Science.gov

Sample records for barnyard millet grain

  1. The genetic makeup of a global barnyard millet germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Barnyard millet (Echinochloa spp.) is an important crop for many smallholder farmers in southern and eastern Asia. It is valued for its drought tolerance, rapid maturation, and superior nutritional qualities. Despite these characteristics there are almost no genetic or genomic resources for this cro...

  2. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products.

    PubMed

    Verma, Suman; Srivastava, Sarita; Tiwari, Neha

    2015-08-01

    Millets have the potential to contribute to food security and nutrition, but still these are underutilized crops. The present study was undertaken with a view to analyse the physico-chemical, functional and nutritional composition of foxtail millet, barnyard millet and rice and to compare the sensory quality and nutritive value of food products from foxtail and barnyard millet with rice. Analysis of physico- chemical and functional characteristics revealed that the thousand kernel weight of foxtail millet, barnyard millet and rice was 2.5, 3.0 and 18.3 g, respectively and thousand kernel volume was 1.6, 13 2.0 and 7.1 ml, respectively. The water absorption capacity of foxtail millet, barnyard millet and rice was 1.90, 1.96 and 1.98 ml/g, respectively and water solubility index was 2.8, 1.2 and 1.0 %, respectively. Viscosity was measured for foxtail millet (1650.6 cps), barnyard millet (1581 cps) and rice (1668.3 cps). Analysis of nutritional composition showed that the moisture content of foxtail millet, barnyard millet and rice was 9.35, 11.93 and 11.91 %, respectively. The total ash, crude protein, crude fat, crude fibre and carbohydrate of foxtail millet were 3.10, 10.29, 3.06, 4.25 and 69.95 %, respectively, for barnyard millet were 4.27, 6.93, 2.02, 2.98 and 71.87 %, respectively and the corresponding values for rice were 0.59, 6.19, 0.53, 0.21 and 80.58 %, respectively. The energy value for foxtail millet, barnyard millet and rice was 349, 407 and 352 Kcal, respectively. The foxtail millet contained 30.10 mg/100 g calcium and 3.73 mg/100 g iron whereas barnyard millet contained 23.16 mg/100 g calcium and 6.91 mg/100 g iron. Values of 10 mg/100 g calcium and 0.10 mg/100 g iron were observed for rice. The formulated products viz. laddu, halwa and biryani from foxtail millet, barnyard millet and rice (control) were analysed for their sensory qualities. Among the products prepared, there was non significant difference with regard to the

  3. Effect of enzymatic hydrolysis of starch on pasting, rheological and viscoelastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying.

    PubMed

    Kumar, P Arun; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Simha, H V Vikram; Nath, B Surendra

    2016-10-01

    The influence of enzymatic hydrolysis of starch on the pasting properties of barnyard millet was studied using a rheometer. The effects of blending hydrolyzed barnyard millet wort with milk at different ratios (0:1, 1:1, 1:1.5 and 1:2) on flow and viscoelastic behavior were investigated. From the pasting curves, it was evident that enzymatically-hydrolyzed starch did not exhibit typical pasting characteristics expected of normal starch. The Herschel-Bulkley model fitted well to the flow behaviour data, with coefficient of determination (R(2)) ranging from 0.942 to 0.988. All milk-wort blends demonstrated varying degree of shear thinning with flow behavior index (n) ranging from 0.252 to 0.647. Stress-strain data revealed that 1:1 blend of milk to wort had the highest storage modulus (7.09-20.06Pa) and an elastically-dominant behavior (phase angle <45°) over the tested frequency range. The crossover point of G' and G" shifted to higher frequencies with increasing wort content. From the flow and viscoelastic behavior, it was concluded that the 1:1 blend of milk to wort would have least phase separation and better flowability during spray drying.

  4. Isolation of Functional Components β-Glucan and γ-Amino Butyric Acid from Raw and Germinated Barnyard Millet (Echinochloa frumentaceae) and their Characterization.

    PubMed

    Sharma, Seema; Saxena, Dharmesh C; Riar, Charanjit S

    2016-09-01

    The study was carried out to analyze the characteristics of two functional constituents' viz. γ-amino butyric acid (GABA) and β-glucan extracted from raw and germination barnyard millet (var. PRJ-1). A significant (P ≤ 0.05) effect of germination (sprouting) was observed in yield, chemical composition, functional, rheological and antioxidant properties of β-glucan and GABA. The yield of GABA extract was 12.34 % and the content increased from 6.37 mg/100 g in raw to 35.70 mg/100 g in germinated sample. The DPPH, total antioxidant and hydrogen peroxide scavenging activities of GABA extract increased after germination from 45.34 to 65.34 %, 15.3 to 33.3 millimole/g and 38.4 to 64.7 millimole/g, respectively. The yield of β-glucan extract of raw and germinated flour was 6.05 and 5.01 % whereas the β-glucan contents were 83.30 and 79.64 %, respectively. The functional properties of β-glucan i.e., swelling power, water binding capacity and DPPH scavenging activity increased from 1.45 to 1.76 g/g, 2.13 to 2.32 g/g and 44.39 to 57.42 %, respectively, after germination. Similarly there was an increase in the storage modulus after germination process which attributes a better viscoelastic capacity of β-glucan at low frequencies. The results exploit that the β-glucan and GABA might promise a polymeric incipient to be implemented as food additives with variable functional and structural characteristics.

  5. Influence of moisture content on physical properties of minor millets.

    PubMed

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.

  6. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    PubMed

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  7. Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia.

    PubMed

    Pradeep, P M; Sreerama, Yadahally N

    2015-02-15

    The effects of germination, steaming and microwave treatments of whole grain millets (barnyard, foxtail and proso) on their phenolic composition, antioxidant activities and inhibitory properties against α-amylase and α-glucosidase were investigated. Compositional analysis of phenolics by HPLC revealed that vanillic and ferulic acids were the principal phenolic acids and kaempferol was the predominant flavonoid found in raw millets. Different processing treatments brought about relevant changes in the composition and content of certain phenolic acids and flavonoids in processed millets. Phenolic extracts of raw and processed millets exhibited multiple antioxidant activities and are also potent inhibitors of α-amylase and α-glucosidase. In general, germinated millets showed highest phenolic content as well as superior antioxidant and enzyme inhibitory activities. These results suggest that germinated millet grains are potential source of phenolic antioxidants and also great sources of strong natural inhibitors for α-amylase and α-glucosidase.

  8. Inheritance of chinch bug (Heteroptera: Blissidae) resistance in grain pearl millet

    USDA-ARS?s Scientific Manuscript database

    Pearl millet [Pennisetum glaucum (L.)] is a promising alternative feed grain for southeastern US crop productions systems, because of its ability to reliably produce grain, under drought conditions on sandy, acidic, and low fertility soils. Chinch bug [Blissus leucopterus leucopterus (Say) (Heterop...

  9. Biofortification in Millets: A Sustainable Approach for Nutritional Security

    PubMed Central

    Vinoth, A.; Ravindhran, R.

    2017-01-01

    Nutritional insecurity is a major threat to the world’s population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients. PMID:28167953

  10. Biofortification in Millets: A Sustainable Approach for Nutritional Security.

    PubMed

    Vinoth, A; Ravindhran, R

    2017-01-01

    Nutritional insecurity is a major threat to the world's population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients.

  11. Grain yield and component traits of pearl millet genotypes at different row spacing

    USDA-ARS?s Scientific Manuscript database

    Cultivation of grain pearl millet (Pennisetum glaucum), a semi-arid tropical crop, is spreading beyond conventional production areas. It is finding markets in USA in ethnic food, wildlife recreation markets, poultry feed, and has potential for biofuels. Fourteen diverse genotypes of the A1 MS cytopl...

  12. Reduction of polyphenol and phytic acid content of pearl millet grains by malting and blanching.

    PubMed

    Archana; Sehgal, S; Kawatra, A

    1999-01-01

    This work was undertaken to evaluate the changes in polyphenol and phytic acid content in malted and blanched pearl millet grains. For malting, grains were steeped for 16 hours, germinated for 48 or 72 hours and then kilned at 50 degrees C for 24 hours. Blanching was done for 30 seconds in boiling water at 98 degrees C. Results indicated that blanching resulted in significant reduction in polyphenol (28%) and phytic acids (38%). Destruction of polyphenols (38 to 48%) and phytic acid (46 to 50%) was significantly higher in grains subjected to malting than blanching: The overall results suggested that malting with 72 hours of germination was most effective in reducing the antinutrient levels of pearl millet grains.

  13. Grain Yield and Quality of Foxtail Millet (Setaria italica L.) in Response to Tribenuron-Methyl

    PubMed Central

    Ning, Na; Yuan, Xiangyang; Dong, Shuqi; Wen, Yinyuan; Gao, Zhenpan; Guo, Meijun; Guo, Pingyi

    2015-01-01

    Foxtail millet (Setaria italica L.) is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM) on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha−1 reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha−1 and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha−1 (recommended dosage). Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha−1. With respect to grain protein content at 22.5 g ai ha−1, Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21. PMID:26565992

  14. Effect of Forage and Grain Pearl Millet on Pratylenchus penetrans and Potato Yields in Quebec

    PubMed Central

    Bélair, G.; Dauphinais, N.; Fournier, Y.; Dangi, O. P.; Clément, M. F.

    2005-01-01

    Rotation crop experiments were conducted from 1998 to 2000 to assess the impact of forage and grain pearl millet (Pennisetum glaucum) on Pratylenchus penetrans populations in three potato (Solanum tuberosum cv. Superior) fields in Quebec. These crops were compared to oats and(or) barley. Forage millet had a suppressive effect on P. penetrans populations after a 1 year rotation. The following year, marketable potato yields were negatively correlated with initial P. penetrans densities on two experimental sites (r = -0.454, P = 0.044; r = -0.426, P = 0.017). Average marketable and total yields were increased by 10% in plots previously grown in forage millet hybrid CFPM 101 when compared to oats (P = 0.017). Damage functions between preplant nematode density (Pi) and marketable yield (y = 42.0 -4.091 log₁₀ [Pi + 1]) and total yield (y = 43.9 -4.039 log₁₀ [Pi + 1]) of potato were established on pooled yield data. Forage pearl millet is an efficient and economically viable alternative for managing root-lesion nematodes and improving potato yields in Quebec. PMID:19262846

  15. Malting process optimization for protein digestibility enhancement in finger millet grain.

    PubMed

    Hejazi, Sara Najdi; Orsat, Valérie

    2016-04-01

    Finger millet (Eleusine coracana) is a nutritious, gluten-free, and drought resistant cereal containing high amounts of protein, carbohydrate, and minerals. However, bio-availability of these nutrients is restricted due to the presence of an excessive level of anti-nutrient components, mainly phytic acid, tannin, and oxalate. It has been shown that a well-designed malting/germination process can significantly reduce these anti-nutrients and consequently enhance the nutrient availability. In the present study, the effects of two important germination factors, duration and temperature, on the enhancement of in-vitro protein digestibility of finger millet were thoroughly investigated and optimized. Based on a central composite design, the grains were germinated for 24, 36, and 48 h at 22, 26, and 30 °C. For all factor combinations, protein, peptide, phytic acid, tannin, and oxalate contents were evaluated and digestibility was assessed. It was shown that during the malting/germinating process, both temperature and duration factors significantly influenced the investigated quantities. Germination of finger millet for 48 h at 30 °C increased protein digestibility from 74 % (for native grain) up to 91 %. Besides, it notably decreased phytic acid, tannin, and oxalate contents by 45 %, 46 %, and 29 %, respectively. Linear correlations between protein digestibility and these anti-nutrients were observed.

  16. An expression profiling analysis of hybrid millet and its parents at grain filling stage.

    PubMed

    Liu, Z H; Zhang, H M; Li, G L; Zhang, Y M; Li, H C; Guo, X L

    2015-07-14

    Heterosis has been widely used in crop breeding and production. However, a shortage of genes known to function in heterosis significantly limits our understanding of the molecular basis underlying heterosis. Here, we report 740 differentially expressed genes (DEGs) in the leaves of the hybrid millet Zhang No.5 and its parents at the grain filling stage determined using Solexa Illumina digital gene expression. Of the 740 DEGs, 546 were from the hybrid and its parents and most were up-regulated in the hybrid. Particularly, a large number of DEGs related to starch and carbohydrate metabolism and 2 DEGs encoding chlorophyll a/b binding proteins were up-regulated in hybrid millet. Moreover, all DEGs were enriched in the biological process and molecular function, and no DEGs were found to be enriched in the cellular component of GO terms. Pathway enrichment using KEGG showed that several DEGs were enriched in the circadian rhythm pathway. Further analysis revealed that the altered circadian rhythm, which mediates photosynthesis and carbohydrate accumulation, may play an important role in heterosis of the hybrid millet.

  17. Deciphering Genomic Regions for High Grain Iron and Zinc Content Using Association Mapping in Pearl Millet

    PubMed Central

    Anuradha, N.; Satyavathi, C. Tara; Bharadwaj, C.; Nepolean, T.; Sankar, S. Mukesh; Singh, Sumer P.; Meena, Mahesh C.; Singhal, Tripti; Srivastava, Rakesh K.

    2017-01-01

    Micronutrient malnutrition, especially deficiency of two mineral elements, iron [Fe] and zinc [Zn] in the developing world needs urgent attention. Pearl millet is one of the best crops with many nutritional properties and is accessible to the poor. We report findings of the first attempt to mine favorable alleles for grain iron and zinc content through association mapping in pearl millet. An association mapping panel of 130 diverse lines was evaluated at Delhi, Jodhpur and Dharwad, representing all the three pearl millet growing agro-climatic zones of India, during 2014 and 2015. Wide range of variation was observed for grain iron (32.3–111.9 ppm) and zinc (26.6–73.7 ppm) content. Genotyping with 114 representative polymorphic SSRs revealed 0.35 mean gene diversity. STRUCTURE analysis revealed presence of three sub-populations which was further supported by Neighbor-Joining method of clustering and principal coordinate analysis (PCoA). Marker-trait associations (MTAs) were analyzed with 267 markers (250 SSRs and 17 genic markers) in both general linear model (GLM) and mixed linear model (MLM), however, MTAs resulting from MLM were considered for more robustness of the associations. After appropriate Bonferroni correction, Xpsmp 2261 (13.34% R2-value), Xipes 0180 (R2-value of 11.40%) and Xipes 0096 (R2-value of 11.38%) were consistently associated with grain iron and zinc content for all the three locations. Favorable alleles and promising lines were identified for across and specific environments. PPMI 1102 had highest number (7) of favorable alleles, followed by four each for PPMFeZMP 199 and PPMI 708 for across the environment performance for both grain Fe and Zn content, while PPMI 1104 had alleles specific to Dharwad for grain Fe and Zn content. When compared with the reference genome Tift 23D2B1-P1-P5, Xpsmp 2261 amplicon was identified in intergenic region on pseudomolecule 5, while the other marker, Xipes 0810 was observed to be overlapping with aspartic

  18. Gas emissions from dairy barnyards

    USDA-ARS?s Scientific Manuscript database

    Dairy cattle spend considerable time in outside barnyards. Nine barnyards were constructed to examine impacts of surface materials (bark, sand, soil) and timing of cattle corralling (before and after 3 to 14 day corralling periods) on fluxes of carbon dioxide (CO2), methane (CH4), ammonia (NH3), nit...

  19. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya.

    PubMed

    Makokha, Anselimo O; Oniang'o, Ruth K; Njoroge, Simon M; Kamar, Oliver K

    2002-09-01

    Sorghum and finger millet grains are traditional staple foods in Kenya. However, they have naturally occurring anti-nutritional factors, such as phytic acid, that decrease their dietary availability. This work determined the effect of fermentation and malting on the phytic acid content of, and mineral availability in five varieties of sorghum and four varieties of finger millet grain grown in Kenya. Phytic acid ranged from 875.1 to 2,211.9 mg/100 g in sorghum. The levels in finger millet ranged from 851.6 to 1,419.4 mg/100 g grain. Fermentation resulted in a mean decrease of phytic acid in of 64.8% after 96 hours and 39.0% after 72 hours in sorghum grain. In finger millet, there was a mean decrease of 72.3% and 54.3% after 96 and 72 hours, respectively. Malting also resulted in a mean decrease of 23.9 and 45.3% after 72 and 96 hours, respectively. The extent of decrease of phytic acid differed among the grain varieties. Fermentation increased the rate of available iron, manganese, and calcium in both sorghum and finger millet. The available minerals were generally higher in finger millet than in sorghum after fermentation. Fermentation was also more effective than malting in reducing phytic acid in sorghum and finger millet. Simple traditional food processing methods can therefore be used to increase mineral availability.

  20. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    PubMed

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  1. Barnyard grasses were processed with rice around 10000 years ago.

    PubMed

    Yang, Xiaoyan; Fuller, Dorian Q; Huan, Xiujia; Perry, Linda; Li, Quan; Li, Zhao; Zhang, Jianping; Ma, Zhikun; Zhuang, Yijie; Jiang, Leping; Ge, Yong; Lu, Houyuan

    2015-11-05

    Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process.

  2. Barnyard grasses were processed with rice around 10000 years ago

    PubMed Central

    Yang, Xiaoyan; Fuller, Dorian Q; Huan, Xiujia; Perry, Linda; Li, Quan; Li, Zhao; Zhang, Jianping; Ma, Zhikun; Zhuang, Yijie; Jiang, Leping; Ge, Yong; Lu, Houyuan

    2015-01-01

    Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process. PMID:26536839

  3. Rheological properties of refined wheat - millet flour based dough under thermo-mechanical stress.

    PubMed

    Chakraborty, Subir K; Tiwari, Anu; Mishra, Atishay; Singh, Alok

    2015-05-01

    Designed experiments were conducted to study the rheological properties of baking dough prepared from different refined wheat flour (RWF) - barnyard millet blends with varying amount of water (WA), salt and sugar. Dough was subjected to thermo-mechanical stress in Mixolab, in which rheological properties were recorded in terms of five different torques. Second order polynomial models were developed using response surface methodology (RSM) to understand the effect of input variables (WA, barnyard millet, salt and sugar; all expressed as per cent of base flour) on torques recorded by Mixolab. Optimum values of input variables were obtained with constraints based on torque values which represented the qualities of acceptable bread dough. The models predicted that a dough with 57, 26, 1.8 and 3.3% of water, barnyard millet, salt and sugar, respectively, can be used for bread baking purposes.

  4. Aflatoxin contamination of pearl millet during field and storage conditions with reference to stage of grain maturation and insect damage.

    PubMed

    Raghavender, C R; Reddy, B N; Shobharani, G

    2007-12-01

    Aflatoxin contamination in five varieties of pearl millet (ICMH-451, ICMP-50I, ICTP-8203, WCC-75 and ICMV-155) was studied from field and storage conditions in three districts of Andhra Pradesh State, India and the inter-relationships between various parameters such as stage of grain maturation in the field and insect pest infestation in storage in relation to aflatoxin production were evaluated. Aflatoxin contamination was more frequent in the seed samples collected from the fields during rainy season than winter season. All major aflatoxins were isolated from one or the other varieties of pearl millet, whereas aflatoxin G2 was not commonly observed in the seed samples collected during winter. Among all the varieties tested, ICMH-451 was vulnerable to aflatoxin contamination whereas ICMV-155 was the least susceptible variety. The higher amount of aflatoxins was observed in the matured seed samples followed by pre-matured and milky stage. Among all the toxins reported in the field, aflatoxin B1 was found in higher concentration (185 (μg/kg) followed by B2 (105 μg/kg). The four major types of aflatoxins with higher levels (35, 40, 140, 190 μg/kg of G1, G2, B2, B1 were reported in the rainy season seed samples after six months of storage, whereas aflatoxin G1 was not observed in any variety of stored seed sample from winter. Statistical analysis revealed that the aflatoxin incidence in relation to different parameters studied was significantly different for each factor. The relationship between aflatoxin contamination and insect damaged-grain clearly indicated that the seed samples with 16-40% of insect damage contained higher amounts of aflatoxins (758 μg/kg).

  5. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [Pennisetum glaucum (L.) R. Br.

    PubMed Central

    Kumar, Sushil; Hash, Charles T.; Thirunavukkarasu, Nepolean; Singh, Govind; Rajaram, Vengaldas; Rathore, Abhishek; Senapathy, Senthilvel; Mahendrakar, Mahesh D.; Yadav, Rattan S.; Srivastava, Rakesh K.

    2016-01-01

    Pearl millet is a multipurpose grain/fodder crop of the semi-arid tropics, feeding many of the world’s poorest and most undernourished people. Genetic variation among adapted pearl millet inbreds and hybrids suggests it will be possible to improve grain micronutrient concentrations by selective breeding. Using 305 loci, a linkage map was constructed to map QTLs for grain iron [Fe] and zinc [Zn] using replicated samples of 106 pearl millet RILs (F6) derived from ICMB 841-P3 × 863B-P2. The grains of the RIL population were evaluated for Fe and Zn content using atomic absorption spectrophotometer. Grain mineral concentrations ranged from 28.4 to 124.0 ppm for Fe and 28.7 to 119.8 ppm for Zn. Similarly, grain Fe and Zn in open pollinated seeds ranged between 22.4–77.4 and 21.9–73.7 ppm, respectively. Mapping with 305 (96 SSRs; 208 DArT) markers detected seven linkage groups covering 1749 cM (Haldane) with an average intermarker distance of 5.73 cM. On the basis of two environment phenotypic data, two co-localized QTLs for Fe and Zn content on linkage group (LG) 3 were identified by composite interval mapping (CIM). Fe QTL explained 19% phenotypic variation, whereas the Zn QTL explained 36% phenotypic variation. Likewise for open pollinated seeds, the QTL analysis led to the identification of two QTLs for grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. The total phenotypic variance for Fe and Zn QTLs in open pollinated seeds was 16 and 42%, respectively. Analysis of QTL × QTL and QTL × QTL × environment interactions indicated no major epistasis. PMID:27933068

  6. Association Analysis of SSR Markers with Phenology, Grain, and Stover-Yield Related Traits in Pearl Millet (Pennisetum glaucum (L.) R. Br.)

    PubMed Central

    Senapathy, Senthilvel; Chandra, Subhash; Muthiah, Arunachalam; Dhanapal, Arun Prabhu; Hash, Charles Thomas

    2014-01-01

    Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu) 9” and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection. PMID:24526909

  7. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents.

    PubMed

    Srichuwong, Sathaporn; Curti, Delphine; Austin, Sean; King, Roberto; Lamothe, Lisa; Gloria-Hernandez, Hugo

    2017-10-15

    Minor grains such as sorghum, millet, quinoa and amaranth can be alternatives to wheat and corn as ingredients for whole grain and gluten-free products. In this study, influences of starch structures and other grain constituents on physicochemical properties and starch digestibility of whole flours made from these grains were investigated. Starches were classified into two groups according to their amylopectin branch chain-length: (i) quinoa, amaranth, wheat (shorter chains); and (ii) sorghum, millet, corn (longer chains). Such amylopectin features and amylose content contributed to the differences in thermal and pasting properties as well as starch digestibility of the flours. Non-starch constituents had additional impacts; proteins delayed starch gelatinization and pasting, especially in sorghum flours, and high levels of soluble fibre retarded starch retrogradation in wheat, quinoa and amaranth flours. Enzymatic hydrolysis of starch was restricted by the presence of associated protein matrix and enzyme inhibitors, but accelerated by endogenous amylolytic enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of germination temperatures on proteolysis of the gluten-free grains sorghum and millet during malting and mashing.

    PubMed

    Chiba, Y; Bryce, J H; Goodfellow, V; MacKinlay, J; Agu, R C; Brosnan, J M; Bringhurst, T A; Harrison, B

    2012-04-11

    Our study showed that sorghum and millet followed a similar pattern of changes when they were malted under similar conditions. When the malt from these cereals was mashed, both cereal types produced wide spectra of substrates (sugars and amino acids) that are required for yeast fermentation when malted at either lower or higher temperatures. At the germination temperatures of 20, 25, and 30 °C used in malting both cereal types, production of reducing sugars and that of free amino nitrogen (FAN) were similar. This is an important quality attribute for both cereals because it implies that variation in temperature during the malting of sorghum and millet, especially when malting temperature is difficult to control, and also reflecting temperature variations, experienced in different countries, will not have an adverse effect on the production and release of amino acids and sugars required by yeast during fermentation. Such consistency in the availability of yeast food (substrates) for metabolism during fermentation when sorghum and millet are malted at various temperatures is likely to reduce processing issues when their malts are used for brewing. Although sorghum has gained wide application in the brewing industry, and has been used extensively in brewing gluten-free beer on industrial scale, this is not the case with millet. The work described here provides novel information regarding the potential of millet for brewing. When both cereals were malted, the results obtained for millet in this study followed patterns similar to those of sorghum. This suggests that millet, in terms of sugars and amino acids, can play a role similar to that of sorghum in the brewing industry. This further suggests that millet, like sorghum, would be a good raw material for brewing gluten-free beer. Inclusion of millet as a brewing raw material will increase the availability of suitable materials (raw material sustainability) for use in the production of gluten-free beer, beverages, and

  9. Barnyard grass-induced rice allelopathy and momilactone B.

    PubMed

    Kato-Noguchi, Hisashi

    2011-07-01

    Here, we investigated chemical-mediated interaction between crop and weeds. Allelopathic activity of rice seedlings exhibited 5.3-6.3-fold increases when rice and barnyard grass seedlings were grown together, where there may be the competitive interference between rice and barnyard grass for nutrients. Barnyard grass is one of the most noxious weeds in rice cultivation. The momilactone B concentration in rice seedlings incubated with barnyard grass seedlings was 6.9-fold greater than that in rice seedlings incubated independently. Low nutrient growth conditions also increased allelopathic activity and momilactone B concentrations in rice seedlings. However, the increases in the low nutrient-induced allelopathic activity and momilactone B concentration were much lower than those in barnyard grass-induced allelopathic activity and momilactone B concentration. Root exudates of barnyard grass seedlings increased allelopathic activity and momilactone B concentration in rice seedlings at concentrations greater than 30 mg/L of the root exudates, and increasing the exudate concentration increased the activity and momilactone B concentration. Therefore, barnyard grass-induced allelopathic activity of rice seedlings may be caused not only by nutrient competition between two species, but also by components in barnyard grass root exudates. As momilactone B shows strong allelopathic activities, barnyard grass-induced allelopathic activity of rice may be due to the increased concentration of momilactone B in rice seedlings. The present research suggests that rice may respond to the presence of neighboring barnyard grass by sensing the components in barnyard grass root exudates and increasing allelopathic activity by production of elevated concentration of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyard grass, and the induced-allelopathy may provide a competitive advantage for

  10. Phytoliths Analysis for the Discrimination of Foxtail Millet (Setaria italica) and Common Millet (Panicum miliaceum)

    PubMed Central

    Lu, Houyuan; Zhang, Jianping; Wu, Naiqin; Liu, Kam-biu; Xu, Deke; Li, Quan

    2009-01-01

    Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum) are the oldest domesticated dry farming crops in Eurasia. Identifying these two millets in the archaeobotanical remains are still problematic, especially because the millet grains preserve only when charred. Phytoliths analysis provides a viable method for identifying this important crop. However, to date, the identification of millet phytoliths has been questionable, because very little study has been done on their morphometry and taxonomy. Particularly, no clear diagnostic feature has been used to distinguish between Foxtail millet and Common millet. Here we examined the anatomy and silicon structure patterns in the glumes, lemmas, and paleas from the inflorescence bracts in 27 modern plants of Foxtail millet, Common millet, and closely related grasses, using light microscopy with phase-contrast and microscopic interferometer. Our research shows that five key diagnostic characteristics in phytolith morphology can be used to distinguish Foxtail millet from Common millet based on the presence of cross-shaped type, regularly arranged papillae, Ω-undulated type, endings structures of epidermal long cell, and surface ridgy line sculpture in the former species. We have established identification criteria that, when used together, give the only reliable way of distinguishing between Foxtail millet and Common millet species based on their phytoliths characteristics, thus making a methodological contribution to phytolith research. Our findings also have important implications in the fields of plant taxonomy, agricultural archaeology, and the culture history of ancient civilizations. PMID:19212442

  11. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum).

    PubMed

    Lu, Houyuan; Zhang, Jianping; Wu, Naiqin; Liu, Kam-Biu; Xu, Deke; Li, Quan

    2009-01-01

    Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum) are the oldest domesticated dry farming crops in Eurasia. Identifying these two millets in the archaeobotanical remains are still problematic, especially because the millet grains preserve only when charred. Phytoliths analysis provides a viable method for identifying this important crop. However, to date, the identification of millet phytoliths has been questionable, because very little study has been done on their morphometry and taxonomy. Particularly, no clear diagnostic feature has been used to distinguish between Foxtail millet and Common millet. Here we examined the anatomy and silicon structure patterns in the glumes, lemmas, and paleas from the inflorescence bracts in 27 modern plants of Foxtail millet, Common millet, and closely related grasses, using light microscopy with phase-contrast and microscopic interferometer. Our research shows that five key diagnostic characteristics in phytolith morphology can be used to distinguish Foxtail millet from Common millet based on the presence of cross-shaped type, regularly arranged papillae, Omega-undulated type, endings structures of epidermal long cell, and surface ridgy line sculpture in the former species. We have established identification criteria that, when used together, give the only reliable way of distinguishing between Foxtail millet and Common millet species based on their phytoliths characteristics, thus making a methodological contribution to phytolith research. Our findings also have important implications in the fields of plant taxonomy, agricultural archaeology, and the culture history of ancient civilizations.

  12. Transcriptome Wide Identification and Validation of Calcium Sensor Gene Family in the Developing Spikes of Finger Millet Genotypes for Elucidating Its Role in Grain Calcium Accumulation

    PubMed Central

    Singh, Uma M.; Chandra, Muktesh; Shankhdhar, Shailesh C.; Kumar, Anil

    2014-01-01

    Background In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait. Principal Finding In this study, the transcriptome sequencing of spike tissues of two genotypes of finger millet differing in their grain calcium content, were performed for the first time. Out of 109,218 contigs, 78 contigs in case of GP-1 (Low Ca genotype) and out of 120,130 contigs 76 contigs in case of GP-45 (High Ca genotype), were identified as calcium sensor genes. Through in silico analysis all 82 unique calcium sensor genes were classified into eight calcium sensor gene family viz., CaM & CaMLs, CBLs, CIPKs, CRKs, PEPRKs, CDPKs, CaMKs and CCaMK. Out of 82 genes, 12 were found diverse from the rice orthologs. The differential expression analysis on the basis of FPKM value resulted in 24 genes highly expressed in GP-45 and 11 genes highly expressed in GP-1. Ten of the 35 differentially expressed genes could be assigned to three documented pathways involved mainly in stress responses. Furthermore, validation of selected calcium sensor responder genes was also performed by qPCR, in developing spikes of both genotypes grown on different concentration of exogenous calcium. Conclusion Through de novo transcriptome data assembly and analysis, we reported the comprehensive identification and functional characterization of calcium sensor gene family. The calcium sensor gene family identified and characterized in this study will facilitate in understanding the molecular basis of calcium accumulation and development of calcium biofortified crops. Moreover, this study also supported that identification and characterization of gene family through Illumina paired-end sequencing is a potential tool for generating the genomic information of

  13. The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum glaucum) with Elevated Levels of Grain Iron and Zinc

    PubMed Central

    Manwaring, Hanna R.; Bligh, H. F. J.; Yadav, Rattan

    2016-01-01

    Deficiencies of essential micronutrients such as iron and zinc are the cause of extensive health problems in developing countries. They adversely affect performance, productivity and are a major hindrance to economic development. Since many people who suffer from micronutrient deficiencies are dependent on staple crops to meet their dietary requirements, the development of crop cultivars with increased levels of micronutrients in their edible parts is becoming increasingly recognized as a sustainable solution. This is largely facilitated by genetics and genomic platforms. The cereal crop pearl millet (Pennisetum glaucum), is an excellent candidate for genetic improvement due to its ability to thrive in dry, semi-arid regions, where farming conditions are often unfavorable. Not only does pearl millet grow in areas where other crops such as maize and wheat do not survive, it contains naturally high levels of micronutrients, proteins and a myriad of other health benefitting characteristics. This review discusses the current status of iron and zinc deficiencies and reasons why interventions such as fortification, supplementation, and soil management are neither practicable nor affordable in poverty stricken areas. We argue that the most cost effective, sustainable intervention strategy is to biofortify pearl millet with enhanced levels of bioavailable iron and zinc. We discuss how naturally occurring genetic variations present in germplasm collections can be incorporated into elite, micronutrient rich varieties and what platforms are available to drive this research. We also consider the logistics of transgenic methods that could facilitate the improvement of the pearl millet gene pool. PMID:28066495

  14. The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum glaucum) with Elevated Levels of Grain Iron and Zinc.

    PubMed

    Manwaring, Hanna R; Bligh, H F J; Yadav, Rattan

    2016-01-01

    Deficiencies of essential micronutrients such as iron and zinc are the cause of extensive health problems in developing countries. They adversely affect performance, productivity and are a major hindrance to economic development. Since many people who suffer from micronutrient deficiencies are dependent on staple crops to meet their dietary requirements, the development of crop cultivars with increased levels of micronutrients in their edible parts is becoming increasingly recognized as a sustainable solution. This is largely facilitated by genetics and genomic platforms. The cereal crop pearl millet (Pennisetum glaucum), is an excellent candidate for genetic improvement due to its ability to thrive in dry, semi-arid regions, where farming conditions are often unfavorable. Not only does pearl millet grow in areas where other crops such as maize and wheat do not survive, it contains naturally high levels of micronutrients, proteins and a myriad of other health benefitting characteristics. This review discusses the current status of iron and zinc deficiencies and reasons why interventions such as fortification, supplementation, and soil management are neither practicable nor affordable in poverty stricken areas. We argue that the most cost effective, sustainable intervention strategy is to biofortify pearl millet with enhanced levels of bioavailable iron and zinc. We discuss how naturally occurring genetic variations present in germplasm collections can be incorporated into elite, micronutrient rich varieties and what platforms are available to drive this research. We also consider the logistics of transgenic methods that could facilitate the improvement of the pearl millet gene pool.

  15. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  16. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution

    PubMed Central

    Goron, Travis L.; Raizada, Manish N.

    2015-01-01

    Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed “orphan cereals.” Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa. PMID:25852710

  17. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution.

    PubMed

    Goron, Travis L; Raizada, Manish N

    2015-01-01

    Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.

  18. [Salinity effect on germination, growth, and grain production of some autochthonous pear millet ecotypes (Pennisetum glaucum (L.) R. Br.)].

    PubMed

    Radhouane, Leila

    2008-04-01

    This study compared the behaviour of six autochthonous pear millet ecotypes collected through the Tunisian territory under salt stress from germination to maturity. It showed that salt has little effect on germination rate and coleoptile emergence. However, this effect is more significant for radicular growth and between ecotypes. Salinity did not influence plant height, which seems to be a varietal characteristic, but revealed a positive effect on the foliar expansion. On the productivity level, salinity did not exert a prejudicial effect over the length of the principal candle, but improved the yield component. This adaptation to salinity is mainly due to its root system. This effect varied according to stress intensity and ecotype. Vegetative growth and yield of high-straw ecotypes was decreased by severe salinity, while ecotypes with low or medium height appear very stable on the productivity level. Such ecotypes can play an important role in the conservation and development of fragile grounds, and also be useful as a source of desirable genes for genetic improvement in salinity conditions.

  19. Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India.

    PubMed

    Vali Pasha, Kotwal; Ratnavathi, Chamarthy Venkata; Ajani, Jayanna; Raju, Dugyala; Manoj Kumar, Sriramoju; Beedu, Sashidhar Rao

    2017-06-30

    Millets are a diverse group of small seeded grasses, widely grown around the world as cereal foods. This communication details the proximate, mineral profile and antioxidant activity of six different small millets (Finger, Foxtail, Proso, Little, Barnyard and Kodo millets) and their 21 cultivars that are traditionally cultivated and consumed in the region of Ralayaseema, south India. The proximate analysis revealed that these millets are rich in protein, fat, ash (mineral), total dietary fibre and total phenols with appreciable antioxidant activity. However, starch and amylose content was comparatively lower as compared to major millet sorghum. ICP-MS analysis of small millets demonstrated that they are rich in minerals such as Ca, P, K, Mg, Fe, Cu, Zn, Mn, Cr, Mo and Se. Finger and kodo millets were found to be nutritionally superior over other small millets. The results suggest that small millets have a potential to provide food security and can combat micronutrient malnutrition. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Evaluation of nutraceutical properties of selected small millets

    PubMed Central

    Rao, B. Raghavendra; Nagasampige, Manojkumar H.; Ravikiran, M.

    2011-01-01

    Objective: The aim of this study was to evaluate the nutraceutical properties and nutritional value of grains of four selected small millets viz. finger millet, foxtail millet, prosomillet and khodomillet. Materials and Methods: The qualitative analysis of phytochemicals viz. phenolics, flavonoids, alkaloids and saponins present in the four small millets was done. The water-soluble proteins, crude fiber content and the reducing power of the grains of these four millets were analyzed. Results and Conclusions: The khodomillet showed maximum phenolic content (10.3%) and foxtail millet showed minimum phenolics (2.5%). As far as reducing capacity was concerned, finger millet was highest (5.7%). The prosomillet showed least reducing property (2.6%). The finger millet (391.3 mg/g each) showed maximum reducing sugar content. The prosomillet showed minimum reducing sugar (195 mg/g). The foxtail millet showed maximum protein content (305.76 mg/g) and prosomillet showed minimum protein content (144.23 mg/g). The khodomillet showed maximum crude fiber content (14.3%).The finger millet showed maximum reducing sugar content (391.3 mg/g) whereas, the khodomillet showed minimum reducing sugar (130.43 mg/g). PMID:21687358

  1. Population genetics and structure of a global foxtail millet germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Foxtail millet is one among the most ancient crops of dryland agriculture. It is the second most important crop among millets, grown for grains or forage. Foxtail millet germplasm resources provide reservoirs of novel alleles and genes for crop improvement that have remained mostly unexplored. We ge...

  2. Early millet use in northern China

    PubMed Central

    Yang, Xiaoyan; Wan, Zhiwei; Perry, Linda; Lu, Houyuan; Wang, Qiang; Zhao, Chaohong; Li, Jun; Xie, Fei; Yu, Jincheng; Cui, Tianxing; Wang, Tao; Li, Mingqi; Ge, Quansheng

    2012-01-01

    It is generally understood that foxtail millet and broomcorn millet were initially domesticated in Northern China where they eventually became the dominant plant food crops. The rarity of older archaeological sites and archaeobotanical work in the region, however, renders both the origins of these plants and their processes of domestication poorly understood. Here we present ancient starch grain assemblages recovered from cultural deposits, including carbonized residues adhering to an early pottery sherd as well as grinding stone tools excavated from the sites of Nanzhuangtou (11.5–11.0 cal kyBP) and Donghulin (11.0–9.5 cal kyBP) in the North China Plain. Our data extend the record of millet use in China by nearly 1,000 y, and the record of foxtail millet in the region by at least two millennia. The patterning of starch residues within the samples allow for the formulation of the hypothesis that foxtail millets were cultivated for an extended period of two millennia, during which this crop plant appears to have been undergoing domestication. Future research in the region will help clarify the processes in place. PMID:22355109

  3. Development of high density SNP-based linkage map in pearl millet

    USDA-ARS?s Scientific Manuscript database

    Pearl millet (Cenchrus americanus (L.) Morrone) is a gluten free grain crop which is additionally gaining importance in the USA due to the increased demand for pearl millet flour by many ethnic groups. As a result, efforts are underway in the Southeast to develop high grain yielding adapted pearl mi...

  4. [Changes of microbial biomass carbon and enzyme activities in rice-barnyard grass coexisted soils].

    PubMed

    Li, Hai-Bo; Kong, Chui-Hua

    2008-10-01

    Taking barnyard grass (Echinochloa crus-galli), allelopathic rice (Oryza sativa) PI312777, and non-allelopathic rice Liaojing-9 as test materials, this paper studied the changes of microbial biomass C and of dehydrogenase, urease and invertase activities in soils under 1 : 1 rice-barnyard grass coexistence. The results showed that with the coexistence of barnyard grass, the microbial biomass C in rhizosphere soil of PI312777 was decreased by 50.52% (P < 0.01), while that in inter-row soil was increased. The microbial biomass C in rhizosphere soil of Liaojing-9 was also decreased by 38.99% (P < 0.01), but no significant difference was observed in inter-row soil. The dehydrogenase activity in rhizosphere soils of the two rice varieties were decreased by 20% or more (P < 0.05), but the urease and invertase activities in rhizosphere soil of PI312777 were significantly stimulated (P < 0.01). The invertase activity in rhizosphere soil of Liaojing-9 was inhibited by coexisting barnyard grass, but urease activity had less change. As a result, the allelopathic traits of rice variety led to a significant decrease of microbial biomass C and an increase of urease and invertase activities in rhizosphere soil under barnyard grass coexistence, implying that soil microbial biomass and enzymes might play essential roles in species interactions between rice and barnyard grass, and allelopathic rice had its advantage in resistance to barnyard grass.

  5. Allelopathic Substance Exuded from a Serious Weed, Germinating Barnyard Grass (Echinochloa crus-galli L.), Roots.

    PubMed

    Yamamoto; Yokotani-Tomita; Kosemura; Yamamura; Yamada; Hasegawa

    1999-10-01

    The allelopathy of a serious weed, barnyard grass (Echinochloa crus-galli L.), was investigated. Root exudates of young barnyard grass showed allelopathic effects and plant-selective activity and inhibited root elongation of all plants tested. With respect to shoot growth, the exudates did not show inhibition of barnyard grass only. The allelopathic substance was isolated and identified as p-hydroxymandelic acid by NMR. p-Hydroxymandelic acid strongly inhibited shoot growth and root elongation of all plants tested. The effects of three congeners of p-hydroxymandelic acid were tested on rice shoot growth. In the biological activity exhibited in rice, shoot growth was related to the hydroxyl groups.

  6. Inheritance of Chinch bug resistance in pearl millet

    USDA-ARS?s Scientific Manuscript database

    Pearl millet [Pennisetum glaucum (L.)] is a promising alternative feed grain for southeastern crop productions systems, because of its ability to reliably produce grain, under drought conditions on sandy, acidic, and low fertility soils. Chinch bug [Blissus leucopterus leucopterus (Say) (Heteropter...

  7. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis).

    PubMed

    Zhang, Jianping; Lu, Houyuan; Wu, Naiqin; Yang, Xiaoyan; Diao, Xianmin

    2011-05-06

    Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.

  8. Phytolith Analysis for Differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis)

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Wu, Naiqin; Yang, Xiaoyan; Diao, Xianmin

    2011-01-01

    Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant. PMID:21573069

  9. Evaluation of health potential of nutritionally enriched Kodo millet (Eleusine coracana) grown in Himachal Pradesh, India.

    PubMed

    Sharma, Shakshi; Sharma, Nivedita; Handa, Shweta; Pathania, Shruti

    2017-01-01

    In this study, Kodo millet grains were phytochemically investigated for their nutritional and antioxidant potential for their use as functional foods. Methanolic extracts of grains showed higher phenolic content and antioxidant activity. TLC studies of the extracted polyphenols from kodo millet showed the predominant presence of ferulic acid and cinnamic acid in the millet. Further quantification of these polyphenols was done by using HPLC, analysing ferulic acid and cinnamic acid. Antagonistic spectrum of the polyphenols extracted showed inhibition against four bacterial test indicators viz. Staphylococcus aureus, Leuconostoc mesenteroides, Bacillus cereus and Enterococcus faecalis proving its antimicrobial action. The grains of kodo millet grains taken under study were found to posses' high protein, carbohydrates, minerals, crude fibers, polyphenols and antioxidants thus can be used as a good source of nutrition with additional health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv.

    PubMed

    Odintsova, Tatyana I; Rogozhin, Eugene A; Baranov, Yurij; Musolyamov, Alexander Kh; Yalpani, Nasser; Egorov, Tsezi A; Grishin, Eugene V

    2008-01-01

    From the annual weed barnyard grass Echinochloa crusgalli (L.) Beauv., two novel defensins Ec-AMP-D1 and Ec-AMP-D2 that differ by a single amino acid substitution were isolated by a combination of different chromatographic procedures. Both defensins were active against several phytopathogenic fungi and the oomycete Phytophthora infestans at micromolar concentrations. The Ec-AMP-D1 showed higher activity against the oomycete than Ec-AMP-D2. The comparison of the amino acid sequences of the antifungal E. crusgalli defensins with those of earlier characterized T. kiharae defensins [T.I. Odintsova, Ts.A. Egorov, A.Kh. Musolyamov, M.S. Odintsova, V.A. Pukhalsky, E.V. Grishin, Seed defensins from T. kiharae and related species: genome localization of defensin-encoding genes, Biochimie, 89 (2007) 605-612.] that were devoid of substantial antifungal activity point to the C-terminal region of the molecule as the main determinant of the antifungal activity of E. crusgalli defensins.

  11. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago

    PubMed Central

    Lu, Houyuan; Zhang, Jianping; Liu, Kam-biu; Wu, Naiqin; Li, Yumei; Zhou, Kunshu; Ye, Maolin; Zhang, Tianyu; Zhang, Haijiang; Yang, Xiaoyan; Shen, Licheng; Xu, Deke; Li, Quan

    2009-01-01

    The origin of millet from Neolithic China has generally been accepted, but it remains unknown whether common millet (Panicum miliaceum) or foxtail millet (Setaria italica) was the first species domesticated. Nor do we know the timing of their domestication and their routes of dispersal. Here, we report the discovery of husk phytoliths and biomolecular components identifiable solely as common millet from newly excavated storage pits at the Neolithic Cishan site, China, dated to between ca. 10,300 and ca. 8,700 calibrated years before present (cal yr BP). After ca. 8,700 cal yr BP, the grain crops began to contain a small quantity of foxtail millet. Our research reveals that the common millet was the earliest dry farming crop in East Asia, which is probably attributed to its excellent resistance to drought. PMID:19383791

  12. Reproduction of Belonolaimus longicaudatus, Meloidogyne javanica, Paratrichodorus minor, and Pratylenchus brachyurus on Pearl Millet (Pennisetum glaucum)

    PubMed Central

    Timper, P.; Hanna, W. W.

    2005-01-01

    Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid 'TifGrain 102' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet ('HGM-100' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica. PMID:19262863

  13. Physico-chemical characteristics, nutritional quality and shelf-life of pearl millet based extrusion cooked supplementary foods.

    PubMed

    Sumathi, A; Ushakumari, S R; Malleshi, N G

    2007-08-01

    The process variables for extrusion cooking of pearl millet were standardized and some of the physicochemical characteristics of the millet extrudates and also the nutritional qualities of the millet and legume-based extruded supplementary foods were determined. The millet grits less than 355 microm in size, equilibrated to 18+/-1% moisture content, extruded at 150+/-5 degrees C temperature and at 200+/-10 rpm of the barrel of a twin-screw extruder yielded the extrudates of 1.75+/-0.21 expansion ratio and 7.5+/-1.5 kg breaking strength. The cold and cooked paste viscosity, the melt energy and also the carbohydrate digestibility of the extrudates indicated that the products were pre-cooked and were of ready-to-eat nature. The millet was blended with grain legumes (30%) and also with defatted soy (15%) separately and extruded to prepare ready-to-eat nutritious foods suitable as food supplements to children and mothers. The foods based on the millet and legumes and also the millet and soy contained 14.7% and 16.0% protein with 2.0 and 2.1 protein efficiency ratio values, respectively. The shelf-life of the foods was about 6 months in different flexible pouches at ambient storage conditions. The study showed that applications of extrusion cooking technology to pearl millet have promise for preparation of diversified and value-added food products from the millet.

  14. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica).

    PubMed

    Jia, Guanqing; Huang, Xuehui; Zhi, Hui; Zhao, Yan; Zhao, Qiang; Li, Wenjun; Chai, Yang; Yang, Lifang; Liu, Kunyan; Lu, Hengyun; Zhu, Chuanrang; Lu, Yiqi; Zhou, Congcong; Fan, Danlin; Weng, Qijun; Guo, Yunli; Huang, Tao; Zhang, Lei; Lu, Tingting; Feng, Qi; Hao, Hangfei; Liu, Hongkuan; Lu, Ping; Zhang, Ning; Li, Yuhui; Guo, Erhu; Wang, Shujun; Wang, Suying; Liu, Jinrong; Zhang, Wenfei; Chen, Guoqiu; Zhang, Baojin; Li, Wei; Wang, Yongfang; Li, Haiquan; Zhao, Baohua; Li, Jiayang; Diao, Xianmin; Han, Bin

    2013-08-01

    Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.

  15. Culinary archaeology: Millet noodles in Late Neolithic China.

    PubMed

    Lu, Houyuan; Yang, Xiaoyan; Ye, Maolin; Liu, Kam-Biu; Xia, Zhengkai; Ren, Xiaoyan; Cai, Linhai; Wu, Naiqin; Liu, Tung-Sheng

    2005-10-13

    Noodles have been a popular staple food in many parts of the world for at least 2,000 years, although it is debatable whether the Chinese, the Italians or the Arabs invented them first. Here we analyse a prehistoric sample of noodles contained in a well preserved, sealed earthenware bowl discovered in the Late Neolithic archaeological site of Lajia in northwestern China. We identify millet as the source of the abundant seed-husk phytoliths and starch grains present in the vessel. This shows that the conversion of ground millet flour into dough that could be repeatedly stretched into long, thin strands for the preparation of boiled noodles was already established in this region 4,000 years ago.

  16. Comparative analysis of solid-state bioprocessing and enzymatic treatment of finger millet for mobilization of bound phenolics.

    PubMed

    Yadav, Geetanjali; Singh, Anshu; Bhattacharya, Patrali; Yuvraj, Jude; Banerjee, Rintu

    2013-11-01

    The present work investigates the probable bioprocessing technique to mobilize the bound phenolics naturally found in finger millet cell wall for enriching it with dietary antioxidants. Comparative study was performed between the exogenous enzymatic treatment and solid-state fermentation of grain (SSF) with a food grade organism Rhizopus oryzae. SSF results indicated that at the 6th day of incubation, total phenolic content (18.64 mg gallic acid equivalent/gds) and antioxidant property (DPPH radical scavenging activity of 39.03 %, metal chelating ability of 54 % and better reducing power) of finger millet were drastically enhanced when fermented with GRAS filamentous fungi. During the enzymatic bioprocessing, most of the phenolics released during the hydrolysis, leached out into the liquid portion rather than retaining them within the millet grain, resulting in overall loss of dietary antioxidant. The present study establishes the most effective strategy to enrich the finger millet with phenolic antioxidants.

