified variation in trichome-type cells between two-row and six-row barley, and in the role of specific epidermal cells in the ingress of F. graminearum into barley florets. Prickle-type trichomes functioned to trap conidia and were sites of fungal penetration. Infections of more mature florets supported the spread of hyphae into the vascular bundles, whereas younger florets did not show this spread. These differences related directly to the timing and location of increases in silica content during maturation. Focal accumulation of cellulose in infected paleae of two-row and six-row barley indicated that the response is in part linked to trichome type. Overall, silica accumulating epidermal cells had an expanded role in barley, serving to trap conidia, provide sites for fungal ingress, and initiate resistance responses, suggesting a role for silica in pathogen establishment. This article is protected by copyright. All rights reserved. © 2017 BSPP and John Wiley & Sons Ltd.

  18. A barley RFLP map: alignment of three barley maps and comparisons to Gramineae species.

    PubMed

    Sherman, J D; Fenwick, A L; Namuth, D M; Lapitan, N L

    1995-09-01

    Several gene linkage maps have been produced for cultivated barley. We have produced a new linkage map for barley, based on a cross between Hordeum vulgare subsp. spontaneum and Hordeum vulgare subsp. vulgare (Hvs x Hvv), having a higher level of polymorphism than most of the previous barley crosses used for RFLP mapping. Of 133 markers mapped in the Hvs x Hvv F2 population, 69 were previously mapped on other barley maps, and 26 were mapped in rice, maize, or wheat. Two known gene clones were mapped as well as two morphological markers. The distributions of previously mapped markers were compared with their respective barley maps to align the different maps into one consensus map. The distributions of common markers among barley, wheat, rice and maize were also compared, indicating colinear linkage groups among these species.

  19. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  20. Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system

    PubMed Central

    Samberg, Leah H; Fishman, Lila; Allendorf, Fred W

    2013-01-01

    Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796

  1. Production of early flowering transgenic barley expressing the early flowering allele of Cryptochrome2 gene.

    PubMed

    El-Assal, Salah El-Din; Abd-Alla, Samir M; El-Tarras, Adel A; El-Awady, Mohamed A

    2011-01-01

    This work was carried out in order to develop early flowering barley lines. These lines will be useful to producers by enabling multiple crops within a single season and increasing production. Transgenic barley plants containing the natural early flowering time AtCRY2 allele from the Cape Verde Island (Cvi) ecotype of Arabidopsis have been generated using biolistic transformation. Immature embryo derived calli of two commercially important barley cultivars (El-Dwaser and El-Taif), were transformed using a pCAMBIA-2300 plasmid harboring a genomic fragment containing the AtCRY2-Cvi allele. Transformation was performed utilizing 600 immature embryos for each cultivar. Stable transformation was confirmed in T 0 and T 1 plants by using genomic PCR, RT-PCR and western blot analysis with AtCRY2 specific primers and antibodies, respectively. The transformation efficiency was 5.6% and 3.4% for El-Dwaser and El-Taif cultivars, respectively. Seeds from several T 1 lines were germinated on kanamycin plates and the lines that contained a single locus were selected for further evaluation. The transformed barley plants showed the specific AtCRY2-Cvi flowering phenotype, i.e. early flowering and day length insensitivity, compared to the non transgenic plants. The time to flowering in transgenic T 1 plants was assessed and two lines exhibited flowering more than 25 days earlier than the parental cultivars under short day conditions.

  2. Flow cytometric analysis and chromosome sorting of barley (hordeum vulgare L).

    PubMed

    Lee, J H; Arumuganathan, K; Chung, Y S; Kim, K Y; Chung, W B; Bae, K S; Kim, D H; Chung, D S; Kwon, O C

    2000-12-31

    Flow cytometric analysis was systematically performed to optimize the concentration and duration of hydroxyurea (DNA synthesis inhibitor) and trifluralin (metaphase blocking reagent) treatments for synchronizing the cell cycle and accumulating metaphase chromosomes in barley root tips. A high metaphase index (76.5% in the root tip meristematic area) was routinely achieved. Seedlings of about 1.0-cm length were treated with 1.25 mM hydroxyurea for 14 h to synchronize the root tip meristem cells at the S/G2 phase. After rinsing with hydroxyurea, the seedlings were incubated in a hydroxyurea-free solution for 2 h and were treated with 1 microM trifluralin for 4 h to accumulate mitotic cells in the metaphase. The consistent high metaphase index depended on the uniform germination of seeds prior to treatment. High-quality and high-quantity isolated metaphase chromosomes were suitable for flow cytometric analysis and sorting. Flow karyotypes of barley chromosomes were established via univariate and bivariate analysis. A variation of flow karyotypes was detected among barley lines. Two single chromosome types were identified and sorted. Bivariate analysis showed no variation among barley individual chromosomes in AT and GC content.

  3. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao

    2016-02-01

    Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels.

  4. Incidence of viruses in fescue (Festuca sp.) seed production fields in the Willamette Valley in 2016

    USDA-ARS?s Scientific Manuscript database

    Tall Fescue seed production fields of Western Oregon were sampled and tested for the presence or absence of three viruses, Barley yellow dwarf virus (BYDV) -MAV and -PAV, and Cereal yellow dwarf virus (CYDV). There was no BYDV-MAV detected in any of the Fescue seed fields. The BYDV-PAV occurred in ...

  5. Proteome | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A proteome is the entire complement of proteins, including modifications made to a particular set of proteins, produced by an organism or a cellular system. This will vary with time and distinct requirements such as growth conditions and stresses, and thus is highly dynamic and spatial. Proteomics is the study of the proteome.

  6. Barley β-glucan in poultry diets

    PubMed Central

    Pescatore, Anthony J.

    2014-01-01

    There has been an increased interest in the use of immunomodulators as substitutes for antibiotics in food animal production. Beta-glucans from yeast and fungi may be ideal substitutes because of their positive effects on the avian immune system without adversely affecting poultry performance. Barley β-glucans, however, have not shown this potential due to the adverse effects dietary inclusion of barley has on poultry performance. PMID:25332996

  7. Purification and partial characterization of a 31-kDa cysteine endopeptidase from germinated barley.

    PubMed

    Zhang, N; Jones, B L

    1996-01-01

    Proteolytic enzymes hydrolyze cereal seed storage proteins into small peptides and amino acids, which are very important for seed germination and the malting process. A cysteine-class endopeptidase was purified from 4-d-germinated barley (Hordeum vulgare L. cv. Morex). Four purification steps were used, carboxymethyl cellulose cation-exchange chromatography, chromatofocusing, size-exclusion chromatography, and electroelution from a polyacrylamide gel. The endopeptidase was most active at pH 4.5. It's isoelectric point (pI) was 4.4, as determined by isoelectric focusing, and it's SDS-PAGE molecular size was 31 kDa. The enzyme specifically hydrolyzed peptide bonds when the S2 site contained relatively large hydrophobic amino acids. The N-terminal amino acid sequence residues (1-9) of the 31-kDa endopeptidase had high homology to those of the EP-A and EP-B cysteine proteinases reported previously. The 31-kDa endopeptidase had a hydrolytic specificity similar to that of the Morex green malt 30-kDa endopeptidase we characterized previously, and also reacted with the antibody raised against the purified 30-kDa proteinase, but the two had different mobilities on non-denaturing PAGE. The hydrolytic specificities of both 30- and 31-kDa endopeptidases are such that both would very quickly cleave hordein (barley storage) proteins to small glutamine- and proline-rich peptides that could be quickly degraded to amino acids by barley exopeptidases.

  8. The effect of application of micromycetes on plant growth, as well as soybean and barley yields.

    PubMed

    Ignatova, Lyudmila; Brazhnikova, Yelena; Berzhanova, Ramza; Mukasheva, Togzhan

    2015-01-01

    The possibility of application of micromycetes (strains Penicillium bilaiae Pb14, Aureobasidium pullulans YA05 and Rhodotorula mucilaginosa YR07) to increase yields of soybean (Glycine max cv Almaty) and barley (Hordeum vulgare cv Arna) was estimated. It was shown that the most positive effect on germination energy and seed germination after seed treatment with liquid culture, supernatant and filtrate, is achieved at 1:5 dilution. In studying the influence of cell-associated and extracellular biologically active compounds of micromycetes (liquid culture and supernatant) on biometric parameters of seedlings, the maximum stimulating effect was observed in the variants with liquid culture. These strains of micromycetes were used as a bases for various compositions of preparations - application of each strain separately and application of micromycetes mixes. In microfield experiments, the increase of soybean yield ranged from 4.5 to 9.4 quintal/ha, barley - from 2.9 to 5.9 quintal/ha. A significant increase in various parameters of structure of the yield was shown in all experimental variants when compared to the control. It was found that an increase in soybean and barley yields and yield components was higher in the variant with a mix of micromycetes when compared to the separate application of each strain. The most efficient mixture was based on the mix of fungal strains (culture filtrate of P. bilaiae Pb14 diluted 1:5 + liquid cultures of A. pullulans YA05 and Rh. mucilaginosa YR07 in a 1:5 dilution).

  9. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    PubMed

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (p<0.01) was correlated with 1) temperature increases, 2) to the hotter 'African' slope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants.

  10. Lunasin in cereal seeds: What is the origin?

    PubMed Central

    Mitchell, Rowan A.C.; Lovegrove, Alison; Shewry, Peter R.

    2013-01-01

    Lunasin is a peptide from soybean seeds which has been demonstrated to have anticancer properties. It has also been reported in cereal seeds: wheat, rye, barley and Triticale. However, extensive searches of transcriptome and DNA sequence databases for wheat and other cereals have failed to identify sequences encoding either the lunasin peptide or a precursor protein. This raises the question of the origin of the lunasin reported in cereal grain. PMID:24817784

  11. Lunasin in cereal seeds: What is the origin?

    PubMed

    Mitchell, Rowan A C; Lovegrove, Alison; Shewry, Peter R

    2013-05-01

    Lunasin is a peptide from soybean seeds which has been demonstrated to have anticancer properties. It has also been reported in cereal seeds: wheat, rye, barley and Triticale. However, extensive searches of transcriptome and DNA sequence databases for wheat and other cereals have failed to identify sequences encoding either the lunasin peptide or a precursor protein. This raises the question of the origin of the lunasin reported in cereal grain.

  12. Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation.

    PubMed

    Oikawa, Ai; Rahman, Abidur; Yamashita, Tetsuro; Taira, Hideharu; Kidou, Shin-Ichiro

    2007-01-01

    P23k is a monocot-unique protein that is highly expressed in the scutellum of germinating barley seed. Previous expression analyses suggested that P23k is involved in sugar translocation and/or sugar metabolism. However, the role of P23k in barley physiology remains unclear. Here, to elucidate its physiological function, BSMV-based virus-induced gene silencing (VIGS) of P23k in barley leaves was performed. Expression and localization analyses of P23k mRNA in barley leaves showed up-regulation of P23k transcript with increased photosynthetic activity and the localization of these transcripts to the vascular bundles and sclerenchyma, where secondary wall formation is most active. VIGS of the P23k gene led to abnormal leaf development, asymmetric orientation of main veins, and cracked leaf edges caused by mechanical weakness. In addition, histochemical analyses indicated that the distribution of P23k in leaves coincides with the distribution of cell wall polysaccharides. Considering these results together, it is proposed that P23k is involved in the synthesis of cell wall polysaccharides and contributes to secondary wall formation in barley leaves.

