Science.gov

Sample records for barred galaxy ngc

  1. Face on Barred and Ringed Spiral Galaxy NGC 3351

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the face on barred and ringed spiral galaxy NGC 3351 (M95). The morphological appearance of a galaxy can change dramatically between visual and ultraviolet wavelengths. In the case of M95, the nucleus and bar dominate the visual image. In the ultraviolet, the bar is not even visible and the ring and spiral arms dominate.

  2. STAR FORMATION EFFICIENCY IN THE BARRED SPIRAL GALAXY NGC 4303

    SciTech Connect

    Momose, Rieko; Okumura, Sachiko K.; Sawada, Tsuyoshi; Koda, Jin E-mail: sokumura@nro.nao.ac.j E-mail: Jin.Koda@stonybrook.ed

    2010-09-20

    We present new {sup 12}CO (J = 1 - 0) observations of the barred galaxy NGC 4303 using the Nobeyama 45 m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H{alpha} images of barred spiral galaxies often show active star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate (SFR) and star formation efficiency (SFE) at a scale where local star formation is spatially resolved. Our CO map covers the central 2.'3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that SFR and SFE are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schmidt (KS) law, which indicates a constant SFR at a given gas surface density. The KS law breaks down at our native resolution ({approx}250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.

  3. Weakly barred early-type ringed galaxies. IV. The double-ringed SO(+) galaxy NGC 7702

    SciTech Connect

    Buta, R. )

    1991-03-01

    UBVRI surface photometry of NGC 7702, obtained with a CCD detector on the 3.9-m Anglo-Australian Telescope and with photographic plates on the 4-m telescope at CTIO, is reported. The data are presented in tables, graphs, and contour maps and characterized in detail. NGC 7702 is found to be a true S0(+) galaxy with a bright high-contrast inner ring and a faint low-contrast outer ring; the inner ring is significantly elongated relative to typical SB inner rings and has colors which suggest a burst of star formation less than 2 Gyr ago. A small oval revealed by the bulge isophotes in the inner 4 arcsec radius is attributed to a nuclear bar. 52 refs.

  4. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  5. Weakly barred early-type ringed galaxies. III. The remarkable outer-ringed S0+ galaxy NGC 7020

    SciTech Connect

    Buta, R. )

    1990-06-01

    The southern S0+ galaxy NGC 7020 presents an unusual morphology: it includes a very regular outer ring which is completely detached and which envelops an inner ring/lens zone with an exotic hexagonal shape. The ring has a high contrast compared with those usually observed in barred galaxies, yet NGC 7020 is not obviously barred. In this paper, the structure of this galaxy is studied by means of UBVRI CCD surface photometry. The photometry reveals a complex system and shows that most of the recent star formation in the galaxy has taken place in the outer ring. Two bright knots are found on the major axis of the hexagonal zone that appear to be true enhancements of old stars rather than young associations. Between these knots and the bulge there are dips in the surface brightness and a clear zone of rectangular isophotes. 56 refs.

  6. A neutral hydrogen study of the barred spiral galaxy NGC 3319

    NASA Astrophysics Data System (ADS)

    Moore, E. M.; Gottesman, S. T.

    1998-03-01

    Neutral hydrogen line observations of the late-type barred spiral galaxy NGC 3319 are presented. The distribution and kinematics of the galaxy are studied using the Very Large Array, with spatial resolutions between 11 and 50 arcsec and a channel separation of 10.33 km/s. As is typical for late-type galaxies, NGC 3319 is rich in H I, with a gaseous bar and spiral features. Several large, low-density regions are present, and the H I spiral structure is distorted, especially in the south. The gas distribution is asymmetric and extends significantly further to the southeast due to a long, off-center tail. Noncircular motions caused by the bar, spiral structure, and low-density regions are present in the radial velocity field, complicating the rotation curve analysis. These nonaxisymmetric structures cause the values of the position angle and inclination derived from the velocity field to vary across the disk. In addition, beyond a radius of 180 arcsec, the velocity field is severely perturbed on the approaching (southern) side of the galaxy, and the disk becomes nonplanar. However, the galaxy does not show the typical 'integral sign' shape of a warped system. We detect a small system approximately 11 arcmin south of the center of NGC 3319. It is seen in eight velocity channels and is coincident with a small, resolved object in the Palomar Sky Survey. A tidal interaction between this object and NGC 3319 is the most likely cause of the distorted spiral structure, the H I tail, and the velocity perturbations found in the southern half of the galaxy. Infalling tidal debris from such an event may account for the large, low-density regions found in the disk, several of which show kinematic evidence that suggest they are expanding superstructures.

  7. UBVRI Photometry of Stellar Structures throughout the Disk of the Barred Galaxy NGC 3367

    NASA Astrophysics Data System (ADS)

    García-Barreto, J. Antonio; Hernández-Toledo, Héctor; Moreno-Díaz, Edmundo; Bernal-Marín, Tula; Villarreal-Castillo, A. Lucía

    2007-07-01

    We report new detailed surface U, B, V, R, and I photometry of 81 stellar structures in the disk of the barred galaxy NGC 3367. The images show many different structures, indicating that star formation is going on in most parts of the disk. NGC 3367 is known to have a very high concentration of molecular gas distribution in the central regions of the galaxy and bipolar synchrotron emission from the nucleus, with two lobes (at 6 kpc) forming a triple structure similar to a radio galaxy. We have determined the U, B, V, R, and I magnitudes and U-B, B-V, U-V, and V-I colors for the central region (nucleus), a region which includes supernova 2003 AA, and 79 star associations throughout NGC 3367. The estimation of ages of star associations is very difficult due to several factors, among them the filling factor, metallicity, spatial distribution of each structure, and the fact that we estimated the magnitudes with a circular aperture of 16 pixels in diameter, equivalent to 6.8''~1.4 kpc. However, even though the colors derived for NGC 3367 were similar to the colors expected of star clusters with theoretical evolutionary star tracks developed for the LMC and had a similar metallicity, NGC 3367 shows 56% of the observed structures with age type SWB I (a few tens of megayears), with seven sources outside the high surface brightness visible disk.

  8. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  9. THE BULGELESS SEYFERT/LINER GALAXY NGC 3367: DISK, BAR, LOPSIDEDNESS, AND ENVIRONMENT

    SciTech Connect

    Hernandez-Toledo, H. M.; Cano-Diaz, M.; Valenzuela, O.; Garcia-Barreto, J. A; Moreno-Diaz, E.; Puerari, I.; Bravo-Alfaro, H.

    2011-12-15

    NGC 3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar, and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and search for evidence of recent interaction. Our study is based on new UBVRI H{alpha} and JHK images and on archive H{alpha} Fabry-Perot and H I Very Large Array data. From a coupled one-dimensional/two-dimensional GALFIT bulge/bar/disk decomposition a (B/D {approx} 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A near-infrared (NIR) estimate of the bar strength Q{sup max}{sub T}(R) = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) the optical and NIR concentration-asymmetry-clumpiness indices, (2) the stellar (NIR) and gaseous (H{alpha}, H I) A{sub 1} Fourier mode amplitudes, and (3) the H I-integrated profile and H I mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the local universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A{sub 1} mode amplitudes suggesting that the gas has been recently perturbed and placing NGC 3367 in a global starburst phase. NGC 3367 is devoid of H I gas in the central regions where a significant amount of molecular CO gas exists instead. Our search for (1) faint stellar structures in the outer regions (up to {mu}{sub R} {approx} 26 mag arcsec{sup -2}), (2) (H{alpha}) star-forming satellite galaxies, and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted by using results from recent numerical simulations to constrain either a possible tidal event with an LMC like galaxy to some dynamical times in the past or a very low mass but perhaps gas rich recent encounter. We conclude that a cold flow accretion mode (gas and small/dark galaxies) may be responsible for

  10. Weakly barred early-type ringed galaxies. II. The double-ringed S0(+) galaxy NGC 7187

    SciTech Connect

    Buta, R. Alabama Univ., Tuscaloosa )

    1990-05-01

    CCD surface photometry of the southern ringed S0(+) galaxy NGC 7187, a particularly good example of a system with two bright clear rings with significantly different apparent shapes and almost no sign of a bar, is presented. The galaxy has below average luminosity and the rings are small compared to those observed in more typical (R)SB(r) type galaxies, even though the ratio of their sizes is similar to those in such galaxies. Bulge isophotes reveal the existence of two nearly orthogonal ovals, one having the same shape and position angle as isophotes of the outer disk. The central oval shows significant m = 4 deviations from elliptical isophote shapes and could be a nuclear bar. The rings are slightly blue enhancements compared to their surroundings. The mean colors of both rings do not imply exceptionally high star formation at the present time. 44 refs.

  11. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ˜ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (˜100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ˜ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (˜107 M ⊙) core. Two systemic velocities, 998 km s-1 for the CND and 964 km s-1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s-1 kpc-1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}˜ 0.2 in the case of optically thin CO (1-0) emission in the outflow, suggesting low efficiency of star formation quenching.

  12. EVN VLBI Imaging of the Jet in the Nucleus of the Barred Spiral Galaxy NGC 7479

    NASA Astrophysics Data System (ADS)

    Laine, Seppo J.; Momjian, Emmanuel; Krichbaum, Thomas; Beck, Rainer; Komossa, S.

    2017-01-01

    The nearby (D = 32 Mpc) barred spiral galaxy NGC 7479 hosts a remarkable jet-like radio continuum feature: bright, 12-kpc long in projection, and hosting an S-shaped, aligned magnetic field. The bending of the jet in 3-D is most easily explained by precession, with a jet age less than a million years. We have imaged the nucleus with European VLBI Network (EVN) observations at 6 and 18 cm. Here we report our tentative results on the search for nuclear jet emission on sub-arcsecond scales, including its alignment with the outer kpc-scale jet. We also describe the nature of the nucleus with the help of spectral index determination, brightness temperature limit and variability of the nucleus.

  13. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    DTIC Science & Technology

    2011-06-10

    column density toward Type-2 Seyfert nuclei and the presence of a strong bar, i.e., more than 80% of Compton -thick Seyfert 2s are barred. This suggests...40 ks) and XMM-Newton (50 ks). Here, we report the results from these observations and use sup- porting Hubble Space Telescope/Advanced Camera for...al. 2000). Thus, it was concluded that if an active nucleus is present in NGC 1672, it must be Compton -thick, with NH > 2 × 1024 cm−2. 3

  14. The structure of the barred galaxy NGC253: target of the VISTA and VST Science Verification extragalactic mini-survey.

    NASA Astrophysics Data System (ADS)

    Iodice, E.; VISTA Team; VST SV Team; Pompei, E.; Mieske, S.; Szeifert, T.; Ivanov, V.; Arnaboldi M.; Battaglia, G.; Bilbao, L.; Freudling, W.; Hatziminaoglou, E.; Hilker, M.; Hummel, W.; Melnick, J.; Misgeld, I.; Moller, P.; Neeser, M.; Nadine, N.; Nilsson, K.; Rejkuba, M.; Retzlaff, J.; Romaniello, M.; Slijkhuis, R.; Venemans, B.; Ziegler, B.; Harald, K.; Iodice E.; Greggio L.; Emerson, J.; Sutherland, W.; Irwin, M.; J., Lewis; Hodgkin, S.; Gonzalez-Solares, E.; Capaccioli, M.; Grado, A.; Limatola, L.

    The Sculptor Galaxy NGC253 is a nearby barred Sc galaxy seen nearly edge-on and it has been the target of the Science Verification (SV) for the new ESO survey telescopes VST and VISTA: SV have been defined by teams of astronomers from ESO and the community, including the Italian National Institute for Astrophysics. On the behalf of the VISTA and VST SV Team, I will present in this paper the first results on the NGC253 structure by the new NIR VISTA and optical VST images. These data have emphasized the huge potentiality of the VISTA and VST telescopes to study the structure of galaxies with a detail and accuracy comparable to higher class telescopes, i.e. VLT and HST, with the advantage of the large Field of View (FoV): i) the high angular resolution let to detect and study the sub-structures towards the nuclear regions; ii) the large FoV let to ''correlate'' the inner features to the structure of the outer galaxy disk and to map the surface brightness and colors out to the very faint outskirts.

  15. Kinematics in irregular galaxies: NGC 4449.

    NASA Astrophysics Data System (ADS)

    Valdez, M.; Rosado, M.

    1998-11-01

    A kinematical analysis of the irregular galaxy NGC 4449 is presented based on the Fabry-Perot interferometer PUMA observations. In NGC 4449 we analyse its global velocity field, HII regions population as well as the SNR population identified on radioastronomy studies. Our first results for NGC 4449 show that the optical velocity field, presents a decreasing gradient in velocity along the optical bar and an anticorrelation with respect to the velocity field of the HI halo.

  16. Galaxy NGC 1512

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A rainbow of colors is captured in the center of a magnificent barred spiral galaxy, as witnessed by the three cameras of NASA's Hubble Space Telescope.

    The color-composite image of the galaxy NGC 1512 was created from seven images taken with the JPL-designed and built Wide Field and Planetary Camera 2 (WFPC-2), along with the Faint Object Camera and the Near Infrared Camera and Multi-Object Spectrometer. Hubble's unique vantage point high above the atmosphere allows astronomers to see objects over a broad range of wavelengths from the ultraviolet to the infrared and to detect differences in the regions around newly born stars.

    The new image is online at http://oposite.stsci.edu/pubinfo/pr/2001/16 and http://www.jpl.nasa.gov/images/wfpc .

    The image reveals a stunning 2,400 light-year-wide circle of infant star clusters in the center of NGC 1512. Located 30 million light-years away in the southern constellation of Horologium, NGC 1512 is a neighbor of our Milky Way galaxy.

    With the Hubble data, a team of Israeli and American astronomers performed one of the broadest, most detailed studies ever of such star-forming regions. Results will appear in the June issue of the Astronomical Journal. The team includes Dr. Dan Maoz, Tel-Aviv University, Israel and Columbia University, New York, N.Y.; Dr. Aaron J. Barth, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Dr. Luis C. Ho, The Observatories of the Carnegie Institution of Washington; Dr. Amiel Sternberg, Tel-Aviv University, Israel; and Dr. Alexei V. Filippenko, University of California, Berkeley.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international

  17. CO Multi-line Imaging of Nearby Galaxies (COMING). I. Physical properties of molecular gas in the barred spiral galaxy NGC 2903

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Sorai, Kazuo; Kuno, Nario; Nakai, Naomasa; Nakanishi, Hiroyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Miyamoto, Yusuke; Kishida, Nozomi; Hatakeyama, Takuya; Umei, Michiko; Tanaka, Takahiro; Tomiyasu, Yuto; Saita, Chey; Ueno, Saeko; Matsumoto, Naoko; Salak, Dragan; Morokuma-Matsui, Kana

    2016-10-01

    We present simultaneous mappings of J = 1-0 emission of 12CO, 13CO, and C18O molecules toward the whole disk (8' × 5' or 20.8 kpc × 13.0 kpc) of the nearby barred spiral galaxy NGC 2903 with the Nobeyama Radio Observatory 45 m telescope at an effective angular resolution of 20″ (or 870 pc). We detected 12CO(J = 1-0) emission over the disk of NGC 2903. In addition, significant 13CO(J = 1-0) emission was found at the center and bar-ends, whereas we could not detect any significant C18O(J = 1-0) emission. In order to improve the signal-to-noise ratio of CO emission and to obtain accurate line ratios of 12CO(J = 2-1)/12CO(J = 1-0) (R2-1/1-0) and 13CO(J = 1-0)/12CO(J = 1-0) (R13/12), we performed the stacking analysis for our 12CO(J = 1-0), 13CO(J = 1-0), and archival 12CO(J = 2-1) spectra with velocity axis alignment in nine representative regions of NGC 2903. We successfully obtained the stacked spectra of the three CO lines, and could measure averaged R2-1/1-0 and R13/12 with high significance for all the regions. We found that both R2-1/1-0 and R13/12 differ according to the regions, which reflects the difference in the physical properties of molecular gas, i.e., density (n_H_2) and kinetic temperature (TK). We determined n_H_2 and TK using R2-1/1-0 and R13/12 based on the large velocity gradient approximation. The derived n_H_2 ranges from ˜1000 cm-3 (in the bar, bar-ends, and spiral arms) to 3700 cm-3 (at the center) and the derived TK ranges from 10 K (in the bar and spiral arms) to 30 K (at the center). We examined the dependence of star formation efficiencies (SFEs) on n_H_2 and TK, and found a positive correlation between SFE and n_H_2 with correlation coefficient for the least-squares power-law fit R2 of 0.50. This suggests that molecular gas density governs the spatial variations in SFEs.

  18. FORMATION OF DENSE MOLECULAR GAS AND STARS AT THE CIRCUMNUCLEAR STARBURST RING IN THE BARRED GALAXY NGC 7552

    SciTech Connect

    Pan, Hsi-An; Lim, Jeremy; Matsushita, Satoki; Wong, Tony; Ryder, Stuart

    2013-05-01

    We present millimeter molecular line complemented by optical observations, along with a reanalysis of archival centimeter H I and continuum data, to infer the global dynamics and determine where dense molecular gas and massive stars preferentially form in the circumnuclear starburst ring of the barred-spiral galaxy NGC 7552. We find diffuse molecular gas in a pair of dust lanes each running along the large-scale galactic bar, as well as in the circumnuclear starburst ring. We do not detect dense molecular gas in the dust lanes, but find such gas concentrated in two knots where the dust lanes make contact with the circumnuclear starburst ring. When convolved to the same angular resolution as the images in dense gas, the radio continuum emission of the circumnuclear starburst ring also exhibits two knots, each lying downstream of an adjacent knot in dense gas. The results agree qualitatively with the idea that massive stars form from dense gas at the contact points, where diffuse gas is channeled into the ring along the dust lanes, and later explode as supernovae downstream of the contact points. Based on the inferred rotation curve, however, the propagation time between the respective pairs of dense gas and centimeter continuum knots is about an order of magnitude shorter than the lifetimes of OB stars. We discuss possible reasons for this discrepancy, and conclude that either the initial mass function is top-heavy or massive stars in the ring do not form exclusively at the contact points where dense molecular gas is concentrated.

  19. KINEMATIC AND PHOTOMETRIC EVIDENCE FOR A BAR IN NGC 2683

    SciTech Connect

    Kuzio de Naray, Rachel; Zagursky, Matthew J.; McGaugh, Stacy S. E-mail: mzagursk@umd.edu

    2009-10-15

    We present optical long-slit and SparsePak Integral Field Unit emission line spectroscopy along with optical broadband and near-IR images of the edge-on spiral galaxy NGC 2683. We find a multi-valued, figure-of-eight velocity structure in the inner 45'' of the long-slit spectrum and twisted isovelocity contours in the velocity field. We also find, regardless of wavelength, that the galaxy isophotes are boxy. We argue that taken together, these kinematic and photometric features are evidence for the presence of a bar in NGC 2683. We use our data to constrain the orientation and strength of the bar.

  20. Galaxy NGC 1850

    NASA Technical Reports Server (NTRS)

    1999-01-01

    By spying on a neighboring galaxy, NASA's Hubble Space Telescope has captured an image of a young, globular-like star cluster -- a type of object unknown in our Milky Way Galaxy.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/25 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The double cluster NGC 1850 lies in a neighboring satellite galaxy, the Large Magellanic Cloud. It has two relatively young components. The main, globular-like cluster is in the center. A smaller cluster is seen below and to the right, composed of extremely hot, blue stars and fainter red T-Tauri stars. The main cluster is about 50 million years old; the smaller one is 4 million years old.

    A filigree pattern of diffuse gas surrounds NGC 1850. Scientists believe the pattern formed millions of years ago when massive stars in the main cluster exploded as supernovas.

    Hubble can observe a range of star types in NGC 1850, including the faint, low-mass T-Tauri stars, which are difficult to distinguish with ground-based telescopes. Hubble's fine angular resolution can pick out these stars, even in other galaxies. Massive stars of the OB type emit large amounts of energetic ultraviolet radiation, which is absorbed by the Earth's atmosphere. From Hubble's position above the atmosphere, it can detect this ultraviolet light.

    NGC 1850, the brightest star cluster in the Large Magellanic Cloud, is in the southern constellation of Dorado, called the Goldfish or the Swordfish. This image was created from five archival exposures taken by the Wide Field Planetary Camera 2 between April 3, 1994 and February 6, 1996. More information about the Hubble Space Telescope is online at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore

  1. Galaxy NGC 4013

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An amazing 'edge-on' view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image, available at http://www.jpl.nasa.gov/pictures/wfpc , reveals in great detail huge clouds of dust and gas extending along and above the galaxy's main disk.

    The image was taken by Hubble's Wide Field and Planetary Camera 2, which was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The galaxy, called NGC 4013, lies in the direction of the constellation Ursa Major. If we could see it pole-on, it would look like a nearly circular pinwheel. In this Hubble image, NGC 4013 is seen edge-on, from our vantage point. Because the galaxy is larger than Hubble's field of view, the image shows only a little more than half the object, but with unprecedented detail.

    Dark clouds of interstellar dust stand out, since they absorb the light of background stars. Most of the clouds lie in the galaxy's plane and form the dark band, about 500 light years thick, that appears to cut the galaxy in two from upper right to lower left. Scientists believe that new stars form in dark interstellar clouds. NGC 4013 shows several examples of these stellar kindergartens near the center of the image, in front of the dark band along the galaxy's equator. One extremely bright star near the upper left corner is merely a nearby foreground star that lies in our Milky Way and happened to be in the line of sight.

    This new picture was constructed from Hubble images taken in January 2000 by Dr. J. Christopher Howk of Johns Hopkins University, Baltimore, Md., and Dr. Blair D. Savage of the University of Wisconsin-Madison. Images taken through three different filters have been combined into a color composite covering the region of the galaxy nucleus (behind the bright foreground star at the upper left) and extending along one edge of the galaxy to the lower right.

    The Space Telescope Science Institute, Baltimore, Md., manages space

  2. The Isolated Interacting Galaxy Pair NGC 5426/27 (Arp 271)

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, I.; Rosado, M.; Amram, P.; Dultzin-Hacyan, D.; Bernal, A.; Salo, H.; Laurikainen, E.; Cruz-González, I.; Le Coarer, E.

    2001-03-01

    The isolated interacting galaxy pair NGC 5426/27 (Arp 271) was observed using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. We found a small bar-like structure in NGC 5426 and a severely distorted velocity field for NGC 5427. A range of possible masses was computed for each galaxy.

  3. The Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Pellerin, A.; Meurer, G. R.; Bekki, K.; Elmegreen, D. M.; Wong, O. I.; Knezek, P. M.

    2010-06-01

    We present a detailed study of the star cluster population detected in the galaxy NGC 922, one of the closest collisional ring galaxies, using HST/WFPC2 UBVI photometry, population synthesis models, and N-body/SPH simulations. We find that most clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong Hα emission. The observed age distribution displays a slope not consistent with the simulated star formation history of NGC 922. However our simulations match the cluster age distribution best when cluster disruption is considered. We also find clusters with ages (>50 Myr) and masses (>105 Msun) that are excellent progenitors for faint fuzzy clusters. The images also show a tidal plume pointing toward the companion. Its stellar age suggests that it consists of stars significantly older than the epoch of collision and that they were stripped off during the passage of the companion. Finally, a comparison of the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS field indicates very similar masses and sizes, suggesting similar origins.

  4. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  5. Analysis of the structure of disk galaxies in the NGC 2300 group

    NASA Astrophysics Data System (ADS)

    Il'ina, M. A.; Sil'chenko, O. K.

    2016-10-01

    Data from the 6-m telescope of the Special Astrophysical Observatory obtained using the SCORPIO instrument in imaging mode are used to study member galaxies of the NGC 2300 group. Surface photometry has been carried out for the five largest galaxies in the group, whose isophotal parameters and the parameters of their large-scale structural components (disks and bulges) have been determined. The morphological type of the central galaxy in the group has been refined, and shown to be elliptical. Studies of structural features in non-central disk galaxies have revealed an enhanced percent of bars: bars were found in all disk galaxies of this group, with all of these being compact structures. The similarity of the structural features of the disks of the group galaxies suggests that these disksmay be being restructured in the process of the current merger of the two X-ray subgroups comprising NGC 2300: the group NGC 2300 itself and the group NGC 2276.

  6. ON THE BAR PATTERN SPEED DETERMINATION OF NGC 3367

    SciTech Connect

    Gabbasov, R. F.; Repetto, P.; Rosado, M.

    2009-09-01

    An important dynamic parameter of barred galaxies is the bar pattern speed, {omega} {sub P}. Among several methods that are used for the determination of {omega} {sub P}, the Tremaine-Weinberg method has the advantage of model independence and accuracy. In this work, we apply the method to a simulated bar including gas dynamics and study the effect of two-dimensional spectroscopy data quality on robustness of the method. We added white noise and a Gaussian random field to the data and measured the corresponding errors in {omega} {sub P}. We found that a signal to noise ratio in surface density {approx}5 introduces errors of {approx}20% for the Gaussian noise, while for the white noise the corresponding errors reach {approx}50%. At the same time, the velocity field is less sensitive to contamination. On the basis of the performed study, we applied the method to the NGC 3367 spiral galaxy using H{alpha} Fabry-Perot interferometry data. We found {omega} {sub P} = 43 {+-} 6 km s{sup -1} kpc{sup -1} for this galaxy.

  7. MASSIVE BLACK HOLES IN GALAXIES NGC 3377, NGC 3379 AND NGC 4486B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The three galaxies above are believed to contain central, supermassive black holes. The galaxy NGC 4486B (lower-left) shows a double nucleus (lower-right). The images of NGC 3377 and NGC 4486B are 2.7 arcseconds on a side, and for NGC 3379 the size is 5.4 arcseconds; the lower-right is a blow-up of the central 0.5 arcseconds of NGC 4486B. Credit: Karl Gebhardt (University of Michigan) and Tod Lauer (NOAO)

  8. Complex central structures suggest complex evolutionary paths for barred S0 galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Martínez-Lombilla, Cristina; Knapen, Johan H.

    2016-11-01

    We investigate three barred lenticular galaxies (NGC 2681, NGC 3945 and NGC 4371), which were previously reported to have complex central structures but without a detailed structural analysis of these galaxies' high-resolution data. We have therefore performed four- to six-component (pseudo-)bulge/disc/bar/ring/point source) decompositions of the composite (Hubble Space Telescope plus ground-based) surface brightness profiles. We find that NGC 2681 hosts three bars, while NGC 3945 and NGC 4371 are double- and single-barred galaxies, respectively, in agreement with past isophotal analysis. We find that the bulges in these galaxies are compact, and have Sérsic indices of n ˜ 2.2-3.6 and stellar masses of M* ˜ 0.28 × 1010-1.1 × 1010 M⊙. NGC 3945 and NGC 4371 have intermediate-scale `pseudo-bulges' that are well described by a Sérsic model with low n ≲ 0.5 instead of an exponential (n = 1) profile as done in the past. We measure emission line fluxes enclosed within nine different elliptical apertures, finding that NGC 2681 has a low-ionization nuclear emission region (LINER)-type emission inside R ˜ 3 arcsec, but the emission line due to star formation is significant when aperture size is increased. In contrast, NGC 3945 and NGC 4371 have composite (active galactic nucleus plus star-forming)- and LINER-type emissions inside and outside R ˜ 2 arcsec, respectively. Our findings suggest that the three galaxies have experienced a complex evolutionary path. The bulges appear to be consequences of an earlier violent merging event while subsequent disc formation via gas accretion and bar-driven perturbations may account for the build-up of pseudo-bulges, bars, rings and point sources.

  9. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  10. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  11. Effect of bars on the galaxy properties

    NASA Astrophysics Data System (ADS)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than g< 16.5 mag into strong-bar, weak-bar, and unbarred galaxies. With the goal of providing an appropriate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshifts, magnitudes, morphology, bulge sizes, and local density environment distributions to those of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies; this represents a bar fraction of 25.82% with respect to the full sample of spiral galaxies, in good agreement with several previous studies. We also found that strong-barred galaxies show lower efficiency in star formation activity and older stellar populations (as derived with the Dn(4000) spectral index) with respect to weak-barred and unbarred spirals from the control sample. In addition, there is a significant excess of strong-barred galaxies with red colors. The color-color and color-magnitude diagrams show that unbarred and weak-barred galaxies are more extended towards the blue zone, while strong-barred disk objects are mostly grouped in the red region. Strong-barred galaxies present an important excess of high metallicity values compared to unbarred and weak-barred disk objects, which show similar distributions. Regarding the mass-metallicity relation, we found that weak-barred and unbarred galaxies are fitted by similar curves, while strong-barred ones show a curve that falls abruptly with more significance in the range of low stellar masses (log (M∗/M⊙) < 10.0). These results would indicate that prominent bars produced an accelerating effect on the gas processing

  12. Young Stellar Populations in the Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Pellerin, A.; Meurer, G. R.; Bekki, K.; Elmegreen, D. M.; Wong, O. I.; Knezek, P.

    2010-04-01

    We studied the star cluster population properties in the nearby collisional ring galaxy NGC 922 using HST/WFPC2 photometry and population synthesis modeling. We found that 69% of the detected clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong Hα emission. The images also show a tidal plume pointing toward the companion. Its stellar age is consistent with pre-existing stars that were probably stripped off during the passage of the companion. We compared the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS eld. It indicates very similar masses and sizes, suggesting similar origins. Finally, we found clusters that are excellent progenitor candidates for faint fuzzy clusters.

  13. THE ODD OFFSET BETWEEN THE GALACTIC DISK AND ITS BAR IN NGC 3906

    SciTech Connect

    Swardt, Bonita de; Sheth, Kartik; Kim, Taehyun; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah; Regan, Michael W.; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Cisternas, Mauricio; Erroz-Ferrer, Santiago; Comerón, Sébastien; Gadotti, Dimitri A.; Paz, Armando Gil de; Jarrett, Thomas H.; Elmegreen, Bruce G.; Ho, Luis C.; and others

    2015-07-20

    We use mid-infrared 3.6 and 4.5 μm imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ∼910 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter substructure in the galaxy's halo or from a recent interaction with a fast moving neighbor that remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar/kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.

  14. Bar-spheroid interaction in galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  15. Galaxy Zoo: Observing secular evolution through bars

    SciTech Connect

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  16. An HI and Optical Study of Interacting Galaxies NGC 672 and IC 1727

    NASA Astrophysics Data System (ADS)

    Stanchfield, Sara; Wilcots, E.; Prescott, M.

    2012-05-01

    We present VLA HI radio data and WIYN broadband optical observations of NGC 672 and IC 1727, two nearby, late-type, spiral galaxies. In the optical NGC 672 appears as a symmetric barred spiral with defined spiral arms and a scale length of 1.2 kpc. IC 1727 is asymmetric, lacks a true bar, and has a scale length of 2. 4 kpc. In the HI, we see tidal bridge, indicating interaction between the two galaxies. We map the distribution and kinematics of the neutral hydrogen gas in order to understand the nature of the true distribution of mass in these systems and present the resulting mass models.

  17. Extragalactic molecular line surveys: the starburst galaxy NGC253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    Figure 1 shows the first spectral line survey towards an extragalactic source, the starburst galaxy NGC253. The scan, carried out at the IRAM 30m telescope, covers ~86% of the observable 2mm atmospheric window from 129.1 to 175.2GHz. A total of ~ 100 spectral features have been identified as transitions from 25 different molecular species. Ten out of these 25 molecules have been detected for the first time towards a starbust galaxy. NO, NS, SO2, H2S and H2CS were reported by Martín et al.(2003), Martín et al.(2005) while C2S, CH2NH, NH2CN, HOCO+ and C3H are tentatively detected in the survey. These new detections implies an increase of ~ 40% in the 27 molecular species previosly detected outside the galaxy (Mauersberger & Henkel(1993), Mauersberger et al.(1995), Sage & Ziurys(1995), Heikkila et al.(1999).) Additionaly, DNC and N2D+, two deuterated species never obseved in the extragalactic ISM, are tentatively identified. The molecular abundances derived for each species in NGC253 have been compared with five Galactic sources known to be prototypes of different types of chemistry. The chemical complexity of NGC253 resembles closely that observed towards prototypical Galactic Center molecular clouds (SgrB2(OH) in, thought to be mainly dominated by low velocity shocks Martín-Pintado et al.(2001). This comparison certainly indicates that the chemistry of the molecular environment within the nuclear region of NGC253 and that in Galactic Center molecular clouds are driven by similar physical processes. Also a comparison has been performed with five selected prominent galaxies which clearly shows up the chemical differenciation between nuclei of galaxies. The chemical complexity of IC342, and also that of NGC4945 except for the observed lack of SiO, clearly resemble that of NGC253. On the other hand, it is remarkable the different chemical complexity observed between the starburst nuclei within NGC253 and M82. This difference has been interpreted in terms of the

  18. Hyperactive galaxy NGC 7673 [heic0205

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Hyperactive galaxy NGC 7673 hi-res Size hi-res: 116 kb Credits: European Space Agency & Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison) Hyperactive galaxy NGC 7673 The disturbed spiral galaxy NGC 7673 is ablaze with the light from millions of new stars. Each of its infant giant blue star clusters shines 100 times as brightly in the ultraviolet as similar immense star clusters in our own Galaxy. Scientists studying this object have two pressing questions: "What has triggered this enormous burst of star formation and how will this galaxy evolve in the future?" Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image, to the left and right of NGC 7673. These galaxies are further away and so appear redder, due to their higher redshift, an effect caused by the expansion of the Universe. The youngest blue stars in NGC 7673 are blazing with intense ultraviolet radiation. Each star cluster radiates 100 times more ultraviolet light than the famous Tarantula Nebula (30 Doradus), the largest star-forming region known in the local group of galaxies. Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image

  19. The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424

    NASA Astrophysics Data System (ADS)

    Cortés, Juan R.; Kenney, Jeffrey D. P.; Hardy, Eduardo

    2006-02-01

    Using extensive kinematical and morphological data on two Virgo Cluster galaxies undergoing strong nuclear star formation, we show that ram pressure stripping and gravitational interactions can act together on galaxies that have recently fallen into clusters. We present a detailed study of the peculiar H I-deficient Virgo Cluster spiral galaxies NGC 4064 and NGC 4424 using 12CO 1-0 interferometry, optical imaging, and integral field spectroscopic observations in order to learn what type of environmental interactions have affected these galaxies. Optical imaging reveals that NGC 4424 has a strongly disturbed stellar disk, with banana-shaped isophotes and shells. NGC 4064, which lies in the cluster outskirts, possesses a relatively undisturbed outer stellar disk and a central bar. In both galaxies Hα emission is confined to the central kiloparsec and originates in barlike strings of luminous star-forming complexes surrounded by fainter filaments. Complexes of young blue stars exist beyond the present location of ongoing star formation, indicating rapidly shrinking star-forming disks. Disturbed dust lanes extend out to a radius of 2-3 kpc, much farther than the Hα and CO emission detected by us but similar to the blue stellar complexes. CO observations reveal bilobal molecular gas morphologies, with Hα emission peaking inside the CO lobes, implying a time sequence in the star formation process. Gas kinematics reveals strong barlike noncircular motions in the molecular gas in both galaxies, suggesting that the material is radially infalling. In NGC 4064 the stellar kinematics reveals strong barlike noncircular motions in the central 1 kpc and stars supported by rotation with V/σ>1 beyond a radius of 15" (1.2 kpc). On the other hand, NGC 4424 has extremely modest stellar rotation velocities (Vmax~30 km s-1), and stars are supported by random motions as far out as we can measure, with V/σ=0.6 at r=18'' (1.4 kpc). The ionized gas kinematics in the core are disturbed

  20. NGC 4388 - A Seyfert 2 galaxy in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Phillips, M. M.; Malin, D. F.

    1982-06-01

    Direct photographic data and preliminary spectroscopy of the spiral galaxy NGC 4388 are presented. The galaxy appears to be a barred spiral of morphological class SB(s)b pec and is almost certainly a member of the Virgo cluster. The nucleus was studied with a photon-counting image intensifier/reticon scanner and was found to emit a high-excitation, narrow emission-line spectrum of relatively low luminosity. Image-tube spectrograms and spectroscopy using an image photon-counting system revealed optical, X-ray, and radio nuclear properties consistent with a classical Seyfert 2 galaxy. The radial velocity of the peaks of the asymmetric nuclear emission lines is 55 km/s less than the H I 21 cm systemic velocity.

  1. Study of the structure and kinematics of the NGC 7465/64/63 triplet galaxies

    NASA Astrophysics Data System (ADS)

    Merkulova, O. A.; Karataeva, G. M.; Yakovleva, V. A.; Burenkov, A. N.

    2012-05-01

    We analyze new observational data obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the multimode SCORPIO instrument and the Multi-Pupil Fiber Spectrograph for the group of galaxies NGC 7465/64/63. For one of the group members (NGC 7465), the presence of a polar ring has been suspected. We have constructed the large-scale brightness distributions, the ionized-gas velocity and velocity dispersion fields for all three galaxies as well as the line-of-sight velocity curves based on emission and absorption lines and the stellar velocity field in the central region for NGC 7465. As a result of our analysis of the data obtained, we have discovered an inner stellar disk ( r ≈ 0.5 kpc) and a warped gaseous disk in NGC 7465, in addition to the main stellar disk. Based on a joint study of our photometric and spectroscopic data, we have established that NGC 7464 is an irregular IrrI-type galaxy whose structural and kinematic peculiarities most likely resulted from its gravitational interaction with NGC 7465. The velocity field of the ionized gas in NGC 7463 turns out to be typical of barred spiral galaxies, and the warp of the outer parts of its disk could arise from a close encounter with one of the galaxies of the environment.

  2. New Photometric and Kinematic Evidence for a Bar in NGC 2841

    NASA Astrophysics Data System (ADS)

    Peters, Wesley; Kuzio de Naray, Rachel

    2017-01-01

    We report finding a bar in the massive spiral NGC 2841 from both photometric and kinematic modeling. Visually, this galaxy possesses flocculent spiral structure and an inner hole devoid of dust and neutral HI gas, but no obvious indication of a stellar bar. While there has been some previous speculation of a bar based off of isophotal photometry of NGC 2841, there has been no recent follow-up work or confirmation, and this galaxy is considered unbarred in modern catalogues and surveys. We use the DiskFit code to model broadband B, V, R, I photometry from the ARCTIC imager on the APO 3.5m telescope and Halpha velocity field kinematics from data taken with the SparsePak IFU on the 3.5m WIYN telescope at KPNO. In both cases, we find that including a bar that is nearly aligned with the major axis of the galaxy significantly improves the fit of the DiskFit models. Here we report our results and discuss them in the context of previous work.

  3. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  4. DEPENDENCE OF BARRED GALAXY FRACTION ON GALAXY PROPERTIES AND ENVIRONMENT

    SciTech Connect

    Lee, Gwang-Ho; Lee, Myung Gyoon; Park, Changbom; Choi, Yun-Young E-mail: mglee@astro.snu.ac.kr E-mail: yy.choi@khu.ac.kr

    2012-02-01

    We investigate the dependence of the occurrence of bars in galaxies on galaxy properties and environment. We use a volume-limited sample of 33,391 galaxies brighter than M{sub r} = -19.5 + 5logh at 0.02 {<=} z {<=} 0.05489, drawn from the Sloan Digital Sky Survey Data Release 7. We classify the galaxies into early and late types, and identify bars by visual inspection. Among 10,674 late-type galaxies with axis ratio b/a > 0.60, we find 3240 barred galaxies (f{sub bar} = 30.4%) which divide into 2542 strong bars (f{sub SB1} = 23.8%) and 698 weak bars (f{sub SB2} = 6.5%). We find that f{sub SB1} increases as u - r color becomes redder and that it has a maximum value at intermediate velocity dispersion ({sigma} {approx_equal}150 km s{sup -1}). This trend suggests that strong bars are dominantly hosted by intermediate-mass systems. Weak bars prefer bluer galaxies with lower mass and lower concentration. In the case of strong bars, their dependence on the concentration index appears only for massive galaxies with {sigma} > 150 km s{sup -1}. We also find that f{sub bar} does not directly depend on the large-scale background density when other physical parameters (u - r color or {sigma}) are fixed. We discover that f{sub SB1} decreases as the separation to the nearest neighbor galaxy becomes smaller than 0.1 times the virial radius of the neighbor regardless of neighbor's morphology. These results imply that strong bars are likely to be destroyed during strong tidal interactions and that the mechanism for this phenomenon is gravitational and not hydrodynamical. The fraction of weak bars has no correlation with environmental parameters. We do not find any direct evidence for environmental stimulation of bar formation.

  5. Observations of CO in the Magellanic irregular galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    Heithausen, Andreas; Dettmar, Ralf-Juergen

    1990-01-01

    The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 10(exp 7) solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.

  6. Observations of CO in the Magellanic irregular galaxy NGC 55

    NASA Astrophysics Data System (ADS)

    Heithausen, Andreas; Dettmar, Ralf-Juergen

    1990-07-01

    The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 107 solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.

  7. Evolution of molecular clouds in the starburst galaxy NGC 1808 revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, D.; Nakai, N.; Miyamoto, Y.

    2015-05-01

    We present large-field CO(1-0) observations of the starburst galaxy NGC 1808 conducted with ALMA. High-resolution (˜100 pc) images reveal a high concentration of molecular gas in the nucleus, 500-pc ring, gas-rich bar, and spiral arms. We derived the bar pattern speed and found an offset between CO and Hα emission peaks in the offset ridges along the bar. The results indicate that the evolution of molecular clouds on the galactic scale is driven by bar dynamics.

  8. Tidally Induced Bars of Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  9. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    SciTech Connect

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L. E-mail: jlwind@astro.indiana.edu

    2012-10-01

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to help characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.

  10. Erratum: ``Circumnuclear Star Formation in the Early-Type Resonance Ring Barred Spiral Galaxy NGC 1326'' [Astron. J. 120, 1289 (2000)

    NASA Astrophysics Data System (ADS)

    Buta, R.; Treuthardt, Patrick M.; Byrd, G. G.; Crocker, D. A.

    2001-11-01

    Because of a computational error, the power-law slope of the cluster luminosity function in the nuclear ring was incorrectly presented as having a value a=2.10+/-0.04. The correct value is a=3.7+/-0.1, which is not similar to other young cluster systems. This steep slope is interesting and could be interpreted in a number of ways; in particular, it suggests that many of the sources in the nuclear ring could be extreme supergiants, rather than clusters. However, as noted by D. Maoz, A. J. Barth, L. C. Ho, A. Sternberg, & A. V. Filippenko (Astron. J. 120, 1289 (2000)), individual blue supergiants that have absolute visual magnitudes up to -10 are very short-lived and may only explain a handful of the point sources seen in other nuclear rings. We cannot rule out the possibility that more of the sources in the nuclear ring of NGC 1326 than we originally thought are actually single stars, because at the distance of 19 Mpc, very compact clusters are hard to distinguish from stars. On the other hand, the analysis of two-color plots and reddening-free parameters favors the interpretations given in the paper, implying that the luminosity function is more deficient than usual in high-luminosity clusters, at least in this case. This issue will be discussed in a separate paper on the sources detected in the inner ring of NGC 3081, which presents a similar situation (R. Buta, G. G. Byrd, & T. Freeman 2001, in preparation). R. B. would like to thank B. G. Elmegreen for helpful discussions.

  11. The isolated interacting galaxy pair NGC 5426/27 (Arp 271)

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, I.; Rosado, M.; Amram, P.; Dultzin-Hacyan, D.; Cruz-González, I.; Salo, H.; Laurikainen, E.; Bernal, A.; Ambrocio-Cruz, P.; Le Coarer, E.

    2004-02-01

    We present Hα observations of the isolated interacting galaxy pair NGC 5426/27 using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. The FWHM map and the residual velocities map were also computed to study the role of non-circular motions of the gas. Most of these motions can be associated with the presence of spiral arms and structure such as central bars. We found a small bar-like structure in NGC 5426, a distorted velocity field for NGC 5427 and a bridge-like feature between both galaxies which seems to be associated with NGC 5426. Using the observed rotation curves, a range of possible masses was computed for each galaxy. These were compared with the orbital mass of the pair derived from the relative motion of the participants. The rotation curve of each galaxy was also used to fit different mass distribution models considering the most common theoretical dark halo models. An analysis of the interaction process is presented and a possible 3D scenario for this encounter is also suggested. Table 1 is only available in electronic form at http://www.edpsciences.org

  12. Near-infrared image of NGC 1068 - Bar-driven star formation and the circumnuclear composition

    SciTech Connect

    Thronson, H.A. Jr.; Greenhouse, M.; Johnson, P.; Hereld, M.; Majewski, S.; Chicago Univ., IL; Yerkes Observatory, Williams Bay, WI )

    1989-08-01

    Consideration is given to differences in images of the core of the Seyfert galaxy NGC 1068 at different wavelength regimes dominated by stellar photospheric emission. A stellar bar is observed at 1.6 and 2.2 microns, but not at shorter visual wavelength observations. Two explanations for these differences are examined: substantial stellar population variations with position and the effects of dust obscuration. The relation of the bar to active star formation is discussed. The mass of the central disk and bar is estimated at 2-3 X 10 to the 10th solar masses. It is found that the rate of star formation (100 solar masses/yr) is due to a large mass of molecular gas. 57 refs.

  13. GASEOUS STRUCTURES IN BARRED GALAXIES: EFFECTS OF THE BAR STRENGTH

    SciTech Connect

    Kim, Woong-Tae; Seo, Woo-Young; Kim, Yonghwi

    2012-10-10

    Using hydrodynamic simulations, we investigate the physical properties of gaseous substructures in barred galaxies and their relationships with the bar strength. The gaseous medium is assumed to be isothermal and unmagnetized. The bar potential is modeled as a Ferrers prolate with index n. To explore situations with differing bar strength, we vary the bar mass f{sub bar} relative to the spheroidal component as well as its aspect ratio R. We derive expressions as functions of f{sub bar} and R for the bar strength Q{sub b} and the radius r(Q{sub b} ) where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have f{sub bar} {approx} 0.25-0.50 and n {approx}< 1. Dust lanes approximately follow one of the x{sub 1}-orbits and tend to be straighter under a stronger and more elongated bar, but are insensitive to the presence of self-gravity. A nuclear ring of a conventional x{sub 2} type forms only when the bar is not so massive or elongated. The radius of an x{sub 2}-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Q{sub b} , and is slightly larger when self-gravity is included. This is evidence that the ring position is not determined by the resonance, but instead by the amount of angular momentum loss at dust-lane shocks. Nuclear spirals exist only when the ring is of the x{sub 2} type and is sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out being tightly wound and weak, and then, due to the nonlinear effect, unwind and become stronger until they turn into shocks, with an unwinding rate that is higher for larger Q{sub b} . The mass inflow rate to the galaxy center is found to be less than 0.01 M{sub Sun} yr{sup -1} for models with Q{sub b} {approx}< 0.2, while becoming larger than 0.1 M{sub Sun} yr{sup -1} when Q{sub b} {approx}> 0.2 and self-gravity is included.

  14. Interactions of the Galactic bar and spiral arm in NGC 3627

    NASA Astrophysics Data System (ADS)

    Beuther, H.; Meidt, S.; Schinnerer, E.; Paladino, R.; Leroy, A.

    2017-01-01

    Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence of multiple distinct velocity components in the cold dense molecular gas that populates a similar region at the end of the bar in the nearby galaxy NGC 3627. Methods: We assembled a high-resolution view of molecular gas kinematics traced by CO(2-1) emission and extracted line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC 3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as are observed in our own Milky Way since gas can pile up where the orbit families cross. The relative motions of the material following these orbits is most likely even more important for the build-up of high density in the region. The surface densities in NGC 3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces. Based on observations carried out with the IRAM PdBI and 30 m telescope.The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597

  15. The Dynamical Relationship Between the Bar and Spiral Patterns of NGC 1365

    NASA Astrophysics Data System (ADS)

    Speights, Jason

    2016-01-01

    Theories describing the dynamical relationship between bar and spiral patterns in galaxy disks make different predictions about the radial profile of the pattern speed. The purpose of this poster is to test these predictions for the bar and spiral patterns of NGC 1365. The pattern speed is measured by fitting different forms of the Tremaine-Weinberg equations to H-alpha intensity and velocity maps. The results are the most consistent with the currently observed bar and spiral patterns being dynamically distinct features. They show compelling evidence for the bar rotating faster than the spiral pattern, inconsistent with a global wave mode or a manifold. The evidence for mode coupling of the bar and spiral patterns is weak due to inconsistencies in the results for different solution methods. The bar pattern speed is approximately constant between the inner Lindblad and corotation resonances, demonstrating that the solutions can detect large-scale, rigid patterns. Beyond the bar, the results resemble what is expected for coupled spiral modes and tidal interactions.

  16. MOLECULAR GAS AND STAR-FORMATION PROPERTIES IN THE CENTRAL AND BAR REGIONS OF NGC 6946

    SciTech Connect

    Pan, Hsi-An; Sorai, Kazuo; Kuno, Nario; Koda, Jin; Hirota, Akihiko; Kaneko, Hiroyuki

    2015-12-10

    In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of {sup 13}CO (1–0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1–0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1) the large velocity gradient calculations using our observations and archival {sup 12}CO (1–0), {sup 12}CO(2–1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to {sup 12}CO (1–0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.

  17. Surface photometry of Virgo cluster galaxies - Barred galaxies

    NASA Technical Reports Server (NTRS)

    Benedict, G. F.

    1976-01-01

    Photographic surface photometry in B and V is presented for three barred galaxies in the Virgo cluster: N4548, N4596, and N4608. Intercomparisons of luminosity and color profiles and standard photometric parameters indicate that for these galaxies: (1) the nuclear component follows the fourth-root-of-radius luminosity law for both B and V, (2) the luminosity profiles along the bar show a characteristic shoulder with a slight fall in B-V color profile at the brightest point in the bar, the strength of the effect declining from N4548 to N4608, (3) the integrated bar component is slightly bluer than the nucleus, and (4) as the disk, arm, and ring components contribute less to the total luminosity of the system, the contribution of the bar increases as does the equivalent gradient.

  18. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, M. Carmen; Alfaro, Emilio J.; Pérez, Enrique

    2015-12-01

    We address the study of the H α vertical velocity field in a sample of four nearly face-on galaxies using long-slit spectroscopy taken with the Intermediate dispersion Spectrograph and Imaging System (ISIS), attached to the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of 1 kpc. The gas is mainly ionized by high-energy photons: only in some locations of NGC 278 and NGC 1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC 278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disc encounters a spiral density perturbation. The results obtained show that it is difficult to explain the H α large-scale velocity field without the presence of a magnetized, thick galactic disc. Larger samples and spatial covering of the galaxy discs are needed to provide further insight into this problem.