  17. Rheological, thermo-mechanical, and baking properties of wheat-millet flour blends.

    PubMed

    Aprodu, Iuliana; Banu, Iuliana

    2015-07-01

    Millet has long been known as a good source of fiber and antioxidants, but only lately started to be exploited by food scientists and food industry as a consequence of increased consumer awareness. In this study, doughs and breads were produced using millet flour in different ratios (10, 20, 30, 40, and 50%) to white, dark, and whole wheat flour. The flour blends were evaluated in terms of rheological and thermo-mechanical properties. Fundamental rheological measurements revealed that the viscosity of the flour formulations increases with wheat flour-extraction rate and decreases with the addition of millet flour. Doughs behavior during mixing, overmixing, pasting, and gelling was established using the Mixolab device. The results of this bread-making process simulation indicate that dough properties become critical for the flour blends with millet levels higher than 30%. The breads were evaluated for volume, texture, and crumb-grain characteristics. The baking test and sensory evaluation results indicated that substitution levels of up to 30% millet flour could be used in composite bread flour. High levels of millet flour (40 and 50%) negatively influenced the loaf volume, crumb texture, and taste.

  18. Algerian pearl millet ( Pennisetum glaucum L.) contains XIP but not TAXI and TLXI type xylanase inhibitors.

    PubMed

    Mokrane, Hind; Gebruers, Kurt; Beaugrand, Johnny; Proost, Paul; Nadjemi, Boubekeur; Belhanèche-Bensemra, Naima; Courtin, Christophe M; Delcour, Jan A

    2009-06-24

    An XIP (xylanase inhibiting protein) type xylanase inhibitor was purified from Algerian pearl millet ( Pennisetum glaucum L.) grains and characterized for the first time. Cation exchange and affinity chromatography with immobilized Trichoderma longibrachiatum glycoside hydrolase (GH) family 11 xylanase resulted in electrophoretically pure protein with a molecular mass of 27-29 kDa and a pI value of 6.7. The experimentally determined N-terminal amino acid sequence of the purified XIP protein is 87.5%, identical to that of sorghum ( Sorghum bicolor L.) XIP and 79.2% identical to that of wheat ( Triticum aestivum L.) XIP-I. The biochemical properties of pearl millet XIP are comparable to those described earlier for sorghum XIP, except for the higher specific activity toward a T. longibrachiatum GH family 11 xylanase. On the basis of immunoblot neither TAXI nor TLXI type xylanase inhibitors were detected in pearl millet grains.

  19. Interaction between C 4 barnyard grass and C 3 upland rice under elevated CO 2: Impact of mycorrhizae

    NASA Astrophysics Data System (ADS)

    Tang, Jianjun; Xu, Liming; Chen, Xin; Hu, Shuijin

    2009-03-01

    Atmospheric CO 2 enrichment may impact arbuscular mycorrhizae (AM) development and function, which could have subsequent effects on host plant species interactions by differentially affecting plant nutrient acquisition. However, direct evidence illustrating this scenario is limited. We examined how elevated CO 2 affects plant growth and whether mycorrhizae mediate interactions between C 4 barnyard grass ( Echinochloa crusgalli (L.) Beauv.) and C 3 upland rice ( Oryza sativa L.) in a low nutrient soil. The monocultures and combinations with or without mycorrhizal inoculation were grown at ambient (400 ± 20 μmol mol -1) and elevated CO 2 (700 ± 20 μmol mol -1) levels. The 15N isotope tracer was introduced to quantify the mycorrhizally mediated N acquisition of plants. Elevated CO 2 stimulated the growth of C 3 upland rice but not that of C 4 barnyard grass under monoculture. Elevated CO 2 also increased mycorrhizal colonization of C 4 barnyard grass but did not affect mycorrhizal colonization of C 3 upland rice. Mycorrhizal inoculation increased the shoot biomass ratio of C 4 barnyard grass to C 3 upland rice under both CO 2 concentrations but had a greater impact under the elevated than ambient CO 2 level. Mycorrhizae decreased relative interaction index (RII) of C 3 plants under both ambient and elevated CO 2, but mycorrhizae increased RII of C 4 plants only under elevated CO 2. Elevated CO 2 and mycorrhizal inoculation enhanced 15N and total N and P uptake of C 4 barnyard grass in mixture but had no effects on N and P acquisition of C 3 upland rice, thus altering the distribution of N and P between the species in mixture. These results implied that CO 2 stimulation of mycorrhizae and their nutrient acquisition may impact competitive interaction of C 4 barnyard grass and C 3 upland rice under future CO 2 scenarios.

  20. Application of pathological principles to evaluating pearl millet for chinch bug resistance

    USDA-ARS?s Scientific Manuscript database

    Chinch bug [Blissus leucopterus leucopterus (Say) (Heteroptera: Blissidae)] is one of the most important insect pests on forage and grain pearl millet (Pennisetum glaucum L. R. Br.) in the southern US. Insect feeding damage is expressed as plant mortality, stunting, leaf sheath necrosis, and tiller ...

  1. Hybrid and proximate composition effects on ethanol yield from pearl millet

    USDA-ARS?s Scientific Manuscript database

    Investors have committed to the construction of new ethanol plants in the southeast in spite of the grain-deficit status of this region. Pearl millet is likely to be a viable supplemental feedstock. The DDGS has a greater nutritional value, resulting in a lower net cost of ethanol production from pe...

  2. Transmission of avian influenza A viruses among species in an artificial barnyard.

    PubMed

    Achenbach, Jenna E; Bowen, Richard A

    2011-03-31

    Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos) recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks) or seroconversion (other species) over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus.

  3. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2017-01-01

    Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional

  4. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet.

    PubMed

    Shivhare, Radha; Lata, Charu

    2016-01-01

    Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional

  5. Differential Gene Expression in Foxtail Millet during Incompatible Interaction with Uromyces setariae-italicae

    PubMed Central

    Dong, Li; Bai, Hui; Quan, Jian Zhang; Liu, Lei; Dong, Zhi-Ping

    2015-01-01

    Foxtail millet (Setaria italica) is an important food and fodder grain crop that is grown for human consumption. Production of this species is affected by several plant diseases, such as rust. The cultivar Shilixiang has been identified as resistant to the foxtail millet rust pathogen, Uromyces setariae-italicae. In order to identify signaling pathways and genes related to the plant’s defense mechanisms against rust, the Shilixiang cultivar was used to construct a digital gene expression (DGE) library during the interaction of foxtail millet with U. setariae-italicae. In this study, we determined the most abundant differentially expressed signaling pathways of up-regulated genes in foxtail millet and identified significantly up-regulated genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to analyze the expression of nine selected genes, and the patterns observed agreed well with DGE analysis. Expression levels of the genes were also compared between a resistant cultivar Shilixiang and a susceptible cultivar Yugu-1, and the result indicated that expression level of Shilixiang is higher than that of Yugu-1. This study reveals the relatively comprehensive mechanisms of rust-responsive transcription in foxtail millet. PMID:25885767

  6. Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice.

    PubMed

    He, Haibin; Wang, Haibin; Fang, Changxun; Wu, Hanwen; Guo, Xukui; Liu, Changhui; Lin, Zhihua; Lin, Wenxiong

    2012-11-15

    Allelopathic rice cultivar PI312777 (PI) and non-allelopathic rice cultivar Lemont (Le) were mixed with barnyard grass (Echinochloa crus-galli L., BYG) at various ratios (rice:weed ratios of 4:1, 2:1, and 1:1) in hydroponic cultures. The expression of four genes, i.e. phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), ferulic acid 5-hydroxylase (F5H), and caffeic acid O-methyltransferases (COMT), which are involved in the biosynthesis of the phenolic compounds in rice, were evaluated by a quantitative real-time polymerase chain reaction (qRT-PCR). The contents of phenolic compounds in leaves, roots, and culture solutions of the two rice cultivars were determined using high performance liquid chromatography (HPLC). The results showed that all of the four genes were up-regulated in leaves and roots of the allelopathic rice PI at all rice:weed ratios. However, three of the four genes, C4H, F5H, and COMT, were down-regulated in the leaves and roots of the non-allelopathic rice Le. The degree to which PAL was up-regulated in leaves and roots was much higher in PI than in Le. The contents of phenolic compounds in PI leaves, roots, and culture solutions were higher than that in Le leaves, roots, and culture solutions. The higher expression of the genes involved in the phenylpropanoid metabolism and the higher contents of phenolic compounds in PI are consistent with the higher inhibitory rates of PI on BYG. These results indicate that the PAL gene in PI is more sensitive to BYG stress than in Le, and barnyard grass up regulates the biosynthesis of phenolic compound in allelopathic rice. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Response of millet and sorghum to a varying water supply around the primary and nodal roots.

    PubMed

    Rostamza, M; Richards, R A; Watt, M

    2013-07-01

    Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0.6-1.5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots

  8. New use of broomcorn millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae.

    PubMed

    Hua, Li; Feng, Ming-Guang

    2003-10-24

    Glutinous broomcorn millets from the crop Panicum miliaceum were first used as substrate to produce granular cultures of Pandora neoaphidis, an obligate fungal pathogen specific to aphids. Carrying a water content of 36.5% after being steamed in a regular autoclaving procedure, millet grains of each 15 g (dry weight) in a 100-ml flask were mixed with 3 ml modified Sabouraud dextrose broth containing half a mashed colony of P. neoaphidis grown on egg yolk milk agar and then incubated at 20 degrees C and a light/dark cycle of 12 h/12 h for 21 days. Based on individually monitoring conidial production potential of 20 millet grains sampled from an arbitrarily taken flask at 3-day intervals, the millet cultures incubated for 6-15 days were capable of producing 16.8-23.4 x 10(4) conidia per millet grain with conidial ejection lasting for up to 6 days. The cultured millet grains individually produced significantly more conidia than apterous adults of Myzus persicae killed by P. neoaphidis (8.4 x 10(4) conidia per cadaver) and sporulated twice longer. The modeling of time-dose-mortality data from bioassays on M. persicae apterae exposed to conidial showers from the cultured millet grains and the mycelial mats produced in liquid culture resulted in similar estimates of LC(50) (millets: 21.4, 7.3, and 4.9 conidia mm(-2) on days 5-7 after exposure; mycelial mats: 22.1, 10.6, and 7.7 conidia mm(-2)) although the LT(50) estimated at a given conidial concentration was slightly smaller for the millet cultures than for the mycelial mats. This indicates that the millet grains cultured with P. neoaphidis produced conidia as infective as or slightly more infective to M. persicae than those from the mycelial mats. Based on the sporulation potential, infectivity, and ease and cost of the millet cultures, the method developed in this study highly improved in vitro cultures of P. neoaphidis and may adapt to culturing other entomophthoralean fungi for microbial control of insect pests.

  9. Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review.

    PubMed

    Habiyaremye, Cedric; Matanguihan, Janet B; D'Alpoim Guedes, Jade; Ganjyal, Girish M; Whiteman, Michael R; Kidwell, Kimberlee K; Murphy, Kevin M

    2016-01-01

    Proso millet (Panicum miliaceum L.) is a warm season grass with a growing season of 60-100 days. It is a highly nutritious cereal grain used for human consumption, bird seed, and/or ethanol production. Unique characteristics, such as drought and heat tolerance, make proso millet a promising alternative cash crop for the Pacific Northwest (PNW) region of the United States. Development of proso millet varieties adapted to dryland farming regions of the PNW could give growers a much-needed option for diversifying their predominantly wheat-based cropping systems. In this review, the agronomic characteristics of proso millet are discussed, with emphasis on growth habits and environmental requirements, place in prevailing crop rotations in the PNW, and nutritional and health benefits. The genetics of proso millet and the genomic resources available for breeding adapted varieties are also discussed. Last, challenges and opportunities of proso millet cultivation in the PNW are explored, including the potential for entering novel and regional markets.

  10. Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review

    PubMed Central

    Habiyaremye, Cedric; Matanguihan, Janet B.; D’Alpoim Guedes, Jade; Ganjyal, Girish M.; Whiteman, Michael R.; Kidwell, Kimberlee K.; Murphy, Kevin M.

    2017-01-01

    Proso millet (Panicum miliaceum L.) is a warm season grass with a growing season of 60–100 days. It is a highly nutritious cereal grain used for human consumption, bird seed, and/or ethanol production. Unique characteristics, such as drought and heat tolerance, make proso millet a promising alternative cash crop for the Pacific Northwest (PNW) region of the United States. Development of proso millet varieties adapted to dryland farming regions of the PNW could give growers a much-needed option for diversifying their predominantly wheat-based cropping systems. In this review, the agronomic characteristics of proso millet are discussed, with emphasis on growth habits and environmental requirements, place in prevailing crop rotations in the PNW, and nutritional and health benefits. The genetics of proso millet and the genomic resources available for breeding adapted varieties are also discussed. Last, challenges and opportunities of proso millet cultivation in the PNW are explored, including the potential for entering novel and regional markets. PMID:28119699

  11. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels

    PubMed Central

    Heron, Carl; Shoda, Shinya; Breu Barcons, Adrià; Czebreszuk, Janusz; Eley, Yvette; Gorton, Marise; Kirleis, Wiebke; Kneisel, Jutta; Lucquin, Alexandre; Müller, Johannes; Nishida, Yastami; Son, Joon-ho; Craig, Oliver E.

    2016-01-01

    Analysis of organic residues in pottery vessels has been successful in detecting a range of animal and plant products as indicators of food preparation and consumption in the past. However, the identification of plant remains, especially grain crops in pottery, has proved elusive. Extending the spectrum is highly desirable, not only to strengthen our understanding of the dispersal of crops from centres of domestication but also to determine modes of food processing, artefact function and the culinary significance of the crop. Here, we propose a new approach to identify millet in pottery vessels, a crop that spread throughout much of Eurasia during prehistory following its domestication, most likely in northern China. We report the successful identification of miliacin (olean-18-en-3β-ol methyl ether), a pentacyclic triterpene methyl ether that is enriched in grains of common/broomcorn millet (Panicum miliaceum), in Bronze Age pottery vessels from the Korean Peninsula and northern Europe. The presence of millet is supported by enriched carbon stable isotope values of bulk charred organic matter sampled from pottery vessel surfaces and extracted n-alkanoic acids, consistent with a C4 plant origin. These data represent the first identification of millet in archaeological ceramic vessels, providing a means to track the introduction, spread and consumption of this important crop. PMID:28004742

  12. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels

    NASA Astrophysics Data System (ADS)

    Heron, Carl; Shoda, Shinya; Breu Barcons, Adrià; Czebreszuk, Janusz; Eley, Yvette; Gorton, Marise; Kirleis, Wiebke; Kneisel, Jutta; Lucquin, Alexandre; Müller, Johannes; Nishida, Yastami; Son, Joon-Ho; Craig, Oliver E.

    2016-12-01

    Analysis of organic residues in pottery vessels has been successful in detecting a range of animal and plant products as indicators of food preparation and consumption in the past. However, the identification of plant remains, especially grain crops in pottery, has proved elusive. Extending the spectrum is highly desirable, not only to strengthen our understanding of the dispersal of crops from centres of domestication but also to determine modes of food processing, artefact function and the culinary significance of the crop. Here, we propose a new approach to identify millet in pottery vessels, a crop that spread throughout much of Eurasia during prehistory following its domestication, most likely in northern China. We report the successful identification of miliacin (olean-18-en-3β-ol methyl ether), a pentacyclic triterpene methyl ether that is enriched in grains of common/broomcorn millet (Panicum miliaceum), in Bronze Age pottery vessels from the Korean Peninsula and northern Europe. The presence of millet is supported by enriched carbon stable isotope values of bulk charred organic matter sampled from pottery vessel surfaces and extracted n-alkanoic acids, consistent with a C4 plant origin. These data represent the first identification of millet in archaeological ceramic vessels, providing a means to track the introduction, spread and consumption of this important crop.

  13. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels.

    PubMed

    Heron, Carl; Shoda, Shinya; Breu Barcons, Adrià; Czebreszuk, Janusz; Eley, Yvette; Gorton, Marise; Kirleis, Wiebke; Kneisel, Jutta; Lucquin, Alexandre; Müller, Johannes; Nishida, Yastami; Son, Joon-Ho; Craig, Oliver E

    2016-12-22

    Analysis of organic residues in pottery vessels has been successful in detecting a range of animal and plant products as indicators of food preparation and consumption in the past. However, the identification of plant remains, especially grain crops in pottery, has proved elusive. Extending the spectrum is highly desirable, not only to strengthen our understanding of the dispersal of crops from centres of domestication but also to determine modes of food processing, artefact function and the culinary significance of the crop. Here, we propose a new approach to identify millet in pottery vessels, a crop that spread throughout much of Eurasia during prehistory following its domestication, most likely in northern China. We report the successful identification of miliacin (olean-18-en-3β-ol methyl ether), a pentacyclic triterpene methyl ether that is enriched in grains of common/broomcorn millet (Panicum miliaceum), in Bronze Age pottery vessels from the Korean Peninsula and northern Europe. The presence of millet is supported by enriched carbon stable isotope values of bulk charred organic matter sampled from pottery vessel surfaces and extracted n-alkanoic acids, consistent with a C4 plant origin. These data represent the first identification of millet in archaeological ceramic vessels, providing a means to track the introduction, spread and consumption of this important crop.

  14. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet.

    PubMed

    Li, Cheng; Oh, Sea-Gwan; Lee, Dong-Hyun; Baik, Hyun-Wook; Chung, Hyun-Jung

    2017-07-22

    Four selected grains (brown rice, oat, sorghum, and millet) were subjected to germinate and changes in granule morphology, molecular structure, crystalline structure, and physicochemical properties of isolated starch were investigated. The germinated starches showed pits and holes on the surface of the starch granules and the particle size distributions shifted slightly to smaller size as the germination time increased. Germination led to decrease in amylose content, while molecular weights of the germinated starches showed no significant changes. The relative crystallinity of all selected grain starches decreased significantly during germination. Compared to the native starches, the germinated starches had lower retrogradation enthalpy. Brown rice and oat starches exhibited marginal increases in peak viscosities, whereas those of sorghum and millet starches decreased significantly during germination. Amylose leaching of brown rice and oat starches decreased after germination, whereas sorghum and millet starches showed an increase in amylose leaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluation of a method for comparing phosphorus loads from barnyards and croplands in Otter Creek Watershed, Wisconsin

    USGS Publications Warehouse

    Wierl, Judy A.; Giddings, Elise M.P.; Bannerman, Roger T.

    1998-01-01

    Control of phosphorus from rural nonpoint sources is a major focus of current efforts to improve and protect water resources in Wisconsin and is recommended in almost every priority watershed plan prepared for the State's Nonpoint Source (NFS) Program. Barnyards and crop- lands usually are identified as the primary rural sources of phosphorus. Numerous questions have arisen about which of these two sources to control and about the method currently being used by the NFS program to compare phosphorus loads from barnyards and croplands. To evaluate the method, the U.S. Geological Survey (USGS). in cooperation with the Wisconsin Department of Natural Resources, used phosphorus-load and sediment-load data from streams and phosphorus concentrations in soils from the Otter Creek Watershed (located in the Sheboygan River Basin: fig. 1) in conjunction with two computer-based models. 

  16. Grain founder in a male camel (Camelus dromedarius)

    PubMed Central

    Sharma, Sunanda

    2006-01-01

    A rare case of laminitis was recorded in an adult camel that was kept in confinement without giving any exercise and fed daily with considerable quantity of pearl millet grains (Pennisetum typhoideus) for more than five months. PMID:16434859

  17. Whole Grains: Hearty Options for a Healthy Diet

    MedlinePlus

    ... pastas and cereals. Examples of whole grains include: Barley Brown rice Buckwheat Bulgur (cracked wheat) Millet Oatmeal ... wild rice or bulgur. Feature wild rice or barley in soups, stews, casseroles and salads. Add whole ...

  18. Effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in germinated brown millet.

    PubMed

    Li, Xingfeng; Hao, Jianxiong; Liu, Xianggui; Liu, Haijie; Ning, Yawei; Cheng, Ruhong; Tan, Bin; Jia, Yingmin

    2015-11-01

    The accumulation of γ-aminobutyric acid and the microbial decontamination are concerned increasingly in the production of sprouts. In this work, the effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in the germinated brown millet was evaluated by high performance liquid chromatography during germination. The results showed that slightly acidic electrolyzed water with appropriate available chlorine (15 or 30 mg/L) could promote the accumulation of γ-aminobutyric acid by up to 21% (P < 0.05). However, the treatment with slightly acidic electrolyzed water could not enhance the sprouts growth of the germinated brown millet. The catalase and peroxidase activities of the germinated brown millet during germination were in agreement with the sprouts growth. Our results suggested that the accumulation of γ-aminobutyric acid was independent of the length of sprouts in germinated grains. Moreover, the treatment with slightly acidic electrolyzed water significantly reduced the microbial counts in the germinated millet (P < 0.05) and the treatment with high available chlorine concentration (15 and 30 mg/L) showed stronger anti-infection potential in the germinated brown millet than that of lower available chlorine concentration (5 mg/L). In conclusion, the treatment with slightly acidic electrolyzed water is an available approach to improve the accumulation of γ-aminobutyric acid and anti-infection potential in the germinated brown millet, and it can avoid too long millet sprouts.

  19. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    PubMed

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption.

  20. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species.

    PubMed

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2011-01-12

    Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.

  1. The Genetic Basis for Inflorescence Variation Between Foxtail and Green Millet (Poaceae)

    PubMed Central

    Doust, Andrew N.; Devos, Katrien M.; Gadberry, Mike D.; Gale, Mike D.; Kellogg, Elizabeth A.

    2005-01-01

    Grass species differ in many aspects of inflorescence architecture, but in most cases the genetic basis of the morphological difference is unknown. To investigate the genes underlying the morphology in one such instance, we undertook a developmental and QTL analysis of inflorescence differences between the cereal grain foxtail millet and its presumed progenitor green millet. Inflorescence differences between these two species are the result of changes in primary branch number and density, spikelet number, and bristle (sterile branchlet) number; these differences also account for inflorescence variation within the clade of 300+ species that share the presence of bristles in the inflorescence. Fourteen replicated QTL were detected for the four inflorescence traits, and these are suggested to represent genes that control differences between the species. Comparative mapping using common markers from rice and maize allowed a number of candidate genes from maize to be localized to QTL regions in the millet genome. Searches of regions of the sequenced rice genome orthologous to QTL regions on foxtail millet identified a number of transcription factors and hormone pathway genes that may be involved in control of inflorescence branching. PMID:15654107

  2. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    USGS Publications Warehouse

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  3. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects

    PubMed Central

    Puranik, Swati; Kam, Jason; Sahu, Pranav P.; Yadav, Rama; Srivastava, Rakesh K.; Ojulong, Henry; Yadav, Rattan

    2017-01-01

    Humans require more than 20 mineral elements for healthy body function. Calcium (Ca), one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [Eleusine coracana (L.) Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute toward increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification) methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet. PMID:28798761

  4. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects.

    PubMed

    Puranik, Swati; Kam, Jason; Sahu, Pranav P; Yadav, Rama; Srivastava, Rakesh K; Ojulong, Henry; Yadav, Rattan

    2017-01-01

    Humans require more than 20 mineral elements for healthy body function. Calcium (Ca), one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [Eleusine coracana (L.) Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute toward increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification) methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet.

  5. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics—An Important Nutri-Cereal of Future

    PubMed Central

    Sood, Salej; Kumar, Anil; Babu, B. Kalyana; Gaur, Vikram S.; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2–4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet. PMID:27881984

  6. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics-An Important Nutri-Cereal of Future.

    PubMed

    Sood, Salej; Kumar, Anil; Babu, B Kalyana; Gaur, Vikram S; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.

  7. The USDA Pearl Millet Germplasm Collection

    USDA-ARS?s Scientific Manuscript database

    The USDA National Plant Germplasm System pearl millet collection is maintained at the Plant Genetic Resources Conservation Unit located in Griffin, Ga. The germplasm collection contains 1297 unique accessions collected from 31 different countries. The majority of the accessions were collected or d...

  8. No-Cook Process for Ethanol Production Using Indian Broken Rice and Pearl Millet

    PubMed Central

    Gohel, Vipul; Duan, Gang

    2012-01-01

    No-cook process using granular starch hydrolyzing enzyme (GSHE) was evaluated for Indian broken rice and pearl millet. One-factor-at-a-time optimization method was used in ethanol production to identify optimum concentration of GSHE, under yeast fermentation conditions using broken rice and pearl millet as fermentation feedstocks. An acid fungal protease at a concentration of 0.2 kg per metric ton of grain was used along with various dosages of GSHE under yeast fermentation conditions to degrade the grain proteins into free amino nitrogen for yeast growth. To measure the efficacy of GSHE to hydrolyze no-cook broken rice and pearl millet, the chemical composition, fermentation efficiency, and ethanol recovery were determined. In both feedstocks, fermentation efficiency and ethanol recovery obtained through single-step no-cook process were higher than conventional multistep high-temperature process, currently considered the ideal industrial process. Furthermore, the no-cook process can directly impact energy consumption through steam saving and reducing the water cooling capacity needs, compared to conventional high-temperature process. PMID:22518148

  9. Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn.

    PubMed

    Wilson, J P; Jurjevic, Z; Hanna, W W; Wilson, D M; Potter, T L; Coy, A E

    2006-02-01

    Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 microg kg(-1)) and fumonisins (maximum concentration = 34,039 microg kg(-1)). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 microg kg(-1)). Beauvericin (maximum concentration = 414.6 microg kg(-1)) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.

  10. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    PubMed Central

    Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  11. [Comparison of growth and field microclimate characteristics of broomcorn millet under different fertilization conditions].

    PubMed

    Zhang, Pan-pan; Zhou, Yu; Song, Hui; Qiao, Zhi-jun; Wang, Hai-gang; Zheng, Dian-feng; Feng, Bai-li

    2015-02-01

    A field experiment with two broomcorn millet varieties Longmi 8 (strong drought-resistant variety) and Jinmi 4 (drought-sensitive variety) was conducted to compare their differences in growth, field microclimate and photosynthetic capacity from anthesis to maturity under different fertility conditions. The results showed that, fertilization decreased canopy temperature, air temperature, soil temperature, illumination, but improved the relative humidity among broomcorn millet plants compared with the non-fertilization treatment. With an increase of the fertilizer level, the plant height, SPAD, LAI, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration in broomcorn millet showed an increasing trend, which of the high fertilization treatment were 9.2%, 15.1%, 56.6%, 17.8%, 24.6%, 14.2%, 29.7% higher than those of non-fertilization treatment, respectively. Compared with Jinmi 4, Longmi 8 showed a cold wet characteristic, with lower canopy temperature, air temperature, soil temperature; illumination, and higher plant height, LAI, SPAD and relative humidity during grain filling. Moreover, each photosynthetic index of Longmi 8 slowly decreased and extended the period of leaf photosynthetic function so as to accumulate more photosynthetic products.

  12. Development of high-density linkage map and tagging leaf spot resistance in pearl millet using genotyping-by-sequencing markers

    USDA-ARS?s Scientific Manuscript database

    Pearl millet is an important forage and grain crop in many parts of the world. Genome mapping studies are a prerequisite for tagging agronomically important traits. Genotyping-by-Sequencing (GBS) markers can be used to build high density linkage maps even in species lacking a reference genome. A re...

  13. Exploring Potential of Pearl Millet Germplasm Association Panel for Association Mapping of Drought Tolerance Traits

    PubMed Central

    Sehgal, Deepmala; Skot, Leif; Singh, Richa; Srivastava, Rakesh Kumar; Das, Sankar Prasad; Taunk, Jyoti; Sharma, Parbodh C.; Pal, Ram; Raj, Bhasker; Hash, Charles T.; Yadav, Rattan S.

    2015-01-01

    A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet

  14. Whole grain gluten-free pastas and flatbreads

    USDA-ARS?s Scientific Manuscript database

    Whole grain gluten-free products were formulated and evaluated for acceptance by volunteer tasters. The tastes judged acceptance of whole grain, gluten-free, egg-free pastas for corn 83%, sorghum 79%, brown rice 77% and millet 50%. The acceptance for similar high protein pasta was corn-garbanzo 70...

  15. FmMDb: A Versatile Database of Foxtail Millet Markers for Millets and Bioenergy Grasses Research

    PubMed Central

    Misra, Gopal; Prasad, Manoj

    2013-01-01

    The prominent attributes of foxtail millet (Setaria italica L.) including its small genome size, short life cycle, inbreeding nature, and phylogenetic proximity to various biofuel crops have made this crop an excellent model system to investigate various aspects of architectural, evolutionary and physiological significances in Panicoid bioenergy grasses. After release of its whole genome sequence, large-scale genomic resources in terms of molecular markers were generated for the improvement of both foxtail millet and its related species. Hence it is now essential to congregate, curate and make available these genomic resources for the benefit of researchers and breeders working towards crop improvement. In view of this, we have constructed the Foxtail millet Marker Database (FmMDb; http://www.nipgr.res.in/foxtail.html), a comprehensive online database for information retrieval, visualization and management of large-scale marker datasets with unrestricted public access. FmMDb is the first database which provides complete marker information to the plant science community attempting to produce elite cultivars of millet and bioenergy grass species, thus addressing global food insecurity. PMID:23951158

  16. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops.

    PubMed

    Sharma, Divya; Jamra, Gautam; Singh, Uma M; Sood, Salej; Kumar, Anil

    2016-01-01

    Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca(2+)) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca(2+)) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.

  17. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops

    PubMed Central

    Sharma, Divya; Jamra, Gautam; Singh, Uma M.; Sood, Salej; Kumar, Anil

    2017-01-01

    Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca2+) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca2+) accumulation in its grains and could pave way for development of nutraceuticals or designer crops. PMID:28144246

  18. Phytochemical and Antiproliferative Activity of Proso Millet

    PubMed Central

    Zhang, Lizhen; Liu, Ruihai; Niu, Wei

    2014-01-01

    The phytochemical content, antioxidant activity and antiproliferative properties of three diverse varieties of proso millet are reported. The free phenolic content ranged from 27.48 (Gumi 20) to 151.14 (Mi2504-6) mg gallic acid equiv/100 g DW. The bound phenolic content ranged from 55.95 (Gumi20) to 305.81 (Mi2504-6) mg gallic acid equiv/100 g DW. The percentage contribution of bound phenolic to the total phenolic content of genotype samples analyzed ranged between 62.08% and 67.05%. Ferulic acid and chlorogenic acid are the predominant phenolic acid found in bound fraction. Caffeic acid and p-coumaric acid were also detected. Syringic acid was detected only in the free fraction. The antioxidant activity was assessed using the hydrophilic peroxyl radical scavenging capacity (PSC) assay. The PSC antioxidant activity of the free fraction ranged from 57.68 (Mi2504-6) to 147.32 (Gumi20) µmol of vitamin C equiv/100 g DW. The PSC antioxidant activity of the bound fraction ranged from 95.38 (Mizao 52) to 136.48 (Gumi 20) µmol of vitamin C equiv/100 g DW. The cellular antioxidant activity (CAA) of the extract was assessed using the HepG2 model. CAA value ranged from 2.51 to 6.10 µmol equiv quercetin/100 g DW. Antiproliferative activities were also studied in vitro against MDA human breast cancer and HepG2 human liver cancer cells. Results exhibited a differential and possible selective antiproliferative property of the proso millet. These results may be used to direct the consumption of proso millet with improved health properties. PMID:25098952

  19. Phytochemical and antiproliferative activity of proso millet.

    PubMed

    Zhang, Lizhen; Liu, Ruihai; Niu, Wei

    2014-01-01

    The phytochemical content, antioxidant activity and antiproliferative properties of three diverse varieties of proso millet are reported. The free phenolic content ranged from 27.48 (Gumi 20) to 151.14 (Mi2504-6) mg gallic acid equiv/100 g DW. The bound phenolic content ranged from 55.95 (Gumi20) to 305.81 (Mi2504-6) mg gallic acid equiv/100 g DW. The percentage contribution of bound phenolic to the total phenolic content of genotype samples analyzed ranged between 62.08% and 67.05%. Ferulic acid and chlorogenic acid are the predominant phenolic acid found in bound fraction. Caffeic acid and p-coumaric acid were also detected. Syringic acid was detected only in the free fraction. The antioxidant activity was assessed using the hydrophilic peroxyl radical scavenging capacity (PSC) assay. The PSC antioxidant activity of the free fraction ranged from 57.68 (Mi2504-6) to 147.32 (Gumi20) µmol of vitamin C equiv/100 g DW. The PSC antioxidant activity of the bound fraction ranged from 95.38 (Mizao 52) to 136.48 (Gumi 20) µmol of vitamin C equiv/100 g DW. The cellular antioxidant activity (CAA) of the extract was assessed using the HepG2 model. CAA value ranged from 2.51 to 6.10 µmol equiv quercetin/100 g DW. Antiproliferative activities were also studied in vitro against MDA human breast cancer and HepG2 human liver cancer cells. Results exhibited a differential and possible selective antiproliferative property of the proso millet. These results may be used to direct the consumption of proso millet with improved health properties.

  20. Total Iron Absorption by Young Women from Iron-Biofortified Pearl Millet Composite Meals Is Double That from Regular Millet Meals but Less Than That from Post-Harvest Iron-Fortified Millet Meals123

    PubMed Central

    Cercamondi, Colin I.; Egli, Ines M.; Mitchikpe, Evariste; Tossou, Felicien; Zeder, Christophe; Hounhouigan, Joseph D.; Hurrell, Richard F.

    2013-01-01

    Iron biofortification of pearl millet (Pennisetum glaucum) is a promising approach to combat iron deficiency (ID) in the millet-consuming communities of developing countries. To evaluate the potential of iron-biofortified millet to provide additional bioavailable iron compared with regular millet and post-harvest iron-fortified millet, an iron absorption study was conducted in 20 Beninese women with marginal iron status. Composite test meals consisting of millet paste based on regular-iron, iron-biofortified, or post-harvest iron-fortified pearl millet flour accompanied by a leafy vegetable sauce or an okra sauce were fed as multiple meals for 5 d. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes. Fractional iron absorption from test meals based on regular-iron millet (7.5%) did not differ from iron-biofortified millet meals (7.5%; P = 1.0), resulting in a higher quantity of total iron absorbed from the meals based on iron-biofortified millet (1125 vs. 527 μg; P < 0.0001). Fractional iron absorption from post-harvest iron-fortified millet meals (10.4%) was higher than from regular-iron and iron-biofortified millet meals (P < 0.05 and P < 0.01, respectively), resulting in a higher quantity of total iron absorbed from the post-harvest iron-fortified millet meals (1500 μg; P < 0.0001 and P < 0.05, respectively). Results indicate that consumption of iron-biofortified millet would double the amount of iron absorbed and, although fractional absorption of iron from biofortification is less than that from fortification, iron-biofortified millet should be highly effective in combatting ID in millet-consuming populations. PMID:23884388

  1. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals.

    PubMed

    Cercamondi, Colin I; Egli, Ines M; Mitchikpe, Evariste; Tossou, Felicien; Zeder, Christophe; Hounhouigan, Joseph D; Hurrell, Richard F

    2013-09-01

    Iron biofortification of pearl millet (Pennisetum glaucum) is a promising approach to combat iron deficiency (ID) in the millet-consuming communities of developing countries. To evaluate the potential of iron-biofortified millet to provide additional bioavailable iron compared with regular millet and post-harvest iron-fortified millet, an iron absorption study was conducted in 20 Beninese women with marginal iron status. Composite test meals consisting of millet paste based on regular-iron, iron-biofortified, or post-harvest iron-fortified pearl millet flour accompanied by a leafy vegetable sauce or an okra sauce were fed as multiple meals for 5 d. Iron absorption was measured as erythrocyte incorporation of stable iron isotopes. Fractional iron absorption from test meals based on regular-iron millet (7.5%) did not differ from iron-biofortified millet meals (7.5%; P = 1.0), resulting in a higher quantity of total iron absorbed from the meals based on iron-biofortified millet (1125 vs. 527 μg; P < 0.0001). Fractional iron absorption from post-harvest iron-fortified millet meals (10.4%) was higher than from regular-iron and iron-biofortified millet meals (P < 0.05 and P < 0.01, respectively), resulting in a higher quantity of total iron absorbed from the post-harvest iron-fortified millet meals (1500 μg; P < 0.0001 and P < 0.05, respectively). Results indicate that consumption of iron-biofortified millet would double the amount of iron absorbed and, although fractional absorption of iron from biofortification is less than that from fortification, iron-biofortified millet should be highly effective in combatting ID in millet-consuming populations.

  2. Population genetics of foxtail millet and its wild ancestor.

    PubMed

    Wang, Chunfang; Chen, Jinfeng; Zhi, Hui; Yang, Lu; Li, Wei; Wang, Yongfang; Li, Haiquan; Zhao, Baohua; Chen, Mingsheng; Diao, Xianmin

    2010-10-11

    Foxtail millet (Setaria italica (L.) P. Beauv.), one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD) is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L.) P. Beauv.). Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication. In this study, we surveyed DNA sequence for nine loci across 50 accessions of cultivated foxtail millet and 34 of its wild progenitor. We found a low level of genetic diversity in wild green foxtail (θ = 0.0059), θ means Watterson's estimator of θ. Despite of a 55% loss of its wild diversity, foxtail millet still harbored a considerable level of diversity (θ = 0.0027) when compared to rice and sorghum (θ = 0.0024 and 0.0034, respectively). The level of LD in the domesticated foxtail millet extends to 1 kb, while it decayed rapidly to a negligible level within 150 bp in wild green foxtail. Using coalescent simulation, we estimated the bottleneck severity at k = 0.6095 when ρ/θ = 1. These results indicated that the domestication bottleneck of foxtail millet was more severe than that of maize but slightly less pronounced than that of rice. The results in this study establish a general framework for the domestication history of foxtail millet. The low level of genetic diversity and the increased level of LD in foxtail millet are mainly caused by a population bottleneck, although gene flow from foxtail millet to green foxtail is another factor that may have shaped the pattern of genetic diversity of these two related gene pools. The knowledge provided in this study will benefit future population based studies in foxtail millet.

  3. Intraspecific carbon and nitrogen isotopic variability in foxtail millet (Setaria italica).

    PubMed

    Lightfoot, Emma; Przelomska, Natalia; Craven, Martha; O Connell, Tamsin C; He, Lu; Hunt, Harriet V; Jones, Martin K

    2016-07-15

    Isotopic palaeodietary studies generally focus on bone collagen from human and/or animal remains. While plant remains are rarely analysed, it is known that plant isotope values can vary as a result of numerous factors, including soil conditions, the environment and type of plant. The millets were important food crops in prehistoric Eurasia, yet little is known about the isotopic differences within millet species. Here we compare the stable isotope ratios within and between Setaria italica plants grown in a controlled environment chamber. Using homogenised samples, we compare carbon isotope ratios of leaves and grains, and nitrogen isotope ratios of grains, from 29 accessions of Setaria italica. We find significant isotopic variability within single leaves and panicles, and between leaves and panicles within the same plant, which must be considered when undertaking plant isotope studies. We find that the leaves and grains from the different accessions have a ca 2‰ range in δ(13) C values, while the nitrogen isotope values in the grains have a ca 6‰ range. We also find an average offset of 0.9‰ between leaves and grains in their δ(13) C values. The variation found is large enough to have archaeological implications and within- and between-plant isotope variability should be considered in isotope studies. The range in δ(15) N values is particularly significant as it is larger than the typical values quoted for a trophic level enrichment, and as such may lead to erroneous interpretations of the amount of animal protein in human or animal diets. It is therefore necessary to account for the variability in plant stable isotope values during palaeodietary reconstructions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Bioaccessibility of polyphenols from selected cereal grains and legumes as influenced by food acidulants.

    PubMed

    Hithamani, Gavirangappa; Srinivasan, Krishnapura

    2017-01-01

    Polyphenols in food are valued for their health-beneficial influences. Food acidulants lime juice and amchur used in Indian cookery were evaluated for their influence on polyphenol bioaccessibility from food grains. Lime juice increased bioaccessible flavonoids by 25% in roasted finger millet, while there was no change in total bioaccessible polyphenols in pressure-cooked, open-pan-boiled and roasted finger millet in the presence of food acidulants. Addition of amchur to pressure-cooked and microwave-heated pearl millet increased bioaccessible flavonoids by 30 and 53% respectively, while lime juice increased them by 46% in pressure-cooked pearl millet. Increased bioaccessibility of specific phenolic acids from finger millet and pearl millet was observed upon addition of these food acidulants. The presence of either lime juice or amchur increased bioaccessible flavonoids from both legumes studied. Addition of lime juice and amchur, however, exerted a negative effect on the bioaccessibility of several phenolic compounds from food grains in native state and under certain processing conditions. Thus food acidulants lime juice and amchur had a significant influence on the bioaccessibility of health-beneficial phenolic compounds from food grains. Use of food acidulants in food preparations could be a strategy to enhance the bioavailability of polyphenols, especially flavonoids from grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Optimization of the malting process for nutritional improvement of finger millet and amaranth flours in the infant weaning food industry.

    PubMed

    Najdi Hejazi, Sara; Orsat, Valérie

    2017-06-01

    Malting is a beneficial approach to improve the nutritional value of cereals used in infant preparations. Malted finger millet and amaranth might be considered as potentially appropriate gluten-free alternatives for common wheat-based weaning products, especially in case of those suffering from celiac disease. In this study, the effects of germination temperature and duration on the main nutrients of malted finger millet and amaranth, are evaluated and optimized. Grains were germinated for 24, 36 and 48 h at 22, 26 and 30 °C. In the case of finger millet, germinating for 48 h at 30 °C resulted into 17% increase in protein availability, 10% increase in total energy and 60% reduction in resistant starch (RS). For amaranth, germinating for 48 h at 26 °C was preferable, resulting in 8% increase in protein availability, 11% increase in total energy, 70% reduction in RS and a 10% increase in the linoleic acid.

  6. Fermented and malted millet products in Africa: Expedition from traditional/ethnic foods to industrial value-added products.

    PubMed

    Adebiyi, J A; Obadina, A O; Adebo, O A; Kayitesi, E

    2016-05-31

    With the prevalent food insecurity in Africa, there is a growing need to utilize the available crops to develop nutritious, affordable and palatable food for the populace. Millet is critical in this role, relative to its abundance in the continent and good nutritional composition. For ages, fermentation and malting have been traditionally used to transform millet into variety of produce. A paradigm shift has however occurred over the years, giving birth to new commercially available products. This review thus appraises and gives an overview of traditional and modern fermented and malted products. Although, millet has been diversified to several products, its major food uses are still restrained to traditional consumers and largely remains underutilized. Considering the potential embedded in this grain, it is important to explore this crop through the application of appropriate modern fermentation and malting technologies. This will ensure the availability of ready to eat (RTE) and ready to use (RTU) food products and to a large extent address the incessant food security challenges plaguing Africa.

  7. Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2016-01-01

    Pearl millet [Pennisetum glaucum (L.) R. Br.] a widely used grain and forage crop, is grown in areas frequented with one or more abiotic stresses, has superior drought and heat tolerance and considered a model crop for stress tolerance studies. Selection of suitable reference genes for quantification of target stress-responsive gene expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of improved stress tolerance. For precise normalization of gene expression data in pearl millet, ten candidate reference genes were examined in various developmental tissues as well as under different individual abiotic stresses and their combinations at 1 h (early) and 24 h (late) of stress using geNorm, NormFinder and RefFinder algorithms. Our results revealed EF-1α and UBC-E2 as the best reference genes across all samples, the specificity of which was confirmed by assessing the relative expression of a PgAP2 like-ERF gene that suggested use of these two reference genes is sufficient for accurate transcript normalization under different stress conditions. To our knowledge this is the first report on validation of reference genes under different individual and multiple abiotic stresses in pearl millet. The study can further facilitate fastidious discovery of stress-tolerance genes in this important stress-tolerant crop. PMID:26972345

  8. Cloning and structural analysis of an Indian little millet (Panicum sumatrense) zein-like storage protein: implications for molecular assembly.

    PubMed

    Sivakumar, S; Franco, O L; Thayumanavan, B; Murad, A M; Manickam, A; Mohan, M; Mridula, M

    2006-11-01

    Zeins are prolamin storage proteins that accumulate in kernel endosperm of several cereals. For cloning of genes coding for zein-like proteins that accumulate in enhanced quantities in the filling stages of little millet (Panicum sumatrense Roth.) developing grains, RT-PCR was performed using specific primers. A 750-bp cDNA was directly sequenced and in silico analysis showed high identity degree to alpha-prolamins. This family is composed of zeins from Zea mays, coixins from Coix lachryma-jobi, and alpha-kafirins from Sorghum bicolor. The putative conserved domain of zein-like proteins was identified by primary structure comparisons. Furthermore, threading analyses indicated that the millet zein-like protein forms an anti-parallel alpha-helical hairpin with two opposite surfaces: one hydrophobic and the other hydrophilic that probably could be involved in protein storage assembly. Knowledge about zein-like alpha-prolamins in little millet will lead to cloning and transfer of this gene to other major food crops, such as cereals and legumes, with inferior nutritional quality for monogastric animals.

  9. Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations.

    PubMed

    Shivhare, Radha; Lata, Charu

    2016-03-14

    Pearl millet [Pennisetum glaucum (L.) R. Br.] a widely used grain and forage crop, is grown in areas frequented with one or more abiotic stresses, has superior drought and heat tolerance and considered a model crop for stress tolerance studies. Selection of suitable reference genes for quantification of target stress-responsive gene expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of improved stress tolerance. For precise normalization of gene expression data in pearl millet, ten candidate reference genes were examined in various developmental tissues as well as under different individual abiotic stresses and their combinations at 1 h (early) and 24 h (late) of stress using geNorm, NormFinder and RefFinder algorithms. Our results revealed EF-1α and UBC-E2 as the best reference genes across all samples, the specificity of which was confirmed by assessing the relative expression of a PgAP2 like-ERF gene that suggested use of these two reference genes is sufficient for accurate transcript normalization under different stress conditions. To our knowledge this is the first report on validation of reference genes under different individual and multiple abiotic stresses in pearl millet. The study can further facilitate fastidious discovery of stress-tolerance genes in this important stress-tolerant crop.

  10. Biology, Genetics, and Management of Ergot (Claviceps spp.) in Rye, Sorghum, and Pearl Millet

    PubMed Central

    Miedaner, Thomas; Geiger, Hartwig H.

    2015-01-01

    Ergot is a disease of cereals and grasses caused by fungi in the genus Claviceps. Of particular concern are Claviceps purpurea in temperate regions, C. africana in sorghum (worldwide), and C. fusiformis in pearl millet (Africa, Asia). The fungi infect young, usually unfertilized ovaries, replacing the seeds by dark mycelial masses known as sclerotia. The percentage of sclerotia in marketable grain is strictly regulated in many countries. In winter rye, ergot has been known in Europe since the early Middle Ages. The alkaloids produced by the fungus severely affect the health of humans and warm-blooded animals. In sorghum and pearl millet, ergot became a problem when growers adopted hybrid technology, which increased host susceptibility. Plant traits reducing ergot infection include immediate pollination of receptive stigmas, closed flowering (cleistogamy), and physiological resistance. Genetic, nonpollen-mediated variation in ergot susceptibility could be demonstrated in all three affected cereals. Fungicides have limited efficacy and application is weather dependent. Sorting out the sclerotia from the harvest by photocells is expensive and time consuming. In conclusion, molecular-based hybrid rye breeding could improve pollen fertility by introgressing effective restorer genes thus bringing down the ergot infection level to that of conventional population cultivars. A further reduction might be feasible in the future by selecting more resistant germplasm. PMID:25723323

  11. Glycemic index and quality evaluation of little millet (Panicum miliare) flakes with enhanced shelf life.

    PubMed

    Patil, Kavita B; Chimmad, Bharati V; Itagi, Sunanda

    2015-09-01

    Little millet is a minor cereal crop contains several nutraceutical components. Ready To Cook (RTC) flakes of the millet exhibited higher total dietary fiber content (22.40 %) compared to dehulled grain (15.80 %). One serving (30 g) of RTC flakes provided 2.25 g of protein, 0.13 g of fat, 0.13 g of total minerals, 9.67 mg of iron and zero trans fats. The flakes possessed a medium Glycemic Index (GI) of 52.11 ranging from 41.57 to 61.80 among normal volunteers. Glycemic Load (GL) of the flakes was a low of 9.24. The RTC flakes exhibited an acceptability index of 81.11. The flakes possessed a shelf life of more than 6 months with an acceptability index of 67.55, moisture content of 11.82 per cent and Free fatty acid content of 18.02 per cent at the end of sixth month of storage period.

  12. Flavonoids extracted from fonio millet (Digitaria exilis) reveal potent antithyroid properties.

    PubMed

    Sartelet, H; Serghat, S; Lobstein, A; Ingenbleek, Y; Anton, R; Petitfrère, E; Aguie-Aguie, G; Martiny, L; Haye, B

    1996-02-01

    Digitaria exilis (fonio) is a tiny variety of millet commonly eaten by inhabitants of semiarid regions. A sample of fonio collected right in the middle of a severely iodine-depleted goitrous endemic was submitted to phytochemical investigations in order to assess the potential contributory roles played by vegetable molecules to the goitrogenic processes. The total content of flavonoids amounts to 500 mg/kg of the edible whole cereal grains. Their extraction and identification fail to detect the C-glycosylflavones described in other millet varieties but point out the presence of apigenin (A = 150 mg/kg) and of luteolin (L1 = 350 mg/kg). Ten percent of A and 80% of L1 are present in free form, whereas the remaining 90% of A and 20% of L1 are bound as O-glycosylflavones. Both A and L1 aglycones manifest strong anti-thyroid peroxidase (TPO) activities, resulting in a significant reduction of the hormonogenic capacity of this enzyme. In addition, L1 significantly depresses the cyclic AMP phosphodiesterase, implying a concomitant overproduction of the thyrotropin-dependent nucleotide. These last unreported data are regarded as counteracting to some extent the TPO-mediated goitrogenic properties of L1. Since fonio is devoid of other molecules likely to interfere with the thyroid function, our results are directly and casually attributed to A and L1 found in the customary diet.

  13. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.

