Science.gov

Sample records for barrier discharge decomposition

  1. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor.

    PubMed

    Gandhi, M Sanjeeva; Mok, Y S

    2012-01-01

    The decomposition of trifluoromethane (CHF3) was carried out using non-thermal plasma generated in a dielectric barrier discharge (DBD) reactor. The effects of reactor temperature, electric power, initial concentration and oxygen content were examined. The DBD reactor was able to completely destroy CHF3 with alumina beads as a packing material. The decomposition efficiency increased with increasing electric power and reactor temperature. The destruction of CHF3 gradually increased with the addition of O2 up to 2%, but further increase in the oxygen content led to a decrease in the decomposition efficiency. The degradation pathways were explained with the identified by-products. The main by-products from CHF3 were found to be COF2, CF4, CO2 and CO although the COF2 and CF4 disappeared when the plasma were combined with alumina catalyst. PMID:23513444

  2. Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Ma, Tianpeng; Zhao, Qiong; Liu, Jianqi; Zhong, Fangchuan

    2016-06-01

    The humidity effects on the benzene decomposition process were investigated by the dielectric barrier discharge (DBD) plasma reactor. The results showed that the water vapor played an important role in the benzene oxidation process. It was found that there was an optimum humidity value for the benzene removal efficiency, and at around 60% relative humidity (RH), the optimum benzene removal efficiency was achieved. At a SIE of 378 J/L, the removal efficiency was 66% at 0% RH, while the removal efficiency reached 75.3% at 60% RH and dropped to 69% at 80% RH. Furthermore, the addition of water inhibited the formation of ozone and NO2 remarkably. Both of the concentrations of ozone and NO2 decreased with increasing of the RH at the same specific input energy. At a SIE of 256 J/L, the concentrations of ozone and NO2 were 5.4 mg/L and 1791 ppm under dry conditions, whereas they were only 3.4 mg/L and 1119 ppm at 63.5% RH, respectively. Finally, the outlet gas after benzene degradation was qualitatively analyzed by FT-IR and GC-MS to determine possible intermediate byproducts. The results suggested that the byproducts in decomposition of benzene primarily consisted of phenol and substitutions of phenol. Based on these byproducts a benzene degradation mechanism was proposed. supported by National Natural Science Foundation of China (Nos. 11205007 and 11205029)

  3. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma.

    PubMed

    Li, Yingying; Kojtari, Arben; Friedman, Gary; Brooks, Ari D; Fridman, Alex; Ji, Hai-Feng

    2014-02-13

    L-Valine solutions in water and phosphate buffer were treated with nonthermal plasma generated by using a dielectric barrier discharge (DBD) device and the products generated after plasma treatments were characterized by (1)H NMR and GC-MS. Our results demonstrate that L-valine is decomposed to acetone, formic acid, acetic acid, threo-methylaspartic acid, erythro-methlyaspartic acid, and pyruvic acid after direct exposure to DBD plasma. The concentrations of these compounds are time-dependent with plasma treatment. The mechanisms of L-valine under the DBD plasma are also proposed in this study. Acetone, pyruvic acid, and organic radicals (•)CHO, CH3COCH2OO(•) (acetonylperoxy), and CH3COC(OH)2OO(•) (1,1-dihydroxypropan-2-one peroxy) may be the determining chemicals in DNA damage.

  4. Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Renxi; Wang, Jingting; Cao, Xu; Hou, Huiqi

    2016-04-01

    For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF4, SF6 and SF5CF3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF6, air and water vapor, respectively. 0.4 kPa CF4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF5CF3 was much more effective than that of SF6 and CF4 and moreover, 1.3 kPa SF5CF3, discharged with 30 kPa O2, Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases. supported by National Natural Science Foundation of China (Nos. 20507004, 21577023)

  5. Demonstration of organic volatile decomposition and bacterial sterilization by miniature dielectric barrier discharges on low-temperature cofired ceramic electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Duk-jae; Shim, Yeun-keun; Park, Jeongwon; Kim, Hyung-jun; Han, Jeon-geon

    2016-04-01

    Nonthermal atmospheric-pressure plasma discharge is designed with low-temperature cofired ceramic (LTCC) electrodes to achieve dielectric barrier surface discharge (DBSD). The environmental requirement (below 0.05 ppm) of the amount of byproducts (ozone and NO x ) produced during the process was met by optimizing the electrode design to produce a high dielectric barrier discharge for low-voltage (∼700 V) operation and minimizing the distance between electrodes to improve the plasma discharging efficiency. The concentrations of volatile organic compounds (VOCs) within interior cabins of commercial vehicles were significantly reduced after 1-h treatment to improve air quality cost-effectively. This atmospheric-pressure plasma process was demonstrated for the sterilization of Escherichia coli to prevent food poisoning during the preservation of food in refrigerators.