  19. CO observations of the SAB galaxies NGC 157, 2903, 4321, and 5248, and the Seyfert galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Elmegreen, D. M.; Elmegreen, B. G.

    1982-04-01

    Extragalactic carbon monoxide emission regions can, in principle, be located more precisely than the telescope beamwidth by using optically derived velocity distributions which have much higher angular resolution. Using this technique, the CO emission from five distant galaxies was analyzed. CO emission from NGC 1068 is strongest in the central region. In NGC 4321, it is strongest in the long bright spiral arms. CO emission from NGC 157 and NGC 2903 occurs more uniformly over the disk of these galaxies; the H II regions and dust clouds are more uniformly distributed in these galaxies as well. In NGC 157, the CO is brightest from the area including the NE spiral arm, which has more continuity and bright star formation than the SW arm. These results agree with the expectation that CO emission should be intensified near the H II regions and obvious dust clouds that usually concentrate near the spiral arms.

  20. HST/ACS DIRECT AGES OF THE DWARF ELLIPTICAL GALAXIES NGC 147 AND NGC 185

    SciTech Connect

    Geha, M.; Weisz, D.; Grocholski, A.; Dolphin, A.; Marel, R. P. van der; Guhathakurta, P.

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color–magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ∼1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age of NGC 147 is ∼4–5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ∼ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.

  1. Observational study of the candidate polar-ring galaxies NGC 304 and NGC 7625

    NASA Astrophysics Data System (ADS)

    Karataeva, G. M.; Kuznetsov, A. N.

    2008-09-01

    We present the results of our photometric ( BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = -20m.81 for NGC 304 and M B = -19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s-1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 mathcal{M}_ odot . The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices ( B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors ( B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.

  2. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  3. A Technique for Separating the Gravitational Torques of Bars and Spirals in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Buta, R.; Block, D. L.; Knapen, J. H.

    2003-09-01

    We describe a Fourier-based method of separating bars from spirals in near-infrared images. The method takes advantage of the fact that a bar is typically a feature with a relatively fixed position angle and uses the simple assumption that the relative Fourier amplitudes due to the bar decline with radius past a maximum in the same or a similar manner as they rose to that maximum. With such an assumption, the bar can be extrapolated into the spiral region and removed from an image, leaving just the spiral and the axisymmetric background disk light. We refer to such a bar-subtracted image as the ``spiral plus disk'' image. The axisymmetric background (Fourier index m=0 image) can then be added back to the bar image to give the ``bar plus disk'' image. The procedure allows us to estimate the maximum gravitational torque per unit mass per unit square of the circular speed for the bar and spiral forcing separately, parameters that quantitatively define the bar strength Qb and the spiral strength Qs following the recent study of Buta & Block. For the first time, we are able to measure the torques generated by spiral arms alone, and we can now define spiral torque classes, in the same manner as bar torque classes are delineated. We outline the complete procedure here using a 2.1 μm image of NGC 6951, a prototypical SAB(rs)bc spiral having an absolute blue magnitude of -21 and a maximum rotation velocity of 230 km s-1. Comparison between a rotation curve predicted from the m=0 near-infrared light distribution and an observed rotation curve suggests that NGC 6951 is maximum disk in its bar and main spiral region, implying that our assumption of a constant mass-to-light ratio in our analysis is probably reliable. We justify our assumption on how to make the bar extrapolation using an analysis of NGC 4394, a barred spiral with only weak near-infrared spiral structure, and we justify the number of needed Fourier terms using NGC 1530, one of the most strongly barred galaxies

  4. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  5. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  6. CHANDRA OBSERVATIONS OF THE COLLISIONAL RING GALAXY NGC 922

    SciTech Connect

    Prestwich, A. H.; Galache, J. L.; Zezas, A.; Linden, T.; Kalogera, V.; Roberts, T. P.; Kilgard, R.; Wolter, A.; Trinchieri, G.

    2012-03-10

    In this paper, we report on Chandra observations of the starburst galaxy NGC 922. NGC 922 is a drop-through ring galaxy with an expanding ring of star formation, similar in many respects to the Cartwheel galaxy. The Cartwheel galaxy is famous for hosting 12 ultraluminous X-ray sources (ULXs), most of which are in the star-forming ring. This is the largest number of ULXs seen in a single system and has led to speculation that the low metallicity of the Cartwheel (0.3 Z{sub Sun }) may optimize the conditions for ULX formation. In contrast, NGC 922 has metallicity near solar. The Chandra observations reveal a population of bright X-ray sources, including seven ULXs. The number of ULXs in NGC 922 and the Cartwheel scales with the star formation rate: we do not find any evidence for an excess of sources in the Cartwheel. Simulations of the binary population in these galaxies suggest that the ULX population in both systems is dominated by systems with strong wind accretion from supergiant donors onto direct-collapse black holes. The simulations correctly predict the ratio of the number of sources in NGC 922 and the Cartwheel. Thus, it would appear that the metallicity of the Cartwheel is not low enough to see a difference in the ULX population compared to NGC 922.

  7. Chandra Observations of the Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Prestwich, A. H.; Galache, J. L.; Linden, T.; Kalogera, V.; Zezas, A.; Roberts, T. P.; Kilgard, R.; Wolter, A.; Trinchieri, G.

    2012-03-01

    In this paper, we report on Chandra observations of the starburst galaxy NGC 922. NGC 922 is a drop-through ring galaxy with an expanding ring of star formation, similar in many respects to the Cartwheel galaxy. The Cartwheel galaxy is famous for hosting 12 ultraluminous X-ray sources (ULXs), most of which are in the star-forming ring. This is the largest number of ULXs seen in a single system and has led to speculation that the low metallicity of the Cartwheel (0.3 Z ⊙) may optimize the conditions for ULX formation. In contrast, NGC 922 has metallicity near solar. The Chandra observations reveal a population of bright X-ray sources, including seven ULXs. The number of ULXs in NGC 922 and the Cartwheel scales with the star formation rate: we do not find any evidence for an excess of sources in the Cartwheel. Simulations of the binary population in these galaxies suggest that the ULX population in both systems is dominated by systems with strong wind accretion from supergiant donors onto direct-collapse black holes. The simulations correctly predict the ratio of the number of sources in NGC 922 and the Cartwheel. Thus, it would appear that the metallicity of the Cartwheel is not low enough to see a difference in the ULX population compared to NGC 922.

  8. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    NASA Technical Reports Server (NTRS)

    Binney, J. J.; Davies, Roger L.; Illingworth, Garth D.

    1990-01-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure.

  9. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    SciTech Connect

    Binney, J.J.; Davies, R.L.; Illingworth, G.D. Oxford Univ. National Optical Astronomy Observatories, Tucson, AZ California Univ., Santa Cruz )

    1990-09-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure. 48 refs.

  10. Star formation and the interstellar medium in two peculiar, nonspiral galaxies - NGC 1569 and NGC 3593

    SciTech Connect

    Hunter, D.A.; Thronson, H.A. Jr.; Casey, S.; Harper, D.A.; Wyoming Infrared Observatory, Laramie; Yerkes Observatory, Williams Bay, WI )

    1989-06-01

    This paper discusses far-IR and optical observations aimed at investigating the far-IR energy distribution of two peculiar galaxies without spiral arms which are actively forming stars: NGC 1569, a Magellanic irregular galaxy, and NGC 3593, a dusty S0/a galaxy. The data are used to determine the characteristic temperatures of the dust and to infer dust and molecular gas masses which are combined with other data to explore the characteristics of the interstellar media. Visual-wavelength continuum and H-alpha images are presented and used to estimate current and past star formation rates and the efficiency of stellar creation. 81 refs.

  11. Deficiency of "Thin" Stellar Bars in Seyfert Host Galaxies.

    PubMed

    Shlosman; Peletier; Knapen

    2000-06-01

    Using all available major samples of Seyfert galaxies and their corresponding closely matched control samples of nonactive galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in nonactive galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., "thin" or "strong" bars) in Seyfert galaxies compared to nonactive galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their nonactive counterparts on scales of a few kiloparsecs.

  12. Studying Barred Galaxies by Means of Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Martinez-Valpuesta, Inma

    We describe two morphological structures of barred galaxies with the help of numerical simulations. The first one is a feature seen in face-on barred galaxies, the ansae, probably very important dynamically speaking. The second one are the Boxy/Peanut bulges in disc galaxies. They have been associated to stellar bars, and are a result of the secular evolution of barred galaxies. We analyze their properties in a large sample of N-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare the results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.

  13. Stellar populations and Star Formation Rates in NGC 6872, the Condor galaxy

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; De Mello, D. F.; Dwek, E.; Arendt, R. G.; Gadotti, D. A.

    2014-01-01

    We present a detailed analysis of the Spectral Energy Distributions (SEDs) of 10 kpc regions across the giant spiral galaxy NGC 6872, the Condor galaxy. We made use of archival data from the FUV (GALEX) to 22 μm (WISE). In order to find any signature of the recent interaction 130 Myr) with its companion, the S0 galaxy IC 4970, we inspected the SED of Condor's bar. One possibility is that is would have been formed by passage of the companion. We find that it is a particularly long bar (9 kpc semi-major axis), with a size almost twice as large as the average found in other barred galaxies (4.5 kpc median in the local universe, Gadotti 2011). A bulge/bar/disk 2D decomposition using the Spitzer 3.6 μm image and the budda package (de Souza et al. 2004; Gadotti 2008) reveals that the ratio of the bar semi-major axis to the disk scale-length is 1.4, which is a value typically found in other barred galaxies (see Fig. 1 in Gadotti 2011). The disk scale-length is ~ 7 kpc, which is extremely large (2.8 kpc median in local galaxies, Gadotti 2009). Our analysis also shows that there are no signs of recent star formation along the bar. We find no signs of a box-peanut structure near the central regions, which is also another signature of an evolved bar. Taken altogether, the evidence points to a bar formed at least a few billion years ago and the stars in the bar seem to be a fossil record of the stellar population in the galaxy before the interaction with its companion. Then, we modeled the SFH of each 10 kpc region as constant Star Formation Rate (SFR) for the past 100 Myr superposed on an exponentially decaying, longstanding SFR. We find a single exponential SFH to account for all the recent SFR of the galaxy, with no need for an additional SFR due to the interaction. Av is low all across the galaxy 0.25), but increases near 0.7) the point of collision. The SFH of the arms are asymmetric. The northeastern arm having older ages 5 Gyr) and SFH closer to constant, while the

  14. FORMING DOUBLE-BARRED GALAXIES FROM DYNAMICALLY COOL INNER DISKS

    SciTech Connect

    Du, Min; Shen, Juntai; Debattista, Victor P.

    2015-05-10

    About one-third of early-type barred galaxies host small-scale secondary bars. The formation and evolution of such double-barred (S2B) galaxies remain far from being well understood. In order to understand the formation of such systems, we explore a large parameter space of isolated pure-disk simulations. We show that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady secondary bar while the outer disk forms a large-scale primary bar. The independent bar instabilities of inner and outer disks result in long-lived double-barred structures whose dynamical properties are comparable to those in observations. This formation scenario indicates that the secondary bar might form from the general bar instability, the same as the primary bar. Under some circumstances, the interaction of the bars and the disk leads to the two bars aligning or single, nuclear, bars only. Simulations that are cool enough of the center to experience clump instabilities may also generate steady S2B galaxies. In this case, the secondary bars are “fast,” i.e., the bar length is close to the co-rotation radius. This is the first time that S2B galaxies containing a fast secondary bar are reported. Previous orbit-based studies had suggested that fast secondary bars were not dynamically possible.

  15. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    SciTech Connect

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzyński, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni E-mail: kud@ifa.hawaii.edu E-mail: Miguel.Urbaneja-Perez@uibk.ac.at E-mail: chris.evans@stfc.ac.uk E-mail: wgieren@astro-udec.cl

    2014-04-20

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  16. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    SciTech Connect

    Monje, R. R.; Lis, D. C.; Phillips, T. G.; Lord, S.; Falgarone, E.; Güsten, R.

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  17. THE STAR CLUSTER POPULATION OF THE COLLISIONAL RING GALAXY NGC 922

    SciTech Connect

    Pellerin, Anne; Meurer, Gerhardt R.; Bekki, Kenji; Elmegreen, Debra M.; Wong, O. Ivy; Knezek, Patricia M. E-mail: Gerhardt.Meurer@icrar.org E-mail: elmegreen@vassar.edu E-mail: knezek@noao.edu

    2010-04-15

    We present a detailed study of the star cluster population detected in the galaxy NGC 922, one of the closest collisional ring galaxies known to date, using Hubble Space Telescope/Wide Field Planetary Camera 2 UBVI photometry, population synthesis models, and N-body/smoothed particle hydrodynamics simulations. We find that 69% of the clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong H{alpha} emission. The cluster luminosity function slope of 2.1-2.3 for NGC 922 is in agreement with those of young clusters in nearby galaxies. Models of the cluster age distribution match the observations best when cluster disruption is considered. We also find clusters with ages (>50 Myr) and masses (>10{sup 5} M {sub sun}) that are excellent progenitors for faint fuzzy clusters. The images also show a tidal plume pointing toward the companion. Its stellar age from our analysis is consistent with pre-existing stars that were stripped off during the passage of the companion. Finally, a comparison of the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS field indicates very similar masses and sizes, suggesting similar origins.

  18. The Star Cluster Population of the Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Meurer, Gerhardt R.; Bekki, Kenji; Elmegreen, Debra M.; Wong, O. Ivy; Knezek, Patricia M.

    2010-04-01

    We present a detailed study of the star cluster population detected in the galaxy NGC 922, one of the closest collisional ring galaxies known to date, using Hubble Space Telescope/Wide Field Planetary Camera 2 UBVI photometry, population synthesis models, and N-body/smoothed particle hydrodynamics simulations. We find that 69% of the clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong Hα emission. The cluster luminosity function slope of 2.1-2.3 for NGC 922 is in agreement with those of young clusters in nearby galaxies. Models of the cluster age distribution match the observations best when cluster disruption is considered. We also find clusters with ages (>50 Myr) and masses (>105 M sun) that are excellent progenitors for faint fuzzy clusters. The images also show a tidal plume pointing toward the companion. Its stellar age from our analysis is consistent with pre-existing stars that were stripped off during the passage of the companion. Finally, a comparison of the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS field indicates very similar masses and sizes, suggesting similar origins.

  19. The effect of supernova rate on the magnetic field evolution in barred galaxies

    NASA Astrophysics Data System (ADS)

    Kulpa-Dybeł, K.; Nowak, N.; Otmianowska-Mazur, K.; Hanasz, M.; Siejkowski, H.; Kulesza-Żydzik, B.

    2015-03-01

    Context. For the first time, our magnetohydrodynamical numerical calculations provide results for a three-dimensional model of barred galaxies involving a cosmic-ray driven dynamo process that depends on star formation rates. Furthermore, we argue that the cosmic-ray driven dynamo can account for a number of magnetic features in barred galaxies, such as magnetic arms observed along the gaseous arms, magnetic arms in the inter-arm regions, polarized emission that is at the strongest in the central part of the galaxy, where the bar is situated, polarized emission that forms ridges coinciding with the dust lanes along the leading edges of the bar, as well as their very strong total radio intensity. Aims: Our numerical model probes what kind of physical processes could be responsible for the magnetic field topology observed in barred galaxies (modes, etc.). We compare our modelled results directly with observations, constructing models of high-frequency (Faraday rotation-free) polarized radio emission maps out of the simulated magnetic field and cosmic ray pattern in our modeled galaxy. We also take the effects of projection into account as well as the limited resolution. Methods: We applied global 3D numerical calculations of a cosmic-ray driven dynamo in barred galaxies with different physical input parameters such as the supernova (SN) rate. Results: Our simulation results lead to the modelled magnetic field structure similar to the one observed on the radio maps of barred galaxies. Moreover, they cast new light on a number of properties in barred and spiral galaxies, such as fast exponential growth of the total magnetic energy to the present values. The quadrupole modes of magnetic field are often identified in barred galaxies, but the dipole modes (e.g., in NGC 4631) are found very seldom. In our simulations the quadrupole configuration dominates and the dipole configuration only appears once in the case of model S100, apparently as a consequence of the choice of

  20. LENTICULAR GALAXIES AT THE OUTSKIRTS OF THE LEO II GROUP: NGC 3599 AND NGC 3626

    SciTech Connect

    Sil'chenko, O. K.; Shulga, A. P.; Moiseev, A. V. E-mail: alina.shulga@gmail.co

    2010-11-15

    We have studied unbarred S0 galaxies, NGC 3599 and NGC 3626, the members of the X-ray bright group Leo II, by means of three-dimensional spectroscopy, long-slit spectroscopy, and imaging, with the aim of identifying the epoch and mechanisms of their transformation from spirals. Both galaxies have appeared to bear complex features obviously resulting from minor merging: decoupled gas kinematics, nuclear star-forming rings, and multi-tiered oval large-scale stellar disks. The weak emission line nucleus of NGC 3599 bears all signs of Seyfert activity, according to the line-ratio diagnostics of the gas excitation mechanism. We conclude that the transformation of these lenticular galaxies took place about 1-2 Gyr ago, through gravitational mechanisms unrelated to the hot intragroup medium of Leo II.

  1. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  2. Dwarf galaxies in the dynamically evolved NGC 1407 Group

    NASA Astrophysics Data System (ADS)

    Trentham, Neil; Tully, R. Brent; Mahdavi, Andisheh

    2006-07-01

    The NGC 1407 Group stands out among nearby structures by its properties that suggest it is massive and evolved. It shares properties with entities that have been called fossil groups: the 1.4m differential between the dominant elliptical galaxy and the second brightest galaxy comes close to satisfying the definition that has been used to define the fossil class. There are few intermediate-luminosity galaxies, but a large number of dwarfs in the group. We estimate there are 250 group members to the depth of our survey. The slope of the faint end of the luminosity function (reaching MR = -12) is α = -1.35. Velocities for 35 galaxies demonstrate that this group with one dominant galaxy has a mass of 7 × 1013Msolar and M/LR = 340Msolar/Lsolar. Two galaxies in close proximity to NGC 1407 have very large blueshifts. The most notable is the second brightest galaxy, NGC 1400, with a velocity of -1072 km s-1 with respect to the group mean. We report the detection of X-ray emission from this galaxy and from the group.

  3. NGC 55: a disc galaxy with flat abundance gradients

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Gonçalves, Denise R.; Vajgel, Bruna

    2017-01-01

    We present new spectroscopic observations obtained with Gemini Multi-Object Spectrographs at Gemini-South of a sample of 25 H II regions located in NGC 55, a late-type galaxy in the nearby Sculptor group. We derive physical conditions and chemical composition through the Te method for 18 H II regions, and strong-line abundances for 22 H II regions. We provide abundances of He, O, N, Ne, S and Ar, finding a substantially homogeneous composition in the ionized gas of the disc of NGC 55, with no trace of radial gradients. The oxygen abundances, both derived with Te and strong-line methods, have similar mean values and similarly small dispersions: 12+log (O/H) = 8.13 ± 0.18 dex with the former and 12+log (O/H) = 8.17 ± 0.13 dex with the latter. The average metallicities and the flat gradients agree with previous studies of smaller samples of H II regions and there is a qualitative agreement with the blue supergiant radial gradient as well. We investigate the origin of such flat gradients comparing NGC 55 with NGC 300, its companion galaxy, which is also twin of NGC 55 in terms of mass and luminosity. We suggest that the differences in the metal distributions in the two galaxies might be related to the differences in their K-band surface density profile. The flatter profile of NGC 55 probably causes in this galaxy higher infall/outflow rates than in similar galaxies. This likely provokes a strong mixing of gas and a re-distribution of metals.

  4. Corrugated velocity patterns in the spiral galaxies NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2013-05-01

    In this work we address the study of the detection in Ha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (e.g. te{1963ApJ...137..363D,1965BOTT....4....8P}), but it was not until 2001 that te{2001ApJ...550..253A} analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  5. Radio Continuum Mapping of the Spiral Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Calle, Daniel; Hyman, Scott D.; Weiler, Kurt W.; van Dyk, Schuyler D.; Sramek, Richard A.

    1996-05-01

    We have combined numerous, short radio continuum observations of the Seyfert 1 galaxy NGC 4258 (M 106) made at 20 and 6 cm with the Very Large Array (VLA) to produce deep radio maps at these frequencies. These observations were originally taken for monitoring the radio supernova SN 1981K (Weiler et al. 1986, ApJ, 310, 790; Van Dyk et al. 1992, ApJ, 396, 195). The present analysis is analogous to our recent work on NGC 6946 (Hyman et al. 1993, BAAS 25, 1322) and on NGC 4321 (Hyman et al. 1994, BAAS 26, 1498) using observations taken for monitoring SN 1980K and SN 1979C, respectively. The maps we produce for NGC 4258 are of superior sensitivity (sigma ~ lt 0.02 mJy/beam at 6 cm) and spatial resolution ( ~ 0.5" at 6 cm) to those previously published by other investigators (e. g., Turner & Ho 1994, ApJ, 421, 122; Cecil et al. 1995, ApJ, 452, 613). We present preliminary measurements and analyses of the nuclear region, the anomalous arms, and of detected thermal and nonthermal sources throughout the galaxy. We also make comparisons of our radio maps with existing data at other wavelengths and with the results of our analyses of NGC 6946 and NGC 4321.

  6. Stellar Population Synthesis of the Elliptical Galaxy NGC 4649

    NASA Astrophysics Data System (ADS)

    Chun, Mun-Suk; Gim, Moon-Whan; Sohn, Young-Jong

    2001-12-01

    We investigated population of the elliptical galaxy NGC 4649 using the spectral synthesis technique based on the linear program in the spectral regions between 3160Å to 10800Å. We used the spectral data of stars obtained by Gunn & Stryker (1983), and the integrated spectrum of NGC 4649 observed by Bertola et al. (1982). Among four models with different main sequence turn-off points, G8-K0V main sequence turn-off model is best fitted to the integrated spectrum of NGC 4649. We also found that super metal rich K giants are needed to describe the absorption lines in the long wavelength regions of integrated spectrum of NGC 4649. The mass to absolute light ratio obtained from the spectral synthesis is ~20 similar to those calculated dynamically.

  7. Revealing galactic scale bars with the help of Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We use visual classifications of the brightest 250,000 galaxies in the Sloan Digital Sky Survey Main Galaxy Sample provided by citizen scientists via the Galaxy Zoo project (www.galaxyzoo.org, Lintott et al. 2008) to identify a sample of local disc galaxies with reliable bar identifications. These data, combined with information on the atomic gas content from the ALFALFA survey (Haynes et al. 2011) show that disc galaxies with higher gas content have lower bar fractions. We use a gas deficiency parameter to show that disc galaxies with more/less gas than expected for their stellar mass are less/more likely to host bars. Furthermore, we see that at a fixed gas content there is no residual correlation between bar fraction and stellar mass. We argue that this suggests previously observed correlations between galaxy colour/stellar mass and (strong) bar fraction (e.g. from the sample in Masters et al. 2011, and also see Nair & Abraham 2010) could be driven by the interaction between bars and the gas content of the disc, since more massive, optically redder disc galaxies are observed to have lower gas contents. Furthermore we see evidence that at a fixed gas content the global colours of barred galaxies are redder than those of unbarred galaxies. We suggest that this could be due to the exchange of angular momentum beyond co-rotation which might stop a replenishment of gas from external sources, and act as a source of feedback to temporarily halt or reduce the star formation in the outer parts of barred discs. These results (published as Masters et al. 2012) combined with those of Skibba et al. (2012), who use the same sample to show a clear (but subtle and complicated) environmental dependence of the bar fraction in disc galaxies, suggest that bars are intimately linked to the evolution of disc galaxies.

  8. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  9. THE ARECIBO GALAXY ENVIRONMENT SURVEY. III. OBSERVATIONS TOWARD THE GALAXY PAIR NGC 7332/7339 AND THE ISOLATED GALAXY NGC 1156

    SciTech Connect

    Minchin, R. F.; Momjian, E.; Auld, R.; Davies, J. I.; Smith, M. W. L.; Taylor, R.; Valls-Gabaud, D.; Van Driel, W.; Karachentsev, I. D.; Henning, P. A.; O'Neil, K. L.

    2010-10-15

    Two 5 deg{sup 2} regions around the NGC 7332/9 galaxy pair and the isolated galaxy NGC 1156 have been mapped in the 21 cm line of neutral hydrogen (H I) with the Arecibo L-band Feed Array out to a redshift of {approx}0.065 ({approx}20,000 km s{sup -1}) as part of the Arecibo Galaxy Environment Survey. One of the aims of this survey is to investigate the environment of galaxies by identifying dwarf companions and interaction remnants; both of these areas provide the potential for such discoveries. The neutral hydrogen observations were complemented by optical and radio follow-up observations with a number of telescopes. A total of 87 galaxies were found, of which 39 (45%) were previously cataloged and 15 (17%) have prior redshifts. Two dwarf galaxies have been discovered in the NGC 7332 group and a single dwarf galaxy in the vicinity of NGC 1156. A parallel optical search of the area revealed one further possible dwarf galaxy near NGC 7332.

  10. Dwarf galaxies in the halo of NGC 891

    SciTech Connect

    Schulz, Earl

    2014-07-20

    We report the results of a survey of the region within 40 arcmin of NGC 891, a nearby nearly perfectly edge-on spiral galaxy. Candidate 'non-stars' with diameters greater than 15 arcsec were selected from the GSC 2.3.2 catalog and cross-comparison of observations in several bands using archived GALEX, DSS2, WISE, and Two Micron All Sky Survey images identified contaminating stars, artifacts, and background galaxies, all of which were excluded. The resulting 71 galaxies, many of which were previously uncataloged, comprise a size-limited survey of the region. A majority of the galaxies are in the background of NGC 891 and are for the most part members of the A347 cluster at a distance of about 75 Mpc. The new finds approximately double the known membership of A347, previously thought to be relatively sparse. We identify a total of seven dwarf galaxies, most of which are new discoveries. The newly discovered dwarf galaxies are dim and gas-poor and may be associated with the previously observed arcs of red giant branch halo stars in the halo and the prominent H I filament and the lopsided features in the disk of NGC 891. Several of the dwarfs show signs of disruption, consistent with being remnants of an ancient collision.

  11. The infrared emission from the elliptical galaxy NGC 1052

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.

    1982-01-01

    Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.

  12. Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424

    NASA Astrophysics Data System (ADS)

    Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas

    2017-01-01

    The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.

  13. Magnetic fields in barred galaxies. I. The atlas

    NASA Astrophysics Data System (ADS)

    Beck, R.; Shoutenkov, V.; Ehle, M.; Harnett, J. I.; Haynes, R. F.; Shukurov, A.; Sokoloff, D. D.; Thierbach, M.

    2002-08-01

    The total and polarized radio continuum emission of 20 barred galaxies was observed with the Very Large Array (VLA) at lambda 3, 6, 18 and 22 cm and with the Australia Telescope Compact Array (ATCA) at lambda 6 cm and 13 cm. Maps at 30\\arcsec angular resolution are presented here. Polarized emission (and therefore a large-scale regular magnetic field) was detected in 17 galaxies. Most galaxies of our sample are similar to non-barred galaxies with respect to the radio/far-infrared flux correlation and equipartition strength of the total magnetic field. Galaxies with highly elongated bars are not always radio-bright. We discuss the correlation of radio properties with the aspect ratio of the bar and other measures of the bar strength. We introduce a new measure of the bar strength, Lambda , related to the quadrupole moment of the bar's gravitational potential. The radio surface brightness I of the barred galaxies in our sample is correlated with Lambda , I~Lambda 0.4+/-0.1, and thus is highest in galaxies with a long bar where the velocity field is distorted by the bar over a large fraction of the disc. In these galaxies, the pattern of the regular field is significantly different from that in non-barred galaxies. In particular, field enhancements occur upstream of the dust lanes where the field lines are oriented at large angles to the bar's major axis. Polarized radio emission seems to be a good indicator of large-scale non-axisymmetric motions. Tables 3, 4 and Figs. 8-10, 13, 15, 16, 18 and 22 are only available in electronic form at http://www.edpsciences.org

  14. Current star formation in S0 galaxies: NGC 4710

    NASA Technical Reports Server (NTRS)

    Wrobel, J. M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data.

  15. Bar pattern speeds in CALIFA galaxies. I. Fast bars across the Hubble sequence

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Méndez-Abreu, J.; Falcón-Barroso, J.; Amorin, A.; Barrera-Ballesteros, J.; Cid Fernandes, R.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; Husemann, B.; Kalinova, V.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Mast, D.; Pérez, E.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Backsmann, N.; Cortijo-Ferrero, C.; Bland-Hawthorn, J.; del Olmo, A.; Iglesias-Páramo, J.; Pérez, I.; Sánchez-Blázquez, P.; Wisotzki, L.; Ziegler, B.

    2015-04-01

    Context. The bar pattern speed (Ωb) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ωb. The non-parametric method proposed by Tremaine & Weinberg (1984, ApJ, 282, L5; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. Aims: We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of Ωb on galaxy properties, such as the Hubble type. Methods: We measured Ωb using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problems that long-slit data present when applying the TW method, resulting in the determination of more accurate Ωb. In addition, we have also derived the ratio ℛ of the corotation radius to the bar length of the galaxies. According to this parameter, bars can be classified as fast (ℛ < 1.4) and slow (ℛ > 1.4). Results: For all the galaxies, ℛ is compatible within the errors with fast bars. We cannot rule out (at 95% level) the fast bar solution for any galaxy. We have not observed any significant trend between ℛ and the galaxy morphological type. Conclusions: Our results indicate that independent of the Hubble type, bars have been formed and then evolve as fast rotators. This observational result will constrain the scenarios of formation and evolution of bars proposed by numerical simulations.

  16. Feeding and Feedback in the Starbust Galaxy NGC 1808 Revealed with ALMA and ASTE

    NASA Astrophysics Data System (ADS)

    Salak, D.; Nakai, N.; Miyamoto, Y.

    2015-12-01

    NGC 1808 is a nearby (10 Mpc) starburst galaxy with a superwind detected as a dust outflow from the nuclear region. In order to study the evolution of molecular clouds in the feeding and feedback processes related to the starburst activity, we have carried out observations with ALMA and ASTE telescopes. We present preliminary results of cycle 1 (12-m array) large-field CO (1-0) imaging with ALMA and 1-mm line observations with ASTE. Molecular gas was detected and resolved at a resolution of 2” (˜100 pc) throughout the galactic disk. This first high-resolution CO image of NGC 1808 reveals: a circumnuclear disk in the center, 500-pc starburst ring, indication of inflow and outflow motion, giant molecular clouds (GMCs) and associations (GMAs) in the spiral arms and bar.

  17. The Sérsic-Pastoriza galaxy NGC 1808. I. Radio-continuum, optical and H I observations.

    NASA Astrophysics Data System (ADS)

    Saikia, D. J.; Unger, S. W.; Pedlar, A.; Yates, G. J.; Axon, D. J.; Wolstencroft, R. D.; Taylor, K.; Gyldenkerne, K.

    1990-08-01

    The authors present radio-continuum observations made at high angular resolution with the VLA at 20, 6 and 2 cm of the central region of the Sérsic-Pastoriza galaxy NGC 1808. These observations reveal a population of compact radio sources, reminiscent of those found in the archetypal starburst galaxies M82 and NGC 253. The bulk of these compact features are not coincident with the optical hot-spots and are likely to be individual or unresolved groups of SNRs. The authors have also made H I observations of NGC 1808 with the VLA. Although this was primarily to search for unusual motions which may enable the authors to understand the nuclear activity, they also obtained information on the large-scale distribution and dynamics of gas in this system. The neutral hydrogen is largely concentrated in a central bar, with weak emission from the spiral arms. An absorption profile against the radio emission from the nuclear region shows two features straddling the systemic velocity. The velocity field of the galaxy is largely consistent with rotation although there is evidence of significant non-circular motions in the bar. The authors discuss any possible relationship between these non-circular motions and the starburst/nuclear activity in the central region of NGC 1808.

  18. Star formation in the merging Galaxy NGC3256

    NASA Technical Reports Server (NTRS)

    Graham, James R.; Wright, G. S.; Joseph, R. D.; Frogel, J. A.; Phillips, M. M.; Meikle, W. P. S.

    1987-01-01

    The central 5 kpc of the ultra-luminous merging galaxy NGC 3256 was mapped at J, H, K, L, and 10 micrometer, and a 2 micrometer spectra of the nuclear region was obtained. This data was used to identify and characterize the super starburst which has apparently been triggered and fuelled by the merger of two gas rich galaxies. It is also shown that the old stellar population has relaxed into a single spheroidal system, and that a supernova driven wind might eventually drive any remaining gas from the system to leave a relic which will be indistinguishable from an elliptical galaxy.

  19. Neutral hydrogen in the starburst galaxy NGC3690/IC694

    NASA Technical Reports Server (NTRS)

    Tolstoy, E.; Dickey, John M.; Israel, F. P.

    1990-01-01

    Researchers made observations of the neutral hydrogen (HI) emission structure surrounding the very deep absorption peak (observed earlier by Dickey (1986)) in the galaxy pair NGC3690/IC694. This galaxy pair is highly luminous in the far infrared, and known to exhibit extensive star formation as well as nuclear activity. Knowledge of the spatial distribution and velocity structure of the HI emission is of great importance to the understanding of the dynamics of the interaction and the resulting environmental effects on the galaxies.

  20. Stellar, Gas, and Dark Matter Content of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, Bernardo

    2017-01-01

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 1010 M⊙, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  1. Circumnuclear molecular gas in megamaser disk galaxies NGC 4388 and NGC 1194

    SciTech Connect

    Greene, Jenny E.; Seth, Anil; Lyubenova, Mariya; Van de Ven, Glenn; Läsker, Ronald; Walsh, Jonelle

    2014-06-20

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-parsec scales. We present NIR IFU data with a resolution of ∼50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ∼100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for noncircular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100 parsec scales aligned with the megamaser disk. In contrast, the high ionization lines and Brγ trace outflow along the 100 parsec-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Brγ have consistent properties between the two galaxies.

  2. The multifrequency spectrum of the starburst galaxy NGC 2782

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bregman, J. N.; Huggins, P. J.; Glassgold, A. E.; Cohen, R. D.

    1984-01-01

    The nuclear region of NGC 2782 has been observed at radio, millimeter, infrared, optical, ultraviolet, and X-ray frequencies to understand the ionization source that gives rise to the narrow emission lines. The continuum is probably caused by a normal galactic population plus considerable numbers of young stars and warm dust. In the ultraviolet and optical spectra, which are powerful diagnostics, no strong lines are detected in the 1200 A-3200 A region aside from L-alpha, and the optical emission lines cover only a narrow ionization range. The line and continuum properties suggest that NGC 2782 is a starburst galaxy, in which young stars photoionize the surrounding gas.

  3. The H II regions of the irregular galaxy, NGC 3239

    SciTech Connect

    Krienke, K.; Hodge, P. Washington, University, Seattle )

    1991-03-01

    The luminosities of the 88 H II regions of NGC 3239, very likely a merging galaxy system, were measured by digital analysis of a photographic plate (20 A bandwidth filter). Despite evidence for earlier starburst activity, the present H II luminosity function is very similar to that for the LMC, including a supergiant H II region of 0.76 the luminosity of 30 Dor. The measured H II regions of NGC 3239 have an H-alpha total luminosity of 1.3 x 10 to the 40th erg/s. 13 refs.

  4. MERGING COLD FRONTS IN THE GALAXY PAIR NGC 7619 AND NGC 7626

    SciTech Connect

    Randall, S. W.; Jones, C.; Kraft, R.; Forman, W. R.; O'Sullivan, E.

    2009-05-10

    We present results from Chandra observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly antiparallel, suggesting that these galaxies are falling toward one another in the plane of the sky. The detection of merger cold fronts in each of the two dominant member galaxies implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a preexisting {approx}1 keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the three-dimensional velocities from the cold fronts and, using the observed radial velocities of the galaxies, show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of {approx}1190 km s{sup -1}. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is most likely currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, consisting of a core with two symmetric jets, and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and possibly an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure encountered by the forward jet.

  5. ORBITAL SUPPORT OF FAST AND SLOW INNER BARS IN DOUBLE-BARRED GALAXIES

    SciTech Connect

    Maciejewski, Witold; Small, Emma E.

    2010-08-10

    We analyze how the orbital support of the inner bar in a double-barred galaxy (nested bars) depends on the angular velocity (i.e., pattern speed) of this bar. We study orbits in seven models of double bars using the method of invariant loops. The range of pattern speed is covered exhaustively. We find that not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below a certain minimum pattern speed orbital support for the inner bar abruptly disappears, while at high values of this speed the orbits indicate an increasingly round bar that looks more like a twist in the nuclear isophotes than a dynamically independent component. For values between these two extremes, orbits supporting the inner bar extend further out as the bar's pattern speed decreases, their corresponding loops become more eccentric, pulsate more, and their rotation becomes increasingly non-uniform, as they speed up and slow down in their motion. Lower pattern speeds also lead to a less coherent bar, as the pulsation and acceleration increasingly varies among the loops supporting the inner bar. The morphologies of fast and slow inner bars expected from the orbital structure studied here have been recently recovered observationally by decomposition of double-barred galaxies. Our findings allow us to link the observed morphology to the dynamics of the inner bar.

  6. Triggered star formation & feedback in the ring galaxy, NGC 922

    NASA Astrophysics Data System (ADS)

    Wong, O. Ivy; Koribalski, Baerbel; Meurer, Gerhardt; Zwaan, Martin; Bekki, Kenji; Garcia-Appadoo, Diego; Vlahakis, Catherine

    2013-10-01

    Star formation (and its cessation) play an integral role in galaxy evolution. However, the physical processes that govern how and when stars form in galaxies is still not fully understood. Although rare, ring galaxies provide an excellent testbed for studying two opposing compression-driven processes, namely the large-scale triggering of star formation versus the subsequent destructive feedback effects of newly-formed massive stars on nearby molecular clouds (and future star formation). Due to the simplicity of the collision, we can constrain the interaction timescales very well and hence obtain good boundary conditions for when stars can be formed within the observed ring. We propose to map the neutral gas content of NGC 922--- a recently-discovered ring galaxy that also happens to be one of the closest. We have obtained excellent observations of the stellar components from the Hubble Space Telescope for this object and we are only lacking information about its gas properties. These proposed observations will shed light on: (1) the balance between neutral and molecular gas content in the ISM of the ring galaxy; (2) the physical processes that dominate the galactic-scale triggering and suppression of star formation galaxies; (3) the kinematics and location of gas that has been disrupted and stripped from this galaxy pair; and (4) the validity of our simulated interaction model for the formation of NGC 922.

  7. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  8. The Arecibo Galaxy Environment Survey: Observations towards the NGC 7817/7798 Galaxy Pair

    NASA Astrophysics Data System (ADS)

    Harrison, Amanda; Robert Minchin

    2016-01-01

    The Arecibo Galaxy Environment Survey (AGES) examines the environment of neutral hydrogen gas in the interstellar medium. AGES uses the 305m Arecibo Radio Telescope and the Arecibo L-Band Feed Array to create a deep field neutral hydrogen survey which we used to detect galaxies in an area five square degrees around the galaxy pair NGC 7817/7798. By finding and investigating hydrogen rich galaxies we hope to gain a better understanding of how the environment affects galaxy evolution. H1 line profiles were made for the detected H1 emission and ten galaxies which had the characteristic double-horned feature were found. NGC 7798 was not detected, but NGC 7817 and the other galaxies were cross-identified in NASA/IPAC Extragalactic Database as well as in Sloan Digital Sky Survey to obtain optical data. Out of the ten, two of the sources were uncatalogued. We analyzed the hydrogen spectra and aperture photometry to learn about the characteristics of these galaxies such as their heliocentric velocity, flux, and mass of the neutral hydrogen. Furthermore, we graphed the Tully-Fisher and the Baryonic Tully-Fisher of the ten sources and found that most followed the relation. One that is the biggest outlier is suspected be a galaxy cluster while other outliers may be caused by ram pressure stripping deforming the galaxy.

  9. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  10. A survey of satellite galaxies around NGC 4258

    SciTech Connect

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 × 10{sup 12} M {sub ☉} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u–r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  11. A multispecies survey of the active galaxy NGC1068

    NASA Astrophysics Data System (ADS)

    Usero, A.; Garcia-Burillo, S.; Fuente, A.; Aalto, S.; Neri, R.; Krips, M.

    2011-05-01

    The nearby Seyfert galaxy NGC 1068 is among the very few objects where nuclear starburst regions and Active Galactic Nuclei (AGN) can be spatially resolved with current millimeter--wavelength telescopes. We present a multispecies survey of molecular lines in this galaxy carried out with the IRAM Plateau de Bure Interferometer. Thanks to the high spatial-resolution achieved, we distinguish the circumnuclear disk (CND) that surrounds the active nucleus of the galaxy from the outer starburst ring. We mapped the line emission of the most common tracers of UV-ray- X-ray- and shock-driven molecular chemistry in external galaxies (e.g., HCN, HCO^+, HNC, CN, SiO). This help us assess the importance of the main mechanisms whereby massive star formation and AGN may inject energy into the interstellar medium. We measure line ratios that evidence chemical/excitation differences between the AGN- and starburst-dominated environments in NGC 1068. Gradients of several line ratios within the CND support a complex picture of this region, where energy might be radiatively and mechanically injected at different locations. We consider the implications of our results for diagnostics of AGN- and starburst-driven feedback based on molecular lines. We also discuss whether molecular lines can fairly trace molecular mass in AGN and starburst galaxies, as commonly assumed in studies of star-forming laws in galaxies.

  12. GIANT GALAXIES, DWARFS, AND DEBRIS SURVEY. I. DWARF GALAXIES AND TIDAL FEATURES AROUND NGC 7331

    SciTech Connect

    Ludwig, Johannes; Pasquali, Anna; Grebel, Eva K.; Gallagher, John S. III

    2012-12-01

    The Giant GAlaxies, Dwarfs, and Debris Survey (GGADDS) concentrates on the nearby universe to study how galaxies have interacted in groups of different morphology, density, and richness. In these groups, we select the dominant spiral galaxy and search its surroundings for dwarf galaxies and tidal interactions. This paper presents the first results from deep wide-field imaging of NGC 7331, where we detect only four low-luminosity candidate dwarf companions and a stellar stream that may be evidence of a past tidal interaction. The dwarf galaxy candidates have surface brightnesses of {mu}{sub r} Almost-Equal-To 23-25 mag arcsec{sup -2} with (g - r){sub 0} colors of 0.57-0.75 mag in the Sloan Digital Sky Survey filter system, consistent with their being dwarf spheroidal (dSph) galaxies. A faint stellar stream structure on the western edge of NGC 7331 has {mu}{sub g} Almost-Equal-To 27 mag arcsec{sup -2} and a relatively blue color of (g - r){sub 0} = 0.15 mag. If it is tidal debris, then this stream could have formed from a rare type of interaction between NGC 7331 and a dwarf irregular or transition-type dwarf galaxy. We compare the structure and local environments of NGC 7331 to those of other nearby giant spirals in small galaxy groups. NGC 7331 has a much lower ({approx}2%) stellar mass in the form of early-type satellites than found for M31 and lacks the presence of nearby companions like luminous dwarf elliptical galaxies or the Magellanic Clouds. However, our detection of a few dSph candidates suggests that it is not deficient in low-luminosity satellites.

  13. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  14. Noncircular outer disks in unbarred S0 galaxies: NGC 502 and NGC 5485

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.

    2016-03-01

    Highly noncircular outer stellar disks have been detected in two SA0 (unbarred) galaxies by comparing the spectroscopic data on the rotation of stars and the photometric data on the shape and orientation of isophotes. In NGC 502, the oval distortion of the disk is manifested in the shape of the inner and outer elliptical rings occupying wide radial zones between the bulge and the disk and at the outer disk edge; such a structure can be a consequence of the so-called "dry minor merger," multiple cannibalization of gas-free satellites. In NGC 5485, the stellar kinematics is absolutely unrelated to the orientation of isophotes in the disk region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.

  15. The three rings of the isolated galaxy NGC 7217.

    NASA Astrophysics Data System (ADS)

    Verdes-Montenegro, L.; Bosma, A.; Athanassoula, E.

    1995-08-01

    We present WSRT H I line observations, together with CCD-BVRI photometry, of NGC 7217, which is known to be an isolated galaxy with an inner ring, an inner pseudoring and an outer ring, but for which no clear bi-symmetric distortion is immediately apparent. Assuming, as is known to be the case for barred galaxies, that the outer ring corresponds to the outer Lindblad resonance, we have derived the expected locations for the other resonances using a combined optical/H I rotation curve. Our result is that the observed inner ring coincides with the inner Lindblad resonance and the inner pseudoring with the ultraharmonic (4:1) resonance. The associated pattern speed is 86.0km/s/kpc. However, it is less clear which feature is actually setting up this pattern. The outer ring, which has a size of =~6.3x5.9kpc, contains roughly two-thirds of the total H I mass, and has bluer colours and more intense Hα emission than the main disk. A Fourier analysis of the B-I colour along this ring suggests that it is composed of 9 blobs, indicating the existence of a bead instability. This is in agreement with a simple calculation showing that the number of Jeans lengths along the ring is also 9, and that self-gravity is probably important here. Clumps also exist in the inner pseudoring, but they are less well defined, and there is no H I concentration along it. This ring has redder colours than the outer ring. The blue inner ring is incomplete, coincides with a complete and intense Hα ring, and is surrounded by a redder ring. A spiral-like structure extends from the inner ring out to the inner pseudoring, with the same winding direction as the outer flocculent arms. We have constructed a mass model, from which we obtain a mass-to-I-band luminosity ratio of 5.1 for the bulge, and 1.8 for the disk. The core radius of the halo is 11.0kpc, and its central density 0.062Msun_pc^-3^. The ratio of halo core radius to optical radius is thus of order unity.

  16. Automated bar detection in local disk galaxies from the SDSS. The colors of bars

    NASA Astrophysics Data System (ADS)

    Consolandi, G.

    2016-10-01

    This paper describes an automatic isophotal fitting procedure that succeeds, without the support of any visual inspection of either the images or the ellipticity/position-angle radial profiles, to extract a fairly pure sample of barred late-type galaxies (LTGs) among thousands of optical images from the Sloan Digital Sky Survey (SDSS). The procedure relies on previous methods to robustly extract the photometrical properties of a large sample of local SDSS galaxies and is tailored to extract bars on the basis of their well-known peculiarities in their position angle and ellipticity profiles. This procedure was run on a sample of 5853 galaxies in the Coma and Local superclusters. The procedure extracted a color, an ellipticity and a position angle radial profile of the ellipses fitted to the isophotes for each galaxy. Examining the profiles of 922 face-on LTGs (B/A > 0.7) automatically, the procedure found that 36% are barred. The local bar fraction strongly increases with stellar mass. The sample of barred galaxies is used to construct a set of template radial color profiles to test the impact of the barred galaxy population on the average color profiles as previously shown in the literature and to test the bar-quenching scenario. The radial color profile of barred galaxy shows that bars are on average redder than their surrounding disk producing an outside-in gradient toward red in correspondence with their corotation radius. The distribution of the extension of the deprojected length of the bar suggests that bars have strong impact on the gradients of averaged color profiles. The dependence of the profiles on the mass is consistent with the bar-quenching scenario, i.e. more massive barred galaxies have redder colors (hence older stellar population and suppressed star formation) inside their corotation radius with respect to their lower mass counterparts. Tables of the barred and non-barred galaxies are only available at the CDS via anonymous ftp to http

  17. ISM Parameters in the Normal Galaxy NGC 5713

    NASA Technical Reports Server (NTRS)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; Rubin, R. H.; Stacey, G. J.; Thronson, H. A., Jr.; Werner, M. W.

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  18. NGC 5523: An isolated product of soft galaxy mergers?

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  19. NGC 4438: Ram pressure sweeping of a tidally disrupted galaxy

    NASA Technical Reports Server (NTRS)

    Hibbard, J. E.; Vangorkom, Jacqueline H.

    1990-01-01

    NGC 4438 is the highly HI deficient peculiar spiral in the center of the Virgo cluster. Observations are given of the neutral hydrogen emission obtained with the Very Large Array (VLA) in the D-array configuration. These observations map out the total HI as determined from single dish measurements, and show the hydrogen to be confined to a region about one third the size of the optical disk and displaced to the side of the galaxy opposite M87. The hydrogen content of the galaxy is over an order of magnitude less than that expected for a galaxy of its type. The data suggest that the HI deficiency is a result of ram pressure stripping of the gas in the outer regions of the galaxy by the hot intracluster medium after being tidally perturbed.

  20. Smooth dark spiral arms in the flocculent galaxy NGC2841

    NASA Astrophysics Data System (ADS)

    Block, David L.; Elmegreen, B. G.; Wainscoat, R. J.

    1996-06-01

    OPTICAL images of the arms of spiral galaxies invariably show massive blue stars forming in ridges of interstellar gas and dust1. These are particularly striking in 'grand-design' galaxies, in which the stellar positions are influenced by spiral density waves1. By contrast, many galaxies have a 'flocculent' appearance, with no obvious evidence of spiral structure at visible wavelengths. Here we report infrared observations of the prototype flocculent galaxy NGC2841, which reveal a remarkable system of long, dark spiral arms. These arms arise from concentrations of dust; they are hidden at optical wavelengths by light scattered from the dust. The mechanism that has organized the gas and dust into these dark arms is at present unclear; the arms might be highly sheared dense clouds, or they might correspond to density waves in the interstellar medium driven by an elongated central bulge, which would not affect the stable stellar disk.

  1. Kinematics and stellar population of the lenticular galaxy NGC 4124

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Sil'chenko, O. K.; Katkov, I. Yu.; Dodonov, S. N.

    2013-01-01

    Results of spectroscopic and photometric studies for the locally isolated lenticular galaxy NGC 4124 are presented. A model of the mass distribution consistent with photometric data has been constructed on the basis of a kinematic analysis. In this model, the halo mass within the optical radius is almost half the diskmass. The disk is shown to be in a dynamical state close to amarginally stable one. This rules out dynamical disk heating for the galaxy through a strong external action or a merger with a massive system. However, the presence of a gaseous disk inclined to the main plane of the galaxy in the central kiloparsec region suggests probable cannibalization of a small satellite that also produced a late starburst in the central region. This is confirmed by the younger mean age (˜2 Gyr) of the stellar population in the galaxy's central region than the disk age (5-7 Gyr).

  2. The molecular morphology of the SAB galaxy NGC 4736

    NASA Astrophysics Data System (ADS)

    Garman, L. E.; Young, J. S.