    PubMed Central

    Kholová, Jana; Hash, C. Tom; Kakkera, Aparna; Kočová, Marie; Vadez, Vincent

    2010-01-01

    Pearl millet, a key staple crop of the semi-arid tropics, is mostly grown in water-limited conditions, and improving its performance depends on how genotypes manage limited water resources. This study investigates whether the control of water loss under non-limiting water conditions is involved in the terminal drought tolerance of pearl millet. Two pairs of tolerant×sensitive pearl millet genotypes, PRLT 2/89-33–H77/833-2 and 863B-P2–ICMB 841-P3, and near-isogenic lines (NILs), introgressed with a terminal drought tolerance quantitative trait locus (QTL) from the donor parent PRLT 2/89-33 into H77/833-2 (NILs-QTL), were tested. Upon exposure to water deficit, transpiration began to decline at lower fractions of transpirable soil water (FTSW) in tolerant than in sensitive genotypes, and NILs-QTL followed the pattern of the tolerant parents. The transpiration rate (Tr, in g water loss cm−2 d−1) under well-watered conditions was lower in tolerant than in sensitive parental genotypes, and the Tr of NILs-QTL followed the pattern of the tolerant parents. In addition, Tr measured in detached leaves (g water loss cm−2 h−1) from field-grown plants of the parental lines showed lower Tr values in tolerant parents. Defoliation led to an increase in Tr that was higher in sensitive than in tolerant genotypes. The differences in Tr between genotypes was not related to the stomatal density. These results demonstrate that constitutive traits controlling leaf water loss under well-watered conditions correlate with the terminal drought tolerance of pearl millet. Such traits may lead to more water being available for grain filling under terminal drought. PMID:19861657

  14. Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats (SHRs). The protein of foxtail millet after extruding or fermenting and the raw foxtail millet was extracted and hydrolyzed by digestive protea...

  15. [Effects of mulching patterns on soil water, broomcorn millet growth, photosynthetic charac- teristics and yield in the dryland of Loess Plateau in China].

    PubMed

    Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li

    2014-11-01

    The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.

  16. Apomictic and sexual pearl millet X Pennisetum squamulatum hybrids

    SciTech Connect

    Dujardin, M.; Hanna, W.W.

    1983-01-01

    Pennisetum squamulatum Fresen, an apomictic East African grass (2n = 54) was crossed to tetraploid (2n = 28) sexual pearl millet, P. americanum L. Leeke to study the potential for germplasm exchange. Twenty interspecific hybrids (2n = 41) with 14 pearl millet and 27 P. squamulatum chromosomes were obtained. All resembled P. squamulatum in perennial growth habit and inflorescence characteristics and resembled pearl millet in leafiness and pencillate anther tips. Seventeen of these hybrids were more vigorous than either parent. The most common chromosome association at metaphase I was 18 bivalents plus 5 univalents. At anaphase I and telophase I laggards, fragments, and unequal chromosome distribution were observed. Fifteen of 17 interspecific hybrids reproduced by facultative apomixis, one was sexual and one was an obligate apomict. Ovules with aposporous embryo sacs ranged from 1 to 93% in facultative apomictic plants. Morphological characteristics and chromosome numbers of open-pollinated progeny from the apomictic interspecific hybrid were identical to those of the seed parent indicating obligate apomictic reproduction. Both sexual and apomictic hybrids were partially male fertile with pollen stainability ranging from 29 percent to 79 percent and seed-set ranging from 1 to 60 seed per inflorescence under open-pollination. Development of fertile apomictic pearl millet-P. squamulatum interspecific hybrids appears to be a very useful tool for the transfer of genes for apomixis from the wild species to pearl millet.

  17. Monocrotophos poisoning through contaminated millet flour.

    PubMed

    Patel, Ashwin B; Dewan, Aruna; Kaji, Bharat C

    2012-09-01

    Several episodes of mass poisoning by organophosphates (OPs) have been reported from the developing countries. The diagnosis of OP-poisoning is mainly based on the characteristic clinical features and history of exposure to a known OP compound. Estimation of serum and red blood cell (RBC) cholinesterase activities are helpful in confirming the diagnosis. However, there is controversy regarding a definite relationship between serum cholinesterase activity and the severity of clinical manifestations and prognosis. This report describes an episode of mass monocrotophos poisoning that occurred due to accidental ingestion of monocrotophos-contaminated millet (so-called bavta) flour involving eight severely poisoned persons. Clinical presentation included severe abdominal pain, diarrhoea, vomiting, pupil narrowing, and difficulty breathing. On hospital admission, plasma cholinesterase (PChE) and especially RBC acetylcholinesterase (AChE) activities correlated well with clinical symptoms presented by the patients. This case study highlights the need for clinicians to be aware of OP-pesticide poisoning from food sources and the need to look for depressed PChE and AChE activities that may point to OP exposure, so that OP-poisoning can be identified immediately and patients can receive specific treatment, rather than general treatment for food poisoning.

  18. In vitro starch digestibility and in vivo glycemic response of foxtail millet and its products.

    PubMed

    Ren, Xin; Chen, Jing; Molla, Mohammad Mainuddin; Wang, Chao; Diao, Xianmin; Shen, Qun

    2016-01-01

    Foxtail millet, as a leading variety in arid and semi-arid areas of Asia and Africa, can provide broad potential benefits to human health. However, its digestion properties have not been reported. So in this study, the in vitro starch digestibilities and in vivo glycemic indices (GI) of foxtail millet and pure millet products were investigated. The results showed that starch digestibility of the foxtail millet flour is obviously lower than that of wheat flour. However, deproteinization and heating significantly increased its rapidly digestible starch and decreased its slowly digestible starch and resistant starch. The GIs of pure millet products were in the following order: millet porridge (93.6 ± 11.3) > millet steamed bread (89.6 ± 8.8) > No. 1 millet pancake (75.0% millet flour and 25.0% extrusion flour, 83.0 ± 9.6) > No. 2 millet pancake (without extrusion flour, 76.2 ± 10.7) > cooked millet (64.4 ± 8.5). They were significantly positively correlated with the rapidly digestible starch (r = 0.959), degree of gelatinization (r = 0.967) and estimated glycemic index (r = 0.988). Both in vitro and in vivo tests suggested that boiling, steaming and extrusion enhanced the formation of digestible starch and subsequently increased the GI values. Additionally, the No. 1 millet pancake and cooked millet had a relatively gentle stimulation on β-cell. Therefore, foxtail millet, especially the cooked millet, may serve as a potential source of nutraceutical and functional food that could delay the development of type 2 diabetes.

  19. Effect of cadmium on physiological parameters of cereal and millet plants-A comparative study.

    PubMed

    Asopa, Prem Prakash; Bhatt, Ritika; Sihag, Santosh; Kothari, S L; Kachhwaha, Sumita

    2017-03-04

    Metal load is an abiotic stress that becomes stronger by continual industrial production, wastage, and long-range transport of contaminants. It deteriorates the conditions of agricultural soil that leads to lower growth of cereals as well as decreasing nutritional value of harvested grains. Cadmium (Cd) entry by food chain also affects the health of population. The present study is focused on finding out the superior cereal variety under increasing Cd regime. The plants were grown in increasing Cd levels (0-1000 µM) in the medium and were investigated on 15th day of the exposure. Various parameters like antioxidative enzymes and osmoprotectant levels were studied in both roots and shoots. Cd accumulation in plant organs was determined by atomic absorption spectrophotometry (AAS). Analysis of stress tolerance mechanisms through reactive oxygen species (ROS) scavenging and better partitioning of Cd in roots indicated kodo millet to be more stress tolerant than wheat.

  20. Dominant gene for rust resistance in pearl millet

    SciTech Connect

    Hanna, W.W.; Wells, H.D.; Burton, G.W.

    1985-01-01

    Rust (Puccinia substriata var. indica) resistance was discovered in three Pennisetum americanum (L.) Leeke subspecies monodii (Maire) Brunken accessions from Senegal. Resistant plant were free of rust, although the bottom one or two leaves of some plants did develop a brown discoloration without pustules. Resistance was controlled by a dominant gene assigned the gene symbol Rr1. Backcrossing has been effective in transferring resistance from the wild grassy, monodii to cultivated pearl millet. The Rr1 gene should be useful in the production of rust resistant pearl millet hybrids and cultivars. 6 references, 1 table.

  1. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    PubMed Central

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; Cao, Yingying; Brutnell, Thomas P.

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops. PMID:27965689

  2. Setaria viridis as a Model System to Advance Millet Genetics and Genomics.

    PubMed

    Huang, Pu; Shyu, Christine; Coelho, Carla P; Cao, Yingying; Brutnell, Thomas P

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

  3. Effects of raw and diluted municipal sewage effluent with micronutrient foliar sprays on the growth and nutrient concentration of foxtail millet in southeast Iran.

    PubMed

    Asgharipour, Mohammad Reza; Reza Azizmoghaddam, Hamid

    2012-10-01

    In this study, the effect of irrigation with raw or diluted municipal sewage effluent accompanied by foliar micronutrient fertilizer sprays was examined on the growth, dry matter accumulation, grain yield, and mineral nutrients in foxtail millet plants. The experimental design was a split plot with three irrigation sources: raw sewage, 50% diluted sewage, and well water comprising the main treatments, and four combinations of Mn and Zn foliar sprays as sub-treatments that were applied with four replications. The experiment was conducted in 2009 at the Zabol University research farm in Zabol, south Iran. The applied municipal sewage effluent contained higher levels of micronutrients and macronutrients and exhibited greater degrees of electrical conductivity compared to well water. Because of the small scale of industrial activities in Zabol, the amount of heavy metals in the sewage was negligible (below the limits set for irrigation water in agricultural lands); these contaminants would not be severely detrimental to crop growth. The experimental results indicated that irrigation of plants with raw or diluted sewage stimulates the measured growth and productivity parameters of foxtail millet plants. The concentrations of micronutrients and macronutrients were also positively affected. These stimulations were attributed to the presence of high levels of such essential nutrients as N, P, and organic matter in wastewater. Supplied in sewage water alone, Mn and Zn were not able to raise the productivity of millet to the level obtained using fertilizers at the recommended values; this by itself indicated that additional nutrients from fertilizers are required to obtain higher levels of millet productivity with sewage farming. Despite the differences in nutrient concentrations among the different irrigation water sources, the micronutrient foliar sprays did not affect the concentrations of micronutrients and macronutrients in foxtail millet plants. These results suggested

  4. Producing and Marketing Proso Millet in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Proso millet is a short-season summer crop that produces well in the semi-arid western Great Plains and is suitable for diversifying and intensifying dryland production systems. Proso allows transition back to winter wheat in cropping rotations. No-till methods work well with proso establishment. Pr...

  5. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement

    PubMed Central

    Gemenet, Dorcus C.; Leiser, Willmar L.; Beggi, Francesca; Herrmann, Ludger H.; Vadez, Vincent; Rattunde, Henry F. W.; Weltzien, Eva; Hash, Charles T.; Buerkert, Andreas; Haussmann, Bettina I. G.

    2016-01-01

    West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable

  6. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement.

    PubMed

    Gemenet, Dorcus C; Leiser, Willmar L; Beggi, Francesca; Herrmann, Ludger H; Vadez, Vincent; Rattunde, Henry F W; Weltzien, Eva; Hash, Charles T; Buerkert, Andreas; Haussmann, Bettina I G

    2016-01-01

    West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable

  7. Antinutritional factor content and hydrochloric acid extractability of minerals in pearl millet cultivars as affected by germination.

    PubMed

    Abdelrahaman, Samia M; Elmaki, Hagir B; Idris, Wisal H; Hassan, Amro B; Babiker, Elfadil E; El Tinay, Abdullahi H

    2007-02-01

    Four pearl millet cultivars of two different species--Kordofani and Ugandi (Pennisetum typhoideum) and Madelkawaya and Shambat (Pennisetum glaucum)--were germinated for 6 days. The germinated grains were dried and milled. Phytic acid and polyphenol contents and hydrochloric acid (HCl) extractability of minerals from the malt flours were determined at intervals of 2 days during germination. Phytic acid and polyphenol contents decreased significantly (P <0.01) with an increase in germination time, with a concomitant increase in HCl extractable minerals. However, the major mineral content was significantly decreased while that of trace minerals was increased with germination time. When the grains were germinated for 6 days, Madelkawaya had higher extractable calcium while Ugandi had higher extractable phosphorus, whereas iron and manganese recorded high levels in Shambat and Madelkawaya, respectively. There was good correlation between antinutritional factors reduction and the increment in extractable minerals with germination time.

  8. Evaluation of dough rheological properties and bread texture of pearl millet-wheat flour mix.

    PubMed

    Maktouf, Sameh; Jeddou, Khawla Ben; Moulis, Claire; Hajji, Hejer; Remaud-Simeon, Magali; Ellouz-Ghorbel, Raoudha

    2016-04-01

    This study was undertaken with the objective of formulating composite bread using pearl millet (Pennisetum glaucum) and wheat (Triticum aestivum) flours . Rheological and bread making properties of composite flours were evaluated. Mixolab results revealed torque increased and dough stability time decreased upon incorporation of pearl millet flour in wheat flour. The incorporation of millet flour at optimum level (5 %) led to an increase of the dough strength (W) and the elasticity-to-extensibility ratio (P/L) by 31 % and 65 % respectively. The bread texture and volume were also improved. These findings indicated the potentiality of using millet flour in bread making.

  9. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet.

    PubMed

    Zhang, Li Zhen; Liu, Rui Hai

    2015-05-01

    Commonly consumed foxtail millet varieties Jingu28 and Jingu34 were compared in terms of phytochemical composition, antioxidant property, and antiproliferative activity. The cellular antioxidant activity (CAA) was evaluated based on HepG2 cell cultivation. Antiproliferative properties against HepG2 and MDA cell were assayed by methylene blue assay. Total phenolic content (TPC) was 78.79 and 114.22 mg gallic acid equiv/100 g DW in Jingu28 and Jingu34. Both varieties contained ferulic acid, chlorogenic acid, caffeic acid and p-coumaric acid, syringic acid. Xanthophylls and zeaxanthin were also detected. Peroxyl radical scavenging capacity of the foxtail millet were 228.13 (Jingu28) and 355.03 (Jingu34) μmol of vitamin C equiv/100 g, respectively. CAA values of the foxtail millet varieties ranged from 1.52 to 8.97 μmol quercetin equiv/100 g DW. The proliferation of MDA and HepG2 cancer cells were significantly inhibited in a dose-dependent manner after exposure to Jingu28 and Jingu34 extractions.

  10. Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet.

    PubMed

    Hirano, Ryoko; Naito, Ken; Fukunaga, Kenji; Watanabe, Kazuo N; Ohsawa, Ryo; Kawase, Makoto

    2011-06-01

    Although the origin and domestication process of foxtail millet (Setaria italica subsp. italica (L.) P. Beauv.) has been studied by several groups, the issue is still ambiguous. It is essential to resolve this issue by studying a large number of accessions with sufficient markers covering the entire genome. Genetic structures were analyzed by transposon display (TD) using 425 accessions of foxtail millet and 12 of the wild ancestor green foxtail (Setaria italica subsp. viridis (L.) P. Beauv.). We used three recently active transposons (TSI-1, TSI-7, and TSI-10) as genome-wide markers and succeeded in demonstrating geographical structures of the foxtail millet. A neighbor-joining dendrogram based on TD grouped the foxtail millet accessions into eight major clusters, each of which consisted of accessions collected from adjacent geographical areas. Eleven out of 12 green foxtail accessions were grouped separately from the clusters of foxtail millet. These results indicated strong regional differentiations and a long history of cultivation in each region. Furthermore, we discuss the relationship between foxtail millet and green foxtail and suggest a monophyletic origin of foxtail millet domestication.

  11. Effect of drought stress on gas exchange in channel millet (Echinochloa turneriana) and pearl millet (Pennisetum americanum)

    SciTech Connect

    Conover, D.G.; Sovonick-Dunford, S. )

    1990-05-01

    Gas exchange measurements were made on well-watered and droughted plants of the drought resistant pearl millet and of channel millet, a potential new crop for semi-arid regions. Photosynthesis and water use efficiency were similar for controls of both species at atmospheric CO{sub 2} levels and were reduced similarly by drought in both species. The CO{sub 2} saturated rate and the carboxylation efficiency were lowered by drought in both species, while stomatal limitation was increased by drought. Autoradiograms indicated that photosynthesis occurs evenly over the surface of well-watered control leaves of both species, but not in leaves of droughted plants. This could result in an overestimate of the effect of nonstomatal inhibition of photosynthesis by drought.

  12. [Effects of climate warming and drying on millet yield in Gansu Province and related countermeasures].

    PubMed

    Cao, Ling; Wang, Qiang; Deng, Zhen-yong; Guo, Xiao-qin; Ma, Xing-xiang; Ning, Hui-fang

    2010-11-01

    Based on the data of air temperature, precipitation, and millet yield from Ganzhou, Anding, and Xifeng, the representative stations in Hexi moderate arid oasis irrigation area, moderate sub-arid dry area in middle Gansu, and moderate sub-humid dry area in eastern Gansu, respectively, this paper calculated the regional active accumulated temperature of > or = 0 degrees C, > or =5 degrees C, > or =10 degrees C, > or =15 degrees C, and > or =20 degrees C in millet growth period, and the average temperature and precipitation in millet key growth stages. The millet climatic yield was isolated by orthogonal polynomial, and the change characteristics of climate and millet climatic yield as well as the effects of climate change on millet yield were analyzed by statistical methods of linear tendency, cumulative anomaly, and Mann-Kendall. The results showed that warming and drying were the main regional features in the modern climatic change of Gansu. The regional temperature had a significant upward trend since the early 1990s, while the precipitation was significantly reduced from the late 1980s. There were significant correlations between millet yield and climatic factors. The millet yield in dry areas increased with the increasing temperature and precipitation in millet key growth stages, and that in Hexi Corridor area increased with increasing temperature. Warming and drying affected millet yield prominently. The weather fluctuation index of regional millet yield in Xifeng, Anding, and Ganzhou accounted for 73%, 72%, and 54% of real output coefficient variation, respectively, and the percentages increased significantly after warming. Warming was conducive to the increase of millet production, and the annual increment of millet climatic yield in Xifeng, Anding, and Ganzhou after warming was 30.6, 43.1, and 121.1 kg x hm(-2), respectively. Aiming at the warming and drying trend in Gansu Province in the future, the millet planting area in the Province should be further

  13. Waxy Phenotype Evolution in the Allotetraploid Cereal Broomcorn Millet: Mutations at the GBSSI Locus in Their Functional and Phylogenetic Context

    PubMed Central

    Hunt, Harriet V.; Moots, Hannah M.; Graybosch, Robert A.; Jones, Huw; Parker, Mary; Romanova, Olga; Jones, Martin K.; Howe, Christopher J.; Trafford, Kay

    2013-01-01

    Waxy mutants, in which endosperm starch contains ∼100% amylopectin rather than the wild-type composition of ∼70% amylopectin and ∼30% amylose, occur in many domesticated cereals. The cultivation of waxy varieties is concentrated in east Asia, where there is a culinary preference for glutinous-textured foods that may have developed from ancient food processing traditions. The waxy phenotype results from mutations in the GBSSI gene, which catalyzes amylose synthesis. Broomcorn or proso millet (Panicum miliaceum L.) is one of the world’s oldest cultivated cereals, which spread across Eurasia early in prehistory. Recent phylogeographic analysis has shown strong genetic structuring that likely reflects ancient expansion patterns. Broomcorn millet is highly unusual in being an allotetraploid cereal with fully waxy varieties. Previous work characterized two homeologous GBSSI loci, with multiple alleles at each, but could not determine whether both loci contributed to GBSSI function. We first tested the relative contribution of the two GBSSI loci to amylose synthesis and second tested the association between GBSSI alleles and phylogeographic structure inferred from simple sequence repeats (SSRs). We evaluated the phenotype of all known GBSSI genotypes in broomcorn millet by assaying starch composition and protein function. The results showed that the GBSSI-S locus is the major locus controlling endosperm amylose content, and the GBSSI-L locus has strongly reduced synthesis capacity. We genotyped 178 individuals from landraces from across Eurasia for the 2 GBSSI and 16 SSR loci and analyzed phylogeographic structuring and the geographic and phylogenetic distribution of GBSSI alleles. We found that GBSSI alleles have distinct spatial distributions and strong associations with particular genetic clusters defined by SSRs. The combination of alleles that results in a partially waxy phenotype does not exist in landrace populations. Our data suggest that broomcorn millet

  14. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children.

    PubMed

    Kodkany, Bhalchandra S; Bellad, Roopa M; Mahantshetti, Niranjana S; Westcott, Jamie E; Krebs, Nancy F; Kemp, Jennifer F; Hambidge, K Michael

    2013-09-01

    Millet is unusually drought resistant and consequently there is a progressive increase in the use of these grains as a human food staple, especially in large areas of India and sub-Saharan Africa. The purpose of this study was to determine the absorption of iron and zinc from pearl millet biofortified with 2 micronutrients that are typically deficient in nonfortified, plant-based diets globally. The study was undertaken in 40 children aged 2 y in Karnataka, India (n = 21 test/19 controls). Three test meals providing ∼84 ± 17 g dry pearl millet flour were fed on a single day for zinc and 2 d for iron between 0900 and 1600 h. The quantities of zinc and iron absorbed were measured with established stable isotope extrinsic labeling techniques and analyses of duplicate diets. The mean (± SD) quantities of iron absorbed from test and control groups were 0.67 ± 0.48 and 0.23 ± 0.15 mg/d, respectively (P < 0.001). The quantities of zinc absorbed were 0.95 ± 0.47 and 0.67 ± 0.24 mg/d, respectively (P = 0.03). These data did not include absorption of the modest quantities of iron and zinc contained in snacks eaten before and after the 3 test meals. In conclusion, quantities of both iron and zinc absorbed when iron and zinc biofortified pearl millet is fed to children aged 2 y as the major food staple is more than adequate to meet the physiological requirements for these micronutrients.

  15. Biofortification of Pearl Millet with Iron and Zinc in a Randomized Controlled Trial Increases Absorption of These Minerals above Physiologic Requirements in Young Children123

    PubMed Central

    Kodkany, Bhalchandra S.; Bellad, Roopa M.; Mahantshetti, Niranjana S.; Westcott, Jamie E.; Krebs, Nancy F.; Kemp, Jennifer F.; Hambidge, K. Michael

    2013-01-01

    Millet is unusually drought resistant and consequently there is a progressive increase in the use of these grains as a human food staple, especially in large areas of India and sub-Saharan Africa. The purpose of this study was to determine the absorption of iron and zinc from pearl millet biofortified with 2 micronutrients that are typically deficient in nonfortified, plant-based diets globally. The study was undertaken in 40 children aged 2 y in Karnataka, India (n = 21 test/19 controls). Three test meals providing ∼84 ± 17 g dry pearl millet flour were fed on a single day for zinc and 2 d for iron between 0900 and 1600 h. The quantities of zinc and iron absorbed were measured with established stable isotope extrinsic labeling techniques and analyses of duplicate diets. The mean (± SD) quantities of iron absorbed from test and control groups were 0.67 ± 0.48 and 0.23 ± 0.15 mg/d, respectively (P < 0.001). The quantities of zinc absorbed were 0.95 ± 0.47 and 0.67 ± 0.24 mg/d, respectively (P = 0.03). These data did not include absorption of the modest quantities of iron and zinc contained in snacks eaten before and after the 3 test meals. In conclusion, quantities of both iron and zinc absorbed when iron and zinc biofortified pearl millet is fed to children aged 2 y as the major food staple is more than adequate to meet the physiological requirements for these micronutrients. PMID:23843474

  16. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content

    USDA-ARS?s Scientific Manuscript database

    Background: Our objective was to compare the capacity of iron (Fe) biofortified and standard pearl millet (Pennisetum glaucum L.) to deliver Fe for hemoglobin (Hb) synthesis. Pearl millet is the most widely grown type of millet. It is common primarily in West Africa and the Indian subcontinent, and ...

  17. Influence of water use and environmental parameters on proso millet yield

    USDA-ARS?s Scientific Manuscript database

    Proso millet (Panicum miliaceum L.) is a short-season, drought-tolerant C4 species capable of making use of limited available water supplies and is suitable for dryland crop rotations in the central Great Plains. Previously published water use/yield production functions for proso millet have slopes ...

  18. Hydration behaviour of food grains and modelling their moisture pick up as per Peleg's equation: Part I. Cereals.

    PubMed

    Vasudeva, Singh; Vishwanathan, K H; Aswathanarayana, K N; Indhudhara Swamy, Y M

    2010-01-01

    Cereals and millets generally hydrate at a moderate rate and their hydration behaviour differs in native and in processed state. The study was on the hydration of paddy, milled rice, parboiled rice, wheat, millets and equilibrium moisture content (EMC) on soaking at room temperature. Paddy hydrated very slowly, hydration rate was slow in brown rice but fast in milled rice and highest in waxy rice. In most of the rice varieties, maximum absorption occurred at the end of 30 min. In wheat hydration rate was slow and its EMC was highest (43%). Maize grits of big size hydrated slowly compared to small grits. In coarse cereals EMC varied from 28 to 38%. Foxtail millet hydration was slow whereas that of finger millet was fast. The data were tested on the Peleg's equation, which gave a reasonable fit to experimental data. Peleg's constants k1 and k2 were calculated for the above grains and their hydration behaviour has been predicted. The model fitted very well to milled rice hydration data where the coefficient of variance ranged from 0.9982 to 0.9995. With exception in some millet the hydration data fitted well with the Peleg's equation. Generalized equations have been formulated for prediction of moisture content of cereals and millets.

  19. Studies on long-term impact of STCR based integrated fertilizer use on pearl millet (Pennisetum glaucum)-wheat (Triticum aestivum) cropping system in semi arid condition of India.

    PubMed

    Sharma, V K; Pandey, R N; Sharma, B M

    2015-01-01

    A long-term field experiment on pearl millet - wheat cropping system with soil test crop response correlation (STCR) based fertilizer application was initiated during kharif- 2003 on a sandy loam soil (Typic Halustept) at a research farm of Indian Agricultural Research Institute, New Delhi. The aim of the experiment was to study the impact of STCR based integrated fertilizer application for targeted yield of pearl millet - wheat cropping sequence yield and changes in soil health. The result showed a significant and positive impact of integrated use of the fertilizerwith FYM on productivity of the cropping sequence and soil fertility. The STCR based integrated fertilizer recommendations with FYM produced significantly higher grain and straw yields of pearl millet and wheat crops as compared to other treatments. The highest average (2003 to 2010-11) grain and straw yield of pearl millet (2.85 and 6.59 t ha(-1)) and wheat (5.32 and 7.17 t ha(-1)) was recorded with the application of STCR based integrated fertilizer recommendations (T2) for targeted level of yield 2.5 and 5.0 ha(-1), respectively. Average increase in grain and straw yield of pearl millet was 203 and 197% and 196 and 193% of wheat under T2 treatment over control (T4). After harvest of wheat crops (2010-11), the physical, biological properties and fertility status i.e. available N, P and K of soil were improved in the treatments where STCR based integrated fertilizer dose with 10 t FYM (T2) and FYM @20 t ha(-1)(T1) were applied in both the crops and were significantly higher as compared to T3 treatment except available phosphorus. Economic analysis based on average yield of eight cropping sequence (2003 to 2010-11), pearl millet - wheat cropping sequence gave maximum net return of Rs. 100,907 ha(-1) yr(-1) and total return of Rs. 64,992/ ha(-1)yr(-1) over control with STCR based integrated fertilizer recommendations (T2). It is concluded that STCR based integrated fertilizer can be adopted by the farmers

  20. Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits.

    PubMed

    Shobana, S; Krishnaswamy, K; Sudha, V; Malleshi, N G; Anjana, R M; Palaniappan, L; Mohan, V

    2013-01-01

    Finger millet or ragi is one of the ancient millets in India (2300 BC), and this review focuses on its antiquity, consumption, nutrient composition, processing, and health benefits. Of all the cereals and millets, finger millet has the highest amount of calcium (344mg%) and potassium (408mg%). It has higher dietary fiber, minerals, and sulfur containing amino acids compared to white rice, the current major staple in India. Despite finger millet's rich nutrient profile, recent studies indicate lower consumption of millets in general by urban Indians. Finger millet is processed by milling, malting, fermentation, popping, and decortication. Noodles, vermicilli, pasta, Indian sweet (halwa) mixes, papads, soups, and bakery products from finger millet are also emerging. In vitro and in vivo (animal) studies indicated the blood glucose lowering, cholesterol lowering, antiulcerative, wound healing properties, etc., of finger millet. However, appropriate intervention or randomized clinical trials are lacking on these health effects. Glycemic index (GI) studies on finger millet preparations indicate low to high values, but most of the studies were conducted with outdated methodology. Hence, appropriate GI testing of finger millet preparations and short- and long-term human intervention trials may be helpful to establish evidence-based health benefits.

  1. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv].

    PubMed

    Zhang, Shuo; Tang, Chanjuan; Zhao, Qiang; Li, Jing; Yang, Lifang; Qie, Lufeng; Fan, Xingke; Li, Lin; Zhang, Ning; Zhao, Meicheng; Liu, Xiaotong; Chai, Yang; Zhang, Xue; Wang, Hailong; Li, Yingtao; Li, Wen; Zhi, Hui; Jia, Guanqing; Diao, Xianmin

    2014-01-28

    Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1' by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei's genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species.

  2. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv.

    PubMed Central

    2014-01-01

    Background Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. Result A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1’ by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei’s genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. Conclusions A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species. PMID:24472631

  3. Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA

    PubMed Central

    Hilu, K. W.

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927

  4. Whole plant acclimation responses by finger millet to low nitrogen stress

    PubMed Central

    Goron, Travis L.; Bhosekar, Vijay K.; Shearer, Charles R.; Watts, Sophia; Raizada, Manish N.

    2015-01-01

    The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn), is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen (N), or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal species. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root, and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia, where it is reported that this crop can survive extreme environments. PMID:26347768

  5. Stable isotopic investigations of modern and charred foxtail millet and the implications for environmental archaeological reconstruction in the western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    An, Cheng-Bang; Dong, Weimiao; Chen, Yufeng; Li, Hu; Shi, Chao; Wang, Wei; Zhang, Pingyu; Zhao, Xueye

    2015-07-01

    Stable isotopic analysis of carbon and nitrogen in human and faunal remains has been widely used to reconstruct prehistoric diets and environmental changes. Isotopic analysis of plant remains allows for a more extensive consideration of paleodiets and can potentially provide information about the environment in which the crops were grown. This paper reports the results of δ13C and δ15N analyses performed on modern and charred archaeological foxtail millet samples collected from the western part of the Chinese Loess Plateau. The δ13C mean value of modern samples is lower than that of ancient samples. There is a significant difference between grain and leaf δ15N values. These results challenge the standard assumption in isotope studies that the nitrogen isotope signals of the different part of plants consumed by humans and animals are the same. The 3-5‰ difference between human and animal δ15N values is always regarded as an indicator of whether human diets contained considerable animal protein. The difference between grain and leaf δ15N values makes this assumption problematic in a foxtail millet-dominated society.

  6. Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae).

    PubMed

    Doust, Andrew N; Kellogg, Elizabeth A

    2006-04-01

    Many domesticated crops are derived from species whose life history includes weedy characteristics, such as the ability to vary branching patterns in response to environmental conditions. However, domesticated crop plants are characterized by less variable plant architecture, as well as by a general reduction in vegetative branching compared to their progenitor species. Here we examine weedy green millet and its domesticate foxtail millet that differ in the number of tillers (basal branches) and axillary branches along each tiller. Branch number in F(2:3) progeny of a cross between the two species varies with genotype, planting density, and other environmental variables, with significant genotype-environment interactions (GEI). This is shown by a complex pattern of reaction norms and by variation in the pattern of significant quantitative trait loci (QTL) amongst trials. Individual and joint analyses of high and low density trials indicate that most QTL have significant GEI. Dominance and epistasis also explain some variation in branching. Likely candidate genes underlying the QTL (based on map position and phenotypic effect) include teosinte branched1 and barren stalk1. Phytochrome B, which has been found to affect response to shading in other plants, explains little or no variation. Much variation in branching is explained by QTL that do not have obvious candidate genes from maize or rice.

  7. Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil.

    PubMed

    Shaheen, Sabry M; Balbaa, Ali A; Khatab, Alaa M; Rinklebe, Jörg

    2017-04-25

    Soil reclamation via additives can cause contradictory effects on the mobilization of toxic elements in soils under dry and wet conditions. Therefore, our aim was to investigate the impact of compost and sulfur in two rates (1.25 and 2.5%) on fractionation, mobilization, and phyto-availability of cadmium (Cd) and nickel (Ni) to sorghum (dry soil) and barnyard grass (wet soil) in a fluvial soil spiked with 25 mg Cd or 200 mg Ni/kg soil. Compost decreased the solubility and mobilization of Cd (especially in dry soil) and Ni (in both soils). Sulfur increased the solubility of Cd (31% in dry soil-49% in wet soil) and Ni (4.6% in wet soil-8.7% in dry soil). Sulfur altered the carbonate fraction of Cd to the soluble fraction and the residual fraction of Cd and Ni to the non-residual fraction. Compost decreased Cd and increased Ni in sorghum, but enhanced Cd and degraded Ni in grass. Sulfur increased Cd and Ni in both plants, and the increasing rate of Cd was higher in grass than in sorghum, while Ni was higher in sorghum than in grass. These results suggest that compost can be used as an immobilizing agent for Cd in the dry soil and Ni in the wet soil; however, it might be used as mobilizing agent for Cd in the wet soil and Ni in the dry soil. Sulfur (with rate 2.5%) can be used for enhancing the phyto-extraction of Cd and Ni (especially Cd) from contaminated alkaline soils.

  8. Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br].

    PubMed

    Aparna, K; Nepolean, T; Srivastsava, R K; Kholová, J; Rajaram, V; Kumar, S; Rekha, B; Senthilvel, S; Hash, C T; Vadez, V

    2015-09-01

    There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water-limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought-sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co-mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well-watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non-stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water-use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology-informed marker-assisted selection. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Comparison of Millet and Sorghum-Sudangrass Hybrids Grown in Untreated Soil and Soil Treated with Two Nematicides

    PubMed Central

    Johnson, A. W.; Burton, G. W.

    1973-01-01

    Aldicarb and Bay 68138 (ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate) were effective in increasing the plant height and yield of millet and sorghum-sudangrass hybrids. Stunting of plants and reduction in yield were inversely proportional to the number of Pratylenchus spp. and Belonolaimus longicaudatus present in the rhizosphere. Millet and sorghum-sudangrass hybrids supported large numbers of Criconemoides ornatus, Pratylenchus spp., B. longicaudatus, and Xiphinema americanum. Funk's sorghum × sudangrass Hybrid 78 was more sensitive to injury by the nematode complex than were Tift 23A × 186 or Gahi-I pearl millet. 'Tiflate' pearl millet was more resistant than other millets or sorghums to injury caused by C. ornatus, Pratylenchus spp., Trichodorus christiei, and B. longicaudatus. Millet and sorghum-sudangrass hybrids are poor summer cover crops because they favor intensive development of P. brachyurus, P. zeae, T. christiei, and B. longicaudatus. PMID:19319298

  10. Functionality, in Vitro Digestibility and Physicochemical Properties of Two Varieties of Defatted Foxtail Millet Protein Concentrates

    PubMed Central

    Mohamed, Tabita Kamara; Zhu, Kexue; Issoufou, Amadou; Fatmata, Tarawalie; Zhou, Huiming

    2009-01-01

    Two varieties of foxtail millet protein concentrates (white and yellow) were characterized for in vitro trypsin digestibility, functional and physicochemical properties. Millet protein concentrate was easily digested by trypsin in vitro. Essential amino acids were above the amounts recommended by the Food Agricultural Organization/World Health Organization (FAO/WHO/UNU) for humans. Yellow millet protein concentrate (YMPC) possessed the highest differential scanning calorimetry result (peak temperature of 88.98 °C, delta H = 0.01 J/g), white millet protein concentrate (WMPC) had the lowest (peak temperature 84.06 °C, delta H = 0.10 J/g). The millet protein concentrates had molecular sizes around 14.4 and 97.4 kDa. They have U-shape solubility curves. Water-binding capacity was in the range of 5.0 and 7.0 g/g, while oil absorption capacity ranged between 4.8 and 5.9 g/g. WMPC had higher bulk density (0.22 g/mL) and emulsifying capacity than YMPC and Soy Protein Concentrate (SPC). Foam capacity and foam stability ranged from 137 to 73 g/mL for WMPC, from 124 to 61 g/mL SPC and from 124 to 46 g/mL for YMPC. Millet protein concentrates are potential functional food ingredients.

  11. Assessment of Important Sensory Attributes of Millet Based Snacks and Biscuits.

    PubMed

    McSweeney, Matthew B; Duizer, Lisa M; Seetharaman, Koushik; Dan Ramdath, D

    2016-05-01

    There is an increasing push by consumers for new food products that can provide health benefits. To develop these products, sometimes it is necessary to look to alternative crops, 1 of which is millet. For millet to be successfully adopted by consumers, it is necessary to identify and develop product types that are acceptable to North Americans. Biscuits and extruded snacks were produced using varying amounts of refined proso millet flour (0%, 25%, 75%, and 100%). Sensory analysis was conducted on 8 products (4 types of biscuits and 4 types of extruded snack) in 2 separate tests (1 for biscuits and 1 for snacks). Preferred Attribute Elicitation (PAE), a relatively new sensory method, was used to determine attributes affecting liking of the products. Results indicated that as the amount of millet in the biscuits and extruded snacks increased, the liking of the flavor, texture and overall liking decreased. Millet contributed to a bitter taste and bitter aftertaste, and resulted in gritty and dry food products. Further work is required to refine the products tested as well as to identify further products that can be added to the diet in order to take advantage of the health benefits that millet provides. © 2016 Institute of Food Technologists®

  12. Apomictic interspecific hybrids between pearl millet and Pennisetum orientale L. C. Rich

    SciTech Connect

    Hanna, W.W.; Dujardin, M.

    1982-07-01

    Pearl millet, Pennisetum americanum (L.) Leeke, is an important world food and forage crop. Pennisetum orientale L. C. Rich. has genes for apomixis, perennial growth habit, pest resistance, and drought tolerance which could be used to improve pearl millet. The objectives of this research were to determine the cytotaxonomic relationship of these two species and to explore the feasibility of interspecific germplasm transfer. Five interspecific hybrids, 2n = 25, with 7 large P. americanum millet (A) and 18 small P. orientale (O) chromosomes were produced by pollinating cytoplasmic male sterile pearl millet with P. orientale pollen. The O chromosomes paired mainly as bivalents and the A chromosomes remained as univalents. A low frequency of AO chromosome associations were observed. Although the possibility of germplasm exchange existed, the two species appeared to be not closely related. Among three hybrids examined, one was a facultative apomict, one was an obligate apomict and another was highly apomictic with 3% of ovules with sexual embryo sacs. Sixteen backcross progenies were established from interspecific hybrids pollinated with pearl millet pollen. Seven plants were 2n = 23 with 14 A + 9 O chromosomes, five were 2n = 27 with 7 A + 20 O chromosomes and four were 2n = 32 with 14 A and 18 O chromosomes. The balanced chromosome number for both species in these latter plants should provide a mechanism for restoring fertility in the interspecific hybrid thus enabling germplasm transfer. The interspecific hybrids were male sterile but set about 1% seed when pollinated with pearl millet pollen.

  13. Apomictic interspecific hybrids between pearl millet and Pennisetum orientale L. C. Rich

    SciTech Connect

    Hanna, W.W.; Dujardin, M.

    1982-07-01

    Pearl millet, Pennisetum americanum (L.) Leeke, is an important world food and forage crop. Pennisetum orientale L.C. Rich. has genes for apomixis, perennial growth habit, pest resistance, and drought tolerance which could be used to improve pearl millet. The objectives of this research were to determine the cytotaxonomic relationship of these two species and to explore the feasibility of interspecific germplasm transfer. Five interspecific hybrids, 2n = 25, with 7 large P. americanum millet (A) and 18 small P. orientale (0) chromosomes were produced by pollinating cytoplasmic male sterile pearl millet with P. orientale pollen. Although the possibility of germplasm exchange existed, the two species appeared to be not closely related. Among three hybrids examined, one was a facultative apomict, one was an obligate apomict and another was highly apomictic with 3% of ovules with sexual embryo sacs. Sixteen backcross progenies were established from interspecific hybrids pollinated with pearl millet pollen. The balanced chromosome number for both species in these latter plants should provide a mechanism for restoring fertility in the interspecific hybrid thus enabling germplasm transfer. The interspecific hybrids were male sterile but set about 1% seed when pollinated with pearl millet pollen.

  14. Grains and Starchy Vegetables

    MedlinePlus

    ... farro Wild rice Buckwheat Buckwheat flour Triticale Millet Quinoa Sorghum Do you have celiac disease? Check out ... and Starchy Vegetables Protein Foods What Can I Drink? Dairy Fruits donate en -- Make Your Donation Count - ...

  15. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit

    PubMed Central

    Kholová, Jana; Hash, C. T.; Kumar, P. Lava; Yadav, Rattan S.; Kočová, Marie; Vadez, Vincent

    2010-01-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm−2 d−1) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40–1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines. PMID:20142425

  16. Scytalidium thermophilum-colonized grain, corncobs and chopped wheat straw substrates for the production of Agaricus bisporus.

    PubMed

    Sanchez, Jose E; Royse, Daniel J

    2009-02-01

    We examined the possibility of cultivating Agaricus bisporus (Ab) on various grains and agricultural by-products, with the objective of improving yield capacity of substrate pre-colonized by Scytalidium thermophilum (St). Radial growth rate (RGR) of St at 45 degrees C ranged from no growth on sterile wheat grain to 14.9 mm/d on whole oats. The linear extension rate (LER) of Ab, grown on St-colonized substrate (4 days at 45 degrees C), ranged from a low of 2.7 mm/d on 100% corncobs to 4.7 mm/d on a 50/50 mixture of ground corncobs/millet grain. Several other substrates containing wheat straw+ground corncobs+boiled millet and pre-colonized by St (4 days at 42+/-3 degrees C), were evaluated for production of Ab. The biological efficiency (BE) of production increased linearly with the addition of millet to the formula. However, substrates with millet levels 84% often were contaminated before mushroom harvest. Maximum BE (99%) and yield (21.6 kg/m(2)) were obtained on St-colonized wheat straw+2% hydrated lime supplemented with 9% commercial supplement added both at spawning and at casing.

  17. Comparative sensory and proximate evaluation of spontaneously fermenting kunu-zaki made from germinated and ungerminated composite cereal grains.

    PubMed

    Oluwajoba, Solakunmi O; Akinyosoye, Felix A; Oyetayo, Olusegun V

    2013-07-01

    This study evaluated the sensory properties, proximate composition, and overall consumer acceptability of kunu-zaki using germinated and ungerminated Sorghum bicolor (sorghum), Pennisetum americanum (millet), and Digitaria exilis (acha) cereal grains. The three cereal grains were used in nongerminated and germinated composite and noncomposite proportions coded A (Acha), S (Sorghum), M (Millet), AS (Acha-Sorghum), AM (Acha-Millet), SM (Sorghum-Millet), ASG (Acha-Sorghum Germinated), AMG (Acha-Millet Germinated), and SMG (Sorghum-Millet Germinated). Proximate analysis determined the moisture content, ash, crude fiber, fat, and crude protein content of the fermented grains. The 9-point hedonic scale was used to judge the sensory parameters of taste, color, and aroma. The paired comparison test was used to judge consumer preference between kunu-zaki made from germinated grains and the ungerminated counterpart. Scores were statistically analyzed using the Kruskal-Wallis test in the SPSS analytical software package. Panelists ranked the ASG-coded drink highest in terms of taste and aroma, the AMG-coded drink highest in terms of color. SM ranked least in terms of taste; SMG ranked least in terms of aroma; and AM ranked the least in terms of color. Preference for each parameter was significantly different (P < 0.001). Panelists ranked overall preference for the drinks from the most liked to the least liked in the order ASG>AMG>A>AS>S>M>SMG>AM>SM. The overall preference for the drinks was also significantly different (P < 0.001). Panelists pairing both ungerminated drinks with the germinated drinks ranked the ungerminated drink AS as most preferred in terms of taste, color, and aroma above its germinated counterpart ASG with preference not significantly dependent on the parameters (P = 0.065 > 0.05). Ungerminated AM was also preferred above the germinated counterpart AMG in terms of taste, color, and aroma with preference not significantly dependent on parameters (P = 0

  18. Comparative sensory and proximate evaluation of spontaneously fermenting kunu-zaki made from germinated and ungerminated composite cereal grains

    PubMed Central

    Oluwajoba, Solakunmi O; Akinyosoye, Felix A; Oyetayo, Olusegun V

    2013-01-01

    This study evaluated the sensory properties, proximate composition, and overall consumer acceptability of kunu-zaki using germinated and ungerminated Sorghum bicolor (sorghum), Pennisetum americanum (millet), and Digitaria exilis (acha) cereal grains. The three cereal grains were used in nongerminated and germinated composite and noncomposite proportions coded A (Acha), S (Sorghum), M (Millet), AS (Acha–Sorghum), AM (Acha–Millet), SM (Sorghum–Millet), ASG (Acha–Sorghum Germinated), AMG (Acha–Millet Germinated), and SMG (Sorghum–Millet Germinated). Proximate analysis determined the moisture content, ash, crude fiber, fat, and crude protein content of the fermented grains. The 9-point hedonic scale was used to judge the sensory parameters of taste, color, and aroma. The paired comparison test was used to judge consumer preference between kunu-zaki made from germinated grains and the ungerminated counterpart. Scores were statistically analyzed using the Kruskal–Wallis test in the SPSS analytical software package. Panelists ranked the ASG-coded drink highest in terms of taste and aroma, the AMG-coded drink highest in terms of color. SM ranked least in terms of taste; SMG ranked least in terms of aroma; and AM ranked the least in terms of color. Preference for each parameter was significantly different (P < 0.001). Panelists ranked overall preference for the drinks from the most liked to the least liked in the order ASG>AMG>A>AS>S>M>SMG>AM>SM. The overall preference for the drinks was also significantly different (P < 0.001). Panelists pairing both ungerminated drinks with the germinated drinks ranked the ungerminated drink AS as most preferred in terms of taste, color, and aroma above its germinated counterpart ASG with preference not significantly dependent on the parameters (P = 0.065 > 0.05). Ungerminated AM was also preferred above the germinated counterpart AMG in terms of taste, color, and aroma with preference not significantly dependent on

  19. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    PubMed

    Hema, Ramanna; Vemanna, Ramu S; Sreeramulu, Shivakumar; Reddy, Chandrasekhara P; Senthil-Kumar, Muthappa; Udayakumar, Makarla

    2014-01-01

    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.

  20. Simulating the evolution of glyphosate resistance in grains farming in northern Australia

    PubMed Central

    Thornby, David F.; Walker, Steve R.

    2009-01-01

    Background and Aims The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. Methods The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Key Results Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. Conclusions This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies. PMID:19567415

  1. Simulating the evolution of glyphosate resistance in grains farming in northern Australia.

    PubMed

    Thornby, David F; Walker, Steve R

    2009-09-01

    The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.

  2. Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development.

    PubMed

    Luan, Yunxia; Wang, Baosheng; Zhao, Qian; Ao, Guangming; Yu, Jingjuan

    2010-12-01

    Plant architecture determines grain production in rice (Oryza sativa) and is affected by important agronomic traits such as tillering, plant height, and panicle morphology. Many key genes involved in controlling the initiation and outgrowth of axillary buds, the elongation of stems, and the architecture of inflorescences have been isolated and analyzed. Previous studies have shown that SiPf40, which was identified from a foxtail millet (Setaria italica) immature seed cDNA library, causes extra branches and tillers in SiPf40-transgenic tobacco and foxtail millet, respectively. To reconfirm its function, we generated transgenic rice plants overexpressing SiPf40 under the control of the ubiquitin promoter. SiPf40-overexpressing transgenic plants have a greater tillering number and a wider tiller angle than wild-type plants. Their root architecture is modified by the promotion of lateral root development, and the distribution of xylem and phloem in the vascular bundle is affected. Analysis of hormone levels showed that the ratios of indole-3-acetic acid/zeatin (IAA/ZR) and IAA/gibberellic acid (IAA/GA) decreased in SiPf40-transgenic plants compared with wild-type plants. These findings strongly suggest that SiPf40 plays an important role in plant architecture.

  3. DEVELOPMENT OF GENOMIC AND GENETIC TOOLS FOR FOXTAIL MILLET, AND USE OF THESE TOOLS IN THE IMPROVEMENT OF BIOMASS PRODUCTION FOR BIOENERGY CROPS

    SciTech Connect

    Chen, Xinlu; Zale, Janice; Chen, Feng

    2013-01-22

    Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression, and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient

  4. Simulation Design of the Spiral Groove Precision Seed-Metering Device for Small Grains

    NASA Astrophysics Data System (ADS)

    Zhang, Dongguang; Guo, Yuming

    At present, most of small grain crops such as millet and forage seeds are sown by external force feed in mainland China, which has some problems of wasting seeds, uneven seed distribution and so on. Therefore, it is needed to design a precise feed device for small grain corps. The author's of this paper seed-metering device using Pro/Engineer. The movement simulation and module. According to the analysis results, the defaults of the feed device were showed that this device is simple and suitable and suitable for the seeding requirements of small grains.

  5. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition

    PubMed Central

    Beloshapka, Alison N.; Buff, Preston R.; Fahey, George C.; Swanson, Kelly S.

    2016-01-01

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets. PMID:28231117

  6. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition.

    PubMed

    Beloshapka, Alison N; Buff, Preston R; Fahey, George C; Swanson, Kelly S

    2016-03-25

    Our objective was to measure the proximate, starch, amino acid, and mineral compositions of grains, grain co-products, and other carbohydrate sources with potential use in pet foods. Thirty-two samples from barley (barley flake, cut barley, ground pearled barley, malted barley, whole pearled barley, pearled barley flakes, and steamed rolled barley); oats (groats, ground oatmeal, ground steamed groats, instant oats, oat bran, oat fiber, oat flour, quick oats, regular rolled oats, steamed rolled oat groats, and steel cut groats); rice (brown rice, polished rice, defatted rice bran, and rice flour); and miscellaneous carbohydrate sources (canary grass seed, hulled millet, whole millet, quinoa, organic spelt hull pellets, potato flake, sorghum, whole wheat, and whole yellow corn) were analyzed. Crude protein, amino acid, fat, dietary fiber, resistant starch, and mineral concentrations were highly variable among the respective fractions (i.e., barley flake vs. malted barley vs. steamed rolled barley) as well as among the various grains (i.e., barley flake vs. brown rice vs. canary grass seed). These ingredients not only provide a readily available energy source, but also a source of dietary fiber, resistant starch, essential amino acids, and macrominerals for pet diets.

  7. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC).

    PubMed

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200-1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north.

  8. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC)

    PubMed Central

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q.

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300–6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200–1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  9. Inference of domestication history and differentiation between early- and late-flowering varieties in pearl millet.