  6. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  7. Dielectric Barrier Discharge Methane Conversion

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Fridman, Alexander; Rabinovich, Alexander; Dobrynin, Danil

    2015-09-01

    With the large amount of nature gas discovery every year, there is an increasing interest on modification of methane. The fact that methane is gaseous makes it less economic and efficient than liquid fuel. Here we propose a new way of converting methane from gas phase to liquid phase. Dielectric barrier discharge is used to treat methane and nitrogen mixture bubbles inside of liquid fuel. Nitrogen is here to help activate methane into an excited state, then it is possible for the excited molecules to react with other liquid hydrocarbon. Gaseous methane is converted in to liquid phase when excited methane replace a hydrogen and add onto the carbon chain. In this study some preliminary experiments is done to verify this hypothesis. There is equivalent weight increases with methane and nitrogen mixture discharging in diesel when compare to only nitrogen discharging in diesel. The same experiment have also been done with gas mixture discharged in 1-methylnaphthalene. And FTIR analysis of the after treatment hydrocarbon liquid all indicates that there is an increasing in C-H bond concentration and a decreasing in phenyl ring structure.

  8. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  9. Dielectric barrier discharge image processing by Photoshop

    NASA Astrophysics Data System (ADS)

    Dong, Lifang; Li, Xuechen; Yin, Zengqian; Zhang, Qingli

    2001-09-01

    In this paper, the filamentary pattern of dielectric barrier discharge has been processed by using Photoshop, the coordinates of each filament can also be obtained. By using Photoshop two different ways have been used to analyze the spatial order of the pattern formation in dielectric barrier discharge. The results show that the distance of the neighbor filaments at U equals 14 kV and d equals 0.9 mm is about 1.8 mm. In the scope of the experimental error, the results from the two different methods are similar.

  10. Cellular Structure Pattern in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Lifang; Liu, Weibo; Gao, Xing; Wei, Lingyan

    2015-12-01

    We report the observation of a cellular structure pattern in a dielectric barrier discharge system. The evolution sequence and phase diagram of the pattern are given. It is firstly observed that the "cell nucleus" fire three or even more times at a fixed location at the rising edge of the applied voltage, and that the "cell walls" which have the same discharge times with the "cell nucleus" are ignited slightly after the "cell nucleus". By observing a series of frames recorded by a high speed video camera, it is found that the cellular structure pattern consists of volume discharges (VDs) and surface discharges (SDs) corresponding to the "cell nucleus" and "cell walls" respectively. That VDs and SDs are ignited in turn for several times in each half cycle of the applied voltage confirms the fact that VDs induce the SDs and SDs also affect the following VDs.

  11. Dielectric barrier discharge processing of aerospace materials

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Figgures, C. C.; Dixon, D. G.

    2004-08-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin.

  12. Decomposition of Volatile Organic Compounds Using Surface-Discharge Microplasma Devices

    NASA Astrophysics Data System (ADS)

    Hirasawa, Makoto; Seto, Takafumi; Kwon, Soon‑Bark

    2006-03-01

    Five volatile organic compounds (VOCs), n-octane, ethyl acetate, toluene, p-xylene and ethyl benzene, were decomposed with a newly developed surface-discharged microplasma device (SMD). The SMD consisted of a micropatterned electrode on one side of a mica substrate and an inductive electrode printed on the other side. A piezoelectric, transformed high-voltage (66.7 kHz, 3.5 kV) was applied to four SMDs placed in a batch reactor containing VOC in a gas mixture; the aim was to generate a surface-discharged microplasma through a localized dielectric barrier discharge for the decomposition of the VOCs. The decay in VOC concentration (CVOC) during the discharge was evaluated by gas chromatography-mass spectrometry. For all the five VOCs, the decomposition rates can be treated as first-order reactions against CVOC after a discharge time of 30 min. Decomposition rate was dependent on the type of compound; the reaction rates of aromatic compounds were approximately twice as large as those of aliphatic compounds. Ion concentration measurements during the microplasma operation revealed that reaction rate showed linear relationship with the VOC ion concentration, which suggests that the ionization of the VOCs closely correlates with the rate-determining steps of decomposition reactions.