    1986-01-01

    The first mapping observations of molecular clouds in NGC 4736 are presented. A central hole in the molecular distribution is found, with the observed peak in CO emission at a radius of 22 arcsec from the center. If this distribution is azimuthally symmetric, the ring contains an H2 mass of 100 million solar masses, while the H I mass in the same region is 10 million solar masses. The CO peaks are coincident with the inner portion of a ring of H I. The extent of the central CO hole coincides with the region in the galaxy where the light distribution is dominated by the contribution from the nuclear bulge, as was found previously in several Sb galaxies. The fraction of mass in the ISM in this galaxy, about one percent, is lower than that found in any other galaxy in which CO has been detected. This is due to a very small amount of mass in the atomic and molecular clouds.

  3. Detailed surface photometry of the cD galaxies NGC 4839 and NGC 4874

    NASA Astrophysics Data System (ADS)

    Ali, Gamal B.; Shaban, Eman A.; Amin, Magdy Y.; Rassem, M. A.

    2014-08-01

    We present a detailed photometric study of the cD galaxies NGC 4839 and NGC 4874 based on the technique of surface photometry by fitting ellipses to the isophotes of the galaxies in the u, g, r, i, and z bands using Data Release 7 (DR7) of the Sloan Digital Sky Survey (SDSS). The motivation of this paper is to study the properties (e.g. break radius and surface brightness, color gradient, etc.) of the extended envelope of the two cD galaxies. The surface brightness profile in each band is obtained and fitted to the de Vaucouleurs r 1/4 model. A deviation of the observed profile brighter than the fitted r 1/4 model is noticed especially in the outer part of each galaxy. The profiles of ellipticity, position angle, B4 and shifts with respect to the center of each isophote are also obtained. The color index profiles, u-g, g-r, r-i, and i-z are also obtained and no significant color gradients are noticed except in the outer parts of the two galaxies. The integrated magnitude in each band and color indices are obtained and found to be in good agreement with the published ones.

  4. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  5. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  6. STAR FORMATION MODELS FOR THE DWARF GALAXIES NGC 2915 AND NGC 1705

    SciTech Connect

    Elson, E. C.; De Blok, W. J. G.; Kraan-Korteweg, R. C.

    2012-01-15

    Crucial to a quantitative understanding of galaxy evolution are the properties of the interstellar medium that regulate galactic-scale star formation activity. We present here the results of a suite of star formation models applied to the nearby blue compact dwarf galaxies NGC 2915 and NGC 1705. Each of these galaxies has a stellar disk embedded in a much larger, essentially starless H I disk. These atypical stellar morphologies allow for rigorous tests of star formation models that examine the effects on star formation of the H I, stellar, and dark matter mass components, as well as the kinematics of the gaseous and stellar disks. We use far-ultraviolet and 24 {mu}m images from the Galaxy Evolution Explorer and the Spitzer Infrared Nearby Galaxies Survey, respectively, to map the spatial distribution of the total star formation rate surface density within each galaxy. New high-resolution H I line observations obtained with the Australia Telescope Compact Array are used to study the distribution and dynamics of each galaxy's neutral interstellar medium. The standard Toomre Q parameter is unable to distinguish between active and non-active star-forming regions, predicting the H I disks of the dwarfs to be sub-critical. Two-fluid instability models incorporating the stellar and dark matter components of each galaxy, in addition to the gaseous component, yield unstable portions of the inner disk. Finally, a formalization in which the H I kinematics are characterized by the rotational shear of the gas produces models that very accurately match the observations. This suggests the time available for perturbations to collapse in the presence of rotational shear to be an important factor governing galactic-scale star formation.

  7. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  8. LOCAL GROUP DWARF ELLIPTICAL GALAXIES. II. STELLAR KINEMATICS TO LARGE RADII IN NGC 147 AND NGC 185

    SciTech Connect

    Geha, M.; Van der Marel, R. P.; Kalirai, J.; Guhathakurta, P.; Kirby, E. N.

    2010-03-01

    We present kinematic and metallicity profiles for the M 31 dwarf elliptical (dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most extensive spectroscopic radial coverage for any dE galaxy, extending to a projected distance of 8 half-light radii (8r{sub eff} {approx} 14'). We achieve this coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442 member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast to previous studies, we find that both dEs have significant internal rotation. We measure a maximum rotational velocity of 17 +- 2 km s{sup -1} for NGC 147 and 15 +- 5 km s{sup -1} for NGC 185. While both rotation profiles suggest a flattening in the outer regions, there is no indication that we have reached the radius of maximum rotation velocity. The velocity dispersions decrease gently with radius with average dispersions of 16 +- 1 km s{sup -1} and 24 +- 1 km s{sup -1} for NGC 147 and NGC 185, respectively. The average metallicities for NGC 147 and NGC 185 are [Fe/H] = -1.1 +- 0.1 and [Fe/H] = -1.3 +- 0.1, respectively; both dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for a radial metallicity gradient. We construct two-{integral} axisymmetric dynamical models and find that the observed kinematical profiles cannot be explained without modest amounts of non-baryonic dark matter. We measure central mass-to-light ratios of M/L{sub V} = 4.2 +- 0.6 and M/L{sub V} = 4.6 +- 0.6 for NGC 147 and NGC 185, respectively. Both dE galaxies are consistent with being primarily flattened by their rotational motions, although some anisotropic velocity dispersion is needed to fully explain their observed shapes. The velocity profiles of all three Local Group dEs (NGC 147, NGC 185, and NGC 205) suggest that rotation is more prevalent in the dE galaxy class than previously assumed, but often manifests only at several times the effective radius. Since all dEs outside the Local Group have been

  9. NGC 4314. I - Visible and short-wavelength infrared surface photometry of the nucleus and bar

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Higdon, J. L.; Tollestrup, E. V.; Hahn, J. M.; Harvey, P. M.

    1992-03-01

    BVI (TI CCD) and JHK (University of Texas IR Camera) surface photometry of NGC 4314, an SB (rs)ap anemic spiral with a nuclear ring containing recent star formation, is presented. The shortwave IR (SWIR) frames reveal a nuclear bar of length 2 arcsec at PA of 0 deg. The nuclear ring and associated dust were detected in all SWIR color indices. A nuclear spiral was detected in the visible and SWIR just exterior to the ring. Extremely low-amplitude spiral-shaped deficits were found in the stellar distribution in the SWIR in this same region. These are attributed to dust, since CO is detectable at or near these locations. Average minor-axis profiles show this galaxy to have a nuclear bulge obeying the de Vaucouleurs r exp 1/4 law for values in the range 2-7 arcsec. The extinction and scattering characteristics of dust near the sites of recent star formation in the nuclear ring are discussed.

  10. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  11. Galaxy Zoo and ALFALFA: atomic gas and the regulation of star formation in barred disc galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Nichol, Robert C.; Haynes, Martha P.; Keel, William C.; Lintott, Chris; Simmons, Brooke; Skibba, Ramin; Bamford, Steven; Giovanelli, Riccardo; Schawinski, Kevin

    2012-08-01

    We study the observed correlation between atomic gas content and the likelihood of hosting a large-scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies' H I content from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) blind H I survey. Our main result is that the bar fraction is significantly lower among gas-rich disc galaxies than gas-poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate-mass disc galaxies. This publication has been made possible by the participation of more than 200 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at South East Physics Network, E-mail: karen.masters@port.ac.ukEinstein fellow.

  12. A census of AGB stars in Local Group galaxies. II. NGC 185 and NGC 147

    NASA Astrophysics Data System (ADS)

    Nowotny, W.; Kerschbaum, F.; Olofsson, H.; Schwarz, H. E.

    2003-05-01

    We present results of our ongoing photometric survey of Local Group galaxies, using a four filter technique based on the method of Wing (\\cite{Wing71}) to identify and characterise the late-type stellar content. Two narrow band filters centred on spectral features of TiO and CN allow us to distinguish between AGB stars of different chemistries [M-type (O-rich) and C-type (C-rich)]. The major parts of two dwarf galaxies of the M 31 subgroup - NGC 185 and NGC 147 - were observed. From photometry in V and i we estimate the tip of the RGB, and derive distance moduli respectively. With additional photometric data in the narrow band filters TiO and CN we identify 154 new AGB carbon stars in NGC 185 and 146 in NGC 147. C/M ratios are derived, as well as mean absolute magnitudes , bolometric magnitudes M_bol, luminosity functions, and the spatial/radial distributions of the C stars in both galaxies. Based on observations made with the Nordic Optical Telescope operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strabg.fr/cgi-bin/qcat?J/A+A/403/93

  13. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  14. HUBBLE SPACE TELESCOPE Imaging of Globular Clusters in the Edge-on Spiral Galaxies NGC 4565 and NGC 5907

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus; Ashman, Keith M.; Zepf, Stephen E.; Freeman, Kenneth C.

    1999-07-01

    We present a study of the globular cluster systems of two edge-on spiral galaxies, NGC 4565 and NGC 5907, from WFPC2 images in the F450W and F814W filters. The globular cluster systems of both galaxies appear to be similar to the Galactic globular cluster system. In particular, we derive total numbers of globular clusters of N_GC(4565)=204+/-38^+87_-53 and N_GC(5907)=170+/-41^+47_-72 (where the first are statistical, the second potential systematic errors) for NGC 4565 and NGC 5907, respectively. This determination is based on a comparison with the Milky Way system, for which we adopt a total number of globular clusters of 180+/-20. The specific frequency of both galaxies is S_N~=0.6, indistinguishable from the value for the Milky Way. The similarity in the globular cluster systems of the two galaxies is noteworthy, since they have significantly different thick disks and bulge-to-disk ratios. This would suggest that these two components do not play a major role in the building up of a globular cluster system around late-type galaxies.

  15. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    NASA Astrophysics Data System (ADS)

    Duah Asabere, B.; Horellou, C.; Jarrett, T. H.; Winkler, H.

    2016-07-01

    Context. Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. Aims: In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 μm and Spitzer mid-infrared spectra. Methods: By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.̋6 to 5.̋5. Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 μm images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 μm images to estimate the stellar continuum contribution to the emission in the 12 and 22 μm bands. Results: The two galaxies differ markedly in their mid-IR properties. The 3.4 μm brightness distribution can be well represented by the superposition of two Sérsic models in NGC 1316 and by a Sérsic model and an exponential disk in NGC 612. The WISE colors of NGC 1316 are typical of those of early-type galaxies; those of NGC 612 are in the range found for star-forming galaxies. From the 22 μm luminosity, we infer a star-formation rate of ~0.7 M⊙ yr-1 in NGC 1316 and ~7 M⊙ yr-1 in NGC 612. Spitzer spectroscopy shows that the 7.7-to-11.3 μm PAH line ratio is significantly lower in NGC 1316 than in NGC 612. The WISE images reveal resolved emission from dust in the central 1'-2' of the galaxies. In NGC 1316, the extra-nuclear emission coincides with two dusty regions NW and SE of the nucleus seen in extinction in optical images and where molecular gas is known to reside

  16. The Arecibo Environment Galaxy Survey: The NGC 2577/UGC 4375-galaxy pair

    NASA Astrophysics Data System (ADS)

    Iguina, Ashley Ann; Minchin, Robert F.

    2017-01-01

    We searched for and catalogued galaxy candidates in an area of 5 square degrees around the NGC 2577/UGC 4375-galaxy pair via the 21-cm emission of the neutral hydrogen gas emitted by the candidates' interstellar media. The data were taken as a part of the Arecibo Galaxy Environment Survey (AGES) and consist of a data cube with the dimensions right ascension, declination, and the recessional velocity of the 21-cm line. We used the FITS viewer FRELLED to assist in visually extracting sources. We have cross identified the galaxy candidates with optical counterparts via the NASA Extragalactic Database and data from the Sloan Digital Sky Survey. We made a total of 49 HI detections in the vicinity of the galaxy pair. We did not detect the S0 galaxy, NGC 2577, but we did detect the SB galaxy, UGC 4375, and four galaxies in the region around the galaxy pair at ~2000 km/s. We detected another overdensity at 4000 km/s. Additionally, an HI detection appears in our local neighborhood at 426 km/s. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association. The Arecibo Observatory REU program is funded under grant AST-1559849 to Universidad Metropolitana.

  17. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    SciTech Connect

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  18. Interacting binary galaxies. III. Observations of NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.; Hoessel, J.G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum. 62 references.

  19. Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469

    NASA Astrophysics Data System (ADS)

    Peterson, B. M.; Grier, C. J.; Horne, Keith; Pogge, R. W.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Martini, Paul; Sergeev, S. G.; Kaspi, S.; Minezaki, T.; Zu, Y.; Kochanek, C. S.; Siverd, R. J.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Bord, D. J.; Borman, G. A.; Che, X.; Chen, C.-T.; Cohen, S. A.; Dietrich, M.; Doroshenko, V. T.; Drake, T.; Efimov, Yu. S.; Free, N.; Ginsburg, I.; Henderson, C. B.; King, A. L.; Koshida, S.; Mogren, K.; Molina, M.; Mosquera, A. M.; Motohara, K.; Nazarov, S. V.; Okhmat, D. N.; Pejcha, O.; Rafter, S.; Shields, J. C.; Skowron, D. M.; Skowron, J.; Valluri, M.; van Saders, J. L.; Yoshii, Y.

    2014-11-01

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M BH ≈ 1 × 107 M ⊙, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  20. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    SciTech Connect

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Minezaki, T.; Siverd, R. J.; Bord, D. J.; and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  1. Dense cloud formation and star formation in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Nimori, M.; Habe, A.; Sorai, K.; Watanabe, Y.; Hirota, A.; Namekata, D.

    2013-03-01

    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2MASS data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than 104 M⊙ (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the identified clump's internal motion with the clump size is similar to that observed in the molecular clouds of our Galaxy. We find that the virial parameters for clumps in the bar region are larger than that in the spiral arm region. From our numerical results, we estimate star formation in the bar and spiral arm regions by applying the simple model of Krumholz & McKee (2005). The mean relation between star formation rate and gas surface density agrees well with the observed Kennicutt-Schmidt relation. The star formation efficiency in the bar region is ˜60 per cent of the spiral arm region. This trend is consistent with observations of barred galaxies.

  2. The flaring Hi disk of the nearby spiral galaxy NGC 2683

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Nehlig, F.; Ibata, R.

    2016-02-01

    New deep VLA D array Hi observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model Hi data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80°; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination between 10 kpc ≤ R ≤ 20 kpc (decreasing by 10°); (iv) an exponential flare that rises from 0.5 kpc at R = 9 kpc to 4 kpc at R = 15 kpc, stays constant until R = 22 kpc, and decreases its height for R> 22 kpc; and (v) a low surface-density gas ring with a vertical offset of 1.3 kpc. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the optical and thin gas disk. Under the assumption of vertical hydrostatic equilibrium we derive the vertical velocity dispersion of the gas. The high turbulent velocity dispersion in the flare can be explained by energy injection by (i) supernovae; (ii) magneto-rotational instabilities; (iii) interstellar medium stirring by dark matter substructure; or (iv) external gas accretion. The existence of the complex large-scale warping and asymmetries favors external gas accretion as one of the major energy sources that drives turbulence in the outer gas disk. We propose a scenario where this external accretion leads to turbulent adiabatic compression that enhances the turbulent velocity dispersion and might quench star formation in the outer gas disk of NGC

  3. TIDAL DWARF GALAXIES AROUND A POST-MERGER GALAXY, NGC 4922

    SciTech Connect

    Sheen, Yun-Kyeong; Jeong, Hyunjin; Lee, Young-Wook; Ferreras, Ignacio; Lotz, Jennifer M.; Olsen, Knut A. G.; Dickinson, Mark; Barnes, Sydney; Park, Jang-Hyun; Ree, Chang H.; Madore, Barry F.; Barlow, Tom A.; Conrow, Tim; Foster, Karl; Friendman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Yi, Sukyoung K.

    2009-12-15

    One possible channel for the formation of dwarf galaxies involves birth in the tidal tails of interacting galaxies. We report the detection of a bright UV tidal tail and several young tidal dwarf galaxy (TDG) candidates in the post-merger galaxy NGC 4922 in the Coma cluster. Based on a two-component population model (combining young and old stellar populations), we find that the light of tidal tail predominantly comes from young stars (a few Myr old). The Galaxy Evolution Explorer ultraviolet data played a critical role in the parameter (age and mass) estimation. Our stellar mass estimates of the TDG candidates are {approx}10{sup 6-7} M {sub sun}, typical for dwarf galaxies.

  4. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    NASA Astrophysics Data System (ADS)

    2004-11-01

    Star formation is one of the most basic phenomena in the Universe. Inside stars, primordial material from the Big Bang is processed into heavier elements that we observe today. In the extended atmospheres of certain types of stars, these elements combine into more complex systems like molecules and dust grains, the building blocks for new planets, stars and galaxies and, ultimately, for life. Violent star-forming processes let otherwise dull galaxies shine in the darkness of deep space and make them visible to us over large distances. Star formation begins with the collapse of the densest parts of interstellar clouds, regions that are characterized by comparatively high concentration of molecular gas and dust like the Orion complex (ESO PR Photo 20/04) and the Galactic Centre region (ESO Press Release 26/03). Since this gas and dust are products of earlier star formation, there must have been an early epoch when they did not yet exist. But how did the first stars then form? Indeed, to describe and explain "primordial star formation" - without molecular gas and dust - is a major challenge in modern Astrophysics. A particular class of relatively small galaxies, known as "Blue Dwarf Galaxies", possibly provide nearby and contemporary examples of what may have occurred in the early Universe during the formation of the first stars. These galaxies are poor in dust and heavier elements. They contain interstellar clouds which, in some cases, appear to be quite similar to those primordial clouds from which the first stars were formed. And yet, despite the relative lack of the dust and molecular gas that form the basic ingredients for star formation as we know it from the Milky Way, those Blue Dwarf Galaxies sometimes harbour very active star-forming regions. Thus, by studying those areas, we may hope to better understand the star-forming processes in the early Universe. Very active star formation in NGC 5253 NGC 5253 is one of the nearest of the known Blue Dwarf Galaxies

  5. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  6. Mass Distribution and Bar Formation in Growing Disk Galaxy Models

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, J. A.

    2016-11-01

    We report idealized simulations that mimic the growth of galaxy disks embedded in responsive halos and bulges. The disks manifested an almost overwhelming tendency to form strong bars that we found very difficult to prevent. We found that fresh bars formed in growing disks after we had destroyed the original, indicating that bar formation also afflicts continued galaxy evolution, and not just the early stages of disk formation. This behavior raises still more insistently the previously unsolved question of how some galaxies avoid bars. Since our simulations included only collisionless star and halo particles, our findings may apply to gas-poor galaxies only; however, the conundrum persists for the substantial unbarred fraction of those galaxies. Our original objective was to study how internal dynamics rearranged the distribution of mass in the disk as a generalization of our earlier study with rigid spherical components. With difficulty, we were able to construct some models that were not strongly influenced by bars, and found that halo compression and angular momentum exchange with the disk did not alter our earlier conclusion that spiral activity is largely responsible for creating smooth density profiles and rotation curves.

  7. Peculiarities in the optical variability of the galaxy NGC 4151

    SciTech Connect

    Lyutyi, V.M.; Oknyanskii, V.L.

    1981-11-01

    Photographic and photoelectric observations of the optical variability of the nucleus of the Seyfert galaxy NGC 4151 are analyzed. The presence of a quasiperiodic 126/sup d/ component is confirmed. The 126/sup d/ period varies in cycles of roughly-equal20 yr. If these fluctuations represent orbital motion about a central body (such as a supermassive black hole), its mass would be roughly-equal10/sup 8/ M/sub sun/ and the orbital velocity would be roughly-equal10/sup 4/ km/sec.

  8. The circumnuclear environment of the Seyfert 1 galaxy NGC 3516

    SciTech Connect

    Pogge, R.W.; McDonald Observatory, Austin, TX )

    1989-07-01

    Results of an emission-line imaging and spectrophotometric study of the ionized gas in the circumnuclear regions of the Seyfert 1 galaxy NGC 3516 are reported. The morphology and ionization of the gas are consistent with excitation by the power law continuum from the active nucleus. The optical emission-line gas is well aligned with the extended 6 cm radio-continuum emission. The ionization, structure, and published kinematical data are strongly suggestive of an outflow origin for the circumnuclear gas, although important details are missing to firmly establish outflow as the origin of all of the ionized gas. 31 refs.

  9. Which bulges are favoured by barred S0 galaxies?

    NASA Astrophysics Data System (ADS)

    Barway, Sudhanshu; Saha, Kanak; Vaghmare, Kaustubh; Kembhavi, Ajit K.

    2016-11-01

    S0 galaxies are known to host classical bulges with a broad range of size and mass, while some such S0s are barred and some not. The origin of the bars has remained a long-standing problem - what made bar formation possible in certain S0s? By analysing a large sample of S0s with classical bulges observed by the Spitzer Space Telescope, we find that most of our barred S0s host comparatively low-mass classical bulges, typically with bulge-to-total ratio less than 0.5, whereas S0s with more massive classical bulges than these do not host any bar. Furthermore, we find that amongst the barred S0s, there is a trend for the longer and massive bars to be associated with comparatively bigger and massive classical bulges - possibly suggesting bar growth being facilitated by these classical bulges. In addition, we find that the bulge effective radius is always less than the bar effective radius - indicating an interesting synergy between the host classical bulge and bars being maintained while bar growth occurred in these S0s.

  10. RR Lyrae stars in local group galaxies. II. NGC 147

    SciTech Connect

    Saha, A.; Hoessel, J.G.; Mossman, A.E. Space Telescope Science Institute, Baltimore, MD Washburn Observatory, Madison, WI )

    1990-07-01

    Deep CCD images of NGC 147 taken with the 4-shooter on the Hale 5 m telescope have been processed to find and photometrically measure RR Lyrae stars. 36 variable stars have been found, of which 32 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The mean magnitude of the RR Lyraes is determined to be 25.25 mag. A distance modulus 23.92 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. A wide range of periods is seen for the RR Lyrae stars, indicating a correspondingly wide range of metallicities for the stars in NGC 147. The distance modulus derived here places NGC 147 at a distance of 154 kpc from the center of M31, and in conjunction with the line sight velocities of these two galaxies, this implies a lower limit of 7.2 x 10 to the 11th solar masses for the mass of M31. 23 refs.

  11. Wind and Reflections From Black Hole in Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Chandra X-Ray Observatory provided this composite X-ray (blue and green) and optical (red) image of the active galaxy NGC 1068 showing gas blowing away in a high-speed wind from the vicinity of a central supermassive black hole. Regions of intense star formation in the irner spiral arms of the galaxy are highlighted by both optical and x-ray emissions. A doughnut shaped cloud of cool gas and dust surrounding the black hole, known as the torus, appears as the elongated white spot . It has has a mass of about 5 million suns and is estimated to extend from within a few light years of the black hole out to about 300 light years.

  12. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Thomas Tam, Pak-Hin E-mail: phtam@phys.nthu.edu.tw

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  13. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from

  14. Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE

    NASA Astrophysics Data System (ADS)

    Guérou, A.; Emsellem, E.; Krajnović, D.; McDermid, R. M.; Contini, T.; Weilbacher, P. M.

    2016-07-01

    We present MUSE integral field spectroscopic data of the S0 galaxy NGC 3115 obtained during the instrument commissioning at the ESO Very Large Telescope (VLT). We analyse the galaxy stellar kinematics and stellar populations and present two-dimensional maps of their associated quantities. We thus illustrate the capacity of MUSE to map extra-galactic sources to large radii in an efficient manner, i.e. ~4 Re, and provide relevant constraints on its mass assembly. We probe the well-known set of substructures of NGC 3115 (nuclear disc, stellar rings, outer kpc-scale stellar disc, and spheroid) and show their individual associated signatures in the MUSE stellar kinematics and stellar populations maps. In particular, we confirm that NGC 3115 has a thin fast-rotating stellar disc embedded in a fast-rotating spheroid, and that these two structures show clear differences in their stellar age and metallicity properties. We emphasise an observed correlation between the radial stellar velocity, V, and the Gauss-Hermite moment, h3, which creates a butterfly shape in the central 15'' of the h3 map. We further detect the previously reported weak spiral- and ring-like structures, and find evidence that these features can be associated with regions of younger mean stellar ages. We provide tentative evidence for the presence of a bar, although the V-h3 correlation can be reproduced by a simple axisymmetric dynamical model. Finally, we present a reconstruction of the two-dimensional star formation history of NGC 3115 and find that most of its current stellar mass was formed at early epochs (>12 Gyr ago), while star formation continued in the outer (kpc-scale) stellar disc until recently. Since z ~2 and within ~4 Re, we suggest that NGC 3115 has been mainly shaped by secular processes. The images of the derived parameters in FITS format and the reduced datacube are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  15. The H I-Rich Elliptical Galaxy NGC 5266

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Sadler, E. M.; Oosterloo, T.; Pizzella, A.; Bertola, F.

    1997-03-01

    We present new ion{H}{1} images of the dust-lane elliptical galaxy NGC 5266 already known from single-dish observations to contain a large amount of ion{H}{1}. Our new data confirm that NGC 5266 contains ~2.4 x 10(10) msun (for Hdeg = 50 kmsMp) of neutral hydrogen, i.e. more than most spiral galaxies of similar luminosity. The gas extends to ~8(') each side of the nucleus, or 8 times the optical half-light radius R_e. Surprisingly, most of the ion{H}{1} extends almost orthogonal to the optical dust lane. A small fraction of the ion{H}{1} is associated with the dust lane and there are some hints of a faint warp connecting the two structures. The ion{H}{1} distribution is somewhat clumpy and asymmetric, but the overall velocity field in the inner 4(') can be successfully modeled by assuming that the gas lies mainly in two perpendicular planes - in the plane of the dust lane in the central parts and orthogonal to this in the outer regions. Beyond the 4(') radius, the gas has a different structure and may be in two tidal tails, or an edge-on ring. Measurement of the ion{H}{1} rotation curve is affected by asymmetries in the gas distribution, but the rotation velocity is at least 250 kms at a radius of 4(') , and a flat rotation curve of ~270 kms is consistent with the data. This would imply a value of M / L_B ~8 at ~4 R_e. If the outermost ion{H}{1} is in an edge-on ring, we estimate M / L_B ~16 at ~8 R_e. Comparing this with the value derived from optical observations for the inner region we find an increase of M / L_B by a factor ~2.7 at r ~4 R_e, and by 5.3 at r ~8 R_e. The large amount of neutral gas observed in NGC 5266 (M_HI/L_B ~0.2) and the ion{H}{1} morphology, suggest that this object may have formed from the merger of two spiral galaxies. If so, NGC 5266 probably represents a relatively old merger remnant since most of the ion{H}{1} gas appears settled.

  16. ISOCAM view of the starburst galaxies M 82, NGC 253 and NGC 1808

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Sauvage, M.; Charmandaris, V.; Laurent, O.; Gallais, P.; Mirabel, I. F.; Vigroux, L.

    2003-03-01

    We present results of mid-infrared lambda = 5.0-16.5 μm spectrophotometric imaging of the starburst galaxies M 82, NGC 253, and NGC 1808 from the ISOCAM instrument on board the Infrared Space Observatory. The mid-infrared spectra of the three galaxies are very similar in terms of features present. The lambda >~ 11 μm continuum attributed to very small dust grains (VSGs) exhibits a large spread in intensity relative to the short-wavelength emission. We find that the 15 mu m dust continuum flux density correlates well with the fine-structure [Ar Ii] 6.99 mu m line flux and thus provides a good quantitative indicator of the level of star formation activity. By contrast, the lambda = 5-11 μm region dominated by emission from polycyclic aromatic hydrocarbons (PAHs) has a nearly invariant shape. Variations in the relative intensities of the PAH features are nevertheless observed, at the 20%-100% level. We illustrate extinction effects on the shape of the mid-infrared spectrum of obscured starbursts, emphasizing the differences depending on the applicable extinction law and the consequences for the interpretation of PAH ratios and extinction estimates. The relative spatial distributions of the PAH, VSG, and [Ar Ii] 6.99 mu m emission between the three galaxies exhibit remarkable differences. The la 1 kpc size of the mid-infrared source is much smaller than the optical extent of our sample galaxies and 70%-100% of the IRAS 12 mu m flux is recovered within the ISOCAM <= 1.5 arcmin2 field of view, indicating that the nuclear starburst dominates the total mid-infrared emission while diffuse light from quiescent disk star formation contributes little. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands, and the UK), and with participation of ISAS and NASA.

  17. NGC 6340: an old S0 galaxy with a young polar disc. Clues from morphology, internal kinematics, and stellar populations

    NASA Astrophysics Data System (ADS)

    Chilingarian, I. V.; Novikova, A. P.; Cayatte, V.; Combes, F.; Di Matteo, P.; Zasov, A. V.

    2009-09-01

    Context: Lenticular galaxies are believed to form by a combination of environmental effects and secular evolution. Aims: We study the nearby disc-dominated S0 galaxy NGC 6340 photometrically and spectroscopically to understand the mechanisms of S0 formation and evolution in groups. Methods: We use SDSS images to build colour maps and the light profile of NGC 6340, which we decompose using a three-component model including Sérsic and two exponential profiles. We also use Spitzer Space Telescope archival near-infrared images to study the morphology of regions containing warm interstellar medium and dust. Then, we re-process and re-analyse deep long-slit spectroscopic data for NGC 6340, applying a novel sky subtraction technique and recover its stellar and gas kinematics, distribution of age and metallicity with the NBursts full spectral fitting. Results: We obtain the profiles of internal kinematics, age, and metallicity out to >2 half-light radii. The three structural components of NGC 6340 are found to have distinct kinematic and stellar population properties. We see a kinematic misalignment between inner and outer regions of the galaxy. We confirm the old metal-rich centre and a wrapped inner gaseous polar disc (r˜ 1 kpc) having weak ongoing star formation, counter-rotating in projection with respect to the stars. The central compact pseudo-bulge of NGC 6340 looks very similar to compact elliptical galaxies. Conclusions: In accordance with the results of numerical simulations, we conclude that the properties of NGC 6340 can be explained as the result of a major merger of an early-type galaxy and a spiral galaxy that occurred about 12 Gyr ago. The intermediate exponential structure might be a triaxial pseudo-bulge formed by a past bar structure. The inner compact bulge could be the result of a nuclear starburst triggered by the merger. The inner polar disc appeared recently, 1/3-1/2 Gyr ago, as a result of another minor merger or cold gas accretion. Data points

  18. H II region spectroscopy and two dimensional stellar photometry of the barred Seyfert NGC 1566

    NASA Astrophysics Data System (ADS)

    Beckman, J. E.; Bransgrove, S. G.; Phillips, J. P.

    1986-03-01

    Radial velocities of 14 H II regions were obtained using reticon spectroscopy at H-alpha for the barred spiral NGC 1566. The same spectra also yield N II/H and S II/H ratios, and give values of the electron densities in the range of 10/cu cm. Kinematic and dynamic arguments are used to show that nonradial gas velocities are present, especially outflow at the ends of the bar. Two-dimensional isophotes at high angular resolution (approximately 1 arcsec) are presented in V, R and I. Comparison of M/L ratios based on surface photometry, and based on the inferred rotational dynamics, shows that no missing mass is required in NGC 1566 out to 13.5 kpc from the center. The photometry also shows that the Seyfert nucleus is bluer by over a magnitude than the rest of the central bulge.

  19. Near-Infrared Photometric Properties of Red Supergiant Stars in Neaby Galaxies: NGC 4214, NGC 4736 and M51

    NASA Astrophysics Data System (ADS)

    Jung, DooSeok; Chun, Sang-Hyun; Choudhury, Samyaday; Sohn, Young-Jong

    2017-01-01

    Red supergiant stars (RSGs) are post-main sequence phase of massive stars which can be easily resolved in nearby galaxies due to their bright luminosity as compared to the low-mass stars. RSGs are cool, and hence have a dominant light output at near-infrared (NIR) wavelengths. To investigate the photometric properties of RSGs in a few nearby galaxies, we observed NGC 4214, NGC 4736 and M51 by using the WFCAM detector mounted on the UKIRT telescope at Hawaii, and obtained the NIR (JHK bands) imaging data. After carrying out the photometry, the age ranges of RSGs in each galaxy were estimated by over-plotting PARSEC isochrones to the (J-K, K) colour-magnitude diagram: log(tyr) = 6.9 - 7.3 for NGC 4214; log(tyr) = 7.0 - 8.0 for NGC 4736; and log(tyr) = 6.7 - 6.9 for M51. The effective temperatures and luminosities of RSGs were calculated using MARCS synthetic fluxes, and these results were used to compare the properties of RSGs in Hertzsprung-Russell (H-R) diagram of dominant H II regions within each galaxy, over-plotted with PARSEC evolutionary tracks. The RSGs in NGC 4214 and NGC 4736 are found to have a mass of 9 M⊙ - 30 M⊙, and the maximum luminosities found to be almost constant with log(L/L⊙) = 5.6 - 5.7. However, the location of the RSGs in the H-R diagram are not consistent with the evolutionary tracks for M51.(Key Words: stars: massive - supergiants - galaxies: photometry - galaxies: stellar content - infrared: stars)

  20. AN IONIZATION CONE IN THE DWARF STARBURST GALAXY NGC 5253

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael; Martin, Crystal L.

    2011-11-01

    There are few observational constraints on how the escape of ionizing photons from starburst galaxies depends on galactic parameters. Here we report on the first major detection of an ionization cone in NGC 5253, a nearby starburst galaxy. This high-excitation feature is identified by mapping the emission-line ratios in the galaxy using [S III] {lambda}9069, [S II] {lambda}6716, and H{alpha} narrowband images from the Maryland-Magellan Tunable Filter at Las Campanas Observatory. The ionization cone appears optically thin, which suggests the escape of ionizing photons. The cone morphology is narrow with an estimated solid angle covering just 3% of 4{pi} steradians, and the young, massive clusters of the nuclear starburst can easily generate the radiation required to ionize the cone. Although less likely, we cannot rule out the possibility of an obscured active galactic nucleus source. An echelle spectrum along the minor axis shows complex kinematics that are consistent with outflow activity. The narrow morphology of the ionization cone supports the scenario that an orientation bias contributes to the difficulty in detecting Lyman continuum emission from starbursts and Lyman break galaxies.

  1. Globular Cluster Systems in Brightest Cluster Galaxies. II. NGC 6166

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Whitmore, Bradley C.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry

    2016-01-01

    We present new deep photometry of the globular cluster system (GCS) around NGC 6166, the central supergiant galaxy in Abell 2199. Hubble Space Telescope data from the Advanced Camera for Surveys and WFC3 cameras in F475W and F814W are used to determine the spatial distribution of the GCS, its metallicity distribution function (MDF), and the dependence of the MDF on galactocentric radius and on GC luminosity. The MDF is extremely broad, with the classic red and blue subpopulations heavily overlapped, but a double-Gaussian model can still formally match the MDF closely. The spatial distribution follows a Sérsic-like profile detectably to a projected radius of at least Rgc = 250 kpc. To that radius, the total number of clusters in the system is NGC = 39000 ± 2000, the global specific frequency is SN = 11.2 ± 0.6, and 57% of the total are blue, metal-poor clusters. The GCS may fade smoothly into the intracluster medium (ICM) of A2199; we see no clear transition from the core of the galaxy to the cD halo or the ICM. The radial distribution, projected ellipticity, and mean metallicity of the red (metal-richer) clusters match the halo light extremely well for {R}{gc}≳ 15 {{kpc}}, both of them varying as {σ }{MRGC}∼ {σ }{light}∼ {R}-1.8. By comparison, the blue (metal-poor) GC component has a much shallower falloff {σ }{MPGC}∼ {R}-1.0 and a more nearly spherical distribution. This strong difference in their density distributions produces a net metallicity gradient in the GCS as a whole that is primarily generated by the population gradient. With NGC 6166 we appear to be penetrating into a regime of high enough galaxy mass and rich enough environment that the bimodal two-phase description of GC formation is no longer as clear or effective as it has been in smaller galaxies.

  2. The complex nature of the Seyfert galaxy NGC 7592

    NASA Technical Reports Server (NTRS)

    Rafanelli, Piero; Marziani, Paolo

    1990-01-01

    Long slit spectra of NGC 7592 were taken on Sep. 26 to 30, 1989 at the 1.52 cm European Southern Observatory (ESO) telescope, equipped with a Boller and Chivens spectrograph and an RCA High Resolution charge coupled device (CCD) camera. The problem of the nature of Region C is addressed at first. C shows an heliocentric radial velocity very similar to that of Regions A and B. Moreover, the arm departing from C is most probably a tidal tail, because its extension is large and its orientation is peculiar. The high H alpha luminosity of C is typical of a starburst nucleus. These facts argue in favor of C being the nucleus of a third galactic component (southern component S) physically interacting with the SE component of NGC 7592. The directions of the velocity vectors in various regions of NGC 7592 are marked. It is noteworthy that the SE component rotates clockwise, if the radial velocity difference delta v sub r from its nucleus B is due to rotation. Under the same assumption for the delta v sub r = v sub r-v sub r, A, the NW component seems to rotate counterclockwise. Thus, the gas in the regions where the two galactic bodies are in contact moves in the same way, suggesting that a prograde encounter is occurring. It is known (e.g., Toomre and Toomre, 1972) that prograde encounters have the most disruptive effects on the interacting galaxies, leading to the formation of tidal tails. The interpretation of the wing of the NW component in terms of a tidal tail thus appears very likely. A similar situation holds for the interaction between SE and S too, where S rotates counterclockwise. The interpretation of the arm departing from C as a tidal tail is supported also in this case. The difference in radial velocity between A and B (delta v sub r approx. equal - 40 km s(exp-1)) and the morphology of NGC 7592 suggests that the NW component is beyond the SE one and is approaching it. The most heavily reddened regions (E(B - V) approx. equals 0.7, derived from the H alpha

  3. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING S0 GALAXY NGC 5195 (M51B)

    SciTech Connect

    Lee, Joon Hyeop; Kim, Sang Chul; Ree, Chang Hee; Kim, Minjin; Jeong, Hyunjin; Lee, Jong Chul; Kyeong, Jaemann E-mail: sckim@kasi.re.kr E-mail: mkim@kasi.re.kr E-mail: jclee@kasi.re.kr

    2012-08-01

    We report the properties of the interacting S0 galaxy NGC 5195 (M51B), revealed in a pixel analysis using the Hubble Space Telescope/Advanced Camera for Surveys images in the F435W, F555W, and F814W (BVI) bands. We analyze the pixel color-magnitude diagram (pCMD) of NGC 5195, focusing on the properties of its red and blue pixel sequences and the difference from the pCMD of NGC 5194 (M51A; the spiral galaxy interacting with NGC 5195). The red pixel sequence of NGC 5195 is redder than that of NGC 5194, which corresponds to the difference in the dust optical depth of 2 < {Delta}{tau}{sub V} < 4 at fixed age and metallicity. The blue pixel sequence of NGC 5195 is very weak and spatially corresponds to the tidal bridge between the two interacting galaxies. This implies that the blue pixel sequence is not an ordinary feature in the pCMD of an early-type galaxy, but that it is a transient feature of star formation caused by the galaxy-galaxy interaction. We also find a difference in the shapes of the red pixel sequences on the pixel color-color diagrams (pCCDs) of NGC 5194 and NGC 5195. We investigate the spatial distributions of the pCCD-based pixel stellar populations. The young population fraction in the tidal bridge area is larger than that in other areas by a factor >15. Along the tidal bridge, young populations seem to be clumped particularly at the middle point of the bridge. On the other hand, the dusty population shows a relatively wide distribution between the tidal bridge and the center of NGC 5195.

  4. Kinematics and ionization of extended ionized gas in active galaxies. I - The X-ray luminous galaxies NGC 2110, NGC 5506, and MCG -5-23-16

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Baldwin, J. A.; Ulvestad, J. S.

    1985-01-01

    Direct CCD imaging and long-slit Vidicon spectroscopy have been used to map the emission-line ratios, profiles, and velocity fields over the extended narrow-line regions in three nearby Seyfert galaxies, NGC 2110, NGC 5506, and MCG -5-23-16. The gas in the letter is spatially unresolved. Similarities between the other two nebulae include the excitation mechanism (photoionization by a central nonthermal source) and the overall profiles of the very broad emission lines close to the nucleus. The nebulae are, however, quite different in their global kinematic behavior. In NGC 2110, the gas appears to lie in a disk or flattened spheroid and to be in ordered rotation, with a classical rotation curve, about an axis parallel to the minor axis of the stellar isophotes. The velocity field of NGC 5506 is quite irregular, but a component of rotation in the plane of the galaxy seems to exist.

  5. Kinematics and ionization of extended ionized gas in active galaxies. I. The X-ray luminous galaxies NGC 2110, NGC 5506, and MCG -5-23-16

    SciTech Connect

    Wilson, A.S.; Baldwin, J.A.; Ulvestad, J.S.

    1985-04-01

    Direct CCD imaging and long-slit Vidicon spectroscopy have been used to map the emission-line ratios, profiles, and velocity fields over the extended narrow-line regions in three nearby Seyfert galaxies, NGC 2110, NGC 5506, and MCG -5-23-16. The gas in the letter is spatially unresolved. Similarities between the other two nebulae include the excitation mechanism (photoionization by a central nonthermal source) and the overall profiles of the very broad emission lines close to the nucleus. The nebulae are, however, quite different in their global kinematic behavior. In NGC 2110, the gas appears to lie in a disk or flattened spheroid and to be in ordered rotation, with a classical rotation curve, about an axis parallel to the minor axis of the stellar isophotes. The velocity field of NGC 5506 is quite irregular, but a component of rotation in the plane of the galaxy seems to exist. 63 references.

  6. ROSAT PSPC observations of the early-type galaxies NGC 507 and NGC 499: Central cooling and mass determination

    NASA Technical Reports Server (NTRS)

    Kim, Dong-Woo; Fabbiano, G.

    1995-01-01

    We present the results of a deep observation of NGC 507 and NGC 499 with the ROSAT Position Sensitive Proportional Counter (PSPC). The X-ray emission of NGC 507 is extended at least out to 1000 sec (458 kpc at a distance of 94.5 Mpc). The radial profile of X-ray surface brightness goes as Sigma(sub x) is approximately r(exp -1.8) outside the core region. The radial profile is a function of energy such that the softer X-rays have a smaller core radius and a flatter slope. Spectral analysis reveals that the emission temperature, with an average of 1 keV, peaks at an intermediate radius of 2-3 min and falls toward the center (possibly decreases outward as well). The absorption column density is consistent with the Galactic line-of-sight value. The X-ray emission of NGC 499 is extended to 300 sec and suggests a similarly cooler core. The cooler cores of NGC 507 and NGC 499 are strong evidence of the presence of cooling flows in these galaxies. Assuming hydrostatic equilibrium outside the cooling radius, the estimated mass-to-light ratio of NGC 507 is 97 +/- 16 within 458 kpc, indicative of the presence of a heavy halo. Similarly, the mass-to-light ratio of NGC 499 is 89 +/- 14 within 137 kpc. Near the edge of the X-ray-emitting region of NGC 507 we detect 19 soft, unresolved sources. These sources do not have optical counterparts and are significantly in excess of the expected number of background serendipitous sources. We speculate that they may represent cooling clumps in the halo of NGC 507. If there are many undetected cooling clumps distributed at large radii, then the radial profile of the X-ray surface brightness does not directly reflect the potential, adding uncertainty to the measurement of the binding mass; the gas mass could also be overestimated.

  7. NGC 5044-N50: a link between blue compact galaxies and dwarf ellipticals

    NASA Astrophysics Data System (ADS)

    Cellone, Sergio A.; Buzzoni, Alberto

    We present new optical observations of the dwarf galaxy N50 in the NGC 5044 Group, showing that this object is probably at an intermediate BCD→dE evolutionary stage, after a realtively recent burst of star formation.

  8. The Dynamical Relationship between the Bar and Spiral Patterns of NGC 1365

    NASA Astrophysics Data System (ADS)

    Speights, Jason C.; Rooke, Paul C.

    2016-07-01

    Theories that attempt to explain the dynamical relationship between bar and spiral patterns in galactic disks make different predictions about the radial profile of the pattern speed. These are tested for the H-alpha bar and spiral patterns of NGC 1365. The radial profile of the pattern speed is measured by fitting mathematical models that are based on the Tremaine-Weinberg method. The results show convincing evidence for the bar rotating at a faster rate than the spiral pattern, inconsistent with a global wave mode or a manifold. There is evidence for mode coupling of the bar and spiral patterns at the overlap of corotation and inner Lindblad resonances (ILRs), but the evidence is unreliable and inconsistent. The results are the most consistent with the bar and spiral patterns being dynamically distinct features. The pattern speed of the bar begins near an ILR and ends near the corotation resonance (CR). The radial profile of the pattern speed beyond the bar most closely resembles what is expected for coupled spiral modes and tidal interactions.

  9. Vertical motions in the gaseous disk of the spiral galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Koruzhii, O. V.; Zasov, A. V.; Sil'chenko, O. K.; Moiseev, A. V.; Burlak, A. N.; Afanas'ev, V. L.; Dodonov, S. N.; Knapen, J.

    1998-11-01

    The velocity field of the nearly face-on galaxy NGC 3631 is derived from observations in the Hα line on the 6-m telescope of the Special Astrophysical Observatory. These optical data are compared with radio observations of this galaxy (Knapen 1997). It is argued that the two-armed spiral structure of NGC 3631 has a wave nature, and that the observed vertical gas motions represent motions in a spiral density wave.

  10. THE RELATION BETWEEN DYNAMICS AND STAR FORMATION IN BARRED GALAXIES

    SciTech Connect

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A. E-mail: emartinez@cida.ve

    2011-06-20

    We analyze optical and near-infrared data of a sample of 11 barred spiral galaxies, in order to establish a connection between star formation and bar/spiral dynamics. We find that 22 regions located in the bars and 20 regions in the spiral arms beyond the end of the bar present azimuthal color/age gradients that may be attributed to star formation triggering. Assuming a circular motion dynamic model, we compare the observed age gradient candidates with stellar population synthesis models. A link can then be established with the disk dynamics that allows us to obtain parameters like the pattern speed of the bar or spiral as well as the positions of resonance radii. We subsequently compare the derived pattern speeds with those expected from theoretical and observational results in the literature (e.g., bars ending near corotation). We find a tendency to overestimate bar pattern speeds derived from color gradients in the bar at small radii, away from corotation; this trend can be attributed to non-circular motions of the young stars born in the bar region. In spiral regions, we find that {approx}50% of the color gradient candidates are 'inverse', i.e., with the direction of stellar aging contrary to that of rotation. The other half of the gradients found in spiral arms have stellar ages that increase in the same sense as rotation. Of the nine objects with gradients in both bars and spirals, six (67%) appear to have a bar and a spiral with similar {Omega}{sub p}, while three (33%) do not.

  11. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  12. DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:

  13. Measuring the Fraction of Bars and Offset Bars Using the Spitzer Survey of Stellar Structure in Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Alexa

    2012-01-01

    Using the Spitzer Survey of Stellar Structure in Galaxies at 3.6 and 4.5μm, I have measured a preliminary bar fraction and offset bar fraction in the local universe by visually identifying bar structure within a sample of 2,140 local galaxies. A sample this large has not been used since 1963, when Gerard de Vaucouleurs found the bar fraction to be roughly fbar ˜ 0.6 in the Third Reference Catalog of Bright Galaxies. Since then, there has been much debate over the true value of the bar fraction. The purpose of finding a bar fraction using S4G is to provide a final say in this debate. I have found that the bar fraction in the local universe is fbar = 0.69 when including both definite bars (SB) and candidate bars (SAB). I have also measured a preliminary value for the fraction of offset bars using the same sample. Offset bars are a very rare phenomenon. Of the sample used, 91 galaxies are found to be definite offset bars while an additional 39 are found to be candidate offset bars. When including both definite offset bars and candidate offset bars, the offset bar fraction in the local universe becomes fob = 0.12. I also measure the fraction of offset bars as a function of Hubble type and stellar mass. We find that 54% of offset bars are found in disks having a stellar mass of M ≤ 108 M⊙. Late-type disks possess significantly more offset bars than early-type with 60% of offset bars being found in disks having a Hubble type t ≥ 6.

  14. The Interacting Galaxies NGC 5394/5395: A Post-Ocular Galaxy and Its Ring/Spiral Companion

    NASA Astrophysics Data System (ADS)

    Kaufman, Michele; Brinks, Elias; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Klarić , Mario; Struck, Curtis; Thomasson, Magnus; Vogel, Stuart

    1999-10-01

    H I, radio continuum, Fabry-Perot Hα, and ^12CO J=1-->0 observations and broadband optical and near infrared images are presented of the interacting spiral galaxies NGC 5395 and NGC 5394. Kinematically, there are three important, separate components to the H I gas associated with this galaxy pair: (1) the main disk of NGC 5395, (2) a long, northern tidal arm of NGC 5395 distinct in velocity from its main disk, and (3) the disk of NGC 5394. The H I northern tidal arm of NGC 5395 has a line of-sight velocity as much as 75-100 km s^-1 greater than the main disk of NGC 5395 at the same projected location and thus is not in the same plane as the disk. The velocity field of the disk of NGC 5395 is asymmetric and distorted by large-scale and small-scale noncircular motions. In NGC 5395, the encounter appears to be exciting m=1 and m=0 modes in what had been a two-armed spiral. The dominant spiral arm of NGC 5395 forms a large ring or pseudo-ring of Hα, radio continuum, and H I emission, somewhat off center with respect to the nucleus. The H I trough in the center of NGC 5395 is not filled in by molecular gas. The Hα velocity contours exhibit an organized pattern of kinks in crossing the ring and also show streaming motions in a large stellar caustic feature. The eastern side of the ring is brighter in radio continuum and Hα the western side is brighter in H I and contains massive (10^8 M_solar) H I clouds not associated with the most luminous H II regions. The smaller galaxy NGC 5394 is in an immediate post-ocular phase, with a central starburst, an intrinsically oval disk, two long, fairly symmetric, open tidal arms with high arm-interarm contrast, and very bright inner spiral arms, disjoint from the outer tidal arms. Most of the gas in NGC 5394 is in molecular form and concentrated within 3.8 kpc of the center, so is suitable for fueling the starburst. Despite the presence of H I gas, two of the three optically bright inner spiral arms of NGC 5394 show no evidence

  15. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  16. RR Lyrae stars in local group galaxies. I. NGC 185

    SciTech Connect

    Saha, A.; Hoessel, J.G. Space Telescope Science Institute, Baltimore, MD Washburn Observatory, Madison, WI )

    1990-01-01

    Deep CCD images of NGC 185 taken with the 4-shooter on the Hale 5-m telescope have been processed to find and photometrically measure RR Lyrae stars. 176 variable stars have been found, of which 151 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The RR Lyrae stars in this galaxy have a very wide distribution of periods indicating a wide range of metallicity. The mean magnitudes of the RR Lyraes is determined to be 25.20 mag. A distance modulus of 23.79 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. 33 refs.