    PubMed

    Dussert, Y; Snirc, A; Robert, T

    2015-04-01

    Pearl millet (Pennisetum glaucum) is a staple crop in Sahelian Africa. Farmers usually grow varieties with different cycle lengths and complementary functions in Sahelian agrosystems. Both the level of genetic differentiation of these varieties and the domestication history of pearl millet have been poorly studied. We investigated the neutral genetic diversity and population genetic structure of early- and late-flowering domesticated and wild pearl millet populations using 18 microsatellite loci and 8 nucleotide sequences. Strikingly, early- and late-flowering domesticated varieties were not differentiated over their whole distribution area, despite a clear difference in their isolation-by-distance pattern. Conversely, our data brought evidence for two well-differentiated genetic pools in wild pearl millet, allowing us to test scenarios with different numbers and origins of domestication using approximate Bayesian computation (ABC). The ABC analysis showed the likely existence of asymmetric migration between wild and domesticated populations. The model choice procedure indicated that a single domestication from the eastern wild populations was the more likely scenario to explain the polymorphism patterns observed in cultivated pearl millet. © 2015 John Wiley & Sons Ltd.

  10. Optimization of the functional characteristics, pasting and rheological properties of pearl millet-based composite flour.

    PubMed

    Awolu, Olugbenga Olufemi

    2017-02-01

    Optimisation of composite flour comprising pearl millet, kidney beans and tigernut with xanthan gum was evaluated for rheological evaluations. The functional properties of the composite flour were optimized using optimal design of response surface methodology. The optimum blends, defined as blends with overall best functional characteristics were run 3 (75.956% pearl millet, 17.692% kidney beans, 6.352% tigernut flours), run 7 (85.000% pearl millet, 10.000% kidney beans, 5.000% tigernut flours) and run 13 (75.000% pearl millet, 20.000% kidney beans, 5.000% tigernut flours). The pasting characteristics and rheological evaluation of the optimized blends were further evaluated in rapid visco units (RVU). Run 7 had the overall best pasting characteristics; peak viscosity (462 RVU), trough (442 RVU), breakdown viscosity (20 RVU), final viscosity (975 RVU), setback (533 RVU), peak time (5.47 min) and pasting temperature (89.60 °C). These values were found to be better than several composite flours consisting mixture of wheat and non-wheat crops. In addition, the rheological characteristics (measured by Mixolab) showed that run 7 is the best in terms of dough stability, swelling, water absorption and shelf stability. Composite flour with 85% pearl millet flour in addition to kidney beans and tigernut flours could therefore serve as a viable alternative to 100% wheat flour in bread production.

  11. Genomic valorization of the fine scale classification of small millet landraces in southern India.

    PubMed

    Newmaster, Steven G; Ragupathy, Subramanyam; Dhivya, Shanmughanandhan; Jijo, Chitilappilly Joseph; Sathishkumar, Ramalingam; Patel, Kirit

    2013-02-01

    Our research seeks to investigate genomic diversity of landraces of millet, addressing a key uncertainty that will provide a framework for (i) a DNA barcode method that could be used for fast, sensitive, and accurate identification of millet landraces, and (ii) millet landrace conservation including biocultural diversity. We found considerable intraspecific variation among 15 landraces representing six species of small millets using nuclear regions (ITS, ITS1, and ITS2); there was no variation in plastid regions (rbcL, matK, and trnH-psbA). An efficacious ITS2 DNA barcode was used to make 100% accurate landrace assignments for 150 blind samples representing 15 landraces. Our research revealed that genomic variation is aligned with a fine-scale classification of landraces using traditional knowledge (TK) of local farmers. The landrace classification was highly correlated with traits (morphological, agricultural, and cultural utility) associated with considerable factors such as yield, drought tolerance, growing season, medicinal properties, and nutrition. This could provide a DNA-based model for conservation of genetic diversity and the associated bicultural diversity (TK) of millet landraces, which has sustained marginal farming communities in harsh environments for many generations.

  12. Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.))

    PubMed Central

    2016-01-01

    Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes. PMID:28149050

  13. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  14. Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv.] germplasm in China

    USDA-ARS?s Scientific Manuscript database

    China is among the countries that have the most severe water deficiency. Due to its excellent drought tolerance, foxtail millet [Setaria italica (L.) P. Beauv.] has become one of the important cereal crops in China. Information on genetic diversity and population structure of foxtail millet may faci...

  15. The earliest evidence of millet as a staple crop: New light on neolithic foodways in North China.

    PubMed

    Liu, Xinyi; Jones, Martin K; Zhao, Zhijun; Liu, Guoxiang; O'Connell, Tamsin C

    2012-10-01

    There is a growing body of archaeobotanical evidence for the harvesting of millet in Eurasia prior to 5,000 cal. BC. Yet direct evidence for the extent of millet consumption in this time period is rare. This contradiction may be due to millet crops making only a minor contribution to the diet before 5,000 BC. In this article, drawing from recent excavations in North China, we present evidence for millet crops making a substantial contribution to human and animal diets in periods, which correspond chronologically with the time depth of the archaeobotanical record. We infer that in eastern Inner Mongolia, human adoption of millets, which may or may be not related to substantial agriculture, happened at the Early Neolithic, with direct dates between 5,800 and 5,300 cal. BC. Copyright © 2012 Wiley Periodicals, Inc.

  16. Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice.

    PubMed

    Nishizawa, Naoyuki; Togawa, Tubasa; Park, Kyung-Ok; Sato, Daiki; Miyakoshi, Yo; Inagaki, Kazuya; Ohmori, Norimasa; Ito, Yoshiaki; Nagasawa, Takashi

    2009-02-01

    Millet is an important food crop in Asia and Africa, but the health benefits of dietary millet are little known. This study defined the effects of dietary Japanese millet on diabetic mice. Feeding of a high-fat diet containing Japanese millet protein concentrate (JMP, 20% protein) to type 2 diabetic mice for 3 weeks significantly increased plasma levels of adiponectin and high-density lipoprotein cholesterol (HDL cholesterol) and decreased the levels of glucose and triglyceride as compared to control. The starch fraction of Japanese millet had no effect on glucose or adiponectin levels, but the prolamin fraction beneficially modulated plasma glucose and insulin concentrations as well as adiponectin and tumor necrosis factor-alpha gene expression. Considering the physiological significance of adiponectin and HDL cholesterol levels in type 2 diabetes, insulin resistance, and cardiovascular disease, our findings imply that dietary JMP has the potential to ameliorate these diseases.

  17. Replacing corn with pearl millet (raw and sprouted) with and without enzyme in chickens' diet.

    PubMed

    Afsharmanesh, M; Ghorbani, N; Mehdipour, Z

    2016-04-01

    An experiment was conducted to compare a commercial corn-soya bean meal diet with a pearl millet (raw and sprouted) diet containing less soya bean meal, alone or in combination with exogenous enzyme, on growth performance and ileal villus development of chicks. Two-hundred-and-forty-one-day-old male broilers (10/pen) were randomly allocated to one of the following dietary treatments: (i) a standard corn-soya bean meal control diet (CTL); (ii) a raw pearl millet-soya bean meal diet (PM); (iii) a sprouted pearl millet-soya bean meal diet (SPM); (iv) CTL + exogenous enzymes (CE); (v) PM + exogenous enzymes (PE); and (vi) SPM + exogenous enzymes (SPE) with four replicate pens/treatment. Body weight of birds at day 21 did not differ between those fed the CTL, and SPM and PE diets. In comparison with feeding broilers the CTL diet, feeding the PE and SPM diets caused significant decrease in feed intake, but with equivalent growth and feed efficiency. However, at day 21, feed conversion ratio did not differ between birds fed the CTL diet and those fed the PM, PE and SPM diets. At day 21, broilers fed the PM and PE diets had longer villi (p < 0.05) than those fed the CTL diet. At day 21, villi width was reduced (p < 0.05) by raw pearl millet supplementation than CTL diet. It is concluded that, in comparison with corn, broiler diets formulated with sprouted pearl millet or pearl millet with enzyme require less soya bean meal and can be used to improve growth performance traits and villus development.

  18. Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats.

    PubMed

    Gupta, Vibha; Jatav, Pradeep Kumar; Verma, Raini; Kothari, Shanker Lal; Kachhwaha, Sumita

    2017-09-05

    With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  19. A Novel Millet-Based Probiotic Fermented Food for the Developing World.

    PubMed

    Di Stefano, Elisa; White, Jessica; Seney, Shannon; Hekmat, Sharareh; McDowell, Tim; Sumarah, Mark; Reid, Gregor

    2017-05-22

    Probiotic yogurt, comprised of a Fiti sachet containing Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106, has been used in the developing world, notably Africa, to alleviate malnutrition and disease. In sub-Saharan African countries, fermentation of cereals such as millet, is culturally significant. The aim of this study was to investigate the fermentation capability of millet when one gram of the Fiti sachet consortium was added. An increase of 1.8 and 1.4 log CFU/mL was observed for S. thermophilus C106 and L. rhamnosus GR-1 when grown in 8% millet in water. Single cultures of L. rhamnosus GR-1 showed the highest μmax when grown in the presence of dextrose, galactose and fructose. Single cultures of S. thermophilus C106 showed the highest μmax when grown in the presence of sucrose and lactose. All tested recipes reached viable counts of the probiotic bacteria, with counts greater than 10⁶ colony-forming units (CFU)/mL. Notably, a number of organic acids were quantified, in particular phytic acid, which was shown to decrease when fermentation time increased, thereby improving the bioavailability of specific micronutrients. Millet fermented in milk proved to be the most favorable, according to a sensory evaluation. In conclusion, this study has shown that sachets being provided to African communities to produce fermented milk, can also be used to produce fermented millet. This provides an option for when milk supplies are short, or if communities wish to utilize the nutrient-rich qualities of locally-grown millet.

  20. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses.

    PubMed

    Lata, Charu; Gupta, Sarika; Prasad, Manoj

    2013-09-01

    Foxtail millet is one of the oldest domesticated diploid C4 Panicoid crops having a comparatively small genome size of approximately 515 Mb, short life cycle, and inbreeding nature. Its two species, Setaria italica (domesticated) and Setaria viridis (wild progenitor), have characteristics that classify them as excellent model systems to examine several aspects of architectural, evolutionary, and physiological importance in Panicoid grasses especially the biofuel crops such as switchgrass and napiergrass. Foxtail millet is a staple crop used extensively for food and fodder in parts of Asia and Africa. In its long history of cultivation, it has been adapted to arid and semi-arid areas of Asia, North Africa, South and North America. Foxtail millet has one of the largest collections of cultivated as well as wild-type germplasm rich with phenotypic variations and hence provides prospects for association mapping and allele-mining of elite and novel variants to be incorporated in crop improvement programs. Most of the foxtail millet accessions can be primarily abiotic stress tolerant particularly to drought and salinity, and therefore exploiting these agronomic traits can enhance its efficacy in marker-aided breeding as well as in genetic engineering for abiotic stress tolerance. In addition, the release of draft genome sequence of foxtail millet would be useful to the researchers worldwide in not only discerning the molecular basis of biomass production in biofuel crops and the methods to improve it, but also for the introgression of beneficial agronomically important characteristics in foxtail millet as well as in related Panicoid bioenergy grasses.

  1. Rates of return to sorghum and millet research investments: A meta-analysis.

    PubMed

    Zereyesus, Yacob A; Dalton, Timothy J

    2017-01-01

    Sorghum and millet grow in some of the most heterogeneous and austere agroecologies around the world. These crops are amongst the top five cereal sources of food and feed. Yet, few studies document the impact of sorghum and millet genetic enhancement. The Internal Rate of Return (ROR) is one of the most popular metrics used to measure the economic return on investment on agricultural research and development (R&D). This study conducted a meta-analysis of 59 sorghum and millet ROR estimates obtained from 25 sources published between 1958 and 2015. The average rate of return to sorghum and millet R&D investment is between 54-76 percent per year. All studies computed social rather than private RORs because the technologies were developed using public funds originating from host country National Agricultural Research Systems (NARS) and international organizations such as the INTSORMIL CRSP, ICRISAT and others. Nearly three quarter of the studies focused only on sorghum (72 percent) and around one tenth of the studies (8 percent) on millet. Regression models analyzed the determinants of variation in the reported RORs. Results show that ex-ante type and self-evaluated type of analyses are positively and significantly associated with the ROR estimates. Compared to estimates conducted by a university, results from international institutions and other mixed organizations provided significantly smaller estimates. Estimates conducted at national level also are significantly lower than those conducted at sub-national levels. The ROR is higher for studies conducted in the United States and for those conducted more recently. The study also reconstructed modified internal rate of return (MIRR) for a sub-sample of the reported RORs following recent methods from the literature. These results show that the MIRR estimates are significantly smaller than the reported ROR estimates. Both results indicate that investment in sorghum and millet research generates high social rates of

  2. A Novel Millet-Based Probiotic Fermented Food for the Developing World

    PubMed Central

    Di Stefano, Elisa; White, Jessica; Seney, Shannon; Hekmat, Sharareh; McDowell, Tim; Sumarah, Mark; Reid, Gregor

    2017-01-01

    Probiotic yogurt, comprised of a Fiti sachet containing Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106, has been used in the developing world, notably Africa, to alleviate malnutrition and disease. In sub-Saharan African countries, fermentation of cereals such as millet, is culturally significant. The aim of this study was to investigate the fermentation capability of millet when one gram of the Fiti sachet consortium was added. An increase of 1.8 and 1.4 log CFU/mL was observed for S. thermophilus C106 and L. rhamnosus GR-1 when grown in 8% millet in water. Single cultures of L. rhamnosus GR-1 showed the highest μmax when grown in the presence of dextrose, galactose and fructose. Single cultures of S. thermophilus C106 showed the highest μmax when grown in the presence of sucrose and lactose. All tested recipes reached viable counts of the probiotic bacteria, with counts greater than 106 colony-forming units (CFU)/mL. Notably, a number of organic acids were quantified, in particular phytic acid, which was shown to decrease when fermentation time increased, thereby improving the bioavailability of specific micronutrients. Millet fermented in milk proved to be the most favorable, according to a sensory evaluation. In conclusion, this study has shown that sachets being provided to African communities to produce fermented milk, can also be used to produce fermented millet. This provides an option for when milk supplies are short, or if communities wish to utilize the nutrient-rich qualities of locally-grown millet. PMID:28531168

  3. Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso.

    PubMed

    Tou, E H; Guyot, J P; Mouquet-Rivier, C; Rochette, I; Counil, E; Traoré, A S; Trèche, S

    2006-01-15

    Traditional cereal-based fermented foods are frequently used as complementary foods for infants and young children in Africa. This is the case for ben-saalga, a popular fermented gruel produced from pearl millet (Pennisetum glaucum) in Burkina Faso. Detailed knowledge of traditional processing is a prerequisite for investigating ways to improve both the nutritional and sanitary qualities of the corresponding foodstuff. In this work, the traditional processing of pearl millet into ben-saalga was investigated in 24 production units, and fermentation kinetics were studied in pilot scale experiments. Processing steps include: washing (optional), soaking of the grains (first fermentation step), grinding and sieving of the wet flour, settling (second fermentation step), and cooking. The soaking step was mainly characterized by alcoholic fermentation whereas lactic acid fermentation occurred during the settling step. Fermentation kinetics during settling indicates a temporal variation of metabolic activity. Initially, both homofermentative and heterofermentative pathways were simultaneously active, and later only a homofermentative pathway was active. The paste produced at the end of settling had a low pH (4.0+/-0.4) and its microflora was dominated by lactic acid bacteria (LAB) with an amylolytic LAB/LAB ratio of 12%. Sucrose disappeared in the grains during soaking but was not detected in the soaking water, whereas glucose, fructose and maltose appeared transiently. Glucose and fructose were the main substrates observed for lactic acid fermentation during the settling step; however unbalanced fermentation led to the hypothesis that starch hydrolysis products may also serve as substrates for lactic acid formation. At the end of the processing, a 75% and 83% decrease was observed in phytate (IP6) and raffinose, respectively. The sour gruel ben-saalga resulting from cooking the sour paste had inadequate nutritional characteristics with respect to infants' and young

  4. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism.

    PubMed

    Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon

    2016-09-01

    Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites.

  5. Proso Millet Harvest: A Comparison of Conventional Harvest and Direct Harvest with a Stripper Header

    USDA-ARS?s Scientific Manuscript database

    This research was conducted to determine if proso millet can be harvested with a stripper header. Stripper headers use extremely fast rotating metal teeth to rip the seed off the plant and leave the majority of residue standing in the field as opposed to cutting off the entire plant and running tha...

  6. Evaluation of resistance to chinch bug in pearl millet in temperate and subtropical environments

    USDA-ARS?s Scientific Manuscript database

    Pearl millet [Pennisetum glaucum (L.) R. Br.] inbreds and hybrids were evaluated for resistance to chinch bug [Blissus leucopterus leucopterus (Say)] at Lincoln, NE and Tifton, GA in 2003 and 2004. Plant damage from insect feeding was assessed throughout the growing season. Differences plant mortali...

  7. Genomic Tools in Pearl Millet Breeding for Drought Tolerance: Status and Prospects.

    PubMed

    Serba, Desalegn D; Yadav, Rattan S

    2016-01-01

    Pearl millet [Penisetum glaucum (L) R. Br.] is a hardy cereal crop grown in the arid and semiarid tropics where other cereals are likely to fail to produce economic yields due to drought and heat stresses. Adaptive evolution, a form of natural selection shaped the crop to grow and yield satisfactorily with limited moisture supply or under periodic water deficits in the soil. Drought tolerance is a complex polygenic trait that various morphological and physiological responses are controlled by 100s of genes and significantly influenced by the environment. The development of genomic tools will have enormous potential to improve the efficiency and precision of conventional breeding. The apparent independent domestication events, highly outcrossing nature and traditional cultivation in stressful environments maintained tremendous amount of polymorphism in pearl millet. This high polymorphism of the crop has been revealed by genome mapping that in turn stimulated the mapping and tagging of genomic regions controlling important traits such as drought tolerance. Mapping of a major QTL for terminal drought tolerance in independent populations envisaged the prospect for the development of molecular breeding in pearl millet. To accelerate genetic gains for drought tolerance targeted novel approaches such as establishment of marker-trait associations, genomic selection tools, genome sequence and genotyping-by-sequencing are still limited. Development and application of high throughput genomic tools need to be intensified to improve the breeding efficiency of pearl millet to minimize the impact of climate change on its production.

  8. Genomic Tools in Pearl Millet Breeding for Drought Tolerance: Status and Prospects

    PubMed Central

    Serba, Desalegn D.; Yadav, Rattan S.

    2016-01-01

    Pearl millet [Penisetum glaucum (L) R. Br.] is a hardy cereal crop grown in the arid and semiarid tropics where other cereals are likely to fail to produce economic yields due to drought and heat stresses. Adaptive evolution, a form of natural selection shaped the crop to grow and yield satisfactorily with limited moisture supply or under periodic water deficits in the soil. Drought tolerance is a complex polygenic trait that various morphological and physiological responses are controlled by 100s of genes and significantly influenced by the environment. The development of genomic tools will have enormous potential to improve the efficiency and precision of conventional breeding. The apparent independent domestication events, highly outcrossing nature and traditional cultivation in stressful environments maintained tremendous amount of polymorphism in pearl millet. This high polymorphism of the crop has been revealed by genome mapping that in turn stimulated the mapping and tagging of genomic regions controlling important traits such as drought tolerance. Mapping of a major QTL for terminal drought tolerance in independent populations envisaged the prospect for the development of molecular breeding in pearl millet. To accelerate genetic gains for drought tolerance targeted novel approaches such as establishment of marker-trait associations, genomic selection tools, genome sequence and genotyping-by-sequencing are still limited. Development and application of high throughput genomic tools need to be intensified to improve the breeding efficiency of pearl millet to minimize the impact of climate change on its production. PMID:27920783

  9. Registration of ‘plateau’ waxy (amylose-free) proso millet

    USDA-ARS?s Scientific Manuscript database

    The waxy (amylose-free starch) proso millet (Panicum miliaceum L.) cultivar ‘Plateau’ was developed by the Nebraska Agricultural Experiment Station. In addition, faculty and staff from University of Wyoming (UW), Colorado State University (CSU), and USDA-ARS, Lincoln, NE and Akron, CO assisted in tr...

  10. Assessment of aflatoxigenic Aspergillus and other fungi in millet and sesame from Plateau State, Nigeria.

    PubMed

    Ezekiel, C N; Udom, I E; Frisvad, J C; Adetunji, M C; Houbraken, J; Fapohunda, S O; Samson, R A; Atanda, O O; Agi-Otto, M C; Onashile, O A

    2014-03-01

    Sixteen fonio millet and 17 sesame samples were analysed for incidence of moulds, especially aflatoxigenic Aspergillus species, in order to determine the safety of both crops to consumers, and to correlate aflatoxin levels in the crops with levels produced by toxigenic isolates on laboratory medium. Diverse moulds including Alternaria, Aspergillus, Cercospora, Fusarium, Mucor, Penicillium, Rhizopus and Trichoderma were isolated. Aspergillus was predominantly present in both crops (46-48%), and amongst the potentially aflatoxigenic Aspergillus species, A. flavus recorded the highest incidence (68% in fonio millet; 86% in sesame kernels). All A. parvisclerotigenus isolates produced B and G aflatoxins in culture while B aflatoxins were produced by only 39% and 20% of A. flavus strains isolated from the fonio millet and sesame kernels, respectively. Aflatoxin concentrations in fonio millet correlated inversely (r = -0.55; p = 0.02) with aflatoxin levels produced by toxigenic isolates on laboratory medium, but no correlation was observed in the case of the sesame samples. Both crops, especially sesame, may not be suitable substrates for aflatoxin biosynthesis. This is the first report on A. parvisclerotigenus in sesame.

  11. Assessment of aflatoxigenic Aspergillus and other fungi in millet and sesame from Plateau State, Nigeria

    PubMed Central

    Ezekiel, C.N.; Udom, I.E.; Frisvad, J.C.; Adetunji, M.C.; Houbraken, J.; Fapohunda, S.O.; Samson, R.A.; Atanda, O.O.; Agi-Otto, M.C.; Onashile, O.A.

    2014-01-01

    Sixteen fonio millet and 17 sesame samples were analysed for incidence of moulds, especially aflatoxigenic Aspergillus species, in order to determine the safety of both crops to consumers, and to correlate aflatoxin levels in the crops with levels produced by toxigenic isolates on laboratory medium. Diverse moulds including Alternaria, Aspergillus, Cercospora, Fusarium, Mucor, Penicillium, Rhizopus and Trichoderma were isolated. Aspergillus was predominantly present in both crops (46–48%), and amongst the potentially aflatoxigenic Aspergillus species, A. flavus recorded the highest incidence (68% in fonio millet; 86% in sesame kernels). All A. parvisclerotigenus isolates produced B and G aflatoxins in culture while B aflatoxins were produced by only 39% and 20% of A. flavus strains isolated from the fonio millet and sesame kernels, respectively. Aflatoxin concentrations in fonio millet correlated inversely (r = −0.55; p = 0.02) with aflatoxin levels produced by toxigenic isolates on laboratory medium, but no correlation was observed in the case of the sesame samples. Both crops, especially sesame, may not be suitable substrates for aflatoxin biosynthesis. This is the first report on A. parvisclerotigenus in sesame. PMID:24772370

  12. Seeded-yet-sterile biomass feedstocks: Kinggrass and pearl millet-napiergrass

    USDA-ARS?s Scientific Manuscript database

    Kinggrass (Pennisetum purpureum Schumach. x P. glaucum [L.] R. Br.) and Pearl Millet-Napiergrass (PMN; P. glaucum x P. purpureum) are unique among energy grasses as 'Seeded-yet-Sterile' feedstocks, derived from fertile parents capable of producing significant quantities of hybrid seed while being st...

  13. Influence of germination on bioaccessible iron and calcium in pearl millet (Pennisetum typhoideum).

    PubMed

    Suma, P Florence; Urooj, Asna

    2014-05-01

    Pearl millet is the staple for economically poorer section of the world's population and improving its mineral bioaccessibility is one of the important approaches to promote its utilization. In the absence of any data on the bioaccessible mineral content from commercially available millet, two varieties namely Kalukombu (native) and Maharastra Rabi Bajra (hybrid) were germinated and its effect on the bioaccessible iron and calcium content was explored using an in-vitro method which simulates gastrointestinal digestion. The millet was germinated for 72 h to facilitate maximum mineral extraction. The bioaccessibility of iron and calcium was considerably enhanced upon sprouting. This higher bioaccessibility could be attributed to decrease in antinutritional factors like phytate and oxalate as a result of germination. Changes in mineral and antinutrient content during sprouting led to significant variations in the antinutrient/mineral molar ratios which had a positive impact on the bioaccessible mineral content. Use of tap water for soaking prior to germination revealed contamination of the millet with iron. Contaminant iron in Kalukombu variety appeared to be less accessible; while the same was potentially bioaccessible in Maharashtra Rabi Bajra variety. Hence bioaccessibility of iron depends on the form in which it is present. The actual bioaccessibility of contaminated iron needs to be further investigated.

  14. Proso Millet Yield and Residue Mass Following Direct Harvest with a Stripper-header

    USDA-ARS?s Scientific Manuscript database

    Proso millet (Panicum miliaceum L.) (PM) is an important crop for dryland agricultural rotations in the central Great Plains. The crop is traditionally swathed prior to combining to promote uniform drying of the panicle and to minimize seed shattering losses. Direct harvesting of PM with a stripper ...

  15. Proso millet yield and residue mass following direct harvest with a stripper-header

    USDA-ARS?s Scientific Manuscript database

    Proso millet (Panicum miliaceum L.) (PM) is an important crop for dryland agricultural rotations in the central Great Plains. The crop is traditionally swathed prior to combining to promote uniform drying of the panicle and to minimize seed shattering losses. Direct harvesting of PM with a stripper ...

  16. Identification of earl millet cultivars using both microsatellites and enzymatic markers.

    PubMed

    Mendonça Neto, R P; Von Pinho, E V R; Carvalho, B L; Pereira, G S

    2013-01-07

    The increasing number of protected and registered cultivars and problems involving seed commercialization make distinction and identification of cultivars imperative. Millet (Pennisetum glaucum), a crop species with protected cultivars in Brazil, has been the target of seed piracy. Thus, with the objective of identifying different lots with regard to origin, we characterized six cultivars of commercialized millet of proven origin by means of the electrophoretic patterns of the isoenzymes alcohol dehydrogenase, esterase and glutamate oxaloacetate transaminase and by microsatellite markers, using primers specific for millet. The six cultivars were separated with four microsatellite loci. Based on this characterization, certification of genetic purity was undertaken for public domain commercialized seed lots. The isoenzymatic markers were also tested for stability of the patterns. Esterase patterns were altered in seeds with different physiological quality and health conditions, but this alteration did not hinder identification of the cultivars. It was observed that most of the millet seed lots commercialized in Brazil as being in public domain belong to other cultivars.

  17. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.].

    PubMed

    Jia, Xiaoping; Zhang, Zhongbao; Liu, Yinghui; Zhang, Chengwei; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu

    2009-02-01

    SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F(2) population, i.e. "B100" of cultivated S. italica and "A10" of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces' grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together.

  18. Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum.

    PubMed

    Ryden, Peter; Efthymiou, Maria-Nefeli; Tindyebwa, Teddy A M; Elliston, Adam; Wilson, David R; Waldron, Keith W; Malakar, Pradeep K

    2017-01-01

    In Uganda, the chaff remaining from threshed panicles of millet and sorghum is a low value, lignocellulose-rich agricultural by-product. Currently, it is used as a substrate for the cultivation of edible Oyster mushrooms (Pleurotus ostreatus). The aim of this study was to assess the potential to exploit the residual post-harvest compost for saccharification and fermentation to produce ethanol. Sorghum and millet chaff-derived spent oyster mushroom composts minus large mycelium particles were assessed at small-scale and low substrate concentrations (5% w/v) for optimal severity hydrothermal pre-treatment, enzyme loading and fermentation with robust yeasts to produce ethanol. These conditions were then used as a basis for larger scale assessments with high substrate concentrations (30% w/v). Millet-based compost had a low cellulose content and, at a high substrate concentration, did not liquefy effectively. The ethanol yield was 63.9 g/kg dry matter (DM) of original material with a low concentration (19.6 g/L). Compost derived from sorghum chaff had a higher cellulose content and could be liquefied at high substrate concentration (30% w/v). This enabled selected furfural-resistant yeasts to produce ethanol at up to 186.9 g/kg DM of original material and a concentration of 45.8 g/L. Spent mushroom compost derived from sorghum chaff has the potential to be an industrially useful substrate for producing second-generation bioethanol. This might be improved further through fractionation and exploitation of hemicellulosic moieties, and possibly the exploitation of the mycelium-containing final residue for animal feed. However, spent compost derived from millet does not provide a suitably high concentration of ethanol to make it industrially attractive. Further research on the difficulty in quantitatively saccharifying cellulose from composted millet chaff and other similar substrates such as rice husk is required.

  19. Genome-Wide Development and Use of Microsatellite Markers for Large-Scale Genotyping Applications in Foxtail Millet [Setaria italica (L.)

    PubMed Central

    Pandey, Garima; Misra, Gopal; Kumari, Kajal; Gupta, Sarika; Parida, Swarup Kumar; Chattopadhyay, Debasis; Prasad, Manoj

    2013-01-01

    The availability of well-validated informative co-dominant microsatellite markers and saturated genetic linkage map has been limited in foxtail millet (Setaria italica L.). In view of this, we conducted a genome-wide analysis and identified 28 342 microsatellite repeat-motifs spanning 405.3 Mb of foxtail millet genome. The trinucleotide repeats (∼48%) was prevalent when compared with dinucleotide repeats (∼46%). Of the 28 342 microsatellites, 21 294 (∼75%) primer pairs were successfully designed, and a total of 15 573 markers were physically mapped on 9 chromosomes of foxtail millet. About 159 markers were validated successfully in 8 accessions of Setaria sp. with ∼67% polymorphic potential. The high percentage (89.3%) of cross-genera transferability across millet and non-millet species with higher transferability percentage in bioenergy grasses (∼79%, Switchgrass and ∼93%, Pearl millet) signifies their importance in studying the bioenergy grasses. In silico comparative mapping of 15 573 foxtail millet microsatellite markers against the mapping data of sorghum (16.9%), maize (14.5%) and rice (6.4%) indicated syntenic relationships among the chromosomes of foxtail millet and target species. The results, thus, demonstrate the immense applicability of developed microsatellite markers in germplasm characterization, phylogenetics, construction of genetic linkage map for gene/quantitative trait loci discovery, comparative mapping in foxtail millet, including other millets and bioenergy grass species. PMID:23382459

  20. Diapause initiation and incidence in the millet stem borer, Coniesta ignefusalis (Lepidoptera: Pyralidae): the role of the host plant.

    PubMed

    Tanzubil, P B; Mensah, G W; McCaffery, A R

    2000-08-01

    The role of the host plant in the development of larval diapause in the millet stem borer, Coniesta ignefusalis (Hampson) was investigated in northern Ghana in 1996 and 1997. Surveys conducted in farmers' fields in the Guinea and Sudan savannah revealed that of all the upland cereals grown, the insect survived the dry season only in stalks and stubble of pearl millet, Pennisetum glaucum and late sorghum, Sorghum bicolor. This observation was confirmed by results from field trials conducted at the Manga Research Station. In these studies, C. ignefusalis larvae entered diapause only in late millet and late sorghum, with a higher incidence in the former. The insect neither attacked nor entered diapause in maize planted during the same period as the other crops. Results from controlled experiments showed that diapause incidence in the preferred host, millet, was higher in older than in younger plants, suggesting that host plant maturation is a key factor influencing the development of larval diapause in C. ignefusalis.

  1. Genotype and environment effects on ethanol yield from pearl millet

    USDA-ARS?s Scientific Manuscript database

    In spite of rising feedstock costs and the grain-deficit status of the southeast, investors have committed to the construction of new ethanol plants in the region. The use of alternative feedstocks will help to alleviate market demand for corn both as a feedgrain and as an ethanol feedstock. As a dr...

  2. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.].

    PubMed

    Xiang, Jishan; Tang, Sha; Zhi, Hui; Jia, Guanqing; Wang, Huajun; Diao, Xianmin

    2017-01-01

    Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1), which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II). A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  3. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H(+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolor.

    PubMed

    Anjaneyulu, Ediga; Reddy, Palle Surender; Sunita, Merla Srilakshmi; Kishor, Polavarapu B Kavi; Meriga, Balaji

    2014-06-15

    A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80-90% homology at the nucleotide and 85-95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50-70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25-100% in transgenics, while malondialdehyde (MDA) showed a 2-4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5-2.5-fold higher Na(+) and 0.4-0.8-fold higher K(+) levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Early mixed farming of millet and rice 7800 years ago in the Middle Yellow River region, China.

    PubMed

    Zhang, Jianping; Lu, Houyuan; Gu, Wanfa; Wu, Naiqin; Zhou, Kunshu; Hu, Yayi; Xin, Yingjun; Wang, Can

    2012-01-01

    The Peiligang Culture (9000-7000 cal. yr BP) in the Middle Yellow River region, North China, has long been considered representative of millet farming. It is still unclear, however, if broomcorn millet or foxtail millet was the first species domesticated during the Peiligang Culture. Furthermore, it is also unknown whether millet was cultivated singly or together with rice at the same period. In this study, phytolith analysis of samples from the Tanghu archaeological site reveals early crop information in the Middle Yellow River region, China. Our results show that broomcorn millet was the early dry farming species in the Peiligang Culture at 7800 cal. yr BP, while rice cultivation took place from 7800 to 4500 cal. yr BP. Our data provide new evidence of broomcorn millet and rice mixed farming at 7800 cal. yr BP in the Middle Yellow River region, which has implications for understanding the domestication process of the two crops, and the formation and continuance of the Ancient Yellow River Civilization.

  5. Early Mixed Farming of Millet and Rice 7800 Years Ago in the Middle Yellow River Region, China

    PubMed Central

    Zhang, Jianping; Lu, Houyuan; Gu, Wanfa; Wu, Naiqin; Zhou, Kunshu; Hu, Yayi; Xin, Yingjun; Wang, Can

    2012-01-01

    The Peiligang Culture (9000-7000 cal. yr BP) in the Middle Yellow River region, North China, has long been considered representative of millet farming. It is still unclear, however, if broomcorn millet or foxtail millet was the first species domesticated during the Peiligang Culture. Furthermore, it is also unknown whether millet was cultivated singly or together with rice at the same period. In this study, phytolith analysis of samples from the Tanghu archaeological site reveals early crop information in the Middle Yellow River region, China. Our results show that broomcorn millet was the early dry farming species in the Peiligang Culture at 7800 cal. yr BP, while rice cultivation took place from 7800 to 4500 cal. yr BP. Our data provide new evidence of broomcorn millet and rice mixed farming at 7800 cal. yr BP in the Middle Yellow River region, which has implications for understanding the domestication process of the two crops, and the formation and continuance of the Ancient Yellow River Civilization. PMID:23284907

  6. The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv)

    PubMed Central

    Liu, Xiaotong; Tang, Sha; Jia, Guanqing; Schnable, James C.; Su, Haixia; Tang, Chanjuan; Zhi, Hui; Diao, Xianmin

    2016-01-01

    Foxtail millet (Setaria italica (L.) P. Beauv), which belongs to the Panicoideae tribe of the Poaceae, is an important grain crop widely grown in Northern China and India. It is currently developing into a novel model species for functional genomics of the Panicoideae as a result of its fully available reference genome sequence, small diploid genome (2n=18, ~510Mb), short life cycle, small stature and prolific seed production. Argonaute 1 (AGO1), belonging to the argonaute (AGO) protein family, recruits small RNAs and regulates plant growth and development. Here, we characterized an AGO1 mutant (siago1b) in foxtail millet, which was induced by ethyl methanesulfonate treatment. The mutant exhibited pleiotropic developmental defects, including dwarfing stem, narrow and rolled leaves, smaller panicles and lower rates of seed setting. Map-based cloning analysis demonstrated that these phenotypic variations were attributed to a C–A transversion, and a 7-bp deletion in the C-terminus of the SiAGO1b gene in siago1b. Yeast two-hybrid assays and BiFC experiments revealed that the mutated region was an essential functional motif for the interaction between SiAGO1b and SiHYL1. Furthermore, 1598 differentially expressed genes were detected via RNA-seq-based comparison of SiAGO1b and wild-type plants, which revealed that SiAGO1b mutation influenced multiple biological processes, including energy metabolism, cell growth, programmed death and abiotic stress responses in foxtail millet. This study may provide a better understanding of the mechanisms by which SiAGO1b regulates the growth and development of crops. PMID:27045099

  7. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments.

    PubMed

    Varshney, Rajeev K; Shi, Chengcheng; Thudi, Mahendar; Mariac, Cedric; Wallace, Jason; Qi, Peng; Zhang, He; Zhao, Yusheng; Wang, Xiyin; Rathore, Abhishek; Srivastava, Rakesh K; Chitikineni, Annapurna; Fan, Guangyi; Bajaj, Prasad; Punnuri, Somashekhar; Gupta, S K; Wang, Hao; Jiang, Yong; Couderc, Marie; Katta, Mohan A V S K; Paudel, Dev R; Mungra, K D; Chen, Wenbin; Harris-Shultz, Karen R; Garg, Vanika; Desai, Neetin; Doddamani, Dadakhalandar; Kane, Ndjido Ardo; Conner, Joann A; Ghatak, Arindam; Chaturvedi, Palak; Subramaniam, Sabarinath; Yadav, Om Parkash; Berthouly-Salazar, Cécile; Hamidou, Falalou; Wang, Jianping; Liang, Xinming; Clotault, Jérémy; Upadhyaya, Hari D; Cubry, Philippe; Rhoné, Bénédicte; Gueye, Mame Codou; Sunkar, Ramanjulu; Dupuy, Christian; Sparvoli, Francesca; Cheng, Shifeng; Mahala, R S; Singh, Bharat; Yadav, Rattan S; Lyons, Eric; Datta, Swapan K; Hash, C Tom; Devos, Katrien M; Buckler, Edward; Bennetzen, Jeffrey L; Paterson, Andrew H; Ozias-Akins, Peggy; Grando, Stefania; Wang, Jun; Mohapatra, Trilochan; Weckwerth, Wolfram; Reif, Jochen C; Liu, Xin; Vigouroux, Yves; Xu, Xun

    2017-09-18

    Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.

  8. Rheological properties of reduced fat ice cream mix containing octenyl succinylated pearl millet starch.

    PubMed

    Sharma, Monika; Singh, Ashish K; Yadav, Deep N

    2017-05-01

    The octenyl succinyl anhydride (OSA) esterified pearl millet (Pennisetum typhoides) starch was evaluated as fat replacer in soft serve ice cream in comparison to other fat replacers viz. inulin, whey protein concentrate-70 and commercial starch. During temperature sweep test, the yield stress and flow behaviour index of un-pasteurized ice cream mixes increased as the temperature increased from 40 to 80 °C, while the consistency index decreased. Consistency index of aged ice cream mixes containing 2% fat replacer was higher as compared to mixes with 1% level. The aged ice cream mixes exhibited non-Newtonian behaviour as flow behaviour index values were less than one. Apparent viscosity (at 50 s(-1) shear rate) of control as well as ice cream mix containing 1% OSA-esterified pearl millet starch samples was 417 and 415 mPas, respectively and did not differ significantly. The overrun of the ice cream (with 5 and 7.5% fat) containing 1 and 2% of above fat replacers ranged between 29.7 and 34.3% and was significantly lower than control (40.3%). The percent melted ice cream was also low for the ice creams containing 2% of above fat replacers at 5% fat content as compared to control. However, sensory acceptability and rheological characteristics of reduced fat ice creams containing 1.0 and 2.0% OSA-esterified pearl millet starch were at par with other fat replacers under the study. Thus, OSA-esterified pearl millet starch has potential to be used as fat replacer in reduced fat ice cream.

  9. An assessment of yield gains under climate change due to genetic modification of pearl millet.

    PubMed

    Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S

    2017-12-01

    Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (p<0.05) increased yields at Aurangabad and Bijapur, but not at other locations. Increasing yield potential traits by 10% increased yields under both the climate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The

  10. Relationship of Nitrogen Use Efficiency with the Activities of Enzymes Involved in Nitrogen Uptake and Assimilation of Finger Millet Genotypes Grown under Different Nitrogen Inputs

    PubMed Central

    Gupta, Nidhi; Gupta, Atul K.; Gaur, Vikram S.; Kumar, Anil

    2012-01-01

    Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content. PMID:22919342

  11. Nutraceutical Value of Finger Millet [Eleusine coracana (L.) Gaertn.], and Their Improvement Using Omics Approaches.

    PubMed

    Kumar, Anil; Metwal, Mamta; Kaur, Sanveen; Gupta, Atul K; Puranik, Swati; Singh, Sadhna; Singh, Manoj; Gupta, Supriya; Babu, B K; Sood, Salej; Yadav, Rattan

    2016-01-01

    The science of nutritional biology has progressed extensively over the last decade to develop food-based nutraceuticals as a form of highly personalized medicine or therapeutic agent. Finger millet [Eleusine coracana (L.) Gaertn.] is a crop with potentially tremendous but under-explored source of nutraceutical properties as compared to other regularly consumed cereals. In the era of growing divide and drawback of nutritional security, these characteristics must be harnessed to develop finger millet as a novel functional food. In addition, introgression of these traits into other staple crops can improve the well-being of the general population on a global scale. The objective of this review is to emphasize the importance of biofortification of finger millet in context of universal health and nutritional crisis. We have specifically highlighted the role that recent biotechnological advancements have to offer for enrichment of its nutritional value and how these developments can commission to the field of nutritional biology by opening new avenues for future research.

  12. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review.

    PubMed

    Devi, Palanisamy Bruntha; Vijayabharathi, Rajendran; Sathyabama, Sathyaseelan; Malleshi, Nagappa Gurusiddappa; Priyadarisini, Venkatesan Brindha

    2014-06-01

    The growing public awareness of nutrition and health care research substantiates the potential of phytochemicals such as polyphenols and dietary fiber on their health beneficial properties. Hence, there is in need to identify newer sources of neutraceuticals and other natural and nutritional materials with the desirable functional characteristics. Finger millet (Eleusine coracana), one of the minor cereals, is known for several health benefits and some of the health benefits are attributed to its polyphenol and dietary fiber contents. It is an important staple food in India for people of low income groups. Nutritionally, its importance is well recognised because of its high content of calcium (0.38%), dietary fiber (18%) and phenolic compounds (0.3-3%). They are also recognized for their health beneficial effects, such as anti-diabetic, anti-tumerogenic, atherosclerogenic effects, antioxidant and antimicrobial properties. This review deals with the nature of polyphenols and dietary fiber of finger millet and their role with respect to the health benefits associated with millet.

  13. Preparation and characterization of foxtail millet bran oil using subcritical propane and supercritical carbon dioxide extraction.

    PubMed

    Shi, Yuzhong; Ma, Yuxiang; Zhang, Ruitin; Ma, Hanjun; Liu, Benguo

    2015-05-01

    The foxtail millet (Setaria italica Beauv) bran oil was extracted with traditional solvent extraction (SE), supercritical carbon dioxide extraction (SCE) and subcritical propane extraction (SPE) and analyzed the yield, physicochemical property, fatty acid profile, tocopherol composition, oil oxidative stability in this study. The yields of foxtail millet bran oil by SE, SCE and SPE were 17.14 %, 19.65 %, 21.79 % of raw material weight (corresponded to 75.54 %, 86.60 %, 96.03 % of the total amount of the oil measured by using Soxhlet extraction), respectively. The effect of the extraction methods on the physicochemical properties (peroxide value, saponification value and color) was significant while the difference in fatty acid profile was negligible based on GC analysis. The major components of vitamin E in the obtained oils were identified as α- and β-tocopherols by HPLC, and SPE was superior to SE and SCE in the extraction of tocopherols. In Rancimat test, the oil obtained by SPE showed the highest oil oxidative stability, which could attribute to its high tocopherol content and low peroxide value. In view of oil quality, SPE employed smaller times and lower pressures compared to SE and SCE. SPE was a suitable and selective method for the extraction of the foxtail millet bran oil.

  14. Analyzing millet price regimes and market performance in Niger with remote sensing data

    NASA Astrophysics Data System (ADS)

    Essam, Timothy Michael

    This dissertation concerns the analysis of staple food prices and market performance in Niger using remotely sensed vegetation indices in the form of normalized differenced vegetation index (NDVI). By exploiting the link between weather-related vegetation production conditions, which serve as a proxy for spatially explicit millet yields and thus millet availability, this study analyzes the potential causal links between NDVI outcomes and millet market performance and presents an empirical approach for predicting changes in market performance based on NDVI outcomes. Overall, the thesis finds that inter-market price spreads and levels of market integration can be reasonably explained by deviations in vegetation index outcomes from the growing season. Negative (positive) NDVI shocks are associated with better (worse) than expected market performance as measured by converging inter-market price spreads. As the number of markets affected by negatively abnormal vegetation production conditions in the same month of the growing season increases, inter-market price dispersion declines. Positive NDVI shocks, however, do not mirror this pattern in terms of the magnitude of inter-market price divergence. Market integration is also found to be linked to vegetation index outcomes as below (above) average NDVI outcomes result in more integrated (segmented) markets. Climate change and food security policies and interventions should be guided by these findings and account for dynamic relationships among market structures and vegetation production outcomes.

  15. Nutraceutical Value of Finger Millet [Eleusine coracana (L.) Gaertn.], and Their Improvement Using Omics Approaches

    PubMed Central

    Kumar, Anil; Metwal, Mamta; Kaur, Sanveen; Gupta, Atul K.; Puranik, Swati; Singh, Sadhna; Singh, Manoj; Gupta, Supriya; Babu, B. K.; Sood, Salej; Yadav, Rattan

    2016-01-01

    The science of nutritional biology has progressed extensively over the last decade to develop food-based nutraceuticals as a form of highly personalized medicine or therapeutic agent. Finger millet [Eleusine coracana (L.) Gaertn.] is a crop with potentially tremendous but under-explored source of nutraceutical properties as compared to other regularly consumed cereals. In the era of growing divide and drawback of nutritional security, these characteristics must be harnessed to develop finger millet as a novel functional food. In addition, introgression of these traits into other staple crops can improve the well-being of the general population on a global scale. The objective of this review is to emphasize the importance of biofortification of finger millet in context of universal health and nutritional crisis. We have specifically highlighted the role that recent biotechnological advancements have to offer for enrichment of its nutritional value and how these developments can commission to the field of nutritional biology by opening new avenues for future research. PMID:27446162

  16. Quality evaluation of millet-soy blended extrudates formulated through linear programming.

    PubMed

    Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K

    2012-08-01

    Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.

  17. Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum) Cultivars as Influenced by Processing

    PubMed Central

    Suma Pushparaj, Florence; Urooj, Asna

    2014-01-01

    Research on the effect of processing on the retention of bioactive components with potential antioxidant activity is gaining importance. The objective of this investigation was to evaluate the effect of various processing methods (milling, boiling, pressure cooking, roasting and germination respectively) on the antioxidant components as well as the antioxidant activities in the commonly used pearl millet cultivars—Kalukombu (K) and Maharashtra Rabi Bajra (MRB). The methanolic extracts of processed pearl millet flours were analyzed for 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, reducing power assay (RPA) and ferric reducing antioxidant power (FRAP) assays respectively. The samples were also evaluated for tannin, phytic acid and flavonoid content which was then correlated with the antioxidant activity assayed using three methods. The results indicated that the bran rich fraction showed high antioxidant activity (RPA) owing to high tannin, phytic acid and flavonoid levels. Heat treatments exhibited significantly (P ≤ 0.05) higher antioxidant activity (DPPH scavenging activity and RPA) reflecting the high flavonoid content. Processing did not have any significant effect on the FRAP activity of pearl millet. The data on the correlation coefficient suggests that DPPH radical scavenging activity and reducing power assay in the K variety was largely due to the presence of flavonoid content, however in MRB, no relationship was found between antioxidant activities and antioxidant components. PMID:26784663

  18. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    PubMed

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-09-03

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  19. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  20. Presolar Grains

    NASA Astrophysics Data System (ADS)

    Zinner, E. K.

    2003-12-01

    Traditionally, astronomers have studied the stars by using, with rare exception, electromagnetic radiation received by telescopes on and above the Earth. Since the mid-1980s, an additional observational window has been opened in the form of microscopic presolar grains found in primitive meteorites. These grains had apparently formed in stellar outflows of late-type stars and in the ejecta of stellar explosions and had survived the formation of the solar system. They can be located in and extracted from their parent meteorites and studied in detail in the laboratory. Their stellar origin is recognized by their isotopic compositions, which are completely different from those of the solar system and, for some elements, cover extremely wide ranges, leaving little doubt that the grains are ancient stardust.By the 1950s it had been conclusively established that the elements from carbon on up are produced by nuclear reactions in stars and the classic papers by Burbidge et al. (1957) and Cameron (1957) provided a theoretical framework for stellar nucleosynthesis. According to these authors, nuclear processes produce elements with very different isotopic compositions, depending on the specific stellar source. The newly produced elements are injected into the interstellar medium (ISM) by stellar winds or as supernova (SN) ejecta, enriching the galaxy in "metals" (all elements heavier than helium) and after a long galactic history the solar system is believed to have formed from a mix of this material. In fact, the original work by Burbidge et al. and Cameron was stimulated by the observation of regularities in the abundance of the nuclides in the solar system as obtained by the study of meteorites (Suess and Urey, 1956). Although providing only a grand average of many stellar sources, the solar system abundances of the elements and isotopes ( Anders and Grevesse, 1989; Grevesse et al., 1996; see Chapter 1.03; Lodders, 2003) remained an important test for nucleosynthesis

  1. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  2. Cardiovascular responses to millet pounding activity among women in a rural community in Northeastern Nigeria.

