Science.gov

Sample records for barley straw substrate

  1. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw.

    PubMed

    Rosgaard, Lisa; Andric, Pavle; Dam-Johansen, Kim; Pedersen, Sven; Meyer, Anne S

    2007-10-01

    In this study, the applicability of a "fed-batch" strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a beta-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions. Rapid cellulose degradation was accompanied by rapid decreases in viscosity before addition of extra substrate, but when extra substrate or substrate plus enzymes were added, the viscosities of the slurries increased and the hydrolytic efficiencies decreased temporarily.

  2. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  3. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  4. Effect of ozone pretreatment on hydrogen production from barley straw.

    PubMed

    Wu, Jiangning; Ein-Mozaffari, Farhad; Upreti, Simant

    2013-09-01

    Application of ozone technology to lignocellulosic biohydrogen production was explored with a barley straw. Ozone pretreatment effectively degraded the straw lignin and increased reducing sugar yield. A simultaneous enzyme hydrolysis and dark fermentation experiment was conducted using a mixed anaerobic consortium together with saccharification enzymes. Both untreated and ozonated samples produced hydrogen. Compared to the untreated group, hydrogen produced by the groups ozonated for 15, 30, 45 and 90 min increased 99%, 133%, 166% and 94%, respectively. Some inhibitory effect on hydrogen production was observed with the samples ozonated for 90 min, and the inhibition was on the fermentative microorganisms, not the saccharification enzymes. These results demonstrate that production of biohydrogen from barley straw, a lignocellulosic biomass, can be significantly enhanced by ozone pretreatment.

  5. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    PubMed

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels.

  6. Maximum production of fermentable sugars from barley straw using optimized soaking in aqueous ammonia (SAA) pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soaking in aqueous ammonia (SAA) pretreatment was investigated to improve enzymatic digestibility and consequently to increase total fermentable sugar production from barley straw. Various effects of pretreatment process parameters, such as reaction temperature, reaction time, solid:liquid ratio, an...

  7. Impact of removing straw from wheat and barley fields: A literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sustainability of straw removal from wheat and barley fields from the standpoint of its effects on soil properties and nutrient cycling is a concern. A recent literature review reveals that there is no negative effect of small grain straw removal on soil organic carbon (SOC) content with irriga...

  8. Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

    PubMed Central

    Wang, Y.; Ramirez-Bribiesca, J. E.; Yanke, L. J.; Tsang, A.; McAllister, T. A.

    2012-01-01

    The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and β-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 μg/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 μg/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 μg/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of 15N into particle-associated microbial N (15N-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) 15N-PAMN at 4 h only, but EFE on AS increased (p<0.001) 15N-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) 15N-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it. PMID:25049480

  9. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time.

    PubMed

    Haque, Md Azizul; Nath Barman, Dhirendra; Kang, Tae Ho; Kim, Min Keun; Kim, Jungho; Kim, Hoon; Yun, Han Dae

    2012-12-01

    This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at 105 degrees C for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOHpretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of beta-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.

  10. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  11. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product.

    PubMed

    Nghiem, Nhuan P; Kim, Tae Hyun; Yoo, Chang Geun; Hicks, Kevin B

    2013-09-01

    Barley straw was used to demonstrate an integrated process for production of fuel ethanol and astaxanthin as a value-added co-product. Barley straw was pretreated by soaking in aqueous ammonia using the previously determined optimum conditions, which included 77.6 °C treatment temperature, 12.1 h treatment time, 15 wt% ammonia concentration, and 1:8 solid-to-liquid ratio. In the newly developed process, the pretreated barley straw was first hydrolyzed with ACCELLERASE® XY (a commercial hemicellulase product) to generate a xylose-rich solution, which contained 3.8 g/l glucose, 22.9 g/l xylose, and 2.4 g/l arabinose, with 96 % of the original glucan being left intact. The xylose-rich solution was used for production of astaxanthin by the yeast Phaffia rhodozyma without further treatment. The resulting cellulose-enriched solid residue was used for ethanol production in a fed-batch simultaneous saccharification and fermentation using ACCELLERASE® 1500 (a commercial cellulase product) and the industrial yeast Saccharomyces cerevisiae. At the end of the fermentation, 70 g/l ethanol was obtained, which was equivalent to 63 % theoretical yield based on the glucan content of the solid substrate.

  12. Biomechanics of Wheat/Barley Straw and Corn Stover

    SciTech Connect

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  13. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Cherry, Joel R; Harris, Paul; Meyer, Anne S

    2006-01-01

    This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a beta-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam-pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.

  14. Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In these studies concentrated sugar solutions of barley straw and corn stover hydrolysates were fermented with simultaneous product recovery and compared with the performance of a control glucose batch fermentation process. The control glucose batch fermentation resulted in the production of 23.25 g...

  15. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    SciTech Connect

    J.S. Tumuluru; L.G. Tabil; Y. Song; K.L. Iroba; V. Meda

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barley and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).

  16. Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock.

    PubMed

    Dashtban, Mehdi; Kepka, Greg; Seiboth, Bernhard; Qin, Wensheng

    2013-01-01

    Xylitol, a naturally occurring five-carbon sugar alcohol derived from D-xylose, is currently in high demand by industries. Trichoderma reesei, a prolific industrial cellulase and hemicellulase producing fungus, is able to selectively use D-xylose from hemicelluloses for xylitol production. The xylitol production by T. reesei can be enhanced by genetic engineering of blocking further xylitol metabolism in the D-xylose pathway. We have used two different T. reesei strains which are impaired in the further metabolism of xylitol including a single mutant in which the xylitol dehydrogenase gene was deleted (∆xdh1) and a double mutant where additionally L-arabinitol-4-dehydrogenase, an enzyme which can partially compensate for xylitol dehydrogenase function, was deleted (∆lad1∆xdh1). Barely straw was first pretreated using NaOH and Organosolv pretreatment methods. The highest xylitol production of 6.1 and 13.22 g/L was obtained using medium supplemented with 2 % Organosolv-pretreated barley straw and 2 % D-xylose by the ∆xdh1 and ∆lad1∆xdh1 strains, respectively.

  17. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw.

  18. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. PMID:26789370

  19. Nitrogen Availability to Pseudomonas fluorescens DF57 Is Limited during Decomposition of Barley Straw in Bulk Soil and in the Barley Rhizosphere

    PubMed Central

    Jensen, Linda Elise; Nybroe, Ole

    1999-01-01

    The availability of nitrogen to Pseudomonas fluorescens DF57 during straw degradation in bulk soil and in barley rhizosphere was studied by introducing a bioluminescent reporter strain (DF57-N3), responding to nitrogen limitation, to model systems of varying complexity. DF57-N3 was apparently not nitrogen limited in the natural and sterilized bulk soil used for these experiments. The soil was subsequently amended with barley straw, representing a plant residue with a high carbon-to-nitrogen ratio (between 60 and 100). In these systems the DF57-N3 population gradually developed a nitrogen limitation response during the first week of straw decomposition, but exclusively in the presence of the indigenous microbial population. This probably reflects the restricted ability of DF57 to degrade plant polymers by hydrolytic enzymes. The impact of the indigenous population on nitrogen availability to DF57-N3 was mimicked by the cellulolytic organism Trichoderma harzianum Rifai strain T3 when coinoculated with DF57-N3 in sterilized, straw-amended soil. Limitation occurred concomitantly with fungal cellulase production, pointing to the significance of hydrolytic activity for the mobilization of straw carbon sources, thereby increasing the nitrogen demand. Enhanced survival of DF57-N3 in natural soil after straw amendment further indicated that DF57 was cross-fed with carbon/energy sources. The natural barley rhizosphere was experienced by DF57-N3 as an environment with restricted nitrogen availability regardless of straw amendment. In the rhizosphere of plants grown in sterilized soil, nitrogen limitation was less severe, pointing to competition with indigenous microorganisms as an important determinant of the nitrogen status for DF57-N3 in this environment. Hence, these studies have demonstrated that nitrogen availability and gene expression in Pseudomonas is intimately linked to the structure and function of the microbial community. Further, it was demonstrated that the

  20. Substrate induction of nitrate reductase in barley aleurone layers.

    PubMed

    Ferrari, T E; Varner, J E

    1969-01-01

    Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of alpha-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce alpha-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of alpha-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.

  1. The barley straw residues avoid high erosion rates in persimmon plantations. Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; González Pelayo, Óscar; Giménez-Morera, Antonio; Jordán, Antonio; Novara, Agata; Pereira, Paulo; Mataix-Solera, Jorge

    2015-04-01

    World persimmon production is 4 Millions tones and China produce more than 80 % of the total world yield. Korea and Japan are the second and the third producers respectively with 0.4 and 0.2 millions tones, and all three Asian countries concentrate more than 95 % of the world production. Spain produce less than 0.1 million tones but there is a sudden increase in new plantations due to the high prices and the new marked developed in Europe, Brazil and Arabic countries. The new chemically managed and highly mechanized plantations in Eastern Spain are using high doses of herbicides and the lack of vegetation is triggering high erosion rates. This paper aims to contribute with information about the soil losses on this new persimmon plantations and to develop strategies to reduce the soil and water losses. A 15 years old plantation of persimmon (Dyospirus lotus) was selected in Eastern Spain (Canals Municipality, La Costera District) to measure the soil losses on No-Tillage bare (herbicide treatments) management and on barley straw covered plots. The straw cover was applied 3 days before the expereriments at at doses that cover more than 50 % of the soil surface using 75 gr of straw per m2. Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0.25 m2 plots were carried out on plots paired plots: bare and covered with straw. The measurements were carried out during July 2014 on paired plots, under very dry soil moisture contents ranging from 4.65 to 7.87 %. The results show that the 3% cover of vegetation of the control plots moved to more than 60% due to the application of the straw. This induced a delayed ponding (from 60 to 309 seconds) and surface runoff (from 262 to 815 seconds) and runoff outlet (418 to 1221 seconds). The runoff coefficients moved from 60 % in the control plots to 29 % in the straw covered and the runoff sediment concentration was dramatically reduced from 11 to 1 g l-1. The total soil losses were higher that 1 Kg per plot in

  2. Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. malting and brewing industries are America’s largest consumers of barley, purchasing more than one-half of the U.S. barley grain crop. More than 70% of the hectares seeded to barley are seeded to cultivars recommended by the American Malting Barley Association (AMBA). The malting and brewi...

  3. Use of ground wheat straw in container nursery substrates to overwinter daylily divisions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum sp.) straw is being evaluated as a potential component in soilless container mixes either alone or combined with compost to replace a significant portion of the substrate currently supplied by pine bark and peat moss. The objective of this study was to evaluate wheat straw and horse...

  4. The barley straw residues avoid high erosion rates in persimmon plantations. Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; González Pelayo, Óscar; Giménez-Morera, Antonio; Jordán, Antonio; Novara, Agata; Pereira, Paulo; Mataix-Solera, Jorge

    2015-04-01

    World persimmon production is 4 Millions tones and China produce more than 80 % of the total world yield. Korea and Japan are the second and the third producers respectively with 0.4 and 0.2 millions tones, and all three Asian countries concentrate more than 95 % of the world production. Spain produce less than 0.1 million tones but there is a sudden increase in new plantations due to the high prices and the new marked developed in Europe, Brazil and Arabic countries. The new chemically managed and highly mechanized plantations in Eastern Spain are using high doses of herbicides and the lack of vegetation is triggering high erosion rates. This paper aims to contribute with information about the soil losses on this new persimmon plantations and to develop strategies to reduce the soil and water losses. A 15 years old plantation of persimmon (Dyospirus lotus) was selected in Eastern Spain (Canals Municipality, La Costera District) to measure the soil losses on No-Tillage bare (herbicide treatments) management and on barley straw covered plots. The straw cover was applied 3 days before the expereriments at at doses that cover more than 50 % of the soil surface using 75 gr of straw per m2. Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0.25 m2 plots were carried out on plots paired plots: bare and covered with straw. The measurements were carried out during July 2014 on paired plots, under very dry soil moisture contents ranging from 4.65 to 7.87 %. The results show that the 3% cover of vegetation of the control plots moved to more than 60% due to the application of the straw. This induced a delayed ponding (from 60 to 309 seconds) and surface runoff (from 262 to 815 seconds) and runoff outlet (418 to 1221 seconds). The runoff coefficients moved from 60 % in the control plots to 29 % in the straw covered and the runoff sediment concentration was dramatically reduced from 11 to 1 g l-1. The total soil losses were higher that 1 Kg per plot in

  5. Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers' grains.

    PubMed

    Duthie, C-A; Rooke, J A; Hyslop, J J; Waterhouse, A

    2015-10-01

    Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers' grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers' grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4

  6. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    DOE PAGESBeta

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; Iroba, K. L.; Meda, V.

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less

  7. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    SciTech Connect

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; Iroba, K. L.; Meda, V.

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) and higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.

  8. Influence of barley straw (Hordeum vulgare L.) extract on phytoplankton dominated by Scenedesmus species in laboratory conditions: the importance of the extraction duration.

    PubMed

    Pęczuła, Wojciech

    2013-04-01

    The response of a natural phytoplankton assemblage dominated by algae of the genus Scenedesmus to the addition of barley straw extract was studied in a laboratory experiment. The aim of the study was to compare the inhibiting effect of water extracts obtained by soaking the straw for 1, 2 and 3 months. We analysed the response of four species, Scenedesmus subspicatus, Scenedesmus ecornis, Scenedesmus quadricauda and Scenedesmus acuminatus, during 14 days of their exposure to different types of barley straw extract. S. subspicatus and S. ecornis responded with decreasing numbers only to the addition of the 3-month solution (ANOVA; F = 290.1, p <0.001; and F = 11.8, p <0.01, respectively); the two other species were inhibited by all types of extracts. The results indicate the need for more research on the importance of extraction duration to the inhibitory abilities of barley straw which can be applied in the management of water quality in water bodies. PMID:23482372

  9. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    PubMed

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  10. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    PubMed

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length. PMID:24235869

  11. A pair of chiral flavonolignans as novel anti-cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare): characterization and comparison of their anti-cyanobacterial activities.

    PubMed

    Xiao, Xi; Huang, Haomin; Ge, Zhiwei; Rounge, Trine B; Shi, Jiyan; Xu, Xinhua; Li, Ruobing; Chen, Yingxu

    2014-05-01

    The inhibitory effect of barley straw (Hordeum vulgare) on cyanobacteria has been observed in many field and laboratory studies for over 30 years, although the compounds responsible for this anti-cyanobacterial effect have remained unknown. In this study, a pair of chiral flavonolignans were isolated from barley straw extract using a bioassay-guided isolation procedure against Microcystis sp. The structures of the allelopathic compounds were elucidated by NMR (nuclear magnetic resonance) and HPLC-MS (high performance liquid chromatography-mass spectrometry), and turned out to be salcolin A and B. The enantiomers differ in their anti-cyanobacterial abilities. Both enantiomers exhibited inhibitory effects on Microcystis sp., and the EC50 (concentration for 50% of maximal effect) of salcolin A and B were 6.02 × 10(-5) and 9.60 × 10(-5 ) mol l(-1) , respectively. Furthermore, the modes of actions of the enantiomers were investigated and compared at a single cell level by flow cytometry. Salcolin A was found to induce an increase on cyanobacterial intracellular ROS (reactive oxygen species) levels and to inhibit esterase activity, whereas salcolin B caused leakages of cyanobacterial cytoplasms. Thus, salcolin A was more 'algistatic', and salcolin B was more 'algicidal'. This study suggests that salcolin is the key allelochemical in barley straw's inhibitory effect on cyanobacteria and could be used as an agent in the future control of cyanobacterial harmful algae blooms.

  12. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    PubMed

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production.

  13. Effect of silicate minerals (zeolite, bentonite, kaolin, granite) on in vitro fermentation of amorphous cellulose, meadow hay, wheat straw and barley.

    PubMed

    Váradyová, Zora; Baran, Miroslav; Siroka, Peter; Styriaková, Iveta

    2003-01-01

    The objective of the present experiment was to determine the effects of addition of silicate minerals, zeolite (Z), bentonite (B), kaolin (K), granite (G) on the rumen fermentation parameters, total gas, methane, total and individual volatile fatty acids (VFA) and hydrogen recovery in rumen fluid inoculum from sheep. Different materials (0.25 g) meadow hay (MH), wheat straw (WS), barley (BA) and amorphous cellulose (AC) were used as substrates. Silicate minerals (0.1 g) were added to the fermentation bottles containing substrates and rumen fluid inoculum and incubated for 72 h in vitro. The gas production technique simulates fermentation in the rumen was used to determine fermentation parameters. The total gas production was significantly higher compared to control for MH plus B (MHB), MH plus G (MHG), WS plus Z (WSZ), WS plus B (WSB), WS plus K (WSK), WS plus G (WSG), AC plus B (ACB), AC plus G (ACG), BA plus Z (BAZ), BA plus B (BAB), BA plus K (BAK), BA plus granite (BAG). Significant differences of the methane production were found between the controls, WSG, BAB and BAK. The total VFA concentration was increased in ACG (83.1 mM). The acetate: propionate (A:P) ratio of the control and additives ranged between 3.1 and 3.6 for MH, 2.7 and 3.5 for WS, 1.6 and 1.8 for AC and 2.3 and 2.9 for BA. It was concluded that the silicate minerals had no appreciable effect on the methane production, however, they support the microbial metabolism by influencing (bentonite, granite) and slightly influencing (zeolite, kaolin) the rumen fermentation.

  14. A straw-soil co-composting and evaluation for plant substrate in BLSS

    NASA Astrophysics Data System (ADS)

    Cheng, Quanyong; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2013-02-01

    Material closure is important for the establishment of Bioregenerative Life Support System, and many studies have focused on transforming candidate plant residues into plant culture medium. For the limitations of using wheat straw compost as substrate for plant cultivation, a straw-soil co-composting technique was studied. The changes of pH, C/N value, germination index, cellulose, lignin and so on were monitored during the co-composting process. The maturity was evaluated by the C/N value and the germination index. The result showed that after 45 days' fermentation, the straw-soil final co-compost with inoculation (T1) became mature, while the co-compost without inoculation (T0) was not mature. In the plant culture test, the T1 substrate could satisfy the needs for lettuce's growth, and the edible biomass yield of lettuce averaged 74.42 g pot-1 at harvest. But the lettuces in T0 substrate showed stress symptoms and have not completed the growth cycle. Moreover, the results of nitrogen (N) transformation experiment showed that about 10.0% and 3.1% N were lost during the T1 co-composting and plant cultivation, respectively, 23.5% N was absorbed by lettuce, and 63.4% N remained in the T1 substrate after cultivation.

  15. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.

    PubMed

    Salmones, Dulce; Mata, Gerardo; Waliszewski, Krzysztof N

    2005-03-01

    The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies.

  16. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

    PubMed

    Møller, Marie S; Windahl, Michael S; Sim, Lyann; Bøjstrup, Marie; Abou Hachem, Maher; Hindsgaul, Ole; Palcic, Monica; Svensson, Birte; Henriksen, Anette

    2015-03-27

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis.

  17. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

    PubMed

    Møller, Marie S; Windahl, Michael S; Sim, Lyann; Bøjstrup, Marie; Abou Hachem, Maher; Hindsgaul, Ole; Palcic, Monica; Svensson, Birte; Henriksen, Anette

    2015-03-27

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis. PMID:25562209

  18. Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers’ Grains in Tibet

    PubMed Central

    Yuan, Xianjun; Yu, Chengqun; Shimojo, M.; Shao, Tao

    2012-01-01

    In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers’ grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%. PMID:25049588

  19. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    PubMed

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs.

  20. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    PubMed

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs. PMID:26192769

  1. Comparison of three technics converting the straw to soil-like substrate

    NASA Astrophysics Data System (ADS)

    Xing, Yidong; Beizhen Xie, Ms; Liu, Professor Hong; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu.

    In the Bioregenerative Life Support System (BLSS), the treatment of inedible biomass of higher plants such as straw is one of the most important aspects for increasing the degree of closure of system. In this research, the straw of wheat and rice which are the candidate plants for BLSS was processed by three pretreating technics and the succedent treatment of worms respectively, and the soil like substrates (SLS) were obtained by those successive biological conversions. Subsequently, the pH, organic matter, available N, P, K and seed germination of the SLS were determined to confirm the feasibility of growing plants on them. Finally, lettuce was planted on them to compare the fertility of the SLS with three different process technics. Through our test, the optimal SLS process technic with short period was selected and the SLS with good "soil" characteristics was obtained. What's more, the results also indicated that the straw of higher plants can be involved into the intra-system turnover by producing SLS, which may improve the closure of BLSS.

  2. Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Vepsäläinen, Jouko; Keinänen, Markku; Pappinen, Ari

    2015-03-01

    This study aims to efficiently use hemicellulose-based biomass for ABE (acetone-butanol-ethanol) production by co-fermentation with starch-based biomass. Two processes were investigated: (I) co-fermentation of sugars derived from hemicellulose and starch in a mixture of barley straw and grain that was pretreated with dilute acid; (II) co-fermentation of straw hemicellulosic hydrolysate and gelatinized grain slurry in which the straw was pretreated with dilute acid. The two processes produced 11.3 and 13.5 g/L ABE that contains 7.4 and 7.8 g/L butanol, respectively. In process I, pretreatment with 1.0% H2SO4 resulted in better ABE fermentability than with 1.5% H2SO4, but only 19% of pentoses were consumed. In process II, 95% of pentoses were utilized even in the hemicellulosic hydrolysate pretreated with more severe condition (1.5% H2SO4). The results suggest that process II is more favorable for hemicellulosic biomass utilization, and it is also attractive for sustainable biofuel production due to great biomass availability.

  3. Effect of supplementing urea-treated barley straw with lucerne or vetch hays on feed intake, digestibility and growth of Arsi Bale sheep.

    PubMed

    Abate, Dawit; Melaku, Solomon

    2009-04-01

    The study was conducted at Sinana Agricultural Research Center, Ethiopia to assess the supplementation of graded levels of vetch (Vicia dasycarpa 'lana') and lucerne (Medicago sativa,' Hunter river') hay on feed intake, digestibility and body weight (BW) change of Arsi-Bale sheep fed urea treated barley straw (UTBS). A 7 day- digestibility and a 90 day- feed intake trials were conducted using 28 and 35 sheep, respectively. The experimental design was a randomized complete block design with seven dietary treatments that consisted of feeding UTBS (T1) as the control treatment, UTBS plus 150, 250 and 350 g dry matter (DM) per day of vetch for T2, T3, T4, respectively and UTBS plus 150, 250 and 350 g DM per day of lucerne for T5, T6 and T7, respectively. Intake of UTBS was not affected (P > 0.05) by inclusion of lucerne hay at 25-35% of daily DM intake. The supplements increased daily intake of total DM, organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF) and metabolizable energy (ME) (P < 0.001) as well as apparent digestibility of DM, OM (P < 0.001), NDF (P < 0.01), ADF, crude protein (CP) (P < 0.05) and daily BW gain (P < 0.001). Supplementation with lucerne than vetch hay promoted higher (P < 0.001) CP and ME intakes and daily BW gain. Feeding with the UTBS without supplementation was enough to meet the maintenance requirements of the sheep and allow small BW gain. The results of the study showed that urea treatment of barley straw in conjunction with supplementation of lucerne or vetch hay could serve as a useful strategy in improving smallholder sheep production in the tropics.

  4. Oxygen requirement for growth of Candida utilis on semisolid straw substrate

    SciTech Connect

    Han, Y.W.

    1987-01-01

    Semisolid fermentation has been used for production of enzymes, mushrooms, fermented food and animal feed. The main difference between the submerged liquid fermentation and the semisolid cultivation is that the substrate in the former is completely dissolved and homogeneous, whereas the latter employs insoluble substrate with relatively little liquid in the growth environment. In spite of its simplicity and ease of operation, due to heterogeneity of the fermentation mixture, the controls for microbial growth in semisolid fermentation, such as temperature, pH, aeration, agitation, and concentration of nutrient and products are not as simple as those for the homogeneous submerged culture. Because of these difficulties, there have been only a limited number of studies on the quantitative measurement of the growth parameters on semisolid substrate. Since the solubility of oxygen in water is extremely low, oxygen supply is often the limiting factor for cell growth in a submerged fermentation. In a semisolid fermentation, however, a thin water film is formed surrounding the insoluble substrate which makes the diffusion of oxygen into the water faster than in liquid fermentation. Therefore, the oxygen requirement level for semisolid fermentation is expected to be less than for liquid fermentation. In this study we have determined the oxygen demand level of C. utilis grown on semisolid straw by measuring the growth rate of the organism under various levels of oxygen supply.

  5. Microbiota of Soil-Like Substrate Depending on Wheat Straw Processing Method in Experimental LSS Model

    NASA Astrophysics Data System (ADS)

    Tirranen, Lyalya; Sysoeva, Olga

    In previous experiments conducted in the closed environmental system BIOS-3 plant waste and test persons' exometabolites were carried away from the life-support system (LSS). It is possible to create a new-generation LSS with a higher degree of matter cycle closure by adding to the soil-like substrate inedible plant waste used for cultivation of plants in the experimental LSS model. Using single-factor analysis of variance, we estimated the effect of the introduced inedible plant waste on the microbiota of the soil-like substrate (SLS). The plant waste was used: to increase the degree of matter cycle closure in the system; to replace the volume of soil-like substrate in the system; as a fertilizer for growing higher plants in the experimental LSS model. A statistically significant effect of wheat straw processing method on the number of all microorganism groups was observed in different variants of the experiment. The obtained results can be used in planning and carrying out of subsequent experiments with higher plants cultivated on SLS with waste in a closed environmental system including humans.

  6. Optimization of cultivation and nutrition conditions and substrate pretreatment for solid-substrate fermentation of wheat straw by Coriolus versicolor.

    PubMed

    Yadav, J S; Tripathi, J P

    1991-01-01

    Bioconversion of wheat straw by solid-substrate fermentation (SSF) with Coriolus versicolor was optimized by varying its physiological parameters. Selective delignification (more lignin than holocellulose degradation) and increases in crude protein (CP) content and in vitro dry matter digestibility (IVDMD) were taken as the criteria to select optimum levels of these parameters. The fungus behaved optimally under the following set of cultural and nutritional conditions: pH 5.5, moisture level 55%, temperature 30 degrees C, duration of fermentation 21 d, form of inoculum--grain culture, turning frequency--once at mid-incubation, urea (nitrogen source) 1.5% (sterile) or 3.0% (nonsterile), single superphosphate (phosphorus + sulfur source) 1.0%, no addition of free polysaccharides (as whey or molasses). A maximum of 17.5% increase in IVDMD involving 4.3% degradation of lignin, was attained in the optimized SSF under laboratory conditions. The digestibility improvement could be further increased by using a substrate pretreatment (physical/chemical/biological) in the following order of preference: NaOH treatment, urea or urine treatment, ensiling, steaming, grinding. For practical farm applications, urea treatment and ensiling appeared most feasible. The laboratory optimized process was also scaled up to 4 kg (sterile and unsterile) and 50 kg (unsterile) fermentations. PMID:1841863

  7. Simultaneous bioconversion of barley straw to butanol and product recovery: use of concentrated sugar solution and process integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of increased gasoline prices, we focused on the production of butanol which contains more energy than ethanol on per gallon (or kg) basis from cellulosic agricultural biomass such as wheat straw using two different systems: i) separate hydrolysis, fermentation, and recovery (SHFR), and ...

  8. Enzyme activities and substrate degradation during white rot fungi growth on sugar-cane straw in a solid state fermentation.

    PubMed

    Ortega, G M; Martinez, E O; González, P C; Betancourt, D; Otero, M A

    1993-03-01

    Two strains of Pleurotus spp., grown in solid state fermentation on sugar-cane straw, degraded the dry matter by 50% after 60 days. The rate of substrate consumption and the dry weight of fruiting bodies decreased in consecutive flushings. Both strains vigorously attacked hemicellulose (80% of total degradation) and lignin (70%). Fruiting bodies were rich in protein and lipids, and had a low content of carbohydrates and ash.

  9. Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production.

    PubMed

    Lin, Yunqin; Ge, Xumeng; Li, Yebo

    2014-10-01

    Spent mushroom substrate (SMS) is a biomass waste generated from mushroom production. About 5 kg of SMS is generated for every kg of mushroom produced. In this study, solid state anaerobic digestion (SS-AD) of SMS, wheat straw, yard trimmings, and their mixtures was investigated at different feedstock to effluent ratios. SMS was found to be highly degradable, which resulted in inhibition of SS-AD due to volatile fatty acid (VFA) accumulation and a decrease in pH. This issue was addressed by co-digestion of SMS with either yard trimmings or wheat straw. SS-AD of SMS/yard trimmings achieved a cumulative methane yield of 194 L/kg VS, which was 16 and 2 times higher than that from SMS and yard trimmings, respectively. SS-AD of SMS/wheat straw obtained a cumulative methane yield of 269 L/kg VS, which was 23 times as high as that from SMS and comparable to that from wheat straw.

  10. Scytalidium thermophilum-colonized grain, corncobs and chopped wheat straw substrates for the production of Agaricus bisporus.

    PubMed

    Sanchez, Jose E; Royse, Daniel J

    2009-02-01

    We examined the possibility of cultivating Agaricus bisporus (Ab) on various grains and agricultural by-products, with the objective of improving yield capacity of substrate pre-colonized by Scytalidium thermophilum (St). Radial growth rate (RGR) of St at 45 degrees C ranged from no growth on sterile wheat grain to 14.9 mm/d on whole oats. The linear extension rate (LER) of Ab, grown on St-colonized substrate (4 days at 45 degrees C), ranged from a low of 2.7 mm/d on 100% corncobs to 4.7 mm/d on a 50/50 mixture of ground corncobs/millet grain. Several other substrates containing wheat straw+ground corncobs+boiled millet and pre-colonized by St (4 days at 42+/-3 degrees C), were evaluated for production of Ab. The biological efficiency (BE) of production increased linearly with the addition of millet to the formula. However, substrates with millet levels 84% often were contaminated before mushroom harvest. Maximum BE (99%) and yield (21.6 kg/m(2)) were obtained on St-colonized wheat straw+2% hydrated lime supplemented with 9% commercial supplement added both at spawning and at casing. PMID:18954978

  11. Phytochelatin–metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis

    PubMed Central

    Song, Won-Yong; Mendoza-Cózatl, David G.; Lee, Youngsook; Schroeder, Julian I.; Ahn, Sang-Nag; Lee, Hyun-Sook; Wicker, Thomas; Martinoia, Enrico

    2014-01-01

    Cadmium (Cd) and arsenic (As) are toxic to all living organisms, including plants and humans. In plants, Cd and As are detoxified by phytochelatins (PCs) and metal(loid)-chelating peptides and by sequestering PC–metal(loid) complexes in vacuoles. Consistent differences have been observed between As and Cd detoxification. Whereas chelation of Cd by PCs is largely sufficient to detoxify Cd, As–PC complexes must be sequestered into vacuoles to be fully detoxified. It is not clear whether this difference in detoxification pathways is ubiquitous among plants or varies across species. Here, we have conducted a PC transport study using vacuoles isolated from Arabidopsis and barley. Arabidopsis vacuoles accumulated low levels of PC2–Cd, and vesicles from yeast cells expressing either AtABCC1 or AtABCC2 exhibited negligible PC2–Cd transport activity compared with PC2–As. In contrast, barley vacuoles readily accumulated comparable levels of PC2–Cd and PC2–As. PC transport in barley vacuoles was inhibited by vanadate, but not by ammonium, suggesting the involvement of ABC-type transporters. Interestingly, barley vacuoles exhibited enhanced PC2 transport activity when essential metal ions, such as Zn(II), Cu(II) and Mn(II), were added to the transport assay, suggesting that PCs might contribute to the homeostasis of essential metals and detoxification of non-essential toxic metal(loid)s. PMID:24313707

  12. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.

    PubMed

    Song, Won-Yong; Mendoza-Cózatl, David G; Lee, Youngsook; Schroeder, Julian I; Ahn, Sang-Nag; Lee, Hyun-Sook; Wicker, Thomas; Martinoia, Enrico

    2014-05-01

    Cadmium (Cd) and arsenic (As) are toxic to all living organisms, including plants and humans. In plants, Cd and As are detoxified by phytochelatins (PCs) and metal(loid)-chelating peptides and by sequestering PC-metal(loid) complexes in vacuoles. Consistent differences have been observed between As and Cd detoxification. Whereas chelation of Cd by PCs is largely sufficient to detoxify Cd, As-PC complexes must be sequestered into vacuoles to be fully detoxified. It is not clear whether this difference in detoxification pathways is ubiquitous among plants or varies across species. Here, we have conducted a PC transport study using vacuoles isolated from Arabidopsis and barley. Arabidopsis vacuoles accumulated low levels of PC2 -Cd, and vesicles from yeast cells expressing either AtABCC1 or AtABCC2 exhibited negligible PC2 -Cd transport activity compared with PC2 -As. In contrast, barley vacuoles readily accumulated comparable levels of PC2 -Cd and PC2 -As. PC transport in barley vacuoles was inhibited by vanadate, but not by ammonium, suggesting the involvement of ABC-type transporters. Interestingly, barley vacuoles exhibited enhanced PC2 transport activity when essential metal ions, such as Zn(II), Cu(II) and Mn(II), were added to the transport assay, suggesting that PCs might contribute to the homeostasis of essential metals and detoxification of non-essential toxic metal(loid)s.

  13. The effects on cow performance and calf birth and weaning weight of replacing grass silage with brewers grains in a barley straw diet offered to pregnant beef cows of two different breeds.

    PubMed

    Rooke, J A; Duthie, C-A; Hyslop, J J; Morgan, C A; Waterhouse, T

    2016-08-01

    The effects on cow and calf performance of replacing grass silage with brewers grains in diets based on barley straw and fed to pregnant beef cows are reported. Using a 2 × 2 factorial arrangement of breed and diet, cows pregnant by artificial insemination (n = 34) of two breeds (cross-bred Limousin, n = 19 and pure-bred Luing, n = 15) were fed diets ad libitum which consisted of either (g/kg dry matter) barley straw (664) and grass silage (325; GS) or barley straw (783) and brewers grains (206, BG) and offered as total mixed rations. From gestation day (GD) 168 until 266, individual daily feed intakes were recorded and cow body weight (BW) and body condition score (BCS) measured weekly. Calving date, calf sex, birth and weaning BW, and calf age at weaning were also recorded. Between GD 168 and 266, cross-bred Limousin cows gained more weight than Luing cows (p < 0.05) and cows offered BG gained more weight than cows offered GS (p < 0.001). Luing cows lost more BCS than cross-bred Limousin cows (p < 0.05), but diet did not affect BCS. There were no differences in dry matter intake as a result of breed or diet. Calf birth BW, however, was greater for cows fed BG than GS (44 vs. 38 kg, SEM 1.0, p < 0.001) with no difference between breeds. At weaning, calves born to BG-fed cows were heavier than those born to GS-fed cows (330 vs. 286 kg, SEM 9.3, p < 0.01). In conclusion, replacement of grass silage with brewers grains improved the performance of beef cows and increased calf birth and weaning BW. Further analysis indicated that the superior performance of cows offered the BG diet was most likely due to increases in protein supply which may have improved both energy and protein supply to the foetus.

  14. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  15. Optimization of CMCase production from sorghum straw by Aspergillus terreus SUK-1 under solid substrate fermentation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Tibin, El Mubarak Musa; Al-Shorgani, Najeeb Kaid Naseer; Abuelhassan, Nawal Noureldaim; Hamid, Aidil Abdul; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan

    2013-11-01

    The cellulase production using sorghum straw as substrate by fungal culture of Aspergillus terreus SUK-1 was investigated in solid substrate fermentation (SSF). The optimum CMCase was achieved by testing most effective fermentation parameters which were: incubation temperature, pH and moisture content using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The carboxymethyl cellulase activity (CMCase) was measured as the defining factor. The results were analysed by analysis of variance (ANOVA) and the regression quadratic model was obtained. The model was found to be significant (p<0.05) and the effect of temperature (25-40°C) and pH (4-7) was found to be not significant on CMCase activity whereas the moisture content was significant in the SSF conditions employed. The high yield of predicted CMCase activity (0.2 U/ml) was obtained under the optimized conditions (temperature 40 □C, pH 5.4 and moisture content of 80%). The model was validated by applying the optimized conditions and it was found that the model was valid.

  16. Production of destomycin-A antibiotic by Streptomyces sp. using rice straw as fermented substrate.

    PubMed

    Atta, H M; Abul-Hamd, A T; Radwan, H G

    2009-01-01

    Hundred and twenty microbial isolates could be isolated from different soil samples collected from different localities in Egypt. One of the actinomycete culture AZ-H-A5 from three cultures was found to produce a wide spectrum antimicrobial agent when cultivated on rice straw. The actinomycete AZ-H-A5 could be isolated from a soil sample collected from Helwan district, Egypt. The nucleotide sequence of the 16s RNA gene (1.5 Kb) of the most potent strain evidenced an 85% similarity with Streptomyces pseudovenezue, EU841712 and Streptomyces galilaeus. From the taxonomic features, the actinomycetes isolate AZ-H-A5 matches with Streptomyces rimosus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces rimosus, AZ-H-A5. The parameters controlling the biosynthetic process of antimicrobial agent formation including: inoculum size, different pH values, different temperatures, different incubation period, and different carbon and nitrogen sources, potassium nitrate, K2HPO4, MgSO4.7H2O and KCl concentrations were fully investigates. The active metabolite was extracted using ethyl acetate (1:1, v/v) at pH 7.0. The separation of the active ingredient and its purification was performed using both thin layer chromatography (TLC) and column chromatography (CC) techniques. The physicochemical characteristics of the purified antibiotic viz. color, melting point, solubility, elemental analysis, spectroscopic characteristics and chemical reactions have been investigated. This analysis indicates a suggested empirical formula of C20H37N13O13. The minimum inhibition concentrations "MICs" of the purified antimicrobial agent were also determined. The purified antimicrobial agent was suggestive of being belonging to Destomycin-A antibiotic produced by Streptomyces rimosus, AZ-H-A5. PMID:20222575

  17. The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry - Is there a role for Pleurotus ostreatus?

    PubMed

    Karas, Panagiotis A; Makri, Sotirina; Papadopoulou, Evangelia S; Ehaliotis, Constantinos; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-02-01

    Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP.

  18. The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry - Is there a role for Pleurotus ostreatus?

    PubMed

    Karas, Panagiotis A; Makri, Sotirina; Papadopoulou, Evangelia S; Ehaliotis, Constantinos; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G

    2016-02-01

    Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP. PMID:26624931

  19. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft.

    PubMed

    Kandra, Lili; Hachem, Maher Abou; Gyémánt, Gyöngyi; Kramhøft, Birte; Svensson, Birte

    2006-09-18

    Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites as binding barriers. Barley alpha-amylase 1 mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in alpha-amylases.

  20. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation.

    PubMed

    Zhu, Zhen; Zhang, Fengge; Wei, Zhong; Ran, Wei; Shen, Qirong

    2013-09-30

    Agro-industrial byproducts, especially rice straw, are potential resources. This work was aimed to utilize raw materials to produce value-added biosurfactant in solid-state fermentation (SSF). Rice straw and soybean flour were found efficient and selected as major substrates for surfactin production. The results of Plackett-Burman design indicated that glycerol, water content, inoculum size and temperature were the significant variables identified in the screen of nine total variables. The optimum values for the four significant variables were determined by the Box-Behnken design. The optimal surfactin production was obtained when the medium contained 5 g soybean flour, 4 g rice straw, 2% (w/w) maltose and 2.65% (w/w) glycerol, pH 7.0. The ideal growth conditions for surfactin production consisted of a moisture content of 62.8% (v/w) and growth supplemented with 15.96% inoculum size in 250 mL flasks at 26.9 °C for 48 h. Under optimal conditions, a surfactin yield of 15.03 mg/gds was attained in 1000-fold scale-up fermentation in a 50 L fermenter, thereby validating the accuracy of this approach. This study proposed an eco-friendly and economical way to convert agro-industrial byproducts into biosurfactant. PMID:23685270

  1. Protein repair L-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds.

    PubMed Central

    Mudgett, M B; Lowenson, J D; Clarke, S

    1997-01-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability. PMID:9414558

  2. Exposure of barley plants to low Pi leads to rapid changes in root respiration that correlate with specific alterations in amino acid substrates.

    PubMed

    Alexova, Ralitza; Nelson, Clark J; Jacoby, Richard P; Millar, A Harvey

    2015-04-01

    The majority of inorganic phosphate (Pi ) stress studies in plants have focused on the response after growth has been retarded. Evidence from transcript analysis, however, shows that a Pi -stress specific response is initiated within minutes of transfer to low Pi and in crop plants precedes the expression of Pi transporters and depletion of vacuolar Pi reserves by days. In order to investigate the physiological and metabolic events during early exposure to low Pi in grain crops, we monitored the response of whole barley plants during the first hours following Pi withdrawal. Lowering the concentration of Pi led to rapid changes in root respiration and leaf gas exchange throughout the early phase of the light course. Combining amino and organic acid analysis with (15) N labelling we show a root-specific effect on nitrogen metabolism linked to specific substrates of respiration as soon as 1 h following Pi withdrawal; this explains the respiratory responses observed and was confirmed by stimulation of respiration by exogenous addition of these respiratory substrates to roots. The rapid adjustment of substrates for respiration in roots during short-term Pi -stress is highlighted and this could help guide roots towards Pi -rich soil patches without compromising biomass accumulation of the plant.

  3. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is the solid, carbon-rich product resulting from the pyrolysis of biomass in the absence of oxygen. We are examining biochars for several horticultural applications, including as a replacement for peat moss in soilless substrates used in the production of containerized greenhouse and nursery...

  4. Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion.

    PubMed

    Heeg, Kathrin; Pohl, Marcel; Sontag, Mario; Mumme, Jan; Klocke, Michael; Nettmann, Edith

    2014-12-01

    Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L(-1) d(-1), based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm. PMID:25467556

  5. Vertical distribution of dry mass in cereals straw and its loss during harvesting

    NASA Astrophysics Data System (ADS)

    Zajaç, T.; Oleksy, A.; Stokłosa, A.; Klimek-Kopyra, A.; Macuda, J.

    2013-01-01

    The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.

  6. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales.