  17. Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Martín, S.; Kohno, K.; Izumi, T.; Krips, M.; Meier, D. S.; Aladro, R.; Matsushita, S.; Takano, S.; Turner, J. L.; Espada, D.; Nakajima, T.; Terashima, Y.; Fathi, K.; Hsieh, P.-Y.; Imanishi, M.; Lundgren, A.; Nakai, N.; Schinnerer, E.; Sheth, K.; Wiklind, T.

    2015-01-01

    Context. The nearby Sy 1 galaxy NGC 1097 represents an ideal laboratory for exploring the molecular chemistry in the surroundings of an active galactic nucleus (AGN). Aims: Exploring the distribution of different molecular species allows us to understand the physical processes affecting the interstellar medium both in the AGN vicinity and in the outer star forming molecular ring. Methods: We carried out 3 mm ALMA observations that include seven different molecular species, namely HCN, HCO+, CCH, CS, HNCO, SiO, HC3N, and SO, as well as the 13C isotopologues of the first two. Spectra were extracted from selected positions and all species were imaged over the central 2 kpc (~30'') of the galaxy at a resolution of ~2.2'' × 1.5'' (150 pc × 100 pc). Results: HCO+ and CS appear to be slightly enhanced in the star forming ring. CCH shows the largest variations across NGC 1097 and is suggested to be a good tracer of both obscured and early stage star formation. HNCO, SiO, and HC3N are significantly enhanced in the inner circumnuclear disk surrounding the AGN. Conclusions: Differences in the molecular abundances are observed between the star forming ring and the inner circumnuclear disk. We conclude that the HCN/HCO+ and HCN/CS differences observed between AGN-dominated and starburst (SB) galaxies are not due to a HCN enhancement due to X-rays, but rather this enhancement is produced by shocked material at distances of 200 pc from the AGN. Additionally, we claim that lower HCN/CS is a combination of a small underabundance of CS in AGNs, together with excitation effects, where a high density gas component (~106 cm-3) may be more prominent in SB galaxies. However, the most promising are the differences found among the dense gas tracers that, at our modest spatial resolution, seem to outline the physical structure of the molecular disk around the AGN. In this picture, HNCO probes the well-shielded gas in the disk, surrounding the dense material moderately exposed to the X

  18. On wave dark matter in spiral and barred galaxies

    SciTech Connect

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L. E-mail: bray@math.duke.edu

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.

  19. ALMA CO Observations of Shocks and Star Formation in the Interacting Galaxies IC 2163 and NGC 2207

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra M.; Elmegreen, Bruce; Kaufman, Michele; Brinks, Elias; Struck, Curtis; Bournaud, Frederic; Sheth, Kartik; Juneau, Stephanie

    2017-01-01

    The spiral galaxies IC 2163 and NGC 2207 are a well-studied pair undergoing a grazing collision. ALMA CO observations of masses, column densities, and velocities are combined with HI, Hα, optical, and 24 micron data to study the star formation rates and efficiencies. The close encounter of the galaxies produced in-plane tidal forces in IC 2163, resulting in a large shock with high molecular velocity gradients and both radial and azimuthal streaming (100 km/s) that formed a pile-up of molecular gas in the resulting cuspy-oval or ``eyelid'' structure at mid-radius. The encounter also produced forces nearly orthogonal to the plane of NGC 2207, resulting in a warp. By comparing with the Kennicutt-Schmidt relation for star formation, we find that some regions of NGC 2207 with unusually high turbulent speeds (40-50 km/s) and high star formation rates (>0.01 Mo/pc2/Myr) have gas that is predominantly atomic with high density cores. Half of the CO mass is in 300 clouds each more massive than 4.0x105 Mo. The mass distribution functions for the CO clouds and star complexes in the eyelid in IC 2163 both have a slope similar to what is observed in Milky Way clouds; the CO slope is steeper in NGC 2207. The CO distribution in NGC 2207 also includes a nuclear ring, a mini-bar, and a mini-starburst region that dominates the 24 micron, radio, and Hα emission in both galaxies. Dust extinction, molecular column densities, and slightly negative molecular velocities indicate the mini-starburst region has ejected a jet of molecular gas nearly perpendicular to the plane of NGC 2207 on the near side with a kinetic energy of 1052 ergs. The large scale star formation efficiency, measured as the ratio of the summed masses of the star complexes near molecular clouds to the combined star complex and cloud masses, is 7% overall; it is 23% in the mini-starburst. The maximum age of star complexes in the galactic-scale shock front at the eyelid is about the same as the time since closest

  20. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  1. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  2. The Stability Of Disk Barred Galaxies Over the Past 7 Billion Years

    NASA Astrophysics Data System (ADS)

    Tapia, Amauri; Simmons, Brooke

    2017-01-01

    A recently released model of interacting disk galaxies provides a hypothesis for the origins of off center bars in disks. No systematic search for offset bars in the early universe has yet been undertaken. The Galaxy Zoo project has produced data regarding the large-scale bars of many galaxies. Using this data alongside images collected by the Hubble Space Telescope and other sources, we have examined 5190 galaxies for signatures of off-centered bars. Less than 5 percent of the sample shows clear signs of an offset bar. We describe their overall properties of this sub-sample and compare the properties of galaxies with offset bars to those with centered bars. We assess the feasibility of the proposed model and place these galaxies in the context of the overall evolution of galaxies.

  3. Dynamics of barred galaxies: effects of disc height

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Valenzuela, Octavio; Colín, Pedro; Quinn, Thomas

    2009-09-01

    We study dynamics of bars in models of disc galaxies embedded in realistic dark matter haloes. We find that disc thickness plays an important, if not dominant, role in the evolution and structure of the bars. We also make extensive numerical tests of different N-body codes used to study bar dynamics. Models with thick discs typically used in this type of modelling (height-to-length ratio hz/Rd = 0.2) produce slowly rotating, and very long, bars. In contrast, more realistic thin discs with the same parameters as in our Galaxy (hz/Rd ~ 0.1) produce bars with normal length Rbar ~ Rd, which rotate quickly with the ratio of the corotation radius to the bar radius compatible with observations. Bars in these models do not show a tendency to slow down, and may lose as little as 2-3 per cent of their angular momentum due to dynamical friction with the dark matter over cosmological time. We attribute the differences between the models to a combined effect of high phase-space density and smaller Jeans mass in the thin-disc models, which result in the formation of a dense central bulge. Special attention is paid to numerical effects, such as the accuracy of orbital integration, force and mass resolution. Using three N-body codes - GADGET, adaptive refinement tree (ART) and PKDGRAV - we find that numerical effects are very important and, if not carefully treated, may produce incorrect and misleading results. Once the simulations are performed with sufficiently small time-steps and with adequate force and mass resolution, all the codes produce nearly the same results: we do not find any systematic deviations between the results obtained with TREE codes (GADGET and PKDGRAV) and with the adaptive mesh refinement (ART) code.

  4. VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-20

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of T{sub vib} {approx} 230 K between the vibrational ground and excited (v{sub 2} = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v{sub 2} = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO{sup +}, H{sup 13}CN, HC{sup 15}N, CS, N{sub 2}H{sup +}, and HC{sub 3}N at {lambda} {approx} 1 mm. Their relative intensities may also be affected by the infrared pumping.

  5. Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

    NASA Astrophysics Data System (ADS)

    Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.

    2017-03-01

    Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.

  6. Spectroscopic observations of southern nearby galaxies. I. NGC 2442

    NASA Astrophysics Data System (ADS)

    Bajaja, E.; Agüero, E.; Paolantonio, S.

    1999-04-01

    The galaxy NGC 2442 was observed with a REOSC spectrograph, installed in the 2.15 m CASLEO telescope, in order to derive galactic parameters from the observed optical lines and to compare them with the results of radioastronomical observations made in the continuum, at 843 MHz, with the MOST and in the CO lines with the SEST telescope. Recent publications allowed us to extend the comparison to results from interferometric observations of Hα and H I 21 cm lines and of the continuum at 1415 MHz. The long slit observations were made placing the 5farcm 8 slit at six different positions on the optical image of the galaxy. The emission line intensity ratios at the nuclear region indicate that NGC 2442 is a LINER. The electron temperature and volume density are Te ~ 14 000 K and Ne ~ 530 cm(-3) , respectively. In contrast, a spectrum of a region 87arcsec to the NE shows the typical characteristics of a H Ii region. In this case Te ~ 6,500 K and Ne ~ 10 cm(-3) . Good correlations between the distributions of intensities, velocity fields and rotation curves have been found for the optical and radio lines. It is shown that the three intensity peaks along the line at PA = 40degr were not resolved by the observations at radio frequencies. The steep central rotation curve seen in CO has been confirmed and improved showing the existence of a disc or a ring, with a radius of 12.5 arcsec, rotating at 216/sin(i) km s(-1). Two velocity components in three optical spectra obtained in the nuclear region, have been related to two small Hα regions close to the nucleus and to the central ring. Asymmetries in the distributions of the emitting sources and irregularities in their velocity fields indicate the need of modelling the galaxy before any dynamical study is attempted. Based on observations made in the Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina and the National

  7. Evidence of bar-induced secular evolution in the inner regions of stellar discs in galaxies: what shapes disc galaxies?

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Gadotti, Dimitri A.; Athanassoula, E.; Bosma, Albert; Sheth, Kartik; Lee, Myung Gyoon

    2016-11-01

    We present evidence of bar-induced secular evolution in galactic discs using 3.6 μm images of nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We find that among massive galaxies (M*/M⊙ > 1010), longer bars tend to reside in inner discs having a flatter radial profile. Such galaxies show a light deficit in the disc surrounding the bar, within the bar radius and often show a Θ-shaped morphology. We quantify this deficit and find that among all galaxies explored in this study (with 109 < M*/M⊙ < 1011), galaxies with a stronger bar (i.e. longer and/or with a higher Bar/T) show a more pronounced deficit. We also examine simulation snapshots to confirm and extend results by Athanassoula and Misiriotis, showing that as bars evolve they become longer, while the light deficit in the disc becomes more pronounced. Theoretical studies have predicted that, as a barred galaxy evolves, the bar captures disc stars in its immediate neighbourhood so as to make the bar longer, stronger and thinner. Hence, we claim that the light deficit in the inner disc is produced by bars, which thus take part in shaping the mass distribution of their host galaxies.

  8. Non-axisymmetric structure in the satellite dwarf galaxy NGC 2976: Implications for its dark/bright mass distribution and evolution

    SciTech Connect

    Valenzuela, Octavio; Hernandez-Toledo, Hector; Cano, Mariana; Pichardo, Bárbara; Puerari, Ivanio; Buta, Ronald; Groess, Robert

    2014-02-01

    We present the result of an extensive search for non-axisymmetric structures in the dwarf satellite galaxy of M81, NGC 2976, using multiwavelength archival observations. The galaxy is known to present kinematic evidence for a bisymmetric distortion; however, the stellar bar presence is controversial. This controversy motivated the possible interpretation of NGC 2976 as presenting an elliptical disk triggered by a prolate dark matter halo. We applied diagnostics used in spiral galaxies in order to detect stellar bars or spiral arms. The m = 2 Fourier phase has a jump around 60 arcsec, consistent with a central bar and bisymmetric arms. The CO, 3.6 μm surface brightness, and the dust lanes are consistent with a gas-rich central bar and possibly with gaseous spiral arms. The bar-like feature is offset close to 20° from the disk position angle, in agreement with kinematic estimations. The kinematic jumps related to the dust lanes suggest that the bar perturbation in the disk kinematics is non-negligible and the reported non-circular motions, the central gas excess, and the nuclear X-ray source (active galactic nucleus/starburst) might be produced by the central bar. Smoothed particle hydrodynamics simulations of disks inside triaxial dark halos suggest that the two symmetric spots at 130 arcsec and the narrow arms may be produced by gas at turning points in an elliptical disk, or, alternatively, the potential ellipticity can be produced by a tidally induced strong stellar bar/arms; in both cases the rotation curve interpretation is, importantly, biased. The M81 group is a natural candidate to trigger the bisymmetric distortion and the related evolution as suggested by the H I tidal bridge detected by Chynoweth et al. We conclude that both mechanisms, the gas-rich bar and spiral arms triggered by the environment (tidal stirring) and primordial halo triaxiality, can explain most of the NGC 2976 non-circular motions, mass redistribution, and nuclear activity

  9. Introducing a New 3D Dynamical Model for Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zotos, Euaggelos E.

    2015-11-01

    The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in barred galaxies.

  10. Star formation properties in barred galaxies. III. Statistical study of bar-driven secular evolution using a sample of nearby barred spirals

    SciTech Connect

    Zhou, Zhi-Min; Wu, Hong; Cao, Chen E-mail: hwu@bao.ac.cn

    2015-01-01

    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges toward stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of the bar-driven physical process, while future work is needed because of the uncertainties.

  11. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  12. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  13. Star Formation in Nuclear Rings of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Woo-Young; Kim, Woong-Tae

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  14. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing

  15. Model of outgrowths in the spiral galaxies NGC 4921 and NGC 7049 and the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2013-02-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.

  16. Kinematic Clues to Bar Evolution for Galaxies in the Local Universe: Why the Fastest Rotating Bars are Rotating Most Slowly

    NASA Astrophysics Data System (ADS)

    Font, J.; Beckman, J. E.; Martínez-Valpuesta, I.; Borlaff, A. S.; James, P. A.; Díaz-García, S.; García-Lorenzo, B.; Camps-Fariña, A.; Gutiérrez, L.; Amram, P.

    2017-02-01

    We have used Spitzer images of a sample of 68 barred spiral galaxies in the local universe to make systematic measurements of bar length and bar strength. We combine these with precise determinations of the corotation radii associated with the bars, taken from our previous study, which used the phase change from radial inflow to radial outflow of gas at corotation, based on high-resolution two-dimensional velocity fields in Hα taken with a Fabry–Pérot spectrometer. After presenting the histograms of the derived bar parameters, we study their dependence on the galaxy morphological type and on the total stellar mass of the host galaxy, and then produce a set of parametric plots. These include the bar pattern speed versus bar length, the pattern speed normalized with the characteristic pattern speed of the outer disk versus the bar strength, and the normalized pattern speed versus { R }, the ratio of corotation radius to bar length. To provide guidelines for our interpretation, we used recently published simulations, including disk and dark matter halo components. Our most striking conclusion is that bars with values of { R } < 1.4, previously considered dynamically fast rotators, can be among the slowest rotators both in absolute terms and when their pattern speeds are normalized. The simulations confirm that this is because as the bars are braked, they can grow longer more quickly than the outward drift of the corotation radius. We conclude that dark matter halos have indeed slowed down the rotation of bars on Gyr timescales.

  17. The Resolved Stellar Population of the Poststarburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Tosi, Monica; Clampin, Mark; De Marchi, Guido; Leitherer, Claus; Nota, Antonella; Sirianni, Marco

    1998-09-01

    We present Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) photometry of the resolved stellar population in the poststarburst galaxy NGC 1569. The color-magnitude diagram (CMD) derived in the F439W and F555W photometric bands contains ~2800 stars with a photometric error of <=0.2 mag down to mF439, mF555 ~= 26 and is complete for mF555 <~ 23. Adopting the literature-distance modulus and reddening, our CMD samples stars more massive than ~4 M⊙, allowing us to study the star formation (SF) history over the last ~0.15 Gyr. The data are interpreted using theoretical simulations based on stellar evolutionary models. The synthetic diagrams include photometric errors and incompleteness factors. Testing various sets of tracks, we find that the ability of the models to reproduce the observed features in the CMD is strictly related to the shape of the blue loops of the sequences with masses around 5 M⊙. The field of NGC 1569 experienced a global SF burst of >~0.1 Gyr duration, ending ~5-10 Myr ago. During the burst, the SF rate was approximately constant, and, if quiescent periods occurred, they lasted less than ~10 Myr. The level of the SF rate was very high; for a single-slope initial mass function (IMF) ranging from 0.1 to 120 M⊙, we find values of 3, 1, and 0.5 M⊙ yr-1 for α = 3, 2.6, and 2.35 (Salpeter), respectively. When scaled for the surveyed area, these rates are approximately 100 times larger than found in the most active dwarf irregulars in the Local Group. The data are consistent with a Salpeter IMF, though our best models indicate slightly steeper exponents. We discuss the implications of our results in the general context of the evolution of dwarf galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS 5-26555.

  18. The M bh-σ Diagram and the Offset Nature of Barred Active Galaxies

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Li, I.-hui

    2009-06-01

    From a sample of 50 predominantly inactive galaxies with direct supermassive black hole mass measurements, it has recently been established that barred galaxies tend to reside rightward of the M bh-σ relation defined by nonbarred galaxies. Either black holes in barred galaxies tend to be anemic or the central velocity dispersions in these galaxies have a tendency to be elevated by the presence of the bar. The latter option is in accord with studies connecting larger velocity dispersions in galaxies with old bars, while the former scenario is at odds with the observation that barred galaxies do not deviate from the M bh-luminosity relation. Using a sample of 88 galaxies with active galactic nuclei, whose supermassive black hole masses have been estimated from their associated emission lines, we reveal for the first time that they also display this same general behavior in the M bh-σ diagram depending on the presence of a bar or not. A new symmetrical and nonsymmetrical "barless" M bh-σ relation is derived using 82 nonbarred galaxies. The barred galaxies are shown to reside on or up to ~1 dex below this relation. This may explain why narrow-line Seyfert 1 galaxies appear offset from the "barless" M bh-σ relation, and has far-reaching implications given that over half of the disk galaxy population are barred.

  19. Multicolor CCD photometry of six lenticular and spiral galaxies. Structure of the galaxies

    NASA Astrophysics Data System (ADS)

    Gusev, A. S.

    2006-03-01

    The results of multicolor surface photometry of the S0 galaxies NGC 524, NGC 1138, and NGC 7280 and the spiral galaxies NGC 532, NGC 783, and NGC 1589 are reported. U BV RI observations were acquired with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan), while JHK data were taken from the 2MASS catalog. The overall structure of the galaxies is analyzed and the galaxy images decomposed into bulge and disk components. The parameters of the galaxy components—rings, bars, spiral arms, and dust lanes—are determined. The bulge/disk decompositions based on averaged one-dimensional photometric profiles yield incorrect parameters for the bulges of the S0-Sa galaxies with bars and/or rings, whose inner regions are dominated by the radiation of the bulge.

  20. A GIANT STAR FACTORY IN NEIGHBORING GALAXY NGC 6822

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun. These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and is considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius. The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators. This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001. Credits: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University) and L. Bianchi (Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy) NOTE TO EDITORS: For additional information, please contact C. R. O'Dell, Vanderbilt University, Physics and Astronomy Dept., Box 1807 Station B, Nashville, TN 37235, (phone) 615-343-1779, (fax) 615-343-7263, (e-mail) cr.odell@vanderbilt.edu or Luciana Bianchi, Johns Hopkins

  1. Two-dimensional Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Stone, James M.

    2012-06-01

    Barred galaxies are known to possess magnetic fields that may affect the properties of bar substructures such as dust lanes and nuclear rings. We use two-dimensional high-resolution magnetohydrodynamic (MHD) simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures, as well as on the mass inflow rates to the galaxy center. The gaseous medium is assumed to be infinitesimally thin, isothermal, non-self-gravitating, and threaded by initially uniform, azimuthal magnetic fields. We find that there exists an outermost x 1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks, temporarily causing the dust lanes to bend into an "L" shape and eventually leading to a smaller and more centrally distributed ring than in unmagnetized models. The mass inflow rates in magnetized models correspondingly become larger, by more than two orders of magnitude when the initial fields have an equipartition value with thermal energy, than in the unmagnetized counterparts. Outside the outermost x 1-orbit, on the other hand, an MHD dynamo due to the combined action of the bar potential and background shear operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms has a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density that propagate along the arms to turn the outer disk into a highly chaotic state.

  2. Hierarchical star formation across the ring galaxy NGC 6503

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Thilker, David; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Lee, Janice C.; Adamo, Angela; Aloisi, Alessandra; Cignoni, Michele; Cook, David O.; Dale, Daniel A.; Gallagher, John S.; Grasha, Kathryn; Grebel, Eva K.; Davó, Artemio Herrero; Hunter, Deidre A.; Johnson, Kelsey E.; Kim, Hwihyun; Nair, Preethi; Nota, Antonella; Pellerin, Anne; Ryon, Jenna; Sabbi, Elena; Sacchi, Elena; Smith, Linda J.; Tosi, Monica; Ubeda, Leonardo; Whitmore, Brad

    2015-10-01

    We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 per cent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ˜1.7 for length-scales between ˜20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60 per cent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of ˜60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.

  3. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  4. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  5. The mass dependence of star formation histories in barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Carles, Christian; Martel, Hugo; Ellison, Sara L.; Kawata, Daisuke

    2016-11-01

    We performed a series of 29 gas dynamical simulations of disc galaxies, barred and unbarred, with various stellar masses, to study the impact of the bar on star formation history. Unbarred galaxies evolve very smoothly, with a star formation rate (SFR) that varies by at most a factor of 3 over a period of 2 Gyr. The evolution of barred galaxies is much more irregular, especially at high stellar masses. In these galaxies, the bar drives a substantial amount of gas towards the centre, resulting in a high SFR, and producing a starburst in the most massive galaxies. Most of the gas is converted into stars, and gas exhaustion leads to a rapid drop of star formation after the starburst. In massive barred galaxies (stellar mass M_{*}>2× 10^{10} M_{⊙}) the large amount of gas funnelled towards the centre is completely consumed by the starburst, while in lower mass barred galaxies it is only partially consumed. Gas concentration is thus higher in lower mass barred galaxies than it is in higher mass ones. Even though unbarred galaxies funnelled less gas towards their centre, the lower SFR allows this gas to accumulate. At late times, the star formation efficiency is higher in barred galaxies than unbarred ones, enabling these galaxies to maintain a higher SFR with a smaller gas supply. Several properties, such as the global SFR, central SFR, or central gas concentration, vary monotonically with time for unbarred galaxies, but not for barred galaxies. Therefore one must be careful when comparing barred and unbarred galaxies that share one observational property, since these galaxies might be at very different stages of their respective evolution.

  6. A Study of the X-ray Source Population in the Dwarf Galaxy NGC 6822

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Swartz, Douglas A.; Ghosh, Kajal K.; Wu, Kinwah

    2003-01-01

    The dlrr galaxy NGC 6822 is a distant member of the Local Group. It is a site of recent star formation, rich in HII regions and OB associations, as well as containing an older globular cluster population. We present results of a deep Chandra observation of NGC 6822. The brightest source is extended and most likely a SNR. In addition to spectral analysis of the brightest sources, we extend the luminosity function down to the 10(sup)35 erg/s range.

  7. Determining the Nature of the Extended H I Structure around LITTLE THINGS Dwarf Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Johnson, Megan

    2013-06-01

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9° × 2° region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1.°5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0.°5 H I cloud, filaments, and main body of the galaxy. The 0.°5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.

  8. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David; Dolphin, Andrew; Skillman, Evan D. E-mail: jd@astro.washington.edu E-mail: dolphin@raytheon.com

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  9. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    SciTech Connect

    Johnson, Megan

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.

  10. Atomic hydrogen in the spiral galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    1997-04-01

    New high-resolution, high-sensitivity Westerbork Synthesis Radio Telescope Hi synthesis observations of the spiral galaxy NGC 3631 are presented. In the total atomic hydrogen map, the spiral arms are well distinguished from the interarm regions, while the sensitivity allows detection of Hi in all but a few isolated regions of the areas between the spiral arms. Most of the atomic hydrogen is located within the optical disc, but the Hi extends to some 1.5R_opt. The Hi follows the spiral arms, and streaming motions of up to ~15 km s^-1 (projected) can be identified from the velocity field. Assuming a constant inclination angle of 17 deg, a rotation curve is derived which is declining slightly in the outer parts of the disc. An analysis of a residual velocity field, obtained after the subtraction of an axisymmetric model based on the rotation curve, confirms the existence of streaming motions near the spiral arms in an otherwise undisturbed disc.

  11. Compact stellar systems in the polar ring galaxies NGC 4650A and NGC 3808B: Clues to polar disk formation

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Georgiev, Iskren Y.; Puzia, Thomas H.; Goudfrooij, Paul; Arnaboldi, Magda

    2016-01-01

    Context. Polar ring galaxies (PRGs) are composed of two kinematically distinct and nearly orthogonal components, a host galaxy (HG) and a polar ring/disk (PR). The HG usually contains an older stellar population than the PR. The suggested formation channel of PRGs is still poorly constrained. Suggested options are merger, gas accretion, tidal interaction, or a combination of both. Aims: To constrain the formation scenario of PRGs, we study the compact stellar systems (CSSs) in two PRGs at different evolutionary stages: NGC 4650A with well-defined PR, and NGC 3808 B, which is in the process of PR formation. Methods: We use archival HST/WFPC2 imaging in the F450W, F555W, or F606W and F814W filters. Extensive completeness tests, PSF-fitting techniques, and color selection criteria are used to select cluster candidates. Photometric analysis of the CSSs was performed to determine their ages and masses using stellar population models at a fixed metallicity. Results: Both PRGs contain young CSSs (<1 Gyr) with masses of up to 5 × 106M⊙, mostly located in the PR and along the tidal debris. The most massive CSSs may be progenitors of metal-rich globular clusters or ultra compact dwarf (UCD) galaxies. We identify one such young UCD candidate, NGC 3808 B-8, and measure its size of reff = 25.23+1.43-2.01 pc. We reconstruct the star formation history of the two PRGs and find strong peaks in the star formation rate (SFR, ≃200 M⊙/yr) in NGC 3808 B, while NGC 4650 A shows milder (declining) star formation (SFR< 10 M⊙/yr). This difference may support different evolutionary paths between these PRGs. Conclusions: The spatial distribution, masses, and peak star formation epoch of the clusters in NGC 3808 suggest for a tidally triggered star formation. Incompleteness at old ages prevents us from probing the SFR at earlier epochs of NGC 4650 A, where we observe the fading tail of CSS formation. This also impedes us from testing the formation scenarios of this PRG.

  12. The richness of the globular cluster system of NGC 3923: Clues to elliptical galaxy formation

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Geisler, Doug; Ashman, Keith M.

    1994-01-01

    We present new data on the globular cluster system of the elliptical galaxy NGC 3923 which show that it has the most globular clusters per unit luminosity of any noncluster elliptical yet observed, with S(sub N) = 6.4 +/- 1.4. NGC 3923 is also among the brightest ellipticals outside of a galaxy cluster for which the number of globular clusters has been determined. Our observation of a large number of clusters per unit luminosity (high S(sub N)-value) for a bright elliptical in a sparse environment is consistent with the suggestion of Djorgovski and Santiago that the number of globular clusters is a power-law function of the luminosity with an exponent greater than 1. We relate this higher specific frequency of globular clusters in more luminous galaxies to other observations which indicate that the physical conditions within elliptical galaxies at the time of their formation were dependent on galaxy mass.

  13. The environment of barred galaxies in the low-redshift universe

    SciTech Connect

    Lin, Ye; Sodi, Bernardo Cervantes; Li, Cheng; Wang, Lixin; Wang, Enci E-mail: leech@shao.ac.cn

    2014-12-01

    We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ∼50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  14. Modeling and Analysis of the Nearby Colliding Galaxy Pair NGC 6621/22

    NASA Astrophysics Data System (ADS)

    Schwenk, D. R.; Lamb, S. A.; Van Schelt, J. A.; Hearn, N. C.

    2005-12-01

    We present an analysis of the nearby interacting galaxies NGC 6621/22 (Arp 81), comparing the results of a combined N-body/SPH simulation of the collision between two suitable disk galaxy models with multi-wavelength observations. Arp 81 is undergoing a strong collision that has triggered periods of intense star formation in the pair. We use archived IRAC and HST images to identify regions of extensive star formation that took place in the system at previous times. From the simulation we obtain information on the physical conditions that likely existed in these regions, and that drove the star formation. By scaling the models, using best estimates of the mass and radius of each galaxy, we find the timescale for various star formation events. We deduce that there has been mass transfer from the more massive NGC 6621 to the less massive NGC 6622, and that this has led to nuclear star formation in NGC 6622. There has also been extensive star formation in two extended `arms' in NGC 6621, one of which formed a bridge between the two galaxies. (This work was supported in part by the National Science Foundation, under grant PHY-0243675, and by the Department of Energy under contract DOE LLNL B506657. The numerical simulations were performed on the Turing Computer Cluster in the College of Engineering at UIUC.)

  15. Shaken, not Stirred: the Ancestry of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2011-12-01

    Near-infrared images obtained with WIRCam are used to investigate the recent history of the starburst galaxy NGC 253. The distribution of stars in the disk is lopsided, with the projected density of young and intermediate age stars in the north east portion of the disk higher than on the opposite side of the galaxy. Bright AGB stars are also detected out to 15 kpc above the disk plane. Comparisons with models suggest that the extraplanar stars formed over a broad range of ages, suggesting that the disk of NGC 253 was disrupted by a tidal encounter.

  16. The `shook up' galaxy NGC 3079: the complex interplay between H I, activity and environment

    NASA Astrophysics Data System (ADS)

    Shafi, N.; Oosterloo, T. A.; Morganti, R.; Colafrancesco, S.; Booth, R.

    2015-12-01

    We present deep neutral hydrogen (H I) observations of the starburst/Seyfert galaxy NGC 3079 and its environment, obtained with the Westerbork Synthesis Radio Telescope. Our observations reveal previously unknown components, both in H I emission and in absorption, that show that NGC 3079 is going through a hectic phase in its evolution. The H I disc appears much more extended than previously observed and is morphologically and kinematically lopsided on all scales with evidence for strong non-circular motions in the central regions. Our data reveal prominent gas streams encircling the entire galaxy suggesting strong interaction with its neighbours. A 33 kpc long H I bridge is detected between NGC 3079 and MCG 9-17-9, likely caused by ram-pressure stripping of MGC 9-17-9 by the halo of hot gas of NGC 3079. The cometary H I tail of the companion NGC 3073, earlier discovered by Irwin et al., extends about twice as long in our data, while a shorter, second tail is also found. This tail is likely caused by ram-pressure stripping by the strong, starburst-driven wind coming from NGC 3079. We also detect, in absorption, a nuclear H I outflow extending to velocities well outside what expected for gravitational motion. This is likely an atomic counterpart of the well-studied outflow of ionized gas present in this galaxy. This may indicate that also large amounts of cold gas are blown out of NGC 3079 by the starburst/AGN. Our estimates of the jet energy and kinetic power suggest that both the AGN and the starburst in NGC 3079 are powerful enough to drive the atomic outflow.

  17. The star formation history of low-mass disk galaxies: A case study of NGC 300

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Zhang, Fenghui; Chang, Ruixiang; Wang, Lang; Cheng, Liantao

    2016-01-01

    Context. Since NGC 300 is a bulgeless, isolated low-mass galaxy and it has not experienced radial migration during its evolution history, it can be treated as an ideal laboratory to test the simple galactic chemical evolution model. Aims: Our main aim is to investigate the main properties of the star formation history (SFH) of NGC 300 and compare its SFH with that of M 33 to explore the common properties and differences between these two nearby low-mass systems. Methods: We construct a simple chemical evolution model for NGC 300, assuming its disk forms gradually from continuous accretion of primordial gas and including the gas-outflow process. The model allows us to build a bridge between the SFH and observed data of NGC 300, in particular, the present-day radial profiles and global observed properties (e.g., cold gas mass, star formation rate, and metallicity). By means of comparing the model predictions with the corresponding observations, we adopt the classical χ2 methodology to find out the best combination of free parameters a, b, and bout. Results: Our results show that by assuming an inside-out formation scenario and an appropriate outflow rate, our model reproduces well most of the present-day observational values. The model not only reproduces well the radial profiles, but also the global observational data for the NGC 300 disk. Our results suggest that NGC 300 may experience a rapid growth of its disk. Through comparing the best-fitting, model-predicted SFH of NGC 300 with that of M 33, we find that the mean stellar age of NGC 300 is older than that of M 33 and there is a recent lack of primordial gas infall onto the disk of NGC 300. Our results also imply that the local environment may play a key role in the secular evolution of galaxy disks.

  18. Ultraviolet Signposts of Resonant Dynamics in the Starburst-ringed SAB Galaxy M94 (NGC 4736)

    NASA Astrophysics Data System (ADS)

    Waller, William H.; Fanelli, Michael N.; Keel, William C.; Bohlin, Ralph; Collins, Nicholas R.; Madore, Barry F.; Marcum, Pamela M.; Neff, Susan G.; O'Connell, Robert W.; Offenberg, Joel D.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    2001-03-01

    The dynamic orchestration of star-birth activity in the starburst-ringed galaxy M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (UIT; far-ultraviolet [FUV] band), Hubble Space Telescope (HST; near-ultraviolet [NUV] band), Kitt Peak 0.9 m telescope (Hα, R, and I bands), and Palomar 5 m telescope (B band), along with spectra from the International Ultraviolet Explorer (IUE) and the Lick 1 m telescope. The wide-field UIT image shows FUV emission from (1) an elongated nucleus, (2) a diffuse inner disk, where Hα is observed in absorption, (3) a bright inner ring of H II regions at the perimeter of the inner disk (R=48"=1.1 kpc), and (4) two 500 pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R=130"=2.9 kpc). The HST Faint Object Camera image resolves the NUV emission from the nuclear region into a bright core and a faint 20" long ``minibar'' at a position angle of 30°. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates a ~107-108 yr old stellar population from low-level star-birth activity blended with some LINER activity. Analysis of the Hα-, FUV-, NUV-, B-, R-, and I-band emissions, along with other observed tracers of stars and gas in M94, indicates that most of the star formation is being orchestrated via ring-bar dynamics, involving the nuclear minibar, inner ring, oval disk, and outer ring. The inner starburst ring and bisymmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of ~1.5 provides an important precedent in this regard.

  19. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    SciTech Connect

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J.; Sanchez, S. F.

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  20. Midlife Crises in Dwarf Galaxies in the NGC 5353/4 Group

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent; Trentham, Neil

    2008-04-01

    This third paper in a series about the dwarf galaxy populations in groups within the Local Supercluster concerns the intermediate mass (2.1 × 1013 M sun) NGC 5353/4 Group with a core dominated by S0 systems and a periphery of mostly spiral systems. Dwarf galaxies are strongly concentrated toward the core. The mass-to-light ratio M/LR = 105 M sun/L sun is a factor of 3 lower than for the two groups studied earlier in the series. The properties of the group suggest it is much less dynamically evolved than those two groups of early-type galaxies. By comparison, the NGC 5353/4 Group lacks superluminous systems but has a large fraction of intermediate-luminosity galaxies; or equivalently, a luminosity function with a flatter faint-end slope. The luminosity function for the NGC 5353/4 Group should steepen as the intermediate-luminosity galaxies merge. Evidence for the ongoing collapse of the group is provided by the unusually large incidence of star-formation activity in small galaxies with early morphological types. The pattern in the distribution of galaxies with activity suggests a succession of infall events. Residual gas in dwarfs that enter the group is used up in sputtering events. The resolution of midlife crises is exhaustion.

  1. GALEX Ultraviolet Observations of the Interacting Galaxy NGC 4438 in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Buat, V.; Iglesias-Paramo, J.; Madore, B. F.; Barlow, T.; Bianchi, L.; Byun, Y.-I.; Donas, J.; Forster, K.; Friedman, P. G.; Heckman, T. M.; Jelinsky, P.; Lee, Y.-W.; Malina, R.; Martin, D. C.; Milliard, B.; Morrissey, P.; Neff, S.; Rich, R. M.; Schiminovich, D.; Seibert, M.; Siegmund, O.; Small, T.; Szalay, A. S.; Welsh, B.; Wyder, T. K.

    2005-04-01

    We present GALEX near-ultraviolet (2310 Å) and far-ultraviolet (1530 Å) images of the interacting galaxy NGC 4438 (Arp 120) in the center of the Virgo Cluster. These images show an extended (20 kpc) tidal tail at the northwest edge of the galaxy that was previously undetected at other wavelengths; this tail is 15-25 kpc from NGC 4438's nucleus. Except for in the nucleus, the UV morphology of NGC 4438 is totally different from the Hα + [N II] morphology, which is more similar to the X-ray emission, confirming its gas cooling origin. We study the star formation history of NGC 4438 by combining spectrophotometric data in the UV-visible-near-IR wavelength range with population synthesis and galaxy evolution models. The data are consistent with a recent (~10 Myr), instantaneous burst of star formation in the newly discovered UV northwestern tail that is significantly younger than the age of the tidal interaction with NGC 4435, dated by dynamical models at ~100 Myr ago. Recent star formation events are also present at the edge of the northern arm and in the southern tail, while totally lacking in the other regions, which are dominated by the old stellar population that was perturbed during the dynamical interaction with NGC 4435. The contribution of this recent starburst to the total galaxy stellar mass is lower than 0.1%, an extremely low value for such a violent interaction. High-velocity, off-center tidal encounters such as that observed in Arp 120 are thus not sufficient to significantly increase the star formation activity of cluster galaxies.

  2. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5 galaxies. Aims: NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods: In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g' 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results: The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+ 1.4-1.2 Gyr and [Z/H] = -0.79 ± 0.04 dex, respectively, as well as [α/ Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions: Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.

  3. Revealing Galactic scale bars with the help of Galaxy Zoo and ALFALFA .

    NASA Astrophysics Data System (ADS)

    Masters, K. L.; the Galaxy Zoo Team

    We use visual classifications of the brightest 250,000 galaxies in the Sloan Digital Sky Survey Main Galaxy Sample provided by citizen scientists via the Galaxy Zoo project (www.galaxyzoo.org, Lintott et al. 2008) to identify a sample of local disc galaxies with reliable bar identifications. These data, combined with information on the atomic gas content from the ALFALFA survey (Haynes et al. 2011) show that disc galaxies with higher gas content have lower bar fractions. We use a gas deficiency parameter to show that disc galaxies with more/less gas than expected for their stellar mass are less/more likely to host bars. Furthermore, we see that at a fixed gas content there is no residual correlation between bar fraction and stellar mass. We argue that this suggests previously observed correlations between galaxy colour/stellar mass and (strong) bar fraction (e.g. from the sample in Masters et al. 2011, and also see Nair & Abraham 2010) could be driven by the interaction between bars and the gas content of the disc, since more massive, optically redder disc galaxies are observed to have lower gas contents. Furthermore we see evidence that at a fixed gas content the global colours of barred galaxies are redder than those of unbarred galaxies. We suggest that this could be due to the exchange of angular momentum beyond co-rotation which might stop a replenishment of gas from external sources, and act as a source of feedback to temporarily halt or reduce the star formation in the outer parts of barred discs. These results (published as Masters et al. 2012) combined with those of Skibba et al. (2012), who use the same sample to show a clear (but subtle and complicated) environmental dependence of the bar fraction in disc galaxies, suggest that bars are intimately linked to the evolution of disc galaxies.

  4. The evolutionary history of the interacting Galaxy system NGC 7714/7715 (Arp 284)

    NASA Technical Reports Server (NTRS)

    Smith, Beverly J.; Wallin, John F.

    1992-01-01

    The distribution and kinematics of atomic hydrogen in an interacting galaxy pair are studied to develop a model of its formation and assess its implications. H I gas peaks, bridges, and tails for NGC 7714/7715 (Arp 284) are identified with the VLA observations, and the velocity field appears to indicate that of an inclined rotating disk. A parabolic off-center collision is modeled for two disk galaxies with different masses, and formation scenario leads to results consistent with the observations. The point of closest approach occurred 1.1 x 10 exp 8 years ago, and the inclination angle for NGC 7714 is given at around 30 deg. This ring galaxy's lack of star formation is attributed to the large impact parameter associated with the parabolic off-center collision considered for Arp 284. Star formation and the initial mass function of the interacting galaxy pair are studied to assess the age and composition of the objects.

  5. The low-luminosity galaxy population in the NGC5044 Group

    NASA Astrophysics Data System (ADS)

    Cellone, Sergio A.; Buzzoni, Alberto

    2005-01-01

    We present multicolour imaging for a sample of 33 dwarf and intermediate-luminosity galaxies in the field of the NGC5044 Group, complemented with mid-resolution spectroscopy for a subsample of 13 objects. With these data, a revised membership and morphological classification is made for the galaxies in the sample. We were able to confirm all but one of the `definite members' included in the spectroscopic subsample, galaxies which were originally classified based on morphological criteria. An important fraction of background galaxies, however, is probably present among `likely' and `possible' members. The presence of a nucleus could be detected in just five out of the nine galaxies originally classified as dE,N, confirming the intrinsic difficulty of photographic-plate morphological classification for this kind of object. Our deep surface photometry provided clear evidence for disc structure in at least three galaxies previously catalogued as dE or dS0. Their transition-type properties are also evident from the colour-magnitude diagram, where they lie near the late-type galaxy locus, suggesting an evolutionary connection between a parent disc-galaxy population and at least some present-day dEs. Six new dSph candidates were also found, most of them at small projected distances from NGC5044, the central galaxy of the group. The NGC5044 Group appears clearly defined in redshift space, with a mean heliocentric radial velocity of = 2461 +/- 84km s-1 (z= 0.0082), and a moderate dispersion of σvr= 431 km s-1. Our kinematical data show no luminosity segregation for early-type galaxies: both dwarf and bright E/S0 systems show very similar velocity distributions (σvr~ 290 km s-1). This is in contrast to late-type galaxies, which seem to display a broader distribution (σvr~ 680 km s-1).

  6. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  7. A 2 Millimeter Spectral Line Survey of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    2006-06-01

    We present the first unbiased molecular line survey toward an extragalactic source, namely the nuclear region of the starburst galaxy NGC 253. The scan covers the frequency band from 129.1 to 175.2 GHz, i.e., most of the 2 mm atmospheric window. We identify 111 spectral features as transitions from 25 different molecular species. Eight of which (three tentatively) are detected for the first time in the extragalactic interstellar medium. Among these newly detected species, we detected the rare isotopomers 34SO and HC18O+. Tentative detections of two deuterated species, DNC and N2D+, are reported for the first time from a target beyond the Magellanic Clouds. In addition, three hydrogen recombination lines are identified, while no organic molecules larger than methanol are detected. Column densities and rotation temperatures are calculated for all the species, including an upper limit to the ethanol abundance. A comparison of the chemical composition of the nuclear environment of NGC 253 with those of selected nearby galaxies demonstrates the chemical resemblance of IC 342 and NGC 4945 to that of NGC 253. On the other hand, the chemistries characterizing NGC 253 and M82 are clearly different. We also present a comparison of the chemical composition of NGC 253 with those observed in Galactic prototypical sources. The chemistry of NGC 253 shows a striking similarity with the chemistry observed toward the Galactic center molecular clouds, which are thought to be dominated by low-velocity shocks. This resemblance strongly suggests that the heating in the nuclear environment of NGC 253 is dominated by the same mechanism as that in the central region of the Milky Way.

  8. Measuring the Stellar Kinematics of the S0 Galaxy NGC 4203

    NASA Astrophysics Data System (ADS)

    Calbo, Zuzana Isabelle; Walsh, Jonelle; Barth, Aaron J.; van den Bosch, Remco; Shields, Joseph C.; Sarzi, Marc

    2017-01-01

    Black holes lie at the centers of every large galaxy, and their masses can be measured in two ways, by modeling the motions of stars or gas. Both methods suffer from different systematic effects, therefore comparisons between the two are important for assessing the consistency of the methods and the effects on the black hole - host galaxy relations. However, there are only a few cases in which a galaxy's black hole mass has been determined using both stellar and gas-dynamical methods. The nearby, S0 galaxy NGC 4203 provides the opportunity to conduct this necessary cross-check. Here we present near infrared adaptive optics observations of NGC 4203 taken with the integral field spectrograph OSIRIS on the Keck II telescope. We measure the velocity, velocity dispersion, and higher-order velocity moments, h_3 and h_4, within ~100 pc of the galaxy's center. We find that the galaxy is rotating, and that there is a drop in velocity dispersion at the nucleus. The stellar kinematics on these small spatial scales are essential for a robust determination of the NGC 4203 black hole mass, which can then be compared to a gas-dynamical determination from existing Hubble Space Telescope observations.

  9. Stellar kinematics in the nucleus of NGC 6240: A massive galaxy revealed

    NASA Technical Reports Server (NTRS)

    Lester, Dan F.; Gaffney, Niall I.

    1994-01-01

    We have used the 2.3 micron bandhead of CO to measure the kinematics of the red stellar population in the nucleus of the luminous galaxy NGC 6240, the near-infrared spectrum of which is dominated by lines of shocked gas. With this manifest evidence for dissipative effects in the gas, it is such stellar velocity dispersion that is most unambiguously indicative of gravitational potential. We find a nuclear velocity dispersion sigma = 350 km/sec which is considerably larger than that seen in any gaseous component of this galaxy. At least one partner in this merger must therefore have been very massive, with M(sub B) approximately -23. In view of conventional wisdom that the high luminosity of NGC 6240 derives from star formation, it is suprising that we find M/L to be of order unity. While there seems to be little question that star formation is taking place in this interacting system, this high M/L calls into question the importance of star formation in the luminosity budget of the galaxy. In particular, it seems likely that the red starlight in NGC 6240 is produced by giants rather than a population of young red supergiants. This brings into question the (now reflexive) association of relatively deep CO bands in galaxies (which are conspicuously strong in NGC 6240) with recent star formation.

  10. The Low-luminosity Galaxy Population in the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Cellone, S. A.; Buzzoni, A.

    Detailed surface photometry for 79 (mostly dwarf) galaxies in the NGC5044 Group area is analysed, revealing the existence of different morphologies among objects originally classified as early-type dwarfs. Particularly, a significant fraction of bright dwarf "ellipticals" show a distinct bulge+disc structure; we thus re-classify these objects as dwarf lenticulars (dS0).

  11. The potential role of NGC 205 in generating Andromeda's vast thin corotating plane of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Angus, Garry W.; Coppin, Paul; Gentile, Gianfranco; Diaferio, Antonaldo

    2016-11-01

    The Andromeda galaxy is observed to have a system of two large dwarf ellipticals and ˜13 smaller satellite galaxies that are currently corotating in a thin plane, in addition to 2 counter-rotating satellite galaxies. We explored the consistency of those observations with a scenario where the majority of the corotating satellite galaxies originated from a subhalo group, where NGC 205 was the host and the satellite galaxies occupied dark matter sub-subhaloes. We ran N-body simulations of a close encounter between NGC 205 and M31. In the simulations, NGC 205 was surrounded by massless particles to statistically sample the distribution of the sub-subhaloes expected in a subhalo that has a mass similar to NGC 205. We made Monte Carlo samplings and found that, using a set of reference parameters, the probability of producing a thinner distribution of sub-subhaloes than the observed NGC 205 + 15 smaller satellites (thus including the two counter-rotators, but excluding M32) increased from <10-8 for the initial distribution to ˜10-2 at pericentre. The probability of the simulated sub-subhaloes occupying the locations of the observed corotating satellites in the line-of-sight velocity versus projected on-sky distance plane is at most 2 × 10-3 for 11 out of 13 satellites. Increasing the mass of M31 and the extent of the initial distribution of sub-subhaloes gives a maximum probability of 4 × 10-3 for all 13 corotating satellites, but the probability of producing the thinness would drop to ˜10-3.

  12. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  13. Fine structure of the nucleus of the galaxy NGC 1275

    NASA Astrophysics Data System (ADS)

    Matveyenko, L. I.; Seleznev, S. V.

    2016-04-01

    The fine structure of the nucleus of the Seyfert galaxy NGC 1275 was investigated in 2005-2010 at a wavelength of 2 cm with a resolution as high as 50 μas. The structure consists of two parallel identical systems, eastern and western, spaced 0.5 pc apart in the plane of the sky. Each of them contains an ejector and a bipolar outflow. There are extended regions, lobes, at the extension of the bipolar outflows in the -10° and 170° directions at distances of 5 pc northward and 6.5 pc southward of the active zone. The observed difference between the jet and counterjet sizes by a factor of ~3 and between the distances to the lobes by a factor of 0.8 is determined by the difference between their velocities and by the change of sign of the outflow acceleration in the period of silence. The high-velocity bipolar outflows are surrounded by three pairs of low-velocity components. The diameters of the low-velocity coaxial outflows and the third component are Ø1 ≈ 0.3 pc, Ø2 ≈ 0.8 pc, and Ø3 ≈ 1.4 pc at the detection limit. The outer low-velocity components of the outflows encompass both high-velocity outflows. The velocities of the outflows and their brightness temperatures increase exponentially as the center of the high-velocity outflows is approached. The brightness temperatures of the high-velocity outflows at the ejector exit are T b > 1012 K. The spectral line velocities in the nuclear region differ by ~600 km s-1 due to the velocity difference between the two systems. In the case of Keplerian motion, the revolution period is ~5 × 103 yr, and the mass of the central massive bodies, black holes, is M ≈ 107M⊙. The fine structure suggests a vortical nature of the formation. In the case under consideration, two parallel vortices spaced ~0.5 pc apart and shifted by ~0.5 pc relative to each other were formed. The surrounding material inflows onto the disk of each system, is transferred in a spiral to the center, and is ejected in the -10° and 170

  14. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  15. Velocity dispersions in galaxies. I - The E7 galaxy NGC 7332.

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Chevalier, R. A.

    1972-01-01

    A coude spectrum of the E7 galaxy NGC 7332 with 0.9 A-resolution from 4186 to 4364 A was obtained with the Princeton SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 (plus or minus 20) km/sec with the best fit at G8 III. The dispersion appears to be constant within plus or minus 35 km/sec out to 1.4 kpc. After correction for projection, the rotation curve has a slope of 0.18 km/sec per pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 140 billion solar masses if the mass-to-light ratio is constant throughout the galaxy.

  16. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    SciTech Connect

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch; Roussel, H.; Sauvage, M.; Lebouteiller, V.; Madden, S.; Baes, M.; De Looze, I.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Clements, D. L.; Cooray, A.; Galametz, M.; and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  17. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  18. BaLROG: The Influence of Bars on the Dynamical Structure in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Díaz-García, S.; Laurikainen, E.; Salo, H.; Knapen, J. H.