    PubMed

    Oyeyemi, Adetoyeje Y; Jajimaji, Fati; Oyeyemi, Adewale L; Jabbo, Abdul-Hameed A

    2017-01-01

    Pounding food items in a wooden mortal is a common home chore in many communities in African and Asian countries. However, no empirical data exist on energy expenditure during this activity, and whether the activity can be considered a light, moderate, or vigorous intensity physical activity is unknown. This study was aimed at gaining insights into energy expenditure during millet pounding through cardiovascular responses to millet pounding activity, and to explore possible differences in response between women who pound millet as their occupation (habitual millet pounders) and those who pound millet only for their own home cooking but not as a job (nonhabitual pounders). A total of forty apparently healthy women performed millet pounding activity in standing position for 15 min durations, and their cardiovascular parameters including heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressures (DBPs), and rated perceived exertion (RPE) at rest, and immediately after pounding activity were assessed. Significant increases in the subjects' cardiovascular parameters in the range of 7-12, 1-5, and 19-21 point values above the resting levels for SBP, DBP, and HR, respectively, were observed. Significantly higher SBP was also observed for the habitual pounders than the values for the nonhabitual pounders, whereas RPE was significantly higher for the nonhabitual pounders than for the habitual pounders in response to pounding. This study suggests that millet pounding substantially stresses the cardiovascular system sufficiently to place the activity within the moderate intensity category. Further studies on energy cost of this house chore, using instrumentation that is capable of direct measure of oxygen consumption, is warranted. Résumé Contexte: Le fait de battre des aliments dans un mortier en bois est une corvée à domicile fréquente dans de nombreuses communautés des pays d'Afrique et d'Asie. cependant, Il n'existe pas de données empiriques sur

  3. Simultaneous inclusion of sorghum and cottonseed meal or millet in broiler diets: effects on performance and nutrient digestibility.

    PubMed

    Batonon-Alavo, D I; Bastianelli, D; Lescoat, P; Weber, G M; Umar Faruk, M

    2016-07-01

    Two experiments were conducted to investigate the use of sorghum, cottonseed meal and millet in broiler diets and their interaction when they are used simultaneously. In Experiment 1, a corn-soybean meal control diet was compared with eight experimental treatments based on low tannin sorghum (S30, S45 and S60), cottonseed meal (CM15, CM40) or both ingredients included in the same diet (S30/CM40, S45/CM25 and S60CM15). Results showed that BW gain was not affected by the inclusion of sorghum or cottonseed meal. However, feed intake tended to be affected by the cereal type with the highest values with sorghum-based diets. Feed conversion ratio increased (P<0.001) with sorghum-based diets compared with the control diet, whereas a combination of cottonseed meal and sorghum in the same diet did not affect the feed conversion ratio. Significant differences (P<0.001) were observed in apparent ileal digestibility (%) of protein and energy with the cottonseed meal and sorghum/cottonseed meal-based diets having lower protein and energy digestibility compared with corn-based diets. In Experiment 2, a control diet was compared with six diets in which corn was substituted at 60%, 80% or 100% by either sorghum or millet and other three diets with simultaneous inclusion of these two ingredients (S30/M30, S40/M40, S50/M50). Single or combined inclusion of sorghum and millet resulted in similar feed intake and growth performance as the control diet. Apparent ileal digestibility of protein and energy was higher with millet-based diets (P<0.001). Total tract digestibility of protein in sorghum and millet-based diets tended to decrease linearly with the increasing level of substitution. Sorghum-based diets resulted in lower total tract digestibility of fat compared with millet and sorghum/millet-based diets (P<0.001). Higher total tract digestibility of starch were obtained with the control diet and millet-based diets compared with the sorghum-based treatments. Results of the two

  4. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  5. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  6. Inorganic arsenic and trace elements in Ghanaian grain staples.

    PubMed

    Adomako, Eureka E; Williams, Paul N; Deacon, Claire; Meharg, Andrew A

    2011-10-01

    A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains; thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As.

  7. Genetic Diversity and Population Structure of Broomcorn Millet (Panicum miliaceum L.) Cultivars and Landraces in China Based on Microsatellite Markers

    PubMed Central

    Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894

  8. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease.

    PubMed

    Bergamo, Paolo; Maurano, Francesco; Mazzarella, Giuseppe; Iaquinto, Gaetano; Vocca, Immacolata; Rivelli, Anna Rita; De Falco, Enrica; Gianfrani, Carmen; Rossi, Mauro

    2011-08-01

    Celiac disease (CD) is a gluten-sensitive enteropathy with an immune basis. We established the immune reactivity of the alcohol-soluble fraction from two minor cereals (tef and millet) and two pseudocereals (amaranth and quinoa) which are believed to be nontoxic based on taxonomy. Grains were examined in intestinal T-cell lines (iTCLs), cultures of duodenal explants from HLA-DQ2(+) CD patients and HLA-DQ8 transgenic mice for signs of activation. Our data indicated that tef, millet, amaranth, and quinoa did not show any immune cross-reactivity toward wheat gliadin, and therefore confirming their safety in the diet of CD patients. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multiple origins of the phenol reaction negative phenotype in foxtail millet, Setaria italica (L.) P. Beauv., were caused by independent loss-of-function mutations of the polyphenol oxidase (Si7PPO) gene during domestication.

    PubMed

    Inoue, Takahiko; Yuo, Takahisa; Ohta, Takeshi; Hitomi, Eriko; Ichitani, Katsuyuki; Kawase, Makoto; Taketa, Shin; Fukunaga, Kenji

    2015-08-01

    Foxtail millet shows variation in positive phenol color reaction (Phr) and negative Phr in grains, but predominant accessions of this crop are negative reaction type, and the molecular genetic basis of the Phr reaction remains unresolved. In this article, we isolated polyphenol oxidase (PPO) gene responsible for Phr using genome sequence information and investigated molecular genetic basis of negative Phr and crop evolution of foxtail millet. First of all, we searched for PPO gene homologs in a foxtail millet genome database using a rice PPO gene as a query and successfully found three copies of the PPO gene. One of the PPO gene homologs on chromosome 7 showed the highest similarity with PPO genes expressed in hulls (grains) of other cereal species including rice, wheat, and barley and was designated as Si7PPO. Phr phenotypes and Si7PPO genotypes completely co-segregated in a segregating population. We also analyzed the genetic variation conferring negative Phr reaction. Of 480 accessions of the landraces investigated, 87 (18.1 %) showed positive Phr and 393 (81.9 %) showed negative Phr. In the 393 Phr negative accessions, three types of loss-of-function Si7PPO gene were predominant and independently found in various locations. One of them has an SNP in exon 1 resulting in a premature stop codon and was designated as stop codon type, another has an insertion of a transposon (Si7PPO-TE1) in intron 2 and was designated as TE1-insertion type, and the other has a 6-bp duplication in exon 3 resulting in the duplication of 2 amino acids and was designated as 6-bp duplication type. As a rare variant of the stop codon type, one accession additionally has an insertion of a transposon, Si7PPO-TE2, in intron 2 and was designated as "stop codon +TE2 insertion type". The geographical distribution of accessions with positive Phr and those with three major types of negative Phr was also investigated. Accessions with positive Phr were found in subtropical and tropical regions at

  10. Optimization of the formulation and technology of pearl millet based 'ready-to-reconstitute' kheer mix powder.

    PubMed

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur

    2014-10-01

    The objective of this study was to optimize the process of manufacturing instant kheer mix based on pearl millet instead of rice. Dairy whitener, pearl millet and powdered sugar were the responses studied by employing the 3-factor Central Composite Rotatable Design. The formulation with 15 g sugar, 30 g dairy whitener and 20 g pearl millet was found suitable for obtaining dry kheer mix. The analyses were based on scores of consistency, cohesiveness, viscosity and overall acceptability. The reconstituted product from the formulated kheer mix had an overall acceptability score of 7.66 and desirability index of 0.7663. The moisture, fat, protein, carbohydrate and ash contents of the dry mix product were 2.8, 4.38, 5.84, 85.88 and 1.1 %, respectively.

  11. Cereal Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl Millet (Pennisetum glaucum [L.] R. Br.)

    PubMed Central

    Remigereau, Marie-Stanislas; Lakis, Ghayas; Rekima, Samah; Leveugle, Magalie; Fontaine, Michaël C.; Langin, Thierry; Sarr, Aboubakry; Robert, Thierry

    2011-01-01

    Background During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. Methodology/Principal Findings Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. Conclusions/Significance Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective

  12. Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin.

    PubMed

    Naino Jika, A K; Dussert, Y; Raimond, C; Garine, E; Luxereau, A; Takvorian, N; Djermakoye, R S; Adam, T; Robert, T

    2017-01-25

    Despite of a growing interest in considering the role of sociological factors in seed exchanges and their consequences on the evolutionary dynamics of agro-biodiversity, very few studies assessed the link between ethno-linguistic diversity and genetic diversity patterns in small-holder farming systems. This is key for optimal improvement and conservation of crop genetic resources. Here, we investigated genetic diversity at 17 SSR markers of pearl millet landraces (varieties named by farmers) in the Lake Chad Basin. 69 pearl millet populations, representing 27 landraces collected in eight ethno-linguistic farmer groups, were analyzed. We found that the farmers' local taxonomy was not a good proxy for population's genetic differentiation as previously shown at smaller scales. Our results show the existence of a genetic structure of pearl millet mainly associated with ethno-linguistic diversity in the western side of the lake Chad. It suggests there is a limit to gene flow between landraces grown by different ethno-linguistic groups. This result was rather unexpected, because of the highly outcrossing mating system of pearl millet, the high density of pearl millet fields all along the green belt of this Sahelian area and the fact that seed exchanges among ethno-linguistic groups are known to occur. In the eastern side of the Lake, the pattern of genetic diversity suggests a larger efficient circulation of pearl millet genes between ethno-linguistic groups that are less numerous, spatially intermixed and, for some of them, more prone to exogamy. Finally, other historical and environmental factors which may contribute to the observed diversity patterns are discussed.Heredity advance online publication, 25 January 2017; doi:10.1038/hdy.2016.128.

  13. Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin

    PubMed Central

    Naino Jika, A K; Dussert, Y; Raimond, C; Garine, E; Luxereau, A; Takvorian, N; Djermakoye, R S; Adam, T; Robert, T

    2017-01-01

    Despite of a growing interest in considering the role of sociological factors in seed exchanges and their consequences on the evolutionary dynamics of agro-biodiversity, very few studies assessed the link between ethno-linguistic diversity and genetic diversity patterns in small-holder farming systems. This is key for optimal improvement and conservation of crop genetic resources. Here, we investigated genetic diversity at 17 SSR markers of pearl millet landraces (varieties named by farmers) in the Lake Chad Basin. 69 pearl millet populations, representing 27 landraces collected in eight ethno-linguistic farmer groups, were analyzed. We found that the farmers’ local taxonomy was not a good proxy for population’s genetic differentiation as previously shown at smaller scales. Our results show the existence of a genetic structure of pearl millet mainly associated with ethno-linguistic diversity in the western side of the lake Chad. It suggests there is a limit to gene flow between landraces grown by different ethno-linguistic groups. This result was rather unexpected, because of the highly outcrossing mating system of pearl millet, the high density of pearl millet fields all along the green belt of this Sahelian area and the fact that seed exchanges among ethno-linguistic groups are known to occur. In the eastern side of the Lake, the pattern of genetic diversity suggests a larger efficient circulation of pearl millet genes between ethno-linguistic groups that are less numerous, spatially intermixed and, for some of them, more prone to exogamy. Finally, other historical and environmental factors which may contribute to the observed diversity patterns are discussed. PMID:28121310

  14. Sequential fermentation of pearl millet by yeasts and lactobacilli--effect on the antinutrients and in vitro digestibility.

    PubMed

    Khetarpaul, N; Chauhan, B M

    1991-10-01

    Sequential culture fermentation by yeasts (S. diastaticus or S. cerevisiae) at 30 degrees C for 72 hr and then followed by lactobacilli fermentation (L. brevis or L. fermentum) at 30 degrees C for 72 h more resulted in a significant reduction in phytic acid and polyphenol content of pearl millet flour. Fermentation by S. diastaticus and L. brevis combination almost eliminated phytic acid from pearl millet flour. The combinations of S. diastaticus with both the lactobacilli reduced phytic acid more effectively than those of S. cerevisiae. The products fermented by S. cerevisiae and L. brevis and by S. diastaticus and L. brevis combinations had the highest protein and starch digestibility (in vitro).

  15. Differential responses of forage pearl millet genotypes to chinch bug (Heteroptera: Blissidae) feeding.

    PubMed

    Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David

    2009-10-01

    Chinch bug, Blissus leucopterus leucopterus (Say) (Heteroptera: Blissidae), is one of the most important insect pests on forage pearl millet, Pennisetum glaucum L. R. Br., production in the southeastern United States. Twenty-nine forage pearl millet genotypes were assessed for chinch bug resistance by using stunt and necrosis ratings in combination with quantitative measurements of chlorophyll content and leaf photosynthetic rate. Plant stunt and leaf sheath necrosis ratings, and chlorophyll content in flag leaves differed among the 29 genotypes. Photosynthetic rate differed both among the noninfested control and among the chinch bug-infested plants. The chinch bug-infested plants had lower photosynthetic rate than the noninfested control plants. Inbreds with resistance superior to that of Tift 23DB were identified for hybrid development. When the 29 pearl millet genotypes were assessed by the six parameters by using cluster analysis, genotypes 07F-1226, 07F-1229, 07F-1231, 07F-1235, 07F-1238, 07F-1239, and 07F-1240 were the most resistant, whereas the genotypes 07F-1220, 07F-1221, 07F-1225, 07F-1227, 07F-1232, 07F-1246, and Tift 23DB were the most susceptible to chinch bug feeding. The rest of the genotypes expressed intermediate responses to the six parameters. To differentiate the physiological impact of chinch bug feeding on light and dark reactions of plant photosynthesis, photosynthesis capacity was assessed using light and CO2 (A/Ci) response curves on noninfested and chinch bug-infested plants of genotypes 07F-1246, 07F-1223, and 07F-1245, which expressed low, intermediate, and high chlorophyll content, respectively. Based on the A/Ci curves, photosynthesis capacity of injured leaves was suppressed in 07F-1223 and 07F-1246, whereas the chinch bug-injured 07F-1245 leaves showed an increase of photosynthetic rate compared with the noninfested plants. In contrast, light response curves were suppressed in the chinch bug-injured plants compared with the

  16. Assessment of Napier millet (Pennisetum purpureumx P. glaucum) and sorghum (Sorghum bicolor) trap crops for the management of Chilo partellus on maize.

    PubMed

    Hari, N S; Jindal, J

    2009-04-01

    Two Napier millet (Pennisetum purpureumxP. glaucum) hybrids, namely PBN 83 and PBN 233 and one sorghum (Sorghum bicolor) variety, SL 44, were assessed for their potential role as a trap crop in the management of the stem borer, Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) on maize. Oviposition preference and larval survival and development were determined for different test plants under laboratory and screen house conditions. Further, field dispersal of C. partellus larvae was assessed between Napier millet and maize crops. Results from no-choice and dual-choice tests indicated that Napier millet hybrids were preferred for oviposition over maize by C. partellus moths. Sorghum was, however, not preferred over maize in this respect. Napier millet hybrids were poor larval hosts, and a rapid decline in larval numbers was noticed within the first five days after hatching and virtually no larvae survived to pupation. Leaf area eaten by the borer larvae was significantly less on these hybrids than on maize or sorghum. Plant damage was more severe in maize and sorghum than Napier millet hybrids. No appreciable larval shift was noticed from Napier millet hybrids to the adjoining maize crop. The evaluated Napier millet hybrids, therefore, had potential for use as trap crop in C. partellus management. Sorghum, however, did not hold promise in this respect.

  17. Factors affecting the sporulation capacity during long-term storage of the aphid-pathogenic fungus Pandora neoaphidis grown on broomcorn millet.

    PubMed

    Feng, Ming-Guang; Hua, Li

    2005-04-15

    Aphid-pathogenic fungus, Pandora neoaphidis, grown on broomcorn millet possesses greater sporulation capacity (C(s)) than aphid cadavers. The most sporulating cultures (32.0x10(4) spores millet(-1) grain) with water content (C(w)) of 48.7% were prepared by incubation at 20 degrees C for 15 days and used to study the effect of temperature and humidity on C(s) during long-term storage. Cultures were sealed with paper to retain ambient humidity, with parafilm for saturated humidity, or kept in 85% and 98% RH chambers. The C(w) and C(s) were monitored during 200-day storage at 5-20 degrees C. The paper-sealed cultures at 5 degrees C, associated with 21-25% of C(w), were best preserved and their 120-day C(s) was similar to that of the fresh cadavers. Consistently or variably high RH at 5 degrees C resulted in significantly higher C(w) and lower C(s) despite longer viability. The regimes at 10 degrees C preserved the cultures for 40 days. The observations fit well to the logistic model C(s)=35.28/{1+exp[-2.36+(-0.003C(w)+0.001C(w)T)t]} (r(2)=0.95) for all regimes of temperature (T) or C(s)=35.55/[1+exp(-2.33+0.001C(w)t)] (r(2)=0.93) at 5 degrees C only. The rate of decline of C(s) of -0.003C(w)+0.001C(w)T or 0.001 C(w) over days (t) highlights the primary effect of C(w). The daily C(s)-decline rates obtained for the best-stored cultures and air-dried cadavers stored at 5 degrees C were surprisingly identical. The results suggest a possible cheap method for preparing and storing large quantities of P. neoaphiodis inocula.

  18. Effect of incorporating finger millet in wheat flour on mixolab behavior, chapatti quality and starch digestibility.

    PubMed

    Sharma, Bharati; Gujral, Hardeep Singh; Solah, Vicky

    2017-09-15

    Wheat and finger millet flour (two cultivars) were blended in the ratio (3:1) to form a composite flour and its dough properties were studied on the mixolab. The chapatti making and digestibility behavior of the composite flour was also investigated. The wheat finger millet (WFM) flour blend displayed up to 30.7% higher total phenolic content (TPC), 38.2% higher total flavonoid content (TFC) and 75.4% higher antioxidant activity (AOA) than the wheat flour. Chapattis prepared from the composite blends exhibited lower retrogradation as evident by the mixolab retrogradation index, higher values of soluble starch and soluble amylose in stored chapatti. The slowly digestible starch (SDS) correlated positively (R=0.816, p<0.05) with TPC and water absorption correlated positively (R=0.995, p<0.05) with damage starch content. The chapattis made from the composite flour had higher SDS and resistant starch (RS) values demonstrating potential as a food with functional characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dietary Interventions for Type 2 Diabetes: How Millet Comes to Help

    PubMed Central

    Kam, Jason; Puranik, Swati; Yadav, Rama; Manwaring, Hanna R.; Pierre, Sandra; Srivastava, Rakesh K.; Yadav, Rattan S.

    2016-01-01

    Diabetes has become a highly problematic and increasingly prevalent disease world-wide. It has contributed toward 1.5 million deaths in 2012. Management techniques for diabetes prevention in high-risk as well as in affected individuals, beside medication, are mainly through changes in lifestyle and dietary regulation. Particularly, diet can have a great influence on life quality for those that suffer from, as well as those at risk of, diabetes. As such, considerations on nutritional aspects are required to be made to include in dietary intervention. This review aims to give an overview on the general consensus of current dietary and nutritional recommendation for diabetics. In light of such recommendation, the use of plant breeding, conventional as well as more recently developed molecular marker-based breeding and biofortification, are discussed in designing crops with desired characteristics. While there are various recommendations available, dietary choices are restricted by availability due to geo-, political-, or economical- considerations. This particularly holds true for countries such as India, where 65 million people (up from 50 million in 2010) are currently diabetic and their numbers are rising at an alarming rate. Millets are one of the most abundant crops grown in India as well as in Africa, providing a staple food source for many poorest of the poor communities in these countries. The potentials of millets as a dietary component to combat the increasing prevalence of global diabetes are highlighted in this review. PMID:27729921

  20. Purification and characterization of an alpha-glucosidase from germinating millet seeds.

    PubMed

    Yamasaki, Yoshiki; Fujimoto, Mikio; Kariya, Junji; Konno, Haruyoshi

    2005-04-01

    An alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on CM-cellulofine/Fractogel EMD SO(3), Sephacryl S-200 HR and TSK gel Phenyl-5 PW, and preparative isoelectric focusing. The enzyme was homogenous by SDS-PAGE. The molecular weight of the enzyme was estimated to be 86,000 based on its mobility in SDS-PAGE and 80,000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 8.3. The enzyme readily hydrolyzed maltose, malto-oligosaccharides, and alpha-1,4-glucan, but hydrolyzed polysaccharides more rapidly than maltose. The K(m) value decreased with an increase in the molecular weight of the substrate. The value for maltoheptaose was about 4-fold lower than that for maltose. The enzyme preferably hydrolyzed amylopectin in starch, but also readily hydrolyzed nigerose, which has an alpha-1,3-glucosidic linkage and exists as an abnormal linkage in the structure of starch. In particular, the enzyme readily hydrolyzed millet starch from germinating seeds that had been degraded to some extent.

  1. Utilization of chemically modified pearl millet starches in preparation of custards with improved cold storage stability.

    PubMed

    Shaikh, Marium; Ali, Tahira Mohsin; Hasnain, Abid

    2017-11-01

    Custards were prepared using five ingredients: milk powder, modified pearl millet starch, sugar, vanilla essence and water. The effect of adding hydroxypropylated starch (HPS), succinylated starch (SUS), oxidised starch (OXS) and acetylated starch (ACS) on cold storage stability, pasting, textural and sensory properties was studied and compared to custards containing native pearl millet starch (NS). Interestingly, all chemically modified starches reduced syneresis and no water weeping was observed in custard sample incorporating hydroxypropylated starch (HPC) even after 7days of cold storage. Viscoamylographic analysis revealed that custard containing succinylated starch (SUC) had the highest peak viscosity (108.8 BU), whereas HPC showed the least set back viscosity (19.0 BU). Sensory results suggested that assessors preferred HPC over other custards. Custards are preferred for their chewy semi-solid texture. Incorporation of hydroxypropylated starch (HPS) increased hardness, gumminess and chewiness which subsequently led to higher sensory scores during subjective analysis. Also, no retrogradation peak was observed for HPS and acetylated starch (ACS) when rescanned after 14 days. Thus, it could be concluded that HPS could be used in custards to confer low temperature stability by reducing syneresis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Non-wheat pasta based on pearl millet flour containing barley and whey protein concentrate.

    PubMed

    Yadav, Deep N; Balasubramanian, S; Kaur, Jaspreet; Anand, Tanupriya; Singh, Ashish K

    2014-10-01

    Non-wheat pasta was prepared with pearl millet supplemented with 10-30 % barley flour, 5-15 % whey protein concentrate, 2.5-4 % carboxy methyl cellulose and 27-33 % water using response surface methodology (RSM) following central composite rotatable design (CCRD). Results showed that barley flour and whey protein concentrate (WPC) had significant (p ≤ 0.05) positive effect on lightness and negative effect on stickiness of pasta, thus improved the overall acceptability (OAA). Carboxymethyl cellulose (CMC) improved the textural attributes i.e. increased firmness and decreased stickiness significantly (P ≤ 0.05) and caused a significant (P ≤ 0.05) reduction in solids losses in gruel. Based upon the experiments, the optimized level of ingredients were barley flour 13.80 g 100 g(-1) pearl millet flour (PMF), WPC 12.27 g 100 g(-1) PMF, CMC 3.45 g 100 g(-1) PMF and water 27.6 mL 100 g(-1) ingredients premix with 88 % desirability. The developed pasta had protein 16.47 g, calcium 98.53 mg, iron 5.43 mg, phosphorus 315.5 mg and β-glucan 0.33 g 100 g(-1) pasta (db).

  3. Genome scan reveals selection acting on genes linked to stress response in wild pearl millet.

    PubMed

    Berthouly-Salazar, Cécile; Thuillet, Anne-Céline; Rhoné, Bénédicte; Mariac, Cédric; Ousseini, Issaka Salia; Couderc, Marie; Tenaillon, Maud I; Vigouroux, Yves

    2016-11-01

    Uncovering genomic regions involved in adaption is a major goal in evolutionary biology. High-throughput sequencing now makes it possible to tackle this challenge in nonmodel species. Yet, despite the increasing number of methods targeted to specifically detect genomic footprints of selection, the complex demography of natural populations often causes high rates of false positive in gene discoveries. The aim of this study was to identify climate adaptations in wild pearl millet populations, Cenchrus americanus ssp. monodii. We focused on two climate gradients, one in Mali and one in Niger. We used a two-step strategy to limit false-positive outliers. First, we considered gradients as biological replicates and performed RNA sequencing of four populations at the extremities. We combined four methods-three based on differentiation among populations and one based on diversity patterns within populations-to identify outlier SNPs from a set of 87 218 high-quality SNPs. Among 11 155 contigs of pearl millet reference transcriptome, 540 exhibited selection signals as evidenced by at least one of the four methods. In a second step, we genotyped 762 samples in 11 additional populations distributed along the gradients using SNPs from the detected contigs and random SNPs as control. We further assessed selection on this large data set using a differentiation-based method and a method based on correlations with environmental variables based. Four contigs displayed consistent signatures between the four extreme and 11 additional populations, two of which were linked to abiotic and biotic stress responses.

  4. [cDNA library construction from panicle meristem of finger millet].

    PubMed

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  5. Spatial and Temporal Variation in Selection of Genes Associated with Pearl Millet Varietal Quantitative Traits In situ

    PubMed Central

    Mariac, Cédric; Ousseini, Issaka S.; Alio, Abdel-Kader; Jugdé, Hélène; Pham, Jean-Louis; Bezançon, Gilles; Ronfort, Joelle; Descroix, Luc; Vigouroux, Yves

    2016-01-01

    Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of 2 years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability. PMID:27507986

  6. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection

    PubMed Central

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-01-01

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet. PMID:27499196

  7. Successful application of new cost-effective procedures for genotyping pearl millets for genetic diversity and linkage mapping

    USDA-ARS?s Scientific Manuscript database

    In spite of technology advancement, procedures of DNA extraction and genotyping of large plant populations are cumbersome and expensive. Therefore, in order to genotype large mapping populations for studying genetic diversity, and linkage/QTL mapping for disease and pest resistance in pearl millet (...

  8. A simplified, cost- and time-effective procedure for genotyping pearl millet in resource-limited laboratories

    USDA-ARS?s Scientific Manuscript database

    Procedures for DNA extraction and genotyping of large plant populations are cumbersome and expensive for resource-limited laboratories. Through eliminating or changing several steps used in DNA extraction, PCR amplification and PAGE electrophoresis in pearl millet [Pennisetum glaucum (L.) R. Br.], w...

  9. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen

    PubMed Central

    Siddaiah, Chandra Nayaka; Satyanarayana, Niranjan Raj; Mudili, Venkataramana; Kumar Gupta, Vijai; Gurunathan, Selvakumar; Rangappa, Shobith; Huntrike, Shekar Shetty; Srivastava, Rakesh Kumar

    2017-01-01

    Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen. PMID:28322224

  10. Inclusion of sorghum, millet and cottonseed meal in broiler diets: a meta-analysis of effects on performance.

    PubMed

    Batonon-Alavo, D I; Umar Faruk, M; Lescoat, P; Weber, G M; Bastianelli, D

    2015-07-01

    A meta-analysis was conducted (i) to evaluate broiler response to partial or total substitution of corn by sorghum and millet and (ii) to determine the effect of soybean meal replacement by cottonseed meal in broiler diet. The database included 190 treatments from 29 experiments published from 1990 to 2013. Bird responses to an experimental diet were calculated relative to the control (Experimental-Control), and were submitted to mixed-effect models. Results showed that diets containing millet led to similar performance as the corn-based ones for all parameters, whereas sorghum-based diets decreased growth performance. No major effect of the level of substitution was observed with millet or cottonseed meal. No effect of the level of substitution of sorghum on feed intake was found; however, growth performance decreased when the level of substitution of corn by sorghum increased. Cottonseed meal was substituted to soybean meal up to 40% and found to increase feed intake while reducing growth performance. Young birds were not more sensitive to these ingredients than older birds since there was no negative effect of these ingredients on performance in the starter phase. Results obtained for sorghum pointed out the necessity to find technological improvements that will increase the utilization of these feedstuffs in broiler diet. An additional work is scheduled to validate these statistical results in vivo and to evaluate the interactions induced with the simultaneous inclusions of sorghum, millet and cottonseed meal in broiler feeding.

  11. Evaluation of Millet and Rapeseed as Rotation or Green Manure Crops to Control Nematodes in Orchard Replant

    USDA-ARS?s Scientific Manuscript database

    Four annual crops, including Canadian forage pearl millet (Pennisetum glaucum) hybrid 101, velvetbean (Mucuna spp. ), rapeseed (Brassica napus) cv. Dwarf Essex, and buckwheat (Fagopyrum spp.), were evaluated as rotation or green manure crops for suppression of dagger (Xiphinema americanum) and lesio...

  12. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen.

    PubMed

    Siddaiah, Chandra Nayaka; Satyanarayana, Niranjan Raj; Mudili, Venkataramana; Kumar Gupta, Vijai; Gurunathan, Selvakumar; Rangappa, Shobith; Huntrike, Shekar Shetty; Srivastava, Rakesh Kumar

    2017-03-21

    Endophytic Trichoderma hamatum UoM 13 isolated from pearl millet roots was evaluated for its efficiency to suppress downy mildew disease. Under laboratory conditions, T. hamatum seed treatment significantly enhanced pearl millet seed germination and seedling vigor. T. hamatum seed treatment resulted in systemic and durable immunity against pearl millet downy mildew disease under greenhouse and field conditions. T. hamatum treated seedlings responded to downy mildew infection with high lignification and callose deposition. Analysis of defense enzymes showed that T. hamatum treatment significantly enhanced the activities of glucanase, peroxidase, phenylalanine ammonia-lyase, and polyphenol oxidase in comparison to untreated control. RT-PCR analysis revealed differentially expressed transcripts of the defense enzymes and PR-proteins in treated, untreated, and checks, wherein PR-1, PR-5, and cell wall defense HRGPs were significantly over expressed in treated seedlings as against their lower expression in controls. T. hamatum treatment significantly stimulated endogenous salicylic acid (SA) levels and significantly upregulated important SA biosynthesis gene isochorismate synthase. The results indicated that T. hamatum UoM13 treatment induces resistance corresponding to significant over expression of endogenous SA, important defense enzymes, PR-proteins, and HRGPs, suggesting that SA biosynthetic pathway is involved in pearl millet for mounting systemic immunity against downy mildew pathogen.

  13. Gamma radiation effects on microbiological, physico-chemical and antioxidant properties of Tunisian millet (Pennisetum Glaucum L.R.Br.).

    PubMed

    Ben Mustapha, Maha; Bousselmi, Mehrez; Jerbi, Taïeb; Ben Bettaïeb, Nasreddine; Fattouch, Sami

    2014-07-01

    Hygienic quality of Tunisian pearl millet flour is always of major concern to consumers as well as all involved in the production, processing and distribution sectors. In the present study, the microbiological and biochemical properties of this food were examined following gamma-radiation. The D10-values for the Total Aerobic Plate Count, yeasts and moulds were respectively 1.5 and 3.7kGy. Furthermore, millet flour is commonly susceptible to mycotoxin contaminations, so the Ochratoxin A residues were also investigated; a reduction of 74% was observed with 10kGy. Moreover, the radiation process did not significantly alter fatty acids composition of the millet flour as obtained with Gas chromatography-flame ionisation detector technic. The peroxide value had increased from 26.16 to 34.43meqO2/kg with 3kGy. At 1kGy, we noticed an important loss of vitamin A of about 88.6%. In contrast, the total phenolic content, the ABTS-RSA and the DPPH-RSA of the radiated millet flour exhibited non-significant changes (p<0.05).

  14. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    PubMed

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  15. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection.

    PubMed

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-08-08

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet.

  16. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population.

    PubMed

    Ni, Xuemei; Xia, Qiuju; Zhang, Houbao; Cheng, Shu; Li, Hui; Fan, Guangyu; Guo, Tao; Huang, Ping; Xiang, Haitao; Chen, Qingchun; Li, Ning; Zou, Hongfeng; Cai, Xuemei; Lei, Xuejing; Wang, Xiaoming; Zhou, Chengshu; Zhao, Zhihai; Zhang, Gengyun; Du, Guohua; Cai, Wei; Quan, Zhiwu

    2017-02-01

    Foxtail millet (Setaria italica) provides food and fodder in semi-arid regions and infertile land. Resequencing of 184 foxtail millet recombinant inbred lines (RILs) was carried out to aid essential research on foxtail millet improvement. A total 483 414 single nucleotide polymorphisms were determined. Bin maps were constructed based on the RILs' recombination data. Based on the high-density bin map, we updated Zhanggu reference with 416 Mb after adding 16 Mb unanchored scaffolds and Yugu reference with some assembly error correction and 3158 gaps filled. Quantitative trait loci (QTL) mapping of nine agronomic traits was done based on this RIL population, five of which were controlled by a single gene. Meanwhile, two QTLs were found for plant height, and a candidate gene showed 89% identity to the known rice gibberellin-synthesis gene sd1. Three QTLs were found for the trait of heading date. The whole genome resequencing and QTL mapping provided important tools for foxtail millet research and breeding. Resequencing of the RILs could also provide an effective way for high-quality genome assembly and gene identification. © The Author 2017. Published by Oxford University Press.

  17. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    PubMed

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  18. Association of Shifting Populations in the Root Zone Microbiome of Millet with Enhanced Crop Productivity in the Sahel Region (Africa)

    PubMed Central

    Assigbetse, Komi; Bayala, Roger; Chapuis-Lardy, Lydie; Dick, Richard P.; McSpadden Gardener, Brian B.

    2015-01-01

    This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and “Candidatus Koribacter” was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops. PMID:25681183

  19. Importance of seed-borne fungi of sorghum and pearl millet in Burkina Faso and their control using plant extracts.

    PubMed

    Zida, Pawindé Elisabeth; Sérémé, Paco; Leth, Vibeke; Sankara, Philippe; Somda, Irénée; Néya, Adama

    2008-02-01

    Seed-borne fungi of sorghum and pearl millet in Burkina Faso were surveyed. A total of 188 seed samples from various locations, collected in 1989 (42) and 2002 (146), were tested, using the blotter, dry inspection and washing methods. Infection experiments were carried out with the major fungi recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95 to 100% of the seed samples of both sorghum and pearl millet. Sphacelotheca sorghi and Tolyposporium ehrenbergii were encountered in respectively, 75 and 33% of seed samples of sorghum. T. penicillariae, Sclerospora graminicola and Claviceps fusiformis were present in 88, 41 and 32% of seed samples of pearl millet, respectively. Seeds inoculated with Acremonium strictum, Curvularia oryzae, F. equiseti, F. moniliforme and F. subglutinans and sown in sterilized soil, showed considerable mortality of the seedlings. Three essential oils inhibited in vitro the mycelial growth of all the fungi used by 85 to 100% and reduced significantly sorghum and pearl millet seed infection rates of Phoma sp., Fusarium sp., Curvularia sp., Colletotrichum graminicola and Exserohilum sp. Presence of many pathogenic fungi in considerable number of seed samples indicates the need of field surveys for these and other pathogens. Development of plant extracts for the control of seed-borne pathogens and public awareness on seed-borne diseases management measures for maintaining quality seed should be increased.

  20. Therapeutic evaluation of grain based functional food formulation in a geriatric animal model.

    PubMed

    Teradal, Deepa; Joshi, Neena; Aladakatti, Ravindranath H

    2017-08-01

    This study investigates the effect of wholesome grain based functional food formulation, on clinical and biochemical parameters in 24-30 months old Wistar albino geriatric rats, corresponding to human age 60-75 years. Animals were randomly divided into five, groups. Experimental diets were compared to the basal rat diet (Group I). Four food, formulation were-wheat based (Group II), finger millet based (Group III), wheat based, diet + fenugreek seed powder (Group IV), finger millet based diet + fenugreek powder, (Group V). These five types of diets were fed to the experimental rats for 6 weeks. Hematological and biochemical parameters were evaluated. The results showed that, feed intake was influenced by the type of feed. Diets supplemented with, fenugreek (Group IV) caused a significant increase in serum hemoglobin. The total serum protein values were significantly highest in Group III. Total serum albumin was found to be lower in Group I and highest in Group II. The concentration of BUN was highest in Group I and the lowest in control diet. Serum cholesterol and glucose were significantly reduced in Group IV. Several hematological and serum mineral values were influenced by the type of diet. The type of diet did not influence the organs weight. A moderate hypoglycemic and hypercholesterolemic effect was observed in composite mix fed rats. This study clearly justifies the recommendation to use wholesome grain based functional foods for geriatric population.

  1. Comparative Genomics and Association Mapping Approaches for Blast Resistant Genes in Finger Millet Using SSRs

    PubMed Central

    Babu, B. Kalyana; Dinesh, Pandey; Agrawal, Pawan K.; Sood, S.; Chandrashekara, C.; Bhatt, Jagadish C.; Kumar, Anil

    2014-01-01

    The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R2) of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R2. The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R2. Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars. PMID:24915067

  2. Grain Handling and Storage.

    ERIC Educational Resources Information Center

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  3. Grain Grading and Handling.

    ERIC Educational Resources Information Center

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  4. Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour.

    PubMed

    Wu, Kao; Gan, Renyou; Dai, Shuhong; Cai, Yi-Zhong; Corke, Harold; Zhu, Fan

    2016-03-01

    Buckwheat (BF) and millet (MF) are recommended as healthy foods due to their unique chemical composition and health benefits. This study investigated the thermal and rheological properties of BF-WF (wheat flour) and MF-WF flour blends at various ratios (0:100 to 100:0). Increasing BF or MF concentration led to higher cold paste viscosity and setback viscosity of pasting properties gel adhesiveness, storage modulus (G') and loss modulus (G″) of dynamic oscillatory rheology, and yield stress (σ0 ) of flow curve of WF. BF and MF addition decreased peak viscosity and breakdown of pasting, gel hardness, swelling volume, and consistency coefficient (K) of flow curve of WF. Thermal properties of the blends appeared additive of that of individual flour. Nonadditive effects were observed for some property changes in the mixtures, and indicated interactions between flour components. This may provide a physicochemical basis for using BF and MF in formulating novel healthy products.

  5. Efficient regeneration of pearl millet (Pennisetum glaucum (L.) R. Br.) from shoot tip cultures.

    PubMed

    Mythili, P K; Madhavi, A; Reddy, V D; Seetharama, N

    2001-12-01

    A simple, genotype-independent and efficient method for plant regeneration using shoot tip explants of pearl millet (Pennisetum glaucum) was established. Linsmaier and Skoog (LS) medium supplemented with 2,4-dichloro-phenoxyacetic acid (2.5 mg l(-1)) and kinetin (0. 2 mg l(-1)) was used for induction of embryogenic calli. Development of numerous somatic embryos was observed within 10 days after transferring onto Murashige and Skoog (MS) medium supplemented with 6-benzyl aminopurine (2 mg l(-1)) and indole 3-butyric acid (0. 5 mg l(-1)) under light (16 hr photoperiod). Histological observations confirmed the origin of somatic pro-embryoids and globular embryoids. Regenerated plants established in soil, grew normally and produced fertile seeds. RAPD analysis also revealed genetic uniformity of the regenerants. The short duration of time taken for regeneration (30-35 days) and its high frequency (78-87%) makes this system highly suitable for applications such as genetic transformation.

  6. Modification of foxtail millet starch by combining physical, chemical and enzymatic methods.

    PubMed

    Dey, Ashim; Sit, Nandan

    2017-02-01

    Modification of foxtail millet starch was carried out by heat moisture treatment (HT), acid hydrolysis (AH), enzymatic treatment (EH), Ultrasound treatment (UT) and their combinations. A total of 15 modified starches were prepared by combining the various methods and properties were compared with native starch. The solubilities of the starches modified by HT were found to decrease whereas for other single modifications it increased. It also increased with number of modifications applied. The swelling power decreased for all the modified starches and a decrease in swelling power was observed with increase in number of modifications. Freeze-thaw stability improved for starches modified by single physical modifications i.e. HT and UT. Decrease in viscosities was observed for the modified starches and was particularly affected by AH. The pasting temperature was found to increase for those modified starches where HT was carried out. The modified starches gave softer gels. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles.

    PubMed

    Sun, Qingjie; Gong, Min; Li, Ying; Xiong, Liu

    2014-10-13

    Starch nanoparticles were prepared from proso millet starch using a green and facile method combined with enzymolysis and recrystallization. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) were used to characterize the morphology and crystal structure of the starch nanoparticles prepared with different retrogradation time (0.5, 4, 12, and 24h). The results showed that the sizes of the starch nanoparticles were between 20 nm and 100 nm. The crystal pattern changed from A-type (native starch) to B-type (nanoparticles), and the relative crystallinity of the nanoparticles increased obviously, as compared with the native starch. The nanoparticles prepared with the 12h retrogradation time had the highest degree of crystallinity (47.04%). Compared to conventional acid hydrolysis to make starch nanoparticles, the present approach has the advantage of being quite rapid and presenting a higher yield (about 55%).

  8. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.

    PubMed

    Ishii, Takayoshi; Sunamura, Naohiro; Matsumoto, Ayaka; Eltayeb, Amin Elsadig; Tsujimoto, Hisashi

    2015-12-01

    Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.

  9. Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet.

    PubMed

    Bugs, Milton Roque; Forato, Lucimara Aparecida; Bortoleto-Bugs, Raquel Kely; Fischer, Hannes; Mascarenhas, Yvonne Primerano; Ward, Richard John; Colnago, Luiz Alberto

    2004-07-01

    Biophysical methods and structural modeling techniques have been used to characterize the prolamins from maize ( Zea mays) and pearl millet ( Pennisetum americanum). The alcohol-soluble prolamin from maize, called zein, was extracted using a simple protocol and purified by gel filtration in a 70% ethanol solution. Two protein fractions were purified from seed extracts of pearl millet with molecular weights of 25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight protein corresponds to pennisetin, which has a high alpha-helical content both in solution and the solid state, as demonstrated by circular dichroism and Fourier transform infrared spectra. Fluorescence spectroscopy of both fractions indicated changes in the tryptophan microenvironments with increasing water content of the buffer. Low-resolution envelopes of both fractions were retrieved by ab initio procedures from small-angle X-ray scattering data, which yielded maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and the low molecular weight protein, respectively, and similar values were observed by dynamic light scattering experiments. Furthermore, (1)H nuclear magnetic resonance spectra of zein and pennisetin do not show any signal below 0.9 ppm, which is compatible with more extended solution structures. The molecular models for zein and pennisetin in solution suggest that both proteins have an elongated molecular structure which is approximately a prolate ellipsoid composed of ribbons of folded alpha-helical segments with a length of about 14 nm, resulting in a structure that permits efficient packing within the seed endosperm.

  10. Sources of water used by trees and millet in Sahelian windbreak systems

    NASA Astrophysics Data System (ADS)

    Smith, D. Mark; Jarvis, Paul G.; Odongo, Julius C. W.

    1997-11-01

    The extent to which water use by trees and crops is complementary in agroforestry systems may be affected by the proximity of groundwater to the soil surface. This may have important implications for the planning and management of agroforestry in semi-arid regions such as the Sahel of West Africa. A method of distinguishing uptake of water by plants from different sources was used, therefore, at locations with contrasting water table levels, to determine whether Azadirachta indica A. Juss (neem) trees in windbreaks utilised water from the same depths as adjacent crops of pearl millet ( Pennisetum glaucum (L.) R. Br.). Comparisons of ratios of the stable isotopes of oxygen ( 18O/ 16O) in plant sap, groundwater and water in the unsaturated zone of the soil profile were made in the Majjia Valley, in south-central Niger, where groundwater was found at depths of 6-8 m, and at Sadoré in south-western Niger, where the water table was at a depth of 35 m. In the Majjia Valley, the trees obtained large portions of their water from surface layers of the soil only after rain, when water there was abundant. During dry periods, roots of the trees extracted groundwater or deep reserves of soil water, while the millet crop extracted water from closer to the top of the soil profile. In contrast, at Sadoré, both the trees and crop fulfilled their water requirements from the top 2-3 m of the soil throughout the year. Thus, utilisation of water by windbreak trees and crops is more complementary where groundwater is accessible to tree roots. Competition for water is likely reduced at such locations as a consequence, but may affect the productivity of windbreak systems where groundwater is inaccessible. To maximise the benefits of establishing windbreaks, therefore, it is important that planners recommend strategies for reducing competition for water between trees and crops at sites where groundwater cannot be reached by tree roots.

  11. Incorporation of whole, ancient grains into a modern Asian Indian diet to reduce the burden of chronic disease.

    PubMed

    Dixit, Anjali A; Azar, Kristen Mj; Gardner, Christopher D; Palaniappan, Latha P

    2011-08-01

    Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet to reduce type 2 diabetes and cardiovascular disease in this population. © 2011 International Life Sciences Institute.

  12. Incorporation of Whole, Ancient Grains into a Modern Asian Indian Diet: Practical Strategies to Reduce the Burden of Chronic Disease

    PubMed Central

    Dixit, Anjali A.; Azar, Kristen M. J.; Gardner, Christopher D.; Palaniappan, Latha P.

    2011-01-01

    Refined carbohydrates, such as white rice and white flour, are the mainstay of the modern Asian Indian diet, and may contribute to the rising incidence of type 2 diabetes and cardiovascular disease in this population. Prior to the 1950s, whole grains such as amaranth, barley, brown rice, millet, and sorghum were more commonly used in Asian Indian cooking. These grains and other non-Indian grains such as couscous, quinoa, and spelt are nutritionally advantageous and may be culturally acceptable carbohydrate substitutes for Asian Indians. This review focuses on practical recommendations for culturally sensitive carbohydrate modification in a modern Asian Indian diet, in an effort to reduce type 2 diabetes and cardiovascular disease in this population. PMID:21790614

  13. Gluten contamination of grains, seeds, and flours in the United States: a pilot study.

    PubMed

    Thompson, Tricia; Lee, Anne Roland; Grace, Thomas

    2010-06-01

    Under the Food Allergen and Consumer Protection Act, the Food and Drug Administration (FDA) must issue a rule for the voluntary labeling of food as gluten-free. In the proposed rule, many single-ingredient foods, such as millet, are considered inherently free of gluten. Inherently gluten-free grains will be considered misbranded if they carry a gluten-free label and do not also state that all foods of the same type are gluten-free (eg, "all millet is gluten free"). Twenty-two inherently gluten-free grains, seeds, and flours not labeled gluten-free were purchased in June 2009 and sent unopened to a company who specializes in gluten analysis. All samples were homogenized and tested in duplicate using the Ridascreen Gliadin sandwich R5 enzyme-linked immunosorbent assay with cocktail extraction. Thirteen of 22 (59%) samples contained less than the limit of quantification of 5 parts per million (ppm) for gluten. Nine of 22 (41%) samples contained more than the limit of quantification, with mean gluten levels ranging from 8.5 to 2,925.0 ppm. Seven of 22 samples (32%) contained mean gluten levels >/=20 ppm and would not be considered gluten-free under the proposed FDA rule for gluten-free labeling. Gluten contamination of inherently gluten-free grains, seeds, and flours not labeled gluten-free is a legitimate concern. The FDA may want to modify their proposed rule for labeling of food as gluten-free, removing the requirement that gluten-free manufacturers of inherently gluten-free grains, seeds, and flours must state on product labels that all foods of that type are gluten-free. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  14. Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation.

    PubMed

    Sharma, A; Kapoor, A C

    1996-04-01

    Pearl millet (Pennisetum typhoideum) was fermented with Lactobacilli or yeasts alone and in combination, and with natural microflora after various processing treatments, as grinding, soaking, debranning, dry heat treatment, autoclaving and germination. Fermentation was carried out at 30 degrees C for 48 hours with Lactobacillus plantarum (LP) and Rhodotorula (R) isolated from naturally fermented pearl millet and Lactobacillus acidophilus (LA), Candida utilis (CU) and natural microflora (NF). Germination and autoclaving, and debranning and autoclaving were the most effective processing treatments to reduce the phytic acid, amylase inhibitors and polyphenols. There was a further reduction in these antinutrients due to fermentation. Phytic acid and amylase inhibitors were completely eliminated after fermentation in some of the samples especially in soaked, debranned and germinated ones. Polyphenols were altered non-significantly in general but fermentation with Lp + R and NF caused a significant increase in polyphenols.

  15. Sporulation, storage and infectivity of obligate aphid pathogen Pandora nouryi grown on novel granules of broomcorn millet and polymer gel.

    PubMed

    Zhou, X; Feng, M-G

    2009-12-01

    Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Small millet-gel granules were made of the mixtures of 80-95% millet powder with 5-20% polymer gel (polyacrylamide, polyacrylate or acrylate-acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g(-1) dry granules plus 87.5% water, followed by static incubation at 20 degrees C for 4-12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8-day culture of this preparation discharged maximally 58.5 x 10(4) conidia mg(-1) granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86-97% RH. During storage at 6 degrees C, granular cultures with >85% water content had twofold longevity (120 days) and half-decline period (34-36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6 degrees C. However, conidia from 70-day-stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC(50)s. The millet-gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. The granular cultures are more useful for aphid control.

  16. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses

    PubMed Central

    Ramakrishnan, M.; Antony Ceasar, S.; Duraipandiyan, V.; Vinod, K. K.; Kalpana, Krishnan; Al-Dhabi, N. A.; Ignacimuthu, S.

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  17. Identification and classification of similar looking food grains

    NASA Astrophysics Data System (ADS)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  18. Marketing Farm Grain Crops.

    ERIC Educational Resources Information Center

    Ridenour, Harlan E.

    This vocational agriculture curriculum on grain marketing contains three parts: teacher guide, student manual, and student workbook. All three are coordinated and cross-referenced. The course is designed to give students of grain marketing a thorough background in the subject and provide practical help in developing grain marketing strategies for…

  19. Genome-Wide Investigation and Expression Profiling of AP2/ERF Transcription Factor Superfamily in Foxtail Millet (Setaria italica L.)

    PubMed Central

    Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic

  20. Whole grains in the renal diet--is it time to reevaluate their role?

    PubMed

    Williams, Caroline; Ronco, Claudio; Kotanko, Peter

    2013-01-01

    Organizations such as the National Kidney Foundation, the American Kidney Fund, the National Institute of Diabetes and Digestive and Kidney Diseases, and the US Department of Health and Human Services recommend not including whole grains as part of the renal diet. The rationale for this recommendation is the high phosphorus content in these foods. While the phosphorus content in whole grains may be indeed high, it is covalently bound to organic molecules (primarily phytate) and requires the enzyme phytase to be released and become available for absorption. While some phytase is contained in some whole grains (corn, oats, and millet have little to no phytase activity), the enzyme is decreased in milling, food preparation and over time. Since the human intestine does not express phytase, the enzyme required for the release of phosphorus from phytate is not present in the intestinal lumen when ingesting cooked food. Consequently, the bioavailability of phosphorus from whole grains is low. For the reasons presented here we believe that the 'grain ban' in the diet for kidney patients should be reconsidered. By doing this, the kidney diet would be enriched and it would provide needed fiber along with its health benefits, diversify the diet with low sodium choices, and possibly provide adequate protein without increasing phosphorous levels.

  1. Kinetics of changes in shelf life parameters during storage of pearl millet based kheer mix and development of a shelf life prediction model.