  13. Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley.

    PubMed

    Zeng, Jianbin; He, Xiaoyan; Quan, Xiaoyan; Cai, Shengguan; Han, Yong; Nadira, Umme Aktari; Zhang, Guoping

    2015-08-03

    In previous studies, we found Tibetan wild barley accessions with high tolerance to low K. In this study, ionomics and proteomics analyses were done on two wild genotypes (XZ153, tolerant and XZ141, sensitive), and a cultivar (B1031, tolerance to low K) to understand the mechanism of low-K tolerance. XZ153 was much less affected by low K stress than the other two genotypes in plant biomass and shoot K content. A total of 288 differentially accumulated proteins were identified between low-K and normal K treated plants. Among them, 129 proteins related to low-K tolerance were mainly involved in defense, transcription, signal transduction, energy, and protein synthesis. The analysis of tandem mass tag (TMT) detected 51 proteins which were increased in relative abundance under low K in XZ153, but unaltered or decreased in XZ141. The proteomics results showed that XZ153 is highly capable of rearranging ion homeostasis and developing an antioxidant defense system under low-K stress. Moreover, ethylene response and phenylpropanoid pathways could determine the genotypic difference in low-K tolerance. The current results confirmed the possibility of Tibetan wild barley providing low-K tolerant germplasm and identified some candidate proteins for use in developing the cultivars with low-K tolerance.

  14. Sub-cellular proteomics of Medicago truncatula

    PubMed Central

    Lee, Jeonghoon; Lei, Zhentian; Watson, Bonnie S.; Sumner, Lloyd W.

    2013-01-01

    Medicago truncatula is a leading model species and substantial molecular, genetic, genomics, proteomics, and metabolomics resources have been developed for this species to facilitate the study of legume biology. Currently, over 60 proteomics studies of M. truncatula have been published. Many of these have focused upon the unique symbiosis formed between legumes and nitrogen fixing rhizobia bacteria, while others have focused on seed development and the specialized proteomes of distinct tissues/organs. These include the characterization of sub-cellular organelle proteomes such as nuclei and mitochondria, as well as proteins distributed in plasma or microsomal membranes from various tissues. The isolation of sub-cellular proteins typically requires a series of steps that are labor-intensive. Thus, efficient protocols for sub-cellular fractionation, purification, and enrichment are necessary for each cellular compartment. In addition, protein extraction, solubilization, separation, and digestion prior to mass spectral identification are important to enhance the detection of low abundance proteins and to increase the overall detectable proportion of the sub-cellular proteome. This review summarizes the sub-cellular proteomics studies in M. truncatula. PMID:23641248

  15. Drought acclimation in wild and cultivated barley lines. [Hordeum spontaneum; Hordeum vulgare

    SciTech Connect

    Glinka, Z. ); Gunasekera, D.; Mane, S.; Berkowitz, G. )

    1991-05-01

    Wild barley (Hordeum spontaneum) seeds collected from arid and temperate regions in Israel were used, along with cultivated barley (H. vulgare) in a study to evaluate the range of acclimation responses to low leaf water potential ({Psi}w). Stress was imposed on plants by withholding water until {Psi}w was {minus}2 megapascals (MPa). Protoplast volume (PV) was measured at {minus}0.2 and {minus}2 MPa (imposed in vitro) in leaf tissue from well-watered and stressed plants. In well-watered plants, PV declined at {minus}2, as compared to {minus}0.2 MPa in all lines. With tissue from in situ stressed plants, PV reduction at {minus}2 MPa was not as great in some lines. The change in the extent of PV reduction occurring at {minus}2 MPa was used as an index of drought acclimation. The 13 wild barley lines were separated into high, medium, and low acclimation groups. Lines collected from arid regions scored in the high acclimation group. The cultivated barley lines scored in the medium and low groups. Relative water content decline at low leaf {Psi}w in situ was not a good indicator of acclimation; all lines responded similarly. Photosynthesis in situ was measured at high and low leaf {Psi}w in lines from the three groupings. Photosynthetic sensitivity to low {Psi}w was twice as great in low acclimation, as compared to high acclimation lines. It was concluded that PV response to low {Psi}w is a good indicator of drought acclimation in barley, and that wild lines offer a range of acclimation potential which could be used in breeding programs.

  16. Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging.

    PubMed

    Fast Seefeldt, Helene; van den Berg, Frans; Köckenberger, Walter; Engelsen, Søren Balling; Wollenweber, Bernd

    2007-04-01

    (1)H NMR imaging (MRI) was used as a noninvasive technique to study water distribution and mobility in hydrated barley (Hordeum vulgare L.) seeds of accessions with varying content of beta glucan (BG), a highly hygroscopic cell wall component. High contents of BG in barley are unfavorable in malting where it leads to clotting of filters and hazing of beer as well as in animal feed where it hinders the rapid uptake of energy. However, a high content of BG has a positive nutritional effect, as it lowers the cholesterol and the glycaemic index. It was studied whether water distribution and mobility were related to content and location of BG. Water mobility was investigated by following the rate and mode of desiccation in hydrated single seeds. In order to determine the different water components, a multispin echo experiment was set up to reveal the T(2) transverse relaxation rates of water within the seeds. A principal component analysis (PCA) discriminated control seeds from the high-BG mutant seeds. MRI proved efficient in tracing the differences in water-holding capacity of contrasting barley seeds. All accessions showed nonuniform distribution of water at full hydration as well as during desiccation. The embryo retained water even after 36 h of drying, whereas the endosperm showed low and heterogeneous mobility of the water after drying. The relaxation time constants indicated that the BG mutants had regions of much higher water mobility around the ventral crease compared to the control. It is concluded that MRI can be applied to investigate temporal and spatial differences in the location of specific chemical compounds in single seeds.

  17. Synergistic Enhancement of the Antifungal Activity of Wheat and Barley Thionins by Radish and Oilseed Rape 2S Albumins and by Barley Trypsin Inhibitors.

    PubMed Central

    Terras, FRG.; Schoofs, HME.; Thevissen, K.; Osborn, R. W.; Vanderleyden, J.; Cammue, BPA.; Broekaert, W. F.

    1993-01-01

    Although thionins and 2S albumins are generally considered as storage proteins, both classes of seed proteins are known to inhibit the growth of pathogenic fungi. We have now found that the wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) thionin concentration required for 50% inhibition of fungal growth is lowered 2- to 73-fold when combined with 2S albumins (at sub- or noninhibitory concentrations) from radish (Raphanus sativus L.) or oilseed rape (Brassica napus L.). Furthermore, the thionin antifungal activity is synergistically enhanced (2- to 33-fold) by either the small subunit or the large subunit of the radish 2S albumins. Three other 2S albumin-like proteins, the barley trypsin inhibitor and two barley Bowman-Birk-type trypsin inhibitor isoforms, also act synergistically with the thionins (2- to 55-fold). The synergistic activity of thionins combined with 2S albumins is restricted to filamentous fungi and to some Gram-positive bacteria, whereas Gram-negative bacteria, yeast, cultured human cells, and erythrocytes do not show an increased sensitivity to thionin/albumin combinations (relative to the sensitivity to the thionins alone). Scanning electron microscopy and measurement of K+ leakage from fungal hyphae revealed that 2S albumins have the same mode of action as thionins, namely the permeabilization of the hyphal plasmalemma. Moreover, 2S albumins and thionins act synergistically in their ability to permeabilize fungal membranes. PMID:12232024

  18. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  19. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  20. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  1. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  2. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... barley and Six-rowed Blue Malting barley. 810.204 Section 810.204 Agriculture Regulations of the... Standards for Barley Principles Governing the Application of Standards § 810.204 Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley. Grade Minimum limits of—...

  3. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    PubMed

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  4. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  5. Proteomics, peptidomics, and immunogenic potential of wheat beer (Weissbier).

    PubMed

    Picariello, Gianluca; Mamone, Gianfranco; Cutignano, Adele; Fontana, Angelo; Zurlo, Lucia; Addeo, Francesco; Ferranti, Pasquale

    2015-04-08

    Wheat beer is a traditional light-colored top-fermenting beer brewed with at least 50% malted (e.g., German Weissbier) or unmalted (e.g., Belgian Witbier) wheat (Triticum aestivum) as an adjunct to barley (Hordeum vulgare) malt. For the first time, we explored the proteome of three Weissbier samples, using both 2D electrophoresis (2DE)-based and 2DE-free strategies. Overall, 58 different gene products arising from barley, wheat, and yeast (Saccharomyces spp.) were identified in the protein fraction of a representative Weissbier sample analyzed in detail. Analogous to all-barley-malt beers (BMB), barley and wheat Z-type serpins and nonspecific lipid transfer proteins dominated the proteome of Weissbier. Several α-amylase/trypsin inhibitors also survived the harsh brewing conditions. During brewing, hundreds of peptides are released into beer. By liquid chromatography-electrospray tandem mass spectrometry (LC-ESI MS/MS) analysis, we characterized 167 peptides belonging to 44 proteins, including gliadins, hordeins, and high- and low-molecular-weight glutenin subunits. Because of the interference from the overabundant yeast-derived peptides, we identified only a limited number of epitopes potentially triggering celiac disease. However, Weissbier samples contained 374, 372, and 382 ppm gliadin-equivalent peptides, as determined with the competitive G12 ELISA, which is roughly 10-fold higher than a lager BMB (41 ppm), thereby confirming that Weissbier is unsuited for celiacs. Western blot analysis demonstrated that Weissbier also contained large-sized prolamins immunoresponsive to antigliadin IgA antibodies from the pooled sera of celiac patients (n = 4).

  6. Regulated Expression of Three Alcohol Dehydrogenase Genes in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.; Zwar, John A.

    1984-01-01

    Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity. Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2. In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly. Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2. We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and

  7. Sprouted barley for dairy cows: Nutritional composition and digestibility

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  8. Dual aphid resistance in hulless winter barley for ethanol production

    USDA-ARS?s Scientific Manuscript database

    Hulless barley is viable feedstock alternative to corn for ethanol production in areas where small grains are produced. The first barley-based ethanol plant in the US is currently under construction by Osage BioEnergy LLC in Hopewell, VA. New hulless winter barley varieties developed by Virginia T...

  9. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  10. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  11. 7 CFR 457.118 - Malting barley crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Malting barley crop insurance. 457.118 Section 457.118..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.118 Malting barley crop insurance. The malting barley crop insurance provisions for the 1996 and succeeding crop years are as follows:...

  12. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  13. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  14. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  15. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  16. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  17. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  18. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  19. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  20. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  1. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  2. Proteomic patterns associated with heterosis.