    PubMed

    Häggblom, P; Nordkvist, E

    2015-05-01

    Sampling of straw bales from wheat, barley, and oats was carried out after harvest showing large variations in deoxynivalenol (DON) and zearalenone (ZEN) levels. In the wheat field, DON was detected in all straw samples with an average DON concentration of 976 μg/kg and a median of 525 μg/kg, while in four bales, the concentrations were above 3000 μg/kg. For ZEN, the concentrations were more uniform with an average concentration of 11 μg/kg. The barley straw bales were all positive for DON with an average concentration of 449 μg/kg and three bales above 800 μg/kg. In oat straw, the average DON concentration was 6719 μg/kg with the lowest concentration at 2614 μg/kg and eight samples above 8000 μg/kg. ZEN contamination was detected in all bales with an average concentration of 53 μg/kg with the highest concentration at 219 μg/kg. Oat bales from another field showed an average concentration of 16,382 μg/kg. ZEN concentrations in the oat bales were on average 153 μg/kg with a maximum at 284 μg/kg. Levels of Fusarium graminearum DNA were higher in oat straw (max 6444 pg DNA/mg straw) compared to straw from wheat or barley. The significance of mycotoxin exposure from straw should not be neglected particularly in years when high levels of DON and ZEN are also detected in the feed grain. With a limited number of samples preferably using a sampling probe, it is possible to distinguish lots of straw that should not be used as bedding material for pigs.

  7. Study on optimization of proportion between fermented liquid and traditional cultural medium of bioflocculant production and its flocculant performance considering the aerobic fermentation of rice straw as substrate.

    PubMed

    Zhao, Zhen; Wei, Li; Li, Chun-Ying; Wang, Zhe; Hu, Yi-Wen; Liu, Chang-Chao; Ma, Fang

    2014-11-01

    High cost of traditional culture medium of flocculant is the key element to limit the bioflocculant production. It's therefore much crucial to seek the economic production materials. In this research, part of the traditional culture medium of bioflocculant is replaced by the fermented liquid of rice straw to conduct the discussion on fermentation matching, optimization of fermentation condition and ability of flocculant production. The optimal proportion of aerobic saccharification liquid and traditional cultural medium of flocculant production is 1: 3. The flocculant rates of the economic culture medium of flocculant production are the highest, 65.49% and 71.24%, which are combined by 67d and 109d fermented saccharification liquid and the traditional cultural medium of flocculant production. The growth of flocculant production bacterium is in better situation for composite culture medium of flocculant production. The amount of bioflocculant is 40kg from per ton. The fermentation cost of flocculant saves by 25% comparing with the traditional culture medium. The simple aerobic fermentation technique opens up a new road for low-cost culture medium of flocculant production.

  8. Review of straw chambers

    SciTech Connect

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e{sup +}e{sup {minus}} experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed.

  9. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective

    PubMed Central

    Glithero, N.J.; Ramsden, S.J.; Wilson, P.

    2013-01-01

    The EU renewable energy directive stipulates a requirement for 10% of transport fuels to be derived from renewable sources by 2020. Second generation biofuels offer potential to contribute towards this target with cereal straw representing a potentially large feedstock source. From an on-farm survey of 240 arable farmers, timeliness of crop establishment and benefits of nutrient retention from straw incorporation were cited as reasons for straw incorporation. However, two-thirds (one-third) of farmers would supply wheat (barley) straw for bioenergy. The most popular contract length and continuous length of straw supply was either 1 or 3 years. Contracts stipulating a fixed area of straw supply for a fixed price were the most frequently cited preferences, with £50 t−1 the most frequently cited minimum contract price that farmers would find acceptable. Arable farmers in England would be willing to sell 2.52 Mt of cereal straw for bioenergy purposes nationally and 1.65 Mt in the main cereal growing areas of Eastern England. Cereal straw would be diverted from current markets or on-farm uses and from straw currently incorporated into soil. Policy interventions may be required to incentivise farmers to engage in this market, but food and fuel policies must increasingly be integrated to meet societal goals. PMID:24926116

  10. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective.

    PubMed

    Glithero, N J; Ramsden, S J; Wilson, P

    2013-08-01

    The EU renewable energy directive stipulates a requirement for 10% of transport fuels to be derived from renewable sources by 2020. Second generation biofuels offer potential to contribute towards this target with cereal straw representing a potentially large feedstock source. From an on-farm survey of 240 arable farmers, timeliness of crop establishment and benefits of nutrient retention from straw incorporation were cited as reasons for straw incorporation. However, two-thirds (one-third) of farmers would supply wheat (barley) straw for bioenergy. The most popular contract length and continuous length of straw supply was either 1 or 3 years. Contracts stipulating a fixed area of straw supply for a fixed price were the most frequently cited preferences, with £50 t(-1) the most frequently cited minimum contract price that farmers would find acceptable. Arable farmers in England would be willing to sell 2.52 Mt of cereal straw for bioenergy purposes nationally and 1.65 Mt in the main cereal growing areas of Eastern England. Cereal straw would be diverted from current markets or on-farm uses and from straw currently incorporated into soil. Policy interventions may be required to incentivise farmers to engage in this market, but food and fuel policies must increasingly be integrated to meet societal goals. PMID:24926116

  11. Bioethanol production from rice straw by popping pretreatment

    PubMed Central

    2013-01-01

    Background Rice straw has considerable potential as a raw material for bioethanol production. Popping pretreatment of rice straw prior to downstream enzymatic hydrolysis and fermentation was found to increase cellulose to glucose conversion efficiency. The aim of this study was to investigate the influence of popping pretreatment and determine the optimal enzyme loading using a surface response design. Results The optimal doses of cellulase and xylanase enzymes were 23 FPU and 62 IU/g biomass, respectively. Using the optimized enzyme condition and popping pretreatment of rice straw (15% substrate loading, w/v), a sugar recovery of 0.567 g/g biomass (glucose; 0.394 g/g) was obtained in 48 h, which was significantly higher than that from untreated rice straw (total sugar recovery; 0.270 g/g biomass). Fermentation of the hydrolyzates by Saccharomyces cerevisiae resulted in 0.172 g ethanol/g biomass after 24 h, equivalent to 80.9% of the maximum theoretical yield (based on the amount of glucose in raw material). Changes in the chemical composition and surface area of rice straw were also investigated before and after popping pretreatment. The results showed little or no difference in chemical composition between the pretreated rice straw and the control. However, the surface area of pretreated rice straw increased twofold compared to the control. Conclusion Popping pretreatment of rice straw can effectively improve downstream saccharification and fermentation, important for bioethanol production. PMID:24286244

  12. Saccharification of wheat-straw cellulose by enzymatic hydrolysis following fermentative and chemical pretreatment

    SciTech Connect

    Detroy, R.W.; Lindenfelser, L.A.; St. Julian, G. Jr.; Orton, W.L.

    1980-01-01

    In our investigations, wheat straw fermentations were conducted using the edible, white-rot fungus commonly known as the oyster mushroom, Pleurotus ostreatus (Jacq. ex Fr.) Kummer, as fermentation organism. Fermented substrates were evaluated for degree of lignin and cellulose degradation and saccharification. In addition, since our primary objective in the P. ostreatus fermentation was to increase the amount of availabile cellulose in straw for further fermentation, cellulose hydrolysis rates were determined. Cellulose conversion to fermentable sugar was also determined on chemically modified straws by subjecting them to enzymatic hydrolysis. Progress and extent of delignification was follwed also by scanning electron microscopy (SEM), and structural changes were determined in treated-straw substrates.

  13. Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils.

    PubMed

    Badía, David; Martí, Clara; Aguirre, Angel J

    2013-11-01

    The crop residues buried in semiarid soils as a carbon sink are evaluated. Both C-CO2 evolved and C sequestered from agricultural soils amended with barley straw were measured seasonally over 2 farming seasons in a semiarid environment (NE Spain). Six experimental soils with low organic matter content and contrasted properties were selected. The CO2 efflux, as a result of soil microbial activity, showed a significant seasonal variation according to changes in both soil moisture and temperature being the spring and early summer when respiration rates get higher. On annual average, more organic, calcareous soils, evolved higher carbon dioxide efflux (up to 53 mg CO2/kg and day) than soils with high levels of gypsum or more soluble salts (up to 25 mg CO2/kg and day), which have a lower percentage of organic carbon. Straw residue incorporation increases these CO2 emissions significantly for each soil type. Although CO2 emissions are significantly and negatively correlated with the C storage, straw addition increases soil organic C content, at the end of the period of study. In calcareous soils were stored up to 550 kgC/ha and year, gypseous soils up to 1135 kgC/ha and year and saline soils up to 1450 kgC/ha and year. According to the amount of stored C in the different soil types, the isohumic coefficient of barley straw ranges from 0.087 to 0.259 (kg of humus formed from 1 kg of dry straw).

  14. Thermal degradation of cereal straws in air and nitrogen

    SciTech Connect

    Ghaly, A.E.; Ergundenler, A.

    1991-12-31

    The termogravimetric behavior of four cereal straws (wheat, barley, oats, and rye) was examined at three heating rates (10, 20, and 50{degrees}C/min) in air and nitrogen atmospheres. The thermal degradation rate in active and passive pyrolysis zones, the initial degradation temperature, and the residual weight at 600{degrees}C were determined for these straws in both atmospheres. Increasing the heating rate increased the thermal degradation rate, and decreased both the initial degradation temperature and the residual weight at 600{degrees}C. The higher the cellulosic content of the straw, the higher the thermal degradation rate and the initial degradation temperature. Also, higher ash content in the straw resulted in higher residual weight at 600{degrees}C. The thermal degradation rate in active pyrolysis zone was lower in air atmosphere than in nitrogen atmosphere, whereas the thermal degradation rate in passive pyrolysis zone and the residual weight at 600{degrees}C were higher in nitrogen atmosphere than in air atmosphere.

  15. Barley peroxidase isozymes

    NASA Astrophysics Data System (ADS)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per; Henriksen, Anette; Finnie, Christine; Svensson, Birte; Roepstorff, Peter

    2007-12-01

    Thirteen peroxidase spots on two-dimensional gels were identified by comprehensive proteome analysis of the barley seed. Mass spectrometry tracked multiple forms of three different peroxidase isozymes: barley seed peroxidase 1, barley seed-specific peroxidase BP1 and a not previously identified putative barley peroxidase. The presence of multiple spots for each of the isozymes reflected variations in post-translational glycosylation and protein truncation. Complete sequence coverage was achieved by using a series of proteases and chromatographic resins for sample preparation prior to mass spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination. In summary, a subset of three peroxidase isozymes was found to occur in the seed, whereas products of four other barley peroxidase genes were not detected. The present analysis documents the selective expression profiles and post-translational modifications of isozymes from a large plant gene family.

  16. The Barley Phytomer

    PubMed Central

    Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.

    2007-01-01

    Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062

  17. Building a Straw Bridge

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  18. Change in physical properties of pine bark and switchgrass substrates over time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternatives to pine bark for nursery crop substrates have been proposed, including the use of straw materials such as switchgrass. While straw substrates can be developed with suitable physical properties measured immediately after mixing, little is known about how the physical properties of straw...

  19. Straw use and availability for second generation biofuels in England

    PubMed Central

    Glithero, Neryssa J.; Wilson, Paul; Ramsden, Stephen J.

    2013-01-01

    Meeting EU targets for renewable transport fuels by 2020 will necessitate a large increase in bioenergy feedstocks. Although deployment of first generation biofuels has been the major response to meeting these targets they are subject to wide debate on their sustainability leading to the development of second generation technologies which use lignocellulosic feedstocks. Second generation biofuel can be subdivided into those from dedicated bioenergy crops (DESGB), e.g. miscanthus, or those from co-products (CPSGB) such as cereal straw. Potential supply of cereal straw as a feedstock for CPSGB's is uncertain in England due to the difficulty in obtaining data and the uncertainty in current estimates. An on-farm survey of 249 farms (Cereal, General Cropping and Mixed) in England was performed and linked with Farm Business Survey data to estimate current straw use and potential straw availability. No significant correlations between harvested grain and straw yields were found for wheat and oilseed rape and only a weak correlation was observed for barley. In England there is a potential cereal straw supply of 5.27 Mt from arable farm types; 3.82 Mt are currently used and 1.45 Mt currently chopped and incorporated. If currently chopped and incorporated cereal straw from arable farm types was converted into bioethanol, this could represent 1.5% of the UK petrol consumption by energy equivalence. The variations in regional straw yields (t ha−1) have a great effect on the England supply of straw and the potential amount of bioethanol that can be produced. PMID:27667905

  20. Post-harvest N2O emissions were not affected by various types of oilseed straw incorporated into soil

    NASA Astrophysics Data System (ADS)

    Köbke, Sarah; Senbayram, Mehmet; Hegewald, Hannes; Christen, Olaf; Dittert, Klaus

    2015-04-01

    Oilseed rape post-harvest N2O emissions are seen highly critical as so far they are considered as one of the most crucial drawbacks in climate-saving bioenergy production systems. N2O emissions may substantially counterbalance the intended savings in CO2 emissions. Carbon-rich crop residues in conjunction with residual soil nitrate are seen as a key driver since they may serve as energy source for denitrification and, they may alter soil-borne N2O emissions. As oilseed rape straw is known to have high N/C ratio compared to other crop residues, its soil incorporation may specifically trigger post-harvest N2O emissions. Therefore, the aim of the present study was to determine post-harvest N2O emissions in soils amended with various types of oilseed rape straw (with different N/C ratio) and barley straw in field and incubation experiments. In the incubation experiment, oilseed rape or 15N labelled barley straw were mixed with soil at a rate of 1.3 t DM ha-1 and studied for 43 days. Treatments consisted of non-treated control soil (CK), 15N labelled barley straw (BST), oilseed rape straw (RST), 15N labelled barley straw + N (BST+N), or oilseed rape straw + N (RST+N). N fertilizer was applied to the soil surface as ammonium-nitrate at a rate of 100 kg N ha-1 and soil moisture was adjusted to 80% water-holding capacity. In the field experiment, during the vegetation period 15N labelled fertilizer (15NH415NO3) was used to generate 15N labelled oilseed rape straw (up to 5 at%). Here, the three fertilizer treatments consisted of 5 kg N ha-1 (RST-5), 150 kg N ha-1 (RST-150) and 180 kg N ha-1 (RST-180). Post-harvest N2O emissions were determined during the period of August 2013 to February 2014 by using static flux chambers. In the incubation trial, cumulative N2O emissions were 5, 29, 40 g N2O-N ha-1 148 days-1 in non-fertilized control, BST and RST treatments, respectively. Here, emissions were slightly higher in RST than BST (p

  1. Serine proteinases from barley malt may degrade beta-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley seed proteinases are critically important to seed germination and malting in that they generate amino acids from seed N reserves, supporting embryo growth during germination and yeast fermentation during brewing. However, relatively little is known regarding the endogenous protein substrate ...

  2. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley.

    PubMed

    Risk, Joanna M; Selter, Liselotte L; Chauhan, Harsh; Krattinger, Simon G; Kumlehn, Jochen; Hensel, Goetz; Viccars, Libby A; Richardson, Terese M; Buesing, Gabriele; Troller, Anna; Lagudah, Evans S; Keller, Beat

    2013-09-01

    The Lr34 gene encodes an ABC transporter and has provided wheat with durable, broad-spectrum resistance against multiple fungal pathogens for over 100 years. Because barley does not have an Lr34 ortholog, we expressed Lr34 in barley to investigate its potential as a broad-spectrum resistance resource in another grass species. We found that introduction of the genomic Lr34 sequence confers resistance against barley leaf rust and barley powdery mildew, two pathogens specific for barley but not virulent on wheat. In addition, the barley lines showed enhanced resistance against wheat stem rust. Transformation with the Lr34 cDNA or the genomic susceptible Lr34 allele did not result in increased resistance. Unlike wheat, where Lr34-conferred resistance is associated with adult plants, the genomic Lr34 transgenic barley lines exhibited multipathogen resistance in seedlings. These transgenic barley lines also developed leaf tip necrosis (LTN) in young seedlings, which correlated with an up-regulation of senescence marker genes and several pathogenesis-related (PR) genes. In wheat, transcriptional expression of Lr34 is highest in adult plants and correlates with increased resistance and LTN affecting the last emerging leaf. The severe phenotype of transgenic Lr34 barley resulted in reduced plant growth and total grain weight. These results demonstrate that Lr34 provides enhanced multipathogen resistance early in barley plant development and implies the conservation of the substrate and mechanism of the LR34 transporter and its molecular action between wheat and barley. With controlled gene expression, the use of Lr34 may be valuable for many cereal breeding programmes, particularly given its proven durability.

  3. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment.

  4. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan.

    PubMed Central

    Lowe, S E; Theodorou, M K; Trinci, A P

    1987-01-01

    The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3606104

  5. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose and xylan

    SciTech Connect

    Lowe, S.E.; Theodorou, M.K.; Trinci, A.P.J.

    1987-06-01

    The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (RI) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5 and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the RI isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of RI on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive. Xylanase activity was mainly cell associated in these cultures, but there was a considerable increase in activity during fungal autolysis. (Refs. 33).

  6. [A Christmas straw goat astray].

    PubMed

    Bloch, Sune Land; Nielsen, Hans Ulrik Kjærem

    2012-12-01

    A 22-year-old otherwise healthy man presented to our clinic with suspected acute epiglottitis. The patient had a 1-week history of pain in the throat and fever for the latest 24 hours. During the physical examination, the patient mentioned that he had been eating a Christmas straw goat at a party one week previously. Direct fiberoptic laryngoscopy showed a red and swollen lingual surface of the epiglottis, but no foreign bodies were identified. After inhalation of adrenalin, a 4 cm straw became visible in the epiglottic vallecula. Mimic of acute epiglottitis from a straw in the vallecula has to our knowledge never been described in the literature.

  7. Development of oil-spill sorbent from straw biomass waste: Experiments and modeling studies.

    PubMed

    Tijani, Mansour M; Aqsha, Aqsha; Mahinpey, Nader

    2016-04-15

    The recovery of oil spilled on land or water has become an important issue due to environmental regulations. Canadian biomasses as fibrous materials are naturally renewable and have the potential to absorb oil-spills at different ranges. In this work, four Canadian biomasses were examined in order to evaluate their oil affinities and study parameters that could affect oil affinity when used as sorbent, such as average particle size, surface coating and reusability. Moreover, one oil sorption model was adopted and coupled with another developed model to approximate and verify the experimental findings of the oil sorbent biomasses. At an average particle size of 150-1000 μm, results showed that barley straw biomass had the highest absorbency value at 6.07 g/g, while flax straw had the lowest value at 3.69 g/g. Wheat and oat straws had oil absorbency values of 5.49 and 5.00 g/g, respectively. An average particle size of 425-600 μm indicated better absorbency values for oat and wheat straws. Furthermore, the thermal stability study revealed major weight recovery for two flame retardant coatings at hemicellulose and lignocellulose degradation temperature ranges. It was also found that oat straw biomass could be regenerated and used for many sorption/desorption cycles, as the reusability experiment showed only a 18.45% reduction in the oil absorbency value after six consecutive cycles. The developed penetration absorbency (PA) model showed oat straw adsorbed oil at the inter-particle level; and, the results of the sorption capacity model coupled with the PA model excellently predicted the oil sorption of raw and coated oat straws. PMID:26895719

  8. Barley Transformation Using Biolistic Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  9. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms.

    PubMed

    Taha, Mohamed; Shahsavari, Esmaeil; Al-Hothaly, Khalid; Mouradov, Aidyn; Smith, Andrew T; Ball, Andrew S; Adetutu, Eric M

    2015-04-01

    Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bacterial and 18 fungal isolates were quantitatively screened individually for the saccharification of four different ball-milled straw substrates: wheat, rice, sugarcane, and pea straw. Rice and sugarcane straws which had similar Fourier transform-infrared spectroscopy profiles were more degradable, and resulted in more hydrolytic enzyme production than wheat and pea straws. Crude enzyme produced on native straws performed better than those on artificial substrates (such as cellulose and xylan). Four fungal and five bacterial isolates were selected (based on their high strawase activities) for constructing dual and triple microbial combinations to investigate microbial synergistic effects on saccharification. Combinations such as FUNG16-FUNG17 (Neosartorya fischeri-Myceliophthora thermophila) and RMIT10-RMIT11 (Aeromonas hydrophila-Pseudomonas poae) enhanced saccharification (3- and 6.6-folds, respectively) compared with their monocultures indicating the beneficial effects of synergism between those isolates. Dual isolate combinations were more efficient at straw saccharification than triple combinations in both bacterial and fungal assays. Overall, co-culturing can result in significant increases in saccharification which may offer significant commercial potential for the use of microbial consortia. PMID:25724976

  10. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms.

    PubMed

    Taha, Mohamed; Shahsavari, Esmaeil; Al-Hothaly, Khalid; Mouradov, Aidyn; Smith, Andrew T; Ball, Andrew S; Adetutu, Eric M

    2015-04-01

    Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bacterial and 18 fungal isolates were quantitatively screened individually for the saccharification of four different ball-milled straw substrates: wheat, rice, sugarcane, and pea straw. Rice and sugarcane straws which had similar Fourier transform-infrared spectroscopy profiles were more degradable, and resulted in more hydrolytic enzyme production than wheat and pea straws. Crude enzyme produced on native straws performed better than those on artificial substrates (such as cellulose and xylan). Four fungal and five bacterial isolates were selected (based on their high strawase activities) for constructing dual and triple microbial combinations to investigate microbial synergistic effects on saccharification. Combinations such as FUNG16-FUNG17 (Neosartorya fischeri-Myceliophthora thermophila) and RMIT10-RMIT11 (Aeromonas hydrophila-Pseudomonas poae) enhanced saccharification (3- and 6.6-folds, respectively) compared with their monocultures indicating the beneficial effects of synergism between those isolates. Dual isolate combinations were more efficient at straw saccharification than triple combinations in both bacterial and fungal assays. Overall, co-culturing can result in significant increases in saccharification which may offer significant commercial potential for the use of microbial consortia.

  11. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  12. Fungal upgrading of wheat straw for straw-thermoplastics production.

    PubMed

    Houghton, Tracy P; Thompson, David N; Hess, J Richard; Lacey, Jeffrey A; Wolcott, Michael P; Schirp, Anke; Englund, Karl; Dostal, David; Loge, Frank

    2004-01-01

    Combining biologic pretreatment with storage is an innovative approach for improving feedstock characteristics and cost, but the magnitude of responses of such systems to upsets is unknown. Unsterile wheat straw stems were upgraded for 12 wk with Pleurotus ostreatus at constant temperature to estimate the variation in final compositions with variations in initial moisture and inoculum. Degradation rates and conversions increased with both moisture and inoculum. A regression analysis indicated that system performance was quite stable with respect to inoculum and moisture content after 6 wk of treatment. Scale-up by 150x indicated that system stability and final straw composition are sensitive to inoculum source, history, and inoculation method. Comparative testing of straw-thermoplastic composites produced from upgraded stems is under way.

  13. Utilization of two sewage sludges on cropland: yield, nitrogen, and metal uptake in winter barley

    SciTech Connect

    Unger, M.

    1985-01-01

    Two municipal sludges, one from a highly industrialized city, Chicago, and another from a lesser industrialized, highly agricultural area, Tucson, are compared for barley production of Pima c 1 (Typic torrifluvent). Both sludges were responsible for highly significant additions of Zn, Cu, Ni, Cd, and P to the soil each year at the rates of 100mt/ha single and 20mt/ha for 2 years. Nitrogen responses for barley straw and grain were observed from both sludges. Tucson sludge appears to be attractive as a potential fertilizer, not only as an NPK source, but also for its minimal amounts of heavy metals. The Chicago sludge with high levels of heavy metals, particularly Cd, appears unsuited as a fertilizer because of the plant's tendency to take up toxic levels of heavy metals.

  14. Fattening Holstein heifers by feeding high-moisture corn (whole or ground) ad libitum separately from concentrate and straw.

    PubMed

    Devant, M; Quintana, B; Aris, A; Bach, A

    2015-10-01

    The objectives of this study were to evaluate the effects of high-moisture corn (HMC), either whole or ground, fed separately from concentrate and straw on feeding behavior, rumen fermentation, whole tract digestibility, and nitrogen balance. Twenty-four Holstein heifers (199 ± 5.5 kg BW and 157 ± 6.9 d age) housed in individual pens were assigned to 3 treatments: 1) whole (unprocessed) HMC fed along with concentrate and barley straw, all fed separately and ad libitum (WHMC); 2) HMC ground through a 0.4-cm screen before ensiling and fed along with concentrate and barley straw, all fed separately and ad libitum (GHMC); and 3) a concentrate composed of mainly corn meal, ground through a roller mill with screen openings of 6 mm, and barley straw, both fed separately and ad libitum (Control). Concentrate, HMC, and straw were offered separately ad libitum in a free-choice situation and consumption was recorded daily and BW was recorded weekly. Apparent nutrient digestibility and N balance were determined at the beginning, middle, and end of the study. At the same time points, rumen fluid was collected through rumenocentesis to determine rumen pH and VFA concentrations. Feeding behavior was monitored throughout the study. Animals were harvested after 134 d and HCW, rumen and cecum wall lesions, and liver abscesses were recorded. Treatment did not affect total DMI, feed efficiency, ADG, final BW, and carcass weight or classification. Concentrate consumption (6.6 ± 0.35 kg/d) of Control heifers was greater ( < 0.001) than that of GHMC (4.1 ± 0.35 kg/d) and WHMC heifers (2.8 ± 0.35 kg/d), and GHMC heifers consumed less ( < 0.001) HMC than WHMC heifers (2.3 ± 0.31 and 4.2 ± 0.31 kg/d, respectively). Dietary treatments did not affect rumination, self-grooming, nonnutritive oral behaviors, and rumen pH. However, rumen acetate to propionate ratio decreased when heifers received HMC (1.77 ± 0.276) compared with when heifers received the Control (2.82 ± 0.276). Total

  15. QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare x H. spontaneum cross in a Mediterranean environment.

    PubMed

    Grando, S; Baum, M; Ceccarelli, S; Goodchild, A; El-Haramein, F Jaby; Jahoor, A; Backes, G

    2005-02-01

    Barley straw is commonly used as animal feed in many developing countries. Even a small increase in its nutritive value can have a large impact on animal production, and hence, on rural livelihood and human nutrition. Straw quality is strongly affected by environmental factors and is, therefore, difficult to improve with empirical breeding. The objective of this study was to identify molecular markers to facilitate the improvement of straw quality in barley. For this purpose, we have used the genetic linkage map that was already developed for recombinant inbred lines (RILs) of the cross between a Hordeum vulgare cultivar ('Arta') and a H. spontaneum line (H. spontaneum 41-1), covering a total of 890 cM. Straw parameters from RILs grown at Tel Hadya and Breda (ICARDA's research stations) in 2 years (1996/1997 and 1997/1998) were analyzed by NIRS for predicted nutritional characteristics including neutral detergent fiber, acid detergent fiber, lignin, digestible organic matter in dry matter, voluntary intake, crude protein, and straw morphology (the percentage of blades, sheaths, and stems). Localization of QTLs was performed using Windows QTL Cartographer, version 2.0. Seventy-three QTLs were identified, the majority of which (17) in the driest of the four environments. Only six QTLs were identified in two environments; in five cases, one of the two was the wettest environment. This is discussed in relation to the possibility of improving straw quality in favorable environments where yields are higher, rather than in dry environments where straw quality is already relatively good. PMID:15678328

  16. Identification and Expression Analysis of the Barley (Hordeum vulgare L.) Aquaporin Gene Family.

    PubMed

    Hove, Runyararo M; Ziemann, Mark; Bhave, Mrinal

    2015-01-01

    Aquaporins (AQPs) are major intrinsic proteins (MIPs) that mediate bidirectional flux of water and other substrates across cell membranes, and play critical roles in plant-water relations, dehydration stress responses and crop productivity. However, limited data are available as yet on the contributions of these proteins to the physiology of the major crop barley (Hordeum vulgare). The present work reports the identification and expression analysis of the barley MIP family. A comprehensive search of publicly available leaf mRNA-seq data, draft barley genome data, GenBank transcripts and sixteen new annotations together revealed that the barley MIP family is comprised of at least forty AQPs. Alternative splicing events were likely in two plasma membrane intrinsic protein (PIP) AQPs. Analyses of the AQP signature sequences and specificity determining positions indicated a potential of several putative AQP isoforms to transport non-aqua substrates including physiological important substrates, and respond to abiotic stresses. Analysis of our publicly available leaf mRNA-seq data identified notable differential expression of HvPIP1;2 and HvTIP4;1 under salt stress. Analyses of other gene expression resources also confirmed isoform-specific responses in different tissues and/or in response to salinity, as well as some potentially inter-cultivar differences. The work reports systematic and comprehensive analysis of most, if not all, barley AQP genes, their sequences, expression patterns in different tissues, potential transport and stress response functions, and a strong framework for selection and/or development of stress tolerant barley varieties. In addition, the barley data would be highly valuable for genetic studies of the evolutionarily closely related wheat (Triticum aestivum L.).

  17. Identification and Expression Analysis of the Barley (Hordeum vulgare L.) Aquaporin Gene Family

    PubMed Central

    Hove, Runyararo M.; Ziemann, Mark; Bhave, Mrinal

    2015-01-01

    Aquaporins (AQPs) are major intrinsic proteins (MIPs) that mediate bidirectional flux of water and other substrates across cell membranes, and play critical roles in plant-water relations, dehydration stress responses and crop productivity. However, limited data are available as yet on the contributions of these proteins to the physiology of the major crop barley (Hordeum vulgare). The present work reports the identification and expression analysis of the barley MIP family. A comprehensive search of publicly available leaf mRNA-seq data, draft barley genome data, GenBank transcripts and sixteen new annotations together revealed that the barley MIP family is comprised of at least forty AQPs. Alternative splicing events were likely in two plasma membrane intrinsic protein (PIP) AQPs. Analyses of the AQP signature sequences and specificity determining positions indicated a potential of several putative AQP isoforms to transport non-aqua substrates including physiological important substrates, and respond to abiotic stresses. Analysis of our publicly available leaf mRNA-seq data identified notable differential expression of HvPIP1;2 and HvTIP4;1 under salt stress. Analyses of other gene expression resources also confirmed isoform-specific responses in different tissues and/or in response to salinity, as well as some potentially inter-cultivar differences. The work reports systematic and comprehensive analysis of most, if not all, barley AQP genes, their sequences, expression patterns in different tissues, potential transport and stress response functions, and a strong framework for selection and/or development of stress tolerant barley varieties. In addition, the barley data would be highly valuable for genetic studies of the evolutionarily closely related wheat (Triticum aestivum L.). PMID:26057533

  18. Cellulase production and saccharification of rice straw by the mutant strain Hypocrea koningii RSC1.

    PubMed

    Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2014-01-01

    The production of cellulase using solid-state fermentation of rice straw by the mutant strain Hypocrea koningii RSC1 was studied. Optimization of culture conditions, such as the nitrogen source, pH, and temperature, resulted in a maximum filter paper cellulase activity of 44.15 U g(-1) substrate, a carboxymethylcellulase activity of 324.6 U g(-1) substrate, and a β-glucosidase activity of 7.45 U g(-1) substrate. Saccharification of untreated, 1% H(2)SO(4)-treated, and 2.5% NaOH-treated rice straw using the RSC1 cellulase resulted in 19, 17, and 34 g L(-1) of reducing sugar, respectively. Further studies on the morphological and compositional changes of rice straw upon treatment with the cellulase by scanning electron microscopy analysis and Fourier transform infrared spectroscopy revealed the disruption of the arrangement of fibers and changes in the functional groups that occur in cellulose. X-ray diffraction analysis revealed a reduction in crystallinity of the rice straw upon treatment with the cellulase. Our study shows that H. koningii RSC1 could be a good choice for the production of cellulase and reducing sugars from rice straw.

  19. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  20. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  1. Enzymatic saccharification of pretreated rice straw and biomass production

    SciTech Connect

    Araujo, A.; D'Souza, J.

    1986-10-01

    A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percent saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.

  2. Molecular cloning and characterization of an inorganic pyrophosphatase from barley.

    PubMed

    Visser, K; Heimovaara-Dijkstra, S; Kijne, J W; Wang, M

    1998-05-01

    A cDNA clone with sequence homology to soluble inorganic pyrophosphatase (IPPase) was isolated from a library of developing barley grains. The protein encoded by this clone was produced in transgenic Escherichia coli, and showed IPPase activity. In nondormant barley grains, the gene appeared to be expressed in metabolically active tissue such as root, shoot, embryo and aleurone. During inhibition, a continuous increase of the steady state mRNA level of IPPase was observed in embryos of non-dormant grains. In the embryos of dormant grains its production declined, after an initial increase. With isolated dormant and nondormant embryos, addition of recombinant IPPase, produced by E. coli, enhanced the germination rate. On the other hand, addition of pyrophosphate (PPi), substrate for this enzyme, appeared to reduce the germination rate. A role for this IPPase in germination is discussed.

  3. [Response of Straw and Straw Biochar Returning to Soil Carbon Budget and Its Mechanism].

    PubMed

    Hou, Ya-hong; Wang, Lei; Fu, Xiao-hua; Le, Yi-quan

    2015-07-01

    Direct straw returning and straw carbonization returning are the main measures of straw returning. Because of the differences in structure and nature as well as returning process between straw and straw biochar, the soil respiration and soil carbon budget after returning must have significant differences. In this study, outdoor pot experiment was carried out to study the response of soil respiration and carbon budget to straw and straw biochar returning and its possible mechanism. The results showed that soil respiration of straw biochar returning [mean value 21. 69 µmol.(m2.s)-1] was significantly lower than that of direct straw returning [mean value 65.32 µmol.(m2.s)-1], and its soil organic carbon content ( mean value 20. 40 g . kg-1) and plant biomass (mean value 138. 56 g) were higher than those of direct straw returning (mean values 17. 76 g . kg-1 and 76. 76 g). Considering the carbon loss after the biochar preparation process, its soil carbon budget was also significantly higher than that of direct straw returning, so it was a low carbon mode of straw returning. Direct straw returning significantly promoted soil dehydrogenase activity, soil β-glycosidase activity and soil microorganism quantity, leading to higher soil respiration, but straw biochar did play an obvious role in promoting the microbial activity index. Easily oxidizable carbon (EOC) and biodegradability of straw biochar were lower than those of straw, which showed that straw biochar had higher stability, and was more difficult to degrade for soil microorganisms so its soil microbial activity was generally lower, and could be retained in the soil for a long time.

  4. Effect of rice straw application on microbial community and activity in paddy soil under different water status.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying

    2016-03-01

    Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity. PMID:26596827

  5. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations. PMID:23535542

  6. Viability and Biological Properties of Barley Seeds Expose to Outside of International Space Station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi; Shagimardanova, Elena; Gusev, Oleg; Sychev, Vladimir; Levinskikh, Margarita; Novikova, Nataliya; Grigoriev, Anatoly

    Plants play an important role in supplying nutrients and oxygen to human under material recycle system in space as well as on earth, therefore, seed storage in space should be necessary to self-supply foods when number of astronauts would stay and investigate for a long-term habitation of orbit and the bases of the Moon and Mars. In order to understand the effect of real space environment on the preservation of seeds, the seeds of malting barley, Haruna Nijo, were exposed to outside of the Pier docking station of International Space Station in the framework of the Biorisk-MSN program. After exposure to outside of International Space Station for 13 months, the seeds (SP) were transported to Earth, soaked in water, and germinated on the filter paper filled with water. The germination ratio of SP was 82%, while that of the ground control was 96%, showing that the barley seeds survived cosmic radiation, vacuum, and temperature excursion in space. The germinated seeds of SP and ground control were transplanted to the Wagner pots filled with soil and grown for 5 months in the greenhouse. The agronomic character, such as number of main stem leaf and ear, straw weight, culm length, ear length, thousand kernel weight, and percentage of ripening, were not different significantly between SP and ground control. The germination ratio of the harvested SP was 96% as same as that of the harvested ground control. Genomic DNA and protein were extracted from leaves of the barleys and analyzed by AFLP and 2-DE, respectively. The results demonstrated no significant difference in genetic polymorphism and protein production in these barleys. From our results, barley seeds could survive real space environment for the long-term habitation without phenotypic and genotypic damages.

  7. In vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    PubMed Central

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian; Krucewicz, Katarzyna; Beeren, Sophie R.; Rydhal, Maja G.; Yoshimura, Yayoi; Striebeck, Alexander; Motawia, Mohammed S.; Willats, William G. T.; Palcic, Monica M.

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates. PMID:26858729

  8. Bioethanol production from rice straw residues

    PubMed Central

    Belal, Elsayed B.

    2013-01-01

    A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 °C, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L−1. PMID:24159309

  9. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production. PMID:25152056

  10. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

  11. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    SciTech Connect

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  12. Nitrate leaching, yields and carbon sequestration after noninversion tillage, catch crops, and straw retention.

    PubMed

    Hansen, E M; Munkholm, L J; Olesen, J E; Melander, B

    2015-05-01

    Crop management factors, such as tillage, rotation, and straw retention, need to be long-term to allow conclusions on effects on crop yields, nitrate leaching, and carbon sequestration. In 2002, two field experiments, each including four cash crop rotations, were established on soils with 9 and 15% clay, under temperate, coastal climate conditions. Direct drilling and harrowing to two different depths were compared to plowing with respect to yield, nitrate N leaching, and carbon sequestration. For comparison of yields across rotations, grain and seed dry matter yields for each crop were converted to grain equivalents (GE). Leaching was compared to yields by calculating yield-scaled leaching (YSL, g N kg GE), and N balances were calculated as the N input in manure minus the N output in products removed from the fields. Direct drilling reduced yields, but no effect on leaching was found. Straw retention did not significantly increase yields, nor did it reduce leaching, while fodder radish ( L.) as a catch crop was capable of reducing nitrate leaching to a low level. Thus, YSL of winter wheat ( L.) was higher than for spring barley ( L.) grown after fodder radish due to the efficient catch crop. Soil organic carbon (SOC) did not increase significantly after 7 yr of straw incorporation or noninversion tillage. There was no correlation between N balances calculated for each growing season and N leaching measured in the following percolation period. PMID:26024267

  13. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  14. Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill.

    PubMed

    Han, Qiang; Jin, Yanbin; Jameel, Hasan; Chang, Hou-Min; Phillips, Richard; Park, Sunkyu

    2015-01-01

    Waste wheat straw (WWS) is the waste product from feedstock preparation process in a straw pulp mill. It has a significant annual production rate and no commercial value has been explored on this material. In this study, waste wheat straw was pretreated using an autohydrolysis process followed by mechanical refining, and the pretreated materials were further enzymatically hydrolyzed to evaluate the total sugar recovery for bioethanol production. Results show that autohydrolysis at 170 °C for 40 min followed by 6000 revolution PFI refining provided the best result in this study, where a total sugar recovery (total sugars in autohydrolysis filtrate and enzymatic hydrolyzate over total carbohydrates on raw WWS) of 70 % at 4 filter paper unit per oven dry gram (FPU/OD g) substrate enzyme charge could be obtained. The economic evaluation of this biorefinery process indicates that cellulosic ethanol production from autohydrolysis of WWS is a very profitable business, with 28.4 % of internal rate of return can be achieved based on current ethanol wholesale price in China.

  15. Moisture in a straw bale wall

    SciTech Connect

    Brown, G.Z.; Fremouw, S.; Kline, J.; Northcutt, D.; Wang, Z.; Weiser, R.

    1999-07-01

    The objective of this project was to see if there was sufficient moisture to promote fungus growth within a straw bale wall. To determine the level of moisture, the walls in a straw bale building were instrumented to monitor relative humidity. The year-long monitoring began in August, 1997. During the monitoring period the building's interior relative humidity ranged from 22 to 71% and the exterior relative humidity ranged from 10 to 94%. The maximum straw bale relative humidity recorded was 85%, which occurred on February 21 on the south side of the building in a lower bale on the exterior side. The minimum straw bale relative humidity occurred on August 13 on the east side of the building in a lower bale on the exterior side and was 27%. In the 23 studies of mold growth in straw bales the authors reviewed, mold growth occurred between 70 and 91% relative humidity.

  16. Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley.

    PubMed

    Liu, D L; Lovett, J V

    1993-10-01

    Allelopathic effects of barley (Hordeum vulgare L.) on white mustard (Sinapis alba L.) were assessed using modified bioassays that reduced other environmental influences. In a Petri dish bioassay, germination of white mustard was delayed and the radicle lengths were significantly inhibited at a density of 0.5 barley seed/cm(2). In a 'siphoning' bioassay apparatus, when the two species were sown together, radicle elongation of white mustard was not inhibited one day after sowing but became increasingly inhibited as bioassay time increased. Barley allelochemicals were released from the roots in a hydroponic system for at least 70 days after commencement of barley germination. Solutions removed from the hydroponic system of growing barley delayed germination and inhibited growth of white mustard. The allelopathic activity of barley was further confirmed at a density of 0.3 barley seed/cm(2) in a modified stairstep apparatus. PMID:24248571

  17. Barley and oats: underutilized nutrition sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley and oats are two unique ancient crops. Their grains contain beta-glucan in substantial amounts, which can lower cholesterol levels and reduce glycemic response. Yet, food uses of barley and oats are rather limited due to lack of palatability of whole grain food or functionality of milled flou...

  18. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion.

    PubMed

    Menardo, S; Cacciatore, V; Balsari, P

    2015-03-01

    This paper studies the synergistic effects on biogas production obtained when different feedstocks are co-digested with varying proportions of rice straw and explores their behavior at the laboratory scale in continuously stirred digesters. Evaluative measures included methane production, volatile solids degradation, ash accumulation, and extrusion effectiveness. The effect of extrusion on the production of energy was also investigated. Results indicated that continuous stirred digesters fed with substrates composed of 10% or 30% of ensiled rice straw (on total FM) produced 146.1 and 140.0lNCH4kgDM(-1)day(-1), respectively. When extrusion was employed, organic matter degradation was promoted and methane production was significantly raised-by as much as 16%. For the feeds containing 10% rice straw, the increase in obtained energy was higher than the energy needed for the extrusion, but the energy balance was close to zero when the percentage of rice straw was the 30% of the feed.

  19. Kinetics of SO2-ethanol-water (AVAP®) fractionation of sugarcane straw.

    PubMed

    You, Xiang; van Heiningen, Adriaan; Sixta, Herbert; Iakovlev, Mikhail

    2016-07-01

    Kinetics of SO2-ethanol-water (AVAP®) fractionation was determined for sugarcane (SC) straw in terms of pulp composition (non-carbohydrate components, cellulose, hemicelluloses) and properties (kappa number, pulp intrinsic viscosity in CED and cellulose degree of polymerization). Effect of temperature (135-165°C) and time (18-118min) was studied at fixed liquor composition (SO2/ethanol/water=12:22.5:65.5, w/w) and a liquor-to-solid ratio (4Lkg(-1)). Interpretation is given in terms of major fractionation reactions, removal of non-carbohydrate components and xylan, as well as acid hydrolysis of cellulose, and is compared to other lignocellulosic substrates (beech, spruce and wheat straw). Overall, SO2-ethanol-water process efficiently fractionates SC straw by separating cellulose from both non-carbohydrate components and xylan while reducing cellulose DP.