    PubMed

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur; Unnikrishnan, V S

    2014-12-01

    Pearl millet, dairy whitener and sugar powder were blended for preparing pearl millet kheer mix. Pearl millet based kheer mix samples were stored at 8, 25, 37 and 45 °C under nitrogen flushing environment. Changes in HMF and TBA formation in the dry mix and sensory changes in reconstituted kheer were studied upto 180 days. In fresh dry mix, the average value of HMF recorded was 4.87 μmol/g which increased to 11.23, 13.67, 18.13, and 21.43 μmol/g at 8, 25, 37 and 45 °C, respectively after 180 days of storage. From an initial value of 0.067, the TBA value increased to 0.219, 0.311, 0.432 and 0.613 at 532 nm at 8, 25, 37 and 45 °C, respectively after 180 days of storage. Data generated from the chemical kinetics of HMF and TBA development that progressed during storage of pearl millet kheer mix were modeled using Arrhenius equations to predict the shelf life of the product. Changes in HMF and TBA followed first order reaction kinetics. It was found that the potential shelf life of the pearl millet based kheer mix was 396 days at 8 and 288 days at 25 °C, respectively.

  2. Fluctuation of Dof1/Dof2 expression ratio under the influence of varying nitrogen and light conditions: involvement in differential regulation of nitrogen metabolism in two genotypes of finger millet (Eleusine coracana L.).

    PubMed

    Gupta, Supriya; Gupta, Sanjay Mohan; Gupta, Alok Kumar; Gaur, Vikram Singh; Kumar, Anil

    2014-08-10

    In order to gain insights into the mechanism of high nitrogen use efficiency (NUE) of finger millet (FM) the role of Dof2 transcription factor (TF), which is a repressor of genes involved in C/N metabolism was investigated. The partial cDNA fragment of EcDof2 (912-bp; GenBank acc. no. KF261117) was isolated and characterized from finger millet (FM) that showed 63% and 58% homology with Dof2 of Zea mays at nucleotide and protein level, respectively. Its expression studies were carried out along with the activator EcDof1 in two genotypes (GE3885, high protein genotype (HPG); GE1437, low protein genotype (LPG)) of FM differing in grain protein contents (13.8% and 6.2%) showed that EcDof2 is expressed in both shoot and root tissues with significantly (p≤0.05) higher expression in the roots. The diurnal expression of both EcDof1 and EcDof2 in shoots was differential having different time of peak expression indicating a differential response to diurnal condition. Under continuous dark conditions, expression of EcDof1 and EcDof2 oscillated in both the genotypes whereas on illumination, the fold expression of EcDof1 was higher as compared to EcDof2. Under increasing nitrate concentration, EcDof2 expression increases in roots and shoots of LPG while it remains unchanged in HPG. However, the EcDof1 expression was found to increase in both genotypes. Further, time kinetics studies under single nitrate concentration revealed that EcDof2 was repressed in the roots of both genotypes whereas EcDof1 oscillated with time. The EcDof1/EcDof2 ratio measured showed differential response under different light and nitrogen conditions. It was higher in the roots of HPG indicating higher activation of genes involved in N uptake and assimilation resulting in high grain protein accumulation. The results indicate that both light and nitrogen concentration influence Dof1 and Dof2 expression and suggests a complex pattern of regulation of genes influenced by these plant specific TFs. In

  3. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  4. Arabinoxylan from finger millet (Eleusine coracana, v. Indaf 15) bran: purification and characterization.

    PubMed

    Savitha Prashanth, M R; Muralikrishna, G

    2014-01-01

    Water unextractable portion from finger millet bran was sequentially extracted with saturated barium hydroxide (BE) and 1M potassium hydroxide (KE) solutions. They consisted preponderantly of arabinose and xylose in different ratios. Ferulic, caffeic, coumaric and vanillic acids were identified as major bound phenolic acids. BE and KE were purified on DEAE-cellulose column by eluting successively with different eluants. The major fractions (0.1 M ammonium carbonate) were resolved into one (BE) and two subfractions (KE1 and KE2) respectively on Sephacryl S-400 gel filtration chromatography and their homogeneity was ascertained by gel filtration, cellulose acetate membrane electrophoresis and capillary electrophoresis. The average molecular weight of BE, KE1 and KE2 were found to be 430, 1028 and 40 kDa respectively. The structural elucidation of the purified polysaccharides by (1)H and (13)C NMR analysis indicated the backbone to be 1,4-β-D-linked xylan with substitution mainly at O-2 or O-3 and/or both by α-l-arabinose residues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Genetic analysis of reciprocal differences in the inheritance of in vitro characters in pearl millet

    PubMed Central

    Satyavathi, Valluri V; Manga, V.; Rao, Muktinutalapati V. Subba; Chittibabu, Malladi

    2016-01-01

    Abstract Reciprocal differences persist in nature because of the unequal contribution of cytoplasmic determinants from male and female gametes to the zygote. The inheritance of genetic differences is an important factor that influences various traits, including somatic embryogenesis and regeneration in vitro. In this report, we estimate the cytoplasmic and maternal effects in pearl millet and their adequacy in describing the observed reciprocal differences based on an in depth study of the parents, F2s and reciprocal backcross progenies needed for fitting genetical models. Our study revealed that of the two characters examined, embryogenic callus quantity and regeneration frequency, the former showed a greater proportion of cytoplasmic nuclear interaction whereas the latter showed a greater role of nuclear factors. Additive-maternal effects influenced total callus quantity and dominance-maternal effects influenced total callus quantity, embryogenic callus quantity and regeneration frequency. Dwarfing was associated with the production of large quantities of embryogenic callus that had visually recognizable characteristics. The phenotypic nature of dwarf parents (green dwarf with long narrow leaves) with a genetic basis for a given character controlled by nuclear and cytoplasmic determinants can be exploited for other breeding programs. PMID:27007899

  6. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum.

    PubMed

    Hunt, Harriet V; Badakshi, Farah; Romanova, Olga; Howe, Christopher J; Jones, Martin K; Heslop-Harrison, J S Pat

    2014-07-01

    Panicum miliaceum (broomcorn millet) is a tetraploid cereal, which was among the first domesticated crops, but is now a minor crop despite its high water use efficiency. The ancestors of this species have not been determined; we aimed to identify likely candidates within the genus, where phylogenies are poorly resolved. Nuclear and chloroplast DNA sequences from P. miliaceum and a range of diploid and tetraploid relatives were used to develop phylogenies of the diploid and tetraploid species. Chromosomal in situ hybridization with genomic DNA as a probe was used to characterize the genomes in the tetraploid P. miliaceum and a tetraploid accession of P. repens. In situ hybridization showed that half the chromosomes of P. miliaceum hybridized more strongly with labelled genomic DNA from P. capillare, and half with labelled DNA from P. repens. Genomic DNA probes differentiated two sets of 18 chromosomes in the tetraploid P. repens. Our phylogenetic data support the allotetraploid origin of P. miliaceum, with the maternal ancestor being P. capillare (or a close relative) and the other genome being shared with P. repens. Our P. repens accession was also an allotetraploid with two dissimilar but closely related genomes, the maternal genome being similar to P. sumatrense. Further collection of Panicum species, particularly from the Old World, is required. It is important to identify why the water-efficient P. miliaceum is now of minimal importance in agriculture, and it may be valuable to exploit the diversity in this species and its ancestors.

  7. Genome-wide characterization of the SiDof gene family in foxtail millet (Setaria italica).

    PubMed

    Zhang, Li; Liu, Baoling; Zheng, Gewen; Zhang, Aiying; Li, Runzhi

    2017-01-01

    Dof (DNA binding with one finger) proteins, which constitute a class of transcription factors found exclusively in plants, are involved in numerous physiological and biochemical reactions affecting growth and development. A genome-wide analysis of SiDof genes was performed in this study. Thirty five SiDof genes were identified and those genes were unevenly distributed across nine chromosomes in the Seteria italica genome. Protein lengths, molecular weights, and theoretical isoelectric points of SiDofs all vary greatly. Gene structure analysis demonstrated that most SiDof genes lack introns. Phylogenetic analysis of SiDof proteins and Dof proteins from Arabidopsis thaliana, rice, sorghum, and Setaria viridis revealed six major groups. Analysis of RNA-Seq data indicated that SiDof gene expression levels varied across roots, stems, leaves, and spike. In addition, expression profiling of SiDof genes in response to stress suggested that SiDof 7 and SiDof 15 are involved in drought stress signalling. Overall, this study could provide novel information on SiDofs for further investigation in foxtail millet. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-01-06

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression.

  9. Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings.

    PubMed

    Tian, Baohua; Qiao, Zengjie; Zhang, Liping; Li, Hua; Pei, Yanxi

    2016-12-01

    Hydrogen sulfide (H2S) and some functional amino acids in crops have been involved in the defense system against heavy-metal pollution. Here we report the relationships and functions of H2S and proline to cadmium (Cd) stress. Sodium hydrosulfide (NaHS) pretreatment decreased the electrolytic leakage and the malondialdehyde and hydrogen peroxide contents while enhancing photosynthesis in Cd-treated seedlings. Furthermore, pretreatment with NaHS markedly exacerbated Cd-induced alterations in proline content, the activities of proline-5-carboxylate reductase (P5CR) and proline dehydrogenase (PDH), and the transcript levels of P5CR and PDH. When endogenous H2S was scavenged or inhibited by various H2S modulators, the Cd-induced increase in endogenous proline was weakened. Combined pretreatment with H2S and proline was moderately higher in the Cd-stressed growth status, stomata movements and oxidative damage of seedlings compared to a single treatment with H2S or proline. These results suggest that H2S and proline cooperate to alleviate Cd-damage in foxtail millet.

  10. Pearl Millet Genetic Traits Shape Rhizobacterial Diversity and Modulate Rhizosphere Aggregation

    PubMed Central

    Ndour, Papa M. S.; Gueye, Mariama; Barakat, Mohamed; Ortet, Philippe; Bertrand-Huleux, Marie; Pablo, Anne-Laure; Dezette, Damien; Chapuis-Lardy, Lydie; Assigbetsé, Komi; Kane, Ndjido Ardo; Vigouroux, Yves; Achouak, Wafa; Ndoye, Ibrahima; Heulin, Thierry; Cournac, Laurent

    2017-01-01

    Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the “RAS/RT ratio.” Regarding taxonomic composition, the Rhizobiales were stimulated in lines showing high aggregation level whereas Bacillales were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from Rhizobiales and Bacillales. However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil. PMID:28798755

  11. Expression of Finger Millet EcDehydrin7 in Transgenic Tobacco Confers Tolerance to Drought Stress.

    PubMed

    Singh, Rajiv Kumar; Singh, Vivek Kumar; Raghavendrarao, Sanagala; Phanindra, Mullapudi Lakshmi Venkata; Venkat Raman, K; Solanke, Amolkumar U; Kumar, Polumetla Ananda; Sharma, Tilak Raj

    2015-09-01

    One of the critical alarming constraints for agriculture is water scarcity. In the current scenario, global warming due to climate change and unpredictable rainfall, drought is going to be a master player and possess a big threat to stagnating gene pool of staple food crops. So it is necessary to understand the mechanisms that enable the plants to cope with drought stress. In this study, effort was made to prospect the role of EcDehydrin7 protein from normalized cDNA library of drought tolerance finger millet in transgenic tobacco. Biochemical and molecular analyses of T0 transgenic plants were done for stress tolerance. Leaf disc assay, seed germination test, dehydration assay, and chlorophyll estimation showed EcDehydrin7 protein directly link to drought tolerance. Northern and qRT PCR analyses shows relatively high expression of EcDehydrin7 protein compare to wild type. T0 transgenic lines EcDehydrin7(11) and EcDehydrin7(15) shows superior expression among all lines under study. In summary, all results suggest that EcDehydrin7 protein has a remarkable role in drought tolerance and may be used for sustainable crop breeding program in other food crops.

  12. Nutritional and antioxidant dispositions of sorghum/millet-based beverages indigenous to Nigeria

    PubMed Central

    Ajiboye, Taofeek O; Iliasu, Ganiyat A; Adeleye, Abdulwasiu O; Abdussalam, Folakemi A; Akinpelu, Shakirat A; Ogunbode, Simiat M; Jimoh, Simiat O; Oloyede, Oyelola B

    2014-01-01

    Sorghum/millet-based beverages, Obiolor and Pito, were evaluated for their nutritional and antioxidant dispositions. Analyzed Obiolor and Pito contained 96% and 97% moisture; 7.8% and 3.7% crude protein; 8.9% and 5.6% available carbohydrate; 0.39% and 0.31% crude fat; 0.3% and 0.2% crude fiber; 2.4% and 1.5% ash; and 459.3 and 164 kJ/g energy value, respectively. Obiolor and Pito (1.0 mL) scavenged 2,2-diphenyl-1-picrylhydrazyl by 87% and 81%; superoxide ion by 65% and 59%; hydrogen peroxide by 79% and 76%; and hydroxyl radical by 82% and 85%, respectively. The beverages significantly reduced ferric ion. Aflatoxin B1-mediated increase in lipid peroxidation products (conjugated dienes, lipid hydroperoxides, and malondialdehydes) and protein carbonyl in the microsomes were significantly (P < 0.05) reduced by the beverages. The data obtained from this study show that the sorghum-based beverages (Obiolor and Pito) can serve as functional foods, as evident from their antioxidant capabilities in addition to their gross energy content. PMID:25473519

  13. Grain Refinement of Magnesium

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Dahle, A. K.; StJohn, D. H.

    Grain formation during solidification of magnesium and Mg-Al alloys has been studied with a focus on grain refinement mechanisms, solute and particle effects. The variation in grain size with increased aluminium content in hypoeutectic Mg-Al alloys showed a continuous decrease in grain size up to 5 wt% Al, and a stabilisation at higher Al contents (above 5 wt%). Strontium additions to both low- and high-aluminium content magnesium alloys showed that Sr had a significant grain refining effect in low-aluminium containing alloys. However, strontium had a negligible effect on grain size in the Mg-9Al alloy. Additions of Zr, Si, or Ca to pure magnesium produced significant grain refinement, probably because these elements have high growth restriction effects during solidification. An attempt was made to identify the grain refinement effect of particles added directly to the melt that are considered to be powerful nucleants in Al based alloys (TiC) and in Mg based alloys (AlN, Al4C3). Most of these particles produced grain refinement, probably because of enhanced nucleation due to the small lattice disregistry between their crystal structures and that of magnesium. However, it is not clear whether the grain refining mechanism of the effective particles was catalysis of primary crystal nucleation or simply restriction of crystal growth during solidification.

  14. Simple and economical assay systems for evaluation of phosphinothricin resistant transgenics of sorghum, Sorghum bicolor. (L.) Moench., and pearl millet, Pennisetum glaucum (L.) R. Br.

    PubMed

    Harshavardhan, D; Santha, B; Rani, T S; Ulaganathan, K; Madhulety, T Y; Laxminarayana, C; Seetharama, N

    2003-02-01

    Five simple and rapid methods for evaluation of sorghum and pearl millet transgenics resistant to herbicide phosphinothricin (used as selectable marker) were studied. For rapid in vitro selection, three assays (establishment of sensitivity curves for embryogenic calli, determination of lethal doses for seed germination, and a rapid screening of cut young leaves based on the colour change of the medium) were established. For rapid screening of transgenic progeny, effects of in vivo Basta leaf spray and dip tests were studied at three different morphological stages. For all the above assays, LD50, and LD100 values were higher for pearl millet than sorghum. However, in both the crops, genotype effect was not significant. The assays standardized in the study were found to be effective for rapid, economical and mass-scale identification and characterization of transgenic plants of sorghum and pearl millet.

  15. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.

    PubMed

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  16. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments

    PubMed Central

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J.; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops. PMID:28487720

  17. De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum miliaceum L.) for Gene Discovery and Marker Development

    PubMed Central

    Yue, Hong; Wang, Le; Liu, Hui; Yue, Wenjie; Du, Xianghong; Song, Weining; Nie, Xiaojun

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.) is one of the world’s oldest cultivated cereals, which is well-adapted to extreme environments such as drought, heat, and salinity with an efficient C4 carbon fixation. Discovery and identification of genes involved in these processes will provide valuable information to improve the crop for meeting the challenge of global climate change. However, the lack of genetic resources and genomic information make gene discovery and molecular mechanism studies very difficult. Here, we sequenced and assembled the transcriptome of broomcorn millet using Illumina sequencing technology. After sequencing, a total of 45,406,730 and 51,160,820 clean paired-end reads were obtained for two genotypes Yumi No. 2 and Yumi No. 3. These reads were mixed and then assembled into 113,643 unigenes, with the length ranging from 351 to 15,691 bp, of which 62,543 contings could be assigned to 315 gene ontology (GO) categories. Cluster of orthologous groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned could map 15,514 unigenes into 202 KEGG pathways and 51,020 unigenes to 25 COG categories, respectively. Furthermore, 35,216 simple sequence repeats (SSRs) were identified in 27,055 unigene sequences, of which trinucleotides were the most abundant repeat unit, accounting for 66.72% of SSRs. In addition, 292 differentially expressed genes were identified between the two genotypes, which were significantly enriched in 88 GO terms and 12 KEGG pathways. Finally, the expression patterns of four selected transcripts were validated through quantitative reverse transcription polymerase chain reaction analysis. Our study for the first time sequenced and assembled the transcriptome of broomcorn millet, which not only provided a rich sequence resource for gene discovery and marker development in this important crop, but will also facilitate the further investigation of the molecular mechanism of its favored agronomic traits and beyond. PMID

  18. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.).

    PubMed

    Mirza, Neelofar; Taj, Gohar; Arora, Sandeep; Kumar, Anil

    2014-10-25

    Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  20. Improvement of resistance to rust through recurrent selection in pearl millet

    SciTech Connect

    Tapsoba, H.; Wilson, J.P.; Hanna, W.W.

    1997-04-01

    Two pearl millet [Pennisetum glaucum (L.) R.Br. = P. typhoides (Burm.) Staff & Hubb., P. americanum (L.) K. Schum.] bulk populations, Tift No. 2 and Tift No. 5, served as base populations for four cycles of recurrent selection against susceptibility to Puccinia substriata Ell. & Barth, var. indica Ramachar & Cumm. A bulk inoculum of the pathogen was used. The objectives were to evaluate the progress achieved regarding overall resistance to the pathogen in the field and resistance to different races of the pathogen, and also to evaluate changes in unselected traits. During selection, the frequency of rust resistant plants continuously increased from about 30% in each base population to more than 85% by the third cycle of selection in both populations. An average increase of about 21 and 18% per cycle was obtained in Tift No. 2 and Tift No. 5, respectively. A continuous increase of the frequency of plants resistant to some races of the pathogen was also obtained. In Tift No. 5, 80% of the plants were resistant to eight races by the third cycle of selection. The accumulation of resistance observed in the seedlings was manifested in the field, both in 1993 and 1994, by a reduction of the final rust severity from the base population to the fourth selection cycle of both populations. This improvement in resistance to the rust pathogen was accompanied by an increase in the frequency of plants resistant to Pyricularia grisea (Cooke) Sacc. only in Tift No. 2. Despite the improvement in the selected character, genetic variability for agronomic traits such as plant height, number of culms/plant, flowering date, and panicle length was successfully maintained within each population. 20 refs., 1 fig., 7 tabs.

  1. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology.

    PubMed

    Ghaedi, Mehrorang; Nasiri Kokhdan, Syamak

    2015-02-05

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Crop Monitoring as a Tool for Modelling the Genesis of Millet Prices in Senegal

    NASA Astrophysics Data System (ADS)

    Jacques, D.; Marinho, E.; Defourny, P.; Waldner, F.; d'Andrimont, R.

    2015-12-01

    Food security in Sahelian countries strongly relies on the ability of markets to transfer staplesfrom surplus to deficit areas. Market failures, leading to the inefficient geographical allocation of food,are expected to emerge from high transportation costs and information asymmetries that are commonin moderately developed countries. As a result, important price differentials are observed betweenproducing and consuming areas which damages both poor producers and food insecure consumers. Itis then vital for policy makers to understand how the prices of agricultural commodities are formed byaccounting for the existing market imperfections in addition to local demand and supply considerations. To address this issue, we have gathered an unique and diversified set of data for Senegal andintegrated it in a spatially explicit model that simulates the functioning of agricultural markets, that isfully consistent with the economic theory. Our departure point is a local demand and supply modelaround each market having its catchment areas determined by the road network. We estimate the localsupply of agricultural commodities from satellite imagery while the demand is assumed to be a functionof the population living in the area. From this point on, profitable transactions between areas with lowprices to areas with high prices are simulated for different levels of per kilometer transportation costand information flows (derived from call details records i.e. mobile phone data). The simulated prices are then comparedwith the actual millet prices. Despite the parsimony of the model that estimates only two parameters, i.e. the per kilometertransportation cost and the information asymmetry resulting from low levels of mobile phone activitybetween markets, it impressively explains more than 80% of the price differentials observed in the 40markets included in the analysis. In one hand these results can be used in the assessment of the socialwelfare impacts of the further development of

  3. Influence of domestic processing on the bioaccessibility of selenium from selected food grains and composite meals.

    PubMed

    Khanam, Anjum; Platel, Kalpana

    2016-03-01

    Selenium, an ultra trace element with several health beneficial attributes, should be mainly derived from dietary sources. Since food processing is likely to alter the bioavailability of micronutrients, the influence of such processing such as germination and fermentation on selenium content and bioaccessibility, information on which is lacking, was examined in this study. Bioaccessibility of selenium from four cereal-based composite meals was also studied. Chickpea, green gram and finger millet were employed to study the effect of germination, and for effect of fermentation, batters used in preparation dosa, idli and dhokla were used. Soaking the grains in water as a part of germination and fermentation brought about a decrease in selenium content, while its bioaccessibility was not affected. The information on the loss of selenium during soaking and heat processing of the germinated grains is novel. Fermentation resulted in a further decrease in selenium content, the percent decrease ranging from 26 to 47 in the batters. Similar decreases were seen in the bioaccessible selenium content as a result of soaking and fermentation. Cooking of the fermented batters, however, significantly enhanced the bioaccessibility of selenium from dosa and dhokla by 44 and 71 %, respectively. Selenium content of the four meals ranged from 150 to 228.8 ng/g. Bioaccessible selenium was highest in the finger millet-based meal (32.8 ng/g), followed by sorghum, wheat and rice-based meals. The present investigation thus provides vital and novel information on selenium content and bioaccessibility from foods subjected to processing as is commonly practiced in Indian households.

  4. Detection of insects in grain

    USDA-ARS?s Scientific Manuscript database

    Detecting insects hidden inside kernels of grain is important to grain buyers because internal infestations can result in insect fragments in products made from the grain, or, if the grain is stored before use, the insect population can increase and damage the grain further. In a study in the Unite...

  5. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.).

    PubMed

    Yue, Hong; Wang, Meng; Liu, Siyan; Du, Xianghong; Song, Weining; Nie, Xiaojun

    2016-05-10

    WRKY genes, as the most pivotal transcription factors in plants, play the indispensable roles in regulating various physiological processes, including plant growth and development as well as in response to stresses. Broomcorn millet is one of the most important crops in drought areas worldwide. However, the WRKY gene family in broomcorn millet remains unknown. A total of 32 PmWRKY genes were identified in this study using computational prediction method. Structural analysis found that PmWRKY proteins contained a highly conserved motif WRKYGQK and two common variant motifs, namely WRKYGKK and WRKYGEK. Phylogenetic analysis of PmWRKYs together with the homologous genes from the representative species could classify them into three groups, with the number of 1, 15, and 16, respectively. Finally, the transcriptional profiles of these 32 PmWRKY genes in various tissues or under different abiotic stresses were systematically investigated using qRT-PCR analysis. Results showed that the expression level of 22 PmWRKY genes varied significantly under one or more abiotic stress treatments, which could be defined as abiotic stress-responsive genes. This was the first study to identify the organization and transcriptional profiles of PmWRKY genes, which not only facilitates the functional analysis of the PmWRKY genes, and also lays the foundation to reveal the molecular mechanism of stress tolerance in this important crop.

  6. Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity.

    PubMed

    Sekar, Jegan; Prabavathy, Vaiyapuri Ramalingam

    2014-07-01

    Genetic diversity of phlD gene, an essential gene in the biosynthesis of 2,4-diacetylphloroglucinol, was studied by restriction fragment length polymorphism (RFLP) in 20 Phl-producing pseudomonads isolated from finger millet rhizosphere. RFLP analysis of phlD gene displayed three patterns with HaeIII and TaqI enzymes. phlD gene sequence closely correlated with RFLP results and revealed the existence of three new genotypes G, H and I. Further, the phylogenetic and concatenated sequence analysis of the 16S rRNA, rpoB, gyrB, rpoD genes supported the hypothesis that these genotypes G, H and I were different from reported genotypes A-F. In all phylogenetic studies, the genotype G formed a distant clade from the groups of Pseudomonas putida and P. aeruginosa (sensu strictu), but the groups H and I were closely related to P. aeruginosa/P. stutzeri group. The Phl-producing pseudomonads exhibited antagonistic activity against Pyricularia grisea (TN508), Gaeumannomyces graminis (DSM1463), Fusarium oxysporum (DSM62297), Xanthomonas campestris (DSM3586) and Erwinia persicina (HMGU155). In addition, these strains exhibited various plant growth-promoting traits. In conclusion, this study displays the existence of novel Phl-producing pseudomonads genotypes G, H and I from finger millet rhizosphere, which formed taxonomically outward phylogenetic lineage from the groups of P. putida and P. aeruginosa (sensu strictu). © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica).

    PubMed

    Liu, Kaige; Qi, Shuanghui; Li, Dong; Jin, Changyu; Gao, Chenhao; Duan, Shaowei; Feng, Baili; Chen, Mingxun

    2017-01-01

    TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Enhancement of nutritional value of finger millet-based food (Indian dosa) by co-fermentation with horse gram flour.

    PubMed

    Palanisamy, Bruntha Devi; Rajendran, Vijayabharathi; Sathyaseelan, Sathyabama; Bhat, Rajeev; Venkatesan, Brindha Priyadarisini

    2012-02-01

    Co-fermentation of finger millet with horse gram was carried out to produce inexpensive protein-rich food (dosa-an Indian breakfast food). Natural fermentation of finger millet-horse gram flour blend in different proportions (2:1, 3:1, 4:1 and 5:1) was performed for 24 h. Biochemical analysis showed reasonable drop in pH (6.6-4.2) and starch content (25.52%) with considerable augment in titratable acidity (0.168-1.046%), soluble proteins (1.1-fold) and free amino acids (2.6-fold) at 16 h. Lactic acid bacteria dominated yeast counts throughout the fermentation accompanied by a decrease in total soluble and reducing sugars. Total essential amino acids increased 1.1-fold at 16-h fermentation with protein containing 48.68% of essential amino acids over total amino acids. Lysine increased from 5.87 to 6.73 g of amino acid/100 g of total amino acids. Dosa, prepared from 16-h fermented batter, showed better sensory attributes for 4:1 ratio. The formulated new product might be used to overcome the protein-energy malnutrition problems.

  9. Plant Growth Substances Produced by Azospirillum brasilense and Their Effect on the Growth of Pearl Millet (Pennisetum americanum L.) †

    PubMed Central

    Tien, T. M.; Gaskins, M. H.; Hubbell, D. H.

    1979-01-01

    Azospirillum brasilense, a nitrogen-fixing bacterium found in the rhizosphere of various grass species, was investigated to establish the effect on plant growth of growth substances produced by the bacteria. Thin-layer chromatography, high-pressure liquid chromatography, and bioassay were used to separate and identify plant growth substances produced by the bacteria in liquid culture. Indole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan. Indole acetic acid production increased with increasing tryptophan concentration from 1 to 100 μg/ml. Indole acetic acid concentration also increased with the age of the culture until bacteria reached the stationary phase. Shaking favored the production of indole acetic acid, especially in a medium containing nitrogen. A small but biologically significant amount of gibberellin was detected in the culture medium. Also at least three cytokinin-like substances, equivalent to about 0.001 μg of kinetin per ml, were present. The morphology of pearl millet roots changed when plants in solution culture were inoculated. The number of lateral roots was increased, and all lateral roots were densely covered with root hairs. Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots. Cytokinin stimulated root hair formation, but reduced lateral root production and elongation of the main root. Combinations of indole acetic acid, gibberellin, and kinetin produced changes in root morphology of pearl millet similar to those produced by inoculation with A. brasilense. Images PMID:16345372

  10. Waxy-phenotype evolution in the allotetraploid cereal broomcorn millet: Mutations at the GBSSI locus in their functional and phylogenetic context

    USDA-ARS?s Scientific Manuscript database

    Waxy mutants, in which endosperm starch contains ~100% amylopectin rather than the wild-type composition of ~70% amylopectin and ~30% amylose, occur in many domesticated cereals. The cultivation of waxy varieties of broomcorn (proso) millet (Panicum miliaceum L.) is restricted to east Asia, where t...

  11. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World.

    PubMed

    Hunt, Harriet V; Vander Linden, Marc; Liu, Xinyi; Motuzaite-Matuzeviciute, Giedre; Colledge, Sue; Jones, Martin K

    2008-12-01

    We have collated and reviewed published records of the genera Panicum and Setaria (Poaceae), including the domesticated millets Panicum miliaceum L. (broomcorn millet) and Setaria italica (L.) P. Beauv. (foxtail millet) in pre-5000 cal b.c. sites across the Old World. Details of these sites, which span China, central-eastern Europe including the Caucasus, Iran, Syria and Egypt, are presented with associated calibrated radiocarbon dates. Forty-one sites have records of Panicum (P. miliaceum, P. cf. miliaceum, Panicum sp., Panicum type, P. capillare (?) and P. turgidum) and 33 of Setaria (S. italica, S. viridis, S. viridis/verticillata, Setaria sp., Setaria type). We identify problems of taphonomy, identification criteria and reporting, and inference of domesticated/wild and crop/weed status of finds. Both broomcorn and foxtail millet occur in northern China prior to 5000 cal b.c.; P. miliaceum occurs contemporaneously in Europe, but its significance is unclear. Further work is needed to resolve the above issues before the status of these taxa in this period can be fully evaluated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00334-008-0187-1) contains supplementary material, which is available to authorized users.

  12. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  13. Convection in grain refining

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Szekely, J.

    1982-01-01

    The relationship between fluid flow phenomena, nucleation, and grain refinement in solidifying metals both in the presence and in the absence of a gravitational field was investigated. The reduction of grain size in hard-to-process melts; the effects of undercooling on structure in solidification processes, including rapid solidification processing; and control of this undercooling to improve structures of solidified melts are considered. Grain refining and supercooling thermal modeling of the solidification process, and heat and fluid flow phenomena in the levitated metal droplets are described.

  14. Circumstellar grain formation

    NASA Technical Reports Server (NTRS)

    Draine, B. T.

    1986-01-01

    Dust formation around cool giant and supergiant stars is examined in terms of grain formulation. Optical properties of small clusters, molecular physics of cluster nucleation and growth, circumstellar mass flows, and their application to alpha Ori are discussed.

  15. Presolar Grains in Indarch

    NASA Astrophysics Data System (ADS)

    Gao, X.; Nittler, L. R.; Swan, P. D.; Walker, R. M.

    1995-09-01

    We report results for the EH(4) Indarch. Earlier work [1] found 20 micrometers clumps of sub-micron SiC whose presolar nature was inferred from step-wise combustion, noble gas [2], and ion probe isotopic measurements. Our results indicate that the clumps were an artifact of sample preparation. Our sample was first cleaned using 6N HCl, and water and isopropanol rinses, then powdered and reacted with HCl-HF/HCl, KOH, and H3BO3-HCl/HCl giving a C-rich residue 1.14 wt.% of the original. X-ray mapping showed SiC grains and 5x as many Si3N4 grains, but no fine-grained clumps. Large (6 micrometers to 20 micrometers) C-rich spheroids were also present. The sample was further treated with KOH/HNO3 and NH3H2O; attempts to do density-separates were unsuccessful. An aliquot was treated with perchloric acid and separated into <1 micrometers and >1 micrometer fractions. SEM-EDS measurements of 73 (<1 micrometer) grains showed 44 SiC, 19 Si3N4, 4 C only, and 6 C with minor Si (both the C and Si in these particles are isotopically normal). A similar distribution of species was found for 37 (>1 micrometer) grains with the addition of 2 spinel and one Al2O3 grains. The whole rock concentration of SiC was 5.8 ppm, higher than previous determinations [1,3,9]. Confirming earlier suggestions [1,2], we find that SiC in Indarch is much finer-grained than in Murchison; about 2/3 of the mass is in grains <=0.3 micrometers compared to only about 4% for Murchison. This may represent size-sorting in the nebula or selective destruction of fine-grained material. Ion probe measurements of 22 (1-3 micrometers) grains gave isotopic results in the range previously measured for Murchison SiCs [4]. Several normal Si3N4 grains (>1 micron) were measured; probably exsolution products similar to those in Qingzhen [7]. Ion mapping was used to search for presolar oxide grains using previously developed techniques [5]. Seven candidate grains out of ~1000 were found. Multiple imaging confirmed an ^(16)O/^(18

  16. Whole Grains and Fiber

    MedlinePlus

    ... 2016 Any food made from wheat, rice, oats, corn, or another cereal is a grain product. Bread, ... Examples include whole wheat, oats/oatmeal, rye, barley, corn, popcorn, brown rice, wild rice, buckwheat, triticale, bulgur ( ...

  17. Using combined optimization, GC-MS and analytical technique to analyze the germination effect on phenolics, dietary fibers, minerals and GABA contents of Kodo millet (Paspalum scrobiculatum).

    PubMed

    Sharma, Seema; Saxena, Dharmesh C; Riar, Charanjit S

    2017-10-15

    A central composite rotatable design was applied to study the effects of soaking time, germination time and temperature on the responses; total phenolics, total flavonoids and antioxidant activity for the biochemical enhancement of bioactive components of Kodo millet. The optimum conditions for producing germinated Kodo millet flour of highest TPC (83.01mgGAE/100g), TFC (87.53mgRUE/g) and AoxA (91.34%), were soaking time (13.81h), germination temperature (38.75°C) and germination time (35.82h). Protein increased significantly form, 6.7 to 7.9%, dietary fibers from 35.30 to 38.34g/100g, minerals from 232.82 to 251.73mg/100g, GABA contents from 9.36 to 47.43mg/100g, whereas phytates and tannins decreased from 1.344 to 0.997mol/kg and 1.603 to 0.234mg/100g respectively, in optimized germinated Kodo millet sample. Six new bioactive compounds [n-propyl-9,12,15-octadecatrienoate (0.86%), pregan,20-one-2hydroxy,5,6,epox-15-methyl (3.45%), hexa-decanoicacid (8.19%), 9,O-ctadecenoicacid (5.00%), butyl-6,9,12,15-octadecatetraenoate (4.03%), hexadecanoicacid-methylester (1.43%)], synthesized as a result of germination under optimum conditions in the Kodo millet depicted the germination potential of millets as a source of valuable bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line.

    PubMed

    Sreenivasulu, Nese; Miranda, Manoela; Prakash, Harischandra Sripathy; Wobus, Ulrich; Weschke, Winfriede

    2004-04-01

    Using a macro array filter with 711 cDNA inserts representing 620 unigenes selected from a barley EST collection, we identified transcripts differentially expressed in salt (NaCl)-treated tolerant (cv. Prasad) and sensitive (cv. Lepakshi) seedlings of foxtail millet (Setaria italica L.). Transcripts of hydrogen peroxide scavenging enzymes such as phospholipid hydroperoxide glutathione peroxidase (PHGPX), ascorbate peroxidase (APX) and catalase 1 (CAT1) in addition to some genes of cellular metabolism were found to be especially up-regulated at high salinity in the tolerant line. To analyse this process at the protein level we examined protein expression patterns under various stress conditions. A 25 kD protein with a pI of 4.8 was found to be induced prominently under high salt concentrations (250 mmol/L). This salt-induced 25 kD protein has been purified and identified by peptide sequencing as PHGPX protein. The increase of the PHGPX protein level under salt stress in the tolerant line parallels the PHGPX mRNA results of array analysis but was more pronounced. We cloned and characterized the foxtail millet PHGPX cDNA, which shows 85% and 95% homology at the DNA and protein level, respectively, to one stress-induced member of the small barley PHGPX gene family encoding non-selenium glutathione peroxidases. As shown by Southern blot analysis, a small family of PHGPX genes exists in foxtail millet, too. The specific expression pattern of the PHGPX gene in salt-induced tolerant millet seedlings suggests that its product plays an important role in the defense reaction against salt-induced oxidative damage and that the characterized glutathione peroxidase is one of the components conferring resistance against salt to the tolerant foxtail millet cultivar.

  19. Geographical origin of cereal grains based on element analyser-stable isotope ratio mass spectrometry (EA-SIRMS).

    PubMed

    Wu, Yuluan; Luo, Donghui; Dong, Hao; Wan, Juan; Luo, Haiying; Xian, Yanping; Guo, Xindong; Qin, Fangfang; Han, Wanqing; Wang, Li; Wang, Bin

    2015-05-01

    The stable carbon and nitrogen isotopic compositions (δ(13)C and δ(13)N) of different cereal grains from different regions were determined, using element analyser-stable isotope ratio mass spectrometry (EA-SIRMS) as the key method. Systematically, δ(13)C and δ(13)N of 5 kinds of cereal grains of different origins, 30 wheat samples from different cultivation areas and 160 rice samples of different cultivars from Guangdong province of China were examined. The results indicated that the δ(13)C values of rice, soybean, millet, wheat and corn were significantly (P < 0.05) different within different origins (Heilongjiang, Shandong and Jiangsu province of China), respectively, while δ(13)N values were not. Interestingly, there exists discrimination between these 5 kinds of cereals grains, no matter C-3 or C-4 plants. Further study showed that the δ(13)C values of wheat from Australia, the USA, Canada, and Jiangsu and Shandong province of China were also significantly (P < 0.01) different. Furthermore, the P-value test for 160 rice samples of 5 cultivars was not significant (P > 0.05), which indicated that the cultivar of cereal grains was not significant based on δ(13)C value. Thus, the comparison of δ(13)C would be potentially useful for rapid and routine discrimination of geographical origin of cereal grains.

  20. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Roudier, P.; Quirion, P.; Alhassane, A.; Muller, B.; Dingkuhn, M.; Ciais, P.; Guimberteau, M.; Traore, S.; Baron, C.

    2013-03-01

    Sub-Saharan West Africa is a vulnerable region where a better quantification and understanding of the impact of climate change on crop yields is urgently needed. Here, we have applied the process-based crop model SARRA-H calibrated and validated over multi-year field trials and surveys at eight contrasting sites in terms of climate and agricultural practices in Senegal, Mali, Burkina Faso and Niger. The model gives a reasonable correlation with observed yields of sorghum and millet under a range of cultivars and traditional crop management practices. We applied the model to more than 7000 simulations of yields of sorghum and millet for 35 stations across West Africa and under very different future climate conditions. We took into account 35 possible climate scenarios by combining precipitation anomalies from -20% to 20% and temperature anomalies from +0 to +6 °C. We found that most of the 35 scenarios (31/35) showed a negative impact on yields, up to -41% for +6 °C/ - 20% rainfall. Moreover, the potential future climate impacts on yields are very different from those recorded in the recent past. This is because of the increasingly adverse role of higher temperatures in reducing crop yields, irrespective of rainfall changes. When warming exceeds +2 °C, negative impacts caused by temperature rise cannot be counteracted by any rainfall change. The probability of a yield reduction appears to be greater in the Sudanian region (southern Senegal, Mali, Burkina Faso, northern Togo and Benin), because of an exacerbated sensitivity to temperature changes compared to the Sahelian region (Niger, Mali, northern parts of Senegal and Burkina Faso), where crop yields are more sensitive to rainfall change. Finally, our simulations show that the photoperiod-sensitive traditional cultivars of millet and sorghum used by local farmers for centuries seem more resilient to future climate conditions than modern cultivars bred for their high yield potential (-28% versus -40% for

  1. Optimizing rainwater partitioning and millet production on degraded land in Niger using Water and Soil Conservation practices

    NASA Astrophysics Data System (ADS)

    Wildemeersch, Jasmien C. J.; Garba, Maman; Al-Barri, Bashar; Sabiou, Mahamane; Cornelis, Wim M.

    2015-04-01

    As a result of growing population pressure and severe soil erosion, farmers in the Sahel increasingly rely on degraded lands for millet production. The adverse Sahelian rainfall distribution and imbalanced rainfall partitioning over the rootzone of these degraded lands therefore calls for sustainable land management strategies that are water resource efficient. This study evaluates the soil-water balance of promising Nigerien Water and Soil Conservation (WSC) techniques (i.e., zaï pits, demi-lune microcatchments and scarification with standing crop residue) and their impact on millet yield by means of an in-situ field experiment (2011-2013) on degraded laterite soil classified as Plinthosol with a 1% slope. All WSC practices received the same amount of fertilizer and were compared to two control practices, one with and one without fertilizer. Soil-water content was recorded with a neutron probe till 105 cm depth and runoff by means of a cemented gutter directing runoff water with a multi-pipe divisor into a collector drum. WSC techniques proved to significantly reduce runoff (blue water) with overall runoff coefficients beings reduced from 25% (control practice) to 5-10%. Consequently, significantly more water was stored inside the catchments of the zaï pits and demi-lunes (green water). With the scarification treatment, no considerable differences in soil-water storage were found with the control. On the other hand, WSC practices had little impact on soil evaporation, which was only 12% of rainfall by the self-mulching soil. Crop transpiration increased with WSC and highest millet yields were found with zaï pits (4 to 5 times higher than under the fertilized control). Although rainwater was better partitioned in case of demi-lune microcatchments resulting in highest amounts of water stored in the soil, yield was only 40-60% of that with zaï pits. This was due to a higher plant density within each demi-lune microcatchment in an attempt to attain similar plant

  2. Association mapping of agro-morphological characters among the global collection of finger millet genotypes using genomic SSR markers.

    PubMed

    Kalyana Babu, B; Agrawal, P K; Pandey, Dinesh; Jaiswal, J P; Kumar, Anil

    2014-08-01

    Identification of alleles responsible for various agro-morphological characters is a major concern to further improve the finger millet germplasm. Forty-six genomic SSRs were used for genetic analysis and population structure analysis of a global collection of 190 finger millet genotypes and fifteen agro-morphological characters were evaluated. The overall results showed that Asian genotypes were smaller in height, smaller flag leaf length, less basal tiller number, early flowering and early maturity nature, small ear head length, and smaller in length of longest finger. The 46 SSRs yielded 90 scorable alleles and the polymorphism information content values varied from 0.292 to 0.703 at an average of 0.442. The gene diversity was in the range of 0.355 to 0.750 with an average value of 0.528. The 46 genomic SSR loci grouped the 190 finger millet genotypes into two major clusters based on their geographical origin by the both phylogenetic clustering and population structure analysis by STRUCTURE software. Association mapping of QTLs for 15 agro-morphological characters with 46 genomic SSRs resulted in identification of five markers were linked to QTLs of four traits at a significant threshold (P) level of ≤ 0.01 and ≤ 0.001. The QTL for basal tiller number was strongly associated with the locus UGEP81 at a P value of 0.001 by explaining the phenotypic variance (R (2)) of 10.8%. The QTL for days to 50% flowering was linked by two SSR loci UGEP77 and UGEP90, explained 10 and 8.7% of R (2) respectively at a P value of 0.01. The SSR marker, FM9 found to have strong association to two agro-morphological traits, flag leaf width (P-0.001, R(2)-14.1 %) and plant height (P-0.001, R(2)-11.2%). The markers linked to the QTLs for above agro-morphological characters found in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of alleles into locally well

  3. Experimental and bioinformatic characterization of a recombinant polygalacturonase-inhibitor protein from pearl millet and its interaction with fungal polygalacturonases

    PubMed Central

    Prabhu, S. Ashok; Singh, Ratna; Kolkenbrock, Stephan; Sujeeth, Neerakkal; El Gueddari, Nour Eddine; Moerschbacher, Bruno M.; Kini, Ramachandra K.; Wagenknecht, Martin

    2014-01-01

    Polygalacturonases (PGs) are hydrolytic enzymes employed by several phytopathogens to weaken the plant cell wall by degrading homopolygalacturonan, a major constituent of pectin. Plants fight back by employing polygalacturonase-inhibitor proteins (PGIPs). The present study compared the inhibition potential of pearl millet PGIP (Pennisetum glaucum; PglPGIP1) with the known inhibition of Phaseolus vulgaris PGIP (PvPGIP2) against two PGs, the PG-II isoform from Aspergillus niger (AnPGII) and the PG-III isoform from Fusarium moniliforme (FmPGIII). The key rationale was to elucidate the relationship between the extent of sequence similarity of the PGIPs and the corresponding PG inhibition potential. First, a pearl millet pgip gene (Pglpgip1) was isolated and phylogenetically placed among monocot PGIPs alongside foxtail millet (Setaria italica). Upstream sequence analysis of Pglpgip1 identified important cis-elements responsive to light, plant stress hormones, and anoxic stress. PglPGIP1, heterologously produced in Escherichia coli, partially inhibited AnPGII non-competitively with a pH optimum between 4.0 and 4.5, and showed no inhibition against FmPGIII. Docking analysis showed that the concave surface of PglPGIP1 interacted strongly with the N-terminal region of AnPGII away from the active site, whereas it weakly interacted with the C-terminus of FmPGIII. Interestingly, PglPGIP1 and PvPGIP2 employed similar motif regions with few identical amino acids for interaction with AnPGII at non-substrate-binding sites; however, they engaged different regions of AnPGII. Computational mutagenesis predicted D126 (PglPGIP1)–K39 (AnPGII) to be the most significant binding contact in the PglPGIP1–AnPGII complex. Such protein–protein interaction studies are crucial in the future generation of designer host proteins for improved resistance against ever-evolving pathogen virulence factors. PMID:24980909

  4. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  5. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2017-04-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  6. Grain fever syndrome induced by inhalation of airborne grain dust.

    PubMed

    doPico, G A; Flaherty, D; Bhansali, P; Chavaje, N

    1982-05-01

    To study the clinical and physiologic manifestations of the grain fever syndrome and the potentially pathogenic role of complement activation, 12 subjects (six grain workers and six healthy non-grain workers) underwent inhalation provocations with airborne grain dust. The clinical response was characterized by facial warmth, headache, malaise, myalgias, feverish sensation, chilliness, throat and tracheal burning sensation, chest tightness, dyspnea, cough, and expectoration. Fever developed in four grain workers and two controls. Leukocytosis, ranging between 11,700 and 24,300 leukocytes/mm3 with left shift, developed in five grain workers and five controls. There was no evidence of complement activation by the classical or alternate pathway. None of the subjects had serum precipitins to grain dust. The pulmonary response was characterized by a decrease in FEV1, FVC, MMF, Vmax50, and Vmax75, with significant rise in pulmonary resistance and consistent change in dynamic compliance but without changes in static compliance or diffusing capacity. Hence, grain dust inhalation induced diffuse airways obstruction without detectable parenchymal reaction. The airways response to high concentrations of grain dust inhalation were unrelated to the presence of immediate skin hypersensitivity. Although we cannot exclude the etiopathogenetic role of an immunologic reaction to grain dust, our data do not support the hypothesis that the grain fever syndrome is a precipitin-mediated allergic pneumonitis. More likely, the manifestations of grain fever probably reflect the host reaction to grain dust bacterial endotoxins and/or nonallergic mediator release by grain or grain dust constituents.

  7. High frequency embryoid and plantlet formation from tissue cultures of the Finger millet-Eleusine coracana (L.) Gaertn.

    PubMed

    Sivadas, P; Kothari, S L; Chandra, N

    1990-07-01

    Compact nodulated embryogenic callus differentiated from cultured seeds of Eleusine coracana (Finger Millet) on Murashige and Skoog (1962) basal medium with 2,4-dichlorophenoxyacetic acid (1.0, 3.0 mg (l)). This embryogenic callus was maintained on a medium with a lower level of 2,4 - dichlorophenoxyacetic acid. At every subculture the embryogenic callus had some preexisting embryoids in it. With this method of subculture the callus has retained its morphogenic potential for four years. Following transfer to media with different levels of auxins and cytokinins, the callus showed varied patterns of growth and morphogenesis. Embryoids could be germinated in profusion to form plantlets which could be transferred to the field. Shoot buds also differentiated from the whole surface of the embryoid or from the flattened meristemoids.

  8. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch.

    PubMed

    Sun, Qingjie; Gong, Min; Li, Ying; Xiong, Liu

    2014-09-22

    Proso millet (Panicum miliaceum L.) flour and starch were heated in a dry state at 130°C for 2 or 4 h. The effects of dry heat treatment (DHT) on the pasting, morphological and structural properties of the samples were evaluated. Dry heat treatment had a more significant effect on the pasting viscosity of flour than starch; it increased the pasting viscosity of the flour while it only increased the final viscosity of the starch. After dry heating, the onset of gelatinization and the peak temperatures of the samples increased significantly while the endothermic enthalpy decreased. Scanning electron microscopy showed that the gel structure of the samples became more compact and the particles were plumper when compared with the native ones. Crystallinity of the samples decreased while the X-ray diffraction patterns remained the same after DHT.

  9. Twin screw extrusion of kodo millet-chickpea blend: process parameter optimization, physico-chemical and functional properties.

    PubMed

    Geetha, R; Mishra, H N; Srivastav, P P

    2014-11-01

    Kodo millet-chickpea flour blend (70:30) was explored for development of directly expanded snack by twin-screw extrusion. Effect of process parameters like temperature (80-150 °C), screw speed (250-300 rpm) and feeder speed (15-30 rpm) on physical properties (expansion ratio, bulk density, hardness, crispiness) of extrudates were investigated and optimized using response surface methodology. Desirable crispy extrudates were obtained at higher screw speed 293 rpm, lower feeder speed 19 rpm, and medium to high temperature of 123 °C. Effect of extreme and intermediate process conditions on functional, proximate quality and colour of the extrudates were also evaluated.

  10. Grain quality inspection system

    NASA Technical Reports Server (NTRS)

    Flood, C. A., Jr.; Singletow, D. P.; James, S. N.

    1979-01-01

    A review of grain quality indicators and measurement methods was conducted in order to assess the feasibility of using remote sensing technology to develop a continuous monitoring system for use during grain transfer operations. Most detection methods were found to be too slow or too expensive to be incorporated into the normal inspection procedure of a grain elevator on a continuous basis. Two indicators, moisture content and broken corn and foreign material, show potential for automation and are of an economic value. A microprocessor based system which utilizes commercially available electronic moisture meter was developed and tested. A method for automating BCFM measurement is described. A complete system description is presented along with performance test results.