    PubMed

    Xing, Jiewen; Sun, Qixin; Ni, Zhongfu

    2016-08-01

    Heterosis is characterized by higher seed yields, plant biomass or other traits in heterozygotes or hybrids compared with their genetically divergent parents, which are often homozygous. Despite extensive investigation of heterosis and its wide application in crops such as maize, rice, wheat and sorghum, its molecular basis is still enigmatic. In the past century, some pioneers have proposed multigene models referring to the complementation of allelic and gene expression variation, which is likely to be an important contributor to heterosis. In addition, there are potential interactions of epigenetic variation involved in heterosis via novel mechanisms. At the level of gene expression, many recent studies have revealed that the heterosis phenomenon can be deciphered not only at the transcriptional level but also at the proteomic level. This review presents an update on the information supporting the involvement of proteomic patterns in heterosis and a possible future direction of the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  3. Seed Germination

    USDA-ARS?s Scientific Manuscript database

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  4. Barley germplasm conservation and resources. Chapter 7 in barley: improvement, production, and uses. Blackwell Publishing, ED.S.E. Ullrich

    USDA-ARS?s Scientific Manuscript database

    The history and current status of barley germplasm preservation activities is presented on a global scale and specifically for the United States. Total of barley germplasm holdings at 47 major barley collections (those with more than 500 accessions) worldwide is approximately 402,000 accessions. I...

  5. Developing a Molecular Identification Assay of Old Landraces for the Genetic Authentication of Typical Agro-Food Products: The Case Study of the Barley ‘Agordino’

    PubMed Central

    Palumbo, Fabio; Galla, Giulio

    2017-01-01

    Summary The orzo Agordino is a very old local variety of domesticated barley (Hordeum vulgare ssp. distichum L.) that is native to the Agordo District, Province of Belluno, and is widespread in the Veneto Region, Italy. Seeds of this landrace are widely used for the preparation of very famous dishes of the dolomitic culinary tradition such as barley soup, bakery products and local beer. Understanding the genetic diversity and identity of the Agordino barley landrace is a key step to establish conservation and valorisation strategies of this local variety and also to provide molecular traceability tools useful to ascertain the authenticity of its derivatives. The gene pool of the Agordino barley landrace was reconstructed using 60 phenotypically representative individual plants and its genotypic relationships with commercial varieties were investigated using 21 pure lines widely cultivated in the Veneto Region. For genomic DNA analysis, following an initial screening of 14 mapped microsatellite (SSR) loci, seven discriminant markers were selected on the basis of their genomic position across linkage groups and polymorphic marker alleles per locus. The genetic identity of the local barley landrace was determined by analysing all SSR markers in a single multi-locus PCR assay. Extent of genotypic variation within the Agordino barley landrace and the genotypic differentiation between the landrace individuals and the commercial varieties was determined. Then, as few as four highly informative SSR loci were selected and used to develop a molecular traceability system exploitable to verify the genetic authenticity of food products deriving from the Agordino landrace. This genetic authentication assay was validated using both DNA pools from individual Agordino barley plants and DNA samples from Agordino barley food products. On the whole, our data support the usefulness and robustness of this DNA-based diagnostic tool for the orzo Agordino identification, which could be

  6. Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley.

    PubMed

    Centeno, C; Viveros, A; Brenes, A; Canales, R; Lozano, A; de la Cuadra, C

    2001-07-01

    Two assays were conducted to study the evolution of rye and barley phosphatases (phytase and acid phosphatase) and the degradation of its substrates (inositol phosphate esters) during seed germination. In this manner we could obtain a low-phytate, endogenous phosphatase rich ingredient to be used in animal nutrition. In the first assay, the seeds were soaked for 1 and 14 h and germinated for 3 and 5 days with and without the addition of gibberellic acid (GA3). In the second assay, the seeds were soaked for 1 h and germinated for 1, 3, and 5 days with GA3. Phytase (up to 5739 and 3151 U x kg(-1)) and acid phosphatase (up to 18288 and 3151 U x g(-1)) activities, and IP6 (6.09 and 6.01 mg x g(-1)), IP5 (0.48 and 0.48 mg x g(-1)), and IP4 (0.13 and 0.06 mg x g(-1)) were detected in ungerminated rye and barley, respectively. The germination process caused a significant increase of Phy and AcPh activities in rye (up to 112 and 213%) and barley (up to 212 and 634%) and a reduction in the phytate phosphorus content (up to 84 and 58%, respectively). Phytate phosphorus content was affected only by soaking time in the case of rye. Finally, during the course of germination, IP6 and IP5 were rapidly degraded in rye (88 and 79%) and barley (67 and 52%), and IP4 was only a short-living intermediate, which was increased during hydrolysis and degraded to IP3. In conclusion, a marked increase of Phy and AcPh activities in rye and barley with a concomitant decrease in phytate phosphorus content and an increase in the content of lower inositol phosphates were observed during the rye and barley germination.

  7. Barley (Hordeum vulgare) in the Okhotsk culture (5th-10th century AD) of northern Japan and the role of cultivated plants in hunter-gatherer economies.

    PubMed

    Leipe, Christian; Sergusheva, Elena A; Müller, Stefanie; Spengler, Robert N; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W; Tarasov, Pavel E

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440-890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter-gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early-Middle Satsumon culture sites. This supports earlier suggestions that the "Satsumon type" barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the "Okhotsk type" spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley domains possibly

  8. Barley (Hordeum vulgare) in the Okhotsk culture (5th–10th century AD) of northern Japan and the role of cultivated plants in hunter–gatherer economies

    PubMed Central

    Sergusheva, Elena A.; Müller, Stefanie; Spengler, Robert N.; Goslar, Tomasz; Kato, Hirofumi; Wagner, Mayke; Weber, Andrzej W.; Tarasov, Pavel E.

    2017-01-01

    This paper discusses archaeobotanical remains of naked barley recovered from the Okhotsk cultural layers of the Hamanaka 2 archaeological site on Rebun Island, northern Japan. Calibrated ages (68% confidence interval) of the directly dated barley remains suggest that the crop was used at the site ca. 440–890 cal yr AD. Together with the finds from the Oumu site (north-eastern Hokkaido Island), the recovered seed assemblage marks the oldest well-documented evidence for the use of barley in the Hokkaido Region. The archaeobotanical data together with the results of a detailed pollen analysis of contemporaneous sediment layers from the bottom of nearby Lake Kushu point to low-level food production, including cultivation of barley and possible management of wild plants that complemented a wide range of foods derived from hunting, fishing, and gathering. This qualifies the people of the Okhotsk culture as one element of the long-term and spatially broader Holocene hunter–gatherer cultural complex (including also Jomon, Epi-Jomon, Satsumon, and Ainu cultures) of the Japanese archipelago, which may be placed somewhere between the traditionally accepted boundaries between foraging and agriculture. To our knowledge, the archaeobotanical assemblages from the Hokkaido Okhotsk culture sites highlight the north-eastern limit of prehistoric barley dispersal. Seed morphological characteristics identify two different barley phenotypes in the Hokkaido Region. One compact type (naked barley) associated with the Okhotsk culture and a less compact type (hulled barley) associated with Early–Middle Satsumon culture sites. This supports earlier suggestions that the “Satsumon type” barley was likely propagated by the expansion of the Yayoi culture via south-western Japan, while the “Okhotsk type” spread from the continental Russian Far East region, across the Sea of Japan. After the two phenotypes were independently introduced to Hokkaido, the boundary between both barley

  9. Expression of Nudix hydrolase genes in barley under UV irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  10. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  11. Assessing potential exposure of birds to pesticide-treated seeds.

    PubMed

    Prosser, Phil; Hart, A D M

    2005-10-01

    Seed treatments are widely used for crop protection and present a particular risk to granivorous birds. UK risk assessment for seed treatments has tended to focus on highly granivorous species; however, under some conditions, non-granivorous birds will take seeds. Better data is needed on which species eat seeds for which pesticide treatments are used. To identify which species will take and eat a range of crop seeds in common usage in the UK, birds visiting bait stations at which untreated seed was presented were video recorded. Information was also obtained on how much seed is taken by individual birds. The seeds tested were wheat, barley, maize, oilseed rape, grass, peas and pelleted sugar beet. For many of the species observed at the bait stations, the amounts of seed consumed during single visits were sufficient to pose a potential risk (toxicity-exposure ratio < 10) if the seed had been treated with one of the more acutely toxic seed treatments. Previous studies have shown that de-husking of seeds can substantially reduce birds' exposure. This paper provides information on which of the species recorded de-husked which seeds, in field conditions. The use of these data in pesticide risk assessment is considered.

  12. Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet.

    PubMed

    Yin, Y Q; Ma, D Q; Ding, Y

    2003-09-01

    We analyzed genetic diversity in the storage protein hordein encoded at Hor-1, Hor-2 and Hor-3 loci in seeds from 211 accessions of wild close relatives of barley, Hordeum vulgare ssp. agriocrithon and H. vulgare ssp. spontaneum. Altogether 32, 27 and 13 different phenotypes were found for Hor-1, Hor-2 and Hor-3, respectively. A comparison of our results with those of previous studies indicates that Tibetan samples reflect the highest diverse level of hordein phenotypes when compared to samples from Israel and Jordan. This high degree of polymorphism supports the hypothesis that Tibet is one of the original centers of H. vulgare L.

  13. Regulation of hordein synthesis in barley high lysine mutant Notch-2.

    PubMed

    Tyagi, A; Santha, I M; Mehta, S L

    1992-02-01

    Genomic DNA isolated from barley cv. NP 113 and its high lysine mutant Notch-2, and restricted with different restriction enzymes was hybridized with B1 and C-hordein DNA probes. Similar Southern hybridization patterns were observed between NP 113 and Notch-2. Dot blot hybridization analysis of RNA isolated at different developmental stages and from different tissues of seed showed temporal as well as tissue specific expression. The results obtained indicate that regulation at the level of transcription/post transcription may be responsible for lower accumulation of hordein in mutant Notch-2.

  14. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques

    PubMed Central

    Schöneberg, Torsten; Martin, Charlotte; Wettstein, Felix E.; Bucheli, Thomas D.; Mascher, Fabio; Bertossa, Mario; Musa, Tomke; Keller, Beat; Vogelgsang, Susanne

    2016-01-01

    ABSTRACT Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination. PMID:27491813

  15. Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.)*

    PubMed Central

    Han, Yong; Jin, Xiao-li; Wu, Fei-bo; Zhang, Guo-ping

    2011-01-01

    An efficient induction system and regeneration protocol based on mature barley embryos were developed. Embryos isolated from mature seeds, dehusked by hand and inoculated with longitudinally bisected sections, showed low contamination and high primary callus-forming capability. The influences of nine culture media on primary callus induction and germination from the mature embryos of barley cultivars Golden Promise and Zaoshu 3 were analyzed. The results showed that the two cultivars had much higher values of primary callus induction in the B16M6D medium as compared to the other eight medium formulations, with a frequency of 74.3% and 78.4% for Golden Promise and Zaoshu 3, respectively. Furthermore, Zaoshu 3 demonstrated particularly high stability in callus induction over the different media, indicating its potential utilization in callus induction and regeneration for its good agronomic traits and wide adaption. There were significant differences amongst 11 barley genotypes in terms of primary callus induction in the optimum medium, with percentages of callus induction and germination response ranging from 17.9% to 78.4% and 2.8% to 47.4%, respectively. Green plantlets of Dong 17, Golden Promise, and Zaoshu 3 were successfully developed from primary calli through embryogenesis, with green plant differentiation frequencies ranging from 9.7% to 21.0% across genotypes. PMID:21528495

  16. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.