  13. Dielectric Barrier Discharge Ionization of Perfluorinated Compounds.

    PubMed

    Schütz, Alexander; Brandt, Sebastian; Liedtke, Sascha; Foest, Daniel; Marggraf, Ulrich; Franzke, Joachim

    2015-11-17

    The soft ionization ability based on plasma-jet protonation of molecules initiated by a dielectric barrier discharge ionization source (DBDI) is certainly an interesting application for analytical chemistry. Since the change of an applied sinusoidal voltage may lead to different discharge modes the applied discharge was powered by a square wave generator in order to get a homogeneous plasma. It is known that besides the protonation [M+H](+) of unpolar as well as some polar molecules the homogeneous DBDI can be used to ionize molecules directly [M](+). Here we prove that the DBDI can be applied to exchange fluorine by oxygen of perfluorinated compounds (PFC). PFC are organofluorine compounds with carbon-fluorine and carbon-carbon bonds only but no carbon-hydrogen bonds. While the position of the introduction into the plasma-jet is essential, PFC can be measured in the negative mass spectrometer (MS) mode.

  14. Electrodynamic force of dielectric barrier discharge

    SciTech Connect

    Shang, J. S.; Roveda, F.; Huang, P. G.

    2011-06-01

    The periodic electrostatic force of dielectric barrier discharge (DBD) in nitrogen for flow control is investigated by a system of physics-based, two-dimensional model equations. The plasma generation process of DBD is mainly the avalanche growth of electrons through the secondary emission from cathode. Therefore, the charged particle motion of a succession of random micro discharges can be approximated by the drift-diffusion model. The force of DBD generated by charge separation and accumulation over the dielectrics is obtained by solving the model equations with the rigorous media interface boundary condition of Maxwell equations in the time domain. The discharge structure and force components by different electrical permittivity and amplitudes of externally applied electrical potential are delineated and quantified.

  15. Experimental determination of dielectric barrier discharge capacitance

    NASA Astrophysics Data System (ADS)

    Pipa, A. V.; Hoder, T.; Koskulics, J.; Schmidt, M.; Brandenburg, R.

    2012-07-01

    The determination of electrical parameters (such as instantaneous power, transferred charge, and gas gap voltage) in dielectric barrier discharge (DBD) reactors relies on estimates of key capacitance values. In the classic large-scale sinusoidal-voltage driven DBD, also known as silent or ozonizer discharge, capacitance values can be determined from charge-voltage (Q-V) plot, also called Lissajous figure. For miniature laboratory reactors driven by fast pulsed voltage waveforms with sub-microsecond rise time, the capacitance of the dielectric barriers cannot be evaluated from a single Q-V plot because of the limited applicability of the classical theory. Theoretical determination can be problematic due to electrode edge effects, especially in the case of asymmetrical electrodes. The lack of reliable capacitance estimates leads to a "capacitance bottleneck" that obstructs the determination of other DBD electrical parameters in fast-pulsed reactors. It is suggested to obtain capacitance of dielectric barriers from a plot of the maximal charge versus maximal voltage amplitude (Qmax - Vmax plot) in a manner analogous to the classical approach. The method is examined using measurements of current and voltage waveforms of a coaxial DBD reactor in argon at 100 mbar driven by square voltage pulses with a rise time of 20 ns and with different voltage amplitudes up to 10 kV. Additionally, the applicability of the method has been shown for the data reported in literature measured at 1 bar of nitrogen-oxygen gas mixtures and xenon.

  16. Interactions between surface discharges induced by volume discharges in a dielectric barrier discharge system

    SciTech Connect

    Gao, Yenan; Dong, Lifang Zhao, Longhu; Wang, Yongjie; Pan, Yuyang; Li, Ben

    2014-10-15

    The interaction between micro-discharges involved in surface discharges (SDs) is studied in dielectric barrier discharge system. Instantaneous images taken by high speed cameras show that the SDs are induced by volume discharges (VDs). They cannot cross the midperpendicular of two neighbouring volume charges at low voltage while they stretch along it at high voltage, indicating that there is interaction between SDs. The differences of plasma parameters between SD and VD are studied by optical emission spectroscopy. The simulation of the electric fields of the wall charges accumulated by VD further confirms the existence of the interaction.