  11. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  12. Celiac Disease Diet: How Do I Get Enough Grains?

    MedlinePlus

    ... you. These include brown, black or wild rice, quinoa, amaranth, pure buckwheat, corn, cornmeal, popcorn, millet, gluten- ... from corn (hominy, grits), rice, pure buckwheat, amaranth, quinoa or gluten-free oats Gluten-free puffed rice ...

  13. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    PubMed

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  14. De novo Transcriptome Sequencing to Dissect Candidate Genes Associated with Pearl Millet-Downy Mildew (Sclerospora graminicola Sacc.) Interaction

    PubMed Central

    Kulkarni, Kalyani S.; Zala, Harshvardhan N.; Bosamia, Tejas C.; Shukla, Yogesh M.; Kumar, Sushil; Fougat, Ranbir S.; Patel, Mruduka S.; Narayanan, Subhash; Joshi, Chaitanya G.

    2016-01-01

    Understanding the plant-pathogen interactions is of utmost importance to design strategies for minimizing the economic deficits caused by pathogens in crops. With an aim to identify genes underlying resistance to downy mildew, a major disease responsible for productivity loss in pearl millet, transcriptome analysis was performed in downy mildew resistant and susceptible genotypes upon infection and control on 454 Roche NGS platform. A total of ~685 Mb data was obtained with 1 575 290 raw reads. The raw reads were pre-processed into high-quality (HQ) reads making to ~82% with an average of 427 bases. The assembly was optimized using four assemblers viz. Newbler, MIRA, CLC and Trinity, out of which MIRA with a total of 14.10 Mb and 90118 transcripts proved to be the best for assembling reads. Differential expression analysis depicted 1396 and 936 and 1000 and 1591 transcripts up and down regulated in resistant inoculated/resistant control and susceptible inoculated/susceptible control respectively with a common of 3644 transcripts. The pathways for secondary metabolism, specifically the phenylpropanoid pathway was up-regulated in resistant genotype. Transcripts up-regulated as a part of defense response included classes of R genes, PR proteins, HR induced proteins and plant hormonal signaling transduction proteins. The transcripts for skp1 protein, purothionin, V type proton ATPase were found to have the highest expression in resistant genotype. Ten transcripts, selected on the basis of their involvement in defense mechanism were validated with qRT-PCR and showed positive co-relation with transcriptome data. Transcriptome analysis evoked potentials of hypersensitive response and systemic acquired resistance as possible mechanism operating in defense mechanism in pearl millet against downy mildew infection. PMID:27446100

  15. The synergistic effect of drought and light stresses in sorghum and pearl millet. [Pennisetum glaucum; Sorghum bicolor

    SciTech Connect

    Masojidek, M.; Trivedi, S.; Halshaw, L.; Alexiou, A.; Hall, D.O. )

    1991-05-01

    The effect of drought stress and high irradiance and their combination were studied under laboratory conditions using young plants of a very drought-resistant variety, ICMH 451, of pearl millet (Pennisetum glaucum) and three varieties of sorghum (Sorghum bicolor) - one drought-resistant from India, one drought-tolerant from Texas, and one drought-sensitive variety from France. CO{sub 2} assimilation rates and photosystem II fluorescence in leaves were analyzed in parallel with photosynthetic electron transport, photosystem II fluorescence, and chlorophyll-protein composition in chloroplasts isolated from these leaves. High irradiance slightly increased CO{sub 2} assimilation rates and electron transport activities of irrigated plants but not fluorescence. Drought stress (less than {minus}1 megapascal) depressed CO{sub 2} assimilation rates, fluorescence, and electron transport. Under the combined effect of drought stress and high irradiance, CO{sub 2} assimilation rates, fluorescence, and electron transport. Under the combined effects of drought stress and high irradiance, CO{sub 2} assimilation rates and fluorescence were severely inhibited in leaves, as were the photosynthetic electron transport. Under the combined effects of drought stress and high irradiance, CO{sub 2} assimilation rates and fluorescence were severely inhibited in leaves, as were the photosynthetic electron transport activities and fluorescence in chloroplasts (but not photosystem I activity). The synergistic or distinctive effect of drought and high irradiance is discussed. The experiments with pearl millet and three varieties of sorghum showed that different responses of plants to drought and light stresses can be monitored by plant physiological and biochemical techniques. Some of these techniques may have a potential for selection of stress-resistant varieties using seedlings.

  16. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  17. Grain Boundary Complexions

    DTIC Science & Technology

    2014-05-01

    adsorption at Cu grain boundaries with Auger electron spectroscopy (AES) [161] and diffusivity of Cu and Bi in Bi- doped Cu [162] as a P.R. Cantwell et al ...a nanolayer complexion at a grain boundary in Ni- doped W; reprinted from Ref. [32] with permission. 24 P.R. Cantwell et al . / Acta Materialia 62 (2014...et al . [48] (Fig. 10 and Fig. 19) and in Au- doped Si by Ma et al . [34] (Fig. 13). Dillon and Harmer could not readily distinguish between different

  18. Charging of interplanetary grains

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.

    1995-01-01

    The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.

  19. Fine Grain Aluminum Superplasticity

    DTIC Science & Technology

    1980-02-01

    various temperature-time combinations, were water quenched and then examined metallographically. Since the dimensions of the grains in the long...M0 63166 Dr. E. J. Ripling Materials Research Laboratory, Inc. No. 1 Science Road Glenwood, IL 60425 Mr. G. Spangler Reynolds Metal Company 4th and Canal Streets Richmond, VA 23219

  20. Edible grain legumes

    USDA-ARS?s Scientific Manuscript database

    Edible grain legumes including dry bean, dry pea, chickpeas, and lentils, have served as important sources of protein for human diets for thousands of years. In the US, these crops are predominately produced for export markets. The objective of this study was to examine yield gains in these crops ov...

  1. Interstellar Grain Mantles

    NASA Technical Reports Server (NTRS)

    Witteborn, F.; Goebel, J.; Bregman, J.; Allamandola, Louis J.; Dhendecourt, L. B.; Tielens, Alexander G. G. M.

    1984-01-01

    Techniques for determining the composition of small dust grains in interstellar matter are discussed. The best way to study the composition of interstellar grain mantles is by infrared spectroscopy. The absorption features in a complete infrared spectrum from 2 to 15 microns can be used as fingerprints to identify the absorbing molecule. Ground-based observations around 3 microns confirmed the presence of H2O ice in interstellar grain mantles, through the detection of the 3.08 micron OH stretching vibration. The detection of other molecules, in particular the carbon bearing molecules, is however hampered by atmospheric absorption in the 5-8 micron region and the presence of the strong ice and silicate bands, which dominate the 3 and 10 micron region respectively. Kuiper Airborne Observatory observations of the 5-8 micron region of the spectrum are therefore extremely important to determine the composition of interstellar grain mantles. The 5 to 8 micron spectra of molecular cloud sources was obtained using a 24 detector grating spectrometer. An important characteristic of this spectrometer is that the whole spectrum is obtained simultaneously. It is therefore relatively easy to correct for atmospheric transmission.

  2. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  3. Simultaneous Determination of Multi-Mycotoxins in Cereal Grains Collected from South Korea by LC/MS/MS

    PubMed Central

    Kim, Dong-Ho; Hong, Sung-Yong; Kang, Jea Woo; Cho, Sung Min; Lee, Kyu Ri; An, Tae Kyung; Lee, Chan; Chung, Soo Hyun

    2017-01-01

    An improved analytical method compared with conventional ones was developed for simultaneous determination of 13 mycotoxins (deoxynivalenol, nivalenol, 3-acetylnivalenol, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, fumonisin B1, fumonisin B2, T-2, HT-2, zearalenone, and ochratoxin A) in cereal grains by liquid chromatography-tandem mass spectrometry (LC/MS/MS) after a single immunoaffinity column clean-up. The method showed a good linearity, sensitivity, specificity, and accuracy in mycotoxin determination by LC/MS/MS. The levels of 13 mycotoxins in 5 types of commercial grains (brown rice, maize, millet, sorghum, and mixed cereal) from South Korea were determined in a total of 507 cereal grains. Mycotoxins produced from Fusarium sp. (fumonisins, deoxynivalenol, nivalenol, and zearalenone) were more frequently (more than 5%) and concurrently detected in all cereal grains along with higher mean levels (4.3–161.0 ng/g) in positive samples than other toxins such as aflatoxins and ochratoxin A (less than 9% and below 5.2 ng/g in positive samples) from other fungal species. PMID:28300780

  4. Simultaneous Determination of Multi-Mycotoxins in Cereal Grains Collected from South Korea by LC/MS/MS.

    PubMed

    Kim, Dong-Ho; Hong, Sung-Yong; Kang, Jea Woo; Cho, Sung Min; Lee, Kyu Ri; An, Tae Kyung; Lee, Chan; Chung, Soo Hyun

    2017-03-16

    An improved analytical method compared with conventional ones was developed for simultaneous determination of 13 mycotoxins (deoxynivalenol, nivalenol, 3-acetylnivalenol, aflatoxin B₁, aflatoxin B₂, aflatoxin G₁, aflatoxin G₂, fumonisin B₁, fumonisin B₂, T-2, HT-2, zearalenone, and ochratoxin A) in cereal grains by liquid chromatography-tandem mass spectrometry (LC/MS/MS) after a single immunoaffinity column clean-up. The method showed a good linearity, sensitivity, specificity, and accuracy in mycotoxin determination by LC/MS/MS. The levels of 13 mycotoxins in 5 types of commercial grains (brown rice, maize, millet, sorghum, and mixed cereal) from South Korea were determined in a total of 507 cereal grains. Mycotoxins produced from Fusarium sp. (fumonisins, deoxynivalenol, nivalenol, and zearalenone) were more frequently (more than 5%) and concurrently detected in all cereal grains along with higher mean levels (4.3-161.0 ng/g) in positive samples than other toxins such as aflatoxins and ochratoxin A (less than 9% and below 5.2 ng/g in positive samples) from other fungal species.

  5. Why do interstellar grains exist?

    NASA Technical Reports Server (NTRS)

    Seab, C. G.; Hollenbach, D. J.; Mckee, C. F.; Tielens, Alexander G. G. M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included.

  6. Spatial distribution pattern analysis of Dof1 transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency.

    PubMed

    Gupta, Nidhi; Gupta, Atul Kumar; Kumar, Anil

    2012-03-01

    In the present study Dof1 gene of finger millet was cloned and sequenced. In silico analysis reveals 61% identity with the Sorghum bicolor and 57% identity with the Oryza sativa Dof1 sequence. A comparative analysis of gene sequences from different crops and three finger millet genotypes {Brown (PRM-1), Golden (PRM-701) and White (PRM-801)} differing in grain colour, yield and photosynthetic efficiency showed a high degree of sequence identity of Dof1 sequence gene ranging from 22 to 70% as evident from distance matrix of the built phylogenetic tree showing two major clusters. A total of five conserved motifs were observed in Dof1 sequences of different cereals. Motif 1 with multilevel consensus sequence CKNCRRYWTKGGAMRNVPVG contains zinc finger Dof domain. Motif 3 and motif 5 contains protein kinase phosphorylation site. Motif 2 contains Dof domain and zinc finger N-glycosylation site while motif 4 is involved in Zinc finger type profiling. Further, we studied the spatial distribution of Dof1 gene in three vegetative tissues (root, stem and flag leaf) as well as four stages of developing spikes (S1, S2, S3 and S4) of the three finger millet genotypes using qualitative and quantitative PCR based approaches. Physiological parameters (plant height, leaf area, chlorophyll content, SPAD value and photosynthetic efficiency) at the time of flowering was found to be highest in white (PRM-801) genotype followed by golden (PRM-701) and brown (PRM-1) genotype. Semi-quantitative RT-PCR and quantitative real-time PCR analysis revealed that the expression of Dof1 is highest in leaves and lowest in roots, which suggests its role in regulation of photosynthesis-related genes and carbon skeleton synthesis. Also at grain maturity stage, expression of Dof1 was higher in white (PRM-801) genotype followed by golden (PRM-701) and brown (PRM-1) genotype. The result is suggestive of Dof1 role in the accumulation of grain protein and yield attribute through regulation of key enzymes

  7. Dust grain charging in a wake of other grains

    SciTech Connect

    Miloch, W. J.; Block, D.

    2012-12-15

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  8. Genome-Wide Investigation and Expression Analyses of WD40 Protein Family in the Model Plant Foxtail Millet (Setaria italica L.)

    PubMed Central

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I–V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and

  9. Grains charges in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Bel, N.; Lafon, J. P.; Viala, Y. P.

    1989-01-01

    The charge of cosmic grains could play an important role in many astrophysical phenomena. It probably has an influence on the coagulation of grains and more generally on grain-grain collisions, and on interaction between charged particles and grains which could lead to the formation of large grains or large molecules. The electrostatic charge of grains depends mainly on the nature of constitutive material of the grain and on the physical properties of its environment: it results from a delicate balance between the plasma particle collection and the photoelectron emission, both of them depending on each other. The charge of the grain is obtained in two steps: (1) using the numerical model the characteristics of the environment of the grain are computed; (2) the charge of a grain which is embedded in this environment is determined. The profile of the equilibrium charge of some typical grains through different types of interstellar clouds is obtained as a function of the depth of the cloud. It is shown that the grain charge can reach high values not only in hot diffuse clouds, but also in clouds with higher densities. The results are very sensitive to the mean UV interstellar radiation field. Three parameters appear to be essential but with different levels of sensitivity of the charge: the gas density, the temperature, and the total thickness of the cloud.

  10. Disorientation of Suprathermally Rotating Grains and the Grain Alignment Problem

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Draine, B. T.

    1997-09-01

    We discuss the dynamics of dust grains subjected to torques arising from H2 formation. In particular, we discuss grain dynamics when a grain spins down and goes through a ``crossover'' event. As first pointed out by Spitzer & McGlynn, the grain angular momentum before and after a crossover event are correlated, and the degree of this correlation critically affects the alignment of dust grains by paramagnetic dissipation. We calculate the correlation including the important effects of thermal fluctuations within the grain material. These fluctuations limit the degree to which the grain angular momentum J is coupled with the grain principal axis a1 of maximal inertia. We show that this imperfect coupling of a1 with J plays a critical role during crossovers and can substantially increase the efficiency of paramagnetic alignment for grains larger than 0.1 μm. As a result, we show that for reasonable choices of parameters, the observed alignment of a >~ 0.1 μm grains could be achieved by paramagnetic dissipation in suprathermally rotating grains, if radiative torques caused by starlight were not present. We also show that the efficiency of mechanical alignment in the limit of long alignment times is not altered by the thermal fluctuations in the grain material. This paper is dedicated to the memory of Lyman Spitzer, Jr.

  11. Estimating millet production for famine early warning: An application of crop simulation modelling using satellite and ground-based data in Burkina Faso

    USGS Publications Warehouse

    Thornton, P. K.; Bowen, W. T.; Ravelo, A.C.; Wilkens, P. W.; Farmer, G.; Brock, J.; Brink, J. E.

    1997-01-01

    Early warning of impending poor crop harvests in highly variable environments can allow policy makers the time they need to take appropriate action to ameliorate the effects of regional food shortages on vulnerable rural and urban populations. Crop production estimates for the current season can be obtained using crop simulation models and remotely sensed estimates of rainfall in real time, embedded in a geographic information system that allows simple analysis of simulation results. A prototype yield estimation system was developed for the thirty provinces of Burkina Faso. It is based on CERES-Millet, a crop simulation model of the growth and development of millet (Pennisetum spp.). The prototype was used to estimate millet production in contrasting seasons and to derive production anomaly estimates for the 1986 season. Provincial yields simulated halfway through the growing season were generally within 15% of their final (end-of-season) values. Although more work is required to produce an operational early warning system of reasonable credibility, the methodology has considerable potential for providing timely estimates of regional production of the major food crops in countries of sub-Saharan Africa.

  12. Fine-mapping and identification of a candidate gene underlying the d2 dwarfing phenotype in pearl millet, Cenchrus americanus (L.) Morrone.

    PubMed

    Parvathaneni, Rajiv K; Jakkula, Vinod; Padi, Francis K; Faure, Sebastien; Nagarajappa, Nethra; Pontaroli, Ana C; Wu, Xiaomei; Bennetzen, Jeffrey L; Devos, Katrien M

    2013-03-01

    Pearl millet is one of the most important subsistence crops grown in India and sub-Saharan Africa. In many cereal crops, reduced height is a key trait for enhancing yield, and dwarf mutants have been extensively used in breeding to reduce yield loss due to lodging under intense management. In pearl millet, the recessive d2 dwarfing gene has been deployed widely in commercial germplasm grown in India, the United States, and Australia. Despite its importance, very little research has gone into determining the identity of the d2 gene. We used comparative information, genetic mapping in two F2 populations representing a total of some 1500 progeny, and haplotype analysis of three tall and three dwarf inbred lines to delineate the d2 region by two genetic markers that, in sorghum, define a region of 410 kb with 40 annotated genes. One of the sorghum genes annotated within this region is ABCB1, which encodes a P-glycoprotein involved in auxin transport. This gene had previously been shown to underlie the economically important dw3 dwarf mutation in sorghum. The cosegregation of ABCB1 with the d2 phenotype, its differential expression in the tall inbred ICMP 451 and the dwarf inbred Tift 23DB, and the similar phenotype of stacked lower internodes in the sorghum dw3 and pearl millet d2 mutants suggest that ABCB1 is a likely candidate for d2.

  13. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.

    PubMed

    Wang, Yongqiang; Li, Lin; Tang, Sha; Liu, Jianguang; Zhang, Hanshuang; Zhi, Hui; Jia, Guanqing; Diao, Xianmin

    2016-04-12

    Foxtail millet (Setaria italica) is a diploid C4 panicoid species. Because of its prominent drought resistance, small genome size, self-pollination, and short life cycle, foxtail millet has become an ideal model system for studying drought tolerance of crops. MicroRNAs (miRNAs) are endogenous, small RNAs that play important regulatory roles in the development and stress response in plants. In this study, we applied Illumina sequencing to systematically investigate the drought-responsive miRNAs derived from S. italica inbred An04-4783 seedlings grown under control and drought conditions. Degradome sequencing was applied to confirm the targets of these miRNAs at a global level. A total of 81 known miRNAs belonging to 28 families were identified, among which 14 miRNAs were upregulated and four were downregulated in response to drought. In addition, 72 potential novel miRNAs were identified, three of which were differentially expressed under drought conditions. Degradome sequencing analysis showed that 56 and 26 genes were identified as targets of known and novel miRNAs, respectively. Our analysis revealed post-transcriptional remodeling of cell development, transcription factors, ABA signaling, and cellar homeostasis in S.italica in response to drought. This preliminary characterization provided useful information for further studies on the regulatory networks of drought-responsive miRNAs in foxtail millet.

  14. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  15. History of Presolar Grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.

    2005-01-01

    Papers on the History of Presolar Grains. This has been a very productive period in which much of the laboratory work conducted in the previous year and during this funding cycle were brought to completion. In the last year we have published or submitted for peer review 4 research papers, 4 review papers, and 11 abstracts in research areas supported under this grant. Brief synopses of the results of the research papers are presented, followed by short summaries of the topics discussed in the review papers. Several areas of research are of course being actively pursued, and the appended list of abstracts gives citations to this ongoing work. In a paper submitted to the Astrophysical Journal, the results of an investigation into the physical conditions in the mass outflows of asymptotic giant branch (AGB) carbon stars that are required for the formation of micron-sized presolar graphite grains, with and without previously formed internal crystals of titanium carbide (TIC) are reported.

  16. Isotropic Monte Carlo Grain Growth

    SciTech Connect

    Mason, J.

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  17. Predictive coarse-graining

    NASA Astrophysics Data System (ADS)

    Schöberl, Markus; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios

    2017-03-01

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method [1] and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo - Expectation-Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  18. Whole grains, refined grains and fortified refined grains: What's the difference?

    PubMed

    Slavin, J L

    2000-09-01

    Dietary guidance universally supports the importance of grains in the diet. The United States Department of Agriculture pyramid suggests that Americans consume from six to 11 servings of grains per day, with three of these servings being whole grain products. Whole grain contains the bran, germ and endosperm, while refined grain includes only endosperm. Both refined and whole grains can be fortified with nutrients to improve the nutrient profile of the product. Most grains consumed in developed countries are subjected to some type of processing to optimize flavor and provide shelf-stable products. Grains provide important sources of dietary fibre, plant protein, phytochemicals and needed vitamins and minerals. Additionally, in the United States grains have been chosen as the best vehicle to fortify our diets with vitamins and minerals that are typically in short supply. These nutrients include iron, thiamin, niacin, riboflavin and, more recently, folic acid and calcium. Grains contain antioxidants, including vitamins, trace minerals and non-nutrients such as phenolic acids, lignans and phytic acid, which are thought to protect against cardiovascular disease and cancer. Additionally, grains are our most dependable source of phytoestrogens, plant compounds known to protect against cancers such as breast and prostate. Grains are rich sources of oligosaccharides and resistant starch, carbohydrates that function like dietary fibre and enhance the intestinal environment and help improve immune function. Epidemiological studies find that whole grains are more protective than refined grains in the prevention of chronic disease, although instruments to define intake of refined, whole and fortified grains are limited. Nutritional guidance should support whole grain products over refined, with fortification of nutrients improving the nutrient profile of both refined and whole grain products.

  19. Storing Peanuts in Grain Bags

    USDA-ARS?s Scientific Manuscript database

    A study was executed to determine the potential of storing farmers stock peanuts and shelled peanuts for crushing in hermetically sealed grain bags. The objectives of the study were to evaluate equipment for loading and unloading the grain bags, the capacity of the grain bags, and the changes in qu...

  20. Grain-grain interaction in stationary dusty plasma

    SciTech Connect

    Lampe, Martin; Joyce, Glenn

    2015-02-15

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is larger than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.

  1. Special Grain Boundaries in Ultrafine-Grained Tungsten

    NASA Astrophysics Data System (ADS)

    Dudka, O. V.; Ksenofontov, V. A.; Sadanov, E. V.; Starchenko, I. V.; Mazilova, T. I.; Mikhailovskij, I. M.

    2016-07-01

    Field ion microscopy and computer simulation were used for the study of an atomic structure high-angle grain boundary in hard-drawn ultrafine-grained tungsten wire. These boundaries with special misorientations are beyond the scope of the coincident site lattice model. It was demonstrated that the special non-coincident grain boundaries are the plane-matching boundaries, and rigid-body displacements of adjacent nanograins are normal to the <110> misorientation axis. The vectors of rigid-body translations of grains are described by broad asymmetric statistical distribution. Mathematical modeling showed that special incommensurate boundaries with one grain oriented along the {211} plane have comparatively high cohesive energies. The grain-boundary dislocations ½<110> were revealed and studied at the line of local mismatch of {110} atomic planes of adjacent grains.

  2. Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs

    PubMed Central

    2013-01-01

    Background Pearl millet [Pennisetum glaucum (L.) R. Br.] is a widely cultivated drought- and high-temperature tolerant C4 cereal grown under dryland, rainfed and irrigated conditions in drought-prone regions of the tropics and sub-tropics of Africa, South Asia and the Americas. It is considered an orphan crop with relatively few genomic and genetic resources. This study was undertaken to increase the EST-based microsatellite marker and genetic resources for this crop to facilitate marker-assisted breeding. Results Newly developed EST-SSR markers (99), along with previously mapped EST-SSR (17), genomic SSR (53) and STS (2) markers, were used to construct linkage maps of four F7 recombinant inbred populations (RIP) based on crosses ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 × ICMP 451-P8 (RIP C) and PT 732B-P2 × P1449-2-P1 (RIP D). Mapped loci numbers were greatest for RIP A (104), followed by RIP B (78), RIP C (64) and RIP D (59). Total map lengths (Haldane) were 615 cM, 690 cM, 428 cM and 276 cM, respectively. A total of 176 loci detected by 171 primer pairs were mapped among the four crosses. A consensus map of 174 loci (899 cM) detected by 169 primer pairs was constructed using MergeMap to integrate the individual linkage maps. Locus order in the consensus map was well conserved for nearly all linkage groups. Eighty-nine EST-SSR marker loci from this consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) on the genome sequences of rice, foxtail millet, sorghum, maize and Brachypodium with 35, 88, 58, 48 and 38 loci, respectively. Conclusion The consensus map developed in the present study contains the largest set of mapped SSRs reported to date for pearl millet, and represents a major consolidation of existing pearl millet genetic mapping information. This study increased numbers of mapped pearl millet SSR markers by >50%, filling important gaps in previously published SSR-based linkage maps for this

  3. Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses

    PubMed Central

    Feng, Zhi-Juan; He, Guan-Hua; Zheng, Wei-Jun; Lu, Pan-Pan; Chen, Ming; Gong, Ya-Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2015-01-01

    It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies. PMID:26734043

  4. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake

    PubMed Central

    Sharma, Parbodh C.; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C.T.; Yadav, Rattan S.

    2014-01-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na+ was recorded in roots. Further, the Na+ concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m−1 within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na+ ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na+ concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage affected the

  5. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake.

    PubMed

    Sharma, Parbodh C; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C T; Yadav, Rattan S

    2014-06-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na(+) was recorded in roots. Further, the Na(+) concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m(-1) within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na(+) ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na(+) concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage

  6. Grain dryer temperature field analysis

    NASA Astrophysics Data System (ADS)

    Li, Shizhuang; Cao, Shukun; Meng, Wenjing; Ma, Lingran

    2017-09-01

    Taking into account the drying process in the hot air temperature on the grain temperature has a great impact, and grain temperature and determines the quality of food after baking, so in order to ensure that the grain drying temperature in the safe range, the use of ANSYS FLUENT module of grain The temperature field was simulated in the drying process. The horizontal spacing of the angle box was 200mm and the vertical spacing was 240mm. At this time, the grain temperature distribution was more uniform and the drying was more adequate.

  7. Whole grains and human health.

    PubMed

    Slavin, Joanne

    2004-06-01

    Epidemiological studies find that whole-grain intake is protective against cancer, CVD, diabetes, and obesity. Despite recommendations to consume three servings of whole grains daily, usual intake in Western countries is only about one serving/d. Whole grains are rich in nutrients and phytochemicals with known health benefits. Whole grains have high concentrations of dietary fibre, resistant starch, and oligosaccharides. Whole grains are rich in antioxidants including trace minerals and phenolic compounds and these compounds have been linked to disease prevention. Other protective compounds in whole grains include phytate, phyto-oestrogens such as lignan, plant stanols and sterols, and vitamins and minerals. Published whole-grain feeding studies report improvements in biomarkers with whole-grain consumption, such as weight loss, blood-lipid improvement, and antioxidant protection. Although it is difficult to separate the protective properties of whole grains from dietary fibre and other components, the disease protection seen from whole grains in prospective epidemiological studies far exceeds the protection from isolated nutrients and phytochemicals in whole grains.

  8. Swash mark and grain flow

    USGS Publications Warehouse

    Sallenger,, Asbury H.

    1981-01-01

    Swash marks composed entirely of coarse sand are commonly found on coarse-sand beaches. These swash marks are 10 to 30 centimeters in width and a few millimeters to one centimeter in height. Previous observations, mostly on finer-sand beaches, indicate swash marks are seldom over a few millimeters in height and are commonly composed of material readily floated by surface tension (e.g., mica flakes and shell fragments). Swash marks composed of coarse sand have both fining seaward and fining with depth trends in grain size. Apparently, the leading margin of a wave upwash drives a highly concentrated flow of grains in which both grain size and grain velocity decrease with depth. Therefore, large grains are transported at greater velocities than are smaller grains. Thus, at the maximum advance of an upwash, a swash mark is deposited which has the observed fining seaward and fining with depth trends in grain size.

  9. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  10. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  11. Dietary intake of whole grains.

    PubMed

    Cleveland, L E; Moshfegh, A J; Albertson, A M; Goldman, J D

    2000-06-01

    The objective of this study was to provide national estimates of whole-grain intake in the United States, identify major dietary sources of whole grains and compare food and nutrient intakes of whole-grain consumers and nonconsumers. Data were collected from 9,323 individuals age 20 years and older in USDA's 1994-96 Continuing Survey of Food Intakes by Individuals through in-person interviews on two non-consecutive days using a multiple-pass 24-hour recall method. Foods reported by respondents were quantified in servings as defined by the Food Guide Pyramid using a new database developed by the USDA. Whole-grain and nonwhole-grain servings were determined based on the proportion, by weight, of the grain ingredients in each food that were whole grain and nonwhole grain. Sampling weights were applied to provide national probability estimates adjusted for differential rates of selection and nonresponse. Then, t tests were used to assess statistically significant differences in intakes of nutrients and food groups by whole-grain consumers and nonconsumers. According to the 1994-96 survey, U.S. adults consumed an average of 6.7 servings of grain products per day; 1.0 serving was whole grain. Thirty-six percent averaged less than one whole-grain serving per day based on two days of intake data, and only eight percent met the recommendation to eat at least three servings per day. Yeast breads and breakfast cereals each provided almost one-third of the whole-grain servings, grain-based snacks provided about one-fifth, and less than one-tenth came from quick breads, pasta, rice, cakes, cookies, pies, pastries and miscellaneous grains. Whole-grain consumers had significantly better nutrient profiles than nonconsumers, including higher intakes of vitamins and minerals as percentages of 1989 Recommended Dietary Allowances and as nutrients per 1,000 kilocalories, and lower intakes of total fat, saturated fat and added sugars as percentages of food energy. Consumers were

  12. Lunar and Planetary Science XXXV: Presolar Grains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: Presolar Silicate Grains; Presolar Silicates from Primitivr Chondrites; Oxygen and Magnesium Isotopic Ratios of Presolar Spinel Grains; Study of Two New Presolar Grains from Bishunpur Ordinary Chondrite; Extinct Technetium in Presolar Grains; etc.

  13. Production of α-Amylase by Aspergillus terreus NCFT 4269.10 Using Pearl Millet and Its Structural Characterization

    PubMed Central

    Sethi, Bijay K.; Jana, Arijit; Nanda, Prativa K.; DasMohapatra, Pradeep K.; Sahoo, Santi L.; Patra, Jayanta Kumar

    2016-01-01

    In this investigation, Aspergillus terreus NCFT4269.10 was employed in liquid static surface (LSSF) and solid state (SSF) fermentation to assess the optimal conditions for α-amylase biosynthesis. One-variable-at-a-time approach (quasi-optimum protocol) was primarily used to investigate the effect of each parameter on production of amylase. The maximum amylase production was achieved using pearl millet (PM) as substrate by SSF (19.19 ± 0.9 Ug−1) and also in presence of 1 mM magnesium sulfate, 0.025% (w/v) gibberellic acid, and 30 mg/100 ml (w/v) of vitamin E (~60-fold higher production of amylase) with the initial medium pH of 7.0 and incubation at 30 °C for 96 h. In addition, maltose, gelatin and isoleucine also influenced the α-amylase production. Amylase was purified to homogeneity with molecular mass around 15.3 kDa. The enzyme comprised of a typical secondary structure containing α-helix (12.2%), β-pleated sheet (23.6%), and β-turn (27.4%). Exploitation of PM for α-amylase production with better downstream makes it the unique enzyme for various biotechnological applications. PMID:27242841

  14. Three alpha-amylases from malted finger millet (Ragi, Eleusine coracana, Indaf-15)--purification and partial characterization.

    PubMed

    Nirmala, M; Muralikrishna, G

    2003-01-01

    Three alpha-amylases (E.C. 3.2.1.1) were purified to apparent homogeneity from 72 h finger millet malt by three step purification via fractional acetone precipitation, DEAE-Sephacel ion exchange and Sephacryl S-200 gel permeation chromatographies with a recovery of 6.5, 2.9, 9.6% and fold purification of 26, 17 and 31, respectively. alpha-Nature of these amylases was identified by their ability to rapidly reduce the viscosity of starch solution and also in liberating oligosaccharides of higher D.P. and were accordingly designated as amylases alpha-1((b)), alpha-2 and alpha-3, respectively. These amylases, having a molecular weight of 45+/-2 kDa were found to be monomeric. The pH and temperature optima of these alpha-amylases were found to be in the range of 5.0-5.5 and 45-50 degrees C, respectively. K(m) values of these amylases for various cereal starches varied between 0.59 and 1.43%. Carbodiimide (50 mM) and metal ions such as Al(3+), Fe(2+), and Hg(2+) (5 mM) have completely inhibited these enzymes at 45 degrees C. Amino acid analysis of these enzymes indicated high amounts of glycine which is an unusual feature of these enzymes.

  15. Isolation and expression analysis of EcbZIP17 from different finger millet genotypes shows conserved nature of the gene.

    PubMed

    Chopperla, Ramakrishna; Singh, Sonam; Mohanty, Sasmita; Reddy, Nanja; Padaria, Jasdeep C; Solanke, Amolkumar U

    2017-10-01

    Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we report isolation and characterization of EcbZIP17, a group B bZIP transcription factor from a climate smart cereal, finger millet (Eleusine coracana L.). The genomic sequence of EcbZIP17 is 2662 bp long encompassing two exons and one intron with ORF of 1722 bp and peptide length of 573 aa. This gene is homologous to AtbZIP17 (Arabidopsis), ZmbZIP17 (maize) and OsbZIP60 (rice) which play a key role in endoplasmic reticulum (ER) stress pathway. In silico analysis confirmed the presence of basic leucine zipper (bZIP) and transmembrane (TM) domains in the EcbZIP17 protein. Allele mining of this gene in 16 different genotypes by Sanger sequencing revealed no variation in nucleotide sequence, including the 618 bp long intron. Expression analysis of EcbZIP17 under heat stress exhibited similar pattern of expression in all the genotypes across time intervals with highest upregulation after 4 h. The present study established the conserved nature of EcbZIP17 at nucleotide and expression level.

  16. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    PubMed

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  17. Germinated grains: a superior whole grain functional food?

    PubMed

    Nelson, Kristina; Stojanovska, Lily; Vasiljevic, Todor; Mathai, Michael

    2013-06-01

    Grains are global dietary staples that when consumed in whole grain form, offer considerable health benefits compared with milled grain foods, including reduced body weight gain and reduced cardiovascular and diabetes risks. Dietary patterns, functional foods, and other lifestyle factors play a fundamental role in the development and management of epidemic lifestyle diseases that share risks of developing adverse metabolic outcomes, including hyperglycaemia, hypertension, dyslipidaemia, oxidative stress, and inflammation. Whole grains provide energy, nutrients, fibres, and bioactive compounds that may synergistically contribute to their protective effects. Despite their benefits, the intake of grains appears to be lower than recommended in many countries. Of emerging interest is the application of germination processes, which may significantly enhance the nutritional and bioactive content of grains, as well as improve palatability. Enhancing grain foods in a natural way using germination techniques may therefore offer a practical, natural, dietary intervention to increase the health benefits and acceptability of whole grains, with potentially widespread effects across populations in attenuating adverse lifestyle disease outcomes. Continuing to build on the growing body of in-vitro studies requires substantiation with extended in-vivo trials so that we may further develop our understanding of the potential of germinated grains as a functional food.

  18. Grain dust: problems and utilization

    SciTech Connect

    Schnake, L.D.

    1981-04-01

    Grain dust is a difficult, dangerous, and expensive material to handle. A country elevator handling 750,000 bushels of grain annually would spend an estimated $500,000 for equipment to meet Clean Air Act standards. The additional cost of controlling dust may be offset by using the substance as fuel, feed, or fertilizer. Grain dust as a feed ingredient would likely be the optimum use. Additional research areas are identified.

  19. Grain Flow at High Stresses

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  20. 7 CFR 868.202 - Definition of other terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in paragraph (h) of this section. (d) Damaged kernels. Whole or broken kernels of rice which are distinctly discolored or damaged by water, insects, heat, or any other means, and whole or large broken... (commonly known as barnyard grass, watergrass, and Japanese millet). (h) Other types. (1) Whole kernels of...

  1. Dehumidification Grain Dryer

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1998-05-13

    A new technique developed during this project dries grain with mildly heated, dehumidified air in a closed-loop process. This proposed technique uses about one-tenth the energy and dries grain at a lower temperature, producing less damage to the kernels.Approximately 250 million automotive and truck tires are discarded each year in the U.S. The very properties that ensure a safe ride and long service life make the disposal of these scrap tires difficult. In spite of this, scrap tire recycling/reuse has rapidly grown from 10% in 1985 to over 90% today. The majority of scrap tires that are recycled/reused are burned for fuel in power plants and cement kilns. Since tires have somewhat higher heating value than coal, this would at first seem to be an acceptable option. But burning scrap tires recovers only 25% of the energy originally used to manufacture the rubber. An alternative is to use the scrap tires in the form of crumb rubber, by which 98% of the original energy is recovered. This project sought to explore potential formulations of crumb rubber with various thermoplastic binders, with one goal being developing a material for a low-cost, high-performance roofing composition. What was the state-of-the-art of the product/process prior to initiation of the project? Why was the project needed (e.g., performance, quality, cost, time to market)? Describe the strengths and interests of each party and how they are complementary with respect to the project. What KCP expertise was needed and how did it complement the partner's capabilities?

  2. Grain dust and the lungs.

    PubMed Central

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  3. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen.

    PubMed

    Prabhu, Sreedhara Ashok; Wagenknecht, Martin; Melvin, Prasad; Gnanesh Kumar, Belur Shivappa; Veena, Mariswamy; Shailasree, Sekhar; Moerschbacher, Bruno Maria; Kini, Kukkundoor Ramachandra

    2015-06-01

    Polygalacturonase-inhibitor proteins (PGIPs) are important plant defense proteins which modulate the activity of microbial polygalacturonases (PGs) leading to elicitor accumulation. Very few studies have been carried out towards understanding the role of PGIPs in monocot host defense. Hence, present study was taken up to characterize a native PGIP from pearl millet and understand its role in resistance against downy mildew. A native glycosylated PGIP (PglPGIP1) of ~43 kDa and pI 5.9 was immunopurified from pearl millet. Comparative inhibition studies involving PglPGIP1 and its non-glycosylated form (rPglPGIP1; recombinant pearl millet PGIP produced in Escherichia coli) against two PGs, PG-II isoform from Aspergillus niger (AnPGII) and PG-III isoform from Fusarium moniliforme, showed both PGIPs to inhibit only AnPGII. The protein glycosylation was found to impact only the pH and temperature stability of PGIP, with the native form showing relatively higher stability to pH and temperature changes. Temporal accumulation of both PglPGIP1 protein (western blot and ELISA) and transcripts (real time PCR) in resistant and susceptible pearl millet cultivars showed significant Sclerospora graminicola-induced accumulation only in the incompatible interaction. Further, confocal PGIP immunolocalization results showed a very intense immuno-decoration with highest fluorescent intensities observed at the outer epidermal layer and vascular bundles in resistant cultivar only. This is the first native PGIP isolated from millets and the results indicate a role for PglPGIP1 in host defense. This could further be exploited in devising pearl millet cultivars with better pathogen resistance.

  4. Replacing corn silage with different forage millet silage cultivars: effects on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2014-10-01

    This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average=67.9%), NDF (average=53

  5. The development of low glycemic index cookie bars from foxtail millet (Setaria italica), arrowroot (Maranta arundinacea) flour, and kidney beans (Phaseolus vulgaris).

    PubMed

    Lestari, Lily Arsanti; Huriyati, Emy; Marsono, Yustinus

    2017-05-01

    Wholegrain foods are becoming increasingly popular as a high fiber dietary supplement recommended for people with diabetes. In Indonesia, the incidence of diabetes mellitus has almost doubled recently and poses a significant health risk with the high prevalence of obesity and cardiovascular diseases. The present research aimed to develop cookie bars from foxtail millet, arrowroot flour, and kidney beans. The physical, chemical, and sensory properties were evaluated by selecting the best formula to test the glycemic index. Three formulae of cookie bars, which had different percentages of foxtail millet, kidney beans, and arrowroot flour were evaluated. The results showed that the three formulae (F1, F2, F3) had °Hue values of 53.77, 58.46, and 58.31, and breaking force of 8.37, 10.12, and 5.87 N, respectively. While all other nutritional content were significantly different between formulae, the total crude fat was not. The F2 cookie bar was selected and evaluated for the glycemic index because it has the best sensory properties, lowest total sugar and available carbohydrate content. F2 cookie bars that contain 15% foxtail millet, 15% arrowroot flour, and 30% of kidney beans have a glycemic index of 37.6 hence it could be classified as a low glycemic index cookie bar. In conclusion, our findings indicated that F2 cookie bars can be further developed as a suitable diabetic food since it has the best physico-chemical properties, sensory properties, and low glycemic index.

  6. Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica)

    PubMed Central

    Ceasar, S. Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A.

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet. PMID:25251671

  7. Genetic diversity and population differentiation of traditional fonio millet (Digitaria spp.) landraces from different agro-ecological zones of West Africa.

    PubMed

    Adoukonou-Sagbadja, H; Wagner, C; Dansi, A; Ahlemeyer, J; Daïnou, O; Akpagana, K; Ordon, F; Friedt, W

    2007-11-01

    Fonio millets (Digitaria exilis Stapf, D. iburua Stapf) are valuable indigenous staple food crops in West Africa. In order to investigate the genetic diversity and population differentiation in these millets, a total of 122 accessions from five countries (Benin, Burkina Faso, Guinea, Mali and Togo) were analysed by Amplified Fragment Length Polymorphisms (AFLPs). Genetic distance-based UPGMA clustering and principal coordinate analysis revealed a clear-cut differentiation between the two species and a clustering of D. exilis accessions in three major genetic groups fitting to their geographical origins. Shannon's diversity index detected in D. iburua was low (H = 0.02). In D. exilis, the most widespread cultivated species, moderate levels of genetic diversity (Shannon's diversity H = 0.267; Nei's gene diversity H' = 0.355) were detected. This genetic diversity is unequally distributed with the essential part observed in the Upper Niger River basin while a very low diversity is present in the Atacora mountain zone. Analysis of molecular variance (AMOVA) revealed that a large part of the genetic variation resides among the genetic groups (70%) and the country of origin (56%), indicating a clear genetic differentiation within D. exilis. Influence of mating system (inbreeding or apomixis), agricultural selection and ecological adaptations as well as founding effects in the genetic make-up of the landraces were visible and seemed to jointly contribute to the genetic structure detected in this species. The genetic variability found between the analysed accessions was weakly correlated with their phenotypic attributes. However, the genetic groups identified differed significantly in their mean performance for some agro-morphologic traits. The results obtained are relevant for fonio millets breeding, conservation and management of their genetic resources in West Africa.

  8. Molecular cloning of a coiled-coil-nucleotide-binding-site-leucine-rich repeat gene from pearl millet and its expression pattern in response to the downy mildew pathogen.

    PubMed

    Veena, Mariswamy; Melvin, Prasad; Prabhu, Sreedhara Ashok; Shailasree, Sekhar; Shetty, Hunthrike Shekar; Kini, Kukkundoor Ramachandra

    2016-03-01

    Downy mildew caused by Sclerospora graminicola is a devastating disease of pearl millet. Based on candidate gene approach, a set of 22 resistance gene analogues were identified. The clone RGPM 301 (AY117410) containing a partial sequence shared 83% similarity to rice R-proteins. A full-length R-gene RGA RGPM 301 of 3552 bp with 2979 bp open reading frame encoding 992 amino acids was isolated by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach. It had a molecular mass of 113.96 kDa and isoelectric point (pI) of 8.71. The sequence alignment and phylogenetic analysis grouped it to a non-TIR NBS LRR group. The quantitative real-time PCR (qRT-PCR) analysis revealed higher accumulation of the transcripts following inoculation with S. graminicola in the resistant cultivar (IP18296) compared to susceptible cultivar (7042S). Further, significant induction in the transcript levels were observed when treated with abiotic elicitor β-aminobutyric acid (BABA) and biotic elicitor Pseudomonas fluorescens. Exogenous application of phytohormones jasmonic acid or salicylic acid also up-regulated the expression levels of RGA RGPM 301. The treatment of cultivar IP18296 with mitogen-activated protein kinase (MPK) inhibitors (PD98059 and U0126) suppressed the levels of RGA RGPM 301. A 3.5 kb RGA RGPM 301 which is a non-TIR NBS-LRR protein was isolated from pearl millet and its up-regulation during downy mildew interaction was demonstrated by qRT-PCR. These studies indicate a role for this RGA in pearl millet downy mildew interaction.

  9. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum.

    PubMed

    Jogaiah, Sudisha; Shetty, Hunthrike Shekar; Ito, Shin-Ichi; Tran, Lam-Son Phan

    2016-08-01

    Pearl millet (Pennisetum glaucum) stands sixth among the most important cereal crops grown in the semi-arid and arid regions of the world. The downy mildew disease caused by Sclerospora graminicola, an oomycete pathogen, has been recognized as a major biotic constraint in pearl millet production. On the other hand, basidiomycetes are known to produce a large number of antimicrobial metabolites, providing a good source of anti-oomycete agrochemicals. Here, we report the discovery and efficacy of a compound, named G_app7, purified from Ganoderma applanatum on inhibition of growth and development of S. graminicola, as well as the effects of seed treatment with G_app7 on protection of pearl millet from downy mildew. G_app7 consistently demonstrated remarkable effects against S. graminicola by recording significant inhibition of sporangium formation (41.4%), zoospore release (77.5%) and zoospore motility (91%). Analyses of G_app7 compound using two-dimensional nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry revealed its close resemblance to metominostrobin, a derivative of strobilurin group of fungicides. Furthermore, the G_app7 was shown to stably maintain the inhibitory effects at different temperatures between 25 and 80 °C. In addition, the anti-oomycete activity of G_app7 was fairly stable for a period of at least 12 months at 4 °C and was only completely lost after being autoclaved. Seed treatment with G_app7 resulted in a significant increase in disease protection (63%) under greenhouse conditions compared with water control. The identification and isolation of this novel and functional anti-oomycete compound from G. applanatum provide a considerable agrochemical importance for plant protection against downy mildew in an environmentally safe and economical manner.

  10. The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Mckee, C. F.; Seab, C. G.; Hollenbach, D. J.

    1994-01-01

    Grain-grain collisions and ion sputtering destroy dust grains in interstellar shocks. An analytical theory is developed for the propagation of shock waves in solids driven by grain-grain collisions, which compares very favorably with detailed numerical calculations. This theory is used to determine the fraction of grain vaporized by a grain-grain collision. Our results predict much less vaporization of colliding grains in interstellar shocks than previous estimates. This theory can also be used to determine the fraction of a colliding grain that melts, shatter, or undergoes a phase transformation to a higher density phase. In particular, the latter two processes can be much more important in interstellar shocks than vaporization. The sputtering of grains by impacting gas ions is reanalyzed based upon extensive laboratory studies and a theoretically derived 'universal'sputtering relation. The analytical results are compared to available experimental studies of sputtering of graphite/amorphous carbon, SiO2, SiC, Fe, and H2O. Sputtering yields for astrophysically relevant materials as a function of impact energy and ion mass are derived. These yields are also averaged over thermal impact spectrum and simple polynomial fits to the resulting yields as a function of temperature are presented. The derived sputtering yields are similar to those adopted in previous studies, except for graphite near threshold where the new yields are much larger due to a lower adopted binding energy. The ion bombardment will amorphitize the surface layers of interstellar grains. It will also convert graphite into hydrogenated amorphous carbon (HAC) to a depth of 10-20 A. It is suggested that these HAC surfaces are the carriers of the 3.4 micrometer absorption feature in the interstellar medium.

  11. The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Mckee, C. F.; Seab, C. G.; Hollenbach, D. J.

    1994-01-01

    Grain-grain collisions and ion sputtering destroy dust grains in interstellar shocks. An analytical theory is developed for the propagation of shock waves in solids driven by grain-grain collisions, which compares very favorably with detailed numerical calculations. This theory is used to determine the fraction of grain vaporized by a grain-grain collision. Our results predict much less vaporization of colliding grains in interstellar shocks than previous estimates. This theory can also be used to determine the fraction of a colliding grain that melts, shatter, or undergoes a phase transformation to a higher density phase. In particular, the latter two processes can be much more important in interstellar shocks than vaporization. The sputtering of grains by impacting gas ions is reanalyzed based upon extensive laboratory studies and a theoretically derived 'universal'sputtering relation. The analytical results are compared to available experimental studies of sputtering of graphite/amorphous carbon, SiO2, SiC, Fe, and H2O. Sputtering yields for astrophysically relevant materials as a function of impact energy and ion mass are derived. These yields are also averaged over thermal impact spectrum and simple polynomial fits to the resulting yields as a function of temperature are presented. The derived sputtering yields are similar to those adopted in previous studies, except for graphite near threshold where the new yields are much larger due to a lower adopted binding energy. The ion bombardment will amorphitize the surface layers of interstellar grains. It will also convert graphite into hydrogenated amorphous carbon (HAC) to a depth of 10-20 A. It is suggested that these HAC surfaces are the carriers of the 3.4 micrometer absorption feature in the interstellar medium.

  12. Tissue-specific genome instability in synthetic interspecific hybrids of Pennisetum purpureum (Napier grass) and Pennisetum glaucum (pearl millet) is caused by micronucleation.

    PubMed

    Dos Reis, Gabriela Barreto; Ishii, Takayoshi; Fuchs, Joerg; Houben, Andreas; Davide, Lisete Chamma

    2016-09-01

    Genome instability is observed in several species hybrids. We studied the mechanisms underlying the genome instability in hexaploid hybrids of Napier grass (Pennisetum purpureum R.) and pearl millet (Pennisetum glaucum L.) using a combination of different methods. Chromosomes of both parental genomes are lost by micronucleation. Our analysis suggests that genome instability occurs preferentially in meristematic root tissue of hexaploid hybrids, and chromosome elimination is not only caused by centromere inactivation. Likely, beside centromere dysfunction, unrepaired DNA double-strand breaks result in fragmented chromosomes in synthetic hybrids.