    PubMed

    Sreenivasulu, Nese; Usadel, Björn; Winter, Andreas; Radchuk, Volodymyr; Scholz, Uwe; Stein, Nils; Weschke, Winfriede; Strickert, Marc; Close, Timothy J; Stitt, Mark; Graner, Andreas; Wobus, Ulrich

    2008-04-01

    Plant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley (Hordeum vulgare) grain maturation, desiccation, and germination in two tissue fractions (starchy endosperm/aleurone and embryo/scutellum) using the Affymetrix Barley1 GeneChip. To aid data evaluation, Arabidopsis thaliana MapMan and PageMan tools were adapted to barley. The analyses allow a number of conclusions: (1) Cluster analysis revealed a smooth transition in transcription programs between late seed maturation and germination within embryo tissues, but not in the endosperm/aleurone. (2) More than 12,000 transcripts are stored in the embryo of dry barley grains, many of which are presumably activated during germination. (3) Transcriptional activation of storage reserve mobilization events occurs at an early stage of germination, well before radicle protrusion. (4) Key genes of gibberellin (GA) biosynthesis are already active during grain maturation at a time when abscisic acid peaks suggesting the formation of an endogenous store of GA in the aleurone. This GA probably acts later during germination in addition to newly synthesized GA. (5) Beside the well-known role of GA in gene activation during germination spatiotemporal expression data and cis-element searches in homologous rice promoters confirm an equally important gene-activating role of abscisic acid during this developmental period. The respective regulatory webs are linked to auxin and ethylene controlled networks. In summary, new bioinformatics PageMan and MapMan tools developed in barley have been successfully used to investigate in detail the transcriptome relationships between seed maturation and germination in an important crop plant.

  17. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    USDA-ARS?s Scientific Manuscript database

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  18. Rheological properties of barley and flaxseed composites

    USDA-ARS?s Scientific Manuscript database

    Prowashonupana, a barley variety with high ß-glucan content, was dry blended with flaxseed at 10, 20, and 50% for improving nutritional, physical, and functional qualities. Flaxseed is rich in omega-3 polyunsaturated fatty acids (omega-3 PUFAs) that is known for lowering blood cholesterol and preve...

  19. Current and potential barley grain food products

    USDA-ARS?s Scientific Manuscript database

    Barley has been an important food source from the beginning of human civilization, and remains an important staple food crop in a few countries, although its consumption has decreased sharply with the ample availability of more palatable and versatile food crops such as rice and wheat. In many Weste...

  20. Registration of ‘Tetonia’ barley

    USDA-ARS?s Scientific Manuscript database

    ‘Tetonia’, a spring two-rowed feed barley (Hordeum vulgare L.) was developed by the Agricultural Research Service-USDA, Aberdeen, ID in cooperation with the University of Idaho Agriculture Experiment Station. Tetonia has performed particularly well in trials at the University of Idaho experiment sta...

  1. Registration of ‘Lenetah’ barley

    USDA-ARS?s Scientific Manuscript database

    ‘Lenetah’ (reg. No. , PI ) two-rowed spring feed barley (Hordeum vulgare L.) was developed by the Agricultural Research Service, Aberdeen, ID, in cooperation with the Idaho Agricultural Experimental Station and released in December 2007. It was released due to its superior yield and test we...

  2. Registration of ‘Atlantic’ winter barley

    USDA-ARS?s Scientific Manuscript database

    ‘Atlantic’ (Reg. No. CV-354, PI 665041), a six-row, hulled winter barley (Hordeum vulgare L.) tested as VA06B-19 by the Virginia Agricultural Experiment Station, was released in March 2011. Atlantic was derived from the cross VA97B-176/VA92-44-279 using a modified bulk-breeding method. It was evalua...

  3. Registration of 'Eve' winter hulless barley

    USDA-ARS?s Scientific Manuscript database

    ‘Eve’ (Reg. No. CV- PI 659067 ), a six-row winter hulless barley (Hordeum vulgare L.) developed and tested as VA01H-68 by the Virginia Agricultural Experiment Station was released in May 2007. Eve was derived from the cross SC860974 / VA94-42-13. Eve is widely adapted and provides producers with ...

  4. Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis.

    PubMed

    Filardo, Fiona; Robertson, Masumi; Singh, Davinder Pal; Parish, Roger W; Swain, Stephen M

    2009-02-01

    SPINDLY (SPY) is an important regulator of plant development, and consists of an N-half tetratricopeptide repeat (TPR) domain containing 10 TPR motifs and a C-half catalytic domain, similar to O-GlcNAc transferase (OGT) of animals. The best characterised role of SPY is a negative regulator of GA signalling, and all known spy alleles have been isolated based on increased GA response. Of the eight alleles that directly affect the TPR domain, all alter TPRs 6, 8 and/or 9. To test the hypothesis that a subset of TPRs, including 6, 8 and 9, are both essential and sufficient for the regulation of GA response, we overexpressed the full-length barley (Hordeum vulgare L.) SPY protein (HvSPY) and several deletion mutants in barley aleurone cells and in Arabidopsis wild type (WT) and spy-4 plants. Transient assays in barley aleurone cells, that also express endogenous HvSPY, demonstrated that introduced HvSPY and HvTPR inhibited GA(3)-induced alpha-amylase expression. With the exception of HvSPYDelta1-5, the other deletion proteins were partially active in the barley assay, including HvSPYDelta6-9 which lacks TPRs 6, 8 and 9. In Arabidopsis, analysis of seed germination under a range of conditions revealed that 35S:HvSPY increased seed dormancy. Hvspy-2, which lacks parts of the eighth and ninth TPRs, was able to partially complement all aspects of the spy-4 phenotype. In the presence of AtSPY, 35S:HvTPR caused some phenotypes consistent with a decrease in GA signalling, including increased seed sensitivity to paclobutrazol and delayed flowering. These plants also possessed distorted leaf morphology and altered epidermal cell shape. Thus, despite genetic analysis demonstrating that TPRs 6, 8 and 9 are required for regulation of GA signalling, our results suggest that these TPRs are neither absolutely essential nor sufficient for SPY activity.

  5. Optimization of multiple shoot induction and plant regeneration in Indian barley (Hordeum vulgare) cultivars using mature embryos.

    PubMed

    Rostami, Hassan; Giri, Archana; Nejad, Amir Sasan Mozaffari; Moslem, Amir

    2013-07-01

    Barley is the fourth most important crop in the world. Development of a regeneration system using immature embryos is both time consuming and laborious. The present study was initiated with a view to develop a regeneration system in six genotypes of Indian barley (Hordeum vulgare) cultivars as a prerequisite to transformation. The mature embryos were excised from seeds and cultured on MS medium supplemented with high and low concentrations of cytokinins and auxins respectively. The MS medium containing 3 mg/L N(6)-benzylaminopurine (BA) and 0.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) was found to be the most effective for multiple shoot formation in HOR7231 cultivar that could produce 12 shoots per explant. The other cultivars HOR4409 and HOR3844 produced a minimum number of adventitious shoots (1.33 and 1.67 respectively) on MS medium supplemented with 1 mg/L BA and 0.3 mg/L 2,4-D. The elongated shoots were separated and successfully rooted on MS medium containing 1 mg/L indole-3-acetic acid (IAA). The response of different barley cultivars was found to be varying with respect to multiple shoot production. This is the first report of multiple shoot induction and plantlet regeneration in Indian cultivar of barley which would be useful for genetic transformation.

  6. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  7. Direct seeding

    Treesearch

    Richard M. Godman; G. A. Mattson

    1992-01-01

    At present, direct seeding of hardwoods in the Lake States is more of a supplemental than a primary means of artificial regeneration. Direct seeding may be used to augment a poor seed crop or increase the proportion of a preferred species. In the future, it will no doubt play a bigger role-in anticipation of this we need to collect and store the amounts of seed needed...

  8. Utility of proteomics techniques for assessing protein expression

    USDA-ARS?s Scientific Manuscript database

    Proteomic technologies are currently used as an effective analytical tool for examining modifications in protein profiles for assessing the bio-safety of genetically modified (GM) crop organisms. Understanding the natural variation of soybean seed proteins is necessary to evaluate potential uninten...

  9. Proteomic Analysis of Male-Fertility Restoration in CMS Onion

    USDA-ARS?s Scientific Manuscript database

    The production of hybrid-onion seed is dependent on cytoplasmic-genic male sterility (CMS) systems. For the most commonly used CMS, male-sterile (S) cytoplasm interacts with a dominant allele at one nuclear male-fertility restoration locus (Ms) to condition male fertility. We are using proteomics ...

  10. Proteomic analyses of male-fertility restoration in CMS onion

    USDA-ARS?s Scientific Manuscript database

    The production of hybrid-onion seed is dependent on cytoplasmic-genic male sterility (CMS) systems. For the most commonly used CMS, male-sterile (S) cytoplasm interacts with a dominant allele at one nuclear male-fertility restoration locus (Ms) to condition male fertility. We are using a proteomics ...

  11. Utility of proteomics techniques for assessing protein expression

    USDA-ARS?s Scientific Manuscript database

    In recent years, proteomic technologies have been frequently used as an effective analytical tool for examining modifications of protein profiles for accessing the bio-safety of genetically modified crops (GMO). Understanding of natural variation of soybean seed proteins is critical for determining...

  12. Proteomic analysis of differential protein expression and processing induced modifications in peanuts and peanut skins

    USDA-ARS?s Scientific Manuscript database

    Peanut (Arachis hypogaea L.) is grown extensively worldwide for its edible seed and oil. Proteomics has become a powerful tool in plant research; however, studies involving legumes, and especially peanuts, are in their infancy. Furthermore, protein expression in the peanut seed coat (skin), which is...

  13. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination.

    PubMed

    Dionisio, Giuseppe; Holm, Preben B; Brinch-Pedersen, Henrik

    2007-03-01

    At present, little is known about the phytases of plant seeds in spite of the fact that this group of enzymes is the primary determinant for the utilization of the major phosphate storage compound in seeds, phytic acid. We report the cloning and characterization of complementary DNAs (cDNAs) encoding one of the groups of enzymes with phytase activity, the multiple inositol phosphate phosphatases (MINPPs). Four wheat cDNAs (TaPhyIIa1, TaPhyIIa2, TaPhyIIb and TaPhyIIc) and three barley cDNAs (HvPhyIIa1, HvPhyIIa2 and HvPhyIIb) were isolated. The open reading frames ranged from 1548 to 1554 bp and the level of homology between the barley and wheat proteins ranged from 90.5% to 91.9%. All cDNAs contained an N-terminal signal peptide encoding sequence, and a KDEL-like sequence, KTEL, was present at the C-terminal, indicating that the enzyme was targeted to and retained within the endoplasmic reticulum. Expression of TaPhyIIa2 and HvPhyIIb in Escherichia coli revealed that the MINPPs possessed a significant phytase activity with narrow substrate specificity for phytate. The pH and temperature optima for both enzymes were pH 4.5 and 65 degrees C, respectively, and the K(m) values for phytate were 246 and 334 microm for the wheat and barley recombinant enzymes, respectively. The enzymes were inhibited by several metal ions, in particular copper and zinc. The cDNAs showed significantly different temporal and tissue-specific expression patterns during seed development and germination. With the exception of TaPhyIIb, the cDNAs were present during late seed development and germination. We conclude that MINPPs constitute a significant part of the endogenous phytase potential of the developing and germinating barley and wheat seeds.