    2016-10-01

    Using the BaLROG (Bars in Low Redshift Optical Galaxies) sample of 16 morphologically distinct barred spirals, we constrain the influence of bars on nearby galaxies observationally. Our sample appears small compared to ongoing IFU surveys, but offers a tenfold sharper spatial resolution (˜100 pc) as each galaxy is a mosaic of several pointings observed with the IFU spectrograph SAURON. We demonstrate a correlation between the bar strength Qb determined from classical torque analysis using 3.6 μm Spitzer (S4G) images, with Qkin, a kinematic torque, calculated via our new method based solely on the kinematics. Using a large number of N-body simulations, we verify this correlation and the measurement of Qb. We also determine bar strengths from ionized gas kinematics and find that they are ˜2.5 larger than those measured from stellar kinematics. Further, inner kinematic features related to bars as predicted by simulations seem to be stronger for stronger bars. We find a stellar angular momentum dip at 0.2±0.1 bar lengths. In these central regions, about half of our sample also exhibits an anti-correlation of h3 - stellar velocity (v/σ). An increased flattening of the stellar σ gradient with increasing bar strength supports the notion of bar-induced orbit mixing. Our results constrain the spatial scales and magnitude of a kinematic influence of bar-driven secular evolution in present day galaxies.

  19. DECREASED FREQUENCY OF STRONG BARS IN S0 GALAXIES: EVIDENCE FOR SECULAR EVOLUTION?

    SciTech Connect

    Buta, R.; Laurikainen, E.; Salo, H.

    2010-09-20

    Using data from the Near-Infrared S0 Survey of nearby, early-type galaxies, we examine the distribution of bar strengths in S0 galaxies as compared to S0/a and Sa galaxies, and as compared to previously published bar strength data for Ohio State University Bright Spiral Galaxy Survey spiral galaxies. Bar strengths based on the gravitational torque method are derived from 2.2 {mu}m K{sub s} -band images for a statistical sample of 138 (98 S0, 40 S0/a,Sa) galaxies having a mean total blue magnitude (B{sub T}) {<=} 12.5 and generally inclined less than 65{sup 0}. We find that S0 galaxies have weaker bars on average than spiral galaxies in general, even compared to their closest spiral counterparts, S0/a and Sa galaxies. The differences are significant and cannot be entirely due to uncertainties in the assumed vertical scale heights or in the assumption of constant mass-to-light ratios. Part of the difference is likely simply due to the dilution of the bar torques by the higher mass bulges seen in S0s. If spiral galaxies accrete external gas, as advocated by Bournaud and Combes, then the fewer strong bars found among S0s imply a lack of gas accretion according to this theory. If S0s are stripped former spirals, or else are evolved from former spirals due to internal secular dynamical processes which deplete the gas as well as grow the bulges, then the weaker bars and the prevalence of lenses in S0 galaxies could further indicate that bar evolution continues to proceed during and even after gas depletion.

  20. Carbon star survey in the Local Group. VII. NGC 3109 a galaxy without a stellar halo

    NASA Astrophysics Data System (ADS)

    Demers, S.; Battinelli, P.; Letarte, B.

    2003-11-01

    We present a CFH12K wide field survey of the carbon star population in and around NGC 3109. Carbon stars, the brightest members of the intermediate-age population, were found nearly exclusively in and near the disk of NGC 3109, ruling out the existence of an extensive intermediate-age halo like the one found in NGC 6822. Over 400 carbon stars identified have = -4.71, confirming the nearly universality of mean magnitude of C star populations in Local Group galaxies. Star counts over the field reveal that NGC 3109 is a truncated disk shaped galaxy without an extensive stellar halo. The minor axis star counts reach the foreground density between 4' and 5', a distance that can be explained by an inclined disk rather than a spheroidal halo. We calculate a global C/M ratio of 1.75 +/- 0.20, a value expected for such a metal poor galaxy. The complete Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/795

  1. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    SciTech Connect

    Lee, Myung Gyoon; Jang, In Sung E-mail: isjang@astro.snu.ac.kr

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  2. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  3. The Rings Survey. I. Hα and H I Velocity Maps of Galaxy NGC 2280

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl J.; Williams, T. B.; Spekkens, Kristine; Lee-Waddell, K.; Kuzio de Naray, Rachel; Sellwood, J. A.

    2015-03-01

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry-Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280. Based in part on observations obtained with the Southern African Large Telescope (SALT) program 2011-3-RU-003.

  4. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  5. THE RINGS SURVEY. I. Hα AND H i VELOCITY MAPS OF GALAXY NGC 2280

    SciTech Connect

    Mitchell, Carl J.; Williams, T. B.; Sellwood, J. A.; Spekkens, Kristine; Lee-Waddell, K.; Naray, Rachel Kuzio de E-mail: williams@saao.ac.za E-mail: karen.lee-waddell@rmc.ca E-mail: sellwood@physics.rutgers.edu

    2015-03-15

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry–Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280.

  6. Counterrotating stars in the disk of the Sab galaxy NGC 7217

    NASA Technical Reports Server (NTRS)

    Merrifield, Michael R.; Kuijken, Konrad

    1994-01-01

    We have analyzed high signal-to-noise spectra of the disk galaxy NGC 7217 in order to extract the full line-of-sight velocity distribution along both its major and minor axes. The data reveal that 20%-30% of the stars in this galaxy are in a distinct component on retrograde orbits. This counterrotating population cannot be explained away as a systematic error, and it does not seem to be caused by the bulge's contribution to the velocity distribution. We have developed a new technique for fitting dynamical disk models directly to the galaxy spectra, and application of this method confirms the presence of the distinct counterrotating disk population. NGC 7217 is only the second disk galaxy known to contain counterrotating stars, but we argue that similar components in other regular disk systems would not have been detected by traditional techniques, and so there could exist many such systems. The existence of disk stars on retrograde orbits provides a new clue as to the manner in which the galaxy formed: it favors a scenario in which matter continues to accrete onto the galaxy over a long period of time, with rapid, substantial changes occurring in the angular momentum of the infalling material. The observable consequences of this evolutionary history include a large bulge-to-disk ratio and the absence of strong spiral structure, and so the presence or absnece of a counterrotating component may go some way toward explaining the Hubble sequence for disk galaxies.

  7. Counterrotating stars in the disk of the SAB galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Merrifield, Michael R.; Kuijken, Konrad

    1994-09-01

    We have analyzed high signal-to-noise spectra of the disk galaxy NGC 7217 in order to extract the full line-of-sight velocity distribution along both its major and minor axes. The data reveal that 20%-30% of the stars in this galaxy are in a distinct component on retrograde orbits. This counterrotating population cannot be explained away as a systematic error, and it does not seem to be caused by the bulge's contribution to the velocity distribution. We have developed a new technique for fitting dynamical disk models directly to the galaxy spectra, and application of this method confirms the presence of the distinct counterrotating disk population. NGC 7217 is only the second disk galaxy known to contain counterrotating stars, but we argue that similar components in other regular disk systems would not have been detected by traditional techniques, and so there could exist many such systems. The existence of disk stars on retrograde orbits provides a new clue as to the manner in which the galaxy formed: it favors a scenario in which matter continues to accrete onto the galaxy over a long period of time, with rapid, substantial changes occurring in the angular momentum of the infalling material. The observable consequences of this evolutionary history include a large bulge-to-disk ratio and the absence of strong spiral structure, and so the presence or absence of a counterrotating component may go some way toward explaining the Hubble sequence for disk galaxies.

  8. Galaxy Zoo 2: A Study of Bar Fraction Versus Stellar Mass and Environment

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; Bamford, S.; Lintott, C.; Schawinski, K.; Smith, A.; Whyte, L.; Galaxy Zoo Team

    2010-01-01

    Galaxy Zoo has involved ¼ million of the public through the Internet in providing morphological classifications of nearly a million galaxies from the Sloan Digital Sky Survey (SDSS). Galaxy Zoo 2 is a follow on project and has already recorded more than 40 million detailed morphological classifications on the brightest 250,000 galaxies in the SDSS. Among the most interesting products is a catalog of 10,000 barred spirals - an order of magnitude increase on the sample sizes used in most current population studies of barred spirals. In this poster we present a first look at the properties of this catalog focusing in particular on the fraction of spirals with bars as a function of environment, stellar mass and star formation history. Barred spirals are a sensitive indicator of the dynamical state of a galaxy and we discuss the implications for the evolution of the spiral population.

  9. Barred Galaxy Photometry: Comparing results from the Cananea sample with N-body simulations

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Gadotti, D. A.; Carrasco, L.; Bosma, A.; de Souza, R. E.; Recillas, E.

    2009-11-01

    We compare the results of the photometrical analysis of barred galaxies with those of a similar analysis from N-body simulations. The photometry is for a sample of nine barred galaxies observed in the J and K[s] bands with the CANICA near infrared (NIR) camera at the 2.1 m telescope of the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. The comparison includes radial ellipticity profiles and surface brightness (density for the N-body galaxies) profiles along the bar major and minor axes. We find very good agreement, arguing that the exchange of angular momentum within the galaxy plays a determinant role in the evolution of barred galaxies.

  10. On the offset of barred galaxies from the black hole M {sub BH}-σ relationship

    SciTech Connect

    Brown, Jonathan S.; Valluri, Monica; Shen, Juntai; Debattista, Victor P. E-mail: mvalluri@umich.edu

    2013-12-01

    We use collisionless N-body simulations to determine how the growth of a supermassive black hole (SMBH) influences the nuclear kinematics in both barred and unbarred galaxies. In the presence of a bar, the increase in the velocity dispersion σ (within the effective radius) due to the growth of an SMBH is on average ≲ 10%, whereas the increase is only ≲ 4% in an unbarred galaxy. In a barred galaxy, the increase results from a combination of three separate factors: (1) orientation and inclination effects; (2) angular momentum transport by the bar that results in an increase in the central mass density; and (3) an increase in the vertical and radial velocity anisotropy of stars in the vicinity of the SMBH. In contrast, the growth of the SMBH in an unbarred galaxy causes the velocity distribution in the inner part of the nucleus to become less radially anisotropic. The increase in σ following the growth of the SMBH is insensitive to a variation of a factor of 10 in the final mass of the SMBH, showing that it is the growth process rather than the actual SMBH mass that alters bar evolution in a way that increases σ. We argue that using an axisymmetric stellar dynamical modeling code to measure SMBH masses in barred galaxies could result in a slight overestimate of the derived M {sub BH}, especially if a constant M/L ratio is assumed. We conclude that the growth of a black hole in the presence of a bar could result in an increase in σ that is roughly 4%-8% larger than the increase that occurs in an axisymmetric system. While the increase in σ due to SMBH growth in a barred galaxy might partially account for the claimed offset of barred galaxies and pseudo bulges from the M {sub BH}-σ relation obtained for elliptical galaxies and classical bulges in unbarred galaxies, it is inadequate to account for all of the offset.

  11. Evidence for a Merger in the Peculiar Virgo Cluster SA Galaxy NGC 4424

    NASA Astrophysics Data System (ADS)

    Kenney, Jeffrey D. P.; Koopmann, Rebecca A.; Rubin, Vera C.; Young, Judith S.

    1996-01-01

    We present R-band and Hα images and Hα long-slit spectroscopy of the peculiar Virgo cluster Sa galaxy NGC 4424. The broadband R image reveals banana-shaped isophotes, shell-like features, and other complex structure generally associated with mergers and significant accretion events. The only Hα emission arises from a few bright H II complexes located within 500 pc of the nucleus and inside the bulge- dominated region. Although the main stellar body of NGC 4424 is highly elongated in projection, and the outer part of the galaxy has a disk-like exponential light profile, gas velocities are remarkably low in the central kpc, indicating strong non-circular motions or complex geometry for the inner gas. The peculiar properties are consistent with an intermediate mass ratio (0.1-0.5) merger, making NGC 4424 one of the best cases among spiral galaxies in the nearby Virgo cluster for a significant and recent merger. The degree of morphological peculiarities suggest that the merger is recent, and we propose that the galaxy will become a small- bulge S0 within ~1 Gyr. We discuss the possibility that the banana-shaped stellar distribution is the result of a merger-induced bending instability.

  12. Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Martínez-Delgado, David; Martin, Nicolas F.; Morales, Gustavo; Jennings, Zachary G.; GaBany, R. Jay; Brodie, Jean P.; Grebel, Eva K.; Schedler, Johannes; Sidonio, Michael

    2016-03-01

    We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and Rc-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ˜3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semimajor axis half-light radius of (2 ± 0.4) kpc. Star counts also yield a luminosity estimate of ˜2 × 106 L⊙,V (MV ˜ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ˜50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continuously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics. We also note the continued efficacy of small telescopes for making big discoveries.

  13. The vertical disk structure of the edge-on spiral galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthorn, Jonathan; Cecil, G.; Tully, R. B.

    1993-01-01

    NGC 3079 is an edge-on SB(s)c galaxy at a redshift of 1225 km/s relative to the Local Group. Earlier researchers found a spectacular 'figure-eight' radio structure aligned along the minor axis of the galaxy, centered on the nucleus, and extending 3 kpc above and below the plane. The geometry of this structure and the evidence of unusually high nuclear gas velocities suggest that a wind-type outflow from the nucleus is taking place. The disk of NGC 3079 is also remarkable: it is extremely rich in H 2 regions and is the only unambiguous example of a galaxy outside M31 and our own Galaxy to exhibit 'Heiles-like' shells. Other researchers have also identified a nebulosity with a ragged X-shaped morphology formed by a system of lumpy filaments with individual lengths of 3 - 5 kpc. They suggest that this material is ambient halo gas entrained into the boundary layers of the nuclear outflow. The complex structure of the line emission in NGC 3079 makes this object an ideal target for an imaging spectroscopic study. The present paper reports the preliminary results of such a study.

  14. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Technical Reports Server (NTRS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  15. Star Formation in NGC4532/DDO 137'S Tidal Dwarf Galaxies and 500 KPC HI Stream

    NASA Astrophysics Data System (ADS)

    Higdon, Sarah

    Mergers and close-passages between gas rich galaxies can result in the formation of long HI/stellar streams. The tidally induced star formation and gas concentrations can result in the creation of tidal dwarf galaxies (TDGs). TDGs may contribute significantly to the dwarf galaxy population, by far the most common galaxy type in the current epoch. We have discovered one of the longest known tidal streams (500 kpc) in the NGC 4535/DDO 137 system. We propose 3 ksec FUV/NUV images centered on the stream and its five TDGs. We will readily detect faint/low mass star forming regions (~2E-17 erg s-1 cm-2 A-1) to 5-sigma. The GALEX observations are a unique opportunity to undertake a sensitive and comprehensive study of tidally induced star formation, dwarf galaxy formation and inter-galactic enrichment in this system.

  16. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    NASA Astrophysics Data System (ADS)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-12-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the Very Large Telescope/Multi Unit Spectroscopic Explorer spectrograph in the wavelength region from 4750 to 9350 Å. In this paper, we present a stellar population analysis studying chemical abundances, the star formation history (SFH) and the stellar initial mass function (IMF) as a function of galactocentric distance. Different, independent ways to analyse the stellar populations result in a luminosity-weighted age of ˜6 Gyr and a metallicity [Fe/H]˜ -0.4, similar to other dEs of similar mass. We find unusually overabundant values of [Ca/Fe] ˜+ 0.1, and underabundant Sodium, with [Na/Fe] values around -0.1, while [Mg/Fe] is overabundant at all radii, increasing from ˜+ 0.1 in the centre to ˜+ 0.2 dex. We notice a significant metallicity and age gradient within this dwarf galaxy. To constrain the stellar IMF of NGC 1396, we find that the IMF of NGC 1396 is consistent with either a Kroupa-like or a top-heavy distribution, while a bottom-heavy IMF is firmly ruled out. An analysis of the abundance ratios, and a comparison with galaxies in the Local Group, shows that the chemical enrichment history of NGC 1396 is similar to the Galactic disc, with an extended SFH. This would be the case if the galaxy originated from a Large Magellanic Cloud-sized dwarf galaxy progenitor, which would lose its gas while falling into the Fornax cluster.

  17. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    SciTech Connect

    Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Zaritsky, Dennis; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Holwerda, Benne; Ho, Luis C.; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Knapen, Johan H.; Erroz-Ferrer, Santiago; Hinz, Joannah L.; Buta, Ronald J.; Kim, Minjin; Madore, Barry F.; and others

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

  18. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  19. Globular Clusters as Tracers of Fine Structure in the Dramatic Shell Galaxy NGC 474

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoon; Peng, Eric W.; Duc, Pierre-Alain; Fensch, Jérémy; Durrell, Patrick R.; Harris, William E.; Cuillandre, Jean-Charles; Gwyn, Stephen; Lançon, Ariane; Sánchez-Janssen, Rúben

    2017-02-01

    Globular clusters (GCs) are some of the most visible tracers of the merging and accretion histories of galaxy halos. Metal-poor GCs, in particular, are thought to arrive in massive galaxies largely through dry, minor merging events, but it is rare to see a direct connection between GCs and visible stellar streams. NGC 474 is a post-merger early-type galaxy with dramatic fine structures made of concentric shells and radial streams that have been more clearly revealed by deep imaging. We present a study of GCs in NGC 474 to better establish the relationship between merger-induced fine structure and the GC system. We find that many GCs are superimposed on visible streams and shells, and about 35% of GCs outside 3{R}{{e},{galaxy}} are located in regions of fine structure. The spatial correlation between GCs and fine structure is significant at the 99.9% level, which shows that this correlation is not coincidental. The colors of GCs on fine structures are mostly blue, and we also find an intermediate-color population that is dominant in the central region and that will likely passively evolve to have colors consistent with a traditional metal-rich GC population. The association of the blue GCs with fine structures is direct confirmation that many metal-poor GCs are accreted onto massive galaxy halos through merging events and that the progenitors of these mergers are sub-{L}\\star galaxies.

  20. A Study of Bar Strengths in Early-Type Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.; Laurikainen, Eija; Salo, Heikki; Knapen, Johan H.

    2009-02-01

    Angular momentum exchange between a bar and a massive halo is thought to be responsible for producing strong bars in disk galaxies (Athanassoula, 2003), while gas transport to the center is believed to weaken or even dissolve bars (Bournaud and Combes 2002). We are carrying out a systematic survey of early-type disk galaxies with the main emphasis to derive the distribution of their bar strengths and to examine their Fourier amplitude properties. We propose to use FLAMINGOS with the KPNO 2.1m to obtain 2.2(micron) K_s-band observations of 16 galaxies for the ``Near-Infrared S0 Survey", a project already in progress to measure the bulge, disk, and bar properties of a statistically well-defined sample of 184 galaxies in the type range S0^- to Sa, including some possibly mis-classified elliptical galaxies. The principal goals of the survey, which was started 5 years ago and is now 90% completed, are to allow us to (1) compare relative Fourier near- IR intensity profiles of observed early-type galaxy bars with equivalent Fourier mass profiles of various Athanassoula models; (2) derive the distribution of bar strengths for the early-type sample and compare it with the known distribution for spirals; and (3) examine the properties of bulges and disks in early-type galaxies in order to better understand the origin of bulges (classical verus pseudo) in such galaxies. Our study is the first attempt to quantify bar strength in S0 galaxies. We are asking for enough KPNO 2.1m time to help complete our survey.

  1. The Structure of the Circumgalactic Medium of Galaxies: Cool Accretion Inflow Around NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David V.; Chelouche, Doron; Jenkins, Edward B.; Tripp, Todd M.; Pettini, Max; York, Donald G.; Frye, Brenda L.

    2016-07-01

    We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of ρ = 48-165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Lyα absorption is detected along all sightlines and Si iii λ1206 is found along the three sightlines with the smallest ρ metal lines of C ii, Si ii, and Si iv are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H i disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known “dog-leg” stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a “typical” absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher-z studies. Based on observations with the NASA/ESA Hubble Space Telescope (HST) obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  2. Central enhancement of the nitrogen-to-oxygen abundance ratio in barred galaxies

    NASA Astrophysics Data System (ADS)

    Florido, E.; Zurita, A.; Pérez, I.; Pérez-Montero, E.; Coelho, P. R. T.; Gadotti, D. A.

    2015-12-01

    Context. Bar-induced gas inflows towards galaxy centres are recognised as a key agent for the secular evolution of galaxies. One immediate consequence of this inflow is the accumulation of gas in the centre of galaxies where it can form stars and alter the chemical and physical properties. Aims: Our aim is to study whether the properties of the ionised gas in the central parts of barred galaxies are altered by the presence of a bar and whether the change in central properties is related to bar and/or parent galaxy properties. Methods: We use a sample of nearby face-on disc galaxies with available SDSS spectra, morphological decomposition, and information on the stellar population of their bulges, to measure the internal Balmer extinction from the Hα to Hβ line ratio, star formation rate, and relevant line ratios to diagnose chemical abundances and gas density. Results: The distributions of all the parameters analysed (internal Balmer extinction at Hβ (c(Hβ)), star formation rate per unit area, electron density, [N ii]λ6583/Hα emission-line ratio, ionisation parameter, and nitrogen-to-oxygen (N/O) abundance ratio) are different for barred and unbarred galaxies, except for the R23 metallicity tracer and the oxygen abundance obtained from photoionisation models. The median values of the distributions of these parameters point towards (marginally) larger dust content, star formation rate per unit area, electron density, and ionisation parameter in the centres of barred galaxies than in their unbarred counterparts. The most remarkable difference between barred and unbarred galaxies appears in the [N ii]λ6583/Hα line ratio that is, on average, ~25% higher in barred galaxies, due to an increased N/O abundance ratio in the centres of these galaxies compared to the unbarred ones. We analyse these differences as a function of galaxy morphological type (as traced by bulge-to-disc light ratios and bulge mass), total stellar mass, and bulge Sérsic index. We observe an

  3. Non-Gaussian error bars in galaxy surveys - I

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, Joachim; Pen, Ue-Li

    2012-07-01

    We propose a method to estimate non-Gaussian error bars on the matter power spectrum from galaxy surveys in the presence of non-trivial survey selection functions. The estimators are often obtained from formalisms like Feldmann, Kaiser and Peacock (FKP) and pseudo-Karhunen-Loève (PKL), which rely on the assumption that the underlying field is Gaussian. The Monte Carlo method is more accurate but involves the tedious process of running and cross-correlating a large number of N-body simulations, in which the survey volume is embedded. From 200 N-body simulations, we extract a non-linear covariance matrix as a function of two scales and of the angle between two Fourier modes. All the non-Gaussian features of that matrix are then simply parametrized in terms of a few fitting functions and eigenvectors. We furthermore develop a fast and accurate strategy that combines our parametrization with a general galaxy survey selection function, and incorporate non-Gaussian Poisson uncertainty. We describe how to incorporate these two distinct non-Gaussian contributions into a typical analysis pipeline, and apply our method with the selection function from the 2dFGRS. We find that the observed Fourier modes correlate at much larger scales than that predicted by both FKP formalism or pure N-body simulations in a 'top hat' selection function. In particular, the observed Fourier modes are already 50 per cent correlated at k˜ 0.1 h Mpc-1, and the non-Gaussian fractional variance on the power spectrum [?] is about a factor of 3.0 larger than the FKP prescription. At k˜ 0.4 h Mpc-1, the deviations are an order of magnitude.

  4. The mass of the central black hole in the nearby Seyfert galaxy NGC 5273

    SciTech Connect

    Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay

    2014-11-20

    We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.

  5. NGC 3310 and Its Stellar Debris: the Remnants of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wehner, Elizabeth H.; Gallagher, J. S.; Papaderos, P.; Fritze-von Alvensleben, U.; Westfall, K. B.

    2006-06-01

    NGC 3310 is a local (d = 14 Mpc) starburst galaxy that shows signs of a recent and complex merging history. Its most well-known debris features are the "bow and arrow" which extend to the northwest and are strong sources of H-alpha emission. NGC 3310 is also surrounded by a radially symmetric network of shell-like stellar debris, and a large closed stellar loop emanates from the eastern side of the galaxy and rejoins in the north. It has an H I disk and two massive H I tails. One tail begins in the northwest and coincides with the bow and arrow, and the other extends to the south. We present deep UBV and R photometry of this debris network and a compare these results to spectral synthesis models used to examine the origins of these debris. We find that the shell-like debris are not consistent with having originated in NGC 3310's disk and that the underlying disk in this system is extremely blue. We also examine the surface brightness profiles of this system and will discuss the implications of our results for the merging history of NGC 3310.

  6. Ultra-Luminous X-ray Sources in the Collisional Ring Galaxy NGC 922

    NASA Astrophysics Data System (ADS)

    Prestwich, Andrea H.; Galache, J.; Kalogara, V.; Linden, T.; Kilgard, R.; Zezas, A.; Wolter, A.; Trinchieri, G.

    2010-01-01

    We present a new Chandra observation of the nearby collisional ring galaxy NGC 922. NGC 922 is undergoing a violent burst of star formation as density waves are driven through the disk as a result of the collision. It is similar to the famous Cartwheel galaxy, except that the metallicity is somewhat higher and star formation rate lower. Our primary science goal is to determine whether a low metallicty environment is required to form the most luminous X-ray sources (Lx>1E40 ergs s-1). We find a total of 14 bright X-ray sources, 7 of which are ULX ((Lx>1E39 ergs s-1). One source has Lx 1E40 ergs/s. The X-ray sources are associated with the H-alpha ring. However, they are NOT associated with the brightest H-alpha patches, suggesting that the ULX phase starts >1 x 1E7 years after the starburst. Like the Cartwheel, the X-ray luminosity function of NGC 922 has a slope close to that of the “cannonical” HMXB slope of Gilfanov et al 2004. We conclude that NGC 922 is forming ULX as efficiently as the Cartwheel (after allowing for the difference in the star formation rate). We do not see a strong metallicity effect.

  7. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  8. Multi-long-slit Spectroscopy For Kinematic Studies. II. Initial Results For The Edge-on Galaxies NGC891 And NGC4244

    NASA Astrophysics Data System (ADS)

    Choi, Jiehae; Cisneros, S.; Wu, C.; Patterson, M.; Walterbos, R.

    2007-12-01

    We present results of observations of the edge-on galaxies NGC891 and NGC4244 using a multi-long-slit setup on the DIS spectrograph on the ARC 3.5m telescope. In combination with a 25A H-alpha filter, 16 slits of 2" by 4.5' could be observed simultaneously over a 4' by 4.5' field of view. The spectral resolution is 4 Anstrom. In the case of NGC891 we have obtained a deep spectrum of the Northern half of the halo, while for NGC4244 we obtained spectra with the slits oriented parallel to the major axis and a second exposure with the slits perpendicular to the major axis. In the case of NGC 891, the data were obtained to test the accuracy of our velocity measurements by comparison with previous observations, although we also do expand on the spatial coverage of ionized gas in the halo. For NGC4244, deep optical imaging has not shown a very extended diffuse ionized gas halo, and here our goal is to use the spectroscopic data to improve upon the limits set in the imaging studies. We present the results of these tests and discuss other implementations of the multi-long-slit setup. One of these is the possibility to perform deep spectroscopic searches for detection of ionized gas in galaxy halos through use of up to 45 slits when using a lower resolution grating. This research was supported by an award from Research Corporation.

  9. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  10. Evidence for a triaxial bulge in the spiral galaxy NGC 4845

    SciTech Connect

    Bertola, F.; Zeilinger, W.W.; Rubin, V.C. Carnegie Institution of Washington, Washington, DC )

    1989-10-01

    Spectroscopic observations for the Sa galaxy NGC 4845 in five position angles reveal a regular but nonaxisymmetric velocity field for the gas at r of 1.5 kpc or less. Photometry indicates a possible slight twisting between the disk and bulge isophotes. These phenomena are interpreted as a manifestation of a triaxial bulge, and estimates of the ranges of b/a and c/a are obtained. 20 refs.

  11. The dynamics and structure of the S0 galaxy NGC 7332

    NASA Technical Reports Server (NTRS)

    Fisher, David; Illingworth, Garth; Franx, Marijn

    1994-01-01

    Spectroscopic and photometric observations of the edge-on S0 galaxy NGC 7332 are presented. The spectra show the galaxy to possess a rapidly counter-rotating extended gas disk as detected from both (O III) 5007 A and H alpha emission. Multiple slit orientations at a variety of position angles clearly show the decoupling of the angular momenta between the stellar and gaseous components. The gas is distributed asymmetrically and displays noncircular motions indicating that it has not reached equilibrium. These observations are strong evidence in support of an accretion process having occurred in NGC 7332. Broad R and B band CCD images show the boxy isophotes that NGC 7332 has long been known to possess while offset spectra taken parallel to the major and minor axes display the cylindrical rotation common to galaxies with box-shaped bulges. The bulge of NGC 7332 is well described by an r(exp 1/4)-law on both the major and minor axes while the outer disk is exponential. The B-R color of the disk is uniform; the only indication of a trend to blue colors is a Delta(B-R(sub c))/Delta log r= -0.04 +/- 0.01 gradient seen perpendicular to the bulge and disk. There exists a 10 sec long region of nearly constant surface brightness along the major axis between the bulge and disk components. Not likely due to absorbing material, the relation of this feature to the already complicated structure of the galaxy is considered.

  12. LWS Observations of the Colliding Galaxies NGC 4038/39

    DTIC Science & Technology

    1996-01-01

    cor- related ( Luhman & Jaffe 1996). If the H2 emission in NGC 4038/39 arises in UV exposed gas (PDRs), then applying this correlation to the ISO far...Leitherer, C., Heckman, T.M. 1995, ApJS, 96, 9 Lord, S.D., Hollenbach, D.J., et al. 1996, ApJ, 465, 703 Luhman , M.L., Jaffe, D.T. 1996, ApJ, 463, 191

  13. Gravitational Instability of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Moon, Sanghyuk

    2017-01-01

    Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent field method, we first construct their equilibrium sequences specified by two parameters: alpha corresponding to the thermal energy relative to gravitational potential energy, and R_B measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller alpha, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency Omega and central density rho_c. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when Omega exceeds the critical value. The critical angular frequency is found to be almost constant at 0.7(G rho_c)^0.5 for alph > 0.01 and increases rapidly for smaller alpha . We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  14. THE 0.3–30 keV SPECTRA OF POWERFUL STARBURST GALAXIES: NuSTAR AND CHANDRA OBSERVATIONS OF NGC 3256 AND NGC 3310

    SciTech Connect

    Lehmer, B. D.; Wik, D. R.; Yukita, M.; Tyler, J. B.; Hornschemeier, A. E.; Ptak, A.; Zhang, W. W.; Antoniou, V.; Zezas, A.; Boggs, S.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Stern, D.

    2015-06-10

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3–30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1–3 keV emission while ultraluminous X-ray sources (ULXs) provide majority contributions to the emission at E > 1–3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Γ ≈ 2.6 at E > 5–7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGNs (L{sub 2−10} {sub keV}/L{sub Edd} ≲ 10{sup −5}) or non-AGNs in nature (e.g., ULXs or crowded X-ray sources that reach L{sub 2−10} {sub keV} ∼ 10{sup 40} erg s{sup −1} cannot be ruled out). Combining our constraints on the 0.3–30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3–6 keV primarily due to ULX populations. Our observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that

  15. HST Observations of Star Formation in Interacting Galaxies: NGC 4194, the "Medusa"

    NASA Technical Reports Server (NTRS)

    Weistrop, D.; Eggers, D.; Nelson, C. H.; Kaiser, M. E.

    2001-01-01

    Ultraviolet and visible imaging of the blue compact galaxy NGC4194 was obtained to survey the star-forming knots in the center of this galaxy. Photometry and image analysis were performed on these regions. Comparison with evolutionary tracks indicates many of the knots are reddened with a typical E(B-V)approx.0.3. The knot ages range from 10(exp 6-10(exp 8)years. Some of the knots may have masses 3-5x10(exp 5) solar mass. The FUV fluxes correspond to the flux from 60-3.8x10(exp 3) O5V stars.

  16. A Supermassive Black Hole in the Seyfert 1 Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, C. A.; Peterson, B. M.

    2004-01-01

    Updated analysis techniques and recalibrated archival monitoring data for the Seyfert 1 galaxy NGC 3783 indicated the presence of a supermassive black hole in this galaxy. Using UV data from the International Ultraviolet Explorer satellite and ground-based optical spectra, we have measured more precise emission line reverberation in response to continuum variations. The stratification of the broad line region (BLR) suggested by our results, combined with estimates of the line velocity widths, is consistent with a gravitationally-dominated BLR and allows us to derive a mass for the central black hole.

  17. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  18. Stellar populations in edge-on galaxies from deep CCD surface photometry, 1: NGC 5907

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.; Boroson, Todd A.; Harding, Paul

    1994-01-01

    We present extremely deep charge coupled device (CCD) surface photometry of the edge-on Sc galaxy NGC 5907. Our data reach reliably to a surface brightness of R=27 mag/sq arcsec, some two magnitudes fainter than any previous work. We obtained this improvement using a 2048X2048 CCD with a wide (approximately 24 min) field, which made it possible to sky subtract directly from the galaxy frame, and by taking many dark sky flatfields. Our analysis of these data, using a full 2D model fitting procedure with a detailed error model, confirm the thin disk parameters of van der Kruit & Searle (1981). In particular, we confirm that the galaxy's disk has a radial cutoff and a constant scale height with radius. We find evidence for a stellar warp in this system, which has the same orientation as the H I warp. Our deep data also confirm that NGC 5907 has no thick disk. This suggests that theories of thick disk formation from star formation in the early stages of disk collapse, or by secular heating mechanisms, are unlikely to be correct, because they would predict that every galaxy would have a thick disk. Thick disk formation from the accretion of satellite galaxies is more likely.

  19. Non-circular motion estimation of the grand-design spiral galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Colombo, D.

    2013-09-01

    I present a harmonic decomposition analysis of the grand-design spiral galaxy NGC 628 using the H I data from The H I Nearby Galaxy Survey (THINGS), Walter et al., Astron. J. 136, 2563 (2008). The harmonic decomposition analysis allows the estimation of the peculiar motion magnitude of the galaxy not counted in the rotation of the disk. The rotation curve is obtained through a tilted ring analysis and reaches a maximum velocity not higher than 200 km s-1. The residual from the velocity field shows a morphology shift from a m = 1 to a m = 3 feature at R = 120", typical of two spiral arms perturbation of the potential. The non-circular motion have a magnitude of ~10 km s-1, in agreement with previous studies of similar Hubble type galaxies.

  20. ``A Beautiful Galaxy :" Further HST Evidence and Mechanisms for Two Leading Arms in NGC 4622

    NASA Astrophysics Data System (ADS)

    Byrd, G.; Buta, R.; Freeman, T.

    2002-05-01

    Shu (1982) noted the galaxy NGC4622's ``beautiful spiral pattern composed of two trailing spiral arms." which E. M. Burbidge (1982) described as ``extraordinarily symmetric." Besides the two arms which wind outward clockwise (CW), Byrd et al. (1989) pointed out a weaker, single, inner arm which winds outward counterclockwise (CCW). Byrd et al. suspected the single arm must lead, a very rare configuration. Buta, Crocker, and Byrd (1992)'s BVI photometry showed the inner arm is a mostly stellar disk feature. Byrd, Freeman, and Howard (1993) simulated creation of a single leading and outer trailing pair via a plunging low-mass perturber. At the Jan. `02 AAS meeting, we discussed new HST WFPC2 BVI images of NGC4622 (http://bama.ua.edu/ ~ rbuta/ngc4622/). Despite the low inclination i=26o+/-4o, sharp dust lanes are silhouetted on the east side of NGC4622's kinematic line of nodes (p.a. 22o) but not the west, indicating the east is nearer. In a ground-based Hα velocity field, the north half of the galaxy is receding. Therefore, the disk rotates CW. The two CW-opening arms thus lead, NOT the single inner CCW-opening arm. At the June `02 AAS meeting, we will discuss further the silhouetted dust lanes and show they are also found west of the line of nodes, but these are less sharp and less red because they are on the far side, viewed through the bright bulge. We will show via a model galaxy with an r1/4 bulge and an exponential disk, that a measurable reddening and dust asymmetry across the line of nodes results even with i=20o-30o, if the bulge is nearly spherical and is a significant fraction of the total luminosity. The HST images reveal a globular cluster system in NGC4622 which we will discuss. Despite previous descriptions, this beautiful galaxy apparently has a pattern far from a classical trailing density wave. We will discuss how a pair of leading arms in NGC4622 may originate via tidal perturbation and/or a merger. Supported by Grants NASA/STScI GO 8707 and by

  1. Escape fraction of ionizing photons from a dwarf galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Choi, Yumi; Fouesneau, Morgan; Gordon, Karl D.; Williams, Benjamin F.; Dalcanton, Julianne; Weisz, Daniel R.; Arab, Heddy; Sandstrom, Karin; Dolphin, Andrew E.

    2015-01-01

    Recent studies suggest that starburst dwarf galaxies played an important role in the early universe. Because these galaxies dominate by number, their leaked ionizing photons are likely main contributors to the reionization of the intergalactic medium (IGM). However, the complex structure of the interstellar medium (ISM) even at the pc scale makes it hard to predict the escape fraction of ionizing photons from high-redshift galaxies accurately. Analogues to their high-redshift counterparts, nearby starburst dwarf galaxies provide excellent laboratories to study the impact of star formation on the surrounding ISM and IGM in detail. Thanks to its proximity, the dwarf galaxy, NGC 4214, has been imaged with the high-resolution of WFC3 on HST from the near-UV to the near-IR (F225W, F336W, F438W, F814W, F110W, and F160W). These observations yielded measurements of the broad spectral energy distributions (SEDs) for ˜36,000 resolved stars within this galaxy. We developed a probabilistic tool (Bayesian Extinction and Stellar Tool, a.k.a. BEAST) to simultaneously infer from their SEDs the stellar properties of individual stars and the intervening dust properties along the line of sight to each star. With the aid of BEAST, we are able to infer the intrinsic ionizing flux produced by individual stars. By comparing this intrinsic ionizing flux with the flux that is used to ionize the ISM in the galaxy, derived based on the extinction-corrected Hα emission, we can estimate the escape fraction and its local variation within the galaxy. Our preliminary results show that the global UV leakage of NGC 4214 is ˜10%.

  2. CONTINUUM HALOS IN NEARBY GALAXIES: AN EVLA SURVEY (CHANG-ES). II. FIRST RESULTS ON NGC 4631

    SciTech Connect

    Irwin, Judith; Henriksen, Richard N.; Beck, Rainer; Krause, Marita; Mora, Silvia Carolina; Schmidt, Philip; Benjamin, R. A.; Dettmar, Ralf-Juergen; Miskolczi, Arpad; English, Jayanne; Heald, George; Oosterloo, Tom; Johnson, Megan; Li, Jiang-Tao; Murphy, E. J.; Porter, Troy A.; Rand, Richard J.; Saikia, D. J.; Strong, A. W.; Walterbos, Rene E-mail: henriksn@astro.queensu.ca E-mail: rbeck@mpifr-bonn.mpg.de E-mail: cmora@mpifr-bonn.mpg.de; and others

    2012-08-15

    We present the first results from the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES), a new survey of 35 edge-on galaxies to search for both in-disk and extraplanar radio continuum emission. CHANG-ES is exploiting the new wide-band, multi-channel capabilities of the Karl G. Jansky Very Large Array (i.e., the Expanded Very Large Array or EVLA) with observations in two bands centered at 1.5 and 6 GHz in a variety of array configurations with full polarization. The motivation and science case for the survey are presented in a companion paper (Paper I). These first results are based on C-array test observations in both observing bands of the well-known radio halo galaxy, NGC 4631. In this paper, we outline the observations and the data reduction steps that are required for wide-band calibration and mapping of EVLA data, including polarization. With modest on-source observing times (30 minutes at 1.5 GHz and 75 minutes at 6 GHz for the test data), we have achieved best rms noise levels of 22 and 3.5 {mu}Jy beam{sup -1} at 1.5 GHz and 6 GHz, respectively. New disk-halo features have been detected, among them two at 1.5 GHz that appear as loops in projection. We present the first 1.5 GHz spectral index map of NGC 4631 to be formed from a single wide-band observation in a single array configuration. This map represents tangent slopes to the intensities within the band centered at 1.5 GHz, rather than fits across widely separated frequencies as has been done in the past and is also the highest spatial resolution spectral index map yet presented for this galaxy. The average spectral index in the disk is {alpha}-bar{sub 1.5GHz} = -0.84 {+-} 0.05 indicating that the emission is largely non-thermal, but a small global thermal contribution is sufficient to explain a positive curvature term in the spectral index over the band. Two specific star-forming regions have spectral indices that are consistent with thermal emission. Polarization results (uncorrected for

  3. The dust energy balance in the edge-on spiral galaxy NGC 4565

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Ciesla, Laure; Cortese, Luca; de Geyter, Gert; Groves, Brent; Boquien, Médéric; Boselli, Alessandro; Brondeel, Lena; Cooray, Asantha; Eales, Steve; Fritz, Jacopo; Galliano, Frédéric; Gentile, Gianfranco; Gordon, Karl D.; Hony, Sacha; Law, Ka-Hei; Madden, Suzanne C.; Sauvage, Marc; Smith, Matthew W. L.; Spinoglio, Luigi; Verstappen, Joris

    2012-12-01

    We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/Spectral and Photometric Imaging Receiver (250, 350 and 500 μm) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, Sloan Digital Sky Survey, Galaxy Evolution Explorer) to analyse its dust energy balance. We fit a radiative transfer model for the stars and dust to the optical maps with the fitting algorithm FITSKIRT. To account for the observed ultraviolet and mid-infrared emission, this initial model was supplemented with both obscured and unobscured star-forming regions. Even though these star-forming complexes provide an additional heating source for the dust, the far-infrared/submillimetre emission long wards of 100 μm is underestimated by a factor of 3-4. This inconsistency in the dust energy budget of NGC 4565 suggests that a sizable fraction (two-thirds) of the total dust reservoir (Md ˜ 2.9 × 108 M⊙) consists of a clumpy distribution with no associated young stellar sources. The distribution of those dense dust clouds would be in such a way that they remain unresolved in current far-infrared/submillimetre observations and hardly contribute to the attenuation at optical wavelengths. More than two-thirds of the dust heating in NGC 4565 is powered by the old stellar population, with localized embedded sources supplying the remaining dust heating in NGC 4565. The results from this detailed dust energy balance study in NGC 4565 are consistent with that of similar analyses of other edge-on spirals.

  4. Deep WIYN Imaging of the Globular Cluster System of the Lenticular Galaxy NGC 3607

    NASA Astrophysics Data System (ADS)

    Carr, Derrick; Rhode, Katherine L.; Jorgenson, Regina

    2017-01-01

    Globular clusters serve as relics of a galaxy’s past history, because they are thought to be among the first objects to form in a galaxy. Measuring the properties of the globular cluster population of a galaxy — in particular the total number, spatial distribution, and color distribution of the clusters — can provide important clues about the formation and evolution of that galaxy. Here we present results from the analysis of the globular cluster population of NGC 3607, an S0 galaxy with M_V = -21.9 that is ~23 Mpc away and is the brightest member of the Leo II group. We used images from the Minimosaic camera on the WIYN 3.5-m telescope with total exposure times of 6300, 6000, and 5400 seconds in the B, V, and R filters, respectively, to image the globular cluster system of NGC 3607 well past its apparent radial extent of 6.3’ (41 kpc). Point-source globular clusters are selected with three-filter photometry to help eliminate foreground stars and background galaxies. The excellent seeing in our WIYN images (0.6” to 0.9”) also helped reduce contamination in the globular cluster candidate sample. Artificial star tests yielded 50% completeness levels of B = 25.4, V=25.2, and R=24.1 and we observed approximately 41% of the galaxy’s Globular Cluster Luminosity Function. We estimate the total number of globular clusters in NGC 3607 is 1000+/-50, which translates to specific frequency values of S_N = 1.7+/-0.3 and T = 2.6+/-0.3 for this galaxy’s luminosity and stellar mass. This research was supported in part by NSF REU grant AST-1358980 and the Nantucket Maria Mitchell Association.

  5. NGC 3105: A Young Cluster in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2017-03-01

    Images and spectra of the open cluster NGC 3105 have been obtained with the Gemini Multi-Object Spectrograph on Gemini South. The (i\\prime ,g\\prime -i\\prime ) color–magnitude diagram (CMD) constructed from these data extends from the brightest cluster members to g\\prime ∼ 23. This is ∼ 4{--}5 mag fainter than previous CMDs at visible wavelengths and allowing cluster members with sub-solar masses to be sampled. Assuming a half-solar metallicity, comparisons with isochrones yield a distance of 6.6 ± 0.3 kpc. An age of at least 32 Myr is found based on the photometric properties of the brightest stars, coupled with the apparent absence of pre-main-sequence stars in the lower regions of the CMD. The luminosity function of stars between 50 and 70 arcsec from the cluster center is consistent with a Chabrier lognormal mass function. However, at radii smaller than 50 arcsec there is a higher specific frequency of the most massive main-sequence (MS) stars than at larger radii. Photometry obtained from archival SPITZER images reveals that some of the brightest stars near NGC 3105 have excess infrared emission, presumably from warm dust envelopes. Hα emission is detected in a few early-type stars in and around the cluster, building upon previous spectroscopic observations that found Be stars near NGC 3105. The equivalent width of the NaD lines in the spectra of early-type stars is consistent with the reddening found from comparisons with isochrones. Stars with i\\prime ∼ 18.5 that fall near the cluster MS have a spectral-type A5V, and a distance modulus that is consistent with that obtained by comparing isochrones with the CMD is found assuming solar neighborhood intrinsic brightnesses for these stars.

  6. Spectroscopic study of extended star clusters in dwarf galaxy NGC 6822

    SciTech Connect

    Hwang, Narae; Kim, Sang Chul; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Weisz, Daniel; Miller, Bryan

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from –61.2 ± 20.4 km s{sup –1} (for C1) to –115.34 ± 57.9 km s{sup –1} (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (≥8 Gyr) and metal poor ([Fe/H] ≲ –1.5). NGC 6822 is found to have both metal poor ([Fe/H] ≈–2.0) and metal rich ([Fe/H] ≈–0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r ≥ 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M{sub N6822}=7.5{sub −0.1}{sup +4.5}×10{sup 9} M{sub ⊙} and (M/L){sub N6822}=75{sub −1}{sup +45}(M/L){sub ⊙}. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group.

  7. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ∼300 pc, with a width of ∼50 pc, and a velocity dispersion of ∼40 km s‑1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s‑1 pc‑1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1–0)/CO(1–0) line ratio of ∼ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (∼ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ∼1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  8. Kinematics of Superbubbles and Supershells in the Irregular Galaxy, NGC 1569

    NASA Astrophysics Data System (ADS)

    Sánchez-Cruces, M.; Rosado, M.; Rodríguez-González, A.; Reyes-Iturbide, J.

    2015-02-01

    We present observations in the optical lines of Hα and [S II] (λλ6717, 6731 Å) and in X-rays of the irregular galaxy, NGC 1569. The observations in Hα and [S II] were made with the UNAM scanning Fabry-Perot interferometer (PUMA) and the X-ray data were obtained from the Chandra data archive. We detected several superbubbles, filaments, and supershells in NGC 1569 for which we determined size as well as their kinematic properties. We present a catalog of expansion velocities of 12 superbubbles, listing their positions, diameters, and physical parameters. Likewise, we present a catalog of 15 filaments and 4 supershells. In order to identify possible X-ray emission from the superbubbles in this galaxy, we analyzed the X-ray emission of NGC 1569 in two energy bands: 0.2-2.0 keV (soft X-rays) and 2.0-8.0 keV (hard X-rays). Based on X-ray images, we detected X-ray emission that could possibly be related to some of the superbubbles. The spectrum of the X-ray superbubbles can be described by an optically thin thermal plasma model. In order to identify the possible coexistence of galactic super winds and superbubbles we have performed adiabatic three-dimensional N-body/smoothed particle hydrodynamics simulations to follow the evolution of the most important stellar clusters in this galaxy, SSC A and SSC B, using the GADGET-2 code. Those simulations demonstrate that depending on the specific initial conditions, the formation of superbubbles or a galactic superwind can result in NGC 1569.

  9. The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Hilker, M.; Mendes de Oliveira, C.; Richtler, T.

    2016-05-01

    Context. The history of the mass assembly of brightest cluster galaxies may be studied by mapping the stellar populations at large radial distances from the galaxy centre, where the dynamical times are long and preserve the chemodynamical signatures of the accretion events. Aims: We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster, and out to three effective radii. We wish to characterize the processes that drove the build-up of the stellar light at all these radii. Methods: We obtained the spectra from several regions in NGC 3311 covering an area of ~3 arcmin2 in the wavelength range 4800 ≲ λ(Å) ≲ 5800, using the FORS2 spectrograph at the Very Large Telescope in the MXU mode. We measured the equivalent widths of seven absorption-features defined in the Lick/IDS system, which were modelled by single stellar populations, to provide luminosity-weighted ages, metallicities, and alpha element abundances. Results: The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided in two radial regimes, one within and the another beyond one effective radius, Re = 8.4 kpc, similar to the distinction between the inner galaxy and the external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy (R ≤ Re) is old (age ~14 Gyr), has negative metallicity gradients and positive alpha element gradients. The external halo is also very old, but has a negative age gradient. The metal and element abundances of the external halo both have a large scatter, indicating that stars from a variety of satellites with different masses have been accreted. The region in the extended halo associated with the off-centred envelope at 0°< PA < 90° has higher metallicity with respect to the symmetric external halo. Conclusions: The different stellar populations in the inner galaxy and extended halo

  10. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.

  11. Simulating a slow bar in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen

    2016-12-01

    We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.

  12. Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, Natasha; Johnston-Hollitt, Melanie; Ekers, Ron; Hunstead, Richard; Sadler, Elaine M.; Hindson, Luke; Hancock, Paul; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank; Cappallo, Roger; Corey, Brian; Deshpande, Avinash A.; Emrich, David; Gaensler, Bryan M.; Goeke, Robert; Greenhill, Lincoln; Hazelton, Bryna J.; Hewitt, Jacqueline; Kaplan, David L.; Kasper, Justin; Kratzenberg, Eric; Lonsdale, Colin; Lynch, Mervyn; Mitchell, Daniel; McWhirter, Russell; Morales, Miguel; Morgan, Edward; Oberoi, Divya; Offringa, André; Ord, Stephen; Prabu, Thiagaraj; Rogers, Alan; Roshi, Anish; Shankar, Udaya; Srivani, K.; Subrahmanyan, Ravi; Tingay, Steven; Waterson, Mark; Wayth, Randall B.; Webster, Rachel; Whitney, Alan; Williams, Andrew; Williams, Chris

    2015-03-01

    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ˜700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin-2. The radio lobes have one of the steepest spectral indices yet observed: α = -2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10-7 Mpc-3 and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle.