  20. Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Han, Ye-Ju; Wang, Xiao-Qin; Potprommanee, Laddawan; Ning, Xun-An; Liu, Jing-Yong; Sun, Jian; Peng, Yen-Ping; Sun, Shui-Yu; Lin, Yuan-Chung

    2016-08-01

    The aim of this work was to study an environmentally friendly method for pretreating rice straw by using 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as an ionic liquid (IL) assisted by surfactants. Different temperatures, reaction times, and surfactant concentrations were studied. Compared with [BMIM]Cl only pretreatment, the addition of 1% sodium dodecyl sulfate (SDS) and 1% cetyl trimethyl ammonium bromide (CTAB) increased lignin removal to 49.48% and 34.76%, respectively. Untreated and pretreated rice straw was thoroughly characterized through FTIR, XRD, and FE-SEM. Cellulose crystallinity and surface morphology of the rice straw were substantially altered after surfactant-assisted IL pretreatment. In conclusion, surfactant-assisted IL pretreatment is an effective method for producing fermentable sugars from lignocellulosic substrates. PMID:27155265

  1. Insecticidal properties of Verbascum cheiranthifolium against R. dominica on wheat and barley.

    PubMed

    Khoshnoud, H; Nemati, N; Amirnia, R; Ghiyasi, M; Ghourttapeh, A Hasanzadeh; Tajbakhsh, M; Talati, F; Salehzadeh, H

    2008-03-01

    Tissues of higher plants contain novel natural substances that can be used to develop environmental safe methods for insect control. In this study, ethanol extract from flowers of Verbascum cheiranthifolium Boiss. (Scrophulariaceae) was examined for their effect on mortality and progeny production against adults of Rhyzopertha dominica (F.) on two commodities, wheat and barley. The botanical extract was applied at five dose rates, which 0.25, 0.5, 1.0, 2.0 and 3% (w/v). Adults of R. dominica were exposed to the treated wheat and peeled barley at 25 degrees C and 65% RH and mortality was assessed after 24 h, 48 h, 7 day, 14 day and 21 day of exposure. Then all adults were removed and the treated substrate remained at the same conditions for an additional 45 day after this interval, the commodities were checked for progeny production. In two commodities mortality increased with the increase of dose and exposure interval. Results indicated that on wheat, mortality was 100% after 14 days of exposure at the highest dose rate. Whereas, in the same conditions mortality of adults on barley was 63%. Thus plant extract was more effective against adults of R. dominica on wheat than application of barley. Interestingly in two diets, complete suppression (100%) of the progeny production was observed in the treated wheat and barley than in control even in the lowest dose rate.

  2. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    PubMed

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA.

  3. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  4. Insecticidal activity of bio-oil from the pyrolysis of straw from Brassica spp.

    PubMed

    Suqi, Liu; Cáceres, Luis A; Caceres, Luis; Schieck, Katie; McGarvey, Brian D; Booker, Christina J; McGarvey, Brian M; Yeung, Ken K-C; Pariente, Stephane; Briens, Cedric; Berruti, Franco; Scott, Ian M

    2014-04-23

    Agricultural crop residues can be converted through thermochemical pyrolysis to bio-oil, a sustainable source of biofuel and biochemicals. The pyrolysis bio-oil is known to contain many chemicals, some of which have insecticidal activity and can be a potential source of value-added pest control products. Brassicacae crops, cabbage, broccoli, and mustards, contain glucosinolates and isocyanates, compounds with recognized anti-herbivore activity. In Canada, canola Brassica napus straw is available from over 6 000 000 ha and mustard Brassica carinata and Brassica juncea straw is available from 200 000 ha. The straw can be converted by microbial lignocellulosic enzymes as a substrate for bioethanol production but can also be converted to bio-oil by thermochemical means. Straw from all three species was pyrolyzed, and the insecticidal components in the bio-oil were isolated by bioassay-guided solvent fractionation. Of particular interest were the mustard straw bio-oil aqueous fractions with insecticidal and feeding repellent activity to Colorado potato beetle larvae. Aqueous fractions further analyzed for active compounds were found not to contain many of the undesirable phenol compounds, which were previously found in other bio-oils seen in the dichloromethane (DCM) and ethyl acetate (EA) solvent phases of the present study. Identified within the most polar fractions were hexadecanoic and octadecanoic fatty acids, indicating that separation of these compounds during bio-oil production may provide a source of effective insecticidal compounds. PMID:24697626

  5. Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production.

    PubMed

    Sambusiti, C; Ficara, E; Rollini, M; Manzoni, M; Malpei, F

    2012-01-01

    The aim of this study was to determine the effect of sodium hydroxide pretreatment on the chemical composition and the methane production of ensiled sorghum forage and wheat straw. NaOH pretreatment was conducted in closed bottles, at 40 °C for 24 h. Samples were soaked in a NaOH solution at different dosages (expressed in terms of total solids (TS) content) of 1 and 10% gNaOH/gTS, with a TS concentration of 160 gTS/L. At the highest NaOH dosage the reduction of cellulose, hemicelluloses and lignin was 31, 66 and 44%, and 13, 45 and 3% for sorghum and wheat straw, respectively. The concentration of soluble chemical oxygen demand (CODs) in the liquid phase after the pretreatment was also improved both for wheat straw and sorghum (up to 24 and 33%, respectively). Total sugars content increased up to five times at 10% gNaOH/gTS with respect to control samples, suggesting that NaOH pretreatment improves the hydrolysis of cellulose and hemicelluloses. The Biochemical Methane Potential (BMP) tests showed that the NaOH pretreatment favoured the anaerobic degradability of both substrates. At 1 and 10% NaOH dosages, the methane production increased from 14 to 31% for ensiled sorghum forage and from 17 to 47% for wheat straw. The first order kinetic constant increased up to 65% for sorghum and up to 163% for wheat straw.

  6. Insecticidal activity of bio-oil from the pyrolysis of straw from Brassica spp.

    PubMed

    Suqi, Liu; Cáceres, Luis A; Caceres, Luis; Schieck, Katie; McGarvey, Brian D; Booker, Christina J; McGarvey, Brian M; Yeung, Ken K-C; Pariente, Stephane; Briens, Cedric; Berruti, Franco; Scott, Ian M

    2014-04-23

    Agricultural crop residues can be converted through thermochemical pyrolysis to bio-oil, a sustainable source of biofuel and biochemicals. The pyrolysis bio-oil is known to contain many chemicals, some of which have insecticidal activity and can be a potential source of value-added pest control products. Brassicacae crops, cabbage, broccoli, and mustards, contain glucosinolates and isocyanates, compounds with recognized anti-herbivore activity. In Canada, canola Brassica napus straw is available from over 6 000 000 ha and mustard Brassica carinata and Brassica juncea straw is available from 200 000 ha. The straw can be converted by microbial lignocellulosic enzymes as a substrate for bioethanol production but can also be converted to bio-oil by thermochemical means. Straw from all three species was pyrolyzed, and the insecticidal components in the bio-oil were isolated by bioassay-guided solvent fractionation. Of particular interest were the mustard straw bio-oil aqueous fractions with insecticidal and feeding repellent activity to Colorado potato beetle larvae. Aqueous fractions further analyzed for active compounds were found not to contain many of the undesirable phenol compounds, which were previously found in other bio-oils seen in the dichloromethane (DCM) and ethyl acetate (EA) solvent phases of the present study. Identified within the most polar fractions were hexadecanoic and octadecanoic fatty acids, indicating that separation of these compounds during bio-oil production may provide a source of effective insecticidal compounds.

  7. Calcium homeostasis in barley aleurone

    SciTech Connect

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  8. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates.

    PubMed

    Herrmann, Christiane; Kalita, Navajyoti; Wall, David; Xia, Ao; Murphy, Jerry D

    2016-08-01

    Microalgae can be used to upgrade biogas to biomethane and subsequently be digested for biogas production. However, the low C:N ratio of species such as Arthrospira platensis may cause ammonia inhibition and low process stability during anaerobic digestion. This study investigates co-fermentation of A. platensis with carbon-rich co-substrates (barley straw, beet silage and brown seaweed) at a C:N ratio of 25 to enhance biomass conversion. No synergistic effects on biomethane potential could be proven in batch fermentation tests. However continuous digestion trials showed significantly improved process stability. Mono-digestion of A. platensis was stable only at an organic loading of 1.0gVSL(-1)d(-1). The optimum process co-digested A. platensis with seaweed and achieved stable operation at an organic loading of 4.0gVSL(-1)d(-1). Co-digestion of microalgae and seaweed can be effectively applied to integrated coastal biomethane systems. PMID:27152773

  9. Tibet as a potential domestication center of cultivated barley of China.

    PubMed

    Ren, Xifeng; Nevo, Eviatar; Sun, Dongfa; Sun, Genlou

    2013-01-01

    The importance of wild barley from Qinghai-Tibet Plateau in the origin and domestication of cultivated barley has long been underestimated. Population-based phylogenetic analyses were performed to study the origin and genetic diversity of Chinese domesticated barley, and address the possibility that the Tibetan region in China was an independent center of barley domestication. Wild barley (Hordeum vulgare ssp. spontaneum) populations from Southwest Asia, Central Asia, and Tibet along with domesticated barley from China were analyzed using two nuclear genes. Our results showed that Tibetan wild barley distinctly diverged from Southwest Asian (Near East) wild barley, that Central Asian wild barley is related to Southwest Asian wild barley, and that Chinese domesticated barley shares the same haplotypes with Tibetan wild barley. Phylogenetic analysis showed a close relationship between Chinese domesticated barley and the Tibetan wild barley, suggesting that Tibetan wild barley was the ancestor of Chinese domesticated barley. Our results favor the polyphyletic origin for cultivated barley.

  10. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw

    PubMed Central

    2011-01-01

    Background Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases), resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties) connected with high initial solid loadings in the lignocellulose to ethanol process. Results The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. Conclusions Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter) hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C. PMID:21269447

  11. Mobile bag starch prececal disappearance and postprandial glycemic response of four forms of barley in horses.

    PubMed

    Philippeau, C; Varloud, M; Julliand, V

    2014-05-01

    To determine prececal starch digestibili-ty and estimate glucose uptake from the digestion of 4 forms of barley in the small intestine, 4 mature cecally fistulated geldings (449 ± 41 kg BW) fed a 62:38 (wt/wt) meadow hay:concentrate diet at 1.7 kg DM/100 kg BW were included in a 4 × 4 Latin square design experiment. During each period, horses received 80% DM of their concentrate as 1 of the 4 forms of a same batch of barley, whole grain, 2.5 mm ground, steam flaked, and pelleted. Hay was offered in 2 equal meals and concentrate in 2 unequal meals. The starch supply in the morning meal amounted 2.7 g starch/kg BW. At each period, mobile bag DM and starch disappearance was determined. Except for ground barley, each form of barley was 4 mm ground before being introduced in the bag. Nylon bags containing each substrate were intubated in the horse receiving the pelleted barley. Bags were collected in the cecum for 10 h postintubation. At each period, postprandial glycemia was measured on blood samples collected on the 4 horses via an indwelling jugular catheter just before the concentrate morning meal and for 8 h. No hay in the morning meal was given the day of the measurements. Whole blood glucose was analyzed with a portable blood glucose meter. Mobile bag prececal DM disappearance and starch disappearance depended (P < 0.01) on barley form. Prececal starch disappearance of whole barley was the lowest but no difference (P > 0.05) was detected among the 3 processed grains. No significant effect of barley form was found whatever the glycemic parameters. No significant correlation was reported between glycemic parameters and the amount of prececal mobile bag disappeared starch calculated as the starch intake in the morning meal by the mobile bag starch disappearance. To conclude, the whole form of barley exhibited the lowest prececal mobile bag starch disappearance whereas, in relationship with large individual variations, no significant variation has been shown in

  12. Sharing Drug 'Snorting Straws' Spreads Hepatitis C

    MedlinePlus

    ... 160112.html Sharing Drug 'Snorting Straws' Spreads Hepatitis C Study highlights more fallout from opioid epidemic To ... snort opioids is a major cause of hepatitis C infection, a new study finds. The sharing of ...

  13. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations.

    PubMed

    López-Abelairas, María; Lu-Chau, Thelmo Alejandro; Lema, Juan Manuel

    2013-08-01

    The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

  14. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source.

    PubMed

    Hideno, Akihiro; Inoue, Hiroyuki; Tsukahara, Kenichiro; Yano, Shinichi; Fang, Xu; Endo, Takashi; Sawayama, Shigeki

    2011-02-01

    Cellulases and hemicellulases are key enzymes in the production of alternative fuels and chemicals from lignocellulosic biomass-an abundant renewable resource. Carbon source selection is an important factor in the production of cellulases and hemicellulases. Rice straw--a potential ethanol source--has recently gained considerable interest in Asian countries. Here, we investigated the production of cellulases by using rice straw subjected to various pretreatments as substrates in order to produce cellulases at low costs; we also identified the enzymes' characteristics. Rice straw cutter milled to <3mm was pretreated by wet disk milling, dry ball milling, or hot-compressed water treatment (HCWT). Pretreated rice straw and commercial cellulose, Solka Floc (SF), were used as carbon sources for cellulase production by the fungus Acremonium cellulolyticus. Filter paper cellulase, β-xylanase, and β-xylosidase production from ball- and disk-milled samples were higher than those from SF. Enzymatic activity was absent in cultures where HCWT rice straw was used as carbon source. Wet disk-milled rice straw cultures were more suitable for enzymatic hydrolysis of pretreated rice straw than SF cultures. Thus, wet disk milling may be a suitable pretreatment for producing substrates for enzymatic hydrolysis and generating inexpensive carbon sources for cellulase production. PMID:22112826

  15. Microbial utilization of rice straw and its derived biochar in a paddy soil.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Khan, Sardar; Yao, Huaiying

    2016-07-15

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using (13)C-labeled rice straw and its derived biochar ((13)C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO2 emission in the initial stage of incubation and reached the highest level (0.52 and 3.96mgCkg(-1)soilh(-1)) at 1d and 3d after incubation, respectively. Straw amendment significantly (p<0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and (13)C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p<0.05) higher in (13)C-labeled straw amended soil than the (13)C-labeled biochar amended soil. According to the (13)C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of (13)C-PLFAs derived from straw amendment was significantly (p<0.01) different from biochar amendment. The PLFAs18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest that the function, size and structure of the microbial

  16. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower

  17. Effects of straw treatment and nitrogen supplementation on digestibility, intake and physiological responses of water intake as well as urine and faecal characteristics.

    PubMed

    Ghasemi, E; Khorvash, M; Ghorbani, G R; Elmamouz, F

    2014-02-01

    This study investigates the effects of feeding diet based on untreated (UT) or ensiled alkali-treated (ET) barley straw with either urea or casein supplementation, on feed intake, digestibility, ruminal pH, water intake and faecal and urinary characteristics. Four sheep fitted with ruminal cannulas were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Barley straw was treated by the dry (spraying) method in pH adjusted of hydrogen peroxide (pH 11.5), ensiled for 6 weeks and included at 65% of the diet dry matter (DM). The results showed that straw pH reduced from 11.58 to 8.60 after 6 weeks of ensilage. The ET diet increased average DM digestibility and intake by 19% and 43% respectively. Total water intake was similar across treatments, while the water/DM intake ratio was 23% higher with the UT diet than with the ET one. Ruminal (6.73 vs. 6.84) and faecal (8.67 vs. 9.05) pH decreased but urinary pH (6.14 vs. 8.13) increased as a result of feeding animals on the ET diet compared with the UT diet. Compared with the UT diet, the ET one decreased faecal fibre (12%), moisture (32%) and water holding capacity, while it increased faecal ash (10%) and density (20%). The volume of urine excreted by the sheep fed with the ET diet increased by 67%, but their urine specific gravity (SG) decreased. No significant effects were observed for the dietary N supplementation and interactions between straw type × N supplementation with regard to any of the measured characteristics except for DM intake, which reduced due to the casein supplementation in the ET diet. These results indicate that the alkali treatment and ensilage of barley straw increased digestibility, intake, faecal consistency and urinary pH and dilution but decreased straw alkalinity as well as ruminal and faecal pH.

  18. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots.

    PubMed

    Nagasaka, Seiji; Takahashi, Michiko; Nakanishi-Itai, Reiko; Bashir, Khurram; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K

    2009-03-01

    Typical for a graminaceous plant, barley secretes mugineic acid-family phytosiderophores (MAs) to acquire iron (Fe). Under Fe-deficient conditions, MAs secretion from barley roots increases markedly. Secretion shows a diurnal pattern, with a clear peak 2-3 h after sunrise and cessation within a few hours. Microarray analyses were performed to profile the Fe deficiency-inducible genes in barley roots and diurnal changes in the expression of these genes. Genes encoding enzymes involved in MAs biosynthesis, the methionine cycle, and methionine biosynthesis were highly induced by Fe deficiency. The expression of sulfate transporters was also upregulated by Fe deficiency. Therefore, all of the genes participating in the MAs pathway from sulfur uptake and assimilation to the biosynthesis of MAs were upregulated in Fe-deficient barley roots. In contrast to MAs secretion, the transcript levels of these genes did not show diurnal changes. The amount of endogenous MAs gradually increased during the day after MAs secretion ceased, and was highest before secretion began. These results show that MAs biosynthesis, including the supply of the substrate methionine, occurs throughout the day, and biosynthesized MAs likely accumulate in barley roots until their secretion into the rhizosphere. In contrast, the levels of transcripts encoding an Fe(III)-MAs complex transporter, two putative metal-MAs complex transporters, and HvYS1 were also increased in Fe-deficient barley roots, and the levels of two of these transcripts showed diurnal rhythms. The Fe(III)-MAs complex transporters may absorb Fe(III)-MAs diurnally, synchronous with the diurnal secretion of MAs. PMID:19089316

  19. Steam explosion of oilseed rape straw: establishing key determinants of saccharification efficiency.

    PubMed

    Wood, Ian P; Elliston, Adam; Collins, Sam R A; Wilson, David; Bancroft, Ian; Waldron, Keith W

    2014-06-01

    Oilseed rape straw was steam exploded into hot water at a range of severities. The residues were fractionated into solid and liquid phases and chemically characterised. The effect of steam explosion on enzymatic hydrolysis of the water-insoluble fractions was investigated by studying initial cellulase binding and hydrolysis yields for different cellulase doses. Time-course data was modelled to establish rate-dependent differences in saccharification as a function of pretreatment severity and associated chemical composition. The study concluded: (1) the initial hydrolysis rate was limited by the amount of (pectic) uronic acid remaining in the substrate; (2) the proportion of rapidly hydrolysable carbohydrate was most closely and positively related to lignin abundance and (3) the final sugar yield most closely related to xylan removal from the substrate. Comparisons between milled and un-milled steam exploded straw highlighted the influence that physical structure has on hydrolysis rates and yields, particularly at low severities.

  20. Barley, a potential species for initial reclamation of saline composite tailings of oil sands.

    PubMed

    Renault, Sylvie; MacKinnon, Mike; Qualizza, Clara

    2003-01-01

    The oil sands industry in Alberta (Canada) has developed the composite tailings (CT) process to reduce the fluid fine tails resulting from the processing of oil sands. This process uses a chemical coagulant (gypsum or alum) to produce aggregated fines (clay), so they are retained with the coarse sand fraction of the extraction tailings to form CT, from which fines-free water is released relatively quickly compared with untreated tailings. The resulting CT and CT waters are saline-sodic, with Na+, SO4(2-), and Cl- being the dominant ions. When freshly deposited, the CT deposits are too soft for access by reclamation equipment, and the time required for these deposits to remove the water sufficiently to support traffic is uncertain. A greenhouse study was designed to determine the suitability of barley (Hordeum vulgare L.) for reclamation of fresh CT deposits and to evaluate benefits of peat amendments. This study assessed germination, early plant growth, chlorophyll content, and survival of barley growing in alum- and gypsum-treated CT, with and without peat amendment. Ion and trace metal accumulation in the root and shoot tissues of barley was determined. Amendment of CT with peat improved germination, survival, and growth of barley, but did not prevent leaf injury (probably due to Na and Cl- and possibly multiple nutrient deficiency). Field studies will be undertaken to validate our greenhouse results suggesting that barley could be used to improve dewatering of the freshly deposited substrates, reduce soil erosion, and facilitate leaching of ions by root penetration into the substrate. PMID:14674548

  1. Barley, a potential species for initial reclamation of saline composite tailings of oil sands.

    PubMed

    Renault, Sylvie; MacKinnon, Mike; Qualizza, Clara

    2003-01-01

    The oil sands industry in Alberta (Canada) has developed the composite tailings (CT) process to reduce the fluid fine tails resulting from the processing of oil sands. This process uses a chemical coagulant (gypsum or alum) to produce aggregated fines (clay), so they are retained with the coarse sand fraction of the extraction tailings to form CT, from which fines-free water is released relatively quickly compared with untreated tailings. The resulting CT and CT waters are saline-sodic, with Na+, SO4(2-), and Cl- being the dominant ions. When freshly deposited, the CT deposits are too soft for access by reclamation equipment, and the time required for these deposits to remove the water sufficiently to support traffic is uncertain. A greenhouse study was designed to determine the suitability of barley (Hordeum vulgare L.) for reclamation of fresh CT deposits and to evaluate benefits of peat amendments. This study assessed germination, early plant growth, chlorophyll content, and survival of barley growing in alum- and gypsum-treated CT, with and without peat amendment. Ion and trace metal accumulation in the root and shoot tissues of barley was determined. Amendment of CT with peat improved germination, survival, and growth of barley, but did not prevent leaf injury (probably due to Na and Cl- and possibly multiple nutrient deficiency). Field studies will be undertaken to validate our greenhouse results suggesting that barley could be used to improve dewatering of the freshly deposited substrates, reduce soil erosion, and facilitate leaching of ions by root penetration into the substrate.

  2. 2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...

  3. Vacuum straw tracker test beam run

    SciTech Connect

    Wah, Yau; /Chicago U.

    2005-08-01

    This memorandum of understanding requests beam time at Fermilab during the 2005 Meson Test Beam run to measure the detection inefficiency of vacuum straw tubes. One of the future kaon experiments at J-PARC has the goal to measure the branching ratio of the neutral kaon ''Golden Mode'' K{sub L} {yields} {pi}{sup 0} with a few hundred event sensitivity. This future J-PARC experiment is a follow up of a current KEK experiment, E391a which has been taking data since February 2004. E391a is a collaboration of five countries (Japan, United States, Russia, Korea, and Taiwan) with ten institutions (KEK, Saga U, Yamagata U, Osaka U, U of Chicago, Pusan U, JINR, NDA, Kyoto U, National Taiwan U, and RCNP). The branching ratio of K{sub L} {yields} {pi}{sup 0} {nu} {nu} is small, about 3 x 10{sup -11}. To first order, all kaon decays with final states with charged particles need to be vetoed, and those include K{sub e3}, K{sub {mu}3}, and K{sub {+-}0} (about 80% of all neutral kaon decay). The standard and typical veto power comes from sheet scintillator and may not be adequate. Vacuum straw tubes provides additional, independent and orthogonal veto power, but the detection inefficiency has not been known or measured in a detail way. The inefficiency of the straw has three sources, the electronics, the straw wall/wire, and the gas. We like to perform beam test to measure all three sources. There is much experience in straw detector technology, and some in vacuum straw technology (CKM R&D effort). The possible use of straws in the future K{sub L} {yields} {pi}{sup 0} {nu} {nu} experiment will allow absolute photon/electron energy calibration (via K{sub {+-}0} decays), possible measurement of photon inefficiencies (via K{sub 000} with {pi}{sup 0} Dalitz), and as mentioned, charged particle veto. The results of this proposed beam test will provide new knowledge on the absorption cross section and will direct us on design issues for future neutral kaon decay experiments. Regarding

  4. Anti-inflammatory effect of aqueous extracts of spent Pleurotus ostreatus substrates in mouse ears treated with 12-O-tetradecanoylphorbol-13-acetate

    PubMed Central

    Rivero-Pérez, Nallely; Ayala-Martínez, Maricela; Zepeda-Bastida, Armando; Meneses-Mayo, Marcos; Ojeda-Ramírez, Deyanira

    2016-01-01

    Aims: To evaluate the application of spent Pleurotus ostreatus substrates, enriched or not with medicinal herbs, as a source of anti-inflammatory compounds. Subjects and Methods: P. ostreatus was cultivated on five different substrates: Barley straw (BS) and BS combined 80:20 with medicinal herbs (Chenopodium ambrosioides L. [BS/CA], Rosmarinus officinalis L. [BS/RO], Litsea glaucescens Kunth [BS/LG], and Tagetes lucida Cav. [BS/TL]). The anti-inflammatory activity of aqueous extracts of spent mushroom substrates (SMSs) (4 mg/ear) was studied using an acute inflammation model in the mouse ear induced with 2.5 μg/ear 12-O-tetradecanoylphorbol13-acetate (TPA). Results: Groups treated with BS/CA, BS/RO, and BS/LG aqueous extracts exhibited the best anti-inflammatory activity (94.0% ± 5.5%, 92.9% ± 0.6%, and 90.4% ± 5.0% inhibition of auricular edema [IAO], respectively), and these effects were significantly different (P < 0.05) from that of the positive control indomethacin (0.5 mg/ear). BS/TL and BS were also able to reduce TPA-induced inflammation but to a lesser extent (70.0% ± 6.7% and 43.5% ± 6.6% IAO, respectively). Conclusions: Spent P. ostreatus substrate of BS possesses a slight anti-inflammatory effect. The addition of CA L. to mushroom substrate showed a slightly synergistic effect while RO L. had an additive effect. In addition, LG Kunth and TL Cav. enhanced the anti-inflammatory effect of SMS. However, to determine whether there is a synergistic or additive effect, it is necessary to determine the anti-inflammatory effect of each medicinal herb. PMID:27127316

  5. Alkali pretreatment of wheat straw (Triticum aestivum) at boiling temperature for producing a bioethanol precursor.

    PubMed

    Barman, Dhirendra Nath; Haque, Md Azizul; Kang, Tae Ho; Kim, Min Keun; Kim, Jungho; Kim, Hoon; Yun, Han Dae

    2012-01-01

    We evaluated the effect of dilute sodium hydroxide (NaOH) on wheat straw at boiling temperature for removing lignin and increasing the yield of reducing sugar. Various concentrations of NaOH (0.5% to 2%) were used for pretreating wheat straw at 105 °C for 10 min. Scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy studies revealed that the 2% NaOH-pretreated sample exposed more cellulose fiber. The maximum respective removal of lignin and hemicellulose was 70.3% and 68.2% from the 2% NaOH-pretreated liquor. The reducing sugar yield was 84.6% using an enzyme dose containing 20 FPU of cellulase, 40 IU of β-glucosidase and 4 FXU of xylanase/g of substrate. However, 2% NaOH-treated wheat straw had the lowest crystalline index of 52.5%, due to destructured cellulose fibers. The results indicate the effectiveness of producing the bioethanol precursor from wheat straw by using 2% NaOH at boiling temperature.

  6. Examining the potential of plasma-assisted pretreated wheat straw for enzyme production by Trichoderma reesei.

    PubMed

    Rodriguez-Gomez, Divanery; Lehmann, Linda; Schultz-Jensen, Nadja; Bjerre, Anne Belinda; Hobley, Timothy John

    2012-04-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation. To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml(-1)) and cellulases (0.5 filter paper units (FPU) ml(-1)). Addition of Avicel boosted enzyme titers with the highest cellulase titers (1.5 FPU ml(-1)) found with addition of 50 % w/w Avicel and with the highest xylanase production (350 IU ml(-1)) reached in the presence of 10 % w/w Avicel. Comparison with enzyme titers from other nonrefined feedstocks suggests that plasma pretreated wheat straw is a promising and suitable substrate for cellulase and hemicellulase production.

  7. Improving barley culm robustness for secured crop yield in a changing climate.

    PubMed

    Dockter, Christoph; Hansson, Mats

    2015-06-01

    The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation. PMID:25614659

  8. The effect of long or chopped straw on pig behaviour.

    PubMed

    Lahrmann, H P; Oxholm, L C; Steinmetz, H; Nielsen, M B F; D'Eath, R B

    2015-05-01

    In the EU, pigs must have permanent access to manipulable materials such as straw, rope, wood, etc. Long straw can fulfil this function, but can increase labour requirements for cleaning pens, and result in problems with blocked slatted floors and slurry systems. Chopped straw might be more practical, but what is the effect on pigs' behaviour of using chopped straw instead of long straw? Commercial pigs in 1/3 slatted, 2/3 solid pens of 15 pigs were provided with either 100 g/pig per day of long straw (20 pens) or of chopped straw (19 pens). Behavioural observations were made of three focal pigs per pen (one from each of small, medium and large weight tertiles) for one full day between 0600 and 2300 h at each of ~40 and ~80 kg. The time spent rooting/investigating overall (709 s/pig per hour at 40 kg to 533 s/pig per hour at 80 kg), or directed to the straw/solid floor (497 s/pig per hour at 40 kg to 343 s/pig per hour at 80 kg), was not affected by straw length but reduced with age. Time spent investigating other pigs (83 s/pig per hour at 40 kg), the slatted floor (57 s/pig per hour) or pen fixtures (21 s/pig per hour) was not affected by age or straw length. Aggressive behaviour was infrequent, but lasted about twice as long in pens with chopped straw (2.3 s/pig per hour at 40 kg) compared with pens with long straw (1.0 s/pig per hour at 40 kg, P=0.060). There were no significant effects of straw length on tail or ear lesions, but shoulders were significantly more likely to have minor scratches with chopped straw (P=0.031), which may reflect the higher levels of aggression. Smaller pigs showed more rooting/investigatory behaviour, and in particular directed towards the straw/solid floor and the slatted floor than their larger pen-mates. Females exhibited more straw and pen fixture-directed behaviour than males. There were no effects of pig size or sex on behaviour directed towards other pigs. In summary, pigs spent similar amounts of time interacting with straw

  9. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  10. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  11. 7 CFR 407.10 - Group risk plan for barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Group risk plan for barley. 407.10 Section 407.10..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.10 Group risk plan for barley. The provisions of the Group Risk Plan for Barley for the 2000 and succeeding crop years are as follows:...

  12. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production.

    PubMed

    Hua, Binbin; Dai, Jiali; Liu, Bin; Zhang, Huan; Yuan, Xufeng; Wang, Xiaofen; Cui, Zongjun

    2016-09-01

    Using microbial community MC1 to pretreat lignocellulosic materials increased the yield of biogas production, and the substrate did not need to be sterilized, lowering the cost. Rotted silage maize straw carries many microbes. To determine whether such contamination affects MC1, rotted silage maize straw was pretreated with MC1 prior to biogas production. The decreases in the weights of unsterilized and sterilized rotted silage maize straw were similar, as were their carboxymethyl cellulase activities. After 5d pretreatment, denaturing gradient gel electrophoresis and quantitative polymerase chain reaction results indicated that the proportions of five key strains in MC1 were the same in the unsterilized and sterilized groups; thus, MC1 was resistant to microbial contamination. However, its resistance to contamination decreased as the degradation time increased. Following pretreatment, volatile fatty acids, especially acetic acid, were detected, and MC1 enhanced biogas yields by 74.7% compared with the untreated group.

  13. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    PubMed

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification. PMID:25263869

  14. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    PubMed

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification.

  15. Straw Rockets Are out of This World

    ERIC Educational Resources Information Center

    Gillman, Joan

    2013-01-01

    To capture students' excitement and engage their interest in rocketships and visiting planets in the solar system, the author designed lessons that give students the opportunity to experience the joys and challenges of developing straw rockets, and then observing which design can travel the longest distance. The lessons are appropriate for…

  16. Nutraceutical and functional scenario of wheat straw.

    PubMed

    Pasha, Imran; Saeed, Farhan; Waqas, Khalid; Anjum, Faqir Muhammad; Arshad, Muhammad Umair

    2013-01-01

    In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.

  17. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.

    PubMed

    Bao, Qiongli; Huang, Yizong; Wang, Fenghua; Nie, Sanan; Nicol, Graeme W; Yao, Huaiying; Ding, Longjun

    2016-07-01

    Nitrogen fertilization and returning straw to paddy soil are important factors that regulate CH4 production. To evaluate the effect of rice straw and/or nitrate amendment on methanogens, a paddy soil was anaerobically incubated for 40 days. The results indicated that while straw addition increased CH4 production and the abundances of mcrA genes and their transcripts, nitrate amendment showed inhibitory effects on them. The terminal restriction fragment length polymorphism (T-RFLP) analysis based on mcrA gene revealed that straw addition obviously changed methanogenic community structure. Based on mcrA gene level, straw-alone addition stimulated Methanosarcinaceaes at the early stage of incubation (first 11 days), but nitrate showed inhibitory effect. The relative abundance of Methanobacteriaceae was also stimulated by straw addition during the first 11 days. Furthermore, Methanosaetaceae were enriched by nitrate-alone addition after 11 days, while Methanocellaceae were enriched by nitrate addition especially within the first 5 days. The transcriptional methanogenic community indicated more dynamic and complicated responses to straw and/or nitrate addition. Based on mcrA transcript level, nitrate addition alone resulted in the increase of Methanocellaceae and the shift from Methanosarcinaceae to Methanosaetaceae during the first 5 days of incubation. Straw treatments increased the relative abundance of Methanobacteriaceae after 11 days. These results demonstrate that nitrate addition influences methanogens which are transcriptionally and functionally active and can alleviate CH4 production associated with straw amendment in paddy soil incubations, presumably through competition for common substrates between nitrate-utilizing organisms and methanogens. PMID:26923143

  18. Isolation and Characterization of a Thionin Proprotein-processing Enzyme from Barley*

    PubMed Central

    Plattner, Stephan; Gruber, Clemens; Stadlmann, Johannes; Widmann, Stefan; Gruber, Christian W.; Altmann, Friedrich; Bohlmann, Holger

    2015-01-01

    Thionins are plant-specific antimicrobial peptides that have been isolated from the endosperm and leaves of cereals, from the leaves of mistletoes, and from several other plant species. They are generally basic peptides with three or four disulfide bridges and a molecular mass of ∼5 kDa. Thionins are produced as preproproteins consisting of a signal peptide, the thionin domain, and an acidic domain. Previously, only mature thionin peptides have been isolated from plants, and in addition to removal of the signal peptide, at least one cleavage processing step between the thionin and the acidic domain is necessary to release the mature thionin. In this work, we identified a thionin proprotein-processing enzyme (TPPE) from barley. Purification of the enzyme was guided by an assay that used a quenched fluorogenic peptide comprising the amino acid sequence between the thionin and the acidic domain of barley leaf-specific thionin. The barley TPPE was identified as a serine protease (BAJ93208) and expressed in Escherichia coli as a strep tag-labeled protein. The barley BTH6 thionin proprotein was produced in E. coli using the vector pETtrx1a and used as a substrate. We isolated and sequenced the BTH6 thionin from barley to confirm the N and C terminus of the peptide in planta. Using an in vitro enzymatic assay, the recombinant TPPE was able to process the quenched fluorogenic peptide and to cleave the acidic domain at least at six sites releasing the mature thionin from the proprotein. Moreover, it was found that the intrinsic three-dimensional structure of the BTH6 thionin domain prevents cleavage of the mature BTH6 thionin by the TPPE. PMID:26013828

  19. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    SciTech Connect

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-12-15

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  20. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  1. Characterization and subcellular localization of aminopeptidases in senescing barley leaves

    NASA Technical Reports Server (NTRS)

    Thayer, S. S.; Choe, H. T.; Rausser, S.; Huffaker, R. C.

    1988-01-01

    Four aminopeptidases (APs) were separated using native polyacrylamide gel electrophoresis of cell-free extracts and the stromal fractions of isolated chloroplasts prepared from primary barley (Hordeum vulgare L., var Numar) leaves. Activities were identified using a series of aminoacyl-beta-naphthylamide derivatives as substrates. AP1, 2, and 3 were found in the stromal fraction of isolated chloroplasts with respective molecular masses of 66.7, 56.5, and 54.6 kilodaltons. AP4 was found only in the cytoplasmic fraction. No AP activity was found in vacuoles of these leaves. It was found that 50% of the L-Leu-beta-naphthylamide and 25% of the L-Arg-beta-naphthylamide activities were localized in the chloroplasts. Several AP activities were associated with the membranes of the thylakoid fraction of isolated chloroplasts. AP1, 2, and 4 reacted against a broad range of substrates, whereas AP3 hydrolyzed only L-Arg-beta-naphthylamide. Only AP2 hydrolyzed L-Val-beta-naphthylamide. Since AP2 and AP3 were the only ones reacting against Val-beta-naphthylamide and Arg-beta-naphthylamide, respectively, several protease inhibitors were tested against these substrates using a stromal fraction from isolated chloroplasts as the source of the two APs. Both APs were sensitive to both metallo and sulfhydryl type inhibitors. Although AP activity decreased as leaves senesced, no new APs appeared on gels during senescence and none disappeared.

  2. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure

    PubMed Central

    Sun, Li; Pope, Phillip B; Eijsink, Vincent G H; Schnürer, Anna

    2015-01-01

    Responses of bacterial and archaeal communities to the addition of straw during anaerobic digestion of manure at different temperatures (37°C, 44°C and 52°C) were investigated using five laboratory-scale semi-continuous stirred tank reactors. The results revealed that including straw as co-substrate decreased the species richness for bacteria, whereas increasing the operating temperature decreased the species richness for both archaea and bacteria, and also the evenness of the bacteria. Taxonomic classifications of the archaeal community showed that Methanobrevibacter dominated in the manure samples, while Methanosarcina dominated in all digesters regardless of substrate. Increase of the operating temperature to 52°C led to increased relative abundance of Methanoculleus and Methanobacterium. Among the bacteria, the phyla Firmicutes and Bacteroidetes dominated within all samples. Compared with manure itself, digestion of manure resulted in a higher abundance of an uncultured class WWE1 and lower abundance of Bacilli. Adding straw to the digesters increased the level of Bacteroidia, while increasing the operating temperature decreased the level of this class and instead increased the relative abundance of an uncultured genus affiliated to order MBA08 (Clostridia). A considerable fraction of bacterial sequences could not be allocated to genus level, indicating that novel phylotypes are resident in these communities. PMID:26152665

  3. Development of geothermally assisted process for production of liquid fuels and chemicals from wheat straw

    SciTech Connect

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    The effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw are investigated. Both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose are considered. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge were also investigated. A brief study was made of the effects of two major parameters, substrate concentration and enzyme/substrate ratio, on the sugar yield from enzymatic hydrolysis of optimally pretreated straw. The efficiency with which these sugars could be fermented to ethanol was studied. In most cases experiments were carried out using distilled water; however, the effects of direct use of geothermal water were determined for each of the major steps in the process. An appendix to the body of the report describes the results of a preliminary economic evaluation of a plant designed to produce 25 x 10/sup 6/ gallons of ethanol per year from wheat straw using the best process conditions determined in the above work. Also appended are the results from a preliminary investigation of the applicability of autohydrolysis technology to the production of fermentable sugars from corn stover.

  4. Genetics of barley hooded suppression.

    PubMed Central

    Roig, Cristina; Pozzi, Carlo; Santi, Luca; Müller, Judith; Wang, Yamei; Stile, Maria Rosaria; Rossini, Laura; Stanca, Michele; Salamini, Francesco

    2004-01-01

    The molecular basis of the barley dominant Hooded (K) mutant is a duplication of 305 bp in intron IV of the homeobox gene Bkn3. A chemical mutagenesis screen was carried out to identify genetical factors that participate in Bkn3 intron-mediated gene regulation. Plants from recurrently mutagenized KK seeds were examined for the suppression of the hooded awn phenotype induced by the K allele and, in total, 41 suK (suppressor of K) recessive mutants were identified. Complementation tests established the existence of five suK loci, and alleles suKB-4, suKC-33, suKD-25, suKE-74, and suKF-76 were studied in detail. All K-suppressed mutants showed a short-awn phenotype. The suK loci have been mapped by bulked segregant analysis nested in a standard mapping procedure based on AFLP markers. K suppressor loci suKB, B, E, and F all map in a short interval of chromosome 7H, while the locus suKD is assigned to chromosome 5H. A complementation test between the four suK mutants mapping on chromosome 7H and the short-awn mutant lks2, located nearby, excluded the allelism between suK loci and lks2. The last experiment made clear that the short-awn phenotype of suK mutants is due to a specific dominant function of the K allele, a function that is independent from the control on hood formation. The suK loci are discussed as candidate participants in the regulation of Bkn3 expression. PMID:15166167

  5. Rheological properties of barley and flaxseed composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prowashonupana, a barley variety with high ß-glucan content, was dry blended with flaxseed at 10, 20, and 50% for improving nutritional, physical, and functional qualities. Flaxseed is rich in omega-3 polyunsaturated fatty acids (omega-3 PUFAs) that is known for lowering blood cholesterol and preve...

  6. Molecular characterization of two lipoxygenases from barley.

    PubMed

    van Mechelen, J R; Schuurink, R C; Smits, M; Graner, A; Douma, A C; Sedee, N J; Schmitt, N F; Valk, B E

    1999-04-01

    Two full-length lipoxygenase cDNA sequences (LoxB and LoxC) from barley (Hordeum distichum cv. L. Triumph) are described. The cDNAs share high homology with the barley LoxA cDNA. Southern blotting experiments indicate single copy numbers of the three lipoxygenase genes. RFLP mapping revealed the presence of single lipoxygenase loci. LoxA and LoxB map on chromosome 4 and LoxC on chromosome 7. Two isoenzymes, LOX1 and LOX2, have been purified previously from germinating barley and characterized. LOX1 is encoded by LoxA, while LOX2 is encoded by LoxC. The product related to the third cDNA (loxB) has not been identified so far, suggesting a low protein abundance for the corresponding isoform in barley. Transcripts corresponding with these LOX genes are predominantly observed in grain and in seedling, whereas transcripts corresponding to LoxB and LoxC are also observed in mature vegetative tissue. No lipoxygenase mRNA could be detected in aleurone layer of germinating grain. No significant differences in lipoxygenase mRNA levels were observed in developing grains grown under dormant or non-dormant conditions, suggesting that LOX is not directly involved in induction of grain dormancy.

  7. Registration of ‘Atlantic’ winter barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Atlantic’ (Reg. No. CV-354, PI 665041), a six-row, hulled winter barley (Hordeum vulgare L.) tested as VA06B-19 by the Virginia Agricultural Experiment Station, was released in March 2011. Atlantic was derived from the cross VA97B-176/VA92-44-279 using a modified bulk-breeding method. It was evalua...

  8. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  9. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. PMID:24084493

  10. Pretreatment of rapeseed straw by sodium hydroxide.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2012-06-01

    Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.

  11. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  12. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China. PMID:22643418

  13. Multiple Forms of Acidic Endopeptidase from Germinated Barley 1

    PubMed Central

    Burger, W. C.