  14. A Major QTL, Which Is Co-located with cly1, and Two Minor QTLs Are Associated with Glume Opening Angle in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhang, XinZhong; Guo, BaoJian; Lan, GuoFang; Li, HongTao; Lin, Shen; Ma, Jun; Lv, Chao; Xu, RuGen

    2016-01-01

    Cleistogamous and chasmogamous are two opposing phenomena for flowering in barley. Cleistogamy limits the rate of outcrossing, and increases the cost of producing hybrid barley seeds. Selecting chasmogamous lines with a large glume opening angle (GOA) is essential for the utilization of barley heterosis. In the current study, 247 DH lines derived from a cross between Yangnongpi7 and Yang0187 were used to identify and validate quantitative trait loci (QTLs) associated with the GOA in different environments using SSR markers. Three QTLs associated with barley GOA were mapped on chromosomes 2H and 7H. The major QTL QGOA-2H-2 was mapped on chromosome 2H with the flanking markers of KDH and GBM1498, explaining 63.92% of the phenotypic variation. The marker KDH was developed from the gene Cly1, which was the candidate gene for QGOA-2H-2. This new marker can be used to identify barley chasmogamous lines with a large GOA. The two minor QTLs were validated at all three locations across two seasons after removing DH lines carrying the candidate gene Cly1 of QGOA-2H-2. PMID:27822223

  15. Completed | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Prior to the current Clinical Proteomic Tumor Analysis Consortium (CPTAC), previously funded initiatives associated with clinical proteomics research included: Clinical Proteomic Tumor Analysis Consortium (CPTAC 2.0) Clinical Proteomic Technologies for Cancer Initiative (CPTC) Mouse Proteomic Technologies Initiative

  16. Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins

    PubMed Central

    Mundy, John; Hejgaard, Jørn; Hansen, Annette; Hallgren, Lars; Jorgensen, Kim G.; Munck, Lars

    1986-01-01

    To widen the selection of proteins for gene expression studies in barley seeds, experiments were performed to identify proteins whose synthesis is differentially regulated in developing and germinating seed tissues. The in vitro synthesis of nine distinct barley proteins was compared using mRNAs from isolated endosperm and aleurone tissues (developing and mature grain) and from cultured (germinating) aleurone layers treated with abscisic acid (ABA) and GA3. B and C hordein polypeptides and the salt-soluble proteins β-amylase, protein Z, protein C, the chymotrypsin inhibitors (CI-1 and 2), the α-amylase/subtilisin inhibitor (ASI) and the inhibitor of animal cell-free protein synthesis systems (PSI) were synthesized with mRNA from developing starchy endosperm tissue. Of these proteins, β-amylase, protein Z, and CI- 1 and 2 were also synthesized with mRNA from developing aleurone cells, but ASI, PSI, and protein C were not. CI-1 and also a probable amylase/protease inhibitor (PAPI) were synthesized at high levels with mRNAs from late developing and mature aleurone. These results show that mRNAs encoding PAPI and CI-1 survive seed dessication and are long-lived in aleurone cells. Thus, expression of genes encoding ASI, PSI, protein C, and PAPI is tissue and stage-specific during seed development. Only ASI, CI-1, and PAPI were synthesized in significant amounts with mRNA from cultured aleurone layers. The levels of synthesis of PAPI and CI-1 were independent of hormone treatment. In contrast, synthesis of α-amylase (included as control) and of ASI showed antagonistic hormonal control: while GA promotes and ABA reduces accumulation of mRNA for α-amylase, these hormones have the opposite effect on ASI mRNA levels. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16664868

  17. Identification of two key genes controlling chill haze stability of beer in barley (Hordeum vulgare L).

    PubMed

    Ye, Lingzhen; Huang, Yuqing; Dai, Fei; Ning, Huajiang; Li, Chengdao; Zhou, Meixue; Zhang, Guoping

    2015-06-11

    In bright beer, haze formation is a serious quality problem, degrading beer quality and reducing its shelf life. The quality of barley (Hordeum vulgare L) malt, as the main raw material for beer brewing, largely affects the colloidal stability of beer. In this study, the genetic mechanism of the factors affecting beer haze stability in barley was studied. Quantitative trait loci (QTL) analysis of alcohol chill haze (ACH) in beer was carried out using a Franklin/Yerong double haploid (DH) population. One QTL, named as qACH, was detected for ACH, and it was located on the position of about 108 cM in chromosome 4H and can explain about 20 % of the phenotypic variation. Two key haze active proteins, BATI-CMb and BATI-CMd were identified by proteomics analysis. Bioinformatics analysis showed that BATI-CMb and BATI-CMd had the same position as qACH in the chromosome. It may be deduced that BATI-CMb and BATI-CMd are candidate genes for qACH, controlling colloidal stability of beer. Polymorphism comparison between Yerong and Franklin in the nucleotide and amino acid sequence of BATI-CMb and BATI-CMd detected the corresponding gene specific markers, which could be used in marker-assisted selection for malt barley breeding. We identified a novel QTL, qACH controlling chill haze of beer, and two key haze active proteins, BATI-CMb and BATI-CMd. And further analysis showed that BATI-CMb and BATI-CMd might be the candidate genes associated with beer chill haze.

  18. Purification and characterization of two lipoxygenase isoenzymes from germinating barley.

    PubMed

    Doderer, A; Kokkelink, I; van der Veen, S; Valk, B E; Schram, A W; Douma, A C

    1992-03-27

    Two lipoxygenase isoenzymes (linoleate: oxygen oxidoreductase, EC 1.13.11.12) present in the embryo of germinating barley seed have been purified to homogeneity and characterized. Both isoenzymes are monomeric proteins with a molecular mass of approx. 90 kDa and crossreact on Western blots with antibodies raised against pea lipoxygenase. They have an apparent Km of approx. 16 microM for linoleic acid. The isoenzymes differ in the product formed upon incubation with linoleic acid. One of the isoenzymes (lipoxygenase 1) solely forms the 9-HPOD as a product whereas the 13-HPOD is the major product formed by the other isoenzyme (lipoxygenase 2). Lipoxygenase 1 shows a pH-optimum of 6.5, is active in a broad pH range and has an isoelectric point of 5.2-5.3. Lipoxygenase 2 has the same pH optimum, but is active in a narrow pH range and has a significantly higher pI, namely 6.8-6.9. The occurrence of two isoenzymes was confirmed by peptide analysis of the proteins. Amino acid sequence data obtained from proteolytic fragments of lipoxygenase 1 show up to 50% identity with other plant lipoxygenases.

  19. The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

    PubMed Central

    Guerin, J.; Carbonero, P.

    1997-01-01

    The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model. PMID:12223688

  20. Rhynchosporium commune: a persistent threat to barley cultivation.

    PubMed

    Avrova, Anna; Knogge, Wolfgang

    2012-12-01

    Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  1. Mutation analysis of barley malt protein Z4 and protein Z7 on beer foam stability.

    PubMed

    Iimure, Takashi; Kimura, Tatsuji; Araki, Shigeki; Kihara, Makoto; Sato, Masahide; Yamada, Shinji; Shigyou, Tatsuro; Sato, Kazuhiro

    2012-02-15

    Beer foam stability is an important characteristic. It has been suggested that isoforms of protein Z, that is, protein Z4 and protein Z7, contribute to beer foam stability. We investigated the relationship between beer foam stability and protein Z4 and protein Z7 using their deficient mutants. As a protein Z4-deficient mutant, cv. Pirkka was used. Protein Z7 deficiency was screened in 1564 barley accessions in the world collection of Okayama University, Japan. The barley samples from normal, protein Z4-deficient, protein Z7-deficient, and double-deficient were genotyped in F(2) populations and then pooled based on the DNA marker genotypes of protein Z4 and protein Z7. For a brewing trial, F(5) pooled subpopulations were used. After malting and brewing, the foam stability was determined, and the results showed that the levels of foam stability in the four samples were comparable. Two-dimensional gel electrophoresis was used to investigate the proteome in these beer samples. The results showed that low molecular weight proteins, including lipid transfer protein (LTP2), in the deficient mutants were higher than those in the normal sample. Our results suggest that the contribution of protein Z4 and protein Z7 to beer foam stability was not greater than that of other beer proteins.

  2. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley.

    PubMed

    Patterson, John; Ford, Kris; Cassin, Andrew; Natera, Siria; Bacic, Antony

    2007-07-01

    Boron (B) phytotoxicity affects cereal-growing regions worldwide. Although B-tolerant barley (Hordeum vulgare) germplasm is available, molecules responsible for this tolerance mechanism have not been defined. We describe and use a new comparative proteomic technique, iTRAQ peptide tagging (iTRAQ), to compare the abundances of proteins from B-tolerant and -intolerant barley plants from a 'Clipper' x 'Sahara' doubled-haploid population selected on the basis of a presence or absence of two B-tolerance quantitative trait loci. iTRAQ was used to identify three enzymes involved in siderophore production (Iron Deficiency Sensitive2 [IDS2], IDS3, and a methylthio-ribose kinase) as being elevated in abundance in the B-tolerant plants. Following from this result, we report a potential link between iron, B, and the siderophore hydroxymugineic acid. We believe that this study highlights the potency of the iTRAQ approach to better understand mechanisms of abiotic stress tolerance in cereals, particularly when applied in conjunction with bulked segregant analysis.

  3. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley

    PubMed Central

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-01-01

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions. PMID:25197090

  4. Analysis of volatile compounds from various types of barley cultivars.

    PubMed

    Cramer, Anne-Chrystelle J; Mattinson, D Scott; Fellman, John K; Baik, Byung-Kee

    2005-09-21

    We identified volatile compounds of barley flour and determined the variation in volatile compound profiles among different types and varieties of barley. Volatile compounds of 12 barley and two wheat cultivars were analyzed using solid phase microextraction (SPME) and gas chromatography. Twenty-six volatiles comprising aldehydes, ketones, alcohols, and a furan were identified in barley. 1-Octen-3-ol, 3-methylbutanal, 2-methylbutanal, hexanal, 2-hexenal, 2-heptenal, 2-nonenal, and decanal were identified as key odorants in barley as their concentration exceeded their odor detection threshold in water. Hexanal (46-1269 microg/L) and 1-pentanol (798-1811 microg/L) were the major volatile compounds in barley cultivars. In wheat, 1-pentanol (723-748 microg/L) was a major volatile. Hulled barley had higher total volatile, aldehyde, ketone, alcohol, and furan contents than hulless barley, highlighting the importance of the husk in barley grain aroma. The proanthocyanidin-free varieties generally showed higher total volatile and aldehyde contents than wild-type varieties, potentially due to decreased antioxidant activity by the absence of proanthocyanidins.

  5. Characteristics of cloned repeated DNA sequences in the barley genome

    SciTech Connect

    Anan'ev, E.V.; Bochkanov, S.S.; Ryzhik, M.V.; Sonina, N.V.; Chernyshev, A.I.; Shchipkova, N.I.; Yakovleva, E.Yu.

    1986-12-01

    A partial clone library of barley DNA fragments based on plasmid pBR325 was created. The cloned EcoRI-fragments of chromosomal DNA are from 2 to 14 kbp in length. More than 95% of the barley DNA inserts comprise repeated sequences of different complexity and copy number. Certain of these DNA sequences are from families comprising at least 1% of the barley genome. A significant proportion of the clones hybridize with numerous sets of restriction fragments of genome DNA and they are dispersed throughout the barley chromosomes.