  17. Concentric superlattice pattern in dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Feng, Jianyu; Dong, Lifang; Wei, Lingyan; Fan, Weili; Li, Caixia; Pan, Yuyang

    2016-09-01

    The concentric superlattice pattern with three sub-lattices is observed in the dielectric barrier discharge in air/argon for the first time. Its spatiotemporal structure investigated by an intensified charge-coupled device shows that it is an interleaving of three different sub-lattices, which are concentric-ring, concentric-framework, and concentric-dot, respectively. The images of single-frame indicate that the concentric-ring and concentric-framework are composed of individual filaments. By using the optical emission spectrum method, it is found that plasma parameters of the concentric-dot are different from those of the concentric-ring and concentric-framework. The spatiotemporal dynamics of the concentric superlattice pattern is dependent upon the effective field of the distribution of the wall charges field and the applied field.

  18. Nonlinear pattern formation in Dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Dong, Lifang; Fan, Weili; He, Yafeng; Pattern Formation in DBD Team

    2015-11-01

    Dielectric barrier discharge (DBD) has proven to be a fascinating system for the study of nonlinear pattern formation, which presents an extraordinary variety and richness of patterns with the prominent convenience and practicality of experimental setups. In recent years, by using the special designed DBD system with two water electrodes, we have obtained a rich variety of patterns through nonlinear self-organization of the filaments [Phys. Rev. E 87, 042914 (2013), Phys. Rev. E 85, 066403 (2012), Phys. Rev. E 86, 036211 (2012)]. The spatio-temporal dynamics of these patterns have been studied systematically, and furthermore, the detailed plasma diagnostics have been carried out. These results are of great significance to give deep insight into the nature of nonlinear pattern formation. Based on our previous studies, here we will present the first report on a new complex superlattice pattern, as so called concentric superlattice. It evolves from hexagon pattern and transits to homogenous glow discharge with an increasing of the applied voltage. The spatio-temporal dynamics of the patterns have been investigated by a high speed camera. Results show that the concentric superlattice is an interleaving of three different sub-lattices, which are concentric-ring, concentric-framework, and concentric-dot embedded in the concentric-framework. Based on the experimental measurements, the involved intrinsic physical mechanism will be demonstrated.

  19. [Study on spectral line profile of volume discharge and surface discharge in dielectric barrier discharge].

    PubMed

    Dong, Li-Fang; Zhao, Long-Hu; Wang, Yong-Jie; Gao, Ye-Nan

    2014-02-01

    The volume discharge (VD) and surface discharge (SD) were observed in dielectric barrier discharge with a relatively large discharge gap simultaneously by using a high-speed camera. The variations of the spectral line profiles of VD and SD as a function of the discharge parameters were studied by using optical emission spectra. The changes in the width and shift of Ar I (2P2-->1S5) spectral lines of VD and SD with gas pressure and discharge gap were measured in dielectric barrier discharge in argon. It was found that both the width and shift of SD are bigger than those of VD, indicating that the electron density of SD is higher than that of VD. The width and shift of VD and SD increase with the gas pressure increasing, indicating that the electron density of VD and SD increases with the gas pressure increasing. The width of VD and SD increases with the gas gap d increasing from 3. 8 to 4. 4 mm, reflecting that the electron density of VD and SD increases with d increasing.

  20. Decomposition of toluene in a gliding arc discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Du, Chang Ming; Yan, Jian Hua; Cheron, Bruno

    2007-11-01

    The decomposition of toluene in a gliding arc discharge (glidarc) was performed and studied. Experimental results indicate that the glidarc technology can effectively decompose toluene molecules and has bright prospects of being applied as an alternative tool to decompose volatile organic compounds. It is found that a change in the electrode material had an insignificant effect on the toluene removal efficiency. The toluene removal efficiency increases with increasing inlet gas temperature. The water vapor present in the gas mixture has a favorable effect on the toluene decomposition in the plasma. The energy efficiency is 29.46 g (kWh-1) at a relative humidity of 50% and a specific energy input of 0.26 kWh m-3, which is higher than other types of non-thermal plasmas. Too much or too little oxygen content does not favor toluene decomposition. The major gas phase products detected by FT-IR from the decomposition of toluene with air participation were CO, CO2, H2O and NO2. Some brown depositions were found on the surface of the electrodes, which were polar oxygenous and nitrogenous compounds determined by the GC-MS analysis, such as benzaldehyde, benzoic acid, quinine and nitrophenol from the reaction of toluene with radicals. A possible mechanism for toluene destruction via glidarc technology is proposed and summarized.