    1973-01-01

    An endopeptidase preparation from germinated barley Hordeum vulgare L., cv. Trophy, purified by affinity chromatography and density-gradient electrofocusing, consisted of three or four components. The preparation was only partly resolved by electrofocusing, with evidence of three possible components (pI 4.15, 4.28, and 4.37). Gel filtration on Sephadex G-75 yielded an asymmetrical peak, the major part of which corresponded to a molecular weight of 14,100, with evidence of one larger and two smaller components. The activity of the preparation was sulfhydryl-dependent; cysteine was the most effective of several sulfhydryl compounds tested. The preparation was sensitive to O2 in the absence of metal chelating agents and was inhibited by sulfhydryl reagents. It showed very narrow concentration tolerances for both cysteine and a substrate, N,N-dimethylhemoglobin. The Km value on N,N-dimethylhemoglobin at pH 3.8 was 0.064 to 0.067% (w/v) substrate; Vmax was 0.80 to 0.83 A340 per hour. Normal enzyme activity and molecular-size distribution were observed when the endopeptidases were extracted in the inhibited state and subsequently reactivated, thus ruling out the possibility that the enzymes might be autolytic artifacts that arose during extraction and purification. PMID:16658456

  14. Physical Separation of Straw Stem Components to Reduce Silica

    SciTech Connect

    Hess, John Richard; Thompson, David Neal; Hoskinson, Reed Louis; Shaw, Peter Gordon; Grant, D.R.

    2002-04-01

    In this paper, we describe ongoing efforts to solve challenges to using straw for bioenergy and bioproducts. Among these, silica in straw forms a low-melting eutectic with potassium, causing slag deposits, and chlorides cause corrosion beneath the deposits. Straw consists principally of stems, leaves, sheaths, nodes, awns, and chaff. Leaves and sheaths are higher in silica, while chaff, leaves and nodes are the primary source of fines. Our approach to reducing silica is to selectively harvest the straw stems using an in-field physical separation, leaving the remaining components in the field to build soil organic matter and contribute soil nutrients.

  15. Agrobacterium-mediated transformation of barley (Hordeum vulgare L.).

    PubMed

    Ismagul, Ainur; Mazonka, Iryna; Callegari, Corinne; Eliby, Serik

    2014-01-01

    Barley biotechnology requires efficient genetic engineering tools for producing transgenic plants necessary for conducting reverse genetics analyses in breeding and functional genomics research. Agrobacterium-mediated genetic transformation is an important technique for producing barley transgenics with simple low-copy number transgenes. This chapter reports a refined protocol for the systematic high-throughput transformation of the advanced Australian spring barley breeding line WI4330.

  16. Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley

    SciTech Connect

    Jaya Shankar Tumuluru

    2011-08-01

    Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages at it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial

  17. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure.

    PubMed

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-12-01

    In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37±1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9-70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  18. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. PMID:25935389

  19. Enhanced hydrogen production from anaerobic fermentation of rice straw pretreated by hydrothermal technology.

    PubMed

    He, Leilei; Huang, He; Lei, Zhongfang; Liu, Chunguang; Zhang, Zhenya

    2014-11-01

    This study tested the effect of hydrothermal treatment (HTT) at different peak temperatures (150 °C and 210 °C, i.e. HTT150 and HTT210, respectively) and holding time (0-30 min) on the solubilization of rice straw at total solids (TS) of 20% and then subsequent H2 production from resultant substrates. No obvious degradation was detected in lignin content under all tested HTT conditions which did open up the surface structure and have efficient solubilization effect on rice straw. Soluble carbohydrates produced from straw particles during HTT210 was found to have strongly (r=0.9987) positive correlation with the subsequent H2 yield. The maximum soluble carbohydrates, 80 mg per gram of volatile solids (VS) was achieved under HTT210 and 0 min of holding condition, correspondingly yielding the highest hydrogen production (28 ml/g-VS), about 93-fold higher than the control. Results suggest that holding time is crucial for HTT pretreatment when taking subsequent H2 production into consideration.

  20. Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes.

    PubMed

    Gaind, Sunita; Nain, Lata; Patel, V B

    2009-06-01

    Poultry droppings, neem cake, castor cake, jatropha cake and grass clippings were used separately as organic nitrogen additives to decrease the high C:N ratio of wheat straw. Composting was carried out aerobically in presence of fungal consortium developed by including Aspergillus awamori, Aspergillus nidulans, Trichoderma viride and Phanerochaete chrysosporium. The degraded product was characterized to assess the technical viability of organic nitrogen supplements as well as fungal consortium in improving the quality of compost and hastening the process of decomposition of high lignocellulolytic waste. Evaluation of maturity showed that mixture of wheat straw, poultry dropping and jatropha cake had the lowest C:N ratio of 10:1, the highest humic acid fraction of 3.15%, the lowest dehydrogenase activity and a germination index exceeding 80% in 60 days of decomposition. Inoculated and grass clipping amended wheat straw-poultry dropping mixture resulted in compost with highest humus content of 11.8% and C:N ratio of 13.5, humic acid fraction of 2.84% and germination index of 59.66%. Fungal consortium was effective in improving the humus content of all the composted mixtures. In some treatments, germination index could not be correlated with C:N ratio. Non edible oil seed cake supplemented substrate mixtures did not respond to fungal inoculation as far as C:N ratio was concerned. PMID:19015937

  1. Lovastatin-Enriched Rice Straw Enhances Biomass Quality and Suppresses Ruminal Methanogenesis

    PubMed Central

    Faseleh Jahromi, Mohammad; Liang, Juan Boo; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa; Ho, Yin Wan

    2013-01-01

    The primary objective of this study was to test the hypothesis that solid state fermentation (SSF) of agro-biomass (using rice straw as model); besides, breaking down its lignocellulose content to improve its nutritive values also produces lovastatin which could be used to suppress methanogenesis in the rumen ecosystem. Fermented rice straw (FRS) containing lovastatin after fermentation with Aspergillus terreus was used as substrate for growth study of rumen microorganisms using in vitro gas production method. In the first experiment, the extract from the FRS (FRSE) which contained lovastatin was evaluated for its efficacy for reduction in methane (CH4) production, microbial population, and activity in the rumen fluid. FRSE reduced total gas and CH4 productions (P < 0.01). It also reduced (P < 0.01) total methanogens population and increased the cellulolytic bacteria including Ruminococcus albus, Fibrobacter succinogenes (P < 0.01), and Ruminococcus flavefaciens (P < 0.05). Similarly, FRS reduced total gas and CH4 productions, methanogens population, but increased in vitro dry mater digestibility compared to the non-fermented rice straw. Lovastatin in the FRSE and the FRS significantly increased the expression of HMG-CoA reductase gene that produces HMG-CoA reductase, a key enzyme for cell membrane production in methanogenic Archaea. PMID:23484116

  2. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass.

  3. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis.

    PubMed

    Bellido, Carolina; Bolado, Silvia; Coca, Mónica; Lucas, Susana; González-Benito, Gerardo; García-Cubero, María Teresa

    2011-12-01

    The inhibitory effect of the main inhibitors (acetic acid, furfural and 5-hydroxymethylfurfural) formed during steam explosion of wheat straw was studied through ethanol fermentations of model substrates and hydrolysates from wheat straw by Pichia stipitis. Experimental results showed that an increase in acetic acid concentration led to a reduction in ethanol productivity and complete inhibition was observed at 3.5 g/L. Furfural produced a delay on sugar consumption rates with increasing concentration and HMF did not exert a significant effect. Fermentations of the whole slurry from steam exploded wheat straw were completely inhibited by a synergistic effect due to the presence of 1.5 g/L acetic acid, 0.15 g/L furfural and 0.05 g/L HMF together with solid fraction. When using only the solid fraction from steam explosion, hydrolysates presented 0.5 g/L of acetic acid, whose fermentations have submitted promising results, providing an ethanol yield of 0.45 g ethanol/g sugars and the final ethanol concentration reached was 12.2 g/L (10.9 g ethanol/100 g DM).

  4. Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes.

    PubMed

    Gaind, Sunita; Nain, Lata; Patel, V B

    2009-06-01

    Poultry droppings, neem cake, castor cake, jatropha cake and grass clippings were used separately as organic nitrogen additives to decrease the high C:N ratio of wheat straw. Composting was carried out aerobically in presence of fungal consortium developed by including Aspergillus awamori, Aspergillus nidulans, Trichoderma viride and Phanerochaete chrysosporium. The degraded product was characterized to assess the technical viability of organic nitrogen supplements as well as fungal consortium in improving the quality of compost and hastening the process of decomposition of high lignocellulolytic waste. Evaluation of maturity showed that mixture of wheat straw, poultry dropping and jatropha cake had the lowest C:N ratio of 10:1, the highest humic acid fraction of 3.15%, the lowest dehydrogenase activity and a germination index exceeding 80% in 60 days of decomposition. Inoculated and grass clipping amended wheat straw-poultry dropping mixture resulted in compost with highest humus content of 11.8% and C:N ratio of 13.5, humic acid fraction of 2.84% and germination index of 59.66%. Fungal consortium was effective in improving the humus content of all the composted mixtures. In some treatments, germination index could not be correlated with C:N ratio. Non edible oil seed cake supplemented substrate mixtures did not respond to fungal inoculation as far as C:N ratio was concerned.

  5. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge.

    PubMed

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi

    2016-01-01

    The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid-treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %.

  6. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure.

    PubMed

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-12-01

    In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37±1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9-70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others. PMID:23790673

  7. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation.

    PubMed

    Mendiondo, Guillermina M; Medhurst, Anne; van Roermund, Carlo W; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R; Waugh, Robbie; Theodoulou, Frederica L; Holdsworth, Michael J

    2014-09-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.

  8. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

    PubMed

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-09-16

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions. PMID:25197090

  9. Characteristics of cloned repeated DNA sequences in the barley genome

    SciTech Connect

    Anan'ev, E.V.; Bochkanov, S.S.; Ryzhik, M.V.; Sonina, N.V.; Chernyshev, A.I.; Shchipkova, N.I.; Yakovleva, E.Yu.

    1986-12-01

    A partial clone library of barley DNA fragments based on plasmid pBR325 was created. The cloned EcoRI-fragments of chromosomal DNA are from 2 to 14 kbp in length. More than 95% of the barley DNA inserts comprise repeated sequences of different complexity and copy number. Certain of these DNA sequences are from families comprising at least 1% of the barley genome. A significant proportion of the clones hybridize with numerous sets of restriction fragments of genome DNA and they are dispersed throughout the barley chromosomes.

  10. The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw.

    PubMed

    Sun, Fubao Fuelbiol; Wang, Liang; Hong, Jiapeng; Ren, Junli; Du, Fengguang; Hu, Jinguang; Zhang, Zhenyu; Zhou, Bangwei

    2015-01-01

    Given that the glycerol organosolv pretreatment (GOP) can effectively improve the hydrolyzability of various lignocellulosic substrates, physicochemical changes of the substrate before and after the pretreatment was characterized to elucidate what is responsible for it. The effect of GOP on the main components and hydrolyzability of wheat straw was revisited. Results demonstrate that the GOP should be a promising candidate for the current pretreatment. Then the composition and structure of substrates was measured at multi-dimensional scales by using various analytic equipment such as TGA, SEM, AFM, CLSM, FT-IR, XRD and solid-state CP/MAS (13)C NMR. This paper reports some new insights on the mechanism behind that, which can be beneficial for further development, optimization, and scale-up of the GOP process.

  11. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  12. Search for endophytic diazotrophs in barley seeds

    PubMed Central

    Zawoznik, Myriam S.; Vázquez, Susana C.; Díaz Herrera, Silvana M.; Groppa, María D.

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR. PMID:25242949

  13. Search for endophytic diazotrophs in barley seeds.

    PubMed

    Zawoznik, Myriam S; Vázquez, Susana C; Díaz Herrera, Silvana M; Groppa, María D

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  14. Continuous bioethanol production from oilseed rape straw hydrosylate using immobilised Saccharomyces cerevisiae cells.

    PubMed

    Mathew, Anil Kuruvilla; Crook, Mitch; Chaney, Keith; Humphries, Andrea Clare

    2014-02-01

    The aim of the study was to evaluate continuous bioethanol production from oilseed rape (OSR) straw hydrolysate using Saccharomyces cerevisiae cells immobilised in Lentikat® discs. The study evaluated the effect of dilution rate (0.25, 0.50, 0.75 and 1.00 h(-1)), substrate concentration (15, 22, 40 and 60 g L(-1)) and cell loading (0.03, 0.16 and 0.24 g d.c.w.mL(-1) Lentikat®) on bioethanol production. Volumetric productivity was found to increase with increasing substrate concentration from 15 g L(-1) to 60 g L(-1). A maximum volumetric productivity of 12.88 g L(-1)h(-1) was achieved at a substrate concentration of 60 g L(-1) and at a dilution rate of 0.5h(-1). An overall mass balance for bioethanol production was created to determine the energy recovery from bioethanol and concluded that a biorefinery approach might be the most appropriate option for maximising the energy recovery from OSR straw.

  15. Physical and chemical changes during composting of wood chip-bedded and straw-bedded beef cattle feedlot manure.

    PubMed

    Larney, Francis J; Olson, Andrew F; Miller, Jim J; DeMaere, Paul R; Zvomuya, Francis; McAllister, Tim A

    2008-01-01

    In the 1990s, restrictions on incineration encouraged the forest industry in western Canada to develop new uses for their wood residuals by product. One such use was as a replacement for cereal straw bedding in southern Alberta's beef cattle (Bos taurus) feedlot industry. However, use of carbon (C)-rich bedding, such as wood chips, had implications for subsequent composting of the feedlot manure, a practice that was being increasingly adopted. In a 3-yr study, we compared composting of wood chip-bedded manure (WBM) and barley (Hordeum vulgare L.) straw-bedded manure (SBM). There were no significant differences in temperature regimes of SBM and WBM, indicating similar rates of successful composting. Of 17 physical and chemical parameters, five showed significant (P < 0.10) differences due to bedding at the outset of composting (Day 0), and 11 showed significant differences at final sampling (Day 124). During composting (10 sampling times), seven parameters showed significant bedding effects, 16 showed significant time effects, and four showed a Bedding x Time interaction. Significantly lower (P < 0.10) losses of nitrogen (N) occurred with WBM (19%) compared with SBM (34%), which has positive implications for air quality and use as a soil amendment. Other advantages of WBM compost included significantly higher total C (333 vs. 210 kg Mg(-1) for SBM) and inorganic N (1.3 vs. 1.0 kg Mg(-1) for SBM) and significantly lower total phosphorus (4.5 vs. 5.3 kg Mg(-1) for SBM). Our results showed that wood chip bedding should not be a problem for subsequent composting of the manure after pen cleaning. In combination with other benefits, our findings should encourage the adoption of wood chips over straw as a bedding choice for southern Alberta feedlots.

  16. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    PubMed

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  17. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. PMID:25770471

  18. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery.

  19. Coffee Stirrers and Drinking Straws as Disposable Spatulas

    ERIC Educational Resources Information Center

    Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.

    2015-01-01

    Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…

  20. Straw pellets as fuel in biomass combustion units

    SciTech Connect

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  1. Effects of rice straw and water management on riceland mosquitoes.

    PubMed

    Lawler, Sharon P; Dritz, Deborah A

    2006-09-01

    Rice fields are important sources of mosquitoes in many regions, and rice (Oryza spp.) growing practices can affect mosquito populations. Rice straw incorporation and winter flooding have become common methods to prepare seedbeds, largely replacing burning of straw. These methods increase nutrients during the growing season. We sampled mosquito larvae during 1999-2001 in 16 0.72-ha plots where straw was either burned or incorporated into soil after the previous growing season; these treatments were crossed with either winter flooding or no winter flooding. In 2000, all fields were drained mid-season for an application of herbicide, and then they were reflooded. Mosquitoes responded positively to straw incorporation and winter flooding, especially in combination. The mid-season reflood in year 2 was associated with an order of magnitude increase in Culex tarsalis Coquillett larvae. Results confirm that rice straw and water management can strongly influence mosquito populations. PMID:17017215

  2. Gaseous and particulate emission profiles during controlled rice straw burning

    NASA Astrophysics Data System (ADS)

    Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M.

    2014-12-01

    Burning of rice straw can emit considerable amounts of atmospheric pollutants. We evaluated the effect of rice straw moisture content (5%, 10%, and 20%) on the emission of carbon dioxide (CO2) and on the organic and inorganic constituents of released particulate matter (PM): dioxins, heavy metals, and polycyclic aromatic hydrocarbons (PAHs). Four burning tests were conducted per moisture treatment using the open chamber method. Additionally, combustion characteristics, including burning stages, durations, temperature, and relative humidity, were recorded. Burning tests showed flaming and smoldering stages were significantly longer in 20% moisture treatment (P < 0.05) compared with the rest. The amount of burned straw and ashes decreased with increasing straw moisture content (P < 0.001). Carbon dioxide was the main product obtained during combustion with emission values ranging from 692 g CO2 kg dry straw-1 (10% moisture content) to 835 g CO2 kg dry straw-1 (20% moisture content). Emission factors for PM were the highest in 20% moisture treatment (P < 0.005). Fine PM (PM2.5) accounted for more than 60% of total PM mass. Emission factors for dioxins increased with straw moisture content, being the highest in 20% moisture treatment, although showing a wide variability among burning tests (P > 0.05). Emissions factors for heavy metals were low and similar among moisture treatments (P > 0.05). Emission factors for individual PAHs were generally higher in 20% moisture treatment. Overall, emission factors of atmospheric pollutants measured in our study were higher in the 20% moisture content. This difference could be attributed to the incomplete combustion at higher levels of rice straw moisture content. According to our results, rice straw burning should be done after straw drying and under minimal moisture conditions to lower pollutant emission levels.

  3. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain...

  4. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain...

  5. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain...

  6. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain...

  7. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain...

  8. Field tests of transgenic barley lines in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing transgenic barley lines for FHB in the greenhouse does not necessarily give the same results as field tests. The objective of this project was to test 18 transgenic lines in replicated trials in an inoculated FHB nursery. Several programs have developed barley lines expressing anti-fungal a...

  9. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid, Rhopalosiphum padi L., is a serious pest of barley, Hordeum vulgare L., world-wide. It is the most efficient vector of barley yellow dwarf virus, the most important viral disease of small grains in the world. Not all bird cherry-oat aphids acquire the virus while feeding on ...

  10. Genetic diversity analysis of Tibetan wild barley using SSR markers.

    PubMed

    Feng, Zong-Yun; Liu, Xian-Jun; Zhang, Yi-Zheng; Ling, Hong-Qing

    2006-10-01

    One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA. PMID:17046592

  11. Pasting and rheological properties of chia composites containing barley flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chia containing omega-3 polyunsaturated fatty acids (omega-3 PUFAs) was composited with barley flour having high ß-glucan content. Both omega-3 PUFAs and ß-glucan are well known for lowering blood cholesterol and preventing coronary heart disease. Barley flour was dry blended with ground chia ...

  12. PANDA straw tube detectors and readout

    NASA Astrophysics Data System (ADS)

    Strzempek, P.

    2016-07-01

    PANDA is a detector under construction dedicated to studies of production and interaction of particles in the charmonium mass range using antiproton beams in the momentum range of 1.5 - 15 GeV/c at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. PANDA consists of two spectrometers: a Target Spectrometer with a superconducting solenoid and a Forward Spectrometer using a large dipole magnet and covering the most forward angles (Θ < 10 °). In both spectrometers, the particle's trajectories in the magnetic field are measured using self-supporting straw tube detectors. The expected high count rates, reaching up to 1 MHz/straw, are one of the main challenges for the detectors and associated readout electronics. The paper presents the readout chain of the tracking system and the results of tests performed with realistic prototype setups. The readout chain consists of a newly developed ASIC chip (PASTTREC < PANDASTTReadoutChip >) with amplification, signal shaping, tail cancellation, discriminator stages and Time Readout Boards as digitizer boards.

  13. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  14. Transposable element junctions in marker development and genomic characterization of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  15. 7 CFR 407.10 - Area risk protection insurance for barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Area risk protection insurance for barley. 407.10... protection insurance for barley. The barley crop insurance provisions for Area Risk Protection Insurance for... Crop Insurance Corporation Area Risk Protection Insurance Barley Crop Insurance Provisions...

  16. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion.

    PubMed

    Theuretzbacher, Franz; Lizasoain, Javier; Lefever, Christopher; Saylor, Molly K; Enguidanos, Ramon; Weran, Nikolaus; Gronauer, Andreas; Bauer, Alexander

    2015-03-01

    Wheat straw can serve as a low-cost substrate for energy production without competing with food or feed production. This study investigated the effect of steam explosion pretreatment on the biological methane potential and the degradation kinetics of wheat straw during anaerobic digestion. It was observed that the biological methane potential of the non steam exploded, ground wheat straw (276 l(N) kg VS(-1)) did not significantly differ from the best steam explosion treated sample (286 l(N) kg VS(-1)) which was achieved at a pretreatment temperature of 140°C and a retention time of 60 min. Nevertheless degradation speed was improved by the pretreatment. Furthermore it was observed that compounds resulting from chemical reactions during the pretreatment and classified as pseudo-lignin were also degraded during the anaerobic batch experiments. Based on the rumen simulation technique, a model was developed to characterise the degradation process.

  17. Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition.

    PubMed

    Wu, Wenyang; Chen, Yong; Faisal, Shah; Khan, Aman; Chen, Zhengjun; Ling, Zhenmin; Liu, Pu; Li, Xiangkai

    2016-09-19

    The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production.

  18. High-activity barley alpha-amylase by directed evolution.

    PubMed

    Wong, Dominic W S; Batt, Sarah B; Lee, Charles C; Robertson, George H

    2004-10-01

    Barley alpha-amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate. The concentration of recombinant enzyme in the culture supernatant was determined by immunodetection, and used for the calculation of specific activity. After three rounds of directed evolution, one mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity of the wild-type enzyme produced by the same yeast expression system. Comparison of the amino acid sequence of this mutant with the wild type revealed five substitutions: Q44H, R303K and F325Y in domain A, and T94A and R128Q in domain B. Two of these mutations. Q44H and R303K, result in amino acids highly conserved in cereal alpha-amylases. R303K and F325Y are located in the raw starch-binding fragment of the enzyme molecule. PMID:15635937

  19. Perspective and prospective of pretreatment of corn straw for butanol production.

    PubMed

    Baral, Nawa Raj; Li, Jiangzheng; Jha, Ajay Kumar

    2014-01-01

    Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.

  20. Composting of poultry manure and wheat straw in a closed reactor: optimum mixture ratio and evolution of parameters.

    PubMed

    Petric, Ivan; Selimbasić, Vahida

    2008-02-01

    The main objectives of this work were to investigate the evolution of some principal physico-chemical properties (temperature, carbon dioxide, oxygen, ammonia, pH, electrical conductivity, organic matter) and microbial population (mesophilic and thermophilic bacteria and fungi) during composting poultry manure with wheat straw in a reactor system, and to evaluate the optimum mixture ratio for organic substrate production. The experiments were carried out in four small laboratory reactors (1 l) and one large reactor (32 l) under adiabatic conditions over 14 days. During the process the highest temperature was 64.6 degrees C, pH varied between 7.40 and 8.85, electrical conductivity varied between 3.50 and 4.31 dS m(-1) and the highest value of organic matter (dry weight) degradation was 47.6%. Mesophilic bacteria and fungi predominated in the beginning, and started the degradation with generation of metabolic heat. By increasing the temperature in reactors, the number of thermophilic microorganisms also increased, which resulted in faster degradation of substrate. The application of a closed reactor showed a rapid degradation of manure/straw mixture as well as a good control of the emissions of air polluting gases into atmosphere. The results showed that the ratio of manure to straw 5.25:1 (dry weight) was better for composting process than the other mixture ratios. PMID:17387619

  1. MCNPX Simulation Study of STRAW Neutron Detectors

    SciTech Connect

    Sanjoy Mukhopadhyay, Richard Maurer, Stephen Mitchell

    2010-01-08

    A novel prototype fission meter is being designed at National Security Technologies, LLC, using a thin uniform coating (only 1 micron thick) of {sup 10}B as a neutron converter inside a large array of thin (4 mm diameter) copper tubes. The copper tubes are only 2 mils thick, and each holds the stretched anode wire under tension and high voltage. The tubes are filled with proportional counter gas (a mixture of 90%/10% of Ar/CO{sub 2}). The tubes operate in proportional counter mode and attract mobile charged particles ({alpha}'s) created in the nuclear interaction {sup 10}B(n, {sup 4}He){sup 7}Li. However, a single tube has about 1/7th the sensitivity of a {sup 3}He tube. Modeling is required to determine if enough such tubes could be placed in a neutron detection assembly of the current size to give comparable sensitivity to {sup 3}He. Detectors lined with {sup 10}B lie between {sup 3}He and {sup 10}BF{sub 3} proportional counters and fission chambers in terms of neutron detection efficiency and gamma ray insensitivity. The mean free path of thermal neutrons in {sup 10}B is about 18 {micro}m. It takes about 60 {micro}m of {sup 10}B layer to completely stop thermal neutrons, but the energetic {alpha}-particles generated in the reaction have a range of only 3.3 {micro}m in {sup 10}B environment - hence the thin layer of boron coating on the copper tube. The prototype design is shown in Figure 1. It consists of two panels of three staggered rows of 500-mm-long, 4-mm-diameter straws, with 20 in each row, embedded in 30-mm-thick high density polyethylene (HDPE). The project demonstrates a new application of thin neutron and gamma converter technique (1 micron thin {sup 10}B coated copper tube). It exploits fast timing from multiple straw detectors to count multiplicity of both gamma and neutrons from fissioning materials. The objective is to find a near-term replacement of {sup 3}He gas in neutron detection and measurement (with a very large neutron detection area). All

  2. Analysis of five simulated straw harvest scenarios

    SciTech Connect

    Sokhansanj, Shahabaddine; Turhollow Jr, Anthony F; Stephen, Jamie; Stumborg, Mark; Fenton, James; Mani, Sudhagar

    2008-01-01

    Almost 36 million tonnes (t) of cereal grains are harvested annually on more than 16 million hectares (ha) in Canada. The net straw production varies year by year depending upon weather patterns, crop fertility, soil conservation measures, harvest method, and plant variety. The net yield of straw, after discounting for soil conservation, averages approximately 2.5 dry (d)t ha-1. Efficient equipment is needed to collect and package the material as a feedstock for industrial applications. This paper investigates the costs, energy input, and emissions from power equipment used for harvesting straw. Five scenarios were investigated: (1) large square bales, (2) round bales, (3) large compacted stacks (loafs), (4) dried chops, and (5) wet chops. The baled or loafed biomass is stacked next to the farm. Dry chop is collected in a large pile and wet chop is ensiled. The baling and stacking cost was $21.47 dt-1 (dry tonne), with little difference between round and large square baling. Loafing was the cheapest option at $17.08 dt-1. Dry chop and piling was $23.90 dt-1 and wet chop followed by ensiling was $59.75 dt-1. A significant portion of the wet chop cost was in ensiling. Energy input and emissions were proportional to the costs for each system, except for loafing, which required more energy input than the baling systems. As a fraction of the energy content of biomass (roughly 16 GJ dt-1), the energy input ranged from 1.2% for baling to 3.2% for ensiling. Emissions from the power equipment ranged from 20.3 kg CO2e dt-1 to more than 40 kg CO2e dt-1. A sensitivity analysis on the effect of yield on collection costs showed that a 33% increase in yield reduced the cost by 20%. Similarly a sensitivity analysis on weather conditions showed that a 10oC cooler climate extended the harvest period by 5-10 days whereas a 10oC warmer climate shortened the harvest period by 2-3 days.

  3. Biochemical similarities between soluble and membrane-bound calcium-dependent protein kinases of barley

    SciTech Connect

    Klimczak, L.J.; Hind, G. )

    1990-04-01

    The soluble and membrane-bound forms of the calcium-dependent protein kinase from barley leaves (Hordeum vulgare L. cv. Borsoy) have been partially purified and compared. Both forms showed an active polypeptide of 37 kilodaltons on activity gels with incorporated histone as substrate. They eluted from chromatofocusing columns at an identical isoelectric point of pH 4.25 {plus minus} 0.2, and also comigrated on several other chromatographic affinity media including Matrex Gel Blue A, histone-agarose, phenyl-Sepharose, and heparin-agarose. Both activities comigrated with chicken ovalbumin during gel filtration through Sephacryl S-200, indicating a native molecular mass of 45 kilodaltons. The activities share a number of enzymatic properties including salt and pH dependence, free calcium stimulation profile, substrate specificity, and Km values. The soluble activity was shown to bind to artificial lipid vesicles. These data suggest strongly that the soluble and membrane-bound calcium-dependent protein kinases from barley are very closely related or even identical.

  4. The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides.

    PubMed

    Swiątek, Karolina; Lewandowska, Małgorzata; Swiątek, Magdalena; Bednarski, Włodzimierz; Brzozowski, Bartosz

    2014-01-01

    The research was carried out with the aim to determine the impact of various combinations of cellulase and hemicellulase preparations on the effectiveness of enzymatic hydrolysis of polysaccharides of rape straw and Miscanthus giganteus after alkaline pretreatment. Their effectiveness was evaluated based on the quantity of saccharides released during enzymatic reaction and yield calculated in respect of the sum of polysaccharides present in native substrates. The complex of preparations produced from Trichoderma longibrachiatum fungi turned out to be the most effective. The study demonstrated a significant effect of xylanases from T. longibrachiatum, the presence of which evoked a 27-45% increase in the effectiveness of polysaccharides hydrolysis compared to the enzymatic complexes without their addition. In addition, results achieved in this study confirmed the necessity of applying the pretreatment in lignocellulose substrates conversion into bioethanol.

  5. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series.

  6. Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvilli, Nona A

    2009-11-01

    Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70-80% wheat straw, 10-20% SW, and 10-20% millet were found to produce the highest mushroom yield (874.8-958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants. PMID:19618225

  7. The large subunit determines catalytic specificity of barley sucrose:fructan 6-fructosyltransferase and fescue sucrose:sucrose 1-fructosyltransferase.

    PubMed

    Altenbach, Denise; Nüesch, Eveline; Meyer, Alain D; Boller, Thomas; Wiemken, Andres

    2004-06-01

    Plant fructosyltransferases are highly homologous in primary sequence and typically consist of two subunits but catalyze widely different reactions. Using functional expression in the yeast Pichia pastoris, we show that the substrate specificity of festuca sucrose:sucrose 1--beta-D-fructosyltransferase (1-SST) and barley sucrose:fructan 6--beta-D-fructosyltransferase (6-SFT) is entirely determined by the large subunit. Chimeric enzymes with the large subunit of festuca 1-SST (LSuB) and the small subunit of barley 6-SFT have the same catalytic specificity as the native festuca 1-SST and vice versa. If the LSuB is expressed alone, it does not yield a functionally active enzyme, indicating that the small subunit is nevertheless essential.

  8. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Zhang, Congzhi; Feng, Youzhi; Chen, Lin; Yu, Zhenghong; Xin, Xiuli; Zhao, Bingzi

    2016-01-01

    Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by 13C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition—results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities. PMID:26916902

  9. Microwave torrefaction of rice straw and Pennisetum.

    PubMed

    Huang, Y F; Chen, W R; Chiueh, P T; Kuan, W H; Lo, S L

    2012-11-01

    Microwave torrefaction of rice straw and pennisetum was researched in this article. Higher microwave power levels contributed to higher heating rate and reaction temperature, and thus produced the torrefied biomass with higher heating value and lower H/C and O/C ratios. Kinetic parameters were determined with good coefficients of determination, so the microwave torrefaction of biomass might be very close to first-order reaction. Only 150W microwave power levels and 10min processing time were needed to meet about 70% mass yield and 80% energy yield for torrefied biomass. The energy density of torrefied biomass was about 14% higher than that of raw biomass. The byproducts (liquid and gas) possessed about 30% mass and 20% energy of raw biomass, and they can be seen as energy sources for heat or electricity. Microwave torrefaction of biomass could be a competitive technology to employ the least energy and to retain the most bioenergy.

  10. STRAW: Species TRee Analysis Web server.

    PubMed

    Shaw, Timothy I; Ruan, Zheng; Glenn, Travis C; Liu, Liang

    2013-07-01

    The coalescent methods for species tree reconstruction are increasingly popular because they can accommodate coalescence and multilocus data sets. Herein, we present STRAW, a web server that offers workflows for reconstruction of phylogenies of species using three species tree methods-MP-EST, STAR and NJst. The input data are a collection of rooted gene trees (for STAR and MP-EST methods) or unrooted gene trees (for NJst). The output includes the estimated species tree, modified Robinson-Foulds distances between gene trees and the estimated species tree and visualization of trees to compare gene trees with the estimated species tree. The web sever is available at http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/.

  11. Cloning and characterization of root-specific barley lectin

    SciTech Connect

    Lerner, D.R.; Raikhel, N.V. )

    1989-09-01

    Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNa library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identity to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A{sup +}) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA in poly(A{sup +}) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site.

  12. Glycaemic response to barley porridge varying in dietary fibre content.

    PubMed

    Thondre, Pariyarath S; Wang, Ke; Rosenthal, Andrew J; Henry, Christiani J K

    2012-03-01

    The interest in barley as a food is increasing worldwide because of its high dietary fibre (DF) content and low glycaemic index (GI). DF in cereals may prove beneficial in improving blood glucose response in the long term. However, a dose-dependent effect of insoluble fibre on reducing postprandial blood glucose levels is yet to be proven. The objective of the present study was to determine the glycaemic response to two barley porridges prepared from whole barley grains varying in fibre content. In two separate non-blind randomised crossover trials, ten human subjects consumed barley porridge with 16 g/100 g and 10 g/100 g fibre content provided in different serving sizes (equivalent to 25 and 50 g available carbohydrate). The glycaemic response to both barley porridges was significantly lower than the reference glucose (P < 0·05). There was no significant difference between the glucose areas under the curve or GI for the two barley porridges. We concluded that irrespective of the difference in total fibre content or serving size of barley porridges, their GI values did not differ significantly.

  13. Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles.

    PubMed

    Dutta, Nalok; Mukhopadhyay, Arka; Dasgupta, Anjan Kr; Chakrabarti, Krishanu

    2014-02-01

    Purified bacterial cellulase and xylanase were activated in the presence of calcium hydroxyapatite nanoparticles (NP) with concomitant increase in thermostability about 35% increment in production of d-xylose and reducing sugars from rice husk and rice straw was obtained at 80°C by the sequential treatment of xylanase and cellulase enzymes in the presence of NP compared to the untreated enzyme sets. Our findings suggested that if the rice husk and the rice straw samples were pre-treated with xylanase prior to treatment with cellulase, the percentage increase of reducing sugar per 100g of substrate (starting material) was enhanced by about 29% and 41%, respectively. These findings can be utilized for the extraction of reducing sugars from cellulose and xylan containing waste material. The purely enzymatic extraction procedure can be substituted for the harsh and bio-adverse chemical methods.

  14. Starch structure in developing barley endosperm.

    PubMed

    Källman, Anna; Bertoft, Eric; Koch, Kristine; Sun, Chuanxin; Åman, Per; Andersson, Roger

    2015-11-01

    Barley spikes of the cultivars/breeding lines Gustav, Karmosé and SLU 7 were harvested at 9, 12 and 24 days after flowering in order to study starch structure in developing barley endosperm. Kernel dry weight, starch content and amylose content increased during development. Structural analysis was performed on whole starch and included the chain-length distribution of the whole starches and their β-limit dextrins. Karmosé, possessing the amo1 mutation, had higher amylose content and a lower proportion of long chains (DP ≥38) in the amylopectin component than SLU 7 and Gustav. Structural differences during endosperm development were seen as a decrease in molar proportion of chains of DP 22-37 in whole starch. In β-limit dextrins, the proportion of Bfp-chains (DP 4-7) increased and the proportion of BSmajor-chains (DP 15-27) decreased during development, suggesting more frequent activity of starch branching enzymes at later stages of maturation, resulting in amylopectin with denser structure.

  15. SIRE1 RETROTRANSPOSONS IN BARLEY (Hordeum vulgare L.).

    PubMed

    Cakmak, B; Marakli, S; Gozukirmizi, N

    2015-07-01

    Sireviruses are genera of copia LTR retrotransposons with a unique genome structure among retrotransposons. Barley (Hordeum vulgare L.) is an economically important plant. In this study, we used mature barley embryos, 10-day-old roots and 10-day-old leaves derived from the same barley plant to investigate SIRE) retrotransposon movements by Inter-Retrotransposon Amplified Polymorphism (IRAP) technique. We found polymorphism rates between 0-64% among embryos, roots and leaves. Polymorphism rates were detected to be 0-27% among embryos, 8-60% among roots, and 11-50% among leaves. Polymorphisms were observed not only among the parts of different individuals, but also on the parts of the same plant (23-64%). The internal domains of SIRE1 (GAG, ENV and RT) were also analyzed in the embryos, roots and leaves. Analysis of band profiles showed no polymorphism for GAG, however, different band patterns were observed among samples for RT and ENV. The sequencing of SIRE1 GAG, ENV and RT domains revealed 79% similarity for GAG, 96% for ENV and 83% for RT to copia retrotransposons. Comparison between barley retrotransposons and SIRE1 in barley indicated that SIRE1-GAG, ENV and RT might be diverge earlier from barley retrotransposons. SIRE1 sequences were compared with SIRE1 in barley, results showed the closest homologues were SIRE1-ENVand SIRE1-RTsequences, and SIRE1-GAG sequences was a sister group to sequences of Glycine max. This study is the first detailed investigation of SIRE1 in barley genome. The obtained findings are expected to contribute to the comprehension of SIRE1 retrotransposon and its role in barley genome.

  16. Choosing co-substrates to supplement biogas production from animal slurry--a life cycle assessment of the environmental consequences.

    PubMed

    Croxatto Vega, Giovanna Catalina; ten Hoeve, Marieke; Birkved, Morten; Sommer, Sven G; Bruun, Sander

    2014-11-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another.

  17. Choosing co-substrates to supplement biogas production from animal slurry--a life cycle assessment of the environmental consequences.

    PubMed

    Croxatto Vega, Giovanna Catalina; ten Hoeve, Marieke; Birkved, Morten; Sommer, Sven G; Bruun, Sander

    2014-11-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another. PMID:25226057

  18. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution. PMID:23784054

  19. 5. DETAIL OF MUD INFILL (MIXED WITH STRAW), LATHS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF MUD INFILL (MIXED WITH STRAW), LATHS AND STRUCTURAL COMPONENTS (CORNER POST, SILL AND STUD), SOUTHEAST CORNER OF EAST SIDE OF ORIGINAL SECTION. - Thomas Threlkeld House, Benson Pike, Shelbyville, Shelby County, KY

  20. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  1. Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development.

    PubMed

    Liu, Hui; Hedley, Peter; Cardle, Linda; Wright, Kathryn M; Hein, Ingo; Marshall, David; Waugh, Robbie

    2005-06-01

    Two full-length cDNA sequences homologous to caleosin, a seed-storage oil-body protein from sesame, were identified from a series of barley grain development cDNA libraries and further characterised. The cDNAs, subsequently termed HvClo1 and HvClo2, encode proteins of 34 kDa and 28 kDa, respectively. Real-time RT-PCR indicated that HvClo1 is expressed abundantly during the later stages of embryogenesis and is seed-specific, accumulating in the scutellum of mature embryos. HvClo2 is expressed mainly in the endosperm tissues of the developing grain. We show that HvClo1 and HvClo2 are paralogs that co-segregate on barley chromosome 2HL. Transient expression of HvClo1 in lipid storage and non-storage cells of barley using biolistic particle bombardment indicates that caleosins have different subcellular locations from the structural oil-body protein oleosin, and by inference participate in different sorting pathways. We observe that caleosin sorts via small vesicles, suggesting a likely association with lipid trafficking, membrane expansion and oil-body biogenesis. PMID:15702354

  2. Ethanol production from steam-explosion pretreated wheat straw.

    PubMed

    Ballesteros, Ignacio; Negro, Ma José; Oliva, José Miguel; Cabañas, Araceli; Manzanares, Paloma; Ballesteros, Mercedes

    2006-01-01

    Bioconversion of cereal straw to bioethanol is becoming an attractive alternative to conventional fuel ethanol production from grains. In this work, the best operational conditions for steam-explosion pretreatment of wheat straw for ethanol production by a simultaneous saccharification and fermentation process were studied, using diluted acid [H2SO4 0.9% (w/w)] and water as preimpregnation agents. Acid- or water-impregnated biomass was steam-exploded at different temperatures (160-200 degrees C) and residence times (5, 10, and 20 min). Composition of solid and filtrate obtained after pretreatment, enzymatic digestibility and ethanol production of pretreated wheat straw at different experimental conditions was analyzed. The best pretreatment conditions to obtain high conversion yield to ethanol (approx 80% of theoretical) of cellulose-rich residue after steam-explosion were 190 degrees C and 10 min or 200 degrees C and 5 min, in acid-impregnated straw. However, 180 degrees C for 10 min in acid-impregnated biomass provided the highest ethanol yield referred to raw material (140 L/t wheat straw), and sugars recovery yield in the filtrate (300 g/kg wheat straw).

  3. Greening etiolated barley plants under clinorotation

    NASA Astrophysics Data System (ADS)

    Syvash, O. O.; Dovbysh, E. P.; Zolotareva, E. K.

    Plants are capable to react to change of a gravitational field and have sensitive and selective mechanisms, allowing to be guided in a field of gravitation of the Earth. It is known, that changes of gravitational conditions (hyper- or hypogravity) influence metabolic processes in alive organisms. One of the important problems of space biology is studying influence of microgravity on development of the photosynthetic apparatus. Damaging action of weightlessness on photosynthetic processes in plants was shown in a lot of space experiments. However, results of these experiments are inconsistent and do not allow to conclude how varied conditions of weight influence photosynthesis and in particular biosynthesis of chlorophyll. The aim of the communication is an analysis of clinorotation effects on the pigment accumulation and photochemical characteristics of the photosynthetic apparatus during its formation at greening of barley seedlings. Barley plants were grown on a slow horizontal clinostat (2 rpm) and in vertical control at room temperature for 7-8 days (6 days in the dark and 1 or 2 day on white light, ˜ 90 μ Mm-2s-1). Protochlorophyllide (Pchld) and carotenoid (β -carotene, lutein, neoxantin, violaxantin) content in dark grown plants, as well as photosynthetic pigment content after 24 and 48h of greening was determined by TLC. It was found that the content of β -carotene, lutein and neoxantin in clinorotated etiolated plants was on 9-25% higher compared to control. Pchld and violaxantin level was less on 9-11% in clinorotated etiolated plants. The content of Chl a, b and carotenoids in control after 24h greening of barley seedlings exceeded on 10-20% their level in clinorotated variant. After 48h greening the total level of pigments doubled and the difference in the pigment content between control and clinorotated leaves averaged 0-12%, i.e. distinction in pigment content between control and clinorotated variants smoothed out in the greening process. No

  4. Effect of reactor configuration on biogas production from wheat straw hydrolysate.

    PubMed

    Kaparaju, Prasad; Serrano, María; Angelidaki, Irini

    2009-12-01

    The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 degrees C for 10-12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562-2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)(added). Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/l d and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions.