  6. From protein catalogues towards targeted proteomics approaches in cereal grains.

    PubMed

    Finnie, Christine; Sultan, Abida; Grasser, Klaus D

    2011-07-01

    Due to their importance for human nutrition, the protein content of cereal grains has been a subject of intense study for over a century and cereal grains were not surprisingly one of the earliest subjects for 2D-gel-based proteome analysis. Over the last two decades, countless cereal grain proteomes, mostly derived using 2D-gel based technologies, have been described and hundreds of proteins identified. However, very little is still known about post-translational modifications, subcellular proteomes, and protein-protein interactions in cereal grains. Development of techniques for improved extraction, separation and identification of proteins and peptides is facilitating functional proteomics and analysis of sub-proteomes from small amounts of starting material, such as seed tissues. The combination of proteomics with structural and functional analysis is increasingly applied to target subsets of proteins. These "next-generation" proteomics studies will vastly increase our depth of knowledge about the processes controlling cereal grain development, nutritional and processing characteristics.

  7. Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins.

    PubMed

    Witzel, Katja; Matros, Andrea; Strickert, Marc; Kaspar, Stephanie; Peukert, Manuela; Mühling, Karl H; Börner, Andreas; Mock, Hans-Peter

    2014-02-01

    Soil salinity is one of the most severe abiotic stress factors threatening agriculture worldwide. Hence, particular interest exists in unraveling mechanisms leading to salt tolerance and improved crop plant performance on saline soils. Barley is considered to be one of the most salinity-tolerant crops, but varying levels of tolerance are well characterized. A proteomic analysis of the roots of two contrasting cultivars (cv. Steptoe and cv. Morex) is presented. Young plants were exposed to a period of 1, 4, 7, or 10 d at 0, 100, or 150 mM NaCl. The root proteome was analyzed based on two-dimensional gel electrophoresis. A number of cultivar-specific and salinity stress-responsive proteins were identified. Mass spectrometry-based identification was successful for 74 proteins, and a hierarchical clustering analysis grouped these into five clusters based on similarity of expression profile. The rank product method was applied to statistically access the early and late responses, and this delivered a number of new candidate proteins underlying salinity tolerance in barley. Among these were some germin-like proteins, some pathogenesis-related proteins, and numerous as-yet uncharacterized proteins. Notably, proteins involved in detoxification pathways and terpenoid biosynthesis were detected as early responsive to salinity and may function as a means of modulating growth-regulating mechanisms and membrane stability via fine tuning of phytohormone and secondary metabolism in the root.

  8. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    PubMed

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.

  9. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  10. Lewia hordeicola sp. nov. from barley grain.

    PubMed

    Kwaśna, Hanna; Ward, Elaine; Kosiak, Barbara

    2006-01-01

    Lewia hordeicola with Alternaria anamorph was isolated from barley grains in Norway. The fungus is homothallic. It produces fertile ascomata on synthetic nutrient agar (SNA) after long incubation at 4 C in the dark. On PCA its anamorph resembles members of the A. infectoria species group. On SNA L. hordeicola differs from the latter in the shape and size of ascospores, the conidial sporulation patterns, and the shape, size, septation and roughness of conidia. A key to currently known Lewia species is included.

  11. Seeds, browse, and tooth wear: a sheep perspective.

    PubMed

    Ramdarshan, Anusha; Blondel, Cécile; Brunetière, Noël; Francisco, Arthur; Gautier, Denis; Surault, Jérôme; Merceron, Gildas

    2016-08-01

    While grazing as a selective factor towards hypsodont dentition on mammals has gained a lot of attention, the importance of fruits and seeds as fallback resources for many browsing ungulates has caught much less attention. Controlled-food experiments, by reducing the dietary range, allow for a direct quantification of the effect of each type of items separately on enamel abrasion. We present the results of a dental microwear texture analysis on 40 ewes clustered into four different controlled diets: clover alone, and then three diets composed of clover together with either barley, corn, or chestnuts. Among the seed-eating groups, only the barley one shows higher complexity than the seed-free group. Canonical discriminant analysis is successful at correctly classifying the majority of clover- and seed-fed ewes. Although this study focuses on diets which all fall within a single dietary category (browse), the groups show variations in dental microwear textures in relation with the presence and the type of seeds. More than a matter of seed size and hardness, a high amount of kernels ingested per day is found to be correlated with high complexity on enamel molar facets. This highlights the high variability of the physical properties of the foods falling under the browsing umbrella.

  12. Yeast Proteome Analysis

    NASA Astrophysics Data System (ADS)

    Matros, Andrea; Mock, Hans-Peter

    Yeast organisms, and specifically Saccharomyces cerevisiae, have become model systems for many aspects in fundamental and applied research. Consistently, many papers have been published applying proteome techniques to study these organisms. The review will give an overview on the proteome research performed on yeast systems so far; however, due to the large number of publications, only selected reports can be cited neglecting many more interesting ones in the interest of space. The review will focus on research involving mass spectrom-etry as a basic proteome technique, although many more approaches are relevant for the functional characterization of proteins in the cell, e.g. the yeast two-hybrid system. We will provide an overview on yeasts as models in the context of pro-teome analysis, and explain the basic techniques currently applied in proteome approaches. The main part of the review will deal with a survey on the current status of proteomic studies in yeasts. In a first part of this chapter, we will deal with the currently available proteome maps of yeasts, and in the following part we will discuss studies dealing with fundamental aspects, but also mention proteome studies related to applied microbiology. Finally, we will envisage future perspectives of the proteome technology for studying yeasts, and draw major conclusion on the current status reached in this field of functional genomics.

  13. A Proteinase from Germinating Barley 1

    PubMed Central

    Poulle, M.; Jones, Berne L.

    1988-01-01

    A proteinase was purified from germinated barley (green malt from Hordeum vulgare L. cv Morex) by acidic extraction, ammonium sulfate fractionation and successive chromatographies on CM-cellulose, hemoglobin sepharose, Sephadex G-75 and organomercurial agarose columns. The overall purification and final recovery were 290-fold and 7.5%, respectively. The purified enzyme was homogeneous on analytical gel electrophoresis, yielding a single protein associated with protease activity. An apparent molecular weight of about 20 kilodaltons was estimated for the native enzyme from gel filtration. SDS-gel electrophoresis revealed a single polypeptide of about 30 kilodaltons. The optimum pH for the hydrolysis of hemoglobin was around 3.8. The enzyme was strongly inhibited by leupeptin but was insensitive to phenylmethylsulfonyl fluoride, indicating that it was a cysteine proteinase. It hydrolyzed several large proteins from various origins. The ability of the enzyme to digest barley storage proteins in vitro was examined using SDS-gel electrophoresis. The hydrolysis patterns obtained showed that the enzyme rapidly hydrolyzed the large hordein polypeptides into relatively small fragments. The results of this study suggest that this 30 kilodalton enzyme is one of the predominant cysteine proteinases secreted into the starchy endosperm during barley germination and that it plays a major role in the mobilization of storage proteins. Images Fig. 2 Fig. 3 Fig. 4 PMID:16666480

  14. Ribulose Bisphosphate Carboxylase Synthesis in Barley Leaves

    PubMed Central

    Nivison, Helen T.; Stocking, C. Ralph

    1983-01-01

    The coordination of the synthesis of the large and small subunits of ribulose 1,5-bisphosphate carboxylase (RuBPCase) was studied in young light-grown barley (Hordeum vulgare L. var. UC566) leaves. Since a barley leaf is a continuum of different aged cells with the youngest cells at the base and the oldest at the tip, developmental changes could be investigated by comparing different leaf regions. The rate of total cytoplasmic protein synthesis increased to a maximum before the rate of total organelle protein synthesis. The different positions of the maxima suggested that the synthesis of the small RuBPCase subunit on cytoplasmic ribosomes and the large RuBPCase subunit on chloroplast ribosomes might not be coupled during barley leaf development. However, measurements of the amounts and rates of synthesis of the subunits showed that they were coupled. Although the amounts of the RuBPCase subunits increased from the younger to the older leaf regions, the subunits were present in an equimolar ratio. While the rates of synthesis of both subunits increased to a maximum in a midleaf region and then declined, the ratio of the rates remained constant. That the subunit amounts remained equimolar and the synthetic rates proportional while total RuBPCase synthesis was changing indicated that the synthesis of the subunits was closely coordinated during leaf development. A close coordination was also supported by the kinetics of the inhibition of subunit synthesis in the presence of cycloheximide. PMID:16663341

  15. Effect of Hordeum vulgare L. (Barley) on blood glucose levels of normal and STZ-induced diabetic rats

    PubMed Central

    Minaiyan, M.; Ghannadi, A.; Movahedian, A.; Hakim-Elahi, I.

    2014-01-01

    Barley (Hordeum vulgare L.) is the world's fourth most important cereal crop after wheat, rice and maize. It is readily available with reasonable cost, and has the highest amount of dietary fiber among the cereals which may be beneficial for metabolic syndrome. In the present study, the effect of hydroalcoholic extract of barley seeds and a protein enriched fraction on blood glucose of normal and streptozotocin (STZ)-induced diabetic rats (STZ, 55 mg/kg, i.p) were investigated. Normal and diabetic male Wistar rats were treated daily with normal saline (1 ml), barley hydroalcoholic extract (BHE) (0.1, 0.25, 0.5 g/kg), protein enriched fraction (PEF) (0.1, 0.2, 0.4 g/kg) and glibenclamide (1 and 3 mg/kg), separately and the treatment was continued for 11 days. Blood samples were taken at 0, 1, 2, 3, 9 h in the first day and the days 5 (120 h) and 11 (264 h) for measuring the blood glucose levels (BGL). Our results indicated that none of the BHE and PEF, were effective to reduce BGL in normal or diabetic rats in acute phase of treatment (1st day). Nevertheless, BHE at doses of 0.25 and 0.5 g/kg, were only effective in detracting BGL of diabetic rats after 11 days of continued daily therapy. Moreover, BHE restored body weight of diabetic rats at the end of treatment. Glibenclamide had also hypoglycemic action in normal and diabetic rats after both acute and extended treatments. These findings suggest that barley seeds hydroalcoholic extract, has a role in diabetic control in long term consumption, and this effect might be at least due to its high fiber content. More detailed studies are warranted to demonstrate its mechanism of action and identify active components. PMID:25657786

  16. Initial description of the developing soybean seed protein-Lys-Ne-acetylome

    USDA-ARS?s Scientific Manuscript database

    Characterization of the myriad protein posttranslational modifications (PTM) is a key aspect of proteome profiling. While there have been previous studies of the developing soybean seed phospho-proteome, herein we present the first analysis of protein Lys-Ne-acetylation (PKA) in this system. In rece...

  17. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  18. Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare).