  13. Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)

    PubMed Central

    Lata, Charu; Bhutty, Sarita; Bahadur, Ranjit Prasad; Majee, Manoj; Prasad, Manoj

    2011-01-01

    The DREB genes code for important plant transcription factors involved in the abiotic stress response and signal transduction. Characterization of DREB genes and development of functional markers for effective alleles is important for marker-assisted selection in foxtail millet. Here the characterization of a cDNA (SiDREB2) encoding a putative dehydration-responsive element-binding protein 2 from foxtail millet and the development of an allele-specific marker (ASM) for dehydration tolerance is reported. A cDNA clone (GenBank accession no. GT090998) coding for a putative DREB2 protein was isolated as a differentially expressed gene from a 6 h dehydration stress SSH library. A 5' RACE (rapid amplification of cDNA ends) was carried out to obtain the full-length cDNA, and sequence analysis showed that SiDREB2 encoded a polypeptide of 234 amino acids with a predicted mol. wt of 25.72 kDa and a theoretical pI of 5.14. A theoretical model of the tertiary structure shows that it has a highly conserved GCC-box-binding N-terminal domain, and an acidic C-terminus that acts as an activation domain for transcription. Based on its similarity to AP2 domains, SiDREB2 was classified into the A-2 subgroup of the DREB subfamily. Quantitative real-time PCR analysis showed significant up-regulation of SiDREB2 by dehydration (polyethylene glycol) and salinity (NaCl), while its expression was less affected by other stresses. A synonymous single nucleotide polymorphism (SNP) associated with dehydration tolerance was detected at the 558th base pair (an A/G transition) in the SiDREB2 gene in a core set of 45 foxtail millet accessions used. Based on the identified SNP, three primers were designed to develop an ASM for dehydration tolerance. The ASM produced a 261 bp fragment in all the tolerant accessions and produced no amplification in the sensitive accessions. The use of this ASM might be faster, cheaper, and more reproducible than other SNP genotyping methods, and thus will enable

  14. A new N-nitroso compound, N-2-methylpropyl-N-1-methylacetonyl-nitrosamine, in moldy millet and wheat flour.

    PubMed

    Ji, C; Xu, Z X; Li, M X; Li, G Y; Li, J L

    1984-06-01

    A new N-nitroso compound, N-2-methylpropyl-N-1-methylacetonyl-nitrosamine (MAMPNA), was found in millet and wheat flour inoculated with Fusarium moniliforme Sheldon, a common species of fungi occurring in foods in Linxian County, after 8-day incubation and an addition of a small amount of NaNO2. The compound has been identified by GC-MS and confirmed by synthesized MAMPNA. The present paper reports the isolation and detection of MAMPNA in moldy foods, and discusses the role of the fungus in processes of nitrosamine formation and possible biosynthetic approach of the new compound.

  15. No Excess of Cis-Regulatory Variation Associated with Intraspecific Selection in Wild Pearl Millet (Cenchrus americanus)

    PubMed Central

    Rhoné, Bénédicte; Mariac, Cédric; Couderc, Marie; Berthouly-Salazar, Cécile; Ousseini, Issaka Salia

    2017-01-01

    Several studies suggest that cis-regulatory mutations are the favorite target of evolutionary changes, one reason being that cis-regulatory mutations might have fewer deleterious pleiotropic effects than protein-coding mutations. A review of the process also suggests that this bias towards adaptive cis-regulatory variation might be less pronounced at the intraspecific level compared with the interspecific level. In this study, we assessed the contribution of cis-regulatory variation to adaptation at the intraspecific level using populations of wild pearl millet (Cenchrus americanus ssp. monodii) sampled along an environmental gradient in Niger. From RNA sequencing of hybrids to assess allele-specific expression, we identified genes with cis-regulatory divergence between two parental accessions collected in contrasted environmental conditions. This revealed that ∼15% of transcribed genes showed cis-regulatory variation. Intersecting the gene set exhibiting cis-regulatory variation with the gene set identified as targets of selection revealed no excess of cis-acting mutations among the selected genes. We additionally found no excess of cis-regulatory variation among genes associated with adaptive traits. As our approach relied on methods identifying mainly genes submitted to strong selection pressure or with high phenotypic effect, the contribution of cis-regulatory changes to soft selection or polygenic adaptive traits remains to be tested. However our results favor the hypothesis that enrichment of adaptive cis-regulatory divergence builds up over time. For short evolutionary time-scales, cis-acting mutations are not predominantly involved in adaptive evolution associated with strong selective signal. PMID:28137746

  16. Alignment of suprathermally rotating grains

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1995-12-01

    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.

  17. Autonomous grain combine control system

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  18. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  19. Whole grain gluten-free flat breads

    USDA-ARS?s Scientific Manuscript database

    USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. FDA allows label health claims for food containing 11 g and 51% whole grains. This is the only report demonstrating innovative whole grain products. Whole grain gluten-free flat breads were prepared with cor...

  20. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    SciTech Connect

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  1. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination.

    PubMed

    Colgrave, Michelle L; Goswami, Hareshwar; Byrne, Keren; Blundell, Malcolm; Howitt, Crispin A; Tanner, Gregory J

    2015-06-05

    Global proteomic analysis utilizing SDS-PAGE, Western blotting and LC-MS/MS of total protein and gluten-enriched extracts derived from 16 economically important cereals was undertaken, providing a foundation for the development of MS-based quantitative methodologies that would enable the detection of wheat contamination in foods. The number of proteins identified in each grain correlated with the number of entries in publicly available databases, highlighting the importance of continued advances in genome sequencing to facilitate accurate protein identification. Subsequently, candidate wheat-specific peptide markers were evaluated by multiple-reaction monitoring MS. The selected markers were unique to wheat, yet present in a wide range of wheat varieties that represent up to 80% of the bread wheat genome. The final analytical method was rapid (15 min) and robust (CV < 10%), showed linearity (R(2) > 0.98) spanning over 3 orders of magnitude, and was highly selective and sensitive with detection down to 15 mg/kg in intentionally contaminated soy flour. Furthermore, application of this technology revealed wheat contamination in commercially sourced flours, including rye, millet, oats, sorghum, buckwheat and three varieties of soy.

  2. Optical properties of cometary grains

    NASA Technical Reports Server (NTRS)

    Mukai, Tadashi

    1988-01-01

    An analysis of visible/near IF polarimetry of Comet Halley leads to a variation of the complex refractive index m = n - i x k of grain material with wavelength, i.e., a slight decrease of n from 1.39 at lambda = 0.37 micrometer to 1.37 at lambda = 2.2 micrometers, in constrast to an increase of k from 0.024 at lambda = 0.37 micrometer to 0.042 at lambda 2.2 micrometers. The mass distribution of grains reported by Mazets et al. from in situ measurements of Vega 2 was applied in the analysis. Combining these optical constants with those of astronomical silicate proposed by Draine, cometary silicate is presented as a candidate for cometary grains. The complex refractive index of the proposed cometary silicate is shown. Based on Mie theory, an emission coefficiency of each of the grains in computed as well as its temperature, as functions of grain radius and sun comet (grain) distance. It is found that the tentative thermal spectrum from these cometary silicates, where the mass distribution of grains reported by Mazets from Vega 2 was applied, fits very well to the IR spectrum of Comet Halley. This means that cometary silicate can explain not only the phase angle and wavelength dependences of visible/near IF polarization, but also the thermal emission.

  3. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  4. Quantitative characterisation of sedimentary grains

    NASA Astrophysics Data System (ADS)

    Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.

    2016-04-01

    Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.

  5. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress

    PubMed Central

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-01-01

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance. PMID:27586959

  6. Ability of selected lactic acid bacteria to ferment a pearl millet-soybean slurry to produce gruels for complementary foods for young children.

    PubMed

    Songré-Ouattara, Laurencia T; Mouquet-Rivier, Claire; Humblot, Christèle; Rochette, Isabelle; Diawara, Bréhima; Guyot, Jean-Pierre

    2010-06-01

    To assess the ability of lactic acid bacteria to improve some nutritional characteristics of the pearl millet-soybean slurry to prepare complementary foods for young children in African countries, inoculation was performed using strains previously selected for their ability to hydrolyse starch, phytate, or alpha-galactooligosaccharides (alpha-GOS). For the sake of comparison with the action of a natural microflora, fermentation was also performed by back slopping inoculation, that is, with a sample obtained from spontaneously fermented traditional pearl millet slurry obtained from a small scale processing unit in Burkina Faso (Ouagadougou). Starter cultures thrived on the slurry as shown by counts on MRS agar, TTGE fingerprints, and fermentation patterns. The fermentation of precooked slurries inoculated by back slopping or with mixed cultures containing the amylolytic strain Lb. plantarum A6 enabled partial starch hydrolysis. Corresponding gruels had a suitable consistency for young child feeding at high dry matter content, and a high energy density: 88.7 +/- 4.2 and 75.8 +/- 5.1 kcal/100 g of sweetened gruel, for the gruels inoculated by back slopping or with Lb. plantarum A6, respectively. Unexpectedly, no decrease in phytates was observed in any of the experiments, suggesting the presence of one or more inhibitory compounds in soybean. Furthermore, preprocessing conditions before fermentation affect the carbohydrate composition of slurry and have a more profound effect than fermentation on the reduction of the alpha-GOS content.

  7. Quantitative reconstruction of summer precipitation using a mid-Holocene δ13C common millet record from Guanzhong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Li, Xiaoqiang; Zhou, Xinying; Zhao, Keliang; Sun, Nan

    2016-12-01

    To quantitatively reconstruct Holocene precipitation for particular geographical areas, suitable proxies and faithful dating controls are required. The fossilized seeds of common millet (Panicum miliaceum) are found throughout the sedimentary strata of northern China and are suited to the production of quantitative Holocene precipitation reconstructions: their isotopic carbon composition (δ13C) gives a measure of the precipitation required during the growing season of summer (here the interval from mid-June to September) and allows these seeds to be dated. We therefore used a regression function, as part of a systematic study of the δ13C of common millet, to produce a quantitative reconstruction of mid-Holocene summer precipitation in the Guanzhong Basin (107°40'-107°49' E, 33°39'-34°45' N). Our results showed that mean summer precipitation at 7.7-3.4 ka BP was 353 mm, ˜ 50 mm or 17 % higher than present levels, and the variability increased, especially after 5.2 ka BP. Maximum mean summer precipitation peaked at 414 mm during the period 6.1-5.5 ka BP, ˜ 109 mm (or 36 %) higher than today, indicating that the East Asian summer monsoon (EASM) peaked at this time. This work can provide a new proxy for further research into continuous paleoprecipitation sequences and the variability of summer precipitation, which will promote the further research into the relation between early human activity and environmental change.

  8. A new raw-starch-digesting α-amylase: production under solid-state fermentation on crude millet and biochemical characterization.

    PubMed

    Maktouf, Sameh; Kamoun, Amel; Moulis, Claire; Remaud-Simeon, Magali; Ghribi, Dhouha; Chaabouni, Semia Ellouz

    2013-04-01

    A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using 1.38 × 10(9) CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at 37 degrees C, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and 70 degrees C, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

  9. Interstellar Grains: 50 Years On

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2011-12-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewedpublicationsbytheauthorand/orFredHoyle. Theprevailingreluctancetoaccepttheseclear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance - a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  10. Monitoring Technology for Gamma-Aminobutyric acid Production in Polished Mochi Barley Grains using a Carbon Dioxide Sensor.

    PubMed

    Watanabe, Yasuo; Kawata, Kohki; Watanabe, Seiya

    2015-06-01

    Gamma-aminobutyric acid (GABA) has many biological functions, including the inhibition of blood pressure increases and acceleration of growth hormone secretion. In this study, we discovered the utility of measuring the concentration of carbon dioxide (CO2 ) dissolved in the reaction solution, for development of a real-time and convenient technique to estimate GABA production. In addition to mochi barley bran, we examined the polished grains of three species: mochi barley (a variant of hulless barley), barley, and Japanese millet, all soaked in l-glutamic acid (l-Glu) solution at pH 4.5. We found a positive correlation between GABA and CO2 concentrations, and the production of CO2 was suppressed in the absence of l-Glu at pH 4.5. These results suggest that GABA content can be easily predicted by measuring the aqueous CO2 content using a CO2 sensor, during the process of GABA production in polished mochi barley grains and bran. © 2015 Institute of Food Technologists®

  11. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  12. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    PubMed

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  13. Balancing green and grain trade

    NASA Astrophysics Data System (ADS)

    Chen, Yiping; Wang, Kaibo; Lin, Yishan; Shi, Weiyu; Song, Yi; He, Xinhua

    2015-10-01

    Since 1999, China's Grain for Green project has greatly increased the vegetation cover on the Loess Plateau. Now that erosion levels have returned to historic values, vegetation should be maintained but not expanded further as planned.

  14. Stability of grain boundary texture during isothermal grain growth in UO2 considering anisotropic grain boundary properties

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Zhu, Yaochan

    2015-10-01

    In the present study, mesoscale simulations of grain growth in UO2 are performed using a 2D level set representation of the polycrystal grain boundary network, employed in a finite element setting. Anisotropic grain boundary properties are considered by evaluating how grain boundary energy and mobility varies with local grain boundary character. This is achieved by considering different formulations of the anisotropy of grain boundary properties, for example in terms of coincidence site lattice (CSL) correspondence. Such modeling approaches allow tracing of the stability of a number of characteristic low-Σ boundaries in the material during grain growth. The present simulations indicate that anisotropic grain boundary properties have negligible influence on the grain growth rate. However, considering the evolution of grain boundary character distribution and the grain size distribution, it is found that neglecting anisotropic boundary properties will strongly bias predictions obtained from numerical simulations.

  15. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  16. Dust grains in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, D.; Hamilton, D. P.

    2011-10-01

    Micrometeoroid impacts on small moons or ring particles generate dusty debris of all sizes. Grains launched from parent bodies on Kepler orbits become electrically charged due to interactions with the plasma environment and solar photons. The tenuous dusty rings are essentially collisionless systems and hence sub-micron grains, released and charged in the rotating magnetic field of their host planet, follow trajectories under the combined forces of electromagnetism and gravity. Depending on their launch distance and charge-to-mass ratio, some grains can be unstable to either radial perturbations (positively-charged grains only), or vertical perturbations (both positive and negative charges). These instabilities act on short timescales and cause grains to collide with the planet or escape in less than an orbit. [5] compiled numerical data and analytical solutions to the boundaries between stable and unstable trajectories, for the idealized case of a planet with an aligned dipolar magnetic field. The effect of a vertically offset or moderately tilted dipolar magnetic field configuration increases the class of grains that are vertically unstable, but has little effect on the short-term radial instability. We present numerical stability maps for each of the giant planets.

  17. Transgenic Pearl Millet Male Fertility Restorer Line (ICMP451) and Hybrid (ICMH451) Expressing Brassica juncea Nonexpressor of Pathogenesis Related Genes 1 (BjNPR1) Exhibit Resistance to Downy Mildew Disease

    PubMed Central

    Khareedu, Venkateswara Rao; Vudem, Dashavantha Reddy

    2014-01-01

    Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1) has been introduced into pearl millet male fertility restorer line ICMP451 by Agrobacterium tumefaciens-mediated genetic transformation. Transgenic pearl millet plants were regenerated from the phosphinothricin-resistant calli obtained after co-cultivation with A. tumefaciens strain LBA4404 harbouring Ti plasmid pSB111-bar-BjNPR1. Molecular analyses confirmed the stable integration and expression of BjNPR1 in transgenic pearl millet lines. Transgenes BjNPR1 and bar were stably inherited and disclosed co-segregation in subsequent generations in a Mendelian fashion. Transgenic pearl millet hybrid ICMH451-BjNPR1 was developed by crossing male-sterile line 81A X homozygous transgenic line ICMP451-BjNPR1. T3 and T4 homozygous lines of ICMP451-BjNPR1 and hybrid ICMH451-BjNPR1 exhibited resistance to three strains of downy mildew pathogen, while the untransformed ICMP451 and the isogenic hybrid ICMH451 plants were found susceptible. Following infection with S. graminicola, differential expression of systemic acquired resistance pathway genes, UDP-glucose salicylic acid glucosyl transferase and pathogenesis related gene 1 was observed in transgenic ICMP451-BjNPR1 and untransformed plants indicating the activation of systemic acquired resistance pathway contributing to the transgene-mediated resistance against downy mildew. The transgenic pearl millet expressing BjNPR1 showed resistance to multiple strains of S. graminicola and, as such, seems promising for the development of durable downy mildew resistant hybrids. PMID:24603762

  18. Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan.

    PubMed

    Brahman, Kapil D; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Khan, Abdullah; Arain, Sadaf S; Arain, Muhammad B

    2014-04-01

    The aim of present study was to simultaneously estimate the arsenic (As) and fluoride (F(-)) concentrations in irrigated surface water, soil and grain crops of Nagarparkar, Pakistan during 2010-2012. The As and F(-) were analyzed by hydride generation atomic absorption spectrometer and ion selective electrode, respectively. Total arsenic (As(T)) and F(-) in irrigated surface water samples were found in the range of 360-683 μg L(-1) and 18.5-35.4 mg L(-1), respectively. While As(T) and F(-) concentrations in agriculture soil samples were observed in the range of 110-266 and 125-566 mg kg(-1), respectively. The water extractable As and F(-) were found 3-4% of total concentration of these in soils. The As(T) concentration was higher in kidney been (KB) as compared to pearl millet (PM) and green gram (GG), whereas GG had higher F(-) levels as compared to other two grain crops (p<0.05). The KB samples grown in nine sites shows BCF of As in the range of 0.018-0.038. The GG has higher BCF of F(-) as compared to KB and PM (p<0.05) grown in all sites. The exposure dose and risk factor of As and F(-) were obtained by estimated daily intake (EDI) and hazardous index (HI). It was found that all understudy age groups were at the severe risk of arsenicosis and fluorosis, but the severity is higher in younger age group (7-15 years) as compared to elder groups (p<0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The History of Presolar Grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.

    2004-01-01

    Below we summarize the results of our investigations into the history of presolar grains that were conducted in the last year. During this time we have expended much of our effort in the development of experimental techniques and sample preparation methods that are needed to laboratory in December, 2000. Specific information on this instrument is contained in the Full Proposal of PI Ernst Zinner and will not be repeated here. Our general strategy in the past year has been in large measure to explore novel sample handling methods for the very small (sub-micron), but more representative, presolar grains that can now be characterized isotopically in the NanoSIMS. We have developed experimental techniques that will permit NanoSIMS analyses of the very same ultramicrotome sections studied in the TEM, and we have developed grain dispersion, handling and mounting techniques that permit NanoSIMS isotopic analysis as well as field emission SEM, high energy TEM, and atomic force microscopy of pristine presolar grains. Although much of this has been slow and very difficult work that has no immediate payoff in terms of publishable results, we considered it absolutely necessary groundwork for future discoveries, especially in the realm of individual presolar grains that have been inaccessible to past studies due to size constraints. As discussed below, we have been largely successful in these endeavors, and expect to reap the benefits of this work in the next year. We also report on our continued morphologic studies of pristine presolar grains, on our investigations of presolar graphite grains from supernovae as well as on rarer types of presotar SIC, on the search for presolar silicates, and on our efforts to obtain direct size-distribution information on presolar SiC through X-ray mapping techniques.

  20. Sculpting sandcastles grain by grain: self-assembled sand towers.

    PubMed

    Pacheco-Vázquez, F; Moreau, F; Vandewalle, N; Dorbolo, S

    2012-11-01

    We study the spontaneous formation of granular towers produced when dry sand is poured on a wet sand bed. When the liquid content of the bed exceeds a threshold value W*, the impacting grains have a nonzero probability to stick on the wet grains due to instantaneous liquid bridges created during the impact. The trapped grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow towers. The growth velocity is determined by the surface liquid content which decreases exponentially as the tower height augments. This self-assembly mechanism (only observed in the funicular and capillary regimes) could theoretically last while the capillary rise of water is possible; however, the structure collapses before reaching this limit. The collapse occurs when the weight of the tower surpasses the cohesive stress at its base. The cohesive stress increases as the liquid content of the bed is reduced. Consequently, the highest towers are found just above W*.

  1. Assessment of genetic diversity, population structure and relationships in Indian and non-Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn) using genomic SSR markers.

    PubMed

    Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Al-Dhabi, N A; Ignacimuthu, S

    2016-01-01

    We evaluated the genetic variation and population structure in Indian and non-Indian genotypes of finger millet using 87 genomic SSR primers. The 128 finger millet genotypes were collected and genomic DNA was isolated. Eighty-seven genomic SSR primers with 60-70 % GC contents were used for PCR analysis of 128 finger millet genotypes. The PCR products were separated and visualized on a 6 % polyacrylamide gel followed by silver staining. The data were used to estimate major allele frequency using Power Marker v3.0. Dendrograms were constructed based on the Jaccard's similarity coefficient. Statistical fitness and population structure analyses were performed to find the genetic diversity. The mean major allele frequency was 0.92; the means of polymorphic alleles were 2.13 per primer and 1.45 per genotype; the average polymorphism was 59.94 % per primer and average PIC value was 0.44 per primer. Indian genotypes produced an additional 0.21 allele than non-Indian genotypes. Gene diversity was in the range from 0.02 to 0.35. The average heterozygosity was 0.11, close to 100 % homozygosity. The highest inbreeding coefficient was observed with SSR marker UGEP67. The Jaccard's similarity coefficient value ranged from 0.011 to 0.836. The highest similarity value was 0.836 between genotypes DPI009-04 and GPU-45. Indian genotypes were placed in Eleusine coracana major cluster (EcMC) 1 along with 6 non-Indian genotypes. AMOVA showed that molecular variance in genotypes from various geographical regions was 4 %; among populations it was 3 % and within populations it was 93 %. PCA scatter plot analysis showed that GPU-28, GPU-45 and DPI009-04 were closely dispersed in first component axis. In structural analysis, the genotypes were divided into three subpopulations (SP1, SP2 and SP3). All the three subpopulations had an admixture of alleles and no pure line was observed. These analyses confirmed that all the genotypes were genetically diverse and had been grouped based on

  2. The rotation of magnetic grains

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.

    1993-05-01

    It has been questioned whether magnetic remanence rotates as a rigid marker or as a passive marker (with no material properties) during tectonic strain. The remanence of a rock is actually the sum of the moments of individual grains, so we must first understand their rotation. Simple shear provides a simple strain history which may be used to distinguish between the two extreme possibilities. A passive marker cannot rotate through the shear plane but a rigid marker can: this is a useful criterion to distinguish between the two extreme models. However, for reasonable strains ( γ < 4 orRs < 18), it is only possible to distinguish between rigid marker and passive marker behaviour for grains of low aspect ratio ( R < 5), preferably making a low initial angle with the shear direction. For these conditions, rigid grains would rotate through the shear plane. Because natural hematite usually has high aspect ratios ( R > 10) the passive model is successful in explaining the rotation of these grains, even though their behaviour is mechanistically closer to that of a rigid marker. This explains the success of field studies in which the remanence of redbeds has been de-strained using the hypothesis of passive behaviour, notwithstanding the reality that the natural iron oxide grains do not rotate in that manner.

  3. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  4. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  5. Sticking properties of ice grains

    NASA Astrophysics Data System (ADS)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  6. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  7. Interstellar Grains: 50 Years on

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance -- a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  8. Elongated grains in a hopper

    NASA Astrophysics Data System (ADS)

    Börzsönyi, Tamás; Somfai, Ellák; Szabó, Balázs; Wegner, Sandra; Ashour, Ahmed; Stannarius, Ralf

    2017-06-01

    Flow and clogging of granular materials in a 3-dimensional hopper is investigated experimentally. We use X-ray tomography and optical methods to study this phenomenon for spherical and elongated particles. The X-ray tomograms provide information on the bulk of the hopper filling, and allow to determine the particle positions and orientations inside the silo, as well as spatial variations of the local packing density. We find that particles show a preferred orientation and thereby an enhanced order in the flowing zone of the silo. Similarly to simple shear flows, the average orientation of the particles is not parallel to the streamlines but encloses a certain angle with them. The clogged state is characterized by a dome, i. e. the geometry of the layer of grains blocking the outflow. The number of grains forming this blocking layer is larger for elongated grains compared to the case of spheres of the same volume.

  9. Milk from cows grazing on cool-season pastures provides an enhanced profile of bioactive fatty acids compared to those grazed on a monoculture of pearl millet.

    PubMed

    Bainbridge, Melissa L; Egolf, Emily; Barlow, John W; Alvez, Juan P; Roman, Joe; Kraft, Jana

    2017-02-15

    The demand for dairy products from grass-fed cows is driven, in part, by their more desirable fatty acid (FA) profile, containing more n-3 FA and conjugated linoleic acids (CLA) than conventionally produced dairy products. This study investigated the effects of pearl millet (PM) vs. cool-season pasture (CSP) on animal performance and milk FA in a grazing system. Eight Holstein dairy cows were used in a repeated measures design with four-week periods. Forage type had no effect on animal performance (estimated dry matter intake, milk production, fat, or protein). The contents of CLA and n-3 FA in a serving of whole milk (3.25% fat) increased when cows grazed CSP compared to PM. A serving of whole milk from cows grazing PM had a higher content of saturated FA and branched-chain FA. In conclusion, the contents of various bioactive FA were higher in milk fat of cows grazing a CSP compared to PM.

  10. Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2016-01-01

    This study investigated the effects of dietary replacement of grass silage (GS) with forage millet silages that were harvested at 2 stages of maturity [i.e., vegetative stage and dough to ripe seed (mature) stage] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a total mixed ration (60:40 forage:concentrate ratio). Dietary treatments included control (GS), vegetative millet silage (EM), and mature millet silage (MM) diets. Experimental silages comprised 24% of dietary dry matter (DM). Soybean meal and slow-release urea were added in millet diets to balance for crude protein (CP). Three additional ruminally fistulated cows were used to determine the effect of treatments on ruminal fermentation and total-tract nutrient utilization. Cows fed the GS diet consumed more DM (22.9 vs. 21.7 ± 1.02 kg/d) and CP (3.3 vs. 3.1 ± 0.19 kg/d), and similar starch (4.9 ± 0.39 kg/d) and neutral detergent fiber (NDF; 8.0 ± 0.27 kg/d) compared with cows fed the MM diet. Replacing the EM diet with the MM diet did not affect DM, NDF, or CP intakes. Cows fed the MM diet produced less milk (26.1 vs. 29.1 ± 0.79 kg/d), energy-corrected milk (28.0 vs.30.5 ± 0.92 kg/d), and 4% fat-corrected milk (26.5 vs. 28.3 ± 0.92 kg/d) yields than cows fed the GS diet. However, cows fed diets with EM and GS produced similar yields of milk, energy-corrected milk, and 4% fat-corrected milk. Feed efficiency (milk yield:DM intake) was greater only for cows fed the GS diet than those fed the MM diet. Milk protein yield and concentration were greater among cows fed the GS diet compared with those fed the EM or MM diets. Milk fat and lactose concentrations were not influenced by diet. However, milk urea N was lower for cows fed the GS diet than for those fed the MM diet. Ruminal NH3-N was greater for cows fed the EM diet than for

  11. A morphological study of Diplodiscus subclavatus (Pallas, 1760) (Trematoda: Diplodiscidae) adults from the accidental host, Viviparus contectus (Millet, 1813) (Caenogastropoda: Viviparidae).

    PubMed

    Cichy, Anna; Żbikowska, Elżbieta

    2016-12-01

    A phenomenon of switching of the parasite in the food chain to an accidental host is commonly observed in nature. However, there is little available data concerning the morphological descriptions of parasites that passively get into the atypical hosts and are capable, at least to some degree, of somatic growth and development of reproductive structures. A morphological survey of Diplodiscus subclavatus (Pallas, 1760) adults isolated from a digestive tract of an accidental host, Viviparus contectus (Millet, 1813), was carried out. Diplodiscus subclavatus individuals identified in prosobranch snails were morphologically similar to adult forms of the parasite described from amphibians, typical final hosts in the life cycle of this paramphistomid. The observed forms of D. subclavatus had a fully developed reproductive system, sperm in the seminal vesicle and oocytes in the ovary. The number of eggs in the uterus ranged from 3 to 17. Our research indicates that D. subclavatus individuals reach the sexual maturity in the accidental, invertebrate hosts.

  12. RSRM Propellant Grain Geometry Modification

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Endicott, Joni B.; McCool, Alex (Technical Monitor)

    2000-01-01

    This document is composed of viewgraphs about the RSRM propellant grain geometry modification project, which hopes to improve personnel and system safety by modifying propellant grain geometry to improve structural factors of safety. Using techniques such as Finite Element Analysis to determine blend radii required to reduce localized stresses, and ballistic predictions to ensure that the ballistics, ignition transient and Block Model have not been adversely affected, the project hopes to build and test FSM-10 with a new design, and determine flight effectivity pending successful test evaluation.

  13. Bakery product from distiller's grain

    SciTech Connect

    Reddy, J.A.; Stoker, R.

    1993-07-06

    A method is described for preparing a bran from a solid fermentation wet distiller's grain (WDG) or distiller's dried grain with solubles (DDGS), which consisting essentially of: adding sodium bicarbonate at about 0.05-5 weight percent, amino acid at about 0.05-5 weight percent and potato starch at about 10-50 weight percent in the form of additives to WDG or DDGS; blending the WDG/DDGS-additive mix; and drying the blended mix to form a bran suitable for use in products for human consumption.

  14. Drinking From the Same Straw: Crop Growth and Evidence of Water Transfer from Native Shrubs to Millet in a Sahelian Agro-Ecosystem

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Fogel, M. L.; Diedhiou, I.; Dick, R.; Ghezzehei, T. A.

    2015-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively. We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture, transpiration rate, crop growth and soil and leaf water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting deuterated water into the roots of three shrubs at one meter depth and sampling shrubs and nearby crops for isotopic analysis of plant water. Deuterium Enriched water was found in the shrubs of two out of three plots. Deuterium enriched water was found in the crops and shrubs in all three plots. These findings build on work that was completed in 2004 at the site, but point to larger differences in crop growth and strong evidence for the sharing of hydraulically redistributed water. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  15. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis

    PubMed Central

    Ramakrishnan, M.; Ceasar, S. Antony; Vinod, K. K.; Duraipandiyan, V.; Ajeesh Krishna, T. P.; Upadhyaya, Hari D.; Al-Dhabi, N. A.

    2017-01-01

    A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance. PMID:28820887

  16. Greenhouse gas emissions from rice, peanut and millet farms in peninsular India: Effects of water and nitrogen management

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Tiwari, R.; Nair, D.; Loecke, T. D.; Adhya, T. K.; Rudek, J.; Ahuja, R.; Hamburg, S.

    2013-12-01

    At Environmental Defense Fund (EDF), we recognize that any intervention to mitigate greenhouse gas (GHG) emissions should meet the interests of small scale farmers and low-carbon farming (LCF) is an integral component of our work on international climate. As a part of our Emissions Measurement and Methodology Development (EMD) Project, a joint undertaking with Indian NGO partners of the Fair Climate Network (FCN), five GHG measurement laboratories were set up across three states in peninsular (south) India. These labs represent different agro-ecological zones within the dryland agriculture belt in South India for which no reliable datasets on GHG emission have been available. Our approach for collecting gas samples was based on the Gracenet protocol. Sampling for nitrous oxide and methane emissions were made on approximately 50% of the total number of days in a growing season and once a week during fallow periods. In order to capture the peak emissions of nitrous oxide, samples were collected for 3-4 consecutive days after critical events like tillage, weeding, fertilization, and rainfall/irrigation. The research team collected field data at the time of sampling (temperature of the soil, water and air; and water levels). We also recorded parameters (e.g. water, fertilizer, labor and energy use; and yields) which were necessary for calculating farm profitability. Our data from 2012-2013 suggest that, for peninsular India, low-carbon rice cultivation techniques offer very large emission reduction potential (2-5 metric tons CO2e per acre per year), with smaller reductions from peanut and millet (0.15-0.5 metric ton CO2e per acre per season). The Tier 1 IPCC emissions factors 1) grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management and 2) overestimate the methane emission reduction possible due to water management for rice paddies by a

  17. GRAIN REFINEMENT OF URANIUM BILLETS

    DOEpatents

    Lewis, L.

    1964-02-25

    A method of refining the grain structure of massive uranium billets without resort to forging is described. The method consists in the steps of beta- quenching the billets, annealing the quenched billets in the upper alpha temperature range, and extrusion upset of the billets to an extent sufficient to increase the cross sectional area by at least 5 per cent. (AEC)

  18. Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perez Munoz, Laura Maria

    The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle-size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process. As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar

  19. What Controls Ooid Grain Size?

    NASA Astrophysics Data System (ADS)

    Trower, L.; Lamb, M. P.; Fischer, W. W.

    2015-12-01

    Ooids are subspherical chemical sand grains composed of concentric layers of CaCO₃ surrounding a central nucleus. These grains represent a common mode of carbonate sedimentation, making them potentially powerful proxies for paleoenvironmental conditions, provided a mechanistic understanding of the physical, chemical, and perhaps biological conditions necessary for their formation. At a basic level, growth of an ooid reflects that precipitation has outpaced abrasion over the ooid's lifetime. We can describe change in ooid size over time (net growth rate) mechanistically as the sum of a growth rate (the rate of carbonate precipitation on the ooid surface) and an abrasion rate (the rate of removal of material through grain-grain and grain-bed collisions). Previous studies have addressed the growth rate, investigating the extent to which microbial activity affects and/or controls carbonate precipitation on ooid surfaces, and the net growth rate, using stepwise acid digestion and radiocarbon dating to determine the ages of cortical layers. We focused on the abrasion rate and designed an experimental study to measure abrasion rates of ooids as a function of grain size and sediment transport stage. Preliminary experiments with medium-sand-sized ooids at a Rouse number of ~1.2 yielded an abrasion rate of 0.04 g/hr (or ~40 ng/ooid/hr), which is four orders of magnitude greater than the fastest net growth rates reported in the recent high resolution ooid cortex radiocarbon dating study by Beaupre et al. (2015). This result requires that either: 1) ooids are essentially not moving and therefore not being abraded or 2) precipitation rates are also much more rapid than the net growth rates estimated by incremental radiocarbon dating. The former constraint is inconsistent with field observations that most marine ooids occur in high energy shoal environments, both in modern examples and in the rock record. Precipitation rates must therefore also be relatively rapid compared

  20. Concepts on Low Temperature Mechanical Grain Growth

    SciTech Connect

    Sharon, John Anthony; Boyce, Brad Lee

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  1. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  2. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  3. Grain Refinement of Deoxidized Copper

    NASA Astrophysics Data System (ADS)

    Balart, María José; Patel, Jayesh B.; Gao, Feng; Fan, Zhongyun

    2016-10-01

    This study reports the current status of grain refinement of copper accompanied in particular by a critical appraisal of grain refinement of phosphorus-deoxidized, high residual P (DHP) copper microalloyed with 150 ppm Ag. Some deviations exist in terms of the growth restriction factor ( Q) framework, on the basis of empirical evidence reported in the literature for grain size measurements of copper with individual additions of 0.05, 0.1, and 0.5 wt pct of Mo, In, Sn, Bi, Sb, Pb, and Se, cast under a protective atmosphere of pure Ar and water quenching. The columnar-to-equiaxed transition (CET) has been observed in copper, with an individual addition of 0.4B and with combined additions of 0.4Zr-0.04P and 0.4Zr-0.04P-0.015Ag and, in a previous study, with combined additions of 0.1Ag-0.069P (in wt pct). CETs in these B- and Zr-treated casts have been ascribed to changes in the morphology and chemistry of particles, concurrently in association with free solute type and availability. No further grain-refining action was observed due to microalloying additions of B, Mg, Ca, Zr, Ti, Mn, In, Fe, and Zn (~0.1 wt pct) with respect to DHP-Cu microalloyed with Ag, and therefore are no longer relevant for the casting conditions studied. The critical microalloying element for grain size control in deoxidized copper and in particular DHP-Cu is Ag.

  4. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  5. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    PubMed

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding.

  6. In situ synchrotron investigation of grain growth behavior of nano-grained UO2

    DOE PAGES

    Miao, Yinbin; Yao, Tiankai; Lian, Jie; ...

    2017-01-09

    Here, we report on the study of grain growth kinetics in nano-grained UO2 samples. Dense nano-grained UO2 samples with well-controlled stoichiometry and grain size were fabricated using the spark plasma sintering technique. To determine the grain growth kinetics at elevated temperatures, a synchrotron wide-angle X-ray scattering (WAXS) study was performed in situ to measure the real-time grain size evolution based on the modified Williamson-Hall analysis. The unique grain growth kinetics of nanocrystalline UO2 at 730 °C and 820 °C were observed and explained by the difference in mobility of various grain boundaries.

  7. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2016-07-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  9. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2017-06-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  10. Positron trapping at grain boundaries

    SciTech Connect

    Dupasquier, A. ); Romero, R.; Somoza, A. )

    1993-10-01

    The standard positron trapping model has often been applied, as a simple approximation, to the interpretation of positron lifetime spectra in situations of diffusion-controlled trapping. This paper shows that this approximation is not sufficiently accurate, and presents a model based on the correct solution of the diffusion equation, in the version appropriate for studying positron trapping at grain boundaries. The model is used for the analysis of new experimental data on positron lifetime spectra in a fine-grained Al-Ca-Zn alloy. Previous results on similar systems are also discussed and reinterpreted. The analysis yields effective diffusion coefficients not far from the values known for the base metals of the alloys.

  11. Grain Growth in Cerium Metal

    NASA Astrophysics Data System (ADS)

    Cooley, Jason; Katz, Martha; Mielke, Charles; Montalvo, Joel

    We report on grain growth in forged and rolled cerium plate for temperatures from 350 to 700 degrees C and times from 30 to 120 minutes. The cerium was made by arc-melting into a 25 mm deep by 80 mm diameter copper mold. The resulting disk was forged at room temperature to a 25% reduction of thickness four times with a 350 degree C strain relief heat treatment for 60 minutes between forging steps. The resulting 8 mm thick plate was clock rolled at room temperature to a 25% reduction of thickness three times with a 350 C strain relief heat treatment between steps resulting in a plate approximately 3 mm thick. 5 x 10 mm coupons were cut from the plate for the grain growth study.

  12. Grain boundary loops in graphene

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric; Rutter, Gregory M.; Guisinger, Nathan P.; Crain, Jason N.; First, Phillip N.; Stroscio, Joseph A.

    2011-05-01

    Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a “flower” pattern in scanning tunneling microscopy studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.

  13. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  14. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  15. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  16. Mechanical Behavior of Grain Boundary Engineered Copper

    SciTech Connect

    Carter, S B; Hodge, A M

    2006-08-08

    A grain boundary engineered copper sample previously characterized by Electron Backscatter Diffraction (EBSD) has been selected for nanoindentation tests. Given the fact that grain boundaries have thicknesses in the order of 1 micron or less, it is essential to use nanomechanics to test the properties of individual grain boundaries. The Hysitron nanoindenter was selected over the MTS nanoindenter due to its superior optical capabilities that aid the selection and identification of the areas to be tested. An area of 2mm by 2mm with an average grain size of 50 microns has been selected for the study. Given the EBSD mapping, grains and grain boundaries with similar orientations are tested and the hardness and modulus are compared. These results will give a relationship between the mechanical properties and the engineered grain boundaries. This will provide for the first time a correlation between grain boundary orientation and the mechanical behavior of the sample at the nanoscale.

  17. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars.

  18. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  19. Grain boundary wetness of partially molten dunite

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  20. Whole grains: benefits and challenges.

    PubMed

    Jones, Julie Miller; Engleson, Jodi

    2010-01-01

    Inclusion of whole grains (WG) in the diet is recommended in dietary guidance around the world because of their associations with increased health and reduced risk of chronic disease. WGs are linked to reduced risk of obesity or weight gain; reduced risk of cardiovascular disease (CVD), including coronary heart disease (CHD), hypertension, and stroke; improved gut health and decreased risk of cancers of the upper gut; perhaps reduced risk of colorectal cancer; and lower mortality rate. The 2005 United States Dietary Guidelines Advisory Committee has recommended that consumers make "half their grains whole." Yet, whole grains are puzzling both consumers and scientists. Scientists are trying to determine whether their health benefits are due to the synergy of WG components, individual WG components, or the fact that WG eaters make many of the recommended diet and lifestyle choices. Consumers need to understand the WG benefits and how to identify WG foods to have incentive to purchase and use such foods. Industry needs to develop great-tasting, clearly-labeled products. With both these factors working together, it will be possible to change WG consumption habits among consumers.

  1. Grain Boundary Energies in Copper.

    NASA Astrophysics Data System (ADS)

    Omar, Ramli

    Available from UMI in association with The British Library. Requires signed TDF. The dependence of grain boundary energy on boundary orientation was studied in copper annealed at 1000 ^circC. Grain boundary orientations and the disorientations across the boundaries were measured. A rotation matrix notation is used to interpret selected area electron channelling patterns observed in a scanning electron microscope. The Herring and Shewmon torque terms were investigated using wire specimens having a "bamboo" structure. The Herring torque terms were determined using the Hess relation. The (110) section of the Sigma 11 gamma-plot (i.e. the variation of grain boundary energy with boundary orientation) was evaluated. In this plot, minima in energies were found at the (311) and (332) mirror planes. Sigma 3 and Sigma9 boundaries were investigated in sheet specimens. The (110) and (111) sections of the Sigma3 gamma -plot were evaluated. In addition to the sharp cusps occurring at the Sigma3 {111} planes, the further shallower cusps occur at the incoherent Sigma 3 boundaries with the interfacial planes approximately parallel to {322} in one crystal and {11.44} in the other crystal. Flat and curved Sigma9 boundaries were investigated. The break up of Sigma9 boundaries into two Sigma3 boundaries and the relation between the Sigma3 and Sigma 9 gamma-plots was also examined. The (110) section of the Sigma9 gamma-plot was constructed.

  2. Small grains and IRAS colors

    NASA Technical Reports Server (NTRS)

    Boulanger, F.; Beichman, C.; Helou, G.; Desert, F. X.; Perault, M.

    1988-01-01

    The paper studies how infrared colors of dust emission from the interstellar medium vary with the energy density of the radiation field on the basis of IRAS observation of the California Nebula. The data suggest that color variations result from a combinatin of equilibrium emission from large grains, and nonequilibrium emission from small grains, with destruction of the small grains emitting at 12 microns at high energy density; it is estimated that 80 percent of these small particles are destroyed for an energy density in ultraviolet photons larger than 50 times that of the average interstellar radiation field in the solar neighborhood. In a color-color diagram, I(v)(60 microns)/I(v)(100 microns) versus I(v)(12 microns)/I(v)(25 microns), the California Nebula measurements at various distances to the ionizing star Zeta Per follow a sequence similar to that of galaxies. This result shows that the position of a galaxy along this sequence is a measure of the intensity of the radiation field in the regions responsible for the infrared emission.

  3. Thermal properties of heterogeneous grains

    NASA Technical Reports Server (NTRS)

    Lien, David J.

    1988-01-01

    Cometary dust is not spherical nor homogeneous, yet these are the assumptions used to model its thermal, optical, and dynamical properties. To better understand the effects of heterogeneity on the thermal and optical properties of dust grains, the effective dielectric constant for an admixture of magnetite and a silicate were calculated using two different effective medium theories: the Maxwell-Garnett theory and the Bruggeman theory. In concept, the MG theory describes the effective dielectric constant of a matrix material into which is embedded a large number of very small inclusions of a second material. The Bruggeman theory describes the dielectric constant of a well mixed aggregate of two or more types of materials. Both theories assume that the individual particles are much smaller than the wavelength of the incident radiation. The refractivity for a heterogeneous grain using the MG theory is very similar to the refractivity of the matrix material, even for large volume fractions of the inclusion. The equilibrium grain temperature for spherical particles sized from .001 to 100 microns in radius at 1 astronomical unit from the sun was calculated. Further explanation is given.

  4. Effects of polyphenols and lipids from Pennisetum glaucum grains on T-cell activation: modulation of Ca(2+) and ERK1/ERK2 signaling.

    PubMed

    Nani, Abdelhafid; Belarbi, Meriem; Ksouri-Megdiche, Wided; Abdoul-Azize, Souleymane; Benammar, Chahid; Ghiringhelli, François; Hichami, Aziz; Khan, Naim Akhtar

    2015-12-01

    Pearl millet (PM), i.e., Pennisetum glaucum, is widely grown in Africa and known for its anti-oxidant and anti-hyperlipidemic properties. The P. glaucum grains were obtained from the region of Ouled Aïssa (South of Algeria). We assessed the effects of phenolic compounds and lipids, extracted from seeds of P. glaucum, on rat lymphocyte proliferation, activated by phorbol 12-myristate 13-acetate and ionomycin. In order to explore signaling pathway, triggered by these compounds, we assessed interleukin-2 (IL-2) mRNA expression and extracellular signal-regulated kinase-1/2 (ERK1/ERK2) phosphorylation. Finally, we determined increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by employing Fura-2/AM in rat lymphocytes. The composition of P. glaucum grains in polyphenols was estimated to be 1660 µg gallic acid equivalents (GAE)/g. Lipids represented 4.5 %, and more than 72% of the fatty acids belonged to unsaturated family. Our investigation showed that both lipid and phenolic compounds inhibited mitogen-induced T-cell proliferation. Compared with phenolic compounds, lipids exerted weaker effects on ERK-1/ERK2 phosphorylation and Ca(2+) signaling in mitogen-activated T-cells. We conclude that the immunomodulatory effects of P. glaucum could be contributed by its phenolic and lipid contents.

  5. Electrons and grain boundary energies in metals

    SciTech Connect

    Ferrante, J.; Smith, J.R.; Balluffi, R.W.; Brokman, A.

    1985-03-01

    It was found that differences between electron density profiles in grain boundaries and those in the crystal yield relatively large electronic contributions to grain boundary energies. These electronic effects can be combined self-consistently with pair-wise interactions in a practical method for computing grain boundary structures and energies.

  6. Ancient whole grain gluten-free flatbreads

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative ancient whole grain gluten-free (no yeast or chemical...

  7. Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2010-07-20

    thermodynamics . 2) Experimental verify the effectiveness of possible nucleating compounds. 3) Extend grain refinement theory and solidification...knowledge through experimental data. 4) Determine structure property relationships for the examined grain refiners. 5) Formulate processing techniques for...using grain refiners in the steel casting industry. During Fiscal Year 2010, this project worked on determining structure property -relationships

  8. Radiographic techniques for investigating cereal grains

    SciTech Connect

    Winkler, M.A.

    1981-10-01

    Radiographic examination of cereal grain can determine nondestructively the presence of internal structural damage and other defects, which can be correlated to associated problems such as disease and infestation. Radiographs of several representative grains demonstrate the capabilities of the radiographic technique to detect structural deviations in the grains.

  9. Grain boundary resistance to fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, H. W.

    1993-01-01

    Results of an experimental study tracing the grain boundary effect on the fatigue crack growth rate are reported. Direct experimental evidence for the grain boundary blockage mechanism is presented. The orientation difference between two neighboring grains directly contributed to the extent of crack growth retardation.

  10. Structure and chemistry of the sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...

  11. Whole grain gluten-free flat breads

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food health claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative whole grain gluten free (without yeast or chemicals) ...

  12. Electrical conduction of intrinsic grain and grain boundary in Mn-Co-Ni-O thin film thermistors: Grain size influence

    NASA Astrophysics Data System (ADS)

    He, L.; Ling, Z. Y.

    2011-11-01

    Mn1.85Co0.3Ni0.85O4 (MCN) thin films with pure spinel phase and different grain size were prepared on Al2O3 substrates by chemical deposition method. Temperature dependent ac impedance spectroscopy was employed to analyze the grain size influence on the electrical conduction of intrinsic grain and grain boundary (GB) in MCN thin films. The conduction mechanisms of grain and GB both followed the small-polaron hopping model. It was found that the hopping types of GB (nearest-neighbor-hopping (NNH)) and grain (a transition from variable-range-hopping (VRH) to NNH) were not affected by the grain size, while the resistance, characteristic temperature, and activation energy of grain and GB were affected by the grain size in varying degrees. Additionally, the mechanisms concerning the dependence of electrical conduction of grain and GB on the grain size of MCN thin films were discussed in detail. These studies will also provide a comprehensive understanding of the conduction behaviors of a system with mixed NNH and VRH.

  13. High resolution record of millet cultivation during the Bronze Age around Lake le Bourget (French Alps). Is there any climatic control?

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Disnar, J. R.; Arnaud, F.; Billaud, Y.; Chapron, E.; Sicre, M.-A.; Boscardin, R.

    2009-04-01

    Our understanding of past interactions between the development of human societies, the evolution of climate and associated changes in ecosystems and landscape dynamics is conditioned by the acquisition of high resolution records within which specific tracers allow us estimating variability. The recent development of a molecular biomarker (miliacin) specific of Panicum miliaceum (common millet) associated with the determination of a biomarker allowing to track soil erosion in the sediments of Lake le Bourget (French Alps; [1], [2]) expands the possibilities afforded by organic geochemistry applied to sedimentary archives to unravel these interactions. Within the frame of the Pygmalion project (ANR Blanc, France) we improved the previous miliacin record from Lake le Bourget sediments [1] to reach an infra-decadal resolution for the 2000-600 BC time period that covers the Bronze Age. Miliacin is detected for the first time in sediment samples dated back to ca. 1700 BC, in agreement with the supposed date of introduction of P. miliaceum in the region. Miliacin concentration is low (ca. 20 ng.g-1) during the 1700-1400 BC interval and then rises to values up to 300 ng.g-1 at 850 BC before the strong decrease to 20 ng.g-1 at 750 BC imputable to the abandonment of palaffitic habitats due to a climatic deterioration at the Bronze Age/Iron Age transition. In addition to this general trend, miliacin concentration shows century-scale variations in the 1700-800 BC interval that share similarities with other records. Two periods of miliacin high concentrations at 950 and 850 BC coincide with high densities of dendrochronological dates acquired on wooden piles and with two periods of lake level lowering. The comparison of miliacin evolution in Lake le Bourget with the high resolution alkenone-derived sea surface temperature (SST) record obtained in the North Atlantic off Iceland [3] shows striking coincidences. Previous studies showed that periods of elevated SSTs in this area

  14. Weighing in on whole grains: A review of evidence linking whole grains to body weight

    USDA-ARS?s Scientific Manuscript database

    U.S. dietary guidelines support the consumption of whole grains in lieu of refined grains. On January 31, 2011, the 2010 Dietary Guidelines for Americans (DGA) were released and the recommendations with respect to grains were for individuals to “Consume at least half of all grains as whole grains” a...

  15. Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy

    SciTech Connect

    Horita, Zenji; Nemoto, Minoru; Smith, D.J.; Furukawa, Minoru; Valiev, R.Z.; Langdon, T.G.

    1996-11-01

    This paper presents high-resolution electron microscopy studies of grain boundary structures in a submicrometer-grained Al-3%Mg solid solution alloy produced by an intense plastic straining technique. The studies include the effect of static annealing on the grain boundary structure. Many grain boundaries are in a high-energy nonequilibrium state in the as-strained sample. The nonequilibrium character is retained on some grain boundaries in samples annealed at temperatures below the onset of significant grain growth. The effect of electron irradiation on the grain boundary structure also is examined.

  16. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  17. Experimental Study of Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  18. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  19. 3D modeling of metallic grain growth

    SciTech Connect

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  20. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

    <