  13. ISOCAM Mid-Infrared Imaging of the Quiescent Spiral Galaxy NGC 7331

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.

    1998-06-01

    Using the mid-infrared camera (ISOCAM) on the Infrared Space Observatory (ISO), the Sb LINER galaxy NGC 7331 has been imaged in two broadband and four narrowband filters between 6.75 and 15 μm. These maps show a prominent circumnuclear ring of radius 0.25 arcmin × 0.75 arcmin (1.1 × 3.3 kpc) encircling an extended central source. The 7.7 and 11.3 μm dust emission features are strong in this galaxy, contributing approximately one-third of the total IRAS 12 μm broadband flux. In contrast to starburst galaxies, the 15 μm continuum is weak in NGC 7331. The mid-infrared spectrum does not vary dramatically with position in this quiescent galaxy, showing neither large-scale destruction of the carriers of the emission bands nor a large increase in the 15 μm continuum in the star-forming ring. In the bulge there is some enhancement of the LW2 (6.75 μm) flux, probably because of contributions from photospheric light; however, the 11.3 μm dust feature is also seen, showing additional emission from interstellar or circumstellar dust. Based on observations made with ISO, an ESA project with instruments funded by ESAMember States and with the participation of ISAS and NASA.

  14. A New Dataset of Automatically Extracted Structure of Arms and Bars in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Hayes, Wayne B.; Davis, D.

    2012-05-01

    We present an algorithm capable of automatically extracting quantitative structure (bars and arms) from images of spiral galaxies. We have run the algorithm on 30,000 galaxies and compared the results to human classifications generously provided pre-publication by the Galaxy Zoo 2 team. In all available measures, our algorithm agrees with the humans about as well as they agree with each other. In addition we provide objective, quantitative measures not available in human classifications. We provide a preliminary analysis of this dataset to see how the properties of arms and bars vary as a function of basic variables such as environment, redshift, absolute magnitude, and color. We also show how structure can vary across wavebands as well as along and across individual arms and bars. Finally, we present preliminary results of a measurement of the total angular momentum present in our observed set of galaxies with an eye towards determining if there is a preferred "handedness" in the universe.

  15. GIANT MOLECULAR CLOUDS IN THE EARLY-TYPE GALAXY NGC 4526

    SciTech Connect

    Utomo, Dyas; Blitz, Leo; Davis, Timothy; Rosolowsky, Erik; Bureau, Martin; Cappellari, Michele; Sarzi, Marc

    2015-04-10

    We present a high spatial resolution (≈20 pc) of {sup 12}CO(2 −1) observations of the lenticular galaxy NGC 4526. We identify 103 resolved giant molecular clouds (GMCs) and measure their properties: size R, velocity dispersion σ{sub v}, and luminosity L. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC 4526 is gravitationally bound, with a virial parameter α ∼ 1. The mass distribution, dN/dM ∝ M{sup −2.39±0.03}, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size–line width correlation for the NGC 4526 clouds, in contradiction to the expectation from Larson’s relation. In general, the GMCs in NGC 4526 are more luminous, denser, and have a higher velocity dispersion than equal-size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density Σ of GMCs is not approximately constant, as previously believed, but varies by ∼3 orders of magnitude. We also show that the size and velocity dispersion of the GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e., σ{sub v} R{sup −1/2} ∝ Σ{sup 1/2}.

  16. Detailed photometric analysis of young star groups in the galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Rodríguez, M. J.; Baume, G.; Feinstein, C.

    2016-10-01

    Aims: The purpose of this work is to understand the global characteristics of the stellar populations in NGC 300. In particular, we focused our attention on searching young star groups and study their hierarchical organization. The proximity and orientation of this Sculptor Group galaxy make it an ideal candidate for this study. Methods: The research was conducted using archival point spread function (PSF) fitting photometry measured from images in multiple bands obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). Using the path linkage criterion (PLC), we cataloged young star groups and analyzed them from the observation of individual stars in the galaxy NGC 300. We also built stellar density maps from the bluest stars and applied the SExtractor code to identify overdensities. This method provided an additional tool for the detection of young stellar structures. By plotting isocontours over the density maps and comparing the two methods, we could infer and delineate the hierarchical structure of the blue population in the galaxy. For each region of a detected young star group, we estimated the size and derived the radial surface density profiles for stellar populations of different color (blue and red). A statistical decontamination of field stars was performed for each region. In this way it was possible to build the color-magnitude diagrams (CMD) and compare them with theoretical evolutionary models. We also constrained the present-day mass function (PDMF) per group by estimating a value for its slope. Results: The blue population distribution in NGC 300 clearly follows the spiral arms of the galaxy, showing a hierarchical behavior in which the larger and loosely distributed structures split into more compact and denser ones over several density levels. We created a catalog of 1147 young star groups in six fields of the galaxy NGC 300, in which we present their fundamental characteristics. The mean and the mode radius values

  17. SPECTRAL TYPES OF RED SUPERGIANTS IN NGC 6822 AND THE WOLF-LUNDMARK-MELOTTE GALAXY

    SciTech Connect

    Levesque, Emily M.; Massey, Philip

    2012-07-15

    We present moderate-resolution spectroscopic observations of red supergiants (RSGs) in the low-metallicity Local Group galaxies NGC 6822 (Z = 0.4 Z{sub Sun} ) and Wolf-Lundmark-Melotte (WLM; Z = 0.1 Z{sub Sun} ). By combining these observations with reduction techniques for multislit data reduction and flux calibration, we are able to analyze spectroscopic data of 16 RSGs in NGC 6822 and spectrophotometric data of 11 RSGs in WLM. Using these observations, we determine spectral types for these massive stars, comparing them to Milky Way and Magellanic Cloud RSGs and thus extending observational evidence of the abundance-dependent shift of RSG spectral types to lower metallicities. In addition, we have uncovered two RSGs with unusually late spectral types (J000158.14-152332.2 in WLM, with a spectral type of M3 I, and J194453.46-144552.6 in NGC 6822, with a spectral type of M4.5 I) and a third RSG (J194449.96-144333.5 in NGC 6822) whose spectral type has varied from an M2.5 in 1997 to a K5 in 2008. All three of these stars could potentially be members of a recently discovered class of extreme RSG variables.

  18. The structure of NGC at 100, 160, and 200 microns - Continuum dust emission in a quiescent Sb galaxy

    NASA Technical Reports Server (NTRS)

    Engargiola, G.; Harper, D. A.

    1992-01-01

    Observations of NGC 4565 at 100, 160, and 200 microns with the University of Chicago Far-Infrared Camera and the NASA-Kuiper Airborne Observatory are reported. In order to examine the dependence of FIR emission on spiral structure and star formation activity, these observations of NGC 4565, a quiescent Sb galaxy, are compared with observations of NGC 6946, an active Sc galaxy, made by Engargiola (1991) using the same instruments. Warm dust (30 K) in a bisymmetric spiral pattern superposed on an exponential disk of cool dust (20 K) can account for the FIR morphology of NGC 4565. Optical and IR data suggest that there are more embedded sources heating dust locally in the southeast arm region and more UV radiation from unobscured young stellar associations heating the cool, neutral medium in the northeast arm region.

  19. BIMA CO (1-0) Observations of the Dwarf Elliptical Galaxy NGC 404

    NASA Astrophysics Data System (ADS)

    Taylor, C. L.; Petitpas, G. R.

    2004-12-01

    We present high resolution observations of the CO emission in NGC 404, a nearby dwarf elliptical (dE) galaxy (D = 3.3 Mpc). NGC 404 is only the third dwarf elliptical to have its CO emission mapped by interferometric observations, and is the first outside the Local Group. Our observations show a very concentrated, marginally resolved structure about 9 × 9 arcseconds in diameter. This corresponds to a very small cloud at the center of a much larger distribution of stars. NGC 404 is surrounded by a doughnut shaped distribution of HI gas centered on the stellar component. The CO and HI appear to be kinematically distinct components, suggesting that the HI may be part of the galaxy's original gas distribution, while the CO may be recycled from the products of stellar evolution. C.L.T. has been supported by CSU Sacramento via a Research and Creative Activity Award. G.R.P. has been supported by the Laboratory for Millimeter-Wave Astronomy through NSF grant AST 99-81289

  20. A CHANDRA OBSERVATION OF THE NEARBY SCULPTOR GROUP Sd GALAXY NGC 7793

    SciTech Connect

    Pannuti, Thomas G.; Staggs, Wayne D.; Schlegel, Eric M.; Filipovic, Miroslav D.; Payne, Jeffrey L.; Petre, Robert

    2011-07-15

    We conducted a Chandra ACIS observation of the nearby Sculptor Group Sd galaxy NGC 7793 as part of a multiwavelength study of supernova remnants (SNRs) in nearby galaxies. At the assumed distance to NGC 7793 of 3.91 Mpc, the limiting unabsorbed luminosity of the detected discrete X-ray sources is L{sub X} (0.2-10.0 keV) {approx}3x10{sup 36} erg s{sup -1}. A total of 22 discrete sources were detected at the {approx}3{sigma} level or greater including one ultraluminous X-ray source (ULX). Based on multiwavelength comparisons, we identify X-ray sources coincident with one SNR, the candidate microquasar N7793-S26, one H II region, and two foreground Galactic stars. We also find that the X-ray counterpart to the candidate radio SNR R3 is time variable in its X-ray emission: we therefore rule out the possibility that this source is a single SNR. A marked asymmetry is seen in the distribution of the discrete sources with the majority lying in the eastern half of this galaxy. All of the sources were analyzed using quantiles to estimate spectral properties and spectra of the four brightest sources (including the ULX) were extracted and analyzed. We searched for time variability in the X-ray emission of the detected discrete sources using our measured fluxes along with fluxes measured from prior Einstein and Roentgensatellit observations. From this study, three discrete X-ray sources are established to be significantly variable. A spectral analysis of the galaxy's diffuse emission is characterized by a temperature of kT = 0.19-0.25 keV. The luminosity function of the discrete sources shows a slope with an absolute value of {Gamma} = -0.65 {+-} 0.11 if we exclude the ULX. If the ULX is included, the luminosity function has a long tail to high L{sub X} with a poor-fitting slope of {Gamma} = -0.62 {+-} 0.2. The ULX-less slope is comparable to the slopes measured for the distributions of NGC 6946 and NGC 2403 but much shallower than the slopes measured for the distributions of

  1. A Search for Triggered Star Formation in the Compact Group of Galaxies NGC 5851, NGC 5852 and CGCG 077-007

    NASA Astrophysics Data System (ADS)

    Olsen, Charlotte Alexandra; Basu-Zych, Antara; Hornschemeier, Ann E.; NASA / GSFC X-ray Galaxies Group

    2017-01-01

    Galaxy interactions provide ideal conditions for triggering star formation, and impact galaxy evolution and the structure of the universe. The aim of this research is to study the key factors during galaxy interactions that influence star formation events by studying close pairs of galaxies to find the relationship between interaction properties (e.g. relative velocities and distances, mass ratios, orientation, and merger stage) and star formation rate (SFR). We present our analysis on one compact group of star-forming galaxies CGCG 077-007, NGC 5851, and their quiescent companion NGC 5852. Within this group we investigate the conditions where galaxy interactions cause higher SFR or supermassive black hole accretion (i.e. AGN activity), which might rather quench SFR. Areas of increased star formation are classified by the identification of the most UV bright regions within the galaxies. We find these areas by taking the Swift UVOT W2 filter and subtracting from it the Sloan Digital Sky Survey (SDSS) z-band image in order to remove the underlying stellar population. The regions identified by this process allow us to conduct a multi-wavelength study of stellar populations within this compact group. We use Spectral Energy Distribution models to fit ultraviolet to mid-infrared photometry from Swift UVOT, SDSS, 2MASS and WISE and measure global star formation histories for the galaxies and for the identified star forming regions within the galaxies. In the future we will include analysis of Swift XRT data to place constraints on AGN activity, and relate to the star formation history. This group serves as a pilot study and we will apply these methods to a sample of 30 galaxy groups and close pairs in order to investigate the relationship between galaxy interactions, SFR, and AGN activity and gain deeper insight into how mergers drive galaxy evolution.

  2. Planetary Nebulae in the Elliptical Galaxy NGC 821: Kinematics and Distance Determination

    NASA Astrophysics Data System (ADS)

    Teodorescu, A. M.; Méndez, R. H.; Bernardi, F.; Riffeser, A.; Kudritzki, R. P.

    2010-09-01

    Using a slitless spectroscopy method with the 8.2 m Subaru telescope and its FOCAS Cassegrain spectrograph, we have increased the number of planetary nebula (PN) detections and PN velocity measurements in the flattened elliptical galaxy NGC 821. A comparison with the detections reported previously by the Planetary Nebulae Spectrograph group indicates that we have confirmed most of their detections. The velocities measured by the two groups, using different telescopes, spectrographs, and slitless techniques, are in good agreement. We have built a combined sample of 167 PNs and have confirmed the Keplerian decline of the line-of-sight velocity dispersion reported previously. We also confirm misaligned rotation from the combined sample. A dark matter halo may exist around this galaxy, but it is not needed to keep the PN velocities below the local escape velocity as calculated from the visible mass. We have measured the m(5007) magnitudes of 145 PNs and produced a statistically complete sample of 40 PNs in NGC 821. The resulting PN luminosity function (PNLF) was used to estimate a distance modulus of 31.4 mag, equivalent to 19 Mpc. We also estimated the PN formation rate. NGC 821 becomes the most distant galaxy with a PNLF distance determination. The PNLF distance modulus is smaller than the surface brightness fluctuation (SBF) distance modulus by 0.4 mag. Our kinematic information permits to rule out the idea that a shorter PNLF distance could be produced by the contamination of the PNLF by background galaxies with emission lines redshifted into the on-band filter transmission curve. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. A search for Wolf-Rayet stars in active star forming regions of low mass galaxies - GR8, NGC 2366, IC 2574, and NGC 1569

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Roy, Jean-Rene; Moffat, Anthony F. J.

    1993-10-01

    We report the detection, via narrow-band 4686 A filter imagery, of possible new Wolf-Rayet stars in the most massive giant H II regions of the irregular galaxies NGC 2366 and IC 2574. One stellar knot in the post-starburst galaxy NGC 1569 also appears to contain a weak excess of light at 4686 A. A similar search yielded negative results in the very low mass galaxy GR8. The strongest 4686 A excess is located close to the secondary eastern knot in the core of NGC 2366-I (NGC 2363). If this excess is of stellar origin, about five Wolf-Rayet stars of the luminous late-type can account for the excess emission. Nebular emission wraps around this cluster in the form of a shell. The putative Wolf-Rayet stars appear to be close to the center of the large expanding H II bubble discovered by Roy et al. (1991). A possible nebular origin of the 4686 A excess is also discussed.

  4. Circumnuclear ring of the starburst galaxy NGC 253. An Infrared view

    NASA Astrophysics Data System (ADS)

    Pérez GarcÍa, A. M.; Melo, V. P.; Acosta-Pulido, J.; Muñoz-Tuñón, C.; RodrÍguez-Espinosa, J. M.

    NGC 253 is a nearby spiral galaxy with an active starburst nucleus. Its proximity allows observation with good spatial resolution with state of the art mid and far IR facilities. Here we present preliminary results obtained from the ISO archive in 5 to 16 microns (ISOCAM-CVF) and 120 to 180 μm (ISOPHOT) ranges. The mid IR spectrum exhibits typical broad PAH features as well as weak atomic emission, which is not seen in the continuum nor in the [ArII] emission line. For the first time we present a far IR map (180 μm) as well as several profiles across the minor axis of the galaxy, showing a variation of the dust temperature. We detect an extension of the cold dust (20K) emission not seen previously in IRAS maps, which may contribute to a large fraction of the galaxy total mass.

  5. The Mass of the Central Black Hole in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, Christopher A.; Peterson, Bradley M.

    2004-01-01

    Improved analysis of ultraviolet and optical monitoring data on the Seyfert 1 galaxy NGC 3783 provides evidence for the existence of a supermassive, (8.7 +/- 1.1) x 10(exp 6) solar mass, black hole in this galaxy. By using recalibrated spectra from the International Ultraviolet Explorer satellite and ground-based optical data, as well as refined techniques of reverberation mapping analysis, we have reduced the statistical uncertainties in the response of the emission lines to variations in the ionizing continuum. The different time lags in the emission-line responses indicate a stratification in the ionization structure of the broad-line region and are consistent with the virial relationship suggested by the analysis of similar active galaxies.

  6. The extent of CO in the early-type galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Hutchtmeier, W. K.; Bregman, J. N.; Hogg, D. E.; Roberts, M. S.

    1994-01-01

    NGC 4472, and E/SO system, is the earliest type normal galaxy with detected CO emission, and here we present additional radio observations in the lines of CO(1-0) and CO(2-1) to determine the distribution and internal properties of this gas. The original detection is reconfirmed, but observations at five surrounding locations and at two other locations in the galaxy do not show the gas to be extended; the total H2 gas mass is estimated to be 4 x 10(exp 7) solar mass. A high CO(1-0)/CO(2-1) brightness temperature ratio is found (greater than 3), which is indicative of subthermal excitation of the CO(2-1) line that can occur at low gas temperatures and low gas densities. Also, upper limits are given for the CO(2-1) fluxes in four other early-type galaxies.

  7. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    NASA Astrophysics Data System (ADS)

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    2017-01-01

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization bridges this gap. We combine all available high resolution polarization observations to fit models of the line of sight magnetic field structure across the disk. We find simple screens of Faraday rotation, differential Faraday rotation, and internal Faraday dispersion are insufficient to explain the observed depolarization, and present the results of the best fit models. We discuss how future broadband observations and improved models will help reconstruct the full 3D model of the magnetic field structure in the disks and haloes of galaxies.

  8. Near-infrared surface photometry of a sample of barred galaxies

    NASA Astrophysics Data System (ADS)

    Gadotti, D. A.; Athanassoula, E.; Carrasco, L.; Bosma, A.; de Souza, R. E.; Recillas, E.

    2007-11-01

    We have obtained deep J and Ks images of a sample of nine barred galaxies in order to collect a reliable and homogeneous set of images to which N-body simulations of barred galaxies will be compared. The observations were performed using the new near-infrared camera available at the 2.1-m telescope of the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. We present the results of surface photometry techniques applied to the observed images, as well as to the deprojected images. These results include radial profiles of surface brightness (elliptically averaged), colour, position angle, ellipticity and the b4 Fourier component. In addition, we present isophotal maps, colour maps, surface brightness profiles along the bar major and minor axes, characteristic radial scalelengths and bar length estimates. We discuss how projection effects can influence these measurements and the uncertainties introduced by deprojecting galaxy images. We show that analytical expressions can be used to obtain reliable estimates of deprojected bar lengths, ellipticities and position angles directly from the observed images. These expressions are based on the assumption that the outer parts of the bar are vertically thin, as shown by theoretical work. The usefulness of our data in addressing issues on bar formation and evolution is also discussed. In particular, we present results showing a steep drop in the ellipticity profile, as expected for bar formation processes in which the dark matter halo plays a fundamental role. Furthermore, we show that the location of this drop is a good indicator of the end of the bar in strongly barred galaxies, as predicted by numerical models.

  9. Continuum Halos in Nearby Galaxies: An EVLA Survey (CHANG-ES). II. First Results on NGC 4631

    NASA Astrophysics Data System (ADS)

    Irwin, Judith; Beck, Rainer; Benjamin, R. A.; Dettmar, Ralf-Jürgen; English, Jayanne; Heald, George; Henriksen, Richard N.; Johnson, Megan; Krause, Marita; Li, Jiang-Tao; Miskolczi, Arpad; Mora, Silvia Carolina; Murphy, E. J.; Oosterloo, Tom; Porter, Troy A.; Rand, Richard J.; Saikia, D. J.; Schmidt, Philip; Strong, A. W.; Walterbos, Rene; Wang, Q. Daniel; Wiegert, Theresa

    2012-08-01

    We present the first results from the Continuum Halos in Nearby Galaxies—an EVLA Survey (CHANG-ES), a new survey of 35 edge-on galaxies to search for both in-disk and extraplanar radio continuum emission. CHANG-ES is exploiting the new wide-band, multi-channel capabilities of the Karl G. Jansky Very Large Array (i.e., the Expanded Very Large Array or EVLA) with observations in two bands centered at 1.5 and 6 GHz in a variety of array configurations with full polarization. The motivation and science case for the survey are presented in a companion paper (Paper I). These first results are based on C-array test observations in both observing bands of the well-known radio halo galaxy, NGC 4631. In this paper, we outline the observations and the data reduction steps that are required for wide-band calibration and mapping of EVLA data, including polarization. With modest on-source observing times (30 minutes at 1.5 GHz and 75 minutes at 6 GHz for the test data), we have achieved best rms noise levels of 22 and 3.5 μJy beam-1 at 1.5 GHz and 6 GHz, respectively. New disk-halo features have been detected, among them two at 1.5 GHz that appear as loops in projection. We present the first 1.5 GHz spectral index map of NGC 4631 to be formed from a single wide-band observation in a single array configuration. This map represents tangent slopes to the intensities within the band centered at 1.5 GHz, rather than fits across widely separated frequencies as has been done in the past and is also the highest spatial resolution spectral index map yet presented for this galaxy. The average spectral index in the disk is \\bar{\\alpha }_{1.5 \\,GHz} =-0.84+/- 0.05 indicating that the emission is largely non-thermal, but a small global thermal contribution is sufficient to explain a positive curvature term in the spectral index over the band. Two specific star-forming regions have spectral indices that are consistent with thermal emission. Polarization results (uncorrected for internal

  10. Distribution and kinematics of H I in the active elliptical galaxy NGC 1052

    SciTech Connect

    van Gorkom, J.H.; Knapp, G.R.; Raimond, E.; Faber, S.M.; Gallagher, J.S.

    1986-04-01

    The H I distribution in the active elliptical galaxy NGC 1052 has been mapped at a resolution of 1 arcmin with the VLA. The H I structure is about three times the size of the optical galaxy and is roughly perpendicular to its major axis. The H I has a circular velocity of approx.200 km/s, roughly constant with radius; the mass of the galaxy is 1.5 x 10/sup 11/ M/sub sun/ at a radius of 16 kpc (D = 13.4 Mpc), and the mass to blue luminosity ratio at this radius is M/L/sub B/ approx.15 M/sub sun//L/sub sun/. H I absorption is seen against the central radio continuum source, at both the systemic velocity and at redshifted velocities. The gas in NGC 1052, as in other ellipticals, has a rotation axis that is not aligned with the stellar rotation axis (the difference is 63/sup 0/) and a mean specific angular momentum that is considerably larger than that of the stars. The H I distribution is unusually irregular. In the southwest region of the galaxy, the distribution shows what appears to be a tidal tail, suggesting that the H I may have been acquired about 10/sup 9/ years ago. The presence of dust associated with the H I and the distribution and kinematics of the H I are consistent with capture of gas from a gas-rich dwarf or spiral. In the inner regions of the galaxy (r<5 kpc) the H I velocity field shows evidence of noncircular orbits and therefore possibly of a triaxial mass distribution for the galaxy. Alternatively the gas could be falling in toward the center.

  11. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  12. The radio source and bipolar nebulosity in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Wilson, Andrew S.; Perez-Fournon, Ismael

    1992-01-01

    Results of radio continuum and optical emission-line observations of the type 1 Seyfert galaxy NGC 3516 are presented. The radio maps reveal an elongated one-sided curved structure, which comprises a series of small-scale 'blobs' and extends up to 4 kpc from the nucleus. This radio structure is aligned and cospatial with one side of the double-sided and highly symmetric Z-shaped emission-line structure. It is argued that these morphological features are associated with a bipolar gaseous outflow from the nucleus of NGC 3516. The radio 'blobs' are elongated roughly perpendicular to the apparent local direction of the outflow, a result which is interpreted in terms of synchrotron emission from outflow-driven shock waves.

  13. The Massive Black Hole in the Dwarf Galaxy NGC 4486B

    NASA Astrophysics Data System (ADS)

    Bender, A.; Green, R. F.; Gebhardt, K.; Bower, G. A.; Kormendy, J.; Lauer, T.; Richstone, D. O.; STIS IDT Galaxy Nuclei Team; Nuker Team

    2003-12-01

    We report results from the application of a three-integral galactic dynamical model to NGC 4486B. This dwarf E1 companion to M87 has long been known to be an outlier in the Fundamental Plane. Kormendy and Magorrian et al. found a substantial central black hole mass, making it an outlier in the MBH to Lbulge relationship as well. From the modeling we are able to determine the extent to which NGC 4486B follows the MBH - sigma relation more closely than the other bulge galaxy relationships. The other unique feature NGC 4486B exhibits is a double nucleus structure, the second of only two observed. We combine the high resolution of STIS spectra with ground based data to form a more complete description of the line-of-sight velocity distributions (LOSVDs) in the nuclear region of NGC 4486B. Through the increased resolution of the dynamics and the three-integral model, we place an improved constraint on the mass-to-light ratio and black hole mass. Bender's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. RG and GB were supported by NASA for the STIS Instrument Definition Team. This work is a collaboration with the STIS Instrument Definition Team galaxy nuclei group, which also includes John Hutchings, Charles Joseph, Mary Elizabeth Kaiser, Charles Nelson, Donna Weistrop, and Bruce Woodgate. This work is a collaboration with the Nuker Team, which also includes Ralf Bender, Alan Dressler, Sandra Faber, Alex Filippenko, Carl Grillmair, Luis Ho, John Magorrian, Jason Pinkney, Christos Siopis, and Scott Tremaine.

  14. Isolated elliptical galaxies and their globular cluster systems. II. NGC 7796 - globular clusters, dynamics, companion

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Salinas, R.; Lane, R. R.; Hilker, M.; Schirmer, M.

    2015-02-01

    Context. Rich globular cluster systems, particularly the metal-poor part of them, are thought to be the visible manifestations of long-term accretion processes. The invisible part is the dark matter halo, which may show some correspondence to the globular cluster system. It is therefore interesting to investigate the globular cluster systems of isolated elliptical galaxies, which supposedly have not experienced extended accretion. Aims: We investigate the globular cluster system of the isolated elliptical NGC 7796, present new photometry of the galaxy, and use published kinematical data to constrain the dark matter content. Methods: Deep images in B and R, obtained with the VIsible MultiObject Spectrograph (VIMOS) at the VLT, form the data base. We performed photometry with DAOPHOT and constructed a spherical photometric model. We present isotropic and anisotropic Jeans-models and give a morphological description of the companion dwarf galaxy. Results: The globular cluster system has about 2000 members, so it is not as rich as those of giant ellipticals in galaxy clusters with a comparable stellar mass, but richer than many cluster systems of other isolated ellipticals. The colour distribution of globular clusters is bimodal, which does not necessarily mean a metallicity bimodality. The kinematic literature data are somewhat inconclusive. The velocity dispersion in the inner parts can be reproduced without dark matter under isotropy. Radially anisotropic models need a low stellar mass-to-light ratio, which would contrast with the old age of the galaxy. A MONDian model is supported by X-ray analysis and previous dynamical modelling, but better data are necessary for a confirmation. The dwarf companion galaxy NGC 7796-1 exhibits tidal tails, multiple nuclei, and very boxy isophotes. Conclusions: NGC 7796 is an old, massive isolated elliptical galaxy with no indications of later major star formation events as seen frequently in other isolated ellipticals. Its

  15. Star formation histories across the interacting galaxy NGC 6872, the largest-known spiral

    SciTech Connect

    Eufrasio, Rafael T.; De Mello, Duilia F.; Dwek, Eli; Arendt, Richard G.; Benford, Dominic J.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; De Oliveira, Claudia Mendes

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  16. Star Formation Histories across the Interacting Galaxy NGC 6872, the Largest-known Spiral

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; Dwek, Eli; Arendt, Richard G.; de Mello, Duilia F.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; Mendes de Oliveira, Claudia; Benford, Dominic J.

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  17. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  18. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

     Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters.  However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es

  19. A MULTI-WAVELENGTH ANALYSIS OF NGC 4178: A BULGELESS GALAXY WITH AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Moran, S. M.; Cheung, C. C.; Giroletti, M.; Bergmann, M. P.; Seth, A. C.

    2013-11-10

    We present Gemini longslit optical spectroscopy and Very Large Array radio observations of the nuclear region of NGC 4178, a late-type bulgeless disk galaxy recently confirmed to host an active galactic nucleus (AGN) through infrared and X-ray observations. Our observations reveal that the dynamical center of the galaxy is coincident with the location of the Chandra X-ray point source discovered in a previous work, providing further support for the presence of an AGN. While the X-ray and IR observations provide robust evidence for an AGN, the optical spectrum shows no evidence for the AGN, underscoring the need for the penetrative power of mid-IR and X-ray observations in finding buried or weak AGNs in this class of galaxy. Finally, the upper limit to the radio flux, together with our previous X-ray and IR results, is consistent with the scenario in which NGC 4178 harbors a deeply buried AGN accreting at a high rate.

  20. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  1. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945

    SciTech Connect

    Harrison, Sarah M.; /MIT /SLAC

    2006-09-11

    Recently, X-ray astronomy has been used to investigate objects such as galaxies, clusters of galaxies, Active Galactic Nuclei (AGN), quasars, starburst superbubbles of hot gas, X-ray binary systems, stars, supernova remnants, and interstellar and intergalactic material. By studying the x-ray emission patterns of these objects, we can gain a greater understanding of their structure and evolution. We analyze X-ray emission from the galaxy NGC 4945 using data taken by the Chandra X-ray Observatory. The Chandra Interactive Analysis of Observations (CIAO) software package was used to extract and fit energy spectra and to extract light curves for the brightest off-nuclear sources in two different observations of NGC 4945 (January, 2000 and May, 2004). A majority of sources were closely fit by both absorbed power law and absorbed bremsstrahlung models, with a significantly poorer {chi}{sup 2}/dof for the absorbed blackbody model, and most sources had little variability. This indicates that the sources are accreting binary systems with either a neutron star or black hole as the compact object. The calculated luminosities were about 10{sup 38} erg/s, which implies that the mass of the accreting object is close to 10 solar masses and must be a black hole.

  2. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388

    NASA Astrophysics Data System (ADS)

    Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.

    2016-06-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.

  3. The fluorescence-dominated X-ray spectrum of the spiral galaxy NGC 6552

    NASA Technical Reports Server (NTRS)

    Fukazawa, Yasushi; Makishima, Kazuo; Ebisawa, Ken; Fabian, Andrew C.; Gendreau, Keith C.; Ikebe, Yasushi; Iwasawa, Kazushi; Kii, Tsuneo; Mushotzky, Richard F.; Ohashi, Takaya

    1994-01-01

    A hard X-ray source with a 2-10 keV flux of approximately 6 x 10(exp -13) ergs/sec/sq cm was detected with ASCA in the north ecliptic pole region. It is identified with the spiral galaxy NGC 6552 at a redshift of z = 0.026, which is optically classified as a Seyfert 2 galaxy. The X-ray spectrum consists of a series of atomic K-emission lines from (nearly-) neutral species of at least seven abundant elements, and a heavily absorbed (N(sub H) approx. = 6 x 10(exp 23)/sq cm) hard continuum. The iron line has an equivalent width as large as approximately 0.9 keV. Our results show that NGC 6552 is an extreme type 2 Seyfert galaxy, in which the fluorescent lines are produced when hard X-rays from a hidden active nucleus are reflected off thick cool matter into our line of sight. The intrinsic 2-10 keV luminosity of the nucleus is estimated to be at least 6 x 10(exp 42) ergs/s.

  4. THE GLOBULAR CLUSTER SYSTEM OF NGC 4636 AND FORMATION OF GLOBULAR CLUSTERS IN GIANT ELLIPTICAL GALAXIES

    SciTech Connect

    Park, Hong Soo; Lee, Myung Gyoon; Hwang, Ho Seong; Kim, Sang Chul; Arimoto, Nobuo; Yamada, Yoshihiko; Tamura, Naoyuki; Onodera, Masato E-mail: mglee@astro.snu.ac.kr E-mail: sckim@kasi.re.kr E-mail: yoshihiko.yamada@nao.ac.jp E-mail: monodera@phys.ethz.ch

    2012-11-10

    We present a spectroscopic analysis of the metallicities, ages, and alpha-elements of the globular clusters (GCs) in the giant elliptical galaxy (gE) NGC 4636 in the Virgo Cluster. Line indices of the GCs are measured from the integrated spectra obtained with Faint Object Camera and Spectrograph on the Subaru 8.2 m Telescope. We derive [Fe/H] values of 59 GCs based on the Brodie and Huchra method, and [Z/H], age, and [{alpha}/Fe] values of 33 GCs from the comparison of the Lick line indices with single stellar population models. The metallicity distribution of NGC 4636 GCs shows a hint of a bimodality with two peaks at [Fe/H] = -1.23({sigma} = 0.32) and -0.35({sigma} = 0.19). The age spread is large from 2 Gyr to 15 Gyr and the fraction of young GCs with age <5 Gyr is about 27%. The [{alpha}/Fe] of the GCs shows a broad distribution with a mean value [{alpha}/Fe] Almost-Equal-To 0.14 dex. The dependence of these chemical properties on the galactocentric radius is weak. We also derive the metallicities, ages, and [{alpha}/Fe] values for the GCs in other nearby gEs (M87, M49, M60, NGC 5128, NGC 1399, and NGC 1407) from the line index data in the literature using the same methods as used for NGC 4636 GCs. The metallicity distribution of GCs in the combined sample of seven gEs including NGC 4636 is found to be bimodal, supported by the KMM test with a significance level of >99.9%. All these gEs harbor some young GCs with ages less than 5 Gyr. The mean age of the metal-rich GCs ([Fe/H] >-0.9) is about 3 Gyr younger than that of the metal-poor GCs. The mean value of [{alpha}/Fe] of the gE GCs is smaller than that of the Milky Way GCs. We discuss these results in the context of GC formation in gEs.

  5. The incidence of bar-like kinematic flows in CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Holmes, L.; Spekkens, K.; Sánchez, S. F.; Walcher, C. J.; García-Benito, R.; Mast, D.; Cortijo-Ferrero, C.; Kalinova, V.; Marino, R. A.; Mendez-Abreu, J.; Barrera-Ballesteros, J. K.

    2015-08-01

    We carry out a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disc galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the Calar Alto Legacy Integral Field Spectroscopy Area (CALIFA) survey. We use the DISKFIT algorithm to apply rotation only and bisymmetric flow models to H α velocity fields for 49/100 CALIFA DR1 systems that meet our selection criteria. We find satisfactory fits for a final sample of 37 systems. DISKFIT is sensitive to the radial or tangential components of a bar-like flow with amplitudes greater than 15 km s-1 across at least two independent radial bins in the fit, or ˜2.25 kpc at the characteristic final sample distance of ˜75 Mpc. The velocity fields of 25/37 {(67.6^{+6.6}_{-8.5} per cent)} galaxies are best characterized by pure rotation, although only 17/25 {(68.0^{+7.7}_{-10.4} per cent)} of them have sufficient H α emission near the galaxy centre to afford a search for non-circular flows. We detect non-circular flows in the remaining 12/37 {(32.4^{+8.5}_{-6.6} per cent)} galaxies. We conclude that the non-circular flows detected in 11/12 {(91.7^{+2.8}_{-14.9} per cent)} systems stem from bars. Galaxies with intermediate (AB) bars are largely undetected, and our detection thresholds therefore represent upper limits to the amplitude of the non-circular flows therein. We find 2/23 {(8.7^{+9.6}_{-2.9} per cent)} galaxies that show non-circular motions consistent with a bar-like flow, yet no photometric bar is evident. This suggests that in ˜10 per cent of galaxies either the existence of a bar may be missed completely in photometry or other processes may drive bar-like flows and thus secular galaxy evolution.

  6. Star formation and nuclear activity in the blue early-type galaxy NGC 5373

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Miller, Brendan P.; Gallo, Elena; Alfvin, Erik; Martinkus, Charlotte; Molter, Edward

    2015-01-01

    We present new optical and X-ray observations of NGC 5373, an isolated star-forming elliptical that has a stellar mass of 7e10 solar and lies at a distance of 175 Mpc. Our B and R band Magellan IMACS imaging substantially improves on SDSS resolution and sensitivity, enabling accurate modeling of the galaxy surface brightness profile. As expected from its mass, NGC 5373 is a core galaxy with a best-fit Sersic profile of n~3.8; no prominent tidal tails or shells are found, although there are slight residual asymmetries. The H-alpha emission in the SDSS spectrum is narrow, and the line ratios confirm a star-forming classification in the BPT diagram, near the transition/composite line. The star formation rate is about 6 solar masses per year, making NGC 5373 an extreme outlier relative to typical local early-type galaxies of similar mass. Our 50 ks Chandra ACIS-S exposure provides a clear detection of a central X-ray source, with a hardness ratio consistent with a power-law photon index of 2.0+/-0.5. The unabsorbed luminosity is Lx = 2e40 erg/s over 0.3-8 keV. Comparison with a MARX simulated point spread function suggests the central source may be extended, for example due to contributions from one or more unresolved high-mass X-ray binaries, as might be present given the high star formation rate. For a black hole of 1.6e8 solar masses as predicted from scaling relations, Lx/Ledd is then around 1e-6 (or potentially lower).

  7. Polarimetric imaging of the polar ring galaxy NGC 660 - evidence for dust outside the stellar disk

    NASA Astrophysics Data System (ADS)

    Alton, P. B.; Stockdale, D. P.; Scarrott, S. M.; Wolstencroft, R. D.

    2000-05-01

    Optical imaging polarimetry has been carried out for the polar ring, starburst galaxy NGC 660. This galaxy has a highly inclined, severely tidally-disturbed disk which is surrounded by a gas-rich, polar ring. We detect scattered light from a large part of the halo and this is attributable to dust grains residing up to =~ 2.5 kpc from the stellar disk. There is evidence from emission-line imaging carried out in the past, that NGC 660 is host to an energetic outflow of hot gas along the minor axis (a `superwind'). Our results indicate that dust grains are entrained in this same outflow. Polarization due to scattering, however, is also present at positions away from the minor axis suggesting that grains may also be displaced from the stellar disk by tidal forces exerted during galactic collisions. Where the polar ring occludes the stellar disk we observe polarization due to magnetically aligned, dichroic grains. By comparing the recorded polarization with the associated optical extinction we infer that the magnetic field in the ring has a lower (but still comparable) strength to the magnetic field in the Milky Way. We also derive a dust-to-gas ratio for the ring and this is about a factor of 2-3 lower than in the solar neighbourhood (but close to the value measured in some nearby spirals). If the ring comprises the remnants of the `interloper' which collided with NGC 660, we expect that the ruptured galaxy was a massive, metal-rich spiral.

  8. Revisiting the Abundance Gradient in the Maser Host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2011-03-01

    New spectroscopic observations of 36 H II regions in NGC 4258 obtained with the Gemini telescope are combined with existing data from the literature to measure the radial oxygen abundance gradient in this galaxy. The [O III]λ4363 auroral line was detected in four of the outermost targets (17-22 kpc from the galaxy center), allowing a determination of the electron temperature Te of the ionized gas. From the use of different calibrations of the R 23 abundance indicator, an oxygen abundance gradient of approximately -0.012 ± 0.002 dex kpc-1 is derived. Such a shallow gradient, combined with the difference in the distance moduli measured from the Cepheid period-luminosity relation by Macri et al. between two distinct fields in NGC 4258, would yield an unrealistically strong effect of metallicity on the Cepheid distances. This strengthens the suggestion that systematic biases might affect the Cepheid distance of the outer field. Evidence for a similar effect in the differential study of M33 by Scowcroft et al. is presented. A revision of the transformation between strong-line and Te -based abundances in Cepheid-host galaxies is discussed. In the Te abundance scale, the oxygen abundance of the inner field of NGC 4258 is found to be comparable with the LMC value. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  9. The extremely populated globular cluster system of the lenticular galaxy NGC 6861

    NASA Astrophysics Data System (ADS)

    Escudero, Carlos G.; Faifer, Favio R.; Bassino, Lilia P.; Calderón, Juan Pablo; Caso, Juan Pablo

    2015-05-01

    We present a photometric study of the globular cluster (GC) system associated with the lenticular galaxy (S0) NGC 6861, which is located in a relatively low density environment. It is based on Gemini/GMOS images in the filters g', r', i' of three fields, obtained under good seeing conditions. Analysing the colour-magnitude and colour-colour diagrams, we find a large number of GC candidates, which extend out to 100 kpc, and we estimate a total population of 3000 ± 300 GCs. Besides the well-known blue and red subpopulations, the colour distribution shows signs of the possible existence of a third subpopulation with intermediate colours. This could be interpreted as evidence of a past interaction or fusion event. Other signs of interactions presented by the galaxy are the non-concentric isophotes and the asymmetric spatial distribution of GC candidates with colours (g' - i')0 > 1.16. As observed in other galaxies, the red GCs show a steeper radial distribution than the blue GCs. In addition, the spatial distribution of these candidates exhibits strong signs of elongation. This feature is also detected in the intermediate subpopulation. On the other hand, the blue candidates show an excellent agreement with the X-ray surface brightness profile, outside 10 kpc. They also show a colour-luminosity relation (blue tilt), similar to that observed in other galaxies. A new distance modulus has been estimated through the blue subpopulation, which is in good agreement with the previous value obtained through the surface brightness fluctuation method. The specific frequency of NGC 6861 (S N = 10.6 ± 2.1) is probably one of the highest values obtained for an S0 galaxy so far.

  10. Caught in the Act: Direct Detection of Galactic Bars in the Buckling Phase

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Debattista, Victor P.

    2016-07-01

    The majority of massive disk galaxies, including our own, have stellar bars with vertically thick inner region, known as “boxy/peanut-shaped” (B/P) bulges. The most commonly suggested mechanism for the formation of B/P bulges is a violent vertical “buckling” instability in the bar, something that has been seen in N-body simulations for over 20 years, but never identified in real galaxies. Here, we present the first direct observational evidence for ongoing buckling in two nearby galaxies (NGC 3227 and NGC 4569), including characteristic asymmetric isophotes and (in NGC 4569) stellar kinematic asymmetries that match buckling in simulations. This confirms that the buckling instability takes place and produces B/P bulges in real galaxies. A toy model of bar evolution yields a local fraction of buckling bars consistent with observations if the buckling phase lasts ˜0.5-1 Gyr, in agreement with simulations.

  11. On the emission-line response to continuum variations in the Seyfert galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai; Maoz, Dan

    1990-12-01

    The two optical monitoring groups which have recently attempted to ascertain the continuum and emission-line variations in the Seyfert galaxy NGC 5548 have reported apparently contradictory results for the delay of H-beta variations with respect to the continuum. The measurements of Clavel et al. (1991) are presently used to demonstrate that the emission-line lag behind continuum variations depends on the continuum variability time-scale in this object, in the sense that continuum variations with larger time-scales yield larger emission-line lags. Monte Carlo simulations are used to show that there is at least one possible model which can reproduce the two differing delays.

  12. Chemical behavior of the dwarf irregular galaxy NGC6822. Its PN and HII region abundances

    NASA Astrophysics Data System (ADS)

    Hernández-Martínez, L.; Peña, M.; Carigi, L.; García-Rojas, J.

    2009-10-01

    Aims: We aim to derive the chemical behavior of a significant sample of PNe and HII regions in the irregular galaxy NGC 6822. The selected objects are distributed in different zones of the galaxy. Our purpose is to obtain the chemical abundances of the present interstellar medium (ISM), represented by H ii regions, and the corresponding values at the time of formation of PNe. With these data the chemical homogeneity of NGC 6822 were tested and the abundance pattern given by H ii regions and PNe used as an observational constraint for computing chemical evolution models to infer the chemical history of NGC 6822. Methods: Due to the faintness of PNe and H ii regions in NGC 6822, to gather spectroscopic data with large telescopes is necessary. We obtained a well suited sample of spectra by employing VLT-FORS 2 and Gemini-GMOS spectrographs. Ionic and total abundances were calculated for the objects where electron temperatures could determined through the detection of [O iii] λ4363 or/and [N ii] λ5755 lines. A “simple” chemical evolution model was developed and the observed data were used to compute a model for NGC 6822 in order to infer a preliminary chemical history in this galaxy. Results: Confident determinations of He, O, N, Ne, S and Ar abundances were derived for a sample of 11 PNe and one H ii region. We confirm that the present ISM is chemically homogeneous, at least in the central 2 kpc of the galaxy, showing a value 12 + log O/H = 8.06 ± 0.04. From the abundance pattern of PNe, we identified two populations: a group of young PNe with abundances similar to H ii regions and a group of older objects with abundances a factor of two lower. A pair of extreme Type I PNe were found. No third dredge-up O enrichement was detected in PNe of this galaxy. The abundance determinations allow us to discuss the chemical behavior of the present and past ISM in NGC 6822. Our preliminary chemical evolution model predicts that an important gas-mass loss occurred during

  13. The old globular cluster system of the dIrr galaxy NGC 1427A in the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Georgiev, I. Y.; Hilker, M.; Puzia, T. H.; Chanamé, J.; Mieske, S.; Goudfrooij, P.; Reisenegger, A.; Infante, L.

    2006-06-01

    We present a study of the old globular cluster (GC) population of the dwarf irregular galaxy NGC 1427A using multi-wavelength VLT observations in U,B,V,I, Hα and J bands under excellent observing conditions. We applied color and size selection criteria to select old GC candidates and made use of archival ACS images taken with the Hubble Space Telescope to reject contaminating background sources and blended objects from the GC candidates' list. The Hα observations were used to check for contamination due to compact, highly reddened young star clusters whose colors and sizes could mimic those of old GCs. After accounting for contamination we obtain a total number of 38±8 GC candidates with colors consistent with an old (~10 Gyr) and metal-poor (Z<0.4× Z⊙) population as judged by simple stellar population models. Our contamination analysis indicates that the density distribution of GCs in the outskirts of the Fornax central cD galaxy NGC 1399 may not be spherically symmetric. We derive a present-day specific frequency SN of 1.6 for NGC 1427A, a value significantly larger than what is observed in the Local Group dwarf irregular galaxies and comparable with the values found for the same galaxy types in the Virgo and Fornax clusters. Assuming a universal globular cluster luminosity function turnover magnitude, we derive a distance modulus to NGC 1427A of 31.01±0.21 mag which places it ˜3.2±2.5 (statistic)±1.6 (systematic) Mpc in front of the Fornax central cD galaxy NGC 1399. The implications of this result for the relationship between NGC 1427A and the cluster environment are briefly discussed.

  14. Hubble Space Telescope Observations of Circumnuclear Star-Forming Rings in NGC 1097 and NGC 6951

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L.

    1995-09-01

    We have obtained new and archival Hubble Space Telescope V-band images of kiloparsec-sized circumnuclear star-forming rings in the barred spiral galaxies NGC 1097 and NGC 6951, both of which contain active nuclei. The images resolve the rings into two-armed spirals composed of bright knots located on the outer edges of prominent dust lanes. The two-armed ring morphology seen in these two galaxies appears to be common in barred spirals and is in accord with the results of simulations of bar-driven inflow. In both galaxies, circumnuclear star formation is tightly confined to the ring: in the region between the ring and the nucleus there is an intricate spiral pattern of narrow dust lanes, but no bright knots are visible. Miniature gaseous or stellar bars interior to nuclear rings have been suggested as mechanisms for transporting gas to active nuclei, but it is not clear from the optical morphology whether either of these mechanisms may be at work in these two galaxies. The young star clusters in the rings are extremely compact, with mean effective radii of 2.5 pc in NGC 1097 and <= 4 pc in NGC 6951. Without correcting for extinction, the clusters have absolute V magnitudes of up to - 12.6 mag; with a highly uncertain extinction correction the brightest clusters have luminosities of M_v_ = - 14 to - 15 mag. Such high luminosities and small radii indicate that these objects are examples of "super star clusters" which may be newly formed globular clusters like those found recently in merging galaxies. The centers of barred galaxies may therefore be common sites for the present-day formation of globular clusters. The image of NGC 1097 also contains the type II supernova 1992bd 12 days prior to its discovery in ground-based observations.

  15. Herschel and JCMT observations of the early-type dwarf galaxy NGC 205

    NASA Astrophysics Data System (ADS)

    De Looze, I.; Baes, M.; Parkin, T. J.; Wilson, C. D.; Bendo, G. J.; Boquien, M.; Boselli, A.; Cooray, A.; Cormier, D.; Fritz, J.; Galliano, F.; Gear, W.; Gentile, G.; Lebouteiller, V.; Madden, S. C.; Roussel, H.; Sauvage, M.; Smith, M. W. L.; Spinoglio, L.; Verstappen, J.; Young, L.

    2012-07-01

    for heavier elements, confirm the deficiency of the interstellar medium (gas+dust) in the inner regions of NGC 205, which is predicted to contain at least >107 M⊙ of gas if we assume a reasonable star formation efficiency of 10 per cent and account for the mass return from planetary nebulae. In an attempt to explain the missing interstellar medium mass problem, we claim that efficient supernova feedback capable of expelling gas from the inner, star-forming regions to the outer regions and/or tidal interactions with M31 stripping the gas component from the galaxy provide the best explanation for the removal of a significant amount of gas and dust from NGC 205.

  16. Star formation and gas flows in the centre of the NUGA galaxy NGC 1808 observed with SINFONI

    NASA Astrophysics Data System (ADS)

    Busch, Gerold; Eckart, Andreas; Valencia-S., Mónica; Fazeli, Nastaran; Scharwächter, Julia; Combes, Françoise; García-Burillo, Santiago

    2017-02-01

    NGC 1808 is a nearby barred spiral galaxy which hosts young stellar clusters in a patchy circumnuclear ring with a radius of 240 pc. In order to study the gaseous and stellar kinematics and the star formation properties of the clusters, we perform seeing-limited H + K-band near-infrared integral-field spectroscopy with SINFONI of the inner 600 pc. From the MBH-σ∗ relation, we find a black hole mass of a few 107M⊙. We estimate the age of the young stellar clusters in the circumnuclear ring to be ≲10 Myr. No age gradient along the ring is visible. However, the starburst age is comparable to the travel time along the ring, indicating that the clusters almost completed a full orbit along the ring during their lifetime. In the central 600 pc, we find a hot molecular gas mass of 730 M⊙ which, with standard conversion factors, corresponds to a large cold molecular gas reservoir of several 108M⊙, in agreement with CO measurements from the literature. The gaseous and stellar kinematics show several deviations from pure disc motion, including a circumnuclear disc and signs of a nuclear bar potential. In addition, we confirm streaming motions on the 200 pc scale that have recently been detected in CO(1-0) emission. Thanks to the enhanced angular resolution of <1″, we find further streaming motion within the inner arcsecond that had not been detected until now. Despite the flow of gas towards the centre, no signs of significant AGN activity are found. This raises the question: will the infalling gas fuel an AGN or star formation? Based on observations with ESO-VLT, STS-Cologne GTO proposal ID 094.B-0009(A) and ESO archival data, proposal nos 074.A-9011(A) and 075.B-0648(A).