    PubMed

    Hisano, Hiroshi; Tsujimura, Mai; Yoshida, Hideya; Terachi, Toru; Sato, Kazuhiro

    2016-10-24

    Sequencing analysis of mitochondrial genomes is important for understanding the evolution and genome structures of various plant species. Barley is a self-pollinated diploid plant with seven chromosomes comprising a large haploid genome of 5.1 Gbp. Wild barley (Hordeum vulgare ssp. spontaneum) and cultivated barley (H. vulgare ssp. vulgare) have cross compatibility and closely related genomes, although a significant number of nucleotide polymorphisms have been reported between their genomes. We determined the complete nucleotide sequences of the mitochondrial genomes of wild and cultivated barley. Two independent circular maps of the 525,599 bp barley mitochondrial genome were constructed by de novo assembly of high-throughput sequencing reads of barley lines H602 and Haruna Nijo, with only three SNPs detected between haplotypes. These mitochondrial genomes contained 33 protein-coding genes, three ribosomal RNAs, 16 transfer RNAs, 188 new ORFs, six major repeat sequences and several types of transposable elements. Of the barley mitochondrial genome-encoded proteins, NAD6, NAD9 and RPS4 had unique structures among grass species. The mitochondrial genome of barley was similar to those of other grass species in terms of gene content, but the configuration of the genes was highly differentiated from that of other grass species. Mitochondrial genome sequencing is essential for annotating the barley nuclear genome; our mitochondrial sequencing identified a significant number of fragmented mitochondrial sequences in the reported nuclear genome sequences. Little polymorphism was detected in the barley mitochondrial genome sequences, which should be explored further to elucidate the evolution of barley.

  19. Identification of regulated proteins in naked barley grains (Hordeum vulgare nudum) after Fusarium graminearum infection at different grain ripening stages.

    PubMed

    Trümper, Christina; Paffenholz, Katrin; Smit, Inga; Kössler, Philip; Karlovsky, Petr; Braun, Hans-Peter; Pawelzik, Elke

    2016-02-05

    We analyzed the effect of Fusarium graminearum infection on field-grown naked barley (Hordeum vulgare nudum). The ears were inoculated with F. graminearum spores during anthesis. In the course of ripening, grains in five phenological growth stages of naked barley from milk ripe to plant death were sampled. The albumin and globulin proteins of inoculated grains and untreated (control) grains were separated by two-dimensional gel electrophoresis. Forty-five spots composing of proteins that were changed in abundance due to F. graminearum infection were subsequently identified by mass spectrometry. Various proteins showing altered expression pattern after Fusarium infection were linked to stress response such as plant signal transduction pathways, fungal defense and oxidative burst. More proteins changed during early grain ripening stages than during later ripening stages. Protease inhibitors occurred at increased abundancy during milk ripe stage. A thaumatin-like protein accumulated at plant death stage. Proteins linked to nitrogen metabolism and protein biosynthesis were mainly reduced, whereas those linked to carbon metabolism were predominantly increased in infected grains. Fusarium graminearum infection can lead to significant contamination of grains with mycotoxins. With this 2D-based proteomics study we give an insight into plant–pathogen interactions between the non-model plant naked barley and the fungus F. graminearum during five stages of grain development. Over the multiple developmental stages we observed specific patterns of changes induced by the fungus: the primary plant metabolism and inhibition of fungal protease were predominantly affected during early grain development stages. During the entire grain development we found an induced accumulation of thaumatin-like proteins due to the fungal infection indicating their fundamental role for naked barley defense.

  20. Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability.

    PubMed

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke

    2015-04-01

    Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not.

  1. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model.

    PubMed

    Lönnerdal, Bo; Mendoza, Concepcion; Brown, Kenneth H; Rutger, J Neil; Raboy, Victor

    2011-05-11

    Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat pup model. Suckling rat pups (14 days old, n = 6-8/treatment) were fasted for 6 h and intubated with (65)Zn-radiolabeled suspensions prepared using seed produced by either wild-type (normal phytic acid) or lpa genotypes of each cereal. Test solutions were radiolabeled overnight (all genotypes) or immediately prior to intubation (barley genotypes). Pups were killed 6 h postintubation and tissues removed and counted in a gamma counter. Zn absorption was low from wild-type genotypes of maize (21, 33%) and rice (26%), and phytic acid reduction resulted in significantly higher Zn absorption, 47-52 and 35-52%, respectively. Zn absorption from wild-type barley incubated overnight was high (86-91%), and phytate reduction did not improve Zn absorption (84-90%), which is likely due to endogenous phytase activity. When the wild-type barley solutions were prepared immediately before intubation, Zn absorption was significantly lower (63, 78%) than from the lpa cultivars (92, 96%). Variation in seed or flour phenolic acid levels did not affect Zn absorption. Differences in seed Zn levels did not substantially affect Zn absorption. Thus, when phytic acid is abundant in a diet, it has a larger effect on Zn absorption than the level of Zn. Therefore, reducing the phytic acid content of staple cereal grains may contribute to enhancing Zn nutrition of populations consuming these staple foods.

  2. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  3. Farmers without borders—genetic structuring in century old barley (Hordeum vulgare)

    PubMed Central

    Forsberg, N E G; Russell, J; Macaulay, M; Leino, M W; Hagenblad, J

    2015-01-01

    The geographic distribution of genetic diversity can reveal the evolutionary history of a species. For crop plants, phylogeographic patterns also indicate how seed has been exchanged and spread in agrarian communities. Such patterns are, however, easily blurred by the intense seed trade, plant improvement and even genebank conservation during the twentieth century, and discerning fine-scale phylogeographic patterns is thus particularly challenging. Using historical crop specimens, these problems are circumvented and we show here how high-throughput genotyping of historical nineteenth century crop specimens can reveal detailed geographic population structure. Thirty-one historical and nine extant accessions of North European landrace barley (Hordeum vulgare L.), in total 231 individuals, were genotyped on a 384 single nucleotide polymorphism assay. The historical material shows constant high levels of within-accession diversity, whereas the extant accessions show more varying levels of diversity and a higher degree of total genotype sharing. Structure, discriminant analysis of principal components and principal component analysis cluster the accessions in latitudinal groups across country borders in Finland, Norway and Sweden. FST statistics indicate strong differentiation between accessions from southern Fennoscandia and accessions from central or northern Fennoscandia, and less differentiation between central and northern accessions. These findings are discussed in the context of contrasting historical records on intense within-country south to north seed movement. Our results suggest that although seeds were traded long distances, long-term cultivation has instead been of locally available, possibly better adapted, genotypes. PMID:25227257

  4. Biotype differences for resistance to Russian wheat aphid in barley

    USDA-ARS?s Scientific Manuscript database

    Russian wheat aphid (RWA) is a worldwide insect pest of barley, causing crop losses each year. Previously identified resistant barley lines do not show variable reactions to the eight USA RWA biotypes identified by wheat reactions. However, additional RWA isolates have been identified outside the ...

  5. Bird cherry-oat aphid resistance in barley

    USDA-ARS?s Scientific Manuscript database

    Bird cherry-oat aphid, Rhopalosiphum padi L., is a serious pest of barley, Hordeum vulgare L., world-wide. It is the most efficient vector of barley yellow dwarf virus, the most important viral disease of small grains in the world. Not all bird cherry-oat aphids acquire the virus while feeding on ...

  6. Pasting and rheological properties of chia composites containing barley flour

    USDA-ARS?s Scientific Manuscript database

    The chia containing omega-3 polyunsaturated fatty acids (omega-3 PUFAs) was composited with barley flour having high ß-glucan content. Both omega-3 PUFAs and ß-glucan are well known for lowering blood cholesterol and preventing coronary heart disease. Barley flour was dry blended with ground chia ...

  7. Expression of Ethylene Biosynthesis Genes in Barley Tissue Culture

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene influences green plant regeneration rates from barley callus cultures. Our studies have focused on the effects of short treatments of an ethylene inhibitor or an ethylene precursor on green plant regeneration from two barley cultivars and the expression patterns of two eth...

  8. Expression analysis of barley (Hordeum vulgare L.) during salinity stress

    USDA-ARS?s Scientific Manuscript database

    Barley (Hordeum vulgare L.) is a salt-tolerant crop species with considerable economic importance in salinity-affected arid and semiarid regions of the world. In this work, barley cultivar Morex was used for transcriptional profiling during salinity stress using a microarray containing ~22,750 prob...

  9. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  10. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  11. The International Barley Sequencing Consortium — At the Threshold of Efficient Access to the Barley Genome

    USDA-ARS?s Scientific Manuscript database

    Sequencing the genome of barley, an agriculturally and industrially important cereal crop and a useful diploid model for bread wheat, has become a realistic undertaking. Important steps have been initiated to improve genomics tools, build and anchor a physical map, develop a high-density genetic ma...

  12. Transposable element junctions in marker development and genomic characterization of barley

    USDA-ARS?s Scientific Manuscript database

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  13. 7 CFR 407.10 - Area risk protection insurance for barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Area risk protection insurance for barley. 407.10... protection insurance for barley. The barley crop insurance provisions for Area Risk Protection Insurance for... Crop Insurance Corporation Area Risk Protection Insurance Barley Crop Insurance Provisions...

  14. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.

    PubMed

    Nielsen, Kirsten A; Hrmova, Maria; Nielsen, Janni Nyvang; Forslund, Karin; Ebert, Stefan; Olsen, Carl E; Fincher, Geoffrey B; Møller, Birger Lindberg

    2006-04-01

    Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic beta-D-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing beta-D-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic beta-D-glucosidase from sorghum. This resulted in a 35-60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-beta-D-glucan exohydrolase isozyme betaII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-beta-D-glucan exohydrolase isozyme betaII was found to hydrolyze the cyanogenic beta-D-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.

  15. Influence of biologically-active substances on {sup 137}Cs and heavy metals uptake by Barley plant

    SciTech Connect

    Kruglov, Stanislav; Filipas, Alexander

    2007-07-01

    Available in abstract form only. Full text of publication follows: When solving the problem of contaminated agricultural lands rehabilitation, most of attention is concentrated on the effective means which allow the obtaining of ecologically safe production. The minimization of radionuclides and heavy metals (HM) content in farm products on the basis of their migration characteristics in agro-landscapes and with the regard for different factors influencing contaminants behavior in the soil-plant system is of great significance. Our investigation has shown that the effect of biologically active substances (BAS) using for seeds treatment on {sup 137}Cs transfer to barley grown on Cd contaminated soil was dependent on their properties and dosage, characteristics of soil contamination and biological peculiarities of plants, including stage of plants development. Seeds treatment by plant growth regulator Zircon resulted in a significant increase in {sup 137}Cs activity in harvest (40- 50%), increase in K concentration and significant reduction in Ca concentration. Increased Cd content in soil reduced {sup 137}Cs transfer to barley plants by 30-60% (p<0,05) and Zircon application further reduced its concentration. Ambiol and El also reduced {sup 137}Cs uptake by roots and Cd and Pb phyto-toxicity. The experimental data do not make it possible to link the BAS effect on inhibition of {sup 137}Cs absorption by plants directly with their influence on HM phyto-toxicity. The dependence of Concentration Ratio of {sup 137}Cs on the Ambiol and El dose was not proportional and the most significant decrease in the radionuclide uptake by plants was reported with the use of dose showing the most pronounced stimulating effect on the barley growth and development. The pre-sowing seed treatment with Ambiol increased Pb absorption by 35-50% and, on the contrary, decreased Cd uptake by plants by 30-40%. (authors)

  16. Proteomics tools and resources for investigating protein allergens in oilseeds.

    PubMed

    Thelen, Jay J

    2009-08-01

    Oilseeds are important renewable sources of natural products including protein and oil which are produced during the maturation (or seed filling) phase of embryo development. My lab employed high-resolution, two-dimensional gel electrophoresis (2-DE) and mass spectrometry to profile and identify over 500 proteins expressed during seed filling in various oilseeds including soybean, canola, castor, and Arabidopsis. The principal objective of these studies was to develop predictive models for carbon assimilation for comparison among the four oilseeds. Other uses for these large proteomic datasets have come to light including characterization of the diversity and expression of known and yet-to-be-discovered protein allergens as they accumulate during seed development. Legume oilseeds such as soybean and peanut present a human and animal health concern for a small percentage of the population that are allergic to one or more of the seed proteins. Information about the expression and diversity of 2-DE spots that map to individual genes or gene families of allergens can prove useful for breeding- or biotechnology-based approaches aimed at silencing allergen expression. We have begun releasing these proteomics datasets for public access on the Oilseed Proteomics web portal, www.oilseedproteomics.missouri.edu. I will present the status of these projects and the website with specific emphasis on soybean.