  5. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances...

  6. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances...

  7. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances...

  8. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances...

  9. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances...

  10. Recent developments in the genetic engineering of barley

    SciTech Connect

    Mannonen, L.; Kauppinen, V.; Enari, T.M. )

    1994-01-01

    Cereals are the most important group of plants for human nutrition and animal feed. Partially due to the commercial value of crop plants, there has been an ever-increasing interest in using modern biotechnological methods for the improvement of the characteristics of cereals during the past decade. The rapid progress in molecular biology, plant cell culture techniques, and gene transfer technology has resulted in successful transformations of all the major cereals--maize, rice, wheat, and barley. This brings the biotechnological methods closer to the routine also in barley breeding. In this article, the current status of barley genetic engineering, including the patent situation, is reviewed. The needs aims, and possible applications of genetic engineering in barley breeding are discussed. 179 refs.

  11. Barley stripe mosaic virus: Structure and relationship to the tobamoviruses

    SciTech Connect

    Kendall, Amy; Williams, Dewight; Bian, Wen; Stewart, Phoebe L.; Stubbs, Gerald

    2013-09-01

    Barley stripe mosaic virus (BSMV) is the type member of the genus Hordeivirus, rigid, rod-shaped viruses in the family Virgaviridae. We have used fiber diffraction and cryo-electron microscopy to determine the helical symmetry of BSMV to be 23.2 subunits per turn of the viral helix, and to obtain a low-resolution model of the virus by helical reconstruction methods. Features in the model support a structural relationship between the coat proteins of the hordeiviruses and the tobamoviruses. - Highlights: • We report a low-resolution structure of barley stripe mosaic virus. • Barley stripe mosaic virus has 23.2 subunits per turn of the viral helix. • We compare barley stripe mosaic virus with tobacco mosaic virus.

  12. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  13. Conserved transcriptional regulatory programs underlying rice and barley germination.

    PubMed

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang Charles

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  14. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    PubMed Central

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  15. Comparison of barley stripe mosaic virus strains.

    PubMed

    Hafez, Elsayed E; Abdel Aleem, Engy E; Fattouh, Faiza A

    2008-01-01

    BSMV (barley stripe mosaic virus) particles were obtained in a pure state from infected host plant tissues of Hordeum vulgare. The three genomic parities (alpha, beta and gamma) were amplified by PCR using specific primers for each particle; each was cloned. Partial sequence of the alpha, beta and gamma segments was determined for the Egyptian isolate of barley stripe mosaic virus (BSMV AE1). Alignment of nucleotide sequences with that of other known strains of the virus, BSMV type strains (CV17, ND18 and China), and the generation of phylogenetic trees was performed. A low level of homology was detected comparing 467 bp of the a and 643 bp of the segments to that of the other strains, and thus BSMV alpha and beta segments were in separate clusters. However, 1154 bp of the gamma segments of BSMV AE1 showed a high level of homology especially to strain BSMV ND18, as they both formed a distinct cluster. Northern blotting of pure BSMV AE1 virus and H. vulgare-infected tissue were compared using an alpha ND18 specific probe. Western blotting using antibodies specific for the coat protein (CP) and the triple gene block 1 (TGB1) protein, which are both encoded by the beta ND18 segment, still indicated a high level of similarity between proteins produced by BSMV ND18 and AE1. We suggest that the BSMV AE1 isolate is a distinct strain of BSMV which reflects the genetic evolutionary divergence among BSMV strains and members of the Hordeivirus group. PMID:18533473

  16. Barley (Hordeum vulgare L.) transformation using immature embryos.

    PubMed

    Marthe, Cornelia; Kumlehn, Jochen; Hensel, Goetz

    2015-01-01

    Barley is a major crop species, and also has become a genetic model for the small grain temperate cereals. A draft barley genome sequence has recently been completed, opening many opportunities for candidate gene isolation and functionality testing. Thanks to the development of customizable endonucleases, also site-directed genome modification recently became feasible for higher plants, which marks the beginning of a new era of genetic engineering. The development of improved binary vectors and hypervirulent Agrobacterium tumefaciens strains has raised the efficiency of genetic transformation in barley to a level where the technique has become relatively routine. The transformation method described here involves immature barley embryos cocultivated with Agrobacterium after removal of their embryo axis. Critical adjustments to the protocol have included the supplementation of the cocultivation medium with the polyphenolic signaling compound acetosyringone at comparatively high concentration and the use of cysteine to reduce the extent of cellular oxidation upon agroinfection. In addition, the use of liquid, rather than solid, cocultivation medium promotes the throughput of the method. The protocol has delivered well over 10,000 transgenic barley plants over the past 10 years. Routine transformation efficiency, calculated on the basis of the recovery of independent transgenics per 100 explants, has reached about 25 % in cultivar (cv.) "Golden Promise". The protocol has proven effective for more than 20 barley cultivars, although some adjustments to the culture conditions have had to be made in some cases. The transformation efficiency of cv. "Golden Promise" remains higher than that of any other cultivar tested.

  17. Allele-dependent barley grain beta-amylase activity.

    PubMed

    Erkkilä, M J; Leah, R; Ahokas, H; Cameron-Mills, V

    1998-06-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high beta-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and beta-amy1 gene characterization to demonstrate that the high beta-amylase trait in the backcross line is co-inherited with the beta-amy1 gene from the H. spontaneum parent. We have analyzed the beta-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct beta-amy1 alleles. Two of these beta-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain beta-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated beta-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of beta-amylase activity in barley grain is proposed.

  18. Allele-Dependent Barley Grain β-Amylase Activity1

    PubMed Central

    Erkkilä, Maria J.; Leah, Robert; Ahokas, Hannu; Cameron-Mills, Verena

    1998-01-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high β-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and β-amy1 gene characterization to demonstrate that the high β-amylase trait in the backcross line is co-inherited with the β-amy1 gene from the H. spontaneum parent. We have analyzed the β-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct β-amy1 alleles. Two of these β-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain β-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated β-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of β-amylase activity in barley grain is proposed. PMID:9625721

  19. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  20. Hydrothermal pre-treatment of rapeseed straw.

    PubMed

    Díaz, Manuel J; Cara, Cristóbal; Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel; Castro, Eulogio

    2010-04-01

    As a first step for ethanol production from alternative raw materials, rapeseed straw was studied for fermentable sugar production. Liquid hot water was used as a pre-treatment method and the influence of the main pre-treatment variables was assessed. Experimental design and response surface methodology were applied using pre-treatment temperature and process time as factors. The pretreated solids were further submitted to enzymatic hydrolysis and the corresponding yields were used as pre-treatment performance evaluation. Liquid fractions obtained from pre-treatment were also characterized in terms of sugars and no-sugar composition. A mathematical model describing pre-treatment effects is proposed. Results show that enzymatic hydrolysis yields near to 100% based on pretreated materials can be achieved at 210-220 degrees C for 30-50 min, equivalent to near 70% of glucose present in the raw material. According to the mathematical model, a softer pre-treatment at 193 degrees C for 27 min results in 65% of glucose and 39% of xylose available for fermentation.

  1. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2011-08-01

    Furfural is a biomass derived-chemical that can be used to replace petrochemicals. In this study, the acid-catalyzed conversion of xylose and xylan to furfural by microwave-assisted reaction was investigated at selected ranges of temperature (140-190°C), time (1-30 min), substrate concentration (1:5-1:200 solid:liquid ratio), and pH (2-0.13). We found that a temperature of 180°C, a solid:liquid ratio of 1:200, a residence time of 20 min, and a pH of 1.12 gave the best furfural yields. The effect of different Brønsted acids on the conversion efficiency of xylose and xylan was also evaluated, with hydrochloric acid being found to be the most effective catalyst. The microwave-assisted process provides highly efficient conversion: furfural yields obtained from wheat straw, triticale straw, and flax shives were 48.4%, 45.7%, and 72.1%, respectively. PMID:21620690

  2. Paradox of the drinking-straw model of the butterfly proboscis.

    PubMed

    Tsai, Chen-Chih; Monaenkova, Daria; Beard, Charles E; Adler, Peter H; Kornev, Konstantin G

    2014-06-15

    Fluid-feeding Lepidoptera use an elongated proboscis, conventionally modeled as a drinking straw, to feed from pools and films of liquid. Using the monarch butterfly, Danaus plexippus (Linnaeus), we show that the inherent structural features of the lepidopteran proboscis contradict the basic assumptions of the drinking-straw model. By experimentally characterizing permeability and flow in the proboscis, we show that tapering of the food canal in the drinking region increases resistance, significantly hindering the flow of fluid. The calculated pressure differential required for a suction pump to support flow along the entire proboscis is greater than 1 atm (~101 kPa) when the butterfly feeds from a pool of liquid. We suggest that behavioral strategies employed by butterflies and moths can resolve this paradoxical pressure anomaly. Butterflies can alter the taper, the interlegular spacing and the terminal opening of the food canal, thereby controlling fluid entry and flow, by splaying the galeal tips apart, sliding the galeae along one another, pulsing hemolymph into each galeal lumen, and pressing the proboscis against a substrate. Thus, although physical construction of the proboscis limits its mechanical capabilities, its functionality can be modified and enhanced by behavioral strategies.

  3. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation.

    PubMed

    Niladevi, Kizhakkedathu Narayanan; Sukumaran, Rajeev Kumar; Prema, Parukuttyamma

    2007-10-01

    Laccase production from a novel actinobacterial strain, Streptomyces psammoticus, MTCC 7334 was optimized in solid-state fermentation. The process parameters were initially optimized by the conventional "one factor at a time" approach, and the optimal levels of the factors that had considerable influence on enzyme production were identified by response surface methodology. Rice straw was identified as a suitable substrate for laccase production (17.3 U/g), followed by coffee pulp (15.8 U/g). Other optimized conditions were particle size, 500-1,000 mum (21.2 U/g); initial moisture content, 65% (26.8 U/g); pH of moistening solution, 8.0 (26.9 U/g); incubation temperature, 32 degrees C (27.6 U/g) and inoculum size, 1.5 x 10(7) CFU (33.8 U/g). Yeast extract served as the best nitrogen source (34.8 U/g). No enhancement in enzyme yield was observed with carbon supplementation. The level of yeast extract, inoculum size and copper sulphate were optimized statistically. Statistical optimization performed using a central composite design resulted in threefold increase in laccase activity (55.4 U/g) as compared to the unoptimized medium (17.3 U/g). The upgrading of fermented rice straw for fodder enhancement is also discussed briefly.

  4. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation.

    PubMed

    Lei, Zhongfang; Chen, Jiayi; Zhang, Zhenya; Sugiura, Norio

    2010-06-01

    Rice straw particles were directly used as substrate for anaerobic digestion with acclimated sludge under room temperature and different levels of phosphate. Two obvious biogas production peaks were observed for all reactors, with biogas or methane yields of (0.33-0.35)m(3)/kg-VS loaded or (0.27-0.29)m(3) CH(4)/kg-VS loaded and average methane contents of 75.9-78.2%. A separated two-stage first-order kinetic model was developed in this study and showed a good fit to the experimental data when this complicated process was divided into two stages. The average biogas and methane production rate constants were (0.027-0.031)d(-1) and (0.028-0.033)d(-1), respectively, increased by 2-3 times in the second stages than those in the first. The results indicated that an adequate level of phosphate addition (465 mg-P/L) could accelerate the biogasification process: 7-13 days earlier appearance of the two peaks and shorter time needed for complete biogasification of rice straw.

  5. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency.

    PubMed

    Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo

    2015-01-01

    An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.

  6. Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin.

    PubMed

    Huijgen, W J J; Smit, A T; de Wild, P J; den Uil, H

    2012-06-01

    Wheat straw was fractionated using a three-step biorefining approach: (1) aqueous pretreatment for hemicellulose prehydrolysis into sugars, (2) organosolv delignification, and (3) enzymatic cellulose hydrolysis into glucose. Prehydrolysis was applied to avoid degradation of hemicellulose sugars during organosolv delignification. Maximum xylose yield obtained was 67% or 0.17 kg/kg straw (prehydrolysis: 175 °C, 30 min, 20mM H(2)SO(4)) compared to 4% in case of organosolv without prehydrolysis (organosolv: 200 °C, 60 min, 60% w/w aqueous ethanol). Prehydrolysis was found to reduce the lignin yield by organosolv delignification due to the formation of 'pseudo-lignin' and lignin recondensation during prehydrolysis. This reduction could partly be compensated by increasing the temperature of the organosolv delignification step. Prehydrolysis substantially improved the enzymatic cellulose digestibility from 49% after organosolv without prehydrolysis to 80% (20 FPU/g substrate). Increasing the organosolv delignification temperature to 220 °C resulted in a maximum enzymatic glucose yield of 93% or 0.36 kg/kg straw. PMID:22446052

  7. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries

    NASA Astrophysics Data System (ADS)

    Belal, Elsayed B.; El-Mahrouk, M. E.

    2010-11-01

    This work was conducted at a private nursery in Kafr El-Sheikh governorate to investigate the bioconversion of rice straw into a soil-like substrate (SLS) by Phanerochaete chrysosporium and Trichoderma hazianum and the possibility of using rice straw compost in ornamental nurseries as a partial or total replacement of coconut peat (CP) and vermiculite (V) in the growing medium. The results showed that rice straw could be treated better by aerobic fermentation. The authors used five mixtures as follows: (1) Control (CP+V at 1:1 v/v), (2) SLS (100%), (3) SLS+CP (1:1 v/v), (4) SLS+V (1:1 v/v), and (5) SLS+CP+V (1:1:1 v/v/v). Data were recorded as seedling height, no. of leaves, shoot fresh and dry weights, root length and root fresh and dry weights in order to assess the quality of both transplants of Althea rosea (hollyhock) and Calendula officinalis (scotch marigold). Hollyhock seedlings grown in medium containing a mixture of SLS+CP+V displayed quality traits similar to those recorded from the control treatment, while scotch marigold seedlings in the same medium followed the control medium in quality.

  8. A theoretical framework for beta-glucan degradation during barley malting.

    PubMed

    Gianinetti, Alberto

    2009-05-01

    During malting, barley germinates and produces hydrolytic enzymes that de-structure the endosperm, making the grains soft and friable. This process starts close to the embryo and spreads throughout the whole grain. It is leaded by the degradation of cell walls, which are mainly constituted of beta-glucans. Fast and extended breakdown of beta-glucans occurs by means of an expanding reaction front driven by beta-glucanase, and appears to follow pseudo-first-order kinetics. Endosperm permeabilization to macromolecules is closely linked to the dismantling of cell walls, thus that access to beta-glucans by beta-glucanase itself is limited. It is shown that the kinetics of beta-glucan degradation during malting are consequent to this condition, and can be explained according to an anomalous evolution of the reverse quasi-steady-state approximation (rQSSA) for enzymatic reactions. In fact, kinetics based on the rQSSA include a transient phase wherein fast substrate depletion is indeed of pseudo-first-order. In the germinating barley, the conditions in which the physical modification of the endosperm occurs are shown to be suitable for the fast transient to persist in dynamic equilibrium while it progressively expands throughout the grain, depleting most beta-glucans and, then, establishing the overall kinetics of beta-glucan breakdown.

  9. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    PubMed

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp.

  10. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    PubMed

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. PMID:27518034

  11. Analysis of pregerminated barley using hyperspectral image analysis.

    PubMed

    Arngren, Morten; Hansen, Per Waaben; Eriksen, Birger; Larsen, Jan; Larsen, Rasmus

    2011-11-01

    Pregermination is one of many serious degradations to barley when used for malting. A pregerminated barley kernel can under certain conditions not regerminate and is reduced to animal feed of lower quality. Identifying pregermination at an early stage is therefore essential in order to segregate the barley kernels into low or high quality. Current standard methods to quantify pregerminated barley include visual approaches, e.g. to identify the root sprout, or using an embryo staining method, which use a time-consuming procedure. We present an approach using a near-infrared (NIR) hyperspectral imaging system in a mathematical modeling framework to identify pregerminated barley at an early stage of approximately 12 h of pregermination. Our model only assigns pregermination as the cause for a single kernel's lack of germination and is unable to identify dormancy, kernel damage etc. The analysis is based on more than 750 Rosalina barley kernels being pregerminated at 8 different durations between 0 and 60 h based on the BRF method. Regerminating the kernels reveals a grouping of the pregerminated kernels into three categories: normal, delayed and limited germination. Our model employs a supervised classification framework based on a set of extracted features insensitive to the kernel orientation. An out-of-sample classification error of 32% (CI(95%): 29-35%) is obtained for single kernels when grouped into the three categories, and an error of 3% (CI(95%): 0-15%) is achieved on a bulk kernel level. The model provides class probabilities for each kernel, which can assist in achieving homogeneous germination profiles. This research can further be developed to establish an automated and faster procedure as an alternative to the standard procedures for pregerminated barley.

  12. Salinity tolerance of foxtail barley (Hordeum jubatum) and desirable pasture grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse studies were conducted to determine the relative salinity tolerance of foxtail barley and seven desirable pasture grasses. Grass species were reed canarygrass, timothy, altai wildrye, tall fescue, tall wheatgrass, orchardgrass, creeping meadow foxtail, and foxtail barley. Grasses were e...

  13. Genetic diversity analysis of barley landraces and cultivars in the Shanghai region of China.

    PubMed

    Chen, Z-W; Lu, R-J; Zou, L; Du, Z-Z; Gao, R-H; He, T; Huang, J-H

    2012-01-01

    We analyzed the genetic diversity of 115 barley germplasms, including 112 landraces and three new barley cultivars grown in the Shanghai region, using a set of 11 SSR markers. Sixty-six alleles were observed at the 11 SSR loci, ranged from three to ten, with a mean of six alleles per locus. The polymorphism information content ranged from 0.568 to 0.853, with a mean of 0.732, indicating considerable genetic variation in barley in the Shanghai area. Clustering analysis indicated that these barley accessions could be divided into two categories (A and B). Ninety-seven six-rowed barley cultivars were classified in the A category; sixteen two-rowed and two six-rowed barley cultivars were classified in the B category. This demonstrated genetic differences between two-rowed and six-rowed barley varieties. In addition, we found that the three new barley cultivars are closely related. PMID:22535400

  14. Study of straw proportional tubes for a transition radiation detector/tracker at LHC

    NASA Astrophysics Data System (ADS)

    Åkesson, T.; Bondarenko, V.; Bychkov, V.; David, E.; Dixon, N. D.; Dolgoshein, B.; Fabjan, C. W.; Farthouat, Ph.; Froidevaux, D.; Fuchs, W.; Furletov, S.; Gavrilenko, I.; Grigoriev, V.; Hauviller, C.; Hiddleston, J. W.; Holder, M.; Ivochkin, V. G.; Kondratiev, O.; Konovalov, S.; Lichard, P.; Muraviev, S.; Malecki, P.; McCubbin, N.; Nadtochi, A. V.; Nevski, P.; Norton, P. R.; Pavlenko, S.; Peshekhonov, V.; Raine, C.; Richter, R.; Romaniouk, A.; Saxon, D. H.; Schegelsky, V. A.; Semenov, S.; Shmeleva, A.; Smirnov, S.; Sosnovtsev, V.; Spiridenkov, E. M.; Stavrianakou, M.; White, D. J.; Wilson, A.; Zaganidis, N.

    1995-02-01

    The most relevant properties for operation of straw proportional tubes at LHC are described. Particular attention is paid to the possibility of straw operation in a strong magnetic field and a high radiation environment.

  15. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation.

    PubMed

    Qi, Lin; Qin, Xiaoliang; Li, Feng-Min; Siddique, Kadambot H M; Brandl, Helmut; Xu, Jinzhang; Li, Xiaogang

    2015-01-01

    The main objective of this study was to investigate the accumulation and distribution of strontium (Sr) in 26 cultivars of wheat (Triticum aestivum L.), husk oat (Avena sativa L) and naked oat (Avena nuda), and barley (Hordeum vulgare L.) for their potential use in phytoremediation.Sr levels had no effect on the accumulation of shoot biomass at tillering or at maturity. Mean shoot Sr concentration of naked oat and barley at tillering was significantly (P<0.05) higher than that of wheat; Neimengkeyimai-1, a naked oat cultivar, had the highest Sr concentrations. At maturity, of four naked oat cultivars, Neimengkeyimai-1 had the highest Sr content at all measured Sr levels. Leaves had the highest Sr concentrations, followed by roots and straw, and then grain with the lowest. Mean enrichment coefficients from soil to shoots ranged from 0.521 to 1.343; the percentage of stable Sr removed from the soil to the shoots at harvest time was more than 1.4% after 120 days. Neimengkeyimai-1 could be used as a model for further research to find more effective cultivars; and naked oat plants could be selected for phytoremediation to clean up contaminated soil.

  16. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact. PMID:25299491

  17. Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw.

    PubMed

    Moniz, Patrícia; Ho, Ai Ling; Duarte, Luís C; Kolida, Sofia; Rastall, Robert A; Pereira, Helena; Carvalheiro, Florbela

    2016-01-20

    This work evaluates the bifidogenic potential of substituted xylo-oligosaccharides (XOS) obtained from a lignocellulosic feedstock (corn straw). Autohydrolysis was used to selectively hydrolyse the xylan-rich hemicellulosic fraction and the soluble oligosaccharides were purified by gel filtration chromatography. Selected oligosaccharides fractions within the target ranges of polymerization degree (4-6 and 9-21, samples S1 and S2, respectively) were characterized and their bifidogenic potential was investigated by in vitro fermentations using human fecal inocula. Bacterial growth was assessed by fluorescent in situ hybridization (FISH). XOS consumption and short-chain fatty acids (SCFA) production were evaluated and compared with commercial oligosaccharides. Under the tested conditions, all the substrates were utilized by the microbiota, and fermentation resulted in increased bifidobacteria populations. Samples S1 and S2 increased bifidobacteria populations and the production profile of SCFA was similar for XOS samples and commercial oligosaccharides although XOS samples displayed the highest concentration of SCFA on longer fermentation times.

  18. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact.

  19. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions

    PubMed Central

    Mittal, Arpana; Bhuwal, Anish Kumari; Singh, Gulab; Yadav, Anita; Aggarwal, Neeraj Kumar

    2014-01-01

    Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice straw was first treated with 0.5 M KOH to remove lignin followed by treatment with 0.1 N H2SO4 for removal of hemicellulose. The maximum carboxymethyl cellulase activity of 3.08 U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v) inoculum, pH 8.0 at 35°C after 60 h of growth under stationary conditions, while the same was obtained as 4.15 U/mL using 0.75% (w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30°C, under shaking conditions of growth for 48 h. For maximum titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively. The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from pretreated rice straw. PMID:24868469

  20. Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions.

    PubMed

    Fang, Hua; Dong, Bin; Yan, Hu; Tang, Feifan; Wang, Baichuan; Yu, Yunlong

    2012-01-01

    With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase, urease, neutral phosphatase and invertase), anaerobic respiration activity, microbial utilization of carbon substrates and community structure, under field conditions. The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent, although some transient differences were observed. The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness, evenness and community structure of soil microorganisms. No different pattern of impact due to plant species was found between HC and TT. It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.

  1. Pretreatment of rapeseed straw by soaking in aqueous ammonia.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Sunwoo, Changshin; Park, Don-Hee

    2012-01-01

    Pretreatment of lignocellulosic biomass has gained attention for production of biofuels. In this study, pretreatment by soaking in aqueous ammonia was adopted for pretreatment of biomass for ethanol production. A central composite design of response surface methodology was used for optimization of the pretreatment condition of rapeseed straw, with respect to catalyst concentration, pretreatment time, and pretreatment temperature. The most optimal condition for pretreatment of rapeseed straw by soaking in aqueous ammonia was 19.8% of ammonia water, 14.2 h of pretreatment time, and a pretreatment temperature of 69.0 °C. Using these optimal factor values under experimental conditions, 60.7% of theoretical glucose was obtained, and this value was well within the range predicted by the model. SEM results showed that SAA pretreatment of rapeseed straw resulted in increased surface area and pore size, as well as enhanced enzymatic digestibility.

  2. Customized optimization of cellulase mixtures for differently pretreated rice straw.

    PubMed

    Kim, In Jung; Jung, Ju Yeon; Lee, Hee Jin; Park, Hyong Seok; Jung, Young Hoon; Park, Kyungmoon; Kim, Kyoung Heon

    2015-05-01

    Lignocellulose contains a large amount of cellulose but is recalcitrant to enzymatic hydrolysis, which yields sugars for fuels or chemicals. Various pretreatment methods are used to improve the enzymatic digestibility of cellulose in lignocellulose. Depending on the lignocellulose types and pretreatment methods, biomass compositions and physical properties significantly vary. Therefore, customized enzyme mixtures have to be employed for the efficient hydrolysis of pretreated lignocellulose. Here, using three recombinant model enzymes consisting of endoglucanase, cellobiohydrolase, and xylanase with a fixed amount of β-glucosidase, the optimal formulation of enzyme mixtures was designed for two differently pretreated rice straws (acid-pretreated or alkali-pretreated rice straw) by the mixture design methodology. As a result, different optimal compositions for the enzyme mixtures were employed depending on the type of pretreatment of rice straw. These results suggest that customized enzyme mixtures for pretreated lignocellulosic biomass are necessary to obtain increased sugar yields and should be considered in the industrial utilization of lignocellulose. PMID:25547288

  3. XPS and IGC characterization of steam treated triticale straw

    NASA Astrophysics Data System (ADS)

    Zhao, Liyan; Boluk, Yaman

    2010-10-01

    The surface chemical composition and surface energy of native and steam treated triticale straws have been investigated by X-ray photoelectron spectroscopy (XPS) and inverse gas chromatography (IGC) to reveal the effect of steam treatment temperature and time. The XPS results show that the contents of C elements and C-C group on the exterior surface of native triticale straw are much higher than those on the interior surface, indicating that there was a high quantity of wax on the exterior surface of the native triticale straw. Upon steam treatment, both carbon levels and C-C groups reduce with increasing steam temperature and treatment time of the exterior surfaces. However, the effect of steam treatment on the interior surface is very limited. In terms of the surface acid and base properties, the steam treated samples exhibited higher acid and base properties than the native sample, indicating a more polar surface of the steam treated sample.

  4. Sequencing and Comparative Analysis of the Straw Mushroom (Volvariella volvacea) Genome

    PubMed Central

    Bao, Dapeng; Gong, Ming; Zheng, Huajun; Chen, Mingjie; Zhang, Liang; Wang, Hong; Jiang, Jianping; Wu, Lin; Zhu, Yongqiang; Zhu, Gang; Zhou, Yan; Li, Chuanhua; Wang, Shengyue; Zhao, Yan; Zhao, Guoping; Tan, Qi

    2013-01-01

    Volvariella volvacea, the edible straw mushroom, is a highly nutritious food source that is widely cultivated on a commercial scale in many parts of Asia using agricultural wastes (rice straw, cotton wastes) as growth substrates. However, developments in V. volvacea cultivation have been limited due to a low biological efficiency (i.e. conversion of growth substrate to mushroom fruit bodies), sensitivity to low temperatures, and an unclear sexuality pattern that has restricted the breeding of improved strains. We have now sequenced the genome of V. volvacea and assembled it into 62 scaffolds with a total genome size of 35.7 megabases (Mb), containing 11,084 predicted gene models. Comparative analyses were performed with the model species in basidiomycete on mating type system, carbohydrate active enzymes, and fungal oxidative lignin enzymes. We also studied transcriptional regulation of the response to low temperature (4°C). We found that the genome of V. volvacea has many genes that code for enzymes, which are involved in the degradation of cellulose, hemicellulose, and pectin. The molecular genetics of the mating type system in V. volvacea was also found to be similar to the bipolar system in basidiomycetes, suggesting that it is secondary homothallism. Sensitivity to low temperatures could be due to the lack of the initiation of the biosynthesis of unsaturated fatty acids, trehalose and glycogen biosyntheses in this mushroom. Genome sequencing of V. volvacea has improved our understanding of the biological characteristics related to the degradation of the cultivating compost consisting of agricultural waste, the sexual reproduction mechanism, and the sensitivity to low temperatures at the molecular level which in turn will enable us to increase the industrial production of this mushroom. PMID:23526973

  5. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  6. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  7. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  8. 7 CFR 457.102 - Wheat or barley winter coverage endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Wheat or barley winter coverage endorsement. 457.102... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.102 Wheat or barley... Wheat or Barley Winter Coverage Endorsement (This is a continuous endorsement) 1. In return for...

  9. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  10. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  11. Water uptake in barley grain: Physiology; genetics and industrial applications.

    PubMed

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. PMID:26566843

  12. Assessment of genetic diversity in Brazilian barley using SSR markers

    PubMed Central

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  13. Assessment of genetic diversity in Brazilian barley using SSR markers.

    PubMed

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-03-01

    Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  14. In Vitro Processing of Tomato Proteinase Inhibitor I by Barley Microsomal Membranes

    PubMed Central

    Osteryoung, Katherine W.; Sticher, Liliane; Jones, Russell L.; Bennett, Alan B.

    1992-01-01

    A plant-derived in vitro system for the study of cotranslational processing of plant endomembrane proteins has been developed and used to investigate cotranslational proteolytic processing of tomato proteinase inhibitor I. Translation of the inhibitor I precursor in wheat germ lysate supplemented with barley aleurone microsomal membranes resulted in cotranslational import of the protein into microsomal vesicles and cleavage of the signal sequence. NH2-terminal sequence analysis of the translocated inhibitor I processing intermediate showed that the signal sequence was cleaved between Ala23 and Arg24 of the precursor protein. Parallel experiments using dog pancreas microsomal membranes indicated an identical site of cleavage, suggesting that the substrate determinants for signal sequence processing are conserved across kingdoms. The plant-derived processing system used for this study may be valuable for analysis of cotranslational processing of other plant preproteins and for characterizing the components of the cotranslational import machinery in plants. ImagesFigure 1 PMID:16668894

  15. The Genetic Architecture of Barley Plant Stature

    PubMed Central

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  16. The Genetic Architecture of Barley Plant Stature.

    PubMed

    Alqudah, Ahmad M; Koppolu, Ravi; Wolde, Gizaw M; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  17. Induction of Barley Leaf Urease 1

    PubMed Central

    Chen, Yuguang; Ching, Te May

    1988-01-01

    Foliar urea application on barley plants increased leaf urease activity for 5 hours with a peak of 20-fold at 2 hours. To discern the mode of urease induction, urea with or without inhibitors and [35S]methionine were incubated with leaf sections for different lengths of time. Urease was extracted, partially purified, electrophoresed, and then quantified by fluorogram. Five urease (U) isozymes were separated by PAGE. Ua and Ub might be polymers or complexes that occurred only at the peak of induced activity. U1 and U2 appeared at 0.5 and 0.75 hour, respectively, after urea induction, peaked at 2 hours, and persisted only in treated leaves for several additional hours indicating that they are transient inducible forms. U3 was the constitutive form present in control and treated leaves. Induction with cordycepin or cycloheximide completely prevented urea stimulated activity and nullified the existence of isozymes Ua, Ub, U1, and U2. 35S-U1, which was labeled in the last hour of induction, appeared on fluorogram 1 hour after induction, peaked at 2 hours, and declined at 3 hours. Results indicated that de novo synthesis of urease is activated by the influx of urea. Images Fig. 2 Fig. 4 PMID:16666013

  18. Drinking-Straw Microbalance and Seesaw: Stability and Instability

    NASA Astrophysics Data System (ADS)

    Chapman, Peter; Glasser, Leslie

    2015-03-01

    The mechanics of a beam balance are little appreciated and seldom understood. We here consider the conditions that result in a stable balance, with center of gravity below the fulcrum (pivot point), while an unstable balance results when the center of gravity is above the fulcrum. The highly sensitive drinking-straw microbalance, which uses a plastic drinking straw as a rigid beam, is briefly described with some slight convenient modifications. Different placements of the center of gravity are considered analytically to explain the equilibrium neutrality, stability, and instability of such beam balances as the microbalance, the playground "seesaw" or "teeter-totter," the "dipping bird," and other toys and magic tricks.

  19. Environmentally friendly education: A passive solar, straw-bale school

    SciTech Connect

    Stone, L.; Dickinson, J.

    1999-07-01

    The Waldorf students in the Roaring Fork Valley of western Colorado are learning their reading, writing and arithmetic in the cozy confines of a solar heated, naturally lit, straw-bale school. The Waldorf education system, founded in 1919 by Austrian Rudolph Steiner, stresses what's appropriate for the kids, not what's easiest to teach. In constructing a new school, the Waldorf community wanted a building that would reflect their philosophy. There was a long list of requirements: natural, energy efficient, light, warm, alive, and earthy. Passive solar straw-bale construction brought together all those qualities.

  20. Organic dyes removal using magnetically modified rye straw

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Safarikova, Mirka; Safarik, Ivo

    2015-04-01

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid-NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green.

  1. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production.

    PubMed

    Khokhar, Zia-Ullah; Syed, Qurat-Ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  2. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production.

    PubMed

    Khokhar, Zia-Ullah; Syed, Qurat-Ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  3. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production

    PubMed Central

    Khokhar, Zia-ullah; Syed, Qurat-ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  4. [Effect of pretreatment on storage and biogas production of baling wheat straw].

    PubMed

    Ma, Hui-Juan; Chen, Guang-Yin; Du, Jing; Chang, Zhi-Zhou; Ye, Xiao-Mei

    2013-08-01

    Long-term storage of crop straw is very important for biogas plant while pretreatment is always used to improve biogas production of crop straw. Feasibility of integrating the storage with pretreatment of baling wheat straw was studied. Changes of physicochemical properties and the biogas productivity of wheat straw obtained before and after 120 days storage were analyzed. The results showed that it was feasible to directly bale wheat straw for storage (control) and storage treatment had little effect on the physicochemical properties, structure and biogas productivity of wheat straw. After 120 day's storage, biogas production potential of the surface wheat straw of pile was decreased by 7.40%. Integrating NaOH pretreatment with straw storage was good for biogas production of wheat straw and the total solid (TS) biogas yield was increased by 7.02%-8.31% (compared to that of wheat straw without storage) and 5.68% -16.96% (compared to that of storage without alkaline pretreatment), respectively. Storage with urea treatment was adverse to biogas production of wheat straw and the contents of cellulose and hemicellulose of wheat straw were decreased by 18.25%-27.22% and 5.31%-16.15% and the TS biogas yield was decreased by 2.80%-7.71% after 120 day's storage. Exposing wheat straw to the air during the storage process was adverse to the conserving of organic matter and biogas utilization of wheat straw, but the influence was very slight and the TS biogas yield of wheat straw obtained from pile surface of control and urea treatment was decreased by 7.40% and 4.25%, respectively.

  5. Effects of incorporating differently-treated rice straw on phytoavailability of methylmercury in soil.

    PubMed

    Shu, Rui; Dang, Fei; Zhong, Huan

    2016-02-01

    Differently-treated crops straw is being widely used to fertilize soil, while the potential impacts of straw amendment on the biogeochemistry and phytoavailability of mercury in contaminated soils are largely unknown. In the present study, differently-treated rice straw (dry straw, composted straw, straw biochar, and straw ash) was incorporated into mercury-contaminated soil at an environment relevant level (1/100, w/w), and mercury speciation, methylmercury (MeHg) phytoavailability (using ammonium thiosulfate extraction method, validated elsewhere) and bioaccumulation (in Indian mustard Brassica junceas) were quantified. Our results indicated that incorporating straw biochar or composted straw into soil would decrease phytoavailable MeHg levels, possibly due to the strong binding of MeHg with particulate organic matter in amended straw ('MeHg immobilization effect'). Consequently, MeHg accumulation in aboveground tissue of Indian mustard harvested from straw biochar-amended soil decreased by 20% compared to the control. Differently, incorporation of dry straw resulted in elevated MeHg levels in soil ('Mercury methylation effect'). Decomposition of amended dry straw in soil would evidently increase DOC levels (averagely 40%-195% higher than the control), which may subsequently mobilize MeHg in the soil ('MeHg mobilization effect'). Accordingly, incorporation of dry straw led to increased phytoavailable MeHg levels in the soil and doubled MeHg accumulation in Indian mustard. Our results provided the first evidence that incorporating differently-treated rice straw into soil could have diverse effects on mercury biogeochemistry and phytoavailability, which should be taken into account in risk assessment or soil remediation. PMID:26694796

  6. Production of cellulase in solid-state fermentation with Trichoderma reesei MCG 80 on wheat straw

    SciTech Connect

    Chahal, P.S.; Chahal, D.S.; Le, G.B.B.

    1996-12-31

    It is an accepted fact that ethanol production from lignocellulosic materials is not economical as yet because of the high cost of cellulose production. To reduce the cost of cellulose production, lignocellulosic material (wheat straw [WS]), a comparatively much cheaper substrate, was used instead of costly substrates (pure cellulose or lactose). A pan bioreactor was developed for solid-state fermentation (SSF) that required a small capital investment. High yields of complete cellulose system were obtained compared to that in the liquid-state fermentation (LSF) from WS, when treated with 4.25% NaOH at 121{degrees}C for 1 h and mixed with Mandels` medium. A complete cellulose system is defined as one in which the ratio of {beta} glucosidase activity to filter paper activity in the enzyme solution is close to 1.0. The cellulose system derived from SSF using the pan bioreactor gave more than 85% hydrolysis of delignified WS. The prototype pan bioreactor requires further improvements so that optimum quantity of substrate can be fermented to obtain high yields of complete cellulose system per unit space. The SSF process provides a means for the production of complete cellulose system for the economical bioconversion of renewable biomass into ethanol. 18 refs., 5 figs., 1 tab.

  7. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.

    PubMed

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  8. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  9. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.

    PubMed

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding.

  10. Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures.

    PubMed

    Otto, Ingrid; Müller, Andrea; Kumlehn, Jochen

    2015-01-01

    The temperate cereal barley is grown as a source of food, feed, and malt. The development of a broad range of genetic resources and associated technologies in this species has helped to establish barley as the prime model for the other Triticeae cereals. The specific advantage of the transformation method presented here is that transgene homozygosity is attained in the same generation as the transgenic event occurred through the coupling of haploid technology with Agrobacterium-mediated transformation. Pollen is haploid and, following transformation, can be induced to regenerate into haploid plantlets, which can subsequently subjected to colchicine treatment to obtain diploid, genetically fixed plants. The routine application of the method based on the winter-type barley cultivar 'Igri' over a period of over 10 years has achieved an average yield of about two transgenic plants per donor spike. The whole procedure from pollen isolation to non-segregating transgenic, mature grain takes less than 12 months.

  11. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    SciTech Connect

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  12. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination.

    PubMed

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-11-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds.

  13. The transfer of {sup 137}Cs from barley to beer

    SciTech Connect

    Proehl, G.; Mueller, H.; Voigt, G.

    1997-01-01

    Beer has been brewed from barley contaminated with {sup 137}Cs as a consequence of the Chernobyl accident. The {sup 137}Cs activity has been measured in all intermediate steps and in the by-products of the production process. About 35 % of the {sup 137}Cs in barley were recovered in beer. Processing factors defined as the concentration ratio of processed and raw products were determined to be 0.61, 3.3, 0.1 and 0.11 for malt, malt germs, spent grains and beer, respectively. 4 refs., 2 tabs.

  14. Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw

    PubMed Central

    2013-01-01

    Background Biotechnological exploitation of lignocellulosic biomass is promising for sustainable and environmentally sound energy provision strategy because of the abundant availability of the renewable resources. Wheat straw (WS) comprising of 75-80% cellulose and hemicellulose is one of widely available, inexpensive and renewable lignocellulosic biomass types. The cellulosic and hemicellulose substrate can be hydrolyzed into monomeric sugars by chemical and/or biological methods. Results This study examined comparative potential of dilute acid and pre-ammonia pretreated and enzymatically hydrolyzed wheat straw (WS) for hydrogen production by purple non sulfur bacterium Rhodobacter capsulatus-PK. Gas production became noticeable after 14 h of inoculation in WS pretreated with 4% H2SO4. The detoxified liquid hydrolyzate (DLH) after overliming attained a production level of 372 mL-H2/L after 16 h under illumination of 120-150 W/m2 at 30 ± 2.0°C. Whereas the non-detoxified acid pretreated hydrolyzate (NDLH) of WS could produce only upto 254 mL-H2/L after 21 h post inoculation. Evolution of H2 became observable just after 10 ± 2.0 h of inoculation by employing 48 h age inoculum on the WS pretreated with 30% ammonia, hydrolyzed with cellulase 80 FPU/g and β-glucosidase 220 CbU/ml at 50°C. Upto 712 ml/L of culture was measured with continuous shaking for 24 h. The 47.5% and 64.2% higher hydrogen volume than the DLH and NDLH substrates, respectively appeared as a function of significantly higher monomeric sugar contents of the enzymatically hydrolyzed substrate and lesser/zero amounts of toxic derivatives including pH reducing agents. Conclusion Photofermentative hydrogen production from lignocellulosic waste is a feasible approach for eco-friendly sustainable supply of bioenergy in a cost-effective way. Results of this study provide new insight for addressing biotechnological exploitation of abundantly available and low-cost cellulosic substrates

  15. Drinking-Straw Microbalance and Seesaw: Stability and Instability

    ERIC Educational Resources Information Center

    Chapman, Peter; Glasser, Leslie

    2015-01-01

    The mechanics of a beam balance are little appreciated and seldom understood. We here consider the conditions that result in a stable balance, with center of gravity below the fulcrum (pivot point), while an unstable balance results when the center of gravity is above the fulcrum. The highly sensitive drinking-straw microbalance, which uses a…

  16. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    PubMed

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws. PMID:26794460

  17. Charcoal from the pyrolysis of rapeseed plant straw-stalk

    SciTech Connect

    Karaosmanoglu, F.; Tetik, E.

    1999-07-01

    Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.

  18. Truck Drivers, a Straw, and Two Glasses of Water

    ERIC Educational Resources Information Center

    Iga, Kevin; Killpatrick, Kendra

    2006-01-01

    While waiting for his meal to arrive, a truck driver was using his straw to move water from one glass to another when he was struck by this question: If I keep doing this, will the two glasses ever have exactly the same amount of water? This article looks at various problems related to that question.