  17. Deep Photometry of Galaxies in the VEGAS Survey: The Case of NGC 4472

    NASA Astrophysics Data System (ADS)

    Spavone, M.

    The VST-VEGAS project is aimed at observing and studying a rich sample of nearby early-type galaxies in order to systematically characterize their properties over a wide baseline of sizes and out to the faint outskirts where data are rather scarce so far. The external regions of galaxies more easily retain signatures about the formation and evolution mechanisms which shaped them, as their relaxation time are longer, and they are more weakly influenced by processes such as mergers, secular evolution, central black hole activity, and supernova feedback on the ISM, which tend to level age and metallicity gradients. The collection of a wide photometric dataset of a large number of galaxies in various environmental conditions, may help to shed light on these questions. To this end VEGAS exploits the potential of the VLT Survey Telescope (VST) which provides high quality images of 1 deg2 field of view in order to satisfy both the requirement of high resolution data and the need of studying nearby, and thus large, objects. We present a detailed study of the surface photometry of the elliptical galaxy NGC4472 and of smaller ETGs in its field, performed by using new g and i bands images to constrain the formation history of this nearby giant galaxy, and to investigate the presence of very faint substructures in its surroundings.

  18. The impact of bars on the radial distribution of supernovae in disc galaxies

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Karapetyan, A. G.; Barkhudaryan, L. V.; Mamon, G. A.; Kunth, D.; Petrosian, A. R.; Adibekyan, V.; Aramyan, L. S.; Turatto, M.

    2016-07-01

    We present an analysis of the impact of bars on the radial distributions of the different types of supernovae (SNe) in the stellar discs of host galaxies with various morphologies. We find that in Sa-Sbc galaxies, the radial distribution of core-collapse (CC) SNe in barred hosts is inconsistent with that in unbarred ones, while the distributions of SNe Ia are not significantly different. At the same time, the radial distributions of both types of SNe in Sc-Sm galaxies are not affected by bars. We propose that the additional mechanism shaping the distributions of Type Ia and CC SNe can be explained within the framework of substantial suppression of massive star formation in the radial range swept by strong bars, particularly in early-type spirals. The radial distribution of CC SNe in unbarred Sa-Sbc galaxies is more centrally peaked and inconsistent with that in unbarred Sc-Sm hosts, while the distribution of SNe Ia in unbarred galaxies is not affected by host morphology. These results can be explained by the distinct distributions of massive stars in the discs of early-and late-type spirals.

  19. A MILLIMETER-WAVE INTERFEROMETRIC SEARCH FOR A MOLECULAR TORUS IN THE RADIO GALAXY NGC 4261

    SciTech Connect

    Okuda, Takeshi; Iguchi, Satoru; Kohno, Kotaro

    2013-05-01

    NGC 4261 is an elliptical galaxy with a pair of symmetric kiloparsec-scale jets. We observed a nucleus of NGC 4261 at 2.6 mm and 1.3 mm with the NRO RAINBOW interferometer, the Nobeyama Millimeter Array, and the IRAM Plateau de Bure Interferometer to determine the excitation state of molecular gas. In this observation, neither CO(J = 2-1) nor CO(J = 1-0) absorption lines were detected even at higher sensitivity than the previous work. The 3{sigma} upper limits on the optical depths of CO lines were 0.098 for J = 2-1 and 0.042 for J = 1-0, respectively. These upper limits are much smaller than the optical depth obtained from the previous claimed detection of CO(J = 2-1) absorption (0.7), indicating that the claimed CO(J = 2-1) absorption profile could be a false feature. Our results suggest that there is a possibility that CO molecules are highly excited by the active galactic nucleus, since the optical depths of low-J CO molecules in NGC 4261 are significantly low.

  20. X-ray observations of the Compton-thick Seyfert 2 galaxy, NGC 5643

    NASA Astrophysics Data System (ADS)

    Matt, G.; Bianchi, S.; Marinucci, A.; Guainazzi, M.; Iwawasa, K.; Jimenez Bailon, E.

    2013-08-01

    We present results from a ~55 ks long XMM-Newton observation of the obscured AGN, NGC 5643, performed in July 2009. A previous, shorter (about 10 ks) XMM-Newton observation in February 2003 had left two major issues open, the nature of the hard X-ray emission (Compton-thin vs. Compton-thick) and of the soft X-ray excess (photoionized vs. collisionally ionized matter). The new observation shows that the source is Compton-thick and that the dominant contribution to the soft X-ray emission is by photoionized matter (even if it is still unclear whether collisionally ionized matter may contribute as well). We also studied three bright X-ray sources that are in the field of NGC 5643. The ULX NGC 5643 X-1 was confirmed to be very luminous, even if more than a factor 2 fainter than in 2003. We then provided the first high-quality spectrum of the cluster of galaxies Abell 3602. The last source, CXOJ143244.5-442020, is likely an unobscured AGN, possibly belonging to Abell 3602.

  1. Stellar and ionized gas kinematics of the interacting Seyfert 1.9 galaxy NGC 2992

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; Arribas, S.; Mediavilla, E.

    2001-11-01

    Integral field spectroscopy in the central 16''x 12'' (2.4 kpc x 1.8 kpc, if H0 = 75 km s-1 Mpc-1) of the Seyfert 1.9 galaxy NGC 2992 has been obtained using the fibre system INTEGRAL. The data are mainly used to study the stellar and ionized gas kinematics. In spite of the photometric disruptions in the outer parts (r > 6 kpc) produced by the interaction with its close companion (NGC 2993), the present stellar velocity field shows regular rotation. The ionized gas presents several kinematically distinct components. Apart from the outflowing component already reported by other authors, we found an additional (high ionization) kinematic component which seems to be associated with the boundaries of the figure-of-eight-shaped emission detected in the 6 cm radio map. We locate the hidden nucleus in the apex of the biconical structure defined by the [O iii] emission, coincident with the outflow origin and with the center of the dust lane. We do not find any clear evidence of direct influence of the interaction in the kinematics of the stars or the ionized gas in the circumnuclear region of NGC 2992.

  2. Dust in the nuclei of the Seyfert galaxies Markarian 231 and NGC 4151

    SciTech Connect

    Jones, B.; Worrall, D.M.; Rodriguez-Espinosa, J.M.; Stein, W.A.

    1984-09-01

    Observations carried out with a 8-13 micron grating-spectrometer of Mrk 231 and NGC 4151 are reported. The Mrk 231 data can be fitted to various thermal dust emission models or a single power law, with dust extinction. In all the model fits, except for that of graphite and silicon carbide grain emission, a component of silicate absorption of optical depth of not more than 0.7 is required. Confirming published work, the absorption being at the redshift of the low-redshift absorption-line system is ruled out. The high values of silicate optical depth absorption do not give ratios to the galaxy's visual extinction which are comparable to those of galactic H II regions. Weak evidence for a 10-micron absorption feature in NGC 4151 is also reported. This is somewhat contrary to expectation, since the visual extinction of NGC 4151 is lower than that of Mrk 231, and since there is evidence to support a nonthermal rather than thermal dust origin for the infrared continuum emission. 46 references.

  3. Orbit-based Dynamical Models of the Sombrero Galaxy (NGC 4594)

    NASA Astrophysics Data System (ADS)

    Jardel, John R.; Gebhardt, Karl; Shen, Juntai; Fisher, David B.; Kormendy, John; Kinzler, Jeffry; Lauer, Tod R.; Richstone, Douglas; Gültekin, K.

    2011-09-01

    We present axisymmetric, orbit-based models to study the central black hole (BH), stellar mass-to-light ratio (M/L), and dark matter (DM) halo of NGC 4594 (M104, the Sombrero Galaxy). For stellar kinematics, we use published high-resolution kinematics of the central region taken with the Hubble Space Telescope, newly obtained Gemini long-slit spectra of the major axis, and integral field kinematics from the Spectroscopic Areal Unit for Research on Optical Nebulae instrument. At large radii, we use globular cluster kinematics to trace the mass profile and apply extra leverage to recovering the DM halo parameters. We find a BH of mass M • = (6.6 ± 0.4) × 108 M sun and determine the stellar M/LI = 3.4 ± 0.05 (uncertainties are the 68% confidence band marginalized over the other parameters). Our best-fit DM halo is a cored logarithmic model with asymptotic circular speed Vc = 376 ± 12 km s-1 and core radius rc = 4.7 ± 0.6 kpc. The fraction of dark to total mass contained within the half-light radius is 0.52. Taking the bulge and disk components into account in our calculation of σ e puts NGC 4594 squarely on the M-σ relation. We also determine that NGC 4594 lies directly on the M-L relation.

  4. Shaken, Not Stirred: The Disrupted Disk of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2010-12-01

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of ~22-26 kpc (~13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is ~0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past ~0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution of stars in and around NGC

  5. SHAKEN, NOT STIRRED: THE DISRUPTED DISK OF THE STARBURST GALAXY NGC 253

    SciTech Connect

    Davidge, T. J.

    2010-12-10

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of {approx}22-26 kpc ({approx}13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is {approx}0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past {approx}0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution

  6. Distribution and motions of H I and H_2_ in the peculiar spiral galaxy NGC 3310.

    NASA Astrophysics Data System (ADS)

    Mulder, P. S.; van Driel, W.; Braine, J.

    1995-08-01

    The peculiar Sbc-type starburst galaxy NGC 3310 was mapped in the 21 cm H i line at Westerbork with an angular resolution of 12.2"x15.1" (αxδ) and a velocity resolution of 33km/s. The galaxy was also partially mapped in the CO(1-0) and (2-1) lines at IRAM with resolutions of ~23" and ~12", respectively. In the H i line, an extension of the optical jet-like feature in the Northwestern outer parts (the "arrow") is observed, extending outward to ~6.5' (38kpc) from the centre in data degraded to a resolution of 60". A region of H I emission is found some 9' to the South of NGC 3310 at radial velocities around 1040km/s, i.e. just above systemic, which may be connected to the "main body" H I by a weak bridge. At higher resolutions, the H I shows a central "hole" and two ridges partially coincident with the inner arms seen in Hα and continuing outwards as an extension of these, bending strongly just beyond their optical extent. The central hole is centered on the Southeastern side of the optical inner ring, not on the optical nucleus. The Northern ridge seems to connect its Hα counterpart in the inner regions to the "arrow" in the outer parts. Going from the optical disc to the outer regions, radial velocities measured in the H I gas generally change gradually, with the notable exception of the region of the optical "arrow". The receding half of the galaxy shows rather normal kinematics, as do the inner ~70" of radius of the half with velocities below systemic. Severely disturbed H I kinematics are found in the approaching half beyond that radius, which corresponds to the domain of the optical "bow and arrow" feature. Fits of a circular rotation model to the apparently undisturbed parts of the observed H I velocity field yield a kinematic inclination of 52deg+/-2deg and major axis position angle of 167deg+/-1deg. Subtraction of a model velocity field based on these results from that observed in H I confirms that the gas in the Northwestern (disturbed) half of the

  7. A New High Resolution JVLA Survey of the Fireworks Galaxy, NGC 6946

    NASA Astrophysics Data System (ADS)

    Lacey, Christina K.; Calbo, Zuzana Isabelle; Pannuti, Thomas; Stockdale, Christopher; Fries, Kelly E.

    2017-01-01

    A Jansky Very Large Array high resolution survey was undertaken at three wavelengths: 20 cm, 6 cm, and 3.6 cm of the Fireworks Galaxy, NGC 6946, which is a nearby, grand design spiral galaxy with a distance of ~5 Mpc. This new radio survey has a sensitivity of two - three times previous high resolution surveys. Analysis of the radio maps allow us to identify many new compact sources. We will present a preliminary analysis of the radio maps and discuss the nature of the identified compact sources, which are expected to be supernova remnants (SNRs), HII regions, and background sources. We will compare our source lists to a previous survey conducted in 1994.

  8. A Multiwavelength Study of Face-On Spiral Galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Keddie-Hill, Crystal; Chomiuk, L.; Freeland, E.; Wilcots, E.

    2007-12-01

    We have undertaken a multiwavelength study of nearby face-on spiral galaxy NGC 3631. Data sets include 21 cm line data from the VLA with 14" resolution, radio continuum data at 6cm and 20 cm with 4" resolution, optical data from the WIYN 3.5m, and Chandra X-ray data. Preliminary results are interesting, including what appears to be a hole in the center of the galaxy in both the Hα and radio continuum images. There is also evidence of tidally removed HI near the edge of the disk. The research is ongoing and was supported in part by the REU and ASSURE programs through NSF award AST-0453442.

  9. Globular cluster clustering around ultra compact dwarf galaxies in the halo of NGC 1399

    NASA Astrophysics Data System (ADS)

    Voggel, Karina; Hilker, Michael; Richtler, Tom

    2016-08-01

    We tested the spatial distribution of UCDs and GCs in the halo of NGC 1399 in the Fornax cluster. In particular we tried to find out if globular clusters are more abundant in the vicinity of UCDs than what is expected from their global distribution. A local overabundance of globular clusters was found around UCDs on a scale of 1 kpc compared to what is expected from the large scale distribution of globulars in the host galaxy. This effect is stronger for the metal-poor blue GCs and weaker for the red GCs. An explanation for these clustered globulars is either that they are the remains of a GC system of an ancestor dwarf galaxy before it was stripped to its nucleus, which appears as UCD today. Alternatively these clustered GCs could have been originally part of a super star cluster complex.

  10. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    SciTech Connect

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertrand; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J.

    2015-06-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Group of galaxies and reveals the great potential of this technique.

  11. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  12. TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT

    SciTech Connect

    Humphreys, E. M. L.; Reid, M. J.; Moran, J. M.; Greenhill, L. J.; Argon, A. L.

    2013-09-20

    We report a new geometric maser distance estimate to the active galaxy NGC 4258. The data for the new model are maser line-of-sight (LOS) velocities and sky positions from 18 epochs of very long baseline interferometry observations, and LOS accelerations measured from a 10 yr monitoring program of the 22 GHz maser emission of NGC 4258. The new model includes both disk warping and confocal elliptical maser orbits with differential precession. The distance to NGC 4258 is 7.60 {+-} 0.17 {+-} 0.15 Mpc, a 3% uncertainty including formal fitting and systematic terms. The resulting Hubble constant, based on the use of the Cepheid variables in NGC 4258 to recalibrate the Cepheid distance scale, is H{sub 0} = 72.0 {+-} 3.0 km s{sup -1} Mpc{sup -1}.

  13. Spectroscopic Study of Extended Star Clusters in Dwarf Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hwang, Narae; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Kim, Sang Chul; Miller, Bryan; Weisz, Daniel

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from -61.2 ± 20.4 km s-1 (for C1) to -115.34 ± 57.9 km s-1 (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (>=8 Gyr) and metal poor ([Fe/H] <~ -1.5). NGC 6822 is found to have both metal poor ([Fe/H] ≈-2.0) and metal rich ([Fe/H] ≈-0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r >= 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M_{N6822} = 7.5^{+4.5}_{-0.1} \\times 10^{9}\\ M_{\\odot } and (M/L)_{N6822} = 75^{+45}_{-1} (M/L)_{\\odot }. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  14. TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55

    SciTech Connect

    Jithesh, V.; Wang, Zhongxiang

    2016-04-10

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-ray luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.

  15. The nature of the UV halo around the spiral galaxy NGC 3628

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Viaene, Sébastien

    2016-03-01

    Thanks to deep UV observations with GALEX and Swift, diffuse UV haloes have recently been discovered around galaxies. Based on UV-optical colours, it has been advocated that the UV haloes around spiral galaxies are due to UV radiation emitted from the disc and scattered off dust grains at high latitudes. Detailed UV radiative transfer models that take into account scattering and absorption can explain the morphology of the UV haloes, and they require the presence of an additional thick dust disc next the to traditional thin disc for half of the galaxies in their sample. We test whether such an additional thick dust disc agrees with the observed infrared emission in NGC 3628, an edge-on galaxy with a clear signature of a thick dust disc. We extend the far-ultraviolet radiative transfer models to full-scale panchromatic models. Our model, which contains no fine-tuning, can almost perfectly reproduce the observed spectral energy distribution from UV to mm wavelengths. These results corroborate the interpretation of the extended UV emission in NGC 3628 as scattering off dust grains, and hence of the presence of a substantial amount of diffuse extra-planar dust. A significant caveat, however, is the geometrical simplicity and non-uniqueness of our model: other models with a different geometrical setting could lead to a similar spectral energy distribution. More detailed radiative transfer simulations that compare the model results to images from UV to submm wavelengths are a way to break this degeneracy, as are UV polarisation measurements.

  16. THE STELLAR AND GAS KINEMATICS OF THE LITTLE THINGS DWARF IRREGULAR GALAXY NGC 1569

    SciTech Connect

    Johnson, Megan; Hunter, Deidre A.; Zhang, Hong-Xin; Herrmann, Kimberly; Oh, Se-Heon; Elmegreen, Bruce; Brinks, Elias; Tollerud, Erik E-mail: dah@lowell.edu E-mail: herrmann@lowell.edu E-mail: bge@us.ibm.com E-mail: etolleru@uci.edu

    2012-11-01

    In order to understand the formation and evolution of Magellanic-type dwarf irregular (dIm) galaxies, one needs to understand their three-dimensional structure. We present measurements of the stellar velocity dispersion in NGC 1569, a nearby post-starburst dIm galaxy. The stellar vertical velocity dispersion, {sigma}{sub z}, coupled with the maximum rotational velocity derived from H I observations, V{sub max}, gives a measure of how kinematically hot the galaxy is, and, therefore, indicates its structure. We conclude that the stars in NGC 1569 are in a thick disk with a V{sub max}/{sigma}{sub z} = 2.4 {+-} 0.7. In addition to the structure, we analyze the ionized gas kinematics from O III observations along the morphological major axis. These data show evidence for outflow from the inner starburst region and a potential expanding shell near supermassive star cluster (SSC) A. When compared to the stellar kinematics, the velocity dispersion of the stars increases in the region of SSC A supporting the hypothesis of an expanding shell. The stellar kinematics closely follow the motion of the gas. Analysis of high-resolution H I data clearly reveals the presence of an H I cloud that appears to be impacting the eastern edge of NGC 1569. Also, an ultra-dense H I cloud can be seen extending to the west of the impacting H I cloud. This dense cloud is likely the remains of a dense H I bridge that extended through what is now the central starburst area. The impacting H I cloud was the catalyst for the starburst, thus turning the dense gas into stars over a short timescale, {approx}1 Gyr. We performed a careful study of the spectral energy distribution using infrared, optical, and ultraviolet photometry, producing a state-of-the-art mass model for the stellar disk. This mass modeling shows that stars dominate the gravitational potential in the inner 1 kpc. The dynamical mass of NGC 1569, derived from V{sub max}, shows that the disk may be dark matter deficient in the inner

  17. The Stellar and Gas Kinematics of the LITTLE THINGS Dwarf Irregular Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Johnson, Megan; Hunter, Deidre A.; Oh, Se-Heon; Zhang, Hong-Xin; Elmegreen, Bruce; Brinks, Elias; Tollerud, Erik; Herrmann, Kimberly

    2012-11-01

    In order to understand the formation and evolution of Magellanic-type dwarf irregular (dIm) galaxies, one needs to understand their three-dimensional structure. We present measurements of the stellar velocity dispersion in NGC 1569, a nearby post-starburst dIm galaxy. The stellar vertical velocity dispersion, σz, coupled with the maximum rotational velocity derived from H I observations, V max, gives a measure of how kinematically hot the galaxy is, and, therefore, indicates its structure. We conclude that the stars in NGC 1569 are in a thick disk with a V max/σz = 2.4 ± 0.7. In addition to the structure, we analyze the ionized gas kinematics from O III observations along the morphological major axis. These data show evidence for outflow from the inner starburst region and a potential expanding shell near supermassive star cluster (SSC) A. When compared to the stellar kinematics, the velocity dispersion of the stars increases in the region of SSC A supporting the hypothesis of an expanding shell. The stellar kinematics closely follow the motion of the gas. Analysis of high-resolution H I data clearly reveals the presence of an H I cloud that appears to be impacting the eastern edge of NGC 1569. Also, an ultra-dense H I cloud can be seen extending to the west of the impacting H I cloud. This dense cloud is likely the remains of a dense H I bridge that extended through what is now the central starburst area. The impacting H I cloud was the catalyst for the starburst, thus turning the dense gas into stars over a short timescale, ~1 Gyr. We performed a careful study of the spectral energy distribution using infrared, optical, and ultraviolet photometry, producing a state-of-the-art mass model for the stellar disk. This mass modeling shows that stars dominate the gravitational potential in the inner 1 kpc. The dynamical mass of NGC 1569, derived from V max, shows that the disk may be dark matter deficient in the inner region, although, when compared to the expected

  18. Discovery of a fast transient outflow in the Seyfert 1 galaxy NGC 985

    NASA Astrophysics Data System (ADS)

    Ebrero, J.; Kriss, J.; Kaastra, J.; Domcek, V.

    2016-06-01

    Obscuration events in active galaxies are key to understand the physical conditions and the dynamics of the gas in the vicinity of their central super-massive black hole. Using recent joint observations with XMM-Newton and the Hubble Space Telescope of the nearby Seyfert 1 galaxy NGC 985, we have monitored the pass-by of obscuring material across our line of sight, traveling at 6000 km/s. This kind of event has been recorded previously in only a handful of cases. The properties of this transient absorber suggest that it may originate very close to the broad line region, possibly in an accretion disk wind. Moreover, by analyzing past archival observations of NGC 985, we found evidence that this obscuration process is recurrent. The analysis of the RGS spectra of this source at different epochs reveals that some of the components of the persistent warm absorber vary in response to the changes in the ionizing flux caused by this transient obscurer. In this way, we are able to derive stringent upper limits on the location of the warm absorber.

  19. An Unusual Outburst from the Nucleus of the Quiescent Galaxy NGC 1589

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    2010-09-01

    As part of the Lick Observatory Supernova Search {LOSS}, we have recently identified a highly unusual optical outburst from the nucleus {within 0.05", or 10 pc in projection} of the nearby {d 50 Mpc} spiral {S0/a} galaxy NGC 1589. Over a decade of photometric monitoring with LOSS, together with archival spectroscopy from the CfA Redshift Survey, suggest that the galaxy does not harbor an active nucleus. Likewise, the transient, bright observed X-ray emission and broad H-alpha emission-line profile do not appear to closely resemble those of any known Type II supernova. We therefore consider this transient source {dubbed NGC1589-OT} to be the most viable candidate for a tidal disruption flare {TDF} ever discovered in real time. Here we request UV {STIS} spectroscopy with HST to search for "smoking gun" evidence in favor of the TDF interpretation: photoionized stellar debris ejected by the disruption process. DD time is necessary because the outburst will almost certainly not be visible by the time Cycle 19 observations commence. We did not propose for analogous observations during the normal course of a previous GO cycle due to the extraordinarily small number of good, real-time TDF candidates detected in the past.

  20. An Unusual Outburst from the Nucleus of the Quiescent Galaxy NGC 1589

    NASA Astrophysics Data System (ADS)

    Filippenko, Alexei

    2010-09-01

    As part of the Lick Observatory Supernova Search (LOSS), we have recently identified an unusual optical outburst from the nucleus (within 0.05";, or 10 pc in projection) of the nearby (d ~ 50 Mpc) spiral (S0/a) galaxy NGC 1589. Over a decade of photometric monitoring with LOSS, together with archival spectroscopy from the CfA Redshift Survey, suggest the galaxy does not harbor an active galactic nucleus. Likewise, the bright observed X-ray emission and complex H-alpha emission profile do not appear to resemble any known Type II supernova. We therefore believe this transient source (dubbed NGC1589-OT) represents the most viable candidate for a tidal disruption flare (TDF) ever discovered in real time. Here we request a 10 ks Chandra/ACIS DD observation to accurately constrain the X-ray spectral properties (power-law vs. thermal) and environment (n_H) of this unique, fascinating source. In a separate proposal, we are also requesting HST time to get a UV spectrum of it.

  1. The Nuclear Stellar Dynamics of the S0 Galaxy NGC7332

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Weistrop, D.; Bower, G. A.; Green, R. F.; STIS Team

    1999-12-01

    STIS longslit spectroscopy of the nearby S0 galaxy NGC 7332 was obtained for the purpose of modeling the nuclear stellar dynamics and to search for evidence of a massive black hole. The primary stellar absorption features are the strong Ca II triplet lines at 8600 Angstroms. Stellar kinematical measurements characterizing the line-of-sight velocity distribution were extracted using the Fourier correlation quotient method (Bender 1990, A&Ap, 229, 441). Combined with ground-based imaging and spectroscopy (Fisher, Illingworth & Franx 1994, AJ, 107, 160) and HST WF/PC-1 imaging (Lauer et al. 1995, AJ, 110, 2622) these data were fitted with dynamical models developed by K. Gebhardt which included a compact massive dark object (MDO). We will discuss our results in the context of the relationship for spheroidal stellar systems between spheroid mass and the mass of the MDO, M, (see e.g. Kormendy & Richstone 1995, ARA&A, 33, 581). NGC 7332 is of particular interest since Magorrian et al. (1998, AJ, 115, 2285) find that of all the galaxies in their survey this one is most consistent with M=0 with an upper limit M<7*E6 Msun.

  2. Bar-driven evolution and quenching of spiral galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Spinoso, Daniele; Bonoli, Silvia; Dotti, Massimo; Mayer, Lucio; Madau, Piero; Bellovary, Jillian

    2017-03-01

    We analyse the outputs of the cosmological 'zoom-in' hydrodynamical simulation ErisBH to study a strong stellar bar which naturally emerges in the late evolution of the simulated Milky Way-type galaxy. We focus on the analysis of the formation and evolution of the bar and on its effects on the galactic structure, the gas distribution and the star formation. A large central region in the ErisBH disc becomes bar unstable after z ∼ 1.4, but a clear bar starts to grow significantly only after z ≃ 0.4, possibly triggered by the interaction with a massive satellite. At z ≃ 0.1, the bar stabilizes and reaches its maximum radial extent of l ≈ 2.2 kpc. As the bar grows, it becomes prone to buckling instability. The actual buckling event, observable at z ≃ 0.1, results in the formation of a boxy-peanut bulge clearly discernible at z = 0. During its early growth, the bar exerts a strong torque on the gas and drives gas inflows that enhance the nuclear star formation on sub-kpc scales. Later on, as the bar reaches its maximum length and strength, the gas within its extent is nearly all consumed into stars, leaving behind a gas-depleted region in the central ∼2 kpc. Observations would more likely identify a prominent, large-scale bar at the stage when the galactic central region has already been gas depleted, giving a hint at the fact that bar-driven quenching may play an important role in the evolution of disc-dominated galaxies.

  3. Hubble Space Telescope First Observations of the Brightest Stars in the Virgo Galaxy M100 = NGC 4321

    NASA Technical Reports Server (NTRS)

    Freedman, W. L.; Madore, B. F.; Stetson, P. B.; Hughes, S. M. G.; Holtzman, J. A.; Mould, J. R.; Trauger, J. T.; Gallagher, J. S., III; Ballester, G. E.; Burrows, C. J.; Casertano, S.; Clarke, J. T; Crisp, D.; Ferrarese, L.; Ford, H.; Graham, J. A.; Griffiths, R. E.; Hester, J. J.; Hill, R.; Hoessel, J. G.; Huchra, J.; Kennicutt, R. C.; Scowen, P. A.; Sparks, B.; Stapelfeldt, K. R.

    1994-01-01

    As part of both the Early Release Observations fromthe Hubble Space Telescope and the Key PRoject on the Extragalctic Distance Scale, we have obtained multi-wavelength BVR WFPC2 images for the face-on Virgo cluster spiral galaxy M11 = NGC 4321.

  4. Chandra Evidence for AGN Feedback in the Spiral Galaxy NGC 6764

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Hardcastle, M. J.; Kharb, P.; Kraft, R. P.; Hota, A.

    2008-11-01

    We report the Chandra detection of X-ray emission spatially coincident with the kiloparsec-scale radio bubbles in the nearby (DL ~ 31 Mpc) AGN-starburst galaxy NGC 6764. The X-ray emission originates in hot gas (kT ~ 0.75 keV), which may either be contained within the radio bubbles, or in a shell of hot gas surrounding them. We consider three models for the origin of the hot gas: (1) a starburst-driven galactic wind, (2) shocked gas associated with the expanding radio bubbles, and (3) gas heated and entrained into the bubbles by jet/ISM interactions in the inner AGN outflow. We rule out a galactic wind based on significant differences from known galactic wind systems. The tight correspondence between the brightest X-ray emission and the radio emission in the inner outflow from the Seyfert nucleus, as well as a correlation between X-ray and radio spectral features suggestive of shocks and particle acceleration, lead us to favor the third model; however, we cannot firmly rule out a model in which the bubbles are driving large-scale shocks into the galaxy ISM. In either AGN-driven heating scenario, the total energy stored in the hot gas is high, ~1056 ergs, comparable to the energetic impact of low-power radio galaxies such as Centaurus A, and will have a dramatic impact on the galaxy and its surroundings.

  5. Gas motions in the plane of the spiral galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.; Polyachenko, E. V.; Zasov, A. V.; Sil'chenko, O. K.; Moiseev, A. V.; Burlak, A. N.; Afanasiev, V. L.; Dodonov, S. N.; Knapen, J. H.

    2001-05-01

    The velocity field of the nearly face-on galaxy NGC 3631, derived from observations in the Hα line and Hi radio line, is analysed to study perturbations related to the spiral structure of the galaxy. We confirm our previous conclusion that the line-of-sight velocity field gives evidence of the wave nature of the observed two-armed spiral structure. Fourier analysis of the observed velocity field is used to determine the location of corotation of the spiral structure of this galaxy, and the radius of corotation Rc is found to be about 42arcsec, or 3.2kpc. The vector velocity field of the gas in the plane of the disc is restored, and, taking into account that we previously investigated vertical motions, we now have a full three-dimensional gaseous velocity field of the galaxy. We show clear evidence of the existence of two anticyclonic and four cyclonic vortices near corotation in a frame of reference rotating with the spiral pattern. The centres of the anticyclones lie between the observed spiral arms. The cyclones lie close to the observed spirals, but their centres are shifted from the maxima in brightness.

  6. Supernova Remnants in the Most Fertile Galaxy: NGC 6946

    NASA Astrophysics Data System (ADS)

    Winkler, P. Frank; Long, Knox S.; Blair, William P.

    2014-08-01

    As the host to more recorded supernovae (nine in the past century) than any other galaxy, ngal is a unique venue for studying young (and old) supernova remnants (SNRs). Using deep emission-line images of ngal we obtained from WIYN, we have identified 148 new emission nebulae through their high S II:Hα ratios, indicating that they are strong SNR candidates. This is over 5 times as many as have previously been identified; yet of the 175 total objects, only 6 have been spectroscopically confirmed. We propose multislit spectroscopy from GMOS-N to study the majority of those with no spectra to date. Some 26 are essentially unresolved in our images (diameters ≲ 1 arcsec=27 pc at ngal) and hence probably are relatively young. Several are also coincident with soft X-ray sources (a further indicator of youthful vigor) and have strong O III emission. Some may be rare, ejecta- dominated core-collapse SNRs akin to Cas A, where ``fresh" nucleosynthesis products can be seen. Only spectroscopy, to look for broad emission lines from fast-moving ejecta, can confirm this. We will include spectra of two of the nine recorded SNe in ngal-the first late-time spectrum of SN 2004et, and the first of SN 1980K with high signal-to-noise-adding to the extremely small number of spectra for SNRs only a few decades old. Finally we will use the H II:Hα ratio in a large number of ISM-dominated SNRs to map the N abundance and its gradient across the disk of ngal, and we will use archival HST images to identify the stellar environments that produced the SNe whose remnants we see today.

  7. Evolutionary properties of the low-luminosity galaxy population in the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Cellone, S. A.; Saracco, P.; Zucca, E.

    2012-03-01

    In this third paper of a series we present Johnson-Gunn B, g, V, r, i, z multicolour photometry for 79 objects, including a significant fraction of the faintest galaxies around NGC 5044, assessing group membership on the basis of apparent morphology (through accurate Sérsic-profile fitting) and low-resolution (R= 500-1000) optical spectroscopy to estimate the redshift for 21 objects. Early- and late-type systems are found to be clearly separate in Sérsic parameter space, with the well-known luminosity versus shape relation being mostly traced by different morphological types spanning different ranges in the shape parameter n. A significantly blue colour is confirmed for Magellanic irregulars (Sm/Ims), while a drift toward bluer integrated colours is also an issue for dwarf ellipticals (dEs). Both features point to moderate but pervasive star-formation activity even among nominally 'quiescent' stellar systems. Together, dEs and Ims provide the bulk of the galaxy luminosity function, around M(g) ≃-18.0 ± 1.5, while the S0 and dwarf spheroidal (dSph) components dominate the bright and faint-end tails of the distribution respectively. This special mix places the NGC 5044 Group just 'midway' between the high-density cosmic aggregation scale typical of galaxy clusters and the low-density environment of looser galaxy clumps like our Local Group. The bright mass of the 136 member galaxies with available photometry and morphological classification, as inferred from appropriate M/L model fitting, amounts to a total of 2.3 × 1012 M⊙. This is one seventh of the total dynamical mass of the group, according to its X-ray emission. The current star-formation rate within the group turns to be about 23 M⊙ yr-1, a figure that may however be slightly increased as a result of the evident activity among dwarf ellipticals, as shown by enhanced Hβ emission in their spectra. Lick narrow-band indices have been computed for 17 galaxies, probing all the relevant atomic and

  8. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-08-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed of a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909 ± 4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001, and 0.54-0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between a spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 × 1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  9. OUTFLOW VERSUS INFALL IN SPIRAL GALAXIES: METAL ABSORPTION IN THE HALO OF NGC 891

    SciTech Connect

    Bregman, Joel N.; Seitzer, Patrick; Cowley, C. R.; Miller, Matthew J.; Miller, Eric D.

    2013-03-20

    Gas accreting onto a galaxy will be of low metallicity while halo gas due to a galactic fountain will be of near-solar metallicity. We test these predictions by measuring the metal absorption line properties of halo gas 5 kpc above the plane of the edge-on galaxy NGC 891, using observations taken with HST/STIS toward a bright background quasar. Metal absorption lines of Fe II, Mg II, and Mg I in the halo of NGC 891 are clearly seen, and when combined with recent deep H I observations, we are able to place constraints on the metallicity of the halo gas for the first time. The H I line width defines the line broadening, from which we model opacity effects in these metal lines, assuming that the absorbing gas is continuously distributed in the halo. The gas-phase metallicities are [Fe/H] = -1.18 {+-} 0.07 and [Mg/H] = -0.23 + 0.36/ - 0.27 (statistical errors) and this difference is probably due to differential depletion onto grains. When corrected for such depletion using Galactic gas as a guide, both elements have approximately solar or even supersolar abundances. This suggests that the gas is from the galaxy disk, probably expelled into the halo by a galactic fountain, rather than from accretion of intergalactic gas, which would have a low metallicity. The abundances would be raised by significant amounts if the absorbing gas lies in a few clouds with thermal widths smaller than the rotational velocity of the halo. If this is the case, both the abundances and [Mg/Fe] would be supersolar.

  10. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  11. The radio core structure of the luminous infrared galaxy NGC 4418. A young clustered starburst revealed?

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Beswick, R.; Costagliola, F.; Klöckner, H.-R.

    2014-06-01

    Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). Aims: The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Methods: Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi-Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. Results: The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index α ≥ 0.7 (Sν ∝ να) for the compact radio emission. Conclusions: Brightness temperatures >104.8 K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio-to-IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star formation, and is also close to the limit of what can be physically sustained.

  12. FIREWORKS NEAR A BLACK HOLE IN THE CORE OF SEYFERT GALAXY NGC 4151

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Telescope Imaging Spectrograph (STIS) simultaneously records, in unprecedented detail, the velocities of hundreds of gas knots streaming at hundreds of thousands of miles per hour from the nucleus of NGC 4151, thought to house a supermassive black hole. This is the first time the velocity structure in the heart of this object, or similar objects, has been mapped so vividly this close to its central black hole. The twin cones of gas emission are powered by the energy released from the supermassive black hole believed to reside at the heart of this Seyfert galaxy. The STIS data clearly show that the gas knots illuminated by one of these cones is rapidly moving towards us, while the gas knots illuminated by the other cone are rapidly receding. The images have been rotated to show the same orientation of NGC 4151. The figures show: WFPC2 (upper left) -- A Hubble Wide Field Planetary Camera 2 image of the oxygen emission (5007 Angstroms) from the gas at the heart of NGC 4151. Though the twin cone structure can be seen, the image does not provide any information about the motion of the oxygen gas. STIS OPTICAL (upper right) -- In this STIS spectral image of the oxygen gas, the velocities of the knots are determined by comparing the knots of gas in the stationary WFPC2 image to the horizontal location of the knots in the STIS image. STIS OPTICAL (lower right) -- In this false color image the two emission lines of oxygen gas (the weaker one at 4959 Angstroms and the stronger one at 5007 Angstroms) are clearly visible. The horizontal line passing through the image is from the light generated by the powerful black hole at the center of NGC 4151. STIS ULTRAVIOLET (lower left) -- This STIS spectral image shows the velocity distribution of the carbon emission from the gas in the core of NGC 4151. It requires more energy to make the carbon gas glow (CIV at 1549 Angstroms) than it does to ionize the oxygen gas seen in the other images. This means we expect that the

  13. Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Schweizer, Francois

    1995-01-01

    New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely

  14. Stellar population gradients in galaxy discs from the CALIFA survey. The influence of bars

    NASA Astrophysics Data System (ADS)

    Sánchez-Blázquez, P.; Rosales-Ortega, F. F.; Méndez-Abreu, J.; Pérez, I.; Sánchez, S. F.; Zibetti, S.; Aguerri, J. A. L.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; Cid Fernandes, R.; de Amorim, A.; de Lorenzo-Caceres, A.; Falcón-Barroso, J.; Galazzi, A.; García Benito, R.; Gil de Paz, A.; González Delgado, R.; Husemann, B.; Iglesias-Páramo, Jorge; Jungwiert, B.; Marino, R. A.; Márquez, I.; Mast, D.; Mendoza, M. A.; Mollá, M.; Papaderos, P.; Ruiz-Lara, T.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.

    2014-10-01

    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done towards the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. In contrast to this, the values of both age and metallicity at ~2.5 scale lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients between galaxies with and without bars. We discuss possible scenarios that can lead to this lack of difference. Tables 1-3 and Appendices are available in electronic form at http://www.aanda.org

  15. The Tip of the Red Giant Branch Distances to Typa Ia Supernova Host Galaxies. V. NGC 3021, NGC 3370, and NGC 1309 and the Value of the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2017-02-01

    We present final results of a program for the determination of the Hubble constant based on the calibration of the Type Ia supernovae (SNe Ia) using the Tip of the Red Giant Branch (TRGB). We report TRGB distances to three SN Ia host galaxies, NGC 3021, NGC 3370, and NGC 1309. We obtain F555W and F814W photometry of resolved stars from the archival Hubble Space Telescope data. Luminosity functions of red giant stars in the outer regions of these galaxies show the TRGB to be at F814W ≈ QT = 28.2 ∼ 28.5 mag. From these TRGB magnitudes and the revised TRGB calibration based on two distance anchors (NGC 4258 and the LMC) in Jang & Lee (2017; Paper IV), we derive the distances: {(m-M)}0=32.178+/- 0.033 for NGC 3021, 32.253 ± 0.041 for NGC 3370, and 32.471 ± 0.040 for NGC 1309. We update our previous results on the TRGB distances to five SN Ia host galaxies using the revised TRGB calibration. By combining the TRGB distance estimates to SN Ia host galaxies in this study with the SN Ia calibration provided by Riess et al. (2011), we obtain a value of the Hubble constant: H 0 = 71.66 ± 1.80(random) ± 1.88(systematic) km s‑1 Mpc‑1 (a 3.6% uncertainty including systematics) from all eight SNe, and H 0 = 73.72 ± 2.03 ± 1.94 km s‑1 Mpc‑1 (a 3.8% uncertainty) from six low-reddened SNe. We present our best estimate, H 0 = 71.17 ± 1.66 ± 1.87 km s‑1 Mpc‑1 (a 3.5% uncertainty) from six low-reddened SNe with the recent SN Ia calibration in Riess et al. (2016). This value is between those from the Cepheid calibrated SNe Ia and those from the Cosmic Microwave Background analysis, lowering the Hubble tension.

  16. The Star-forming Histories of the Nucleus, Bulge, and Inner Disk of NGC 5102: Clues to the Evolution of a Nearby Lenticular Galaxy

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2015-01-01

    Long slit spectra recorded with the Gemini Multi-Object Spectrograph on Gemini South are used to examine the star-forming history (SFH) of the lenticular galaxy NGC 5102. Structural and supplemental photometric information are obtained from archival Spitzer [3.6] images. Absorption features at blue and visible wavelengths are traced out along the minor axis to galactocentric radii ~60 arcsec (~0.9 kpc), sampling the nucleus, bulge, and disk components. Comparisons with model spectra point to luminosity-weighted metallicities that are consistent with the colors of resolved red giant branch stars in the disk. The nucleus has a luminosity-weighted age at visible wavelengths of {˜ } 1+0.2-0.1 Gyr, and the integrated light is dominated by stars that formed over a time period of only a few hundred Myr. For comparison, the luminosity-weighted ages of the bulge and disk are {˜ } 2+0.5-0.2 Gyr and 10+2-2 Gyr, respectively. The g' - [3.6] colors of the nucleus and bulge are consistent with the spectroscopically based ages. In contrast to the nucleus, models that assume star-forming activity spanning many Gyr provide a better match to the spectra of the bulge and disk than simple stellar population models. Isophotes in the bulge have a disky shape, hinting that the bulge was assembled from material with significant rotational support. The SFHs of the bulge and disk are consistent with the bulge forming from the collapse of a long-lived bar, rather than from the collapse of a transient structure that formed as the result of a tidal interaction. It is thus suggested that the progenitor of NGC 5102 was a barred disk galaxy that morphed into a lenticular galaxy through the buckling of its bar. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  17. The 'sleeping beauty' galaxy NGC 4826: an almost textbook example of the Abelian Higgs vorto-source (-sink)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod

    1995-03-01

    It is demonstrated that the kinematic 'peculiarity' of the early Sab galaxy NGC 4826 can easily be understood in terms of the Abelian Higgs (AH) model of spiral galaxies. A cylindrically symmetric AH vorto-source (-sink) with a disk-to-bulge ratio Omega greater than 1 is discussed and the distributions of the diagonal components of the corresponding stress-energy tensor Tmu,nu are presented. It is argued that the sign-changing component Tphiphi could account for the existence of two counter-rotating gas disks while negative values of Trr imply inward gas motions as observed in the outer and transition regions of the galaxy.

  18. CHANDRA OBSERVATIONS OF NGC 4342, AN OPTICALLY FAINT, X-RAY GAS-RICH EARLY-TYPE GALAXY

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.; Jones, Christine; Randall, Scott W.; Li Zhiyuan; Nulsen, Paul E. J.; Vikhlinin, Alexey; Blom, Christina; Zhang Zhongli; Zhuravleva, Irina; Churazov, Eugene; Schindler, Sabine

    2012-08-10

    Chandra x-ray observations of NGC 4342, a low-stellar mass (M{sub K} = -22.79 mag) early-type galaxy, show luminous, diffuse x-ray emission originating from hot gas with temperature of kT {approx} 0.6 keV. The observed 0.5-2 keV band luminosity of the diffuse x-ray emission within the D{sub 25} ellipse is L{sub 0.5-2keV} = 2.7 Multiplication-Sign 10{sup 39} erg s{sup -1}. The hot gas has a significantly broader distribution than the stellar light, and shows strong hydrodynamic disturbances with a sharp surface brightness edge to the northeast and a trailing tail. We identify the edge as a cold front and conclude that the distorted morphology of the hot gas is produced by ram pressure as NGC 4342 moves through external gas. From the thermal pressure ratios inside and outside the cold front, we estimate the velocity of NGC 4342 and find that it moves supersonically (M {approx} 2.6) toward the northeast. Outside the optical extent of the galaxy, we detect {approx}17 bright (L{sub 0.5-8keV} > or approx. 3 x 10{sup 37} erg s{sup -1}) excess x-ray point sources. The excess sources are presumably LMXBs located in metal-poor globular clusters (GCs) in the extended dark matter halo of NGC 4342. Based on the number of excess sources and the average frequency of bright LMXBs in GCs, we estimate that NGC 4342 may host roughly 850-1700 GCs. In good agreement with this, optical observations hint that NGC 4342 may harbor 1200 {+-} 500 GCs. This number corresponds to a GC specific frequency of S{sub N} = 19.9 {+-} 8.3, which is among the largest values observed in full-size galaxies.

  19. Regrowth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W† ⋄

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Coccato, Lodovico; Bender, Ralf; Drory, Niv; Gössl, Claus; Landriau, Martin; Saglia, Roberto P.; Thomas, Jens; Williams, Michael J.

    2015-02-01

    We have obtained high spectral resolution (R ~ 9000), integral field observations of the three spiral galaxies NGC 3521, NGC 7217 and NGC 7331 using the new fiber-based Integral Field Unit instrument VIRUS-W at the 2.7 m telescope of the McDonald Observatory in Texas. Our data allow us to revisit previous claims of counter rotation in these objects. A detailed kinematic decomposition of NGC 7217 shows that no counter rotating stellar component is present. We find that NGC 7217 hosts a low dispersion, rotating disk that is embedded in a high velocity dispersion stellar halo or bulge that is co-rotating with the disk. Due to the very different velocity dispersions (~ 20 km s-1 vs. 150 km s-1) , we are further able to perform a Lick index analysis on both components separately which indicates that the two stellar populations are clearly separated in (Mgb,) space. The velocities and dispersions of the faster component are very similar to those of the interstellar gas as measured from the [O iii] emission. Morphological evidence of active star formation in this component further suggests that NGC 7217 may be in the process of (re)growing a disk inside a more massive and higher dispersion stellar halo.

  20. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  1. Deep Chandra Observations of NGC 1404: Cluster Plasma Physics Revealed by an Infalling Early-type Galaxy

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-01-01

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.

  2. STAR FORMATION AND DUST OBSCURATION IN THE TIDALLY DISTORTED GALAXY NGC 2442

    SciTech Connect

    Pancoast, Anna; Sajina, Anna; Lacy, Mark; Noriega-Crespo, Alberto; Rho, Jeonghee

    2010-11-01

    We present a detailed investigation of the morphological distribution and level of star formation and dust obscuration in the nearby tidally distorted galaxy NGC 2442. Spitzer images in the IR at 3.6, 4.5, 5.8, 8.0, and 24 {mu}m and GALEX images at 1500 A and 2300 A allow us to resolve the galaxy on scales between {approx}240 and 600 pc. We supplement these with archival data in the B, J, H, and K bands. We use the 8 {mu}m, 24 {mu}m, and FUV (1500 A) emission to study the star formation rate (SFR). We find that, globally, these tracers of star formation give a range of results of {approx}6-11 M{sub sun} yr{sup -1}, with the dust-corrected FUV giving the highest value of SFR. We can reconcile the UV- and IR-based estimates by adopting a steeper UV extinction curve that lies in between the starburst (Calzetti) and Small Magellanic Cloud extinction curves. However, the regions of the highest SFR intensity along the spiral arms are consistent with a starburst-like extinction. Overall, the level of star formation we find is higher than previously published for this galaxy, by about a factor of 2, which, contrary to previous conclusions, implies that the interaction that caused the distorted morphology of NGC 2442 likely also triggered increased levels of star formation activity. We also find marked asymmetry in that the north spiral arm has a noticeably higher SFR than the southern arm. The tip of the southern spiral arm shows a likely tidally distorted peculiar morphology. It is UV bright and shows unusual IRAC colors, consistent with other published tidal features IRAC data. Outside of the spiral arms, we discover what appears to be a superbubble, {approx}1.7 kpc across, which is seen most clearly in the IRAC images. Significant H{alpha}, UV, and IR emission in the area also suggest vigorous ongoing star formation. A known, recent supernova (SN 1999ga) is located at the edge of this superbubble. Although speculative at this stage, this area suggests a large star

  3. A massive dense gas cloud close to the nucleus of the Seyfert galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Furuya, Ray S.; Taniguchi, Yoshiaki

    2016-12-01

    Using the ALMA archival data of both 12CO (6-5) line and 689-GHz continuum emission towards the archetypical Seyfert galaxy, NGC 1068, we identified a distinct continuum peak separated by 15 pc from the nuclear radio component S1 in projection. The continuum flux gives a gas mass of ˜2 × 105 M⊙ and bolometric luminosity of ˜108 L⊙, leading to a star formation rate of ˜0.1 M⊙ yr-1. Subsequent analysis on the line data suggest that the gas cloud has a size of ˜10 pc, yielding to a mean H2 number density of ˜105 cm-3. We therefore refer to the gas as a "massive dense gas cloud": the gas density is high enough to form a "protostar cluster" with a stellar mass of ˜104 M⊙. We found that the gas stands at a unique position between galactic and extraglactic clouds in the diagrams of start formation rate (SFR) vs. gas mass proposed by Lada et al. (2012, ApJ, 745, 190) and surface density of gas vs. SFR density by Krumholz and McKee (2005, ApJ, 630, 250). All the gaseous and star-formation properties may be understood in terms of the turbulence-regulated star formation scenario. Since there are two stellar populations with ages of 300 Myr and 30 Myr in the 100 pc scale circumnulear region, we discuss that NGC 1068 has experienced at least three episodic star-formation events with the likelihood that the inner star-forming region is the younger. Together with several lines of evidence that the dynamics of the nuclear region is decoupled from that of the entire galactic disk, we discuss that the gas inflow towards the nuclear region of NGC 1068 may be driven by a past minor merger.