  1. Identifying Barriers to Medication Discharge Counselling by Pharmacists

    PubMed Central

    Walker, Sandra A N; Lo, Jennifer K; Compani, Sara; Ko, Emily; Le, Minh-Hien; Marchesano, Romina; Natanson, Rimona; Pradhan, Rahim; Rzyczniak, Grace; Teo, Vincent; Vyas, Anju

    2014-01-01

    Background Medication errors may occur more frequently at discharge, making discharge counselling a vital facet of medication reconciliation. Discharge counselling is a recognized patient safety initiative for which pharmacists have appropriate expertise, but data are lacking about the barriers to provision of this service to adult inpatients by pharmacists. Objectives: To determine the proportion of eligible patients who received discharge counselling, to quantify perceived barriers preventing pharmacists from performing discharge counselling, and to determine the relative frequency of barriers and associated time expenditures. Methods: In this prospective study, 8 pharmacists working in general medicine, medical oncology, or nephrology wards of an acute care hospital completed a survey for each of the first 50 patients eligible for discharge counselling on their respective wards from June 2010 to February 2011. Patients discharged to another facility (rehabilitation, palliative care, or long-term care), those with hospital stay less than 48 h before discharge, and those whose medications were unchanged from hospital admission were ineligible. Results: Discharge counselling was performed for 116 (29%) of the 403 eligible patients and involved a median preparation time of 25 min and median counselling time of 15 min per patient. At least one documented barrier to discharge counselling existed for 295 (73%) of the patients. Several barriers to discharge counselling occurred significantly more frequently on the general medicine and oncology wards than on the nephrology ward (p < 0.05). The most common barrier was failure to notify the pharmacist about impending patient discharge (130/313 [41%]). Time constraints existed for 130 (32%) of the patients, the most common related to clarification of prescriptions (96 [24%]), creation of a medication list (69 [17%]), and faxing of prescriptions (64 [16%]). Conclusion: This study generated objective data about the barriers

  2. The discharge characteristics of surface dielectric barrier discharge sustained by repetitive nanosecond pulses in open air

    NASA Astrophysics Data System (ADS)

    Lei, Pang; Kun, He; Qiaogen, Zhang

    2016-09-01

    A nanosecond pulsed surface dielectric barrier discharge (NPSDBD) is a promising method for flow control and combustion. We systematically investigated the influence of pulse parameters on the discharge characteristics of NPSDBD, especially on the conduction current of discharge and the energy deposition curves. Meanwhile, the differences of the characteristics of the discharge generated by positive pulses and negative pulses are focused in this paper. The underlying physics is also discussed. Four different discharge regimes of NPSDBD are presented, which can be distinguished by the temporal emission behaviors of discharge and the conduction current of discharge. The transitions of four discharge regimes were also investigated by changing the pulse amplitude, repetitive rate, and voltage polarity. It was found that it is easier to translate quasi-uniform discharge to filamentary discharge or transition mode for the repetitive pulses with a negative polarity. A phenomenological model was proposed to explain the differences between a positive repetitive pulse discharge and a negative repetitive pulse discharge.

  3. Cathode fall measurement in a dielectric barrier discharge in helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2013-11-15

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  4. Collective Phenomena In Volume And Surface Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  5. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    SciTech Connect

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S.

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  6. Collective phenomena in volume and surface barrier discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  7. Discharge analysis and electrical modeling for the development of efficient dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Pal, U. N.; Kumar, M.; Tyagi, M. S.; Meena, B. L.; Khatun, H.; Sharma, A. K.