  19. The Truck Driver's Straw Problem and Cantor Sets

    ERIC Educational Resources Information Center

    Iga, Kevin

    2008-01-01

    A colleague was moving, and someone on the professional moving crew, upon hearing she was a mathematician, asked what happens when you repeatedly transfer water back and forth between two classes using a straw. The question is simple to solve if you alternate which glass you transfer from and to, but if more general patters are allowed, some…

  20. Folk Arts in the Home: New Mexican Straw Applique.

    ERIC Educational Resources Information Center

    Gomez, Aurelia; Sullivan, Laura Temple

    In the 16th century the Spanish introduced marquetry techniques to the New World. The term "marquetry" applies to two different types of surface decoration: inlay and veneer; straw applique as it is practiced in New Mexico combines both techniques.) The introduction of marquetry dovetailed with the pre-Hispanic Aztec tradition of decorating…

  1. Cavitation assisted delignification of wheat straw: a review.

    PubMed

    Iskalieva, Asylzat; Yimmou, Bob Mbouyem; Gogate, Parag R; Horvath, Miklos; Horvath, Peter G; Csoka, Levente

    2012-09-01

    Wheat is grown in most of the Indian and Chinese regions and after harvesting, the remaining straw offers considerable promise as a renewable source most suitable for papermaking and as a pulping resource. Delignification of wheat straw offers ample scope for energy conservation by way of the application of the process intensification principles. The present work reviews the pretreatment techniques available for improving the effectiveness of the conventional approach for polysaccharide component separation, softening and delignification. A detailed overview of the cavitation assisted delignification process has been presented based on the earlier literature illustrations and important operational guidelines have been presented for overall low-cost and amenable energy utilization in the processes. The effectiveness of the methods has been evaluated according to yield and properties of the isolated fibers in comparison to the conventional treatment. Also the experimental results of one such non-conventional treatment scheme based on the use of hydrodynamic cavitation have been presented for the pulping of wheat straw. The effect of hydrodynamically induced cavitation on cell wall matrix and its components have been characterized using FT-IR analysis with an objective of understanding the cavitation assisted digestion mechanism on straws. It has been observed that the use of hydrodynamic cavitation does not degrade the fibrillar structure of cellulose but causes relocalisation and partial removal of lignin. Overall it appears that considerable improvement can be obtained due to the use of pretreatment or alternate techniques for delignification, which is an energy intensive step in the paper making industries.

  2. Elemental concentrations in Triticale straw, a potential bioenergy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticale (X Triticosecale Wittmack) is produced on more than three million ha world wide including 344,000 ha in the USA. Straw resulting from triticale production could provide feedstock for bioenergy production in many regions of the world, but high concentrations of certain elements, including s...

  3. [Response of Soil Respiration and Organic Carbon to Returning of Different Agricultural Straws and Its Mechanism].

    PubMed

    Cao, Zhan-bo; Wang, Lei; Li, Fan; Fu, Xiao-hua; Le, Yi-quan; Wu, Ji-hua; Lu, Bing; Xu, Dian-sheng

    2016-05-15

    Soybean, maize and rice straws were selected as raw materials to study the response of the soil respiration (SR) and soil organic carbon (SOC) to returning of different straws in the Chongming Dongtan area. The results showed that all of SR, SOC and the plant biomass of the lands with returning of different straws were higher than those of the controls. The soil with soybean straw returning possessed the lowest SR and highest SOC among the three kinds of straws, meaning its higher soil organic carbon sequestration capability than corn and maize straws returning. Straw returning significantly enhanced soil dehydrogenase, β-glycosidase activities and microbial biomass, and soil dehydrogenase activity was significantly correlated with soil respiration. The dehydrogenase activity of the soil with soybean straw returning was the lowest, thus, the lowest SR and highest SOC. Soybean straw had the highest cellulose and lignin contents and the lowest N content among the three kinds of straws, resulting in its lowest biodegradability. Therefore, when soybean straw was returned to soil, it was difficult to degrade completely by soil microorganisms, thus the lowest soil microbial activity, eventually leading to the lowest SR and highest SOC.

  4. [Response of Soil Respiration and Organic Carbon to Returning of Different Agricultural Straws and Its Mechanism].

    PubMed

    Cao, Zhan-bo; Wang, Lei; Li, Fan; Fu, Xiao-hua; Le, Yi-quan; Wu, Ji-hua; Lu, Bing; Xu, Dian-sheng

    2016-05-15

    Soybean, maize and rice straws were selected as raw materials to study the response of the soil respiration (SR) and soil organic carbon (SOC) to returning of different straws in the Chongming Dongtan area. The results showed that all of SR, SOC and the plant biomass of the lands with returning of different straws were higher than those of the controls. The soil with soybean straw returning possessed the lowest SR and highest SOC among the three kinds of straws, meaning its higher soil organic carbon sequestration capability than corn and maize straws returning. Straw returning significantly enhanced soil dehydrogenase, β-glycosidase activities and microbial biomass, and soil dehydrogenase activity was significantly correlated with soil respiration. The dehydrogenase activity of the soil with soybean straw returning was the lowest, thus, the lowest SR and highest SOC. Soybean straw had the highest cellulose and lignin contents and the lowest N content among the three kinds of straws, resulting in its lowest biodegradability. Therefore, when soybean straw was returned to soil, it was difficult to degrade completely by soil microorganisms, thus the lowest soil microbial activity, eventually leading to the lowest SR and highest SOC. PMID:27506047

  5. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand.

    PubMed

    Silalertruksa, Thapat; Gheewala, Shabbir H

    2013-12-01

    Life cycle assessment of four rice straw utilization systems including; (1) direct combustion for electricity, (2) biochemical conversion to bio-ethanol and biogas, (3) thermo-chemical conversion to bio-DME, and (4) incorporation into the soil as fertilizer have been conducted to compare their environmental performances. The results showed that per ton of dry rice straw, the bio-ethanol pathway resulted in the highest environmental sustainability with regards to reductions in global warming and resource depletion potentials. Rice straw bio-DME was preferable vis-à-vis reduction in acidification potential. Rice straw electricity and fertilizer also brought about several environmental benefits. The key environmental benefit of rice straw utilization came from avoiding the deleterious effects from burning straw in situ in the field. Recommendations for enhancing environmental sustainability of rice straw utilization for fuels and fertilizer are provided. PMID:24076147

  6. Processes of heat and mass transfer in straw bales using flue gasses as a drying medium

    NASA Astrophysics Data System (ADS)

    Goryl, Wojciech; Szubel, Mateusz; Filipowicz, Mariusz

    2016-03-01

    Moisture content is a main problem of using straw in form of bales for energy production. The paper presents possibility of straw drying in dedicated, innovative and patented in Poland straw dryers which using flue gasses as a drying medium. Paper presents an improved way of drying which proved to be very sufficient. Temperature and humidity of straw during the process of drying were measured. The measurements helped understand and perform numerical model of heat and mass transfer inside the straw bale. By using CFD codes it was possible to perform analysis of phenomenon occurring inside the dried straw bale. Based on the CFD model, proposals of the optimization and improvement process of drying have been discussed. Experimental and computational data have been compared in terms of convergence. A satisfying degree of agreement has been achieved. Applying improved drying method, homogenous field of moisture content and temperature in the straw bale is achieved in a very cost effective way.

  7. Production of poly-β-hydroxybutyrate by Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-08-01

    Poly-β-hydroxybutyrate (PHB) has attracted a great deal of attention in recent years due to its potential use for production of fully degradable bioplastics, however, high cost of PHB production is the major bottleneck for its wide range industrial applications. In the current study rice straw hydrolysate (RSH) was employed as a cost-effective substrate for PHB production. RSH was prepared based on biphasic acid-pretreatment of rice straw i.e. first phase treatment with 1% sulphuric acid at 121 °C for 45 min, followed by second phase treatment using 5% sulphuric acid at 121 °C for 60 min (solid:liquid ratio, 1:10). RSH turned out be an efficient substrate for PHB production from a recently isolated Bacillus cereus PS 10, and yielded higher PHB amount than that obtained with glucose (8.6g/L in glucose based medium vs 10.61 g/L in RSH based medium) after response surface methodology (RSM) based optimization. Design of experiments based on RSM was used to optimize three process variables i.e. amount of RSH and NH4Cl, and medium pH, and enhanced PHB yield (23.3%) was obtained. PHB produced was investigated by differential scanning calorimetry and X-ray diffraction powder analysis. PMID:26047898

  8. Variation of the microbial community in thermophilic anaerobic digestion of pig manure mixed with different ratios of rice straw.

    PubMed

    Zhou, Sheng; Nikolausz, Marcell; Zhang, Jining; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2016-09-01

    The effect of pig manure mixed with rice straw on methane yield and the microbial community involved in a thermophilic (55°C) anaerobic digestion process was investigated. Three substrates composed of mixed pig manure and rice straw at different ratios (95:5; 78:22 and 65:35 w/w, which resulted in C/N ratios of 10:1, 20:1 and 30:1) were used for the experiment. The substrate type had a major influence on the total bacterial community, while the methanogens were less affected. The members of the class Clostridia (phylum Firmicutes) were predominant regardless of mixture ratio (C/N ratio), but at species level there was a major difference between the low and high C/N ratio samples. The hydrogenotrophic methanogenic genus of Methanothermobacter was predominant in all samples but higher C/N ratio sequences affiliated to the genus Methanosarcina were also detected. The appearance of Methanosarcina sp. is most likely due to the less inhibition of ammonia during the anaerobic digestion. PMID:27072299

  9. Wheat straw biomass: a resource for high-value chemicals.

    PubMed

    Schnitzer, Morris; Monreal, Carlos M; Powell, Erin E

    2014-01-01

    Two methods are proposed for increasing the commercial value of wheat straw based on its chemical constituents. The first method involves the determination and extraction of the major organic components of wheat straw, and the second involves those found and extracted in the aqueous and viscous biooils derived from the straw by fast pyrolysis. We used pyrolysis-field ionization mass spectrometry to identify the fine chemicals, which have high commercial values. The most abundant organic compounds in the wheat straw and biooil used as precursors for green chemicals are N-heterocycles (16 to 29% of the Total Ion Intensities, TII) and fatty acids (19 to 26% of TIIs), followed by phenols and lignins (12 to 23% of TIIs). Other important precursors were carbohydrates and amino acids (1 to 8% TIIs), n-alkyl benzenes (3 to 5% of TIIs), and diols (4 to 9% TIIs). Steroids and flavonoids represented 1 to 5% of TIIs in the three materials. Examples of valuable chemical compounds that can be extracted from the wheat straw and biooils are m/z 256, 270, 278, 280, 282 and 284, which are the n-C16 and n-C17 fatty acids respectively, and the C18:3, C18:2 and C18:1 unsaturated fatty acids. In particular, the C18:2 (linoleic acid) is present at a concentration of 1.7% of TIIs. Pyrazole, pyrazine, pyridine, indoles, quinolines, carbazoles, and their identified derivatives are found in relatively high concentrations (1 to 8% of TIIs). Other useful compounds are sterols such as m/z 412 (stigmasterol), m/z 414 (β-sitosterol), and steroids such m/z 394 (stigmastatriene), m/z 398 (stigmastene) and m/z 410 (stigmastadienone). Relative to the wheat straw, the relative concentration of all flavonoids such as m/z 222 (flavone) and m/z 224 (flavonone) doubled in the biooils. The conversion of wheat straw by fast pyrolysis, followed by chemical characterization with mass spectrometry, and extraction of fine chemicals, opens up new possibilities for increasing the monetary value of crop residues.

  10. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw.

    PubMed

    Rodrigues, Ana Cristina; Felby, Claus; Gama, Miguel

    2014-03-01

    The potential of enzymes recycling after hydrolysis and fermentation of wheat straw under a variety of conditions was investigated, monitoring the activity of the enzymes in the solid and liquid fractions, using low molecular weight substrates. A significant amount of active enzymes could be recovered by recycling the liquid phase. In the early stage of the process, enzyme adsorb to the substrate, then gradually returning to the solution as the saccharification proceeds. At 50°C, normally regarded as an acceptable operational temperature for saccharification, the enzymes (Celluclast) significantly undergo thermal deactivation. The hydrolysis yield and enzyme recycling efficiency in consecutive recycling rounds can be increased by using high enzyme loadings and moderate temperatures. Indeed, the amount of enzymes in the liquid phase increased with its thermostability and hydrolytic efficiency. This study contributes towards developing effective enzymes recycling strategies and helping to reduce the enzyme costs on bioethanol production.

  11. Combined submerged and solid substrate fermentation for the bioconversion of lignocellulose

    SciTech Connect

    Viesturs, U.E.; Strikauska, S.V.; Leite, M.P.; Berzins, A.J.; Tengerdy, R.P.

    1987-01-01

    A novel two-stage bioreactor has been designed for a combined submerged (SF) and solid substrate fermentation (SSF) of wheat straw. The straw was pretreated with steam, and cellulases from the culture fluid of Trichoderma reesei were adsorbed on it for increased bio-convertibility. SSF was conducted in the top part of the bioreactor by inoculating the straw with a 36-h mycelial culture of T. reesei, or Coriolus versicolor. In the bottom part of the fermenter, Endomycopsis fibuliger was grown in SF. The SF liquor was recirculated through the SSF stage at 24 hour intervals to remove glucose and other metabolites that may inhibit growth, and to maintain optimum moisture level and temperature. The removed glucose and other metabolites provided nutrients for the yeast in the SF stage. The combined fermentation resulted in overall higher biomass yield, increased bioconversion, increased cellulase production, and increased digestibility compared with single SSF or SF. (Refs. 16).

  12. The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation.

    PubMed

    Theuretzbacher, Franz; Blomqvist, Johanna; Lizasoain, Javier; Klietz, Lena; Potthast, Antje; Horn, Svein Jarle; Nilsen, Paal J; Gronauer, Andreas; Passoth, Volkmar; Bauer, Alexander

    2015-10-01

    Ethanol and biogas are energy carriers that could contribute to a future energy system independent of fossil fuels. Straw is a favorable bioenergy substrate as it does not compete with food or feed production. As straw is very resistant to microbial degradation, it requires a pretreatment to insure efficient conversion to ethanol and/or methane. This study investigates the effect of combining biological pretreatment and steam explosion on ethanol and methane yields in order to improve the coupled generation process. Results show that the temperature of the steam explosion pretreatment has a particularly strong effect on possible ethanol yields, whereas combination with the biological pretreatment showed no difference in overall energy yield. The highest overall energy output was found to be 10.86 MJ kg VS(-1) using a combined biological and steam explosion pretreatment at a temperature of 200°C.

  13. Inferring geographic origin of barley accessions using molecular markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service (ARS) National Small Grains Collection (NSGC) has 207 landrace barleys obtained from a nursery grown in the Ukraine in 1930 by N.I. Vavilov, many of which have multiple resistance (MR) to disease similar to accessions from Ethiopia. Vavilov collected germplasm ...

  14. Involvement of Alternative Splicing in Barley Seed Germination.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3' splicing (34%-45%), intron retention (32%-34%) and alternative 5' splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.

  15. Registration of ‘Muir’ spring feed barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Muir’ (Reg. No. CV-357, PI 674172) is a two-row, spring, hulled feed barley (Hordeum vulgare L.) cultivar developed and evaluated as 07WA-601.6, and released in 2013 by Washington State University (WSU). Muir was derived from the cross ‘Baronesse’/‘Bob’ and selected through singleseed descent from ...

  16. Leaf rust of cultivated barley: pathology and control.

    PubMed

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  17. 7 CFR 457.118 - Malting barley crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with 7 CFR part 400, subpart G. (b) Approved malting variety. A variety of barley specified as... and Drug Administration when determining concentrations of mycotoxins or other substances or... organization of the United States for substances or conditions, including mycotoxins, that are identified...

  18. Leaf rust of cultivated barley: pathology and control.

    PubMed

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed. PMID:26047566

  19. Radiation hybrid map of barley chromosome 3H

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assembly of the barley genome is complicated by its large size (5.1 Gb) and proportion of repetitive elements (84%). This process is facilitated by high resolution maps for aligning BAC contigs along chromosomes. Available genetic maps; however, do not provide accurate information on the physical po...

  20. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  1. Biotic stress in barley: disease problems and solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) is cultivated over a wider geographic range than almost any other major crop species. It can be found growing from the tropics to the high latitudes and from the seacoast to the highest arable mountaintops. On marginal lands where alkaline soils, drought, or cold summer t...

  2. 2012 North Dakota Transgenic Barley FHB Nursery Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2012 North Dakota transgenic field trials consisted of 23 barley lines, tested in three misted and three non-misted replicates. Plots were sown on May 9, 2012 in hill plots with 10 seed per hill spaced at 30 cm, and all plots were inoculated using the grain spawn method at heading. Lines include...

  3. Registration of Harriman low-phytate, hulled spring barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service, U.S. Department of Agriculture (USDA-ARS), has released 'Harriman', (Hordeum vulgare L.) (Reg. No. xxxxxx, P.I. xxxxxx). Harriman is a hulled, low-phytate barley, the second to be developed and released by the USDA-ARS. Compared to the previously released hulled, l...

  4. Registration of ‘Merem’ spring malting barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Merem’ is a two-rowed spring malting barley (Hordeum vulgare L.) developed by the USDA-ARS, Aberdeen, ID, in cooperation with the University of Idaho Agricultural Experiment Station. Merem has been tested in USDA-ARS, and all other cooperative trials as “02Ab17271”. ‘02Ab17271’ is a selection fro...

  5. Isolation and Proteomics Analysis of Barley Centromeric Chromatin Using PICh.

    PubMed

    Zeng, Zixian; Jiang, Jiming

    2016-06-01

    Identification of proteins that are directly or indirectly associated with a specific DNA sequence is often an important goal in molecular biology research. Proteomics of isolated chromatin fragments (PICh) is a technique used to isolate chromatin that contains homologous DNA sequence to a specific nucleic acid probe. All proteins directly and indirectly associated with the DNA sequences that hybridize to the probe are then identified by proteomics.1 We used the PICh technique to isolate chromatin associated with the centromeres of barley (Hordeum vulgare) by using a 2'-deoxy-2'fluoro-ribonucleotides (2'-F RNA) probe that is homologous to the AGGGAG satellite DNA specific to barley centromeres. Proteins associated with the barley centromeric chromatin were then isolated and identified by mass spectrometry. Both alpha-cenH3 and beta-cenH3, the two centromeric histone H3 variants associated with barley centromeres, were positively identified. Interestingly, several different H2A and H2B variants were recovered in the PIChed chromatin. The limitations and future potential of PICh in plant chromatin research are discussed. PMID:27142171

  6. A simple sequence repeat-based linkage map of barley.

    PubMed Central

    Ramsay, L; Macaulay, M; degli Ivanissevich, S; MacLean, K; Cardle, L; Fuller, J; Edwards, K J; Tuvesson, S; Morgante, M; Massari, A; Maestri, E; Marmiroli, N; Sjakste, T; Ganal, M; Powell, W; Waugh, R

    2000-01-01

    A total of 568 new simple sequence repeat (SSR)-based markers for barley have been developed from a combination of database sequences and small insert genomic libraries enriched for a range of short simple sequence repeats. Analysis of the SSRs on 16 barley cultivars revealed variable levels of informativeness but no obvious correlation was found with SSR repeat length, motif type, or map position. Of the 568 SSRs developed, 242 were genetically mapped, 216 with 37 previously published SSRs in a single doubled-haploid population derived from the F(1) of an interspecific cross between the cultivar Lina and Hordeum spontaneum Canada Park and 26 SSRs in two other mapping populations. A total of 27 SSRs amplified multiple loci. Centromeric clustering of markers was observed in the main mapping population; however, the clustering severity was reduced in intraspecific crosses, supporting the notion that the observed marker distribution was largely a genetical effect. The mapped SSRs provide a framework for rapidly assigning chromosomal designations and polarity in future mapping programs in barley and a convenient alternative to RFLP for aligning information derived from different populations. A list of the 242 primer pairs that amplify mapped SSRs from total barley genomic DNA is presented. PMID:11102390

  7. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  8. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    EPA Science Inventory

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  9. Patterns of polymorphism and linkage disequilibrium in cultivated barley

    PubMed Central

    Comadran, Jordi; Ramsay, Luke; MacKenzie, Katrin; Hayes, Patrick; Close, Timothy J.; Muehlbauer, Gary; Stein, Nils

    2010-01-01

    We carried out a genome-wide analysis of polymorphism (4,596 SNP loci across 190 elite cultivated accessions) chosen to represent the available genetic variation in current elite North West European and North American barley germplasm. Population sub-structure, patterns of diversity and linkage disequilibrium varied considerably across the seven barley chromosomes. Gene-rich and rarely recombining haplotype blocks that may represent up to 60% of the physical length of barley chromosomes extended across the ‘genetic centromeres’. By positioning 2,132 bi-parentally mapped SNP markers with minimum allele frequencies higher than 0.10 by association mapping, 87.3% were located to within 5 cM of their original genetic map position. We show that at this current marker density genetically diverse populations of relatively small size are sufficient to fine map simple traits, providing they are not strongly stratified within the sample, fall outside the genetic centromeres and population sub-structure is effectively controlled in the analysis. Our results have important implications for association mapping, positional cloning, physical mapping and practical plant breeding in barley and other major world cereals including wheat and rye that exhibit comparable genome and genetic features. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1466-7) contains supplementary material, which is available to authorized users. PMID:21076812

  10. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger

    PubMed Central

    Delmas, Stéphane; Ibbett, Roger; Kokolski, Matthew; Neiteler, Almar; van Munster, Jolanda M; Wilson, Raymond; Blythe, Martin J; Gaddipati, Sanyasi; Tucker, Gregory A; Archer, David B

    2015-01-01

    Background Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. Results In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw

  11. β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design

    PubMed Central

    Kazemi, Samaneh; Khayati, Gholam; Faezi-Ghasemi, Mohammad

    2016-01-01

    Background: Enzymatic hydrolysis of lactose is one of the most important biotechnological processes in the food industry, which is accomplished by enzyme β-galactosidase (β-gal, β-D-galactoside galactohydrolase, EC 3.2.1.23), trivial called lactase. Orthogonal arrays design is an appropriate option for the optimization of biotechnological processes for the production of microbial enzymes. Methods: Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was employed to screen the most significant levels of parameters, including the solid substrates (wheat straw, rice straw, and peanut pod), the carbon/nitrogen (C/N) ratios, the incubation time, and the inducer. The level of β-gal production was measured by a photometric enzyme activity assay using the artificial substrate ortho-Nitrophenyl-β-D-galactopyranoside. Results: The results showed that C/N ratio (0.2% [w/v], incubation time (144 hour), and solid substrate (wheat straw) were the best conditions determined by the design of experiments using the Taguchi approach. Conclusion: Our finding showed that the use of rice straw and peanut pod, as solid-state substrates, led to 2.041-folds increase in the production of the enzyme, as compared to rice straw. In addition, the presence of an inducer did not have any significant impact on the enzyme production levels.

  12. Transcriptional regulation of the sbeIIb genes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): importance of the barley sbeIIb second intron.

    PubMed

    Mutisya, Joel; Sun, Chuanxin; Palmqvist, Sara; Baguma, Yona; Odhiambo, Benjamin; Jansson, Christer

    2006-05-01

    The transcriptional activity of the sorghum sbeIIb gene, encoding starch branching enzyme IIb, is seed specific, with expression in both the endosperm and the embryo. In comparison, expression of barley sbeIIb is confined to the endosperm, whereas that of barley sbeIIa occurs in endosperm, embryonic and vegetative tissues. It has been suggested that the second intron of barley sbeIIb may be instrumental in conferring endosperm-specific expression. Therefore, to further investigate the regulatory mechanisms of barley and sorghum sbe, we examined the tissue-specific activity of the sorghum sbe promoter in transient assays of green fluorescent protein (gfp) reporter constructs. We found that, when linked to the barley sbeIIb second intron, the sorghum sbeIIb promoter could not drive gfp transcription in sorghum or barley embryonic cells. Similar results were obtained for the barley sbeIIa promoter. Database searches showed that sequences homologous to the barley sbeIIb intron also exist in introns and flanking regions of some other grass genes. Deletion mutagenesis of the sorghum sbeIIb promoter identified the minimal promoters required for high- and low-level expression, respectively, but did not reveal any putative promoter elements crucial for expression. A sequence with similarity to the SURE element, implicated in sugar signaling, was located in the distal promoter region of sorghum sbeIIb, upstream of the minimal promoters. SURE elements are present in the proximal promoter regions of the sugar-regulated barley iso1 gene, and barley sbeIIb. In keeping in line with these observations, RNA-gel blot analyses demonstrated that expression of barley sbeIIb was sugar inducible, whereas that of sorghum sbeIIb was not.

  13. Novel substrates.

    PubMed

    Wahed, Mahmood; Geoghegan, Michael; Powell-Tuck, Jeremy

    2007-05-01

    Enteral and parenteral feeds need at least to contain adequate amounts of water, energy, protein, electrolytes, vitamins and trace elements. Ready-manufactured parenteral feeds for example are incomplete because of shelf-life constraints and require the addition of vitamins (especially) and trace elements. Acute vitamin deficiencies, notably thiamine deficiency, can be precipitated if this is not adhered to. An increasing interest, however, exists in the use of feeds containing substrates, which are intended to improve patient outcome in particular clinical circumstances. The purpose of this article is to examine as to what is available and make recommendations on their use. It deals with artificial feeds only - disease-specific diets are outside our remit.

  14. Production of a recombinant industrial protein using barley cell cultures.

    PubMed

    Ritala, A; Wahlström, E H; Holkeri, H; Hafren, A; Mäkeläinen, K; Baez, J; Mäkinen, K; Nuutila, A M

    2008-06-01

    The use of recombinant DNA-based protein production using genetically modified plants could provide a reproducible, consistent quality, safe, animal-component free, origin-traceable, and cost-effective source for industrial proteins required in large amounts (1000s of metric tons) and at low cost (below US$100/Kg). The aim of this work was to demonstrate the feasibility of using barley suspension cell culture to support timely testing of the genetic constructs and early product characterization to detect for example post-translational modifications within the industrial protein caused by the selected recombinant system. For this study the human Collagen I alpha 1 (CIa1) chain gene encoding the complete helical region of CIa1 optimized for monocot expression was fused to its N- and C-terminal telopeptide and to a bacteriophage T4 fibritin foldon peptide encoding sequences. The CIa1 accumulation was targeted to the endoplasmic reticulum (ER) by fusing the CIa1 gene to an ER-directing signal peptide sequence and an ER retention signal HDEL. The construct containing the CIa1 gene was then introduced into immature barley half embryos or barley cells by particle bombardment. Transgenic barley cells resulting from these transformations were grown as suspension cultures in flasks and in a Wave bioreactor producing CIa1 similar to CIa1 purified from the yeast Pichia pastoris based on Western blotting, pepsin resistance, and mass spectroscopy analysis. The barley cell culture derived-CIa1 intracellular accumulation levels ranged from 2 to 9 microg/l illustrating the need for further process improvement in order to use this technology to supply material for product development activities.

  15. Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw.

    PubMed

    Chen, Wen-Hsing; Chen, Yi-Chun; Lin, Jih-Gaw

    2014-07-01

    This study evaluated a cost-effective approach for the conversion of rice straw into fermentable sugars. The composition of rice straw pretreated with 1 % sulfuric acid or 1 % sodium hydroxide solution was compared to rice straw with no chemical pretreatment. Enzymatic saccharification experiments on non-pretreated rice straw (NPRS), pretreated rice straw (PRS), and pretreated rice straw with acid hydrolysate (PRSAH) were conducted in a series of batch reactors. The results indicated that pretreating the rice straw with dilute acid and base increased the cellulose content from 38 % to over 50 %. During enzymatic saccharification, straight aliphatic cellulose was hydrolyzed before branched hemicellulose, and glucose was the major hydrolysis product. The glucose yield was 0.52 g glucose/g for NPRS and was comparable to the yields of 0.50 g glucose/g for PRS and 0.58 g glucose/g for PRSAH. The hydrolysis of rice straw to produce glucose can be described by a first-order reaction with a rate constant of 0.0550 d(-1) for NPRS, 0.0653 d(-1) for PRSAH, and 0.0654 d(-1) for PRS. Overall, the production of fermentable sugars from ground rice straw will be more cost effective if the straw is not pretreated with chemicals. PMID:24346765

  16. Optimization of the dilute maleic acid pretreatment of wheat straw

    PubMed Central

    2009-01-01

    Background In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables. Results When costs are disregarded, an almost complete glucan conversion to glucose can be reached (90% from solids, 7%-10% in liquid), after enzymatic hydrolysis. During the pretreatment, up to 90% of all xylan is converted to monomeric xylose. Taking cost factors into account, the optimal process conditions are: 50 min at 170°C, with 46 mM maleic acid, resulting in a yield of 65 €/Mg (megagram = metric ton) dry straw, consisting of 68 €/Mg glucose benefits (from solids: 85% of all glucan), 17 €/Mg xylose benefits (from liquid: 80% of all xylan), 17 €/Mg maleic acid costs, 2.0 €/Mg heating costs and 0.68 €/Mg NaOH costs. In all but the most severe of the studied conditions, furfural formation was so limited that associated costs are considered negligible. Conclusions After the dilute maleic acid pretreatment and subsequent enzymatic hydrolysis, almost complete conversion of wheat straw glucan and xylan is possible. Taking maleic acid replenishment, heating, neutralization and furfural formation into account, the optimum in the dilute maleic acid pretreatment of

  17. iTAG Barley: A 9-12 classroom module to explore gene expression and segregation using Oregon Wolfe Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oregon Wolfe Barleys (OWBs) are a model resource for genetics research and instruction (http://barleyworld.org/oregonwolfe ; http://wheat.pw.usda.gov/ggpages/OWB_gallery/ISS-OWB/index.htm). The population of 94 doubled haploid lines was developed from an F1 of a cross between dominant and reces...

  18. Tocopherols and tocotrienols in barley oil prepared from germ and other fractions from scarification and sieving of hulless barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two cultivars of hulless barley (Doyce and Merlin), were scarified to abrade the outer layers of the kernels (germ, pericarp, and aleurone). The resulting scarification fines fractions were then separated into four particle size subfractions using sieves. Each of the size subfractions was then extr...

  19. Dynamic modeling the composting process of the mixture of poultry manure and wheat straw.

    PubMed

    Petric, Ivan; Mustafić, Nesib

    2015-09-15

    Due to lack of understanding of the complex nature of the composting process, there is a need to provide a valuable tool that can help to improve the prediction of the process performance but also its optimization. Therefore, the main objective of this study is to develop a comprehensive mathematical model of the composting process based on microbial kinetics. The model incorporates two different microbial populations that metabolize the organic matter in two different substrates. The model was validated by comparison of the model and experimental data obtained from the composting process of the mixture of poultry manure and wheat straw. Comparison of simulation results and experimental data for five dynamic state variables (organic matter conversion, oxygen concentration, carbon dioxide concentration, substrate temperature and moisture content) showed that the model has very good predictions of the process performance. According to simulation results, the optimum values for air flow rate and ambient air temperature are 0.43 l min(-1) kg(-1)OM and 28 °C, respectively. On the basis of sensitivity analysis, the maximum organic matter conversion is the most sensitive among the three objective functions. Among the twelve examined parameters, μmax,1 is the most influencing parameter and X1 is the least influencing parameter.

  20. Straw application in paddy soil enhances methane production also from other carbon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Pump, J.; Conrad, R.

    2013-08-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  1. Straw application in paddy soil enhances methane production also from other carbon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Pump, J.; Conrad, R.

    2014-01-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition resulted in enhancement of SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the enhancement of ROC-derived CH4 production after RS application was probably caused by the significant increase of the abundance of methanogenic Archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  2. Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from Barley.

    PubMed

    Hsieh, Yves S Y; Zhang, Qisen; Yap, Kuok; Shirley, Neil J; Lahnstein, Jelle; Nelson, Clark J; Burton, Rachel A; Millar, A Harvey; Bulone, Vincent; Fincher, Geoffrey B

    2016-01-19

    Four members of the UDP-Ara mutase (UAM) gene family from barley have been isolated and characterized, and their map positions on chromosomes 2H, 3H, and 4H have been defined. When the genes are expressed in Escherichia coli, the corresponding HvUAM1, HvUAM2, and HvUAM3 proteins exhibit UAM activity, and the kinetic properties of the enzymes have been determined, including Km, Kcat, and catalytic efficiencies. However, the expressed HvUAM4 protein shows no mutase activity against UDP-Ara or against a broad range of other nucleotide sugars and related molecules. The enzymic data indicate therefore that the HvUAM4 protein may not be a mutase. However, the HvUAM4 gene is transcribed at high levels in all the barley tissues examined, and its transcript abundance is correlated with transcript levels for other genes involved in cell wall biosynthesis. The UDP-l-Arap → UDP-l-Araf reaction, which is essential for the generation of the UDP-Araf substrate for arabinoxylan, arabinogalactan protein, and pectic polysaccharide biosynthesis, is thermodynamically unfavorable and has an equilibrium constant of 0.02. Nevertheless, the incorporation of Araf residues into nascent polysaccharides clearly occurs at biologically appropriate rates. The characterization of the HvUAM genes opens the way for the manipulation of both the amounts and fine structures of heteroxylans in cereals, grasses, and other crop plants, with a view toward enhancing their value in human health and nutrition, and in renewable biofuel production.

  3. [Isotope compositions of elemental carbon in the smoke and ash from crop straw combustion].

    PubMed

    Liu, Gang; Li, Jiu-Hai; Xu, Hui; Wu, Dan; Liu, Yan

    2014-05-01

    Six genotypes of straws for rice, maize and wheat, respectively, were combusted under flaming and smoldering conditions, and the isotope compositions for elemental carbon ( EC) in the straw smoke and ash were investigated with an isotopic mass spectrometer. The results showed that the mean delta 13C values for EC in the flaming and smoldering smoke of rice straw were - 28. 3 per thousand and - 28.7 per thousand, with depletions of 2.7 per thousand and 3. 0 per thousand relative to that of total carbon (TC) in the straw, respectively. The mean delta 13C values for EC in the flaming and smoldering smoke of wheat straw were -28.5 per thousand and - 28. 0 per thousand, with a depletion of 0. 1 per thousand and enrichment of 0. 4 per thousand comparing to TC in the straw, respectively. The average values in two types of maize straw smoke were -17.2 per thousand and - 13. 6 per thousand,with a depletion of 3.4 per thousand and an enrichment of 0. 2 per thousand relative to TC in the straw, respectively. The mean delta 13C ratios for EC in the flaming and smoldering ash of rice straw were -27. 5 per thousand and -27. 3 per thousand, with depletions of 1.8 per thousand and 1. 6 per thousand comparing with TC in the straw, respectively. In the flaming and smoldering ash of wheat straw, the mean ratios were -27.4 per thousand and -26.0 per thousand, with enrichments of 0. 9 per thousand and 2. 4 per thousand relative to TC in the straw, respectively. In the two types of ash for maize straw, the average delta13 C values for EC were - 15. 0 per thousand and - 14. 8 per thousand,which were 1. 2 per thousand and 1.0 per thousand lighter than those of the straw TC. In general, evident isotope fractionations occur between EC in both smoke and ash and TC in the corresponding straws, especially for rice and maize straws. The isotopic ratios may be useful in identifying and estimating the contribution of EC from straw combustion to ambient aerosol.

  4. Behaviour of liquid-fed growing pigs provided with straw in various amounts and frequencies.

    PubMed

    Oxholm, L C; Steinmetz, H V; Lahrmann, H P; Nielsen, M B F; Amdi, C; Hansen, C F

    2014-11-01

    Straw possesses many characteristics that make it attractive to pigs and can therefore be effective in preventing negative penmate-directed behaviours. However, straw is difficult to handle in current vacuum slurry systems under most commercial conditions and can therefore only be used in limited amounts. To occupy pigs effectively, straw must remain attractive to pigs throughout the whole day; hence, have a certain degree of novelty. We investigated the penmate-directed behaviour of liquid-fed growing pigs in a production herd, assigned to five experimental treatments: 1×25, 1×50, 1×100, 2×50 and 4×25 g of chopped straw/pig per day, with 20 replicates of each treatment (pen was regarded as experimental unit). Behaviour was observed at two different growth stages; ~40 and 80 kg live weight of the pigs. Activity and exploratory behaviour directed at penmates, straw, pen components and the slatted floor were registered continuously for 15 min of each hour during day time (0600 to 2200 h) by use of video observation of three focal pigs per pen. The pigs were active for about one-third of the day corresponding to ~5 h/day. Of the active time, an average of 7% (35 min) was spent on penmate-directed behaviour. The pigs were more active and increased their straw-directed behaviour when provided with 100 g straw/pig per day compared with 25 and 50 g (P<0.001). However, penmate-directed behaviour was not reduced with an increased amount of straw (P>0.05), and there was no effect on pigs' behaviour when straw provision was increased per day (P>0.05). Pigs became less active and reduced their straw-directed activities when their weight increased from 40 to 80 kg live weight (P<0.001), but the amount of penmate-directed behaviour was similar (P>0.05). Further, the residual straw results indicated that perhaps a more frequent straw provision could help establish a more even level of fresh available straw during the day. However, the frequent straw provision did not occupy

  5. Study of pozzolanic properties of wheat straw ash

    SciTech Connect

    Biricik, H.; Akoez, F.; Berktay, I.; Tulgar, A.N.

    1999-05-01

    As an agricultural product, wheat straw contains considerable amounts of SiO{sub 2}. When burned it leaves an ash very rich in SiO{sub 2} that has a pozzolanic character. Wheat is an important agricultural product in Turkey. In this study, wheat straws are ground to 1--5-mm size and subjected to preburning treatment. The preburned material is later burned in controller conditions for 5 hours at 570 and 670 C. The ash is cooled suddenly and ground to 90--200 {micro} size. The standard test specimens are produced from ash and mechanically, chemically, and physically tested for determination of its pozzolanic properties. It is obtained that the ash has pozzolanic activity.

  6. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  7. Alternative uses of rice-straw in California. Final report

    SciTech Connect

    Bainbridge, D.A.

    1997-03-01

    Interconnectedness and complexity are the hallmarks of almost every environmental problem and opportunity including the challenge of rice straw management in California. Although attempts are often made to solve environmental problems by working on single aspects, this rarely works, just as treating symptoms may do little to resolve diseases. The rice straw problem includes the physical system of the atmosphere, air basins, soils, and local and regional watersheds, and reaches the global scale with concern over atmospheric contribution of methane and implications for global warming. It includes the biological system of the rice crop, soil organisms, crop pests, and wildlife (both beneficial and harmful). And finally, it includes the economic and social systems of the rice grower, farm families, farm service industries, rural communities, the regional population, rice consumers around the world, fishermen and women, hunters, manufacturers of harvesting equipment, medical services, and potentially, builders and home buyers in the region.

  8. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.

  9. Potential of rice straw for bio-refining: An overview.

    PubMed

    Abraham, Amith; Mathew, Anil Kuruvilla; Sindhu, Raveendran; Pandey, Ashok; Binod, Parameswaran

    2016-09-01

    The biorefinery approach for the production of fuels and chemicals is gaining more and more attraction in recent years. The major advantages of biorefineries are the generation of multiple products with complete utilization of biomass with zero waste generation. Moreover the process will be economically viable when it targets low volume high value products in addition to high volume low value products like bioethanol. The present review discuss about the potential of rice straw based biorefinery. Since rice is a major staple food for many Asian countries, the utilization of the rice straw residue for fuel and chemicals would be very economical. The review focuses the availability and the potential of this residue for the production of fuel and other high value chemicals. PMID:27067674

  10. Fermentation Quality and Additives: A Case of Rice Straw Silage

    PubMed Central

    Oladosu, Yusuff; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  11. Using isotopic tracers to assess the impact of tillage and straw management on the microbial metabolic network in soil

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.

    2013-12-01

    By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.

  12. Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn

    PubMed Central

    Gaitán-Hernández, Rigoberto; Cortés, Norberto; Mata, Gerardo

    2014-01-01

    The research evaluated the interactions of two main factors (strain / types of spawn) on various parameters with the purpose to assess its effect on yield and biochemical composition of Lentinula edodes fruiting bodies cultivated on pasteurized wheat straw. The evaluation was made with four strains (IE-40, IE-105, IE-124 and IE-256). Different types of spawns were prepared: Control (C) (millet seed, 100%), F1 (millet seed, 88.5%; wheat bran, 8.8%; peat moss, 1.3%; and CaS04, 1.3%) and F2 (the same formula as F1, but substituting the wheat bran with powdered wheat straw). Wheat straw was pasteurized by soaking it for 1 h in water heated to 65 °C. After this the substrate (2 kg wet weight) was placed in polypropylene bags. The bags were inoculated with each spawn (5% w/w) and incubated in a dark room at 25 °C. A proximate analysis of mature fruiting bodies was conducted. The mean Biological Efficiency (BE) varied between 66.0% (C-IE-256) and 320.1% (F1-IE-124), with an average per strain of 125.6%. The highest mean BE was observed on spawn F1 (188.3%), significantly different from C and F2. The protein content of fruiting bodies was high, particularly in strain IE-40-F1 (17.7%). The amount of fat varied from 1.1 (F1-IE-40) to 2.1% (F2-IE-105) on dry matter. Carbohydrates ranged from 58.8% (F1-IE-40) to 66.1% (F1-IE-256). The energy value determined ranged from 302.9 kcal (F1-IE-40) to 332.0 kcal (F1-IE-256). The variability on BE observed in this study was significantly influenced by the spawn’s formulation and genetic factors of the different strains. PMID:25242929

  13. Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn.

    PubMed

    Gaitán-Hernández, Rigoberto; Cortés, Norberto; Mata, Gerardo

    2014-01-01

    The research evaluated the interactions of two main factors (strain / types of spawn) on various parameters with the purpose to assess its effect on yield and biochemical composition of Lentinula edodes fruiting bodies cultivated on pasteurized wheat straw. The evaluation was made with four strains (IE-40, IE-105, IE-124 and IE-256). Different types of spawns were prepared: Control (C) (millet seed, 100%), F1 (millet seed, 88.5%; wheat bran, 8.8%; peat moss, 1.3%; and CaS04, 1.3%) and F2 (the same formula as F1, but substituting the wheat bran with powdered wheat straw). Wheat straw was pasteurized by soaking it for 1 h in water heated to 65 °C. After this the substrate (2 kg wet weight) was placed in polypropylene bags. The bags were inoculated with each spawn (5% w/w) and incubated in a dark room at 25 °C. A proximate analysis of mature fruiting bodies was conducted. The mean Biological Efficiency (BE) varied between 66.0% (C-IE-256) and 320.1% (F1-IE-124), with an average per strain of 125.6%. The highest mean BE was observed on spawn F1 (188.3%), significantly different from C and F2. The protein content of fruiting bodies was high, particularly in strain IE-40-F1 (17.7%). The amount of fat varied from 1.1 (F1-IE-40) to 2.1% (F2-IE-105) on dry matter. Carbohydrates ranged from 58.8% (F1-IE-40) to 66.1% (F1-IE-256). The energy value determined ranged from 302.9 kcal (F1-IE-40) to 332.0 kcal (F1-IE-256). The variability on BE observed in this study was significantly influenced by the spawn's formulation and genetic factors of the different strains. PMID:25242929

  14. Induction of wheat straw delignification by Trametes species

    PubMed Central

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  15. Induction of wheat straw delignification by Trametes species.