  4. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ∼ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ∼ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  5. HALOGAS: H I OBSERVATIONS AND MODELING OF THE NEARBY EDGE-ON SPIRAL GALAXY NGC 4244

    SciTech Connect

    Zschaechner, Laura K.; Rand, Richard J.; Heald, George H.; Gentile, Gianfranco; Kamphuis, Peter E-mail: rjr@phys.unm.edu E-mail: Gianfranco.Gentile@ugent.be

    2011-10-10

    We present 21 cm observations and models of the H I kinematics and distribution of NGC 4244, a nearby edge-on Scd galaxy observed as part of the Westerbork HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) survey. Our models give insight into the H I kinematics and distribution with an emphasis on the potential existence of extraplanar gas as well as a negative gradient in rotational velocity with height above the plane of the disk (a lag). Our models yield strong evidence against a significantly extended halo and instead favor a warp component along the line of sight as an explanation for most of the observed thickening of the disk. Based on these models, we detect a lag of -9{sup +3}{sub -2} km s{sup -1} kpc{sup -1} in the approaching half and -9 {+-} 2 km s{sup -1} kpc{sup -1} in the receding half. This lag decreases in magnitude to -5 {+-} 2 km s{sup -1} kpc{sup -1} and -4 {+-} 2 km s{sup -1} kpc{sup -1} near a radius of 10 kpc in the approaching and receding halves, respectively. Additionally, we detect several distinct morphological and kinematic features including a shell that is probably driven by star formation within the disk.

  6. A distance to the galaxy NGC4258 from observations of Cepheid variable stars.

    PubMed

    Maoz, E; Newman, J A; Ferrarese, L; Stetson, P B; Zepf, S E; Davis, M; Freedman, W L; Madore, B F

    1999-09-23

    Cepheid variable stars pulsate in a way that is correlated with their intrinsic luminosity, making them useful as 'standard candles' for determining distances to galaxies; the potential systematic uncertainties in the resulting distances have been estimated to be only 8-10%. They have played a crucial role in establishing the extragalactic distance scale and hence the value of the Hubble constant. Here we report observations of Cepheids in the nearby galaxy NGC4258; the distance calculated from the Cepheids is 8.1 +/- 0.4 Mpc, where the uncertainty does not include possible systematic errors. There is an independently determined geometric distance to this galaxy of 7.2 +/- 0.5 Mpc, based on the observed proper motions of water masers orbiting the central black hole; the distances differ by 1.3sigma. If the maser-based distance is adopted and the Cepheid distance scale revised accordingly, the derived value of the Hubble constant would increase by 12 +/- 9%, while the expansion age of the Universe would decrease by the same amount.

  7. Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Trump, Jonathan; Athanassoula, Lia; Bamford, Steven; Bell, Eric F.; Bosma, Albert; Cardamone, Carolin N.; Casteels, Kevin; Faber, Sandra M.; Fang, Jerome J.; Fortson, Lucy; Kocevski, Dale; Koo, David C.; Laine, Seppo J.; Lintott, Chris; Masters, Karen; Melvin, Tom; Nichol, Robert; Schawinski, Kevin; Simmons, Brooke D.; Smethurst, Rebecca; Willett, Kyle; Galaxy Zoo, Aegis, Cosmos, Goods

    2015-01-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disk galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 1042 erg s-1 < LX < 1044erg s-1, with inactive control galaxies matched in stellar mass, rest-frame color, size, Sérsic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the bar fraction in the control sample by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2 < z < 1.0. This result, coupled with previous results at z = 0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z = 1. Furthermore, given the low bar fractions at z > 1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.

  8. Galaxy Zoo: Are bars responsible for the feeding of active galactic nuclei at 0.2 < z < 1.0?

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Trump, Jonathan R.; Athanassoula, E.; Bamford, Steven P.; Bell, Eric F.; Bosma, A.; Cardamone, Carolin N.; Casteels, Kevin R. V.; Faber, S. M.; Fang, Jerome J.; Fortson, Lucy F.; Kocevski, Dale D.; Koo, David C.; Laine, Seppo; Lintott, Chris; Masters, Karen L.; Melvin, Thomas; Nichol, Robert C.; Schawinski, Kevin; Simmons, Brooke; Smethurst, Rebecca; Willett, Kyle W.

    2015-02-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 1042 erg s-1 < LX < 1044 erg s-1, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sérsic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of 2, at 99.7 per cent confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2 < z < 1.0. This result, coupled with previous results at z = 0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z = 1. Furthermore, given the low bar fractions at z > 1, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growth.

  9. A NOVEL APPROACH TO CONSTRAIN THE MASS RATIO OF MINOR MERGERS IN ELLIPTICAL GALAXIES: APPLICATION TO NGC 4889, THE BRIGHTEST CLUSTER GALAXY IN COMA

    SciTech Connect

    Gu Meng; Huang Song; Ho, Luis C.; Peng, Chien Y.

    2013-08-10

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (M{sub I} Almost-Equal-To -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of {approx}90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies.

  10. Dynamics of stars around spiral arms in an N-body/SPH simulated barred spiral galaxy

    NASA Astrophysics Data System (ADS)

    Grand, Robert J. J.; Kawata, Daisuke; Cropper, Mark

    2012-10-01

    We run N-body smoothed particle hydrodynamics (SPH) simulations of a Milky Way-sized galaxy. The code takes into account hydrodynamics, self-gravity, star formation, supernova and stellar wind feedback, radiative cooling and metal enrichment. The simulated galaxy is a barred spiral galaxy consisting of a stellar and gas disc, enveloped in a static dark matter halo. Similar to what is found in our pure N-body simulation of a non-barred galaxy in Grand et al., we find that the spiral arms are transient features whose pattern speeds decrease with radius, in such a way that the pattern speed is similar to the rotation of star particles. Compared to the non-barred case, we find that the spiral arm pattern speed is slightly faster than the rotation speed of star particles: the bar appears to boost the pattern speed ahead of the rotational velocity. We trace particle motion around the spiral arms at different radii, and demonstrate that there are star particles that are drawn towards and join the arm from behind (in front of) the arm and migrate towards the outer (inner) regions of the disc until the arm disappears as a result of their transient nature. We see this migration over the entire radial range analysed, which is a consequence of the spiral arm rotating at similar speeds to star particles at all radii, which is inconsistent with the prediction of classical density wave theory. The bar does not prevent this systematic radial migration, which is shown to largely preserve circular orbits. We also demonstrate that there is no significant offset of different star-forming tracers across the spiral arm, which is also inconsistent with the prediction of classical density wave theory.

  11. NGC 4051 and the Nature of Narrow-Line Seyfert I Galaxies

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; McHardy, I. M.; Wilkes, B. J.

    2004-01-01

    We report on the results of a three-year program of coordinated X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051. The principal results of this program are: (1) The H-beta emission line time lag and Doppler width yield a virial mass estimate of about 1.1 mission solar masses, at the extreme low end of AGN masses. A plausible adjustment for inclination effects increases this mass slightly to about 1.4 mission solar masses. (2) During the third year of this campaign, both the X-ray continuum and the He II 4686 line went into extremely low states, although the optical continuum and the H-beta broad line were both still present and variable. We suggest that the inner part of the accretion disk may have gone into an advection-dominated state, yielding little radiation from the hotter inner disk. (3) The He II 4686 line is almost five times as broad as H-beta, and it is strongly blueward asymmetric, as are the high-ionization UV lines recorded in archive spectra of NGC 4051. The data are consistent with the Balmer lines arising in a low-inclination disk-like configuration, and the high-ionization lines arising in an outflowing wind, of which we observe preferentially the near side.

  12. 12 and 20 micron imaging of the starburst galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Jones, B.; Puetter, R. C.; Stein, W. A.

    1992-01-01

    The study presents 12- and 20-micron imaging of the starburst galaxy NGC 253 with a spatial resolution of 0.8 arcsec. A positional uncertainty of 1.6 arcsec in these images is estimated on the basis of previous ground-based mid-IR studies to determine the absolute position of the images. It is concluded that the proposed 'nucleus' of NGC 253, i.e., the dominant, bright, flat-spectrum radio source identified by Turner & Ho (1985) (TH 2), is not associated with the mid-IR peak, but rather is located 2.2 arcsec to the northeast. The mid-IR peak, IRS 1, is placed midway between TH 6 and TH 7. Several coincidences with the present 12-micron image are found: IRS 1 falls within 1 arcsec of the 2-micron peak; a second significantly weaker IR source, IRS 2, coincides with TH 2; and the brightest steep-spectrum 6-cm radio source, TH 9, coincides with a 'tongue' of emission extending to the southwest of IRS 1.

  13. Observational Manifestation of Chaos in the Gaseous Disk of the Grand Design Spiral Galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.; Polyachenko, E. V.

    2002-10-01

    The main goal of the paper is to demonstrate the presence of chaotic trajectories in the gaseous disk of a real spiral galaxy. As an example we have chosen NGC 3631. First, we show the stationarity of the 3-D velocity field restored from the observed line-of-sight velocity field of the gaseous disk. That allows to analyse behaviour of the trajectories of the fluid particles (gas clouds) in the disk, calculating the corresponding observed streamlines. We estimate the Lyapunov characteristic numbers using their independence of the metrics and show the existence of chaotic trajectories outside the vortices which are present in the velocity field, and in the vicinity of the saddle point. Related spectra of the stretching numbers for some trajectories are also calculated.

  14. Chandra Observations of the Evening Core of the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Dahlem, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Chandra observations of the core of the nearby starburst galaxy NGC 253 reveal a heavily absorbed source of hard X-rays embedded within the nuclear starburst region. The source has an unabsorbed, 2 to 10 keV luminosity of greater than or equal to 10(exp 39) erg per s and photoionizes the surrounding gas. We observe this source through a dusty torus with a neutral absorbing column density of N(sub eta) approximately 2 x 10(exp 23)cm (exp -2). The torus is hundreds of pc across and collimates the starburst-driven nuclear outflow. We suggest that the ionizing source is an intermediate-mass black hole or a weakly accreting supermassive black hole, which may signal the beginnings or endings of AGN (active galactic nuclei) activity.

  15. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Balokovic, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  16. PLANETARY NEBULAE IN THE ELLIPTICAL GALAXY NGC 4649 (M 60): KINEMATICS AND DISTANCE REDETERMINATION

    SciTech Connect

    Teodorescu, A. M.; Mendez, R. H.; Bernardi, F.; Thomas, J.; Das, P.; Gerhard, O. E-mail: mendez@ifa.hawaii.edu

    2011-07-20

    Using a slitless spectroscopy method with (1) the 8.2 m Subaru telescope and its FOCAS Cassegrain spectrograph and (2) the ESO Very Large Telescope unit 1 (Antu) and its FORS2 Cassegrain spectrograph, we have detected 326 planetary nebulae (PNs) in the giant Virgo elliptical galaxy NGC 4649 (M 60) and measured their radial velocities. After rejecting some PNs more likely to belong to the companion galaxy NGC 4647, we have built a catalog with kinematic information for 298 PNs in M 60. Using these radial velocities, we have concluded that they support the presence of a dark matter halo around M 60. Based on an isotropic, two-component Hernquist model, we estimate the dark matter halo mass within 3R{sub e} to be 4 x 10{sup 11} M{sub sun}, which is almost one-half of the total mass of about 10{sup 12} M{sub sun} within 3R{sub e}. This total mass is similar to that estimated from globular cluster, XMM-Newton, and Chandra observations. The dark matter becomes dominant outside. More detailed dynamical modeling of the PN data is being published in a companion paper. We have also measured the m(5007) magnitudes of many of these PNs and built a statistically complete sample of 218 PNs. The resulting PN luminosity function (PNLF) was used to estimate a distance modulus of 30.7 {+-} 0.2 mag, equivalent to 14 {+-} 1 Mpc. This confirms an earlier PNLF distance measurement based on a much smaller sample. The PNLF distance modulus remains smaller than the surface brightness fluctuation distance modulus by 0.4 mag.

  17. Transient X-Ray Sources in the Magellanic-type Galaxy NGC 4449

    NASA Astrophysics Data System (ADS)

    Jithesh, V.; Wang, Zhongxiang

    2017-02-01

    We report the identification of seven transient X-ray sources in the nearby Magellanic-type galaxy NGC 4449 using archival multi-epoch X-ray observations conducted with the Chandra, XMM-Newton, and Swift telescopes over the years 2001–2013. Among them, two sources are classified as supersoft X-ray sources (SSSs) because of their soft X-ray color; the rest of the sources are X-ray binaries (XRBs). Transient SSSs’ spectra can be fitted with a blackbody of effective temperature ∼80–105 eV, and luminosities were ≃ {10}37{--}{10}38 {erg} {{{s}}}-1 in 0.3–8 keV. These properties are consistent with the widely accepted model for SSSs, an accreting white dwarf with steady nuclear burning on its surface, and the SSS emission has also been observed in many post-nova systems. Detailed analysis of one sufficiently bright SSS revealed strong short-term variability, possibly showing a 2.3-hr periodic modulation, and long-term variability, detectable over 23 years with different X-ray telescopes before the year 2003. The X-ray properties of four other transients are consistent with neutron star or black hole binaries in their hard state, whereas the remaining source is most likely an XRB with a quasi-soft X-ray spectrum. Analysis of archival Hubble Space Telescope image data was also conducted, and multiple massive stars were found as possible counterparts. We conclude that the X-ray transient properties in NGC 4449 are similar to those in other Magellanic-type galaxies.

  18. Near-infrared polarimetry of the edge-on galaxy NGC 891

    SciTech Connect

    Montgomery, J. D.; Clemens, D. P. E-mail: clemens@bu.edu

    2014-05-01

    The edge-on galaxy NGC 891 was probed using near-infrared (NIR) imaging polarimetry in the H band (1.6 μm) with the Mimir instrument on the 1.8 m Perkins Telescope. Polarization was detected with a signal-to-noise ratio greater than three out to a surface brightness of 18.8 mag arcsec{sup –2}. The unweighted average and dispersion in polarization percentage (P) across the full disk were 0.7% and 0.3%, respectively, and the same quantities for polarization position angle (P.A.) were 12° and 19°, respectively. At least one polarization null point, where P falls nearly to zero, was detected in the northeast disk but not the southwest disk. Several other asymmetries in P between the northern and southern disk were found and may be related to spiral structure. Profiles of P and P.A. along the minor axis of NGC 891 suggest a transition from magnetic (B) field tracing dichroic polarization near the disk mid-plane to scattering dominated polarization off the disk mid-plane. A comparison between NIR P.A. and radio (3.6 cm) synchrotron polarization P.A. values revealed similar B-field orientations in the central-northeast region, which suggests that the hot plasma and cold, star-forming interstellar medium may share a common B-field. Disk-perpendicular polarizations previously seen at optical wavelengths are likely caused by scattered light from the bright galaxy center and are unlikely to be tracing poloidal B-fields in the outer disk.

  19. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (∼1 kpc) X-ray emission in the soft band (0.5–2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation (∼2.6–4 M⊙ yr‑1). The soft emission at circumnuclear scales (inner ∼400 pc) originates from hot gas, with kT ∼ 0.7 keV, while the most extended thermal emission is cooler (kT ∼ 0.3 keV). We refine previous measurements of the extreme Fe Kα equivalent width in this source ({EW}={2.5}-1.0+2.6 {keV}), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density (NH > 1.25 × 1024 cm‑2) and an intrinsic hard (2–10 keV) X-ray luminosity of ∼3–8 × 1042 erg s‑1 (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe Kα EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe Kα EWs (i.e., >2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  20. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind.

    PubMed

    Bolatto, Alberto D; Warren, Steven R; Leroy, Adam K; Walter, Fabian; Veilleux, Sylvain; Ostriker, Eve C; Ott, Jürgen; Zwaan, Martin; Fisher, David B; Weiss, Axel; Rosolowsky, Erik; Hodge, Jacqueline

    2013-07-25

    The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.

  1. COMPARING X-RAY AND DYNAMICAL MASS PROFILES IN THE EARLY-TYPE GALAXY NGC 4636

    SciTech Connect

    Johnson, Ria; Raychaudhury, Somak; Chakrabarty, Dalia; O'Sullivan, Ewan E-mail: D.Chakrabarty@warwick.ac.u

    2009-12-01

    We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the system's globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central approx10 kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range approx10-30 kpc, the mass profiles agree within the 1sigma errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30 kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy center suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30 kpc), or a combination of the two.

  2. An extremely low gas-to-dust ratio in the dust-lane lenticular galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Allaert, Flor; Sarzi, Marc; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Hughes, Thomas M.; Puerari, Ivânio; Smith, Matthew W. L.; Viaene, Sébastien

    2014-10-01

    Evidence is mounting that a significant fraction of the early-type galaxy population contains substantial reservoirs of cold interstellar gas and dust. We investigate the gas and dust in NGC 5485, an early-type galaxy with a prominent minor-axis dust lane. Using new Herschel PACS and SPIRE imaging data, we detect 3.8 × 106 M⊙ of cool interstellar dust in NGC 5485, which is in stark contrast with the non-detection of the galaxy in sensitive H I and CO observations from the ATLAS3D consortium. The resulting gas-to-dust ratio upper limit is Mgas/Md < 14.5, almost an order of magnitude lower than the canonical value for the Milky Way. We scrutinize the reliability of the dust, atomic gas and molecular gas mass estimates, but these do not show systematic uncertainties that can explain the extreme gas-to-dust ratio. Also a warm or hot ionized gas medium does not offer an explanation. A possible scenario could be that NGC 5485 merged with an SMC-type metal-poor galaxy with a substantial CO-dark molecular gas component and that the bulk of atomic gas was lost during the interaction, but it remains to be investigated whether such a scenario is possible.

  3. Globular clusters as tracers of stellar bimodality in elliptical galaxies: the case of NGC 1399

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Faifer, Favio; Geisler, Doug

    2005-02-01

    Globular cluster systems (GCSs) frequently show a bimodal distribution of cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. The particular case of NGC 1399, one of the dominant central galaxies in the Fornax cluster, for which a new B surface brightness profile and (B-RKC) colours are presented, is discussed taking advantage of a recently published wide-field study of its GCS. The results show that the galaxy brightness profile and colour gradient, as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so-called `blue' and `red' globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn= 3.3 +/- 0.3 in the case of the red globulars and Sn= 14.3 +/- 2.5 for the blue ones. We stress that this result does not necessarily conflict with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their number statistics. The region within 0.5arcmin of the centre shows a deviation from the model profile (in both surface brightness and colour) that may be explained in terms of the presence of a bulge-like high-metallicity component. Otherwise, the model gives an excellent fit up to 12arcmin (or 66.5Kpc) from the centre, the galactocentric limit of our blue brightness profile. The inferred specific frequencies imply that, in terms of their associated stellar populations, the formation of the blue globulars took place with an efficiency about six times higher than that corresponding to their red counterparts. The similarity of the spatial distribution of the blue globulars with that inferred for dark matter, as well as with that of the X

  4. Starbursts in dwarf galaxies: A multiwavelength case study of NGC 625

    NASA Astrophysics Data System (ADS)

    Cannon, John Michael

    The results of a multiwavelength case study of the nearby dwarf starburst galaxy NGC 625 are presented. This low- mass galaxy hosts a massive starburst comparable in luminosity to 30 Doradus in the Large Magellanic Cloud; its proximity and high galactic latitude provide an ideal opportunity to investigate the starburst phenomenon and its impact on the ISM and IGM. We use Chandra, FUSE, HST, CTIO, ATCA, and VLA data to investigate the nature of the stellar population and multi-phase ISM. Our principal findings are summarized as follows: (1)Ground-based optical spectroscopy finds a prominent Wolf-Rayet (W-R) feature arising from the major starburst region, implying a brief burst duration (4 6 Myr); (2)A spatially resolved star formation history analysis using HST/WFPC2 data shows that the duration of the burst is actually much longer than the W-R features would imply (duration ≳ 50 Myr), and that the star formation has been widespread throughout the disk over this interval; (3)This extended starburst has input sufficient kinetic energy into the ISM to create a large-scale outflow; (4)H I observations from the ATCA show complex kinematics that are consistent with a minor-axis outflow of large amounts of neutral gas; (5)This outflow is verified by FUSE spectroscopy, where strong O VI coronal gas absorption is blueshifted with respect to the neutral and diffuse H2 absorption lines; (6)FUSE spectra also reveal an abundance offset between the neutral and nebular gas regions that may be a common component of the ISM of low-metallicity dwarf galaxies; (7)The ROSAT detection of diffuse soft x-ray emission is verified by new Chandra imaging of NGC 625; (8)VLA radio continuum data shows a thermal global spectral index and a mix of thermal and nonthermal indices for the individual major star formation regions, suggesting vigorous and (temporally and spatially) extended star formation throughout the disk. We interpret these results in the context of low-mass galaxy evolution

  5. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  6. What produces the extended LINER-type emission in the NUGA galaxy NGC 5850?

    NASA Astrophysics Data System (ADS)

    Bremer, M.; Scharwächter, J.; Eckart, A.; Valencia-S., M.; Zuther, J.; Combes, F.; Garcia-Burillo, S.; Fischer, S.

    2013-10-01

    Context. The role of low ionization nuclear emission region (LINER) galaxies within the picture of active galactic nuclei (AGN) has been controversial. It is still not clear whether they host an AGN in a low accretion mode or whether they are not active at all but are instead dominated by alternative ionization mechanisms, namely shocks, winds/outflows, or photoionization by a post-asymptotic giant branch (p-AGB) stellar population. The detection of extended LINER-like emission was often taken as evidence of ionization by stellar components, but this has not been undisputed. Aims: Using optical spectroscopy, we examine the possible ionization mechanisms responsible for the extended LINER-like emission in the central ~4 kpc of NGC 5850. Methods: We performed integral field spectroscopic observations using VIMOS at the VLT, which provides spatially-resolved spectra for the gas emission and the stellar continuum. We subtract the underlying stellar continuum from the galaxy spectra and fit the emission lines. With these methods, we derive and analyze emission line and kinematic maps. Emission line ratio maps are examined by means of diagnostic diagrams. Results: The central few kpc of NGC 5850 are dominated by extended LINER-like emission. The emission-line ratios that are sensitive to the ionization parameter increase with radial distance to the nucleus. The LINER-like region is surrounded by emission that is classed as "composite" in terms of diagnostic diagrams. Two star-forming (SF) regions are present in the 21″ × 19″ field of view. One of them is located approximately in the ring, surrounding the kinematically decoupled core. The second one is close to the nucleus and is the origin of a region of decreased emission line ratios oriented radially outwards. We find the interstellar gas to have a complex kinematic morphology and to have areas of steep velocity gradients. Conclusions: The extended LINER-like emission in NGC 5850 is dominated by ionization from

  7. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining

  8. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, T.; Leroy, A.

    2012-01-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1-0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations (Tamburro et al. 2008), we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect, which is in concordance with the predictions by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). At CO(1-0) resolution (140 pc), we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2-1) toward the densest concentrations of gas, achieving a resolution similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about differences in properties of the on-arm clouds and inter-arm clouds. We found that, in general, on-arm clouds present broader line widths, are more massive and more active in star formation than inter-arm clouds. We investigated if the velocity dispersion observed in CO(1-0) emitting complexes reflects velocity differences between unresolved smaller clouds, or if it corresponds to actual internal turbulence of the gas observed.

  9. Azimuthal and Kinematic Segregation of Neutral and Molecular Gas in Arp 118: The Yin-Yang Galaxy NGC 1144

    NASA Astrophysics Data System (ADS)

    Appleton, P. N.; Charmandaris, V.; Gao, Yu; Jarrett, Tom; Bransford, M. A.

    2003-03-01

    We present new high-resolution H I observations of the disk of the collisional infrared luminous (LIR=2.2×1011Lsolar) galaxy NGC 1144, which reveal an apparent large-scale azimuthal and kinematic segregation of neutral hydrogen relative to the molecular gas distribution. Even among violently collisional galaxies, the CO/H I asymmetry in NGC 1144 is unusual, both in the inner regions and in the outer disk. We suggest that we are observing Arp 118 at a special moment, shortly after a high-speed collision between NGC 1144 and its elliptical companion NGC 1143. H I emission with an average molecular fraction fmol<0.5 is observed on one side (northwest) of the rotating disk of NGC 1144, while the other side (southeast) is dominated by dense molecular complexes in which fmol is almost unity. The interface region between the warm- and cool-cloud dominated regions lies on a deep spiral-like dust lane that we identify as a shock wave responsible for the relative shift in the dominance of H I and H2 gas. A strong shock being fed by diffuse H I clouds with unusually large (>400 km s-1) rotational velocities can explain (1) the CO/H I asymmetries, (2) a large velocity jump (185 km s-1) across the arm as measured by H I absorption against a radio bright continuum source that straddles the arm, and (3) the asymmetric distribution of star formation and off-nuclear molecular gas resulting from likely streaming motions associated with the strong shock. The new results provide for the first time a coherent picture of Arp 118's many peculiarities and underline the potentially complex changes in the gas phase that can accompany large gravitational perturbations of gas-rich galaxies.

  10. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  11. Constraints on the formation history of the elliptical galaxy NGC 3923 from the colors of its globular clusters

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Ashman, Keith M.; Geisler, Doug

    1995-01-01

    We present a study of the colors of globular clusters associated with the elliptical galaxy NGC 3923. Our final sample consists of Wasington system C and T(sub 1) photometry for 143 globular cluster candidates with an expected contamination of no more than 10%. We find that the color distribution of the NGC 3923 globular cluster system (GCS) is broad and appears to have at least two peaks. A mixture modeling analysis of the color distribution indicates that a two-component model is favored over a single-component one at a high level of confidence (greater than 99%). This evidence for more than one population in the GCS of NGC 3923 is similar to that previously noted for the four other elliptical galaxies for which similar data have been published. Furthermore, we find that the NGC 3923 GCS is redder than the GCSs of previously studed elliptical galaxies of similar luminosity. The median metallicity inferred from our (C-(T(sub 1)))(sub 0) colors is (Fe/H)(sub med) = -0.56, with an uncertainty of 0.14 dex arising from all sources of uncertainty in the mean color. This is more metal rich than the median metallicity found for the GCS of M87 using the same method, (Fe/H)(sub med) = -0.94. Since M87 is more luminous than NGC 3923, this result points to significant scatter about any trend of higher GCS metallicity with increasing galaxy luminosity. We also show that there is a color gradient in the NGC 3923 GCS corresponding to about -0.5 dex in Delta(Fe/H)/Delta(log r). We conclude that the shape of the color distribution of individual GCSs and the variation in mean color among the GCSs of ellipticals are difficult to understand if elliptical galaxies are formed in a single protogalactic collapse. Models in which ellipticals and their globular clusters are formed in more than one event, such as a merger scenario, are more successful in accounting for these observations.

  12. Monitoring the Remarkable Radio Spectral-Line/Continuum Outburst in Galaxy NGC 660

    NASA Astrophysics Data System (ADS)

    Salter, Christopher J.; Ghosh, Tapasi; Minchin, Robert F.; Momjian, Emmanuel

    2017-01-01

    A radio continuum and spectral-line outburst in galaxy NGC660 was serendipitously discovered by us at Arecibo in 2007/8. From Feb. 2013, roughly bi-monthly Arecibo spectral-line and continuum monitoring of this remarkable event has been performed, with 28 observing epochs completed to Auguast 2016. Variability of the continuum spectrum, and of the detailed OH emission/absorption spectra at 4660, 4750, and 4765 MHz have been followed over this period. The rapid changes seen in the molecular emission from the nuclear region of this galaxy are unprecedented. To delineate the physical model of this complicated starburst system further, we have supplemented this Arecibo monitoring by two epochs of milliarcsecond-resolution HSA line and continuum imaging, (with Arecibo in this VLBI array). The VLBI images reveal jet structure consistent with a recent nuclear outburst. The OH features show association with the outburst hotspots. Both the continuum and OH maser intensities have been steadily declining since peaking at mid-2011.

  13. Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2010-06-01

    NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H ii regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.

  14. Gas and Stellar Kinematics in the Giant Spiral Galaxy NGC 1961

    NASA Astrophysics Data System (ADS)

    Sacash, Brian; Pinkney, Jason

    2009-04-01

    Long-slit spectroscopy and CCD imaging from the Hubble Space Telescope and the MDM Observatory is presented for the massive spiral galaxy NGC 1961. We aimed to measure the mass of the central supermassive black hole (SMBH). We have developed our own software for spectral extraction and for the fitting of absorption and emission lines. The program subtracts the absorption-line (stellar) component from the emission-line spectra to improve the fidelity of our emission line measurements. We present our line centroids (velocities), widths (velocity dispersions), and strengths for the most prominent emission lines (Hα, [NII], and [SII]). The rotation curve from the ground-based data is in good agreement with previous work by Rubin (1979); its asymmetric appearance suggests a tidal interaction or merger. We use the rotation curve and surface photometry to estimate the enclosed mass profile of the galaxy. The emission lines near the nucleus broaden indicating more intrinsic dispersion than expected for a cold, gas disk. We estimate the BH mass using simple gas disk models. However, the high dispersion and the asymmetry in its inner rotation curve suggest that this approach is unreliable.

  15. A detailed X-ray variability study of the Seyfert galaxy NGC 4051

    NASA Astrophysics Data System (ADS)

    Papadakis, I. E.; Lawrence, A.

    1995-01-01

    We present a detailed and rigorous examination of the X-ray variability characteristics of the Seyfert galaxy NGC 4051, using the 1985 EXOSAT observation and our improved power spectrum modelling techniques. The Medium Energy (ME) power spectrum is adequately fitted by a power-law model, but the Low Energy (LE) spectrum is not. We find an excellent fit by adding a broad quasi-periodic oscillation (QPO) feature on a time-scale of ~1h, which contains 1/4 of the overall variance. A similar, but much weaker, feature may exist in the ME power spectrum as well. The LE power spectrum is also clearly steeper than the ME spectrum. There is no significant lag between the ME and LE data (at most 60 s), but the cross-correlation function is noticeably asymmetric. We confirm earlier claims of a correlation between softness and flux, and show that this is essentially caused by the presence of high peaks present in the LE but not in the ME light curve. We discuss various generic models for X-ray variability. In particular, several features (especially the softness effect and the cross-correlation asymmetry) are suggestive of thermal Comptonization models. We examined one of these models in detail, with parameters suggested by recent fits to the OSSE energy spectra of Seyfert galaxies. However, this model predicts that the ME spectrum should be much steeper, in contradiction with the observed facts.

  16. X-RAY NUCLEAR ACTIVITY IN S{sup 4}G BARRED GALAXIES: NO LINK BETWEEN BAR STRENGTH AND CO-OCCURRENT SUPERMASSIVE BLACK HOLE FUELING

    SciTech Connect

    Cisternas, Mauricio; Knapen, Johan H.; González-Martín, Omaira; Erroz-Ferrer, Santiago; Gadotti, Dimitri A.; Kim, Taehyun; Díaz-García, Simón; Laurikainen, Eija; Salo, Heikki; Comerón, Sébastien; Laine, Jarkko; Ho, Luis C.; Elmegreen, Bruce G.; Zaritsky, Dennis; Hinz, Joannah L.; Sheth, Kartik; Athanassoula, E.; Bosma, Albert; Gil de Paz, Armando; Holwerda, Benne W.; and others

    2013-10-10

    Stellar bars can lead to gas inflow toward the center of a galaxy and stimulate nuclear star formation. However, there is no compelling evidence on whether they also feed a central supermassive black hole: by measuring the fractions of barred active and inactive galaxies, previous studies have yielded conflicting results. In this paper, we aim to understand the lack of observational evidence for bar-driven active galactic nucleus (AGN) activity by studying a sample of 41 nearby (d < 35 Mpc) barred galaxies from the Spitzer Survey for Stellar Structure in Galaxies. We use Chandra observations to measure nuclear 2-10 keV X-ray luminosities and estimate Eddington ratios, together with Spitzer 3.6 μm imaging to quantify the strength of the stellar bar in two independent ways: (1) from its structure, as traced by its ellipticity and boxiness, and (2) from its gravitational torque Q{sub b} , taken as the maximum ratio of the tangential force to the mean background radial force. In this way, rather than discretizing the presence of both stellar bars and nuclear activity, we are able to account for the continuum of bar strengths and degrees of AGN activity. We find nuclear X-ray sources in 31 out of 41 galaxies with median X-ray luminosity and Eddington ratio of L{sub X} = 4.3 × 10{sup 38} erg s{sup –1} and L{sub bol}/L{sub Edd} = 6.9 × 10{sup –6}, respectively, consistent with low-luminosity AGN activity. Including upper limits for those galaxies without nuclear detections, we find no significant correlation between any of the bar strength indicators and the degree of nuclear activity, irrespective of galaxy luminosity, stellar mass, Hubble type, or bulge size. Strong bars do not favor brighter or more efficient nuclear activity, implying that at least for the low-luminosity regime, supermassive black hole fueling is not closely connected to large-scale features.

  17. The interstellar disk-halo connection in the spiral galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Cecil, Gerald; Bland-Hawthorne, J.

    1995-01-01

    We discuss the morphology and excitation of ionized gas in the nearby Sc galaxy NGC 3079. The almost edge-on orientation is ideal for studying the vertical structure of the gaseous disk, and especially the diffuse ionized medium (DIM) found between the bright H II regions. We used the Hawaii Imaging Fabry-Perot Interferometer (HIFI) to map 150,000 H-alpha + (N II) lambda lambda 6548, 6583 emission-line profiles across the entire disk, with resolution 70 km/s at subarcsecond steps, down to a flux level of approximately 10(exp -17) ergs/s/sq cm (EM approximately equal to 4 cm(exp -6) pc). The DIM contributes approximately 30% of the total disk H-alpha emission within a radius of 10 kpc. The DIM has broader emission lines and larger (N II) H-alpha flux ratios than the adjacent H II regions. Within a radius of 5 kpc, we find that the X-shaped filaments reported in previous studies emerge from the inner (R approximately equal to 1.5 kpc) disk, and rise more than 4 kpc above the disk plane. The morphology, kinematics, and excitation of the filaments suggest that they form a biconic interface between the undisturbed disk gas, and gas entrained in the wide-angle outflow. The DIM beyond 5 kpc radius is more vertically extended than the thick ionized disk detected in our Galaxy and in a few nearby edge-on systems. After correcting for dust, the vertical profile of this DIM has an exponential scale height of about 1.1 kpc, similar to that of the H I disk. The (N II) lambda 6538/H-alpha flux ratio of the DIM increases monotonically with vertical height, reaching unity for absolute value of z greater than or approximately equal to 2.5 kpc. The flux required to keep the DIM ionized at R = 8 kpc is similar to that near the solar circle of our Galaxy. Highly dilute radiation from O stars in the galactic plane probably maintains the DIM. The total mass of the DIM is of order 10(exp 8) - 10(exp 9) solar mass, representing less than 1% of the total dynamical mass of NGC 3079

  18. Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution

    NASA Astrophysics Data System (ADS)

    Díaz-García, S.; Salo, H.; Laurikainen, E.

    2016-12-01

    Context. Models of galaxy formation in a cosmological framework need to be tested against observational constraints, such as the average stellar density profiles (and their dispersion) as a function of fundamental galaxy properties (e.g. the total stellar mass). Simulation models predict that the torques produced by stellar bars efficiently redistribute the stellar and gaseous material inside the disk, pushing it outwards or inwards depending on whether it is beyond or inside the bar corotation resonance radius. Bars themselves are expected to evolve, getting longer and narrower as they trap particles from the disk and slow down their rotation speed. Aims: We use 3.6 μm photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to trace the stellar distribution in nearby disk galaxies (z ≈ 0) with total stellar masses 108.5 ≲ M∗/M⊙ ≲ 1011 and mid-IR Hubble types - 3 ≤ T ≤ 10. We characterize the stellar density profiles (Σ∗), the stellar contribution to the rotation curves (V3.6 μm), and the m = 2 Fourier amplitudes (A2) as a function of M∗ and T. We also describe the typical shapes and strengths of stellar bars in the S4G sample and link their properties to the total stellar mass and morphology of their host galaxy. Methods: For 1154 S4G galaxies with disk inclinations lower than 65°, we perform a Fourier decomposition and rescale their images to a common frame determined by the size in physical units, by their disk scalelength, and for 748 barred galaxies by both the length and orientation of their bars. We stack the resized density profiles and images to obtain statistically representative average stellar disks and bars in bins of M∗ and T. Based on the radial force profiles of individual galaxies we calculate the mean stellar contribution to the circular velocity. We also calculate average A2 profiles, where the radius is normalized to R25.5. Furthermore, we infer the gravitational potentials from the synthetic bars to

  19. Effects of environmental gas compression on the multiphase ISM and star formation . The Virgo spiral galaxies NGC 4501 and NGC 4567/68

    NASA Astrophysics Data System (ADS)

    Nehlig, F.; Vollmer, B.; Braine, J.

    2016-03-01

    The cluster environment can affect galaxy evolution in different ways: via ram pressure stripping or by gravitational perturbations caused by galactic encounters. Both kinds of interactions can lead to the compression of the interstellar medium (ISM) and its associated magnetic fields, causing an increase in the gas surface density and the appearance of asymmetric ridges of polarized radio continuum emission. New IRAM 30m HERA CO(2-1) data of NGC 4501, a Virgo spiral galaxy currently experiencing ram pressure stripping, and NGC 4567/68, an interacting pair of galaxies in the Virgo cluster, are presented. We find an increase in the molecular fraction where the ISM is compressed. The gas is close to self-gravitation in compressed regions. This leads to an increase in gas pressure and a decrease in the ratio between the molecular fraction and total ISM pressure. The overall Kennicutt Schmidt relation based on a pixel-by-pixel analysis at ~1.5 kpc resolution is not significantly modified by compression. However, we detected continuous regions of low molecular star formation efficiencies in the compressed parts of the galactic gas disks. The data suggest that a relation between the molecular star formation efficiency SFEH2 = SFR/M(H2) and gas self-gravitation (Rmol/Ptot and Toomre Q parameter) exists. Both systems show spatial variations in the star formation efficiency with respect to the molecular gas that can be related to environmental compression of the ISM. An analytical model was used to investigate the dependence of SFEH2 on self-gravitation. The model correctly reproduces the correlations between Rmol/Ptot, SFEH2, and Q if different global turbulent velocity dispersions are assumed for the three galaxies. We found that variations in the NH2/ICO conversion factor can mask most of the correlation between SFEH2 and the Toomre Q parameter. Dynamical simulations were used to compare the effects of ram pressure and tidal ISM compression. These models give direct

  20. The VIRUS-P Exploration of Nearby Galaxies (VENGA): Radial Gas Inflow and Shock Excitation in NGC 1042

    NASA Astrophysics Data System (ADS)

    Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim

    2016-06-01

    NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100-300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ˜ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ˜ 1.1+/- 0.3× {10}-3 {M}⊙ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (˜ 1.4× {10}-5 {M}⊙ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}⊙ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.

  1. Scale Lengths in Disk Surface Brightness as Probes of Dust Extinction in Three Spiral Galaxies: M51, NGC 3631, and NGC 4321

    NASA Astrophysics Data System (ADS)

    Beckman, J. E.; Peletier, R. F.; Knapen, J. H.; Corradi, R. L. M.; Gentet, L. J.

    1996-08-01

    We have measured the radial brightness distributions in the disks of three nearby face-on spiral galaxies, M51, NGC 3631, and NGC 4321 (M100), in the photometric bands B through I, with the addition of the K band for M51 only. The measurements were made by averaging azimuthally, in three modes, the two-dimensional surface brightness over the disks in photometric images of the objects in each band: (1) over each disk as a whole, (2) over the spiral arms alone, and (3) over the interarm zones alone. From these profiles, scale lengths were derived for comparison with schematic exponential disk models that incorporate interstellar dust. These models include both absorption and scattering in their treatment of radiative transfer. The model fits show that the arms exhibit greater optical depth in dust than the interarm zones. The average fraction of emitted stellar light in V that is extinguished by dust within 3 scale lengths of the center of each galaxy does not rise above 20% in any of them. We show that this conclusion is also valid for models with similar overall quantities of dust but in which this is concentrated in lanes. These can also account for the observed scale lengths and their variations.

  2. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  3. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  4. H I observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    NASA Astrophysics Data System (ADS)

    Lucero, D. M.; Carignan, C.; Elson, E. C.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Heald, G. H.

    2015-07-01

    We present H I observations of the Sculptor group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the Square Kilometre Array precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large-scale, low-surface-brightness emission. The KAT-7 observations detected 33 per cent more flux than previous Very Large Array observations, mainly in the outer parts and in the halo for a total H I mass of 2.1 ± 0.1 × 109 M⊙. H I can be found at large distances perpendicular to the plane out to projected distances of ˜9-10 kpc away from the nucleus and ˜13-14 kpc at the edge of the disc. A novel technique, based on interactive profile fitting, was used to separate the main disc gas from the anomalous (halo) gas. The rotation curve (RC) derived for the H I disc confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disc, kinematically lagging by 100 km s-1. The kinematics of the observed extra-planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate is compatible with the starburst nature of NGC 253.

  5. Circumnuclear Star Clusters in the Galaxy Merger NGC 6240, Observed with Keck Adaptive Optics and HST

    SciTech Connect

    Pollack, L K; Max, C E; Schneider, G

    2007-02-12

    We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.

  6. Physical Condition of Molecular Gas at the Centre of the active galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Piñol Ferrer, N.; Fathi, K.; Lundgren, A.; van de Ven, G.

    2011-05-01

    We have used the Xco conversion factor, Local Thermal Equilibrium and Large Velocity Gradient approximation to parametrize the cold and warm phase of the interstellar medium from five different low transitions of the CO molecule in the central 21 arcsec (kpc) region of NGC 1097. We have applied a one-component model and derived a typical kinetic temperature of about 33 K, a molecular Hydrogen density of 4.9×103 M⊙ pc-3 and a CO column density of 1.2× 10-2 M⊙ pc-2. A two-component model results in 85% cold-to-total gas fraction in the presence of a 90 K warm counterpart. Furthermore, we ``resolve" the spatially unresolved single dish observations by selecting velocity channels that in an interferometric velocity map correspond to specific regions. We have selected five such regions and found that the physical properties in these regions are comparable to those derived from the full line profile. This implies that the central kpc of NGC 1097 is rather homogeneous in nature, and, although the regions are not uniquely located within the ring, the star formation along the ring is homogeneously distributed (in agreement with recent Herschel observations). We have further revised the mass inflow rate onto the Supermassive Black Hole in this prototype LINER/Sy1 galaxy and found that, accounting for the total interstellar medium and applying a careful contribution of the disc thickness and corresponding stability criterion, increases the previous estimations by a factor 10. Finally we have calculated the Xco conversion factor for the centre of NGC 1097 using an independent estimation of the surface density to the CO emission, and obtained Xco=(2.8%B m0.5)× 1020 cm-2 (K km s-1)-1 at radius 10.5 arcsec and Xco=(5.0%B m0.5)×1020 cm-2 (K km s-1)-1 at radius 7.5 arcsec. With the approach and analysis described in here we have demonstrated that important physical properties can be derived to a resolution beyond the single dish resolution element, however, caution is

  7. Dark matter in the inner parts of barred galaxies: The data

    NASA Astrophysics Data System (ADS)

    Pérez, I.; Márquez, I.; Freeman, K.; Fux, R.

    2005-07-01

    This paper presents surface photometry (B,V,I,J,H,K) and Hα rotation curves of 27 isolated spiral galaxies. The final goal is to obtain the mass distribution of a sample of isolated spiral galaxies in order to model their gas kinematics. This is then compared to the observed rotation curve, to determine the necessity of a dark halo in the inner parts (Perez et al. 2004, A&A, 424, 799). The azimuthally averaged radial surface brightness profiles and the integrated magnitudes obtained from ellipse fitting are given for each of the sample galaxies. The ellipse fitting technique applied to the light distribution also allowed us to obtain the size of the bar, and the inclination and position angle of the outer isophotes that allow the galaxy deprojection. Using these profiles, 1-D disk-bulge decomposition was performed to obtain the disk scale-length and the bulge effective radius for the different bands. Through the fitting of a parametric function to the observed rotation curve, the maximum rotational velocity and the corresponding radius was obtained. The correlation between the bulge and disk parameters is in agreement with previous studies (de Jong 1996a, A&A, 313, 45; Márquez & Moles 1999, A&A, 344, 421; Baggett et al. 1998, AJ, 116, 1626). Regarding the Kormendy relation (Kormendy 1977, ApJ, 218, 333), in agreement with de Jong, no correlation between the bulge effective radius and its surface brightness is found, possibly due to the small range of bulge magnitudes covered. We find a smaller scatter in the structural relations when compared to non-isolated samples in agreement with Márquez & Moles (1999). Finally, a correlation between the disk scale-length and the bar size is observed, possibly reflecting the rapid growth of a bar.

  8. The BaLROG project - I. Quantifying the influence of bars on the kinematics of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Díaz-García, S.; Laurikainen, E.; Salo, H.; Knapen, J. H.

    2015-07-01

    We present the BaLROG (Bars in Low Redshift Optical Galaxies) sample of 16 morphologically distinct barred spirals to characterize observationally the influence of bars on nearby galaxies. Each galaxy is a mosaic of several pointings observed with the integral-field unit (IFU) SAURON leading to a tenfold sharper spatial resolution (˜100 pc) compared to ongoing IFU surveys. In this paper we focus on the kinematic properties. We calculate the bar strength Q__b from classical torque analysis using 3.6-μm Spitzer (S4G) images, but also develop a new method based solely on the kinematics. A correlation between the two measurements is found and backed up by N-body simulations, verifying the measurement of Q__b. We find that bar strengths from ionized gas kinematics are ˜2.5 larger than those measured from stellar kinematics and that stronger bars have enhanced influence on inner kinematic features. We detect that stellar angular momentum `dips' at 0.2 ± 0.1 bar lengths and half of our sample exhibits an anticorrelation of h3-stellar velocity (v/σ) in these central parts. An increased flattening of the stellar σ gradient with increasing bar strength supports the notion of bar-induced orbit mixing. These measurements set important constraints on the spatial scales, namely an increasing influence in the central regions (0.1-0.5 bar lengths), revealed by kinematic signatures due to bar-driven secular evolution in present-day galaxies.

  9. The SLUGGS survey: multipopulation dynamical modelling of the elliptical galaxy NGC 1407 from stars and globular clusters

    NASA Astrophysics Data System (ADS)

    Pota, Vincenzo; Romanowsky, Aaron J.; Brodie, Jean P.; Peñarrubia, Jorge; Forbes, Duncan A.; Napolitano, Nicola R.; Foster, Caroline; Walker, Matthew G.; Strader, Jay; Roediger, Joel C.

    2015-07-01

    We perform in-depth dynamical modelling of the luminous and dark matter (DM) content of the elliptical galaxy NGC 1407. Our strategy consists of solving the spherical Jeans equations for three independent dynamical tracers: stars, blue globular clusters (GCs) and red GCs in a self-consistent manner. We adopt a maximum-likelihood Markov Chain Monte Carlo fitting technique in the attempt to constrain the inner slope of the DM density profile (the cusp/core problem), and the stellar initial mass function (IMF) of the galaxy. We find the inner logarithmic slope of the DM density profiles to be γ = 0.6 ± 0.4, which is consistent with either a DM cusp (γ = 1) or with a DM core (γ = 0). Our findings are consistent with a Salpeter IMF, and marginally consistent with a Kroupa IMF. We infer tangential orbits for the blue GCs, and radial anisotropy for red GCs and stars. The modelling results are consistent with the virial mass-concentration relation predicted by Λ cold dark matter (CDM) simulations. The virial mass of NGC 1407 is log Mvir = 13.3 ± 0.2M⊙, whereas the stellar mass is log M* = 11.8 ± 0.1 M⊙. The overall uncertainties on the mass of NGC 1407 are only 5 per cent at the projected stellar effective radius. We attribute the disagreement between our results and previous X-ray results to the gas not being in hydrostatic equilibrium in the central regions of the galaxy. The halo of NGC 1407 is found be DM-dominated, with a dynamical mass-to-light ratio of M/L=260_{-100} ^{+174} M_{⊙}/L_{⊙, B}. However, this value can be larger up to a factor of 3 depending on the assumed prior on the DM scale radius.

  10. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    SciTech Connect

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena; Alonso-Herrero, Almudena; Colina, Luis; Efstathiou, Andreas; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C.; Rajpaul, Vinesh; Zijlstra, Albert A.

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  11. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  12. Dynamics of the NGC 4636 globular cluster system. An extremely dark matter dominated galaxy?

    NASA Astrophysics Data System (ADS)

    Schuberth, Y.; Richtler, T.; Dirsch, B.; Hilker, M.; Larsen, S. S.; Kissler-Patig, M.; Mebold, U.

    2006-11-01

    Context: .We present the first dynamical study of the globular cluster system of NGC 4636. It is the southernmost giant elliptical galaxy of the Virgo cluster and is claimed to be extremely dark matter dominated, according to X-ray observations. Aims: .Globular clusters are used as dynamical tracers to investigate, by stellar dynamical means, the dark matter content of this galaxy. Methods: .Several hundred medium resolution spectra were acquired at the VLT with FORS 2/MXU. We obtained velocities for 174 globular clusters in the radial range 0.90 arcmin < R < 15.5 arcmin, or 0.5-9~Re in units of effective radius. Assuming a distance of 15 Mpc, the clusters are found at projected galactocentric distances in the range 4 to 70 kpc, the overwhelming majority within 30 kpc. The measured line-of-sight velocity dispersions are compared to Jeans-models. Results: .We find some indication of a rotation of the red (metal-rich) clusters about the minor axis. Out to a radius of 30 kpc, we find a roughly constant projected velocity dispersion for the blue clusters of σ ≈ 200~km s-1. The red clusters are found to have a distinctly different behavior: at a radius of about 3', the velocity dispersion drops by ~50~km s-1 to about 170~km s-1, which then remains constant out to a radius of 7'. The cause might be the steepening of the number density profile at ~3' observed for the red clusters. Using only the blue clusters as dynamical tracers, we perform Jeans-analyses for different assumptions of the orbital anisotropy. Enforcing the model dark halos to be of the NFW type, we determine their structural parameters. Depending on the anisotropy and the adopted M/L-values, we find that the dark matter fraction within one effective radius can vary between 20% and 50%, with most a probable range between 20% and 30%. The ambiguity of the velocity dispersion in the outermost bin is a main source of uncertainty. A comparison with cosmological N-body simulations reveals no striking

  13. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Smith, Howard A.; González-Alfonso, Eduardo; Fischer, Jacqueline

    2005-04-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 μm) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). In addition to the seven expected ionic fine-structure emission lines, the OH rotational lines at 79, 119, and 163 μm were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 μm line, when detected, is always in absorption. The observed line intensities were modeled together with ISOShort Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the active galactic nucleus (AGN) component and the starburst component in the circumnuclear ring of ~3 kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a `` big blue bump'' is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Brγ equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low-ionization parameter (U=10-3.5) and low densities (n=100 cm-3) are derived. Combining the AGN and starburst components, we succeeded in modeling the overall UV to far-IR atomic spectrum of NGC 1068, reproducing the line fluxes