  17. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour.

    PubMed

    Yu, Wenwen; Zou, Wei; Dhital, Sushil; Wu, Peng; Gidley, Michael J; Fox, Glen P; Gilbert, Robert G

    2018-02-15

    The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characterization of shrunken endosperm mutants in barley.

    PubMed

    Ma, Jian; Jiang, Qian-Tao; Wei, Long; Wang, Ji-Rui; Chen, Guo-Yue; Liu, Ya-Xi; Li, Wei; Wei, Yu-Ming; Liu, Chunji; Zheng, You-Liang

    2014-04-10

    Despite numerous studies on shrunken endosperm mutants caused by either maternal tissues (seg) or kernel per se (sex) in barley, the molecular mechanism for all of the eight seg mutants (seg1-seg8) and some sex mutants is yet to be uncovered. In this study, we determined the amylose content, characterized granule-binding proteins, analyzed the expression of key genes involved in starch synthesis, and examined starch granule structure of both normal (Bowman and Morex) and shrunken endosperm (seg1, seg3, seg4a, seg4b, seg5, seg6, seg7, and sex1) barley accessions. Our results showed that amylose contents of shrunken endosperm mutants ranged from 8.9% (seg4a) to 25.8% (seg1). SDS-PAGE analysis revealed that 87 kDa proteins corresponding to the starch branching enzyme II (SBEII) and starch synthase II (SSII) were not present in seg1, seg3, seg6, and seg7 mutants. Real-time quantitative PCR (RT-qPCR) analysis indicated that waxy expression levels of seg1, seg3, seg6, and seg7 mutants decreased in varying degrees to lower levels until 27 days after anthesis (DAA) after reaching the peak at 15-21 DAA, which differed from the pattern of normal barley accessions. Further characterization of waxy alleles revealed 7 non-synonymous single nucleotide polymorphisms (SNPs) in the coding sequences and 16 SNPs and 8 indels in the promoter sequences of the mutants. Results from starch granule by scanning electron microscopy (SEM) indicated that, in comparison with normal barley accessions, seg4a, seg4b, and sex1 had fewer starch granules per grain; seg3 and seg6 had less small B-type granules; some large A-type granules in seg7 had a hollow surface. These results improve our understanding about effects of seg and sex mutants on starch biosynthesis and granule structure during endosperm development and provide information for identification of key genes responsible for these shrunken endosperm mutants.

  19. Proteomics for systems toxicology

    PubMed Central

    Titz, Bjoern; Elamin, Ashraf; Martin, Florian; Schneider, Thomas; Dijon, Sophie; Ivanov, Nikolai V.; Hoeng, Julia; Peitsch, Manuel C.

    2014-01-01

    Current toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been proposed, which combines conventional toxicological assessment strategies with system-wide measurement methods and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral component of this integrative strategy because protein alterations closely mirror biological effects, such as biological stress responses or global tissue alterations. Here, we provide an overview of the technical foundations and highlight select applications of proteomics for systems toxicology studies. With a focus on mass spectrometry-based proteomics, we summarize the experimental methods for quantitative proteomics and describe the computational approaches used to derive biological/mechanistic insights from these datasets. To illustrate how proteomics has been successfully employed to address mechanistic questions in toxicology, we summarized several case studies. Overall, we provide the technical and conceptual foundation for the integration of proteomic measurements in a more comprehensive systems toxicology assessment framework. We conclude that, owing to the critical importance of protein-level measurements and recent technological advances, proteomics will be an integral part of integrative systems toxicology approaches in the future. PMID:25379146

  20. Proteomics in medical microbiology.

    PubMed

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  1. Differences in Spatial Expression between 14-3-3 Isoforms in Germinating Barley Embryos1

    PubMed Central

    Testerink, Christa; van der Meulen, René M.; Oppedijk, Berry J.; de Boer, Albertus H.; Heimovaara-Dijkstra, Sjoukje; Kijne, Jan W.; Wang, Mei

    1999-01-01

    The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process. PMID:10482663

  2. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  3. Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation.

    PubMed

    Vester-Christensen, Malene Bech; Hachem, Maher Abou; Naested, Henrik; Svensson, Birte

    2010-01-01

    Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98kDa multidomain starch and alpha-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched alpha-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae alpha-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase 1 promoter. Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on beta-cyclodextrin-Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LD (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping. A molecular mass of 98kDa was estimated by SDS-PAGE in excellent agreement with the theoretical value of 97419Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to K(m,app)=0.16+/-0.02 mg/mL and k(cat,app)=79+/-10s(-1) by fitting the uncompetitive substrate inhibition Michaelis-Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting catalytic coefficient, k(cat,app)/K(m,app)=488+/-23mL/(mgs) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed alpha-, beta-, and gamma-cyclodextrin binding to LD with K(d) of 27.2, 0.70, and 34.7 microM, respectively.

  4. Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.).

    PubMed

    Goodall, Andrew J; Kumar, Pankaj; Tobin, Alyson K

    2013-04-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise). Quantitation of gene expression, localization and response to N supply revealed that each gene plays a non-redundant role in different tissues and during development. Localization of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that it is important in N transport and remobilization. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localized to the leaf mesophyll cells, in the cortex and pericycle of roots, and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in leaves with an increasing supply of N, suggesting its role in the primary assimilation of N. HvGS1_3 was specifically and predominantly localized in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH(+)4, suggesting that it has a primary role in grain N assimilation and also in the protection against ammonium toxicity in roots. The expression of HvGS1 genes is directly correlated with protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley.

  5. Proteome sequencing goes deep

    PubMed Central

    Richards, Alicia L.; Merrill, Anna E.; Coon, Joshua J.

    2014-01-01

    Advances in mass spectrometry have transformed the scope and impact of protein characterization efforts. Identifying hundreds of proteins from rather simple biological matrices, such as yeast, was a daunting task just a few decades ago. Now, expression of more than half of the estimated ~20,000 human protein coding genes can be confirmed in record time and from minute sample quantities. Access to proteomic information at such unprecedented depths has been fueled by strides in every stage of the shotgun proteomics workflow – from sample processing to data analysis – and promises to revolutionize our understanding of the causes and consequences of proteome variation. PMID:25461719

  6. Proteomic Findings in Melanoma

    PubMed Central

    Sengupta, Deepanwita; Tackett, Alan J

    2016-01-01

    Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate. PMID:27274624

  7. Shotgun proteomics in neuroscience.

    PubMed

    Liao, Lujian; McClatchy, Daniel B; Yates, John R

    2009-07-16

    Mass spectrometry-based proteomics is increasingly used to address basic and clinical questions in biomedical research through studies of differential protein expression, protein-protein interactions, and posttranslational modifications. The complex structural and functional organization of the human brain warrants the application of high-throughput, systematic approaches to understand the functional alterations under normal physiological conditions and the perturbations of neurological diseases. This primer focuses on shotgun-proteomics-based tandem mass spectrometry for the identification of proteins in a complex mixture. It describes the basic concepts of protein differential expression analysis and posttranslational modification analysis and discusses several strategies to improve the coverage of the proteome.

  8. A proteomic glimpse into human ureter proteome

    PubMed Central

    Hirao, Yoshitoshi; Elguoshy, Amr; Xu, Bo; Zhang, Ying; Fujinaka, Hidehiko; Yamamoto, Keiko; Yates, John R.; Yamamoto, Tadashi

    2015-01-01

    Urine has evolved as one of the most important biofluids in clinical proteomics due to its noninvasive sampling and its stability. Yet, it is used in clinical diagnostics of several disorders by detecting changes in its components including urinary protein/polypeptide profile. Despite the fact that majority of proteins detected in urine are primarily originated from the urogenital (UG) tract, determining its precise source within the UG tract remains elusive. In this article, we performed a comprehensive analysis of ureter proteome to assemble the first unbiased ureter dataset. Next, we compared these data to urine, urinary exosome, and kidney mass spectrometric datasets. Our result concluded that among 2217 nonredundant ureter proteins, 751 protein candidates (33.8%) were detected in urine as urinary protein/polypeptide or exosomal protein. On the other hand, comparing ureter protein hits (48) that are not shown in corresponding databases to urinary bladder and prostate human protein atlas databases pinpointed 21 proteins that might be unique to ureter tissue. In conclusion, this finding offers future perspectives for possible identification of ureter disease‐associated biomarkers such as ureter carcinoma. In addition, the ureter proteomic dataset published in this article will provide a valuable resource for researchers working in the field of urology and urine biomarker discovery. All MS data have been deposited in the ProteomeXchange with identifier PXD002620 (http://proteomecentral.proteomexchange.org/dataset/PXD002620). PMID:26442468

  9. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich d-zein in transgenic soybeans

    USDA-ARS?s Scientific Manuscript database

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans. Proteome rebalancing of seed proteins has been shown to promote the accumulation o...

  10. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  11. Differential sensitivity of barley (Hordeum vulgare L.) to chlorpyrifos and propiconazole: Morphology, cytogenetic assay and photosynthetic pigments.

    PubMed

    Dubey, Pragyan; Mishra, Amit Kumar; Shukla, Pratiksha; Singh, Ashok Kumar

    2015-10-01

    The present investigation was performed to evaluate the effects of an insecticide and fungicide, namely, chlorpyrifos (CP) and propiconazole (PZ) on barley (Hordeum vulgare L. variety Karan-16). The seeds were treated with three concentrations of CP and PZ, i.e., 0.05%, 0.1% and 0.5% for 6 hours after different pre-soaking durations of 7, 17 and 27 hours. Different pre-soaking durations (7, 17 and 27 h) represent three phases of the cell cycle i.e., G1, S and G2, respectively. Double distilled water and ethyl methane sulfonate were used as negative and positive controls, respectively. As compared to their respective controls, treated root tip meristematic cells of barley showed significant reductions in the germination percentage, seedling height, mitotic index and comparative increase in chromosomal aberrations against both the pesticides, and the magnitude was higher in CP. After treatment with the pesticides, chlorophyll and carotenoid contents increased up to 0.1% but reduced at 0.5% and the decrease was more prominent in CP as compared to PZ. In treated cells, fragmentation, stickiness, bridges, multipolar anaphase and diagonal anaphase were observed as aberrations. As compared to control, chromosomal aberrations were higher in CP as compared to PZ. The results of the present study concluded that CP induced chromosomal aberrations were more frequent than PZ; hence it has higher probability to cause genotoxicity in barley.

  12. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study.