    PubMed

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  16. Selective liquefaction of wheat straw in phenol and its fractionation.

    PubMed

    Chen, Hongzhang; Zhang, Yuzhen; Xie, Shuangping

    2012-05-01

    For the first time, a method of phenol-selective liquefaction is proposed for the fractionation and multilevel conversion of lignocellulose. Through phenol-selective liquefaction, lignin and hemicellulose are liquefied, with large amounts of cellulose retained in the unliquefied residues. Using a phenol/straw ratio of 3 and a sulfuric acid concentration of 3%, large amounts of hemicellulose (≥85%) and lignin (≥70%) can be liquefied at 100 °C in 30 min, with a high quantity of cellulose (≥80%) retained. Unliquefied residues from selective liquefaction have higher susceptibility for enzymatic attack. Enzymatic hydrolyzation of residues can be as high as 65% in 48 h with 40.7 FPU/g of dry materials, which can then be used to prepare sugar platform intermediates. The liquefied products of wheat straw are then resinified with formaldehyde in the presence of NaOH as a catalyst and synthesized into phenol formaldehyde-type resins reaching up to GB/T 14732-2006 standards. Phenol selective liquefaction, a new technology for the fractionation of lignocellulose, achieves effective fractionation and multilevel conversion of straw components. Hence, it is an important tool to achieve full utilization of biomass and high value-added conversion of lignocellulose.

  17. [Use of kenaf fibre in the elaboration of specific substrates for Pleurotus ostreatus (Jacq. ex Fr.) Kummer cultivation].

    PubMed

    Pardo Giménez, Arturo; Perona Zamora, Ma Aquilina; Pardo Núñez, José

    2008-03-01

    In this study, the viability of the kenaf fibre use, alone or combined with cereal straw, vine shoots and olive mill dried waste, in the elaboration of specific substrates for the cultivation of Pleurotus ostreatus (Jacq. ex Fr.) Kummer, second mushroom in importance cultivated in Spain, is described. Furthermore, three different methods of preparation of the substrate have been considered in order to obtain selectivity for the growth and later fruiting of Pleurotus sporophore. As for the production parameters, the best results have been provided by the substrates that combined kenaf with straw and with vine shoots, being unfavourable the substrates based in just kenaf or combined with olive mill dried waste. As for the treatment applied to the materials, the immersion in water alone and subsequent pasteurization and thermophilic conditioning, together with the semi-anaerobic fermentation, has been favoured in front of the immersion in water with fungicide and later pasteurization.

  18. Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors.

    PubMed

    Sjakste, T G; Rashal, I; Röder, M S

    2003-02-01

    Genetic diversity and inheritance of 65 microsatellite (SSR) loci were studied in a set of 37 barley varieties involved in the pedigrees of seven Latvian barley varieties: Abava, Agra, Balga, Imula, Linga, Priekulu 1 and Stendes. Cluster analysis divided all the varieties into two large groups according to their geographic distribution. Moravian, Swedish and Danish varieties clustered separately from varieties from Norway and Finland. The pattern of subgroups of both European and Latvian varieties was in accordance with their pedigree information. Graphical genotypes of microsatellite alleles of all seven barley chromosomes were determined for all the 37 varieties studied. Parental inheritance and transmission of microsatellite alleles through the generations of the pedigrees were analysed. The results confirmed the importance and informative value of microsatellite markers for genetic studies in barley and their utility for barley breeding and other applications in fundamental and applied barley genetics. PMID:12589555

  19. Antioxidants, Enzyme Inhibitors, and Biogenic Compounds in Grain Extracts of Barleys.

    PubMed

    Maliar, Tibor; Slaba, Gabriela; Nemeček, Peter; Maliarová, Mária; Benková, Michaela; Havrlentová, Michaela; Ondrejovič, Miroslav; Kraic, Ján

    2015-11-01

    The content of biogenic compounds and the biological activities of barley (Hordeum vulgare L.)-grain extracts was evaluated. The sufficiently large and heterogeneous set of barley genotypes (100 accessions) enabled the selection of special genotypes interesting for potential industrial, pharmaceutical, and medicinal applications. Barley genotypes with the highest contents of phenols, phenolic acids, flavonoids, biogenic thiols, and amines, radical-scavenging activity, as well as inhibitory activities of trypsin, thrombin, collagenase, urokinase, and cyclooxygenase were identified.

  20. [Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress].

    PubMed

    Chen, Hai-ying; Yu, Hai-ying; Chen, Guang-deng; Li, Ting-xuan

    2015-10-01

    A pot experiment was carried out to test the effects of phosphorus (P) supply levels (25, 50, and 75 mg P2O5 . kg-1) with two P genotype (efficient DH110+ and DH147, inefficient DH49) barleys on root morphology and the relationships between root morphology and P uptake. The results showed that barley biomass and P uptake were significantly reduced by low P stress. Efficient genotype barley biomass and P uptake were 1.24-1.70 and 1.18-1.83 times as much as those of inefficient genotype barley respectively. The total root length, total root surface area, average root diameter, adventitious root length and root surface area, lateral root length and root surface area of P efficient genotype barley were significantly reduced with decreasing the P supply level in soil. The total root length, total root surface area, specific root length, lateral root length and surface area of P efficient genotype barley were 1.46-2.06, 1.12-1.51, 1.35-1.72, 1.69-2.42; and 1.40-1.78 times as much as that of those of P inefficient genotype barley, respectively, while the average root diameter was 70.6% - 90.2% of P inefficient genotype barley. Principal component analysis showed that the average root diameter, specific root surface area and specific root length could be used to distinguish two P genotype barleys. Partial least squares regression analysis showed that the total root length, total root surface area made great contributions to P uptake of barley in soil. The contribution of the adventitious root length and surface area on P uptake of barley decreased significantly and the average root diameter, specific root length, lateral root length and root surface area increased with the decreasing P supply level in soil. P efficient genotype barley adapted to low P stress through maintaining the lateral root growth, increasing the specific root length and root fineness. PMID:26995909

  1. Antioxidants, Enzyme Inhibitors, and Biogenic Compounds in Grain Extracts of Barleys.

    PubMed

    Maliar, Tibor; Slaba, Gabriela; Nemeček, Peter; Maliarová, Mária; Benková, Michaela; Havrlentová, Michaela; Ondrejovič, Miroslav; Kraic, Ján

    2015-11-01

    The content of biogenic compounds and the biological activities of barley (Hordeum vulgare L.)-grain extracts was evaluated. The sufficiently large and heterogeneous set of barley genotypes (100 accessions) enabled the selection of special genotypes interesting for potential industrial, pharmaceutical, and medicinal applications. Barley genotypes with the highest contents of phenols, phenolic acids, flavonoids, biogenic thiols, and amines, radical-scavenging activity, as well as inhibitory activities of trypsin, thrombin, collagenase, urokinase, and cyclooxygenase were identified. PMID:26567946

  2. [Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress].

    PubMed

    Chen, Hai-ying; Yu, Hai-ying; Chen, Guang-deng; Li, Ting-xuan

    2015-10-01

    A pot experiment was carried out to test the effects of phosphorus (P) supply levels (25, 50, and 75 mg P2O5 . kg-1) with two P genotype (efficient DH110+ and DH147, inefficient DH49) barleys on root morphology and the relationships between root morphology and P uptake. The results showed that barley biomass and P uptake were significantly reduced by low P stress. Efficient genotype barley biomass and P uptake were 1.24-1.70 and 1.18-1.83 times as much as those of inefficient genotype barley respectively. The total root length, total root surface area, average root diameter, adventitious root length and root surface area, lateral root length and root surface area of P efficient genotype barley were significantly reduced with decreasing the P supply level in soil. The total root length, total root surface area, specific root length, lateral root length and surface area of P efficient genotype barley were 1.46-2.06, 1.12-1.51, 1.35-1.72, 1.69-2.42; and 1.40-1.78 times as much as that of those of P inefficient genotype barley, respectively, while the average root diameter was 70.6% - 90.2% of P inefficient genotype barley. Principal component analysis showed that the average root diameter, specific root surface area and specific root length could be used to distinguish two P genotype barleys. Partial least squares regression analysis showed that the total root length, total root surface area made great contributions to P uptake of barley in soil. The contribution of the adventitious root length and surface area on P uptake of barley decreased significantly and the average root diameter, specific root length, lateral root length and root surface area increased with the decreasing P supply level in soil. P efficient genotype barley adapted to low P stress through maintaining the lateral root growth, increasing the specific root length and root fineness.

  3. Solid-state fermentation of wheat straw with Chaetomium cellulolyticum and Trichoderma lignorum

    SciTech Connect

    Viesturs, U.E.; Apsite, A.F.; Laukevics, J.J.; Ose, V.P.; Bekers, M.J.; Tengerdy, R.P.

    1981-01-01

    A novel solid-state fermentation process has been developed for converting wheat straw into protein-enriched ruminant feed with a mixed culture of Chaetomium cellulolyticum or Trichoderma lignorum and Candida lipolytica. Fermentations were conducted in 3-L horizontal stirred fermentors for 7 days at 30/sup 0/C. The straw fermented with the mixed cultures contained 16 to 18% protein, compared to 12 to 14% in straw fermented with either mold alone. Cellulose degradation in the fermented straw was 33%; its in vitro rumen digestibility was 50%.

  4. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw.

    PubMed

    Taniguchi, Masayuki; Suzuki, Hiroyuki; Watanabe, Daisuke; Sakai, Kenji; Hoshino, Kazuhiro; Tanaka, Takaaki

    2005-12-01

    The effects of biological pretreatment of rice straw using four white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor, Ceriporiopsis subvermispora, and Pleurotus ostreatus) were evaluated on the basis of quantitative and structural changes in the components of the pretreated rice straw as well as susceptibility to enzymatic hydrolysis. Of these white-rot fungi, P. ostreatus selectively degraded the lignin fraction of rice straw rather than the holocellulose component. When rice straw (water content of 60%) was pretreated with P. ostreatus for 60 d, the total weight loss and the degree of Klason lignin degraded were 25% and 41%, respectively. After the pretreatment, the residual amounts of cellulose and hemicellulose were 83% and 52% of those in untreated rice straw, respectively. By enzymatic hydrolysis with a commercial cellulase preparation for 48 h, 52% holocellulose and 44% cellulose in the pretreated rice straw were solubilized. The net sugar yields based on the amounts of holocellulose and cellulose of untreated rice straw were 33% for total soluble sugar from holocellulose and 32% for glucose from cellulose. The SEM observations showed that the increase in susceptibility of rice straw to enzymatic hydrolysis by pretreatment with P. ostreatus is caused by partial degradation of the lignin seal. When the content of Klason lignin was less than 15% of the total weight of the pretreated straw, enhanced degrees of enzymatic solubilization of holocellulose and cellulose fractions were observed as the content of Klason lignin decreased.

  5. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGESBeta

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; Detweiler, Ryan; Maurer, Richard J.; Mitchell, Stephen E.; Guss, Paul P.; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  6. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles...

  7. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles...

  8. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles...

  9. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles...

  10. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles...

  11. Barley Sprouts Extract Attenuates Alcoholic Fatty Liver Injury in Mice by Reducing Inflammatory Response.

    PubMed

    Lee, Yun-Hee; Kim, Joung-Hee; Kim, Sou Hyun; Oh, Ji Youn; Seo, Woo Duck; Kim, Kyung-Mi; Jung, Jae-Chul; Jung, Young-Suk

    2016-01-01

    It has been reported that barley leaves possess beneficial properties such as antioxidant, hypolipidemic, antidepressant, and antidiabetic. Interestingly, barley sprouts contain a high content of saponarin, which showed both anti-inflammatory and antioxidant activities. In this study, we evaluated the effect of barley sprouts on alcohol-induced liver injury mediated by inflammation and oxidative stress. Raw barley sprouts were extracted, and quantitative and qualitative analyses of its components were performed. The mice were fed a liquid alcohol diet with or without barley sprouts for four weeks. Lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were used to study the effect of barley sprouts on inflammation. Alcohol intake for four weeks caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities and tumor necrosis factor (TNF)-α levels. The accumulation of lipid in the liver was also significantly induced, whereas the glutathione (GSH) level was reduced. Moreover, the inflammation-related gene expression was dramatically increased. All these alcohol-induced changes were effectively prevented by barley sprouts treatment. In particular, pretreatment with barley sprouts significantly blocked inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in LPS-stimulated RAW 264.7. This study suggests that the protective effect of barley sprouts against alcohol-induced liver injury is potentially attributable to its inhibition of the inflammatory response induced by alcohol. PMID:27455313

  12. Young Barley Indicates Antitumor Effects in Experimental Breast Cancer In Vivo and In Vitro.

    PubMed

    Kubatka, Peter; Kello, Martin; Kajo, Karol; Kruzliak, Peter; Výbohová, Desanka; Šmejkal, Karel; Maršík, Petr; Zulli, Anthony; Gönciová, Gabriela; Mojžiš, Ján; Kapinová, Andrea; Murin, Radovan; Péč, Martin; Adamkov, Marián; Przygodzki, Ronald M

    2016-01-01

    The effect of dietary administered young barley containing a mixture of phytochemicals to female rats for the prevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis was evaluated. After carcinogen administration (14 wk), mammary tumors were removed and prepared for histopathological and immunohistochemical analysis. Moreover, in vitro evaluation of possible mechanisms in MCF-7 breast cancer cell line was performed. Barley (0.3%) demonstrated mild antitumor effect in mammary carcinogenesis, yet 3% barley did not further improve this effect. Immunohistochemical analysis of rat tumor cells in treated groups showed significant increase in caspase-3 expression and significant reduction in Ki67 expression. In addition, 3% barley significantly decreased dityrosine levels versus control. Barley in higher dose significantly decreased serum low-density lipoprotein-cholesterol in rats. In vitro studies showed that barley significantly decreased survival of MCF-7 cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and significantly decreased 5-bromo-20-deoxyuridine incorporation versus control. Barley prevented cell cycle progression and extended incubation with barley showed significant increase in the percentage of annexin V/propidium iodide-positive MCF-7 cells. Our results propose an antitumor effect for the mixture of phytochemicals present in young barley in a breast cancer model. PMID:27042893

  13. The non-touching method of the malting barley quality evaluation

    NASA Astrophysics Data System (ADS)

    Raba, B.; Nowakowski, K.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.

    2014-04-01

    The first important stage of the malt production processes is the malting barley quality evaluation. Presented project was focused on the visual features of malting barley grains. The principal aim was to elaborate complete methodology to determine the level of grains contamination. The article describes the mechanisms of choosing parameters which can distinguish useful for the malt production grains from defects and impurities. Original computer system 'Hordeum v 3.1' helped obtain graphical data from images of contaminated barley samples. Research carried out in this area can improve the quality evaluation process of malting barley.

  14. Barley Sprouts Extract Attenuates Alcoholic Fatty Liver Injury in Mice by Reducing Inflammatory Response

    PubMed Central

    Lee, Yun-Hee; Kim, Joung-Hee; Kim, Sou Hyun; Oh, Ji Youn; Seo, Woo Duck; Kim, Kyung-Mi; Jung, Jae-Chul; Jung, Young-Suk

    2016-01-01

    It has been reported that barley leaves possess beneficial properties such as antioxidant, hypolipidemic, antidepressant, and antidiabetic. Interestingly, barley sprouts contain a high content of saponarin, which showed both anti-inflammatory and antioxidant activities. In this study, we evaluated the effect of barley sprouts on alcohol-induced liver injury mediated by inflammation and oxidative stress. Raw barley sprouts were extracted, and quantitative and qualitative analyses of its components were performed. The mice were fed a liquid alcohol diet with or without barley sprouts for four weeks. Lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were used to study the effect of barley sprouts on inflammation. Alcohol intake for four weeks caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities and tumor necrosis factor (TNF)-α levels. The accumulation of lipid in the liver was also significantly induced, whereas the glutathione (GSH) level was reduced. Moreover, the inflammation-related gene expression was dramatically increased. All these alcohol-induced changes were effectively prevented by barley sprouts treatment. In particular, pretreatment with barley sprouts significantly blocked inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in LPS-stimulated RAW 264.7. This study suggests that the protective effect of barley sprouts against alcohol-induced liver injury is potentially attributable to its inhibition of the inflammatory response induced by alcohol. PMID:27455313

  15. [Influence of granulated bacterial preparation complex action on the growth and yield of barley].

    PubMed

    Skorokhod, I O; Tserkovniak, L S; Kurdysh, I K; Plotnikov, V V; Gyl'chuk, V G; Korniĭchuk, O V

    2012-01-01

    The influence of granulated bacterial preparation of complex action on the growth and yield of barley (H. distichum L.) has been studied. The treatment of barley seeds by this preparation has been established to have a very significant effect on the mass of 1000 grains, grain natural weight and to increase the yield of plants, but to different degree. Consequently, the interaction of certain barley varieties with bacteria-components of the preparation is rather specific. It has been displayed that the treatment of grains of different barley varieties by the bacterial preparation takes a very significant influence on the function of microbial associations in the rhizosphere.

  16. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    PubMed

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP.

  17. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    PubMed

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP. PMID:26964336

  18. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    PubMed

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells. PMID:27118074

  19. A note on the effects of perches and litter substrate on leg weakness in broiler chickens.

    PubMed

    Su, G; Sørensen, P; Kestin, S C

    2000-09-01

    Two trials were conducted to investigate the effect of availability of perches on indices of leg weakness in broiler chickens. A third trial investigated the effect of litter substrate on similar indices of leg weakness in broiler chickens. Leg weakness traits examined were walking ability and tibial dyschondroplasia, tibial curvature, foot burn, and hock burn. Body weight was also measured in all trials. The presence of perches in the rearing pens had no effect on any of the indices of leg weakness examined in either trial. There were no consistent effects of perches on BW. Litter substrate significantly affected some indices of leg weakness; birds reared on wheat straw had poorer walking ability and more foot burn than birds reared on wood shavings, and birds reared on hemp waste were intermediate between them. There was no effect of litter substrate on tibial dyschondroplasia or tibial curvature. Turning the straw litter regularly and adding fresh supplies when necessary did not significantly improve indices of leg weakness. It was concluded that wood shavings provide a better litter substrate than straw, but that perches have no beneficial effect on reducing leg weakness in broilers. PMID:11020069

  20. Evolution of the Grain Dispersal System in Barley.

    PubMed

    Pourkheirandish, Mohammad; Hensel, Goetz; Kilian, Benjamin; Senthil, Natesan; Chen, Guoxiong; Sameri, Mohammad; Azhaguvel, Perumal; Sakuma, Shun; Dhanagond, Sidram; Sharma, Rajiv; Mascher, Martin; Himmelbach, Axel; Gottwald, Sven; Nair, Sudha K; Tagiri, Akemi; Yukuhiro, Fumiko; Nagamura, Yoshiaki; Kanamori, Hiroyuki; Matsumoto, Takashi; Willcox, George; Middleton, Christopher P; Wicker, Thomas; Walther, Alexander; Waugh, Robbie; Fincher, Geoffrey B; Stein, Nils; Kumlehn, Jochen; Sato, Kazuhiro; Komatsuda, Takao

    2015-07-30

    About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies. PMID:26232223

  1. Identification of Microbial Metabolites Elevating Vitamin Contents in Barley Seeds.

    PubMed

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-08-19

    The current investigation analyzes metabolites of Acetobacter aceti to explore chemical compounds responsible for the induction of vitamins in barley seeds. A bioactivity guided assay of bacterial extracts and chromatographic analyses of barley produce revealed 13 chemical compounds, which were subjected to principal component analysis (PCA). PCA determined four chemical compounds (i.e., quinolinic acid, pyridoxic acid, p-aminobenzoate, and α-oxobutanoic acid) highly associated with increased quantities of vitamins. Further experimentations confirmed that quinolinic acid and p-aminobenzoate were the most efficient vitamin inducers. The results indicated chloroform/ethanol (4:1) as the best solvent system for the extraction of active compounds from crude metabolites of A. aceti. Significant quantities of mevalonic acid were detected in the extracted fraction, indicating the possible induction of the isoprenoid pathway. Altogether, the current investigation broadens the frontiers in plant-microbe interaction.

  2. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  3. Low GI Food with Barley in Space Foods

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Sugimoto, Manabu; Hashimoto, Hirofumi; Kihara, Makoto; Yamashita, Masamichi; Space Agriculture Task Force

    The construction of the life-support system to perform space, moon base, Mars emigration is demanded. The space foods will play a very important role of life support on this occasion. Particularly, in environment of the microgravity, our metabolism becomes less than the face of the Earth. The management of the blood sugar level is very important. We need to eat the meal which will be rise in blood sugar level slowly. The barley which includes much water-soluble dietary fibers is helpful to make low GI space food. After eating 30% barley with unpolished rice, blood sugar level was rise slowly. The cooking process is very important to our body in thinking about digestion and absorption. Soft foods, long-heated foods and grind-foods are easy to digest. After eating these-foods, our blood sugar level will rise, easily. We introduce the space foods with 30% wheat that the blood sugar level is hard to rising.

  4. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  5. Mitochondrial Respiration and Hemoglobin Gene Expression in Barley Aleurone Tissue.

    PubMed Central

    Nie, X.; Hill, R. D.

    1997-01-01

    Previous studies have shown that plant hemoglobin (Hb) mRNA is expressed in barley (Hordeum vulgare L.) aleurone layers during hypoxia. We have examined the effect of a number of respiratory inhibitors on barley aleurone layers to determine the factors that influence Hb gene expression. Respiratory inhibitors that reduce O2 consumption, such as CO, cyanide, and antimycin A, strongly enhanced Hb mRNA levels. Treatment with the oxidative phosphorylation uncoupler 2,4-dinitrophenol markedly increased O2 consumption and had a similar positive effect on Hb gene expression. Hb transcript levels were also stimulated by the ATP synthase inhibitor oligomycin. The results suggest that the expression of Hb is not directly influenced by O2 usage or availability but is influenced by the availability of ATP in the tissue. PMID:12223746

  6. Suppression of the Barley uroporphyrinogen III synthase Gene by a Ds Activation Tagging Element Generates Developmental Photosensitivity[W

    PubMed Central

    Ayliffe, Michael A.; Agostino, Anthony; Clarke, Bryan C.; Furbank, Robert; von Caemmerer, Susanne; Pryor, Anthony J.

    2009-01-01

    Chlorophyll production involves the synthesis of photoreactive intermediates that, when in excess, are toxic due to the production of reactive oxygen species (ROS). A novel, activation-tagged barley (Hordeum vulgare) mutant is described that results from antisense suppression of a uroporphyrinogen III synthase (Uros) gene, the product of which catalyzes the sixth step in the synthesis of chlorophyll and heme. In homozygous mutant plants, uroporphyrin(ogen) I accumulates by spontaneous cyclization of hydroxyl methylbilane, the substrate of Uros. Accumulation of this tetrapyrrole intermediate results in photosensitive cell death due to the production of ROS. The efficiency of Uros gene suppression is developmentally regulated, being most effective in mature seedling leaves compared with newly emergent leaves. Reduced transcript accumulation of a number of nuclear-encoded photosynthesis genes occurs in the mutant, even under 3% light conditions, consistent with a retrograde plastid-nuclear signaling mechanism arising from Uros gene suppression. A similar set of nuclear genes was repressed in wild-type barley following treatment with a singlet oxygen-generating herbicide, but not by a superoxide generating herbicide, suggesting that the retrograde signaling apparent in the mutant is specific to singlet oxygen. PMID:19336693

  7. Golgi Localized Barley MTP8 Proteins Facilitate Mn Transport

    PubMed Central

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species. PMID:25486417

  8. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    PubMed Central

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  9. Molecular and structural characterization of barley vernalization genes.

    PubMed

    von Zitzewitz, Jarislav; Szucs, Péter; Dubcovsky, Jorge; Yan, Liuling; Francia, Enrico; Pecchioni, Nicola; Casas, Ana; Chen, Tony H H; Hayes, Patrick M; Skinner, Jeffrey S

    2005-10-01

    Vernalization, the requirement of a period of low temperature to induce transition from the vegetative to reproductive state, is an evolutionarily and economically important trait in the Triticeae. The genetic basis of vernalization in cultivated barley (Hordeum vulgare subsp. vulgare) can be defined using the two-locus VRN-H1/VRN-H2 model. We analyzed the allelic characteristics of HvBM5A, the candidate gene for VRN-H1, from ten cultivated barley accessions and one wild progenitor accession (subsp. spontaneum), representing the three barley growth habits - winter, facultative, and spring. We present multiple lines of evidence, including sequence, linkage map location, and expression, that support HvBM5A being VRN-H1. While the predicted polypeptides from different growth habits are identical, spring accessions contain a deletion in the first intron of HvBM5A that may be important for regulation. While spring HvBM5A alleles are typified by the intron-localized deletion, in some cases, the promoter may also determine the allele type. The presence/absence of the tightly linked ZCCT-H gene family members on chromosome 4H perfectly correlates with growth habit and we conclude that one of the three ZCCT-H genes is VRN-H2. The VRN-H2 locus is present in winter genotypes and deleted from the facultative and spring genotypes analyzed in this study, suggesting the facultative growth habit (cold tolerant, vernalization unresponsive) is a result of deletion of the VRN-H2 locus and presence of a winter HvBM5A allele. All reported barley vernalization QTLs can be explained by the two-locus VRN-H1/VRN-H2 model based on the presence/absence of VRN-H2 and a winter vs. spring HvBM5A allele. PMID:16235110

  10. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application.

    PubMed

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  11. Comparison of Gibberellins in Normal and Slender Barley Seedlings

    PubMed Central

    Croker, Stephen J.; Hedden, Peter; Lenton, John R.; Stoddart, John L.

    1990-01-01

    Gibberellins A1, A3, A8, A19, A20, and A29 were identified by full scan gas chromatography-mass spectrometry in leaf sheath segments of 7-day-old barley (Hordeum vulgare L. cv Golden Promise) seedlings grown at 20°C under long days. In a segregating population of barley, cv Herta (Cb 3014), containing the recessive slender allele, (sln 1) the concentration of GA1 and GA3 was reduced by 10-fold and 6-fold, respectively, in rapidly growing homozygous slender, compared with normal, leaf sheath segments. However, the concentration of the C20 precursor, GA19, was nearly 2-fold greater in slender than in normal seedlings. There was little difference in the ABA content of sheath segments between the two genotypes. The gibberellin biosynthesis inhibitor, paclobutrazol, reduced the final sheath length of normal segregants (50% inhibition at 15 micromolar) but had no effect on the growth of slender seedlings at concentrations below 100 micromolar. There was a 15-fold and 4-fold reduction in GA1 and GA3, respectively, in sheath segments of 8-day-old normal seedlings following application of 10 micromolar paclobutrazol. The same treatment also reduced the already low concentrations of these gibberellins in slender segregants. The results show that the pool sizes of gibberellins A1 and A3 are small in slender barley and that leaf sheath extension in this genotype appears to be gibberellin-independent. The relationship between gibberellin status and tissue growth-rate in slender barley is contrasted with other gibberellin nonresponsive, but dwarf, mutants of wheat (Triticum aestivum) and maize (Zea mays). PMID:16667686

  12. Association mapping of spot blotch resistance in wild barley

    PubMed Central

    Roy, Joy K.; Smith, Kevin P.; Muehlbauer, Gary J.; Chao, Shiaoman; Close, Timothy J.

    2010-01-01

    Spot blotch, caused by Cochliobolus sativus, is an important foliar disease of barley. The disease has been controlled for over 40 years through the deployment of cultivars with durable resistance derived from the line NDB112. Pathotypes of C. sativus with virulence for the NDB112 resistance have been detected in Canada; thus, many commercial cultivars are vulnerable to spot blotch epidemics. To increase the diversity of spot blotch resistance in cultivated barley, we evaluated 318 diverse wild barley accessions comprising the Wild Barley Diversity Collection (WBDC) for reaction to C. sativus at the seedling stage and utilized an association mapping (AM) approach to identify and map resistance loci. A high frequency of resistance was found in the WBDC as 95% (302/318) of the accessions exhibited low infection responses. The WBDC was genotyped with 558 Diversity Array Technology (DArT®) and 2,878 single nucleotide polymorphism (SNP) markers and subjected to structure analysis before running the AM procedure. Thirteen QTL for spot blotch resistance were identified with DArT and SNP markers. These QTL were found on chromosomes 1H, 2H, 3H, 5H, and 7H and explained from 2.3 to 3.9% of the phenotypic variance. Nearly half of the identified QTL mapped to chromosome bins where spot blotch resistance loci were previously reported, offering some validation for the AM approach. The other QTL mapped to unique genomic regions and may represent new spot blotch resistance loci. This study demonstrates that AM is an effective technique for identifying and mapping QTL for disease resistance in a wild crop progenitor. Electronic supplementary material The online version of this article (doi:10.1007/s11032-010-9402-8) contains supplementary material, which is available to authorized users. PMID:20694035

  13. Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition

    PubMed Central

    Wu, Wenyang; Chen, Yong; Faisal, Shah; Khan, Aman; Chen, Zhengjun; Ling, Zhenmin; Liu, Pu; Li, Xiangkai

    2016-01-01

    The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production. PMID:27641709

  14. Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition.

    PubMed

    Wu, Wenyang; Chen, Yong; Faisal, Shah; Khan, Aman; Chen, Zhengjun; Ling, Zhenmin; Liu, Pu; Li, Xiangkai

    2016-01-01

    The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production. PMID:27641709

  15. Treatment of wheat straw using tannase and white-rot fungus to improve feed utilization by ruminants

    PubMed Central

    2014-01-01

    Background Current research to enrich cattle feed has primarily focused on treatment using white rot fungi, while there are scarce reports using the enzyme tannase, which is discussed only in reviews or in the form of a hypothesis. In this context, the aim of the present study was to evaluate the effect of tannase on wheat straw (WS) and also the effect of lyophilized tannase at concentrations of 0.1%, 0.2%, and 0.3% (w/w) on WS followed by fermentation with Ganoderma sp. for 10 d and compared in relation to biochemical parameters, crude protein (CP) content, and nutritional value by calculating the C/N ratio in order to improve the nutritional value of cattle feed. Results Penicillium charlesii, a tannase-producing microorganism, produced 61.4 IU/mL of tannase in 54 h when 2% (w/v) tannic acid (TA) was initially used as a substrate in medium containing (% w/v) sucrose (1.0), NaNO3 (1.0), and MgSO4 (0.08 pH, 5.0) in a 300-L fermentor (working volume 220 L), and concomitantly fed with 1.0% (w/v) TA after 24 h. The yield of partially purified and lyophilized tannase was 5.8 IU/mg. The tannin-free myco-straw at 0.1% (w/w) tannase showed 37.8% (w/w) lignin degradation with only a 20.4% (w/w) decrease in cellulose content and the in vitro feed digestibility was 32.2%. An increase in CP content (up to 1.28-fold) along with a lower C/N ratio of 25.0%, as compared to myco-straw, was obtained. Conclusions The use of tannin-free myco-straw has potential to improve the nutritional content of cattle feed. This biological treatment process was safe, eco-friendly, easy to perform, and was less expensive as compared to other treatment methods. PMID:24555694

  16. UV-B response of greening barley seedlings.

    PubMed

    Fedina, Ivanka; Velitchkova, Maya; Georgieva, Katya; Nedeva, Dimitrina; Çakirlar, H

    2009-06-01

    The relationship between the greening stage of barley seedlings and their response to UV-B irradiation was studied. Etiolated barley seedlings ( Hordeum vulgare L., cv. Alfa) greened 12, 24 and 48 h were exposed to UV-B irradiation (312 nm) for 5 h. As a result of UV-B treatment the rate of CO(2) fixation and chlorophyll contents decreased but flavonoids, UV-B-induced compounds and carotenoids increased. The inhibition of photosynthesis in green plants was lower in comparison to greening ones. The 12 h greening plants were more sensitive to UV-B treatment than the plants greening 24 h and particularly 48 h, estimated by the quantum efficiency of PSII photochemistry and the oxygen production rate. The levels of flavonoids and UV-B induced compounds enhanced with increasing the greening time. Activity of antioxidant enzymes catalase, peroxidase and superoxide dismutase increased during the seedlings greening and as a result of UV-B irradiation, but the pattern of isoforms remained similar to those found in the controls. UV-B preferentially induced Cu,Zn-superoxide dismutase. Increase of UVB induced synthesis of antioxidant enzymes is in line with their important role in the plant response to UV-B stress. Data presented show that the response of barley seedlings to UV-B irradiation is related to the development stage of photosynthetic apparatus.

  17. Nitrate Uptake into Barley (Hordeum vulgare) Plants 1

    PubMed Central

    Deane-Drummond, Celia E.; Glass, Anthony D. M.

    1982-01-01

    Evidence is presented that chlorate is an extremely good analog for nitrate during nitrate uptake by intact barley (Hordeum vulgare cv. Fergus) roots. The depletion of ClO3− or NO3− from uptake media over 2 to 6 hours by seedlings was found to be dependent on combined NO3− plus ClO3− concentrations, and total anion uptake was equivalent at different NO3−/ClO3− ratios. After loading barley seedlings with 36ClO3− for 6 hours, kinetic parameters were derived from the analysis of efflux of [36Cl] chlorate into unlabeled solution. On the basis of this analysis, the half times for exchange for the cytoplasmic and vacuolar phases were 17 minutes and 20 hours, respectively. Data pooled from a number of different experiments were used to calculate kinetic constants (Km and Vmax) for 36ClO3− influx into barley roots at different external ClO3−/NO3− ratios, using short (10 minutes) influx times. There appeared to be no discrimination by the root cells between ClO3− and NO3−. Lineweaver-Burk analysis of the interaction between nitrate and chlorate were characteristic of competitive inhibition at low nitrate concentrations (0-0.5 mm). At higher concentrations, in the range of >1 mm, similar interactions between these ions were evident. PMID:16662478

  18. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  19. Megapixel imaging of (micro)nutrients in mature barley grains

    PubMed Central

    Lombi, Enzo; Smith, Euan; Hansen, Thomas H.; Paterson, David; de Jonge, Martin D.; Howard, Daryl L.; Persson, Daniel P.; Husted, Søren; Ryan, Chris; Schjoerring, Jan K.

    2011-01-01

    Understanding the accumulation and distribution of essential nutrients in cereals is of primary importance for improving the nutritional quality of this staple food. While recent studies have improved the understanding of micronutrient loading into the barley grain, a detailed characterization of the distribution of micronutrients within the grain is still lacking. High-definition synchrotron X-ray fluorescence was used to investigate the distribution and association of essential elements in barley grain at the micro scale. Micronutrient distribution within the scutellum and the embryo was shown to be highly variable between elements in relation to various morphological features. In the rest of the grain, the distribution of some elements such as Cu and Zn was not limited to the aleurone layer but extended into the endosperm. This pattern of distribution was less marked in the case of Fe and, in particular, Mn. A significant difference in element distribution was also found between the ventral and dorsal part of the grains. The correlation between the elements was not consistent between and within tissues, indicating that the transport and storage of elements is highly regulated. The complexity of the spatial distribution and associations has important implications for improving the nutritional content of cereal crops such as barley. PMID:20819790

  20. Characterization of a barley Rubisco activase gene promoter

    SciTech Connect

    Strickland, J.A.; Rundle, S.J.; Zielinski, R. )

    1990-05-01

    Barley Rubisco Activase (Rca) is a nuclear encoded chloroplast enzyme that activates Rubisco to catalytic competence. Rca mRNA accumulation in barley is light-regulated; the 5{prime}-flanking region of a highly expressed barley Rca gene (HvRca-1) contains several sequence motifs similar to those found in the promoter of other light-regulated, nuclear genes. We have characterized the cis-acting regulatory regions of HvRca-1 by deletion analysis of the 5{prime} flanking region of a cloned gene. These constructs have been assayed in vitro by gel mobility shift assays, as well as by DNA footprinting. Putative regulatory sequences detected in vitro have also been tested in vivo by constructing chimeric genes consisting of deletion mutant promoters fused to a promoterless {beta}-glucuronidase reporter gene. Comparison of results obtained from complimentary parallel in vitro and in vivo assays of identical promoter deletions have provided information on cis-acting regulatory regions of HvRca-1.

  1. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity.

  2. The Metabolic Signature of Biomass Formation in Barley.

    PubMed

    Ghaffari, Mohammad R; Shahinnia, Fahimeh; Usadel, Björn; Junker, Björn; Schreiber, Falk; Sreenivasulu, Nese; Hajirezaei, Mohammad R

    2016-09-01

    The network analysis of genome-wide transcriptome responses, metabolic signatures and enzymes' relationship to biomass formation has been studied in a diverse panel of 12 barley accessions during vegetative and reproductive stages. The primary metabolites and enzymes involved in central metabolism that determine the accumulation of shoot biomass at the vegetative stage of barley development are primarily being linked to sucrose accumulation and sucrose synthase activity. Interestingly, the metabolic and enzyme links which are strongly associated with biomass accumulation during reproductive stages are related to starch accumulation and tricarboxylic acid (TCA) cycle intermediates citrate, malate, trans-aconitate and isocitrate. Additional significant associations were also found for UDP glucose, ATP and the amino acids isoleucine, valine, glutamate and histidine during the reproductive stage. A network analysis resulted in a combined identification of metabolite and enzyme signatures indicative for grain weight accumulation that was correlated with the activity of ADP-glucose pyrophosphorylase (AGPase), a rate-limiting enzyme involved in starch biosynthesis, and with that of alanine amino transferase involved in the synthesis of storage proteins. We propose that the mechanism related to vegetative and reproductive biomass formation vs. seed biomass formation is being linked to distinct fluxes regulating sucrose, starch, sugars and amino acids as central resources. These distinct biomarkers can be used to engineer biomass production and grain weight in barley. PMID:27388338

  3. Pysicochemical properties of Tibetan hull-less barley starch.

    PubMed

    Yangcheng, Hanyu; Gong, Lingxiao; Zhang, Ying; Jane, Jay-lin

    2016-02-10

    Objectives of this study were to (1) determine the starch physicochemical properties of two commercial Tibetan hull-less barley varieties, Beiqing (BQ) and Kangqing (KQ); and (2) understand the relationship between unique properties of the starches, their structures, and impacts of growing conditions. The BQ barleys were grown at a location with lower temperature and less rainfall compared with the KQ barleys. The BQ starches showed significantly lower onset-gelatinization temperature (54.1-54.9 °C), larger gelatinization-temperature range (9.4-10.6 °C), and higher peak-viscosities (138.9-153.9RVU) than the KQ starches (55.1-56.1 °C, 7.4-8.8 °C, and 63.4-64.7RVU, respectively). After a treatment with 2% sodium-dodecyl-sulphate solution, the KQ starches showed substantially greater increases in peak viscosities than the BQ starches. Annealing of starch and enhanced amylose-lipid complex formation, resulting from higher growing temperature during the development of the KQ starches, likely contributed to the differences in thermal and pasting properties between the BQ and KQ starches.

  4. Arabinogalactan proteins are involved in root hair development in barley.

    PubMed

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-03-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  5. Molecular characterization of barley yellow dwarf virus in Tunisia.

    PubMed

    Bouallegue, M; Mezghani-Khemakhem, M; Bouktila, D; Makni, H; Makni, M

    2014-01-01

    Barley yellow dwarf disease is a worldwide ubiquitous virus disease of cereal crops. In order to characterize the B/CYDV isolates occurring in Tunisia, 240 barley leaves were randomly sampled from 6 fields following a North-South trend and analyzed by serological and molecular tests. DAS-ELISA results showed 40 positive samples with a prevalence of barley yellow dwarf virus (BYDV)-PAV (77.5%), followed by cereal yellow dwarf virus (CYDV)-RPV (25%) and BYDV-MAV (15%). Studies of the geographic distribution showed a high incidence of B/CYDV in the Tunisian Southern provinces. RT-PCR assays were performed to amplify the viral coat protein gene (CP) and sequence analyses revealed six BYDV-PAV haplotypes named PAV-TN1 to PAV-TN6. Phylogenetic analysis showed that the six Tunisian haplotypes were close to BYDV-PAV-II subspecies and had a strong similarity with Moroccan, Czech, French and German haplotypes. Although PAV-TN2 and PAV-TN5 showed up to 10% divergence from BYDV-PAV-II at the amino acid level, it seems to belong to the same subspecies but in a separated cluster. Our results will be important in developing appropriate control measures against BYDV disease in Tunisia.

  6. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6.

    PubMed

    Mendiondo, Guillermina M; Gibbs, Daniel J; Szurman-Zubrzycka, Miriam; Korn, Arnd; Marquez, Julietta; Szarejko, Iwona; Maluszynski, Miroslaw; King, John; Axcell, Barry; Smart, Katherine; Corbineau, Francoise; Holdsworth, Michael J

    2016-01-01

    Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals. PMID:25657015

  7. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect

    N /A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  8. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  9. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    SciTech Connect

    Chou, Hong L.; Dai, Ziyu; Hsieh, Chia W.; Ku, Maurice S.

    2011-12-10

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. In this study, the cellulose hydrolytic enzyme {beta}-1, 4-endoglucanase (E1) from the thermophilic bacterium Acidothermus cellulolyticus was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer with the signal peptide of tobacco pathogenesis-related protein for targeting the protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial enzyme were obtained, which expressed the gene at high levels with a normal phenotype. The specific activities of E1 in the leaves of the highest expressing transgenic rice lines were about 20 fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. Zymogram and temperature-dependent activity analyses demonstrated the thermostability of the enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid yielded almost twice more reducing sugars than wild type straw. Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in

  10. The Importance of Barley Genetics and Domestication in a Global Perspective

    PubMed Central

    Pourkheirandish, Mohammad; Komatsuda, Takao

    2007-01-01

    Background Archaeological evidence has revealed that barley (Hordeum vulgare) is one of the oldest crops used by ancient farmers. Studies of the time and place of barley domestication may help in understanding ancient human civilization. Scope The studies of domesticated genes in crops have uncovered the mechanisms which converted wild and unpromising wild species to the most important food for humans. In addition to archaeological studies, molecular studies are finding new insights into the process of domestication. Throughout the process of barley domestication human selection on wild species resulted in plants with more harvestable seeds. One of the remarkable changes during barley domestications was the appearance of six-rowed barley. The gene associated with this trait results in three times more seed per spike compared with ancestral wild barley. This increase in number of seed resulted in a major dichotomy in the evolution of barley. The identification of the six-rowed spike gene provided a framework for understanding how this character was evolved. Some important barley domestication genes have been discovered and many are currently being investigated. Conclusions Identification of domestication genes in crops revealed that most of the drastic changes during domestication are the result of functional impairments in transcription factor genes, and creation of new functions is rare. Isolation of the six-rowed spike gene revealed that this trait was domesticated more than once in the domestication history of barley. Six-rowed barley is derived from two-rowed ancestral forms. Isolation of photoperiod-response genes in barley and rice revealed that different genes belonging to similar genetic networks partially control this trait. PMID:17761690

  11. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet; Ward, Terence G.; Mann, Brooks S.; Yankoski, Edward P.; Smith, Gregory S.