    2010-02-01

    Dielectric-barrier discharges (DBDs) are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an AC/pulse power supply. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. DBDs exist usually in filamentary mode, based on the streamer nature of the discharges. The main advantage of this type of electrical discharges is that nonequilibrium and non-thermal plasma conditions can be established at atmospheric pressure. VUV/UV sources based on DBDs are considered as promising alternatives of conventional mercury-based discharge plasmas, producing highly efficient VUV/UV radiation. The experiments have been performed using two coaxial quartz double barrier DBD tubes, which are filled with Xe/Ar at different pressures. A sinusoidal voltage up to 2.4 kV peak with frequencies from 20 to 100 kHz has been applied to the discharge electrodes for the generation of microdischarges. A stable and uniform discharge is produced in the gas gap between the dielectric barrier electrodes. By comparisons of visual images and electrical waveforms, the filamentary discharges for Ar tube while homogeneous discharge for Xe tube at the same conditions have been confirmed. The electrical modeling has been carried out to understand DBD phenomenon in variation of applied voltage waveforms. The simulated discharge characteristics have been validated by the experimental results.

  8. The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges

    NASA Astrophysics Data System (ADS)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2016-08-01

    An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range. supported by National Natural Science Foundation of China (No. 11447244), the Science Foundation of Hengyang Normal University of China (No. 14B41), the Construct Program of the Key Discipline in Hunan Province, and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology of China (No. GDXX010)

  9. Discharge characteristics of dielectric barrier discharge (DBD) based VUV/UV sources

    NASA Astrophysics Data System (ADS)

    Pal, U. N.; Kumar, M.; Khatun, H.; Sharma, A. K.

    2008-05-01

    Dielectric-barrier discharges (DBDs) are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an AC/pulse power supply. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. DBDs exist usually in filamentary mode, based on the streamer nature of the discharges. The main advantage of this type of electrical discharges is that nonequilibrium and non-thermal plasma conditions can be established at atmospheric pressure. VUV/UV sources based on DBDs are considered as promising alternatives of conventional mercury-based discharge plasmas, producing highly efficient VUV/UV radiation. The experiments have been performed using coaxial and planar geometry of DBD (gas gap: 1-3 mm) made of quartz with N2/Ar/Xe gas at different pressures. A proper ultra high vacuum system and gas filing system has been made for the processing & characterization of DBD tubes. A RF generator (20-100 kHz, 0-2.4 kV peak) is used for discharges in DBD tube. A stable and uniform discharge is produced in the gas gap between the dielectric barrier electrodes. The discharge characteristics have been analyzed by V-I characteristics & Lissajous figure and found that the spatial discharge processes varies strongly according to the applied voltage waveform, pressure of filled gas and geometry of tube.

  10. Dielectric barrier discharges revisited: the case for mobile surface charge

    NASA Astrophysics Data System (ADS)

    Peeters, F. J. J.; Rumphorst, R. F.; van de Sanden, M. C. M.

    2016-06-01

    We propose a mechanism to explain many features of the multi-filament dielectric barrier discharge: while part of the charge deposited during previous discharge cycles is immobile on the dielectric over time periods of seconds, the larger fraction of the deposited charge must be mobile on time-scales of hundreds of ns. For alumina, we estimate that a sheet resistance of 3 MΩ sq‑1 is consistent with the multi-filament discharge; an increase in conductivity of at least 12 orders of magnitude. The existence of this type of plasma-induced surface conductivity could prove relevant in modeling a wide range of plasma devices, in addition to DBD.

  11. Characteristics Of A Dielectric Barrier Discharge In Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Lai, C. K.; Chin, O. H.; Thong, K. L.

    2009-07-01

    Parallel plate dielectric barrier discharges consisting of two electrodes with glass (ɛr = 7.5) and alumina (ɛr = 9.0) as the dielectric barrier were constructed. The system is powered by a variable 20 kV high voltage supply which is capable of delivering unipolar voltage pulses at frequency of 0.1-2.5 kHz and sinusoidal voltages at 6.5 kHz and above. At atmospheric pressure, the discharges exhibit either diffuse or filamentary appearance depending on parameters which include the series capacitance established by the electrodes with the dielectric barrier and varying air gap, dielectric material, and frequency of the supply voltages. This DBD system is built for the study of bacterial sterilization.

  12. Discharge dynamics of pin-to-plate dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Sun Liqun; Huang, Xiaojiang; Zhang Jie; Zhang Jing; Shi, J. J.

    2010-11-15

    The discharge dynamics of pin-to-plate dielectric barrier discharge was studied in atmospheric helium at 20 kHz. The discharge was predominately ignited in positive half cycle of applied voltage with sinusoidal waveform. The temporal evolution of the discharge was investigated vertically along the discharge gap and radically on the dielectric surface by time resolved imaging. It is found that a discharge column with a diameter of 2 mm was ignited above the