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  12. Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw.

    PubMed

    Alvira, P; Negro, M J; Ballesteros, M

    2011-03-01

    The cost and hydrolytic efficiency of enzymes are major factors that restrict the commercialization of the bioethanol production process from lignocellulosic biomass. Hemicellulases and other accessory enzymes are becoming crucial to increase enzymatic hydrolysis (EH) yields at low cellulase dosages. The aim of this work was to evaluate the effect of two recombinant hemicellulolytic enzymes on the EH of steam pretreated wheat straw. Pretreatments at two severity conditions were performed and the whole slurry obtained after steam explosion pretreatment was employed as substrate. An endoxylanase (Xln C) from Aspergillus nidulans and an α-L-arabinofuranosidase (AF) from Aspergillus niger, have been applied in combination with cellulase enzymes. A degree of synergism of 29.5% and increases up to 10% in the EH yields were obtained, showing the potential of accessory activities to improve the EH step and make the whole process more effective.

  13. Flowability parameters for chopped switchgrass, wheat straw and corn stover

    SciTech Connect

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.; Yoder, D.C.; Sokhansanj, Shahabaddine

    2009-02-01

    A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest for chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.

  14. Evaluation of high solids alkaline pretreatment of rice straw.

    PubMed

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p < 0.001) on delignification under the design conditions, but only alkaline loading had a significant positive effect on enzymatic hydrolysis. Treatment at higher temperature also improved delignification; delignification with water alone ranged from 9.9% to 14.5% for pretreatment at 95 degrees C, but there was little effect observed at 55 degrees C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass. PMID:20440580

  15. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  16. Environmental profile of paddy rice cultivation with different straw management.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; González-García, Sara; Vercesi, Annamaria; Bocchi, Stefano; Fiala, Marco

    2014-10-01

    Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from

  17. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate...

  18. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate...

  19. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate...

  20. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate...

  1. Effect of water washing on the thermal behavior of rice straw.

    PubMed

    Said, N; Bishara, T; García-Maraver, A; Zamorano, M

    2013-11-01

    Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000°C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation.

  2. Properties of Wheat-Straw Boards with Frw Based on Interface Treatment

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Wang, F. H.; Liu, Y.

    This paper explored the effect of MDI, UF and FRW content on the mechanical and fire retardant property of straw based panels with surface alkali liquor processing. In order to manufacture the straw based panel with high quality, low toxic and fire retardant, the interface of wheat-straw was treated with alkaline liquid, and the orthogonal test was carried out to optimize the technical parameters. The conductivity and diffusion coefficient K of the straw material after alkaline liquid treatment increased obviously. This indicated that alkaline liquid treatment improved the surface wet ability of straw, which is helpful for the infiltration of resin. The results of orthogonal test showed that the optimized treating condition was alkaline liquid concentration as 0.4-0.8%, alkaline dosage as 1:2.5-1:4.5, alkalinetreated time as 12h-48 h.The physical and mechanical properties of wheat-straw boards after treated increased remarkably and it could satisfy the national standard. The improvement of the straw surface wet ability is helpful to the forming of chemical bond. Whereas the variance analysis of the fire retardant property of straw based panel showed that TTI, pkHRR and peak value appearance time were not affected by the MDI, UF and FRW content significantly. The results of orthogonal test showed that the optimized processing condition was MDI content as 3%, UF resin content as 6% and the FRW content as 10%.

  3. Mapping straw yield using on-combine light detection and ranging (LiDAR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) straw is not only important for long-term soil productivity, but also as a raw material for biofuel, livestock feed, building, packing, and bedding. Inventory figures in the United States for potential straw availability are largely based on whole states and counties. ...

  4. Scale-up of wheat straw conversion to fuel ethanol at 100 liter scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat straw can serve as low cost feedstock for conversion to ethanol. Pretreatment is crucial prior to enzymatic hydrolysis. We have used dilute H2SO4 pretreatment at a high temperature for pretreatment of wheat straw. The pretreated hydrolyzate was bioabated using a novel fungal strain able to ...

  5. On-combine Sensing Technique for Mapping Straw Yield within Wheat Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straw from production of wheat is available for conversion to bioenergy. However, not all of this straw is available for conversion because a certain amount must be returned to the soil for conservation. County and state-wide inventories do not account for variation within farm fields. In this st...

  6. Biochars derived from various crop straws: characterization and Cd(II) removal potential.

    PubMed

    Sun, Jingkuan; Lian, Fei; Liu, Zhongqi; Zhu, Lingyan; Song, Zhengguo

    2014-08-01

    Five types of biochars prepared from four crop straws and one wood shaving at 600 °C were characterized, and their sorption to Cd(II) were determined to investigate the differences in capacity to function as sorbents to heavy metals. Surface areas and pore volumes of the biochars were inversely correlated to the lignin content of raw biomass. The biochars derived from crop straws displayed more developed pore structure than wood char due to the higher lignin content of wood. Sorption capacity of the biochars to Cd(II) followed the order of corn straw>cotton straw>wheat straw>rice straw>poplar shaving, which was not strictly consistent with the surface area of the chars. The surface characteristics of chars before and after Cd(II) sorption were investigated with scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, which suggested that the higher sorption of Cd(II) on corn straw chars was mainly attributed to cation exchange, surface precipitation of carbonate, and surface complexation with oxygen-containing groups. This study indicated that crop straw biochars exhibit distinct sorption capacities to heavy metals due to various surface characteristics, and thus the sorption efficiency should be carefully evaluated specific to target contaminant. PMID:24859708

  7. Necrotrophic effector-triggered susceptibility (NETS) underlies the barley-Pyrenophora teres f. teres interaction specific to chromosome 6H

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley net form net blotch, caused by Pyrenophora teres f. teres, is a destructive foliar disease in barley-growing regions worldwide. Our overall understanding of the genetic and molecular basis of the barley- P. teres f. teres interaction is limited. Intercellular wash fluids (IWF) from infected...

  8. A genome-wide association study of malting quality across eight U.S. barley breeding programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study leverages the breeding data of 1,862 breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The breeding lines were six-row and two-row barley advanced breeding lines from eight barley breeding populations established at six pub...

  9. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw

    PubMed Central

    2012-01-01

    Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw. PMID:22373423

  10. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises...

  11. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises...

  12. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises...

  13. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises...

  14. 9 CFR 72.19 - Interstate shipments and use of pine straw, grass, litter from quarantined area; prohibited until...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... straw, grass, litter from quarantined area; prohibited until disinfected. 72.19 Section 72.19 Animals... and use of pine straw, grass, litter from quarantined area; prohibited until disinfected. Pine straw, grass, or similar litter collected from tick-infested pastures, ranges, or premises may disseminate...

  15. Butterfly proboscis: natural combination of a drinking straw with a nanosponge

    NASA Astrophysics Data System (ADS)

    Kornev, Kostya; Monaenkova, Daria; Adler, Peter; Lee, Wah-Keat; Lehnert, Matthew; Andrukh, Taras; Beard, Charles; Rubin, Binyamin; Tokarev, Alexander

    2011-11-01

    The ability of Lepidoptera, or butterflies and moths, to drink liquids from rotting fruit and wet soil, as well as nectar from floral tubes, raises the question of whether the conventional view of the proboscis as a drinking straw can account for the withdrawal of fluids from porous substrates or of films and droplets from floral tubes. We discovered that the proboscis promotes capillary pull of liquids from diverse sources due to a hierarchical pore structure spanning nano- and microscales. X-ray phase-contrast imaging reveals that Plateau instability causes liquid bridges to form in the food canal, which are transported to the gut by the muscular sucking pump in the head. The dual functionality of the proboscis represents a key innovation for exploiting a vast range of nutritional sources. A transformative two-step model of capillary intake and suctioning can be applied not only to butterflies and moths but also potentially to vast numbers of other insects such as bees and flies. NSF EFRI - 0937985.

  16. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    PubMed

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  17. Evaluation of Different Yeast Species for Improving In vitro Fermentation of Cereal Straws

    PubMed Central

    Wang, Zuo; He, Zhixiong; Beauchemin, Karen A.; Tang, Shaoxun; Zhou, Chuanshe; Han, Xuefeng; Wang, Min; Kang, Jinhe; Odongo, Nicholas E.; Tan, Zhiliang

    2016-01-01

    Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a 3×4 factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, 0.25×107, 0.50×107, and 0.75×107 colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen (NH3-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The NH3-N concentration and CH4 production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be 0.25×107 cfu/500 mg substrates in vitro. PMID:26732448

  18. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  19. Influence of jet-cooking Prowashonupana barley flour on phenolic composition, antioxidant activities, and viscoelastic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...

  20. Dryland malt barley yield and quality affected by tillage, cropping sequence, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information is needed on the effects of management practices on dryland malt barley (Hordeum vulgaris L.) and pea (Pisum sativum L.) yields and quality. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland malt barley and pea yields, grain characterist...

  1. Role of Phenolic Acids in Expression of Barley (Hordeum vulgare) Autotoxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of phenolic acids in autotoxicity of four barley (Hordeum vulgare L.) varieties was investigated using radicle growth bioassays and analytical techniques. Total phenolic content of barley plant components varied within and between varieties during the 1999-2002 growing seasons. Inhibition o...

  2. The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.; Payne, R. W.; Disler, J. M.

    1983-01-01

    Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year.

  3. A promising low beta-glucan barley mutation of m351 for better bioethanol production use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioethanol is an important liquid fuel complement. Barley is an alternative raw material for ethanol production and its byproduct is a nutritious feed. The barley m351mutant line, which has a mutation for low beta-glucan content, was tested for its ethanol production efficiency and feed fraction qua...

  4. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau

    PubMed Central

    Zeng, Xingquan; Long, Hai; Wang, Zhuo; Zhao, Shancen; Tang, Yawei; Huang, Zhiyong; Wang, Yulin; Xu, Qijun; Mao, Likai; Deng, Guangbing; Yao, Xiaoming; Li, Xiangfeng; Bai, Lijun; Yuan, Hongjun; Pan, Zhifen; Liu, Renjian; Chen, Xin; WangMu, QiMei; Chen, Ming; Yu, Lili; Liang, Junjun; DunZhu, DaWa; Zheng, Yuan; Yu, Shuiyang; LuoBu, ZhaXi; Guang, Xuanmin; Li, Jiang; Deng, Cao; Hu, Wushu; Chen, Chunhai; TaBa, XiongNu; Gao, Liyun; Lv, Xiaodan; Abu, Yuval Ben; Fang, Xiaodong; Nevo, Eviatar; Yu, Maoqun; Wang, Jun; Tashi, Nyima

    2015-01-01

    The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called “Qingke” in Chinese and “Ne” in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The diploid nature and adaptation to diverse environments of the highland give it unique resources for genetic research and crop improvement. Here we produced a 3.89-Gb draft assembly of Tibetan hulless barley with 36,151 predicted protein-coding genes. Comparative analyses revealed the divergence times and synteny between barley and other representative Poaceae genomes. The expansion of the gene family related to stress responses was found in Tibetan hulless barley. Resequencing of 10 barley accessions uncovered high levels of genetic variation in Tibetan wild barley and genetic divergence between Tibetan and non-Tibetan barley genomes. Selective sweep analyses demonstrate adaptive correlations of genes under selection with extensive environmental variables. Our results not only construct a genomic framework for crop improvement but also provide evolutionary insights of highland adaptation of Tibetan hulless barley. PMID:25583503

  5. Development and Implementation of High-Throughput SNP Genotyping in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Pilot phase data from three barley doubled haploid mapping populations supported the production of an initial consensus map, ...

  6. The discovery of resistant sources of spring barley, Hordeum vulgare ssp. spontaneum, and unique greenbug biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic sources for host-plant resistance to the greenbug (Schiazphis graminum Ronani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for resistance to greenbug biotypes. We evaluated four new barley lines from the Wild...

  7. Barley and Oat beta-Glucan content measured by Calcofluor fluorescence in a microplate assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-glucans, linear glucan polymers of mixed linkage, are important constituents of cereal cell walls. They have important health benefits in the human diet, but also can negatively affect the use of barley grain as an animal feed. High beta-glucans in barley malt can also cause problems in brewi...

  8. Greenhouse evaluation of transgenic barley expressing gastrodianin for resistance to Fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2010 field screening nursery, with 88 barley plots was located at UMore Park, Rosemount MN. Trial entries (n=18) and an the untransformed 2-row control Conlon (susceptible) were submitted by USDA-ARS, RRVARC Fargo. Barley lines with known reactions to Fusarium head blight (FHB) were also incl...

  9. Transgenic Field Trials for FHB Resistance and Related Research in Wheat and Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic wheat and barley lines expressing genes with the potential to reduce FHB and DON have been tested in field trials in Minnesota since 1997 and in North Dakota since 2001 (barley only). Replicated trials are planted, grown, and harvested to meet containment regulations of the Animal and Pla...

  10. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat.

    PubMed

    Carvalho, Pedro; Azam-Ali, Sayed; Foulkes, M John

    2014-05-01

    In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought. One spring barley (Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars (Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil-column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley (47%) than durum wheat (30%, Hourani). Root-to-shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response to drought but decreased for barley. The critical root length density (RLD) and root volume density (RVD) for 90% available water capture for wheat were similar to (cv. Hourani) or lower than (cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.

  11. Comparative analysis of genetic diversity between Qinghai-Tibetan wild and Chinese landrace barley.

    PubMed

    Gong, Xue; Westcott, Sharon; Li, Chengdao; Yan, Guijun; Lance, Reg; Sun, Dongfa

    2009-10-01

    Fifty-two SSR markers were used to evaluate the genetic diversity of 33 Qinghai-Tibetan wild barley accessions, 56 landraces collected primarily from other parts of China, and 1 Israeli wild barley accession. At the 52 SSR loci, 206 alleles were detected for the 90 accessions, among which 111 were common alleles. The number of alleles per locus ranged from 1 to 9, with an average of 4.0. Polymorphism information content (PIC) values ranged from 0 to 0.856 among all the markers, with an average of 0.547. The PIC value of Qinghai-Tibetan wild barley varied from 0 to 0.813 with an average of 0.543, while in landraces, the markers showed a range of 0 to 0.790 with an average of 0.490. The SSR markers could clearly differentiate the Qinghai-Tibetan wild barley from the landraces. Twenty-four unique alleles were observed in Qinghai-Tibetan wild barley, and the frequency of unique alleles in Qinghai-Tibetan wild barley was about 2.1 times higher than that in the landraces, on average. Five of the 7 chromosomes had more unique alleles in the Qinghai-Tibetan wild barley, but chromosome 2H had more unique alleles in the landraces. The presence of many unique alleles may reflect the adaptation of this barley germplasm to diverse environments and production systems. PMID:19935909

  12. [Effects of straw mulching on CO2 flux in wintry fallow paddy field].

    PubMed

    Yin, Chun-mei; Xie, Xiao-li; Wang, Kai-rong

    2008-01-01

    This paper studied the effects of straw mulching on the CO2 flux in a wintry fallow paddy field at Taoyuan Agro-ecological Station, Chinese Academy of Sciences. The results showed that the effects of straw mulching mainly exerted in two ways. First, it positively affected soil temperature, making the CO2 flux increased obviously. Straw mulching gave a net emission of 2.68 g CO2 x m(-2) x d(-1), while no mulching gave a net fixation of 1.99 g CO2 x m(-2) x d(-1), the difference between them being very significant (P < 0.01). Second, straw mulching decreased the biomass of weeds and the photosynthetically active radiation they absorbed, which in turn resulted in an increase of CO2 flux. Under straw mulching, the water content in surface soil layer (0-15 cm) increased by 9% or more, but no significant change was observed in CO2 flux.

  13. Combining cottage cheese whey and straw reduces erosion while increasing infiltration in furrow irrigation

    SciTech Connect

    Brown, M.J.; Robbins, C.W.; Freeborn, L.L.

    1998-12-31

    Loose straw in irrigation furrows can decrease irrigation induced erosion, and acid cottage cheese whey can increase soil aggregate stability and soil infiltration. A field study was conducted at two sites where these materials were compared alone and in combination to determine their effectiveness in increasing infiltration and reducing irrigation induced erosion. Straw was applied by hand and whey was applied by gravity flow down irrigation furrows, 76 cm apart, and the field was planted to sweet corn (Zea Mays L.). Straw + whey was the most effective treatment for controlling erosion and sediment loss. Seasonal infiltration was significantly higher for straw + whey than for other treatments at the first site, and all three treatments increased infiltration over that of the control at the second site. These studies showed that two inexpensive agricultural byproducts, cottage cheese whey and straw, applied to irrigation furrows of different slopes can significantly reduce soil loss and increase infiltration.

  14. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-06-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules.

  15. Properties of high-quality long natural cellulose fibers from rice straw.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2006-10-18

    This paper reports the structure and properties of novel long natural cellulose fibers obtained from rice straw. Rice straw fibers have 64% cellulose with 63% crystalline cellulose, strength of 3.5 g/denier (450 MPa), elongation of 2.2%, and modulus of 200 g/denier (26 GPa), similar to that of linen fibers. The rice straw fibers reported here have better properties than any other natural cellulose fiber obtained from an agricultural byproduct. With a worldwide annual availability of 580 million tons, rice straw is an annually renewable, abundant, and cheap source for natural cellulose fibers. Using rice straw for high-value fibrous applications will help to add value to the rice crops, provide a sustainable resource for fibers, and also benefit the environment.

  16. [Effects of straw returning on the integrated soil fertility and crop yield in southern China].

    PubMed

    Yang, Fan; Dong, Yan; Xu, Ming-Gang; Bao, Yao-Xian

    2012-11-01

    Based on the data from 94 experiments of straw returning in Anhui, Jiangxi, Hunan, Hubei, Guangxi, Sichuan, and Chongqing, and by using mathematic modeling approach, this paper evaluated the effects of straw returning on the soil fertility and crop yield in southern China. Obvious regional differences were observed in the soil fertility index (SFI) and crop yield response. In study area, the croplands with the SFI of Grade III and Grade IV were predominant, occupying 69.1% and 21.3% of the total, respectively. Averagely, straw returning increased the SFI and crop yield by 6.8% and 4.4%, respectively, as compared with the control (no straw returning). The SFI was significantly linearly correlated with rice yield, and could well reflect the integrated soil fertility in study area. At present, straw returning with decomposing agent added is one of the most important measures to improve the integrated soil fertility in southern China, which should be widely popularized.

  17. Methane production from rice straw pretreated by a mixture of acetic-propionic acid.

    PubMed

    Zhao, Rui; Zhang, Zhenya; Zhang, Ruiqin; Li, Miao; Lei, Zhongfang; Utsumi, Motoo; Sugiura, Norio

    2010-02-01

    Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 degrees C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.

  18. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M

    2014-03-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing.

  19. Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for animal feed

    SciTech Connect

    Chen, W.P.; Anderson, A.W.

    1980-03-01

    The hemicellulose fraction of ryegrass straw was extracted with NaOH and used for the production of glucose isomerase by Streptomyces flavogriseus. The level of hemicellulose extracted increased proportionately with increasing NaOH concentration up to about 4%, then the rate of increase slowed down. Hemicellulose extraction was facilitated by the combined application of heat and NaOH. Approximately 15% hemicellulose (12% as pentosan) could be obtained by treating straw with 4% NaOH for either 3 hours at 90/sup 0/C or 24 hour at room temperature. The highest level (3.04 units/ml culture) of intracellular glucose isomerase was obtained when the organism was grown at 30 degrees Centigrade for two days on 2% straw hemicellulose. The organism also produced a high yield of glucose isomerase on xylose or xylan. The NaOH treated straw residue, after removal of hemicellulose, had approximately 75% higher digestibility and 20% higher feed efficiency for weanling meadow voles than untreated straw, but almost the equivalent to that obtained by NaOH treatment without removal of the hemicellulose. Thus, the residue could be used as animal feed. A process for the production of glucose isomerase and animal feed from ryegrass straw was also proposed.

  20. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw.

    PubMed

    Wang, Shuai; Huang, Dao-You; Zhu, Qi-Hong; Zhu, Han-Hua; Liu, Shou-Long; Luo, Zun-Chang; Cao, Xiao-Ling; Wang, Ji-Yu; Rao, Zhong-Xiu; Shen, Xin

    2015-02-01

    When grown on Cd-contaminated soil, rice typically accumulates considerable Cd in straw, and which may return to the soil after harvest. This work was undertaken to assess the pollution risk of Cd associated to the Cd-contaminated rice straw after incorporating into an uncontaminated soil. With the Cd-contaminated rice straw added at 0, 1, 2, 3, 4 and 5 % (w/w), an incubation experiment (28 days) with non-planting and a followed pot experiment sequent with two planting (rice and Chinese cabbage, transplanted after 28-day incubation) were carried out to investigate the changes of soil Cd speciation and phytoavailability. The results indicated that the Cd-contaminated rice straw addition significantly increased soil pH and dissolved organic carbon during the 28-day incubation. For the high availability of Cd in contaminated rice straw, diethylenetriaminepentaacetic acid (DTPA) extractable Cd significantly increased, and the percentages of acetic acid extractable and reducible Cd in soil significantly enhanced after the addition of Cd-contaminated rice straw. However, the Cd-contaminated rice straw addition inhibited the rice growth and induced the decrease of Cd in rice grain and straw by 12.8 to 70.2 % and 39.3 to 57.3 %, respectively, whereas the Cd contents increased by 13.9 to 84.1 % in Chinese cabbage that planted after rice harvest. In conclusion, Cd associated with Cd-contaminated rice straw was highly available after incorporating into the soil, and thus the Cd pollution risk via the Cd-contaminated rice straw incorporation should be evaluated in the Cd-contaminated paddy region.

  1. Modeling the greenhouse gas budget of straw returning in China: feasibility of mitigation and countermeasures.

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-05-01

    Straw returning is considered to be one of the most promising carbon sequestration measures in China's cropland. A compound model, namely "Straw Returning and Burning Model-Expansion" (SRBME), was built to estimate the net mitigation potential, economic benefits, and air pollutant reduction of straw returning. Three scenarios, that is, baseline, "full popularization of straw returning (FP)," and "full popularization of straw returning and precision fertilization (FP + P)," were set to reflect popularization of straw returning. The results of the SRBME indicated that (1) compared with the soil carbon sequestration of 13.37 Tg/yr, the net mitigation potentials, which were 6.328 Tg/yr for the FP scenario and 9.179 Tg/yr for the FP + P scenario, had different trends when the full budget of the greenhouse gases was considered; (2) when the feasibility in connection with greenhouse gas (GHG) mitigation, economic benefits, and environmental benefits was taken into consideration, straw returning was feasible in 15 provinces in the FP scenario, with a total net mitigation potential of 7.192 TgCe/yr and the total benefits of CNY 1.473 billion (USD 216.6 million); (3) in the FP + P scenario, with the implementation of precision fertilization, straw returning was feasible in 26 provinces with a total net mitigation potential of 10.39 TgCe/yr and the total benefits of CNY 5.466 billion (USD 803.8 million); (4) any extent of change in the treatment of straw from being burnt to being returned would contribute to air pollution reduction; (5) some countermeasures, such as CH(4) reduction in rice paddies, precision fertilization, financial support, education and propaganda, would promote the feasibility of straw returning as a mitigation measure.

  2. Early changes in protein expression of barley following inoculation with erysiphe graminis f. sp. hordei

    SciTech Connect

    Simons, S.P.; Somerville, S.C. )

    1989-04-01

    Erysiphe graminis f. sp. hordei is an obligate pathogen of barley causing the powdery mildew disease. Resistance to this disease is the product of a highly specific interaction between barley lines with specific resistance alleles and pathogen races carrying complementary avirulence alleles. Using congenic barley lines which differ at the M1-a disease reaction locus, we hope to define the early molecular events of this interaction. Accordingly, resistant and susceptible barley seedlings were labelled with {sup 35}S-methionine and examined by two-dimensional electrophoresis at two hour intervals following inoculation. Infection related changes were observed with both isolines during the four to twelve hour time period. Additional differences existed constitutively between the barley lines. These differences have been quantified. Further characterization of these proteins will yield useful markers for events preceding or coinciding with cytological responses any may lead to identification and cloning of the M1-a gene.

  3. Assessment of Genetic Diversity among Barley Cultivars and Breeding Lines Adapted to the US Pacific Northwest, and Its Implications in Breeding Barley for Imidazolinone-Resistance

    PubMed Central

    Mejías, Jaime H.; Gemini, Richa; Brew-Appiah, Rhoda A. T.; Wen, Nuan; Osorio, Claudia; Ankrah, Nii; Murphy, Kevin M.; von Wettstein, Diter

    2014-01-01

    Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the ‘Bob’ barley AHAS (acetohydroxy acid synthase) gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW), since it comprises ∼23% (335,000 ha) of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the ‘Bob’ AHAS mutant. The six selected genotypes were used to make 29–53 crosses with the AHAS mutant and a range of 358–471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158–2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%–90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed. PMID

  4. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley.

    PubMed

    Füllner, K; Temperton, V M; Rascher, U; Jahnke, S; Rist, R; Schurr, U; Kuhn, A J

    2012-05-01

    We have detailed knowledge from controlled environment studies on the influence of root temperature on plant performance, growth and morphology. However, in all studies root temperature was kept spatially uniform, which motivated us to test whether a vertical gradient in soil temperature affected development and biomass production. Roots of barley seedlings were exposed to three uniform temperature treatments (10, 15 or 20°C) or to a vertical gradient (20-10°C from top to bottom). Substantial differences in plant performance, biomass production and root architecture occurred in the 30-day-old plants. Shoot and root biomass of plants exposed to vertical temperature gradient increased by 144 respectively, 297%, compared with plants grown at uniform root temperature of 20°C. Additionally the root system was concentrated in the upper 10cm of the soil substrate (98% of total root biomass) in contrast to plants grown at uniform soil temperature of 20°C (86% of total root biomass). N and C concentrations in plant roots grown in the gradient were significantly lower than under uniform growth conditions. These results are important for the transferability of 'normal' greenhouse experiments where generally soil temperature is not controlled or monitored and open a new path to better understand and experimentally assess root-shoot interactions.

  5. Patterns of genetic and eco-geographical diversity in Spanish barleys.

    PubMed

    Yahiaoui, S; Igartua, Ernesto; Moralejo, M; Ramsay, L; Molina-Cano, J L; Ciudad, F J; Lasa, J M; Gracia, M P; Casas, A M

    2008-01-01

    The pool of Western Mediterranean landraces has been under-utilised for barley breeding so far. The objectives of this study were to assess genetic diversity in a core collection of inbred lines derived from Spanish barley landraces to establish its relationship to barleys from other origins, and to correlate the distribution of diversity with geographical and climatic factors. To this end, 64 SSR were used to evaluate the polymorphism among 225 barley (Hordeum vulgare ssp. vulgare) genotypes, comprising two-row and six-row types. These included 159 landraces from the Spanish barley core collection (SBCC) plus 66 cultivars, mainly from European countries, as a reference set. Out of the 669 alleles generated, a large proportion of them were unique to the six-row Spanish barleys. An analysis of molecular variance revealed a clear genetic divergence between the six-row Spanish barleys and the reference cultivars, whereas this was not evident for the two-row barleys. A model-based clustering analysis identified an underlying population structure, consisting of four main populations for the whole genotype set, and suggested further possible subdivision within two of these populations. Most of the six-row Spanish landraces clustered into two groups that corresponded to geographic regions with contrasting environmental conditions. The existence of wide genetic diversity in Spanish germplasm, possibly related to adaptation to a broad range of environmental conditions, and its divergence from current European cultivars confirm its potential as a new resource for barley breeders, and make the SBCC a valuable tool for the study of adaptation in barley. PMID:18026712

  6. Burned rice straw reduces the availability of clomazone to barnyardgrass.

    PubMed

    Xu, Chao; Liu, Weiping; Sheng, G Daniel

    2008-03-25

    Field burning of crop residue is a common post-harvest practice to dispose of these agricultural by-products and for land clearing. Burned crop residues may effectively adsorb pesticides and thus influence their bioavailability in agricultural soils. The adsorption of clomazone by a soil amended with a burned rice straw (BRS) was measured. The availability of clomazone to barnyardgrass in the soil in the absence and presence of BRS was tested. The BRS was 1000-20,000 times more effective than soil in sorbing clomazone. The sorption of clomazone by soil increased with increasing BRS amount in the soil. In a bioassay, the injury of barnyardgrass 9 days after planting decreased with increasing BRS amount in soil indicating the effect of BRS on clomazone availability. Residual analyses showed higher concentrations of clomazone in soils receiving higher rates of the herbicide than in soils with lower application rates suggesting the adsorptive role of BRS. At typical application rate of clomazone (0.3 microg g(-1)), BRS amounts of 0.02 wt.% and higher caused an appreciable reduction to a complete loss in clomazone availability. Calculations suggest that field burning of rice straw may result in sufficiently high amounts (>0.02 wt.%) of BRS, and hence contribute to often experienced loss of pesticide availability in agricultural soils. Our results may be extended to field situations where other crop residues and vegetation are burned. Alternative management of crop residues may improve the bioavailability of pesticides in agricultural soils.

  7. Pretreatment and fractionation of wheat straw using various ionic liquids.

    PubMed

    Lopes, André M da Costa; João, Karen G; Bogel-Łukasik, Ewa; Roseiro, Luísa B; Bogel-Łukasik, Rafał

    2013-08-21

    Pretreatment of lignocellulosic biomass with ionic liquids (ILs) is a promising and challenging process for an alternative method of biomass processing. The present work emphasizes the examination of wheat straw pretreatment using ILs, namely, 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]), and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [bmim][HSO4] was found to achieve a macroscopic complete dissolution of wheat straw during pretreatment. The fractionation process demonstrated to be dependent on the IL used. Using [bmim][SCN], a high-purity lignin-rich material was obtained. In contrast, [bmim][N(CN)2] was a good solvent to produce high-purity carbohydrate-rich fractions. When [bmim][HSO4] was used, a different behavior was observed, exhibiting similarities to an acid hydrolysis pretreatment, and no hemicellulose-rich material was recovered during fractionation. A capillary electrophoresis (CE) technique allowed for a better understanding of this phenomenon. Hydrolysis of carbohydrates was confirmed, although an extended degradation of monosaccharides to furfural and hydroxymethylfurfural (HMF) was observed.

  8. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.

    PubMed

    Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek

    2016-05-01

    Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis.

  9. Non isothermal model free kinetics for pyrolysis of rice straw.

    PubMed

    Mishra, Garima; Bhaskar, Thallada

    2014-10-01

    The kinetics of thermal decomposition of rice straw was studied by thermogravimetry. Non-isothermal thermogravimetric data of rice straw decomposition in nitrogen atmosphere at six different heating rates of 5-40 °C/min was used for evaluating kinetics using several model free kinetic methods. The results showed that the decomposition process exhibited two zones of constant apparent activation energies. The values ranged from 142 to 170 kJ/mol (E(avg) = 155.787 kJ/mol), and 170 to 270 kJ/mol (E(avg) = 236.743 kJ/mol) in the conversion range of 5-60% and 61-90% respectively. These values were used to determine the reaction mechanism of process using master plots and compensation parameters. The results show that the reaction mechanism of whole process can be kinetically characterized by two successive reactions, a diffusion reaction followed by a third order rate equation. The kinetic results were validated using isothermal predictions. The results derived are useful for development and optimization of biomass thermochemical conversion systems. PMID:25105267

  10. Numerical simulation of wind sand movement in straw checkerboard barriers.

    PubMed

    Huang, Ning; Xia, Xianpan; Tong, Ding

    2013-09-01

    Straw checkerboard barrier (SCB) is the most representative antidesertification measure and plays a significant role in antidesertification projects. Large-eddy simulation and discrete-particle tracing were used to numerically simulate the wind sand movement inside the straw checkerboard barrier (SCB), study the movement characteristics of sand particles, find the transverse velocities of sand particles and flow field, and obtain the contour of the transverse velocity of coupled wind field within the SCB. The results showed that 1) compared with that at the inlet of the SCB, the sand transport rate inside the SCB greatly decreases and the speed of sand grain movement also evidently drops, indicating that the SCB has very good sand movement preventing and fixing function; 2) within the SCB there exists a series of unevenly distributed eddies of wind sand flow, their strength decreases gradually with increasing the transverse distance; 3) affected by eddies or reflux, sand particles carried by the wind sand flow have to drop forward and backward the two interior walls inside the SCB, respectively, forming a v-shaped sand trough; 4) the sand transport rate gradually decreases with increasing number of SCBs, which reveals that the capacity of the wind field to transport sand particles decreases. This research is of significance in sandstorm and land desertification control. PMID:24026396

  11. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw.

    PubMed

    Candido, R G; Gonçalves, A R

    2016-11-01

    Sugarcane straw (SCS) is a raw material with high potential for production of cellulose derivatives due to its morphology and structure. The proposal of this work was to synthesize cellulose acetate (CA) and carboxymethylcellulose (CMC) from sugarcane straw cellulose, and applied the CA in the preparation of a membrane. The cellulose extraction was carried out in four steps. Firstly, SCS was treated with H2SO4 (10% v/v) followed by NaOH (5% w/v) treatment. Subsequently, a chelating process was performed before ending the extraction process with chemical bleaching using H2O2 (5% v/v). The extracted cellulose was employed in the obtainment of CA and CMC. The CA presented a degree of substitution (DS) of 2.72. Its FTIR spectrum showed that practically all hydroxyl groups were replaced by acetate groups. The membrane synthesized from CA was dense and homogeneous. The presence of small particles on the top and bottom surfaces decreased the mechanical resistance of the membrane. The CMC presented a low DS (0.4) demonstrating the carboxymethylation reaction was not very effective due to the presence of lignin. These results proved that SCS can be utilized in the synthesis of CA and CMC. PMID:27516319

  12. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw.

    PubMed

    Candido, R G; Gonçalves, A R

    2016-11-01

    Sugarcane straw (SCS) is a raw material with high potential for production of cellulose derivatives due to its morphology and structure. The proposal of this work was to synthesize cellulose acetate (CA) and carboxymethylcellulose (CMC) from sugarcane straw cellulose, and applied the CA in the preparation of a membrane. The cellulose extraction was carried out in four steps. Firstly, SCS was treated with H2SO4 (10% v/v) followed by NaOH (5% w/v) treatment. Subsequently, a chelating process was performed before ending the extraction process with chemical bleaching using H2O2 (5% v/v). The extracted cellulose was employed in the obtainment of CA and CMC. The CA presented a degree of substitution (DS) of 2.72. Its FTIR spectrum showed that practically all hydroxyl groups were replaced by acetate groups. The membrane synthesized from CA was dense and homogeneous. The presence of small particles on the top and bottom surfaces decreased the mechanical resistance of the membrane. The CMC presented a low DS (0.4) demonstrating the carboxymethylation reaction was not very effective due to the presence of lignin. These results proved that SCS can be utilized in the synthesis of CA and CMC.

  13. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency

  14. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    SciTech Connect

    Gaddy, E.M.

    1995-10-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty.

  15. Batch production of Pyranose 2-oxidase from Trametes versicolor (ATCC 11235) in medium with a lignocellulosic substrate and enzymatic bleaching of cotton fabrics.

    PubMed

    Pazarlioglu, Nurdan Kasikara; Erden, Emre; Ucar, M Cigdem; Akkaya, Alper; Sariisik, A Merih

    2012-04-01

    The aim of this work was to determine new, different and low-cost substrates that can be used for enzyme production from the white rot fungus Trametes versicolor (ATCC 11235) by taking advantage of the broad substrate specificity of pyranose 2-oxidase. In this report, we investigated the production of pyranose 2-oxidase from T. versicolor (ATCC 11235) using ten different agricultural residues such as clover straw, almond shells, hazelnut cobs, grass and others. Pyranose 2-oxidase activity was determined as 2.332 U/g at the 9th day in a submerged culture containing clover straw and tap water shaken at 150 rpm and 26°C, and the optimum clover straw concentration was determined to be 12 g/l. The effects of different glucose, nitrogen and phosphate sources on the production of pyranose 2-oxidase were studied in the clover straw medium. Analyses of biomass, protein, reduced sugar and nitrogen concentrations were also monitored in a clover straw medium that did not contain carbon or nitrogen and phosphate sources under the parameters determined. The produced pyranose 2-oxidase was used for improving the properties of cotton fabrics. PMID:22805934

  16. Elevated phosphorus impedes manganese acquisition by barley plants.

    PubMed

    Pedas, Pai; Husted, Søren; Skytte, Kristian; Schjoerring, Jan Kofod

    2011-01-01

    The occurrence of manganese (Mn) deficiency in cereal crops has increased in recent years. This coincides with increasing phosphorus (P) status of many soils due to application of high levels of animal manure and P-fertilizers. In order to test the hypothesis that elevated P my lead to Mn deficiency we have here conducted a series of hydroponics and soil experiments examining how the P supply affects the Mn nutrition of barley. Evidence for a direct negative interaction between P and Mn during root uptake was obtained by on-line inductively coupled plasma mass spectrometry (ICP-MS). Addition of a pulse of KH(2)PO(4) rapidly and significantly reduced root Mn uptake, while a similar concentration of KCl had no effect. Addition of a P pulse to the same nutrient solution without plants did not affect the concentration of Mn, revealing that no precipitation of Mn-P species was occurring. Barley plants growing at a high P supply in hydroponics with continuous replenishment of Mn(2+) had up to 50% lower Mn concentration in the youngest leaves than P limited plants. This P-induced depression of foliar Mn accelerated the development of Mn deficiency as evidenced by a marked change in the fluorescence induction kinetics of chlorophyll a. Also plants growing in soil exhibited lower leaf Mn concentrations in response to elevated P. In contrast, leaf concentrations of Fe, Cu, and N increased with the P supply, supporting that the negative effect of P on Mn acquisition was specific rather than due to a general dilution effect. It is concluded that elevated P supply directly interferes with Mn uptake in barley roots and that this negative interaction can induce Mn deficiency in the shoot. This finding has major implications in commercial plant production where many soils have high P levels. PMID:22639592

  17. Thiamine treatments alleviate aphid infestations in barley and pea.

    PubMed

    Hamada, Afaf M; Jonsson, Lisbeth M V

    2013-10-01

    Treatment of plants with thiamine (Vitamin B1) has before been shown to activate plant defence against microorganisms. Here, we have studied the effects of thiamine treatments of plants on aphid reproduction and behaviour. The work was mainly carried out with bird cherry-oat aphid (Rhopalosiphum padi L.) on barley (Hordeum vulgare L.). Aphid population growth and aphid acceptance on plants grown from seeds soaked in a 150μM thiamine solution were reduced to ca. 60% of that on control plants. R. padi life span and the total number of offspring were reduced on barley plants treated with thiamine. Healthy aphids and aphids infected with the R. padi virus were similarly affected. Spraying or addition of thiamine at 150μM to nutrient solutions likewise resulted in reduced aphid population growth to ca. 60%, as did plant exposure to thiamine odour at 4mM. Thiamine treatments resulted in reduced aphid population growth also when tested with grain aphid (Sitobion avenae F.) on barley and pea aphid (Acyrthosiphon pisum H.) on pea (Pisum sativum L.). There was no direct effect of thiamine on aphid reproduction or thiamine odour on aphid behaviour, as evaluated using artificial diets and by olfactometer tests, respectively. Two gene sequences regulated by salicylic acid showed higher transcript abundance and one gene sequence regulated by methyl jasmonate showed lower transcript abundance in thiamine-treated plants but not in control plants after aphid infestation. These results suggest that the aphid antibiosis and antixenosis effects may be related to priming of defence, but more studies are needed to explain the effects against aphids.

  18. Elevated Phosphorus Impedes Manganese Acquisition by Barley Plants

    PubMed Central

    Pedas, Pai; Husted, Søren; Skytte, Kristian; Schjoerring, Jan Kofod

    2011-01-01

    The occurrence of manganese (Mn) deficiency in cereal crops has increased in recent years. This coincides with increasing phosphorus (P) status of many soils due to application of high levels of animal manure and P-fertilizers. In order to test the hypothesis that elevated P my lead to Mn deficiency we have here conducted a series of hydroponics and soil experiments examining how the P supply affects the Mn nutrition of barley. Evidence for a direct negative interaction between P and Mn during root uptake was obtained by on-line inductively coupled plasma mass spectrometry (ICP-MS). Addition of a pulse of KH2PO4 rapidly and significantly reduced root Mn uptake, while a similar concentration of KCl had no effect. Addition of a P pulse to the same nutrient solution without plants did not affect the concentration of Mn, revealing that no precipitation of Mn–P species was occurring. Barley plants growing at a high P supply in hydroponics with continuous replenishment of Mn2+ had up to 50% lower Mn concentration in the youngest leaves than P limited plants. This P-induced depression of foliar Mn accelerated the development of Mn deficiency as evidenced by a marked change in the fluorescence induction kinetics of chlorophyll a. Also plants growing in soil exhibited lower leaf Mn concentrations in response to elevated P. In contrast, leaf concentrations of Fe, Cu, and N increased with the P supply, supporting that the negative effect of P on Mn acquisition was specific rather than due to a general dilution effect. It is concluded that elevated P supply directly interferes with Mn uptake in barley roots and that this negative interaction can induce Mn deficiency in the shoot. This finding has major implications in commercial plant production where many soils have high P levels. PMID:22639592

  19. Scandinavian mutation research in barley - a historical review.

    PubMed

    Lundqvist, Udda

    2014-12-01

    In 1928, the Swedish geneticists Hermann Nilsson-Ehle and Åke Gustafsson started on their suggestion experiments with induced mutations using the barley crop. In 1953, at the instigation of the Swedish Government, the 'Group for Theoretical and Applied Mutation Research' was established. Its aim was to study basic research problems in order to influence and improve methods for breeding cultivated plants. The research was non-commercial, even if some mutants were of practical importance. The peaks of activities occurred during the 1950s, 1960s and 1970s. Applying X-rays and UV-irradiation very soon the first chlorophyll mutations were obtained followed by the first viable mutations 'Erectoides'. Soon the X-ray experiments expanded with other types of irradiation such as neutrons etc. and finally with chemical mutagens, starting with mustard gas and concluding with the sodium azide. The research brought a wealth of observations of general biological importance, high increased mutation frequencies, difference in the mutation spectrum and to direct mutagenesis for specific genes. A rather large collection of morphological and physiological mutations, about 12 000 different mutant alleles, with a very broad variation were collected and incorporated into the Nordic Genetic Resource Center (NordGen) Sweden. Barley, the main experimental crop has become one of the few higher plants in which biochemical genetics and molecular biological studies are now feasible. The collection is an outstanding material for mapping genes and investigating the barley genome. Several characters have been studied and analyzed in more detail and are presented in this historical review.

  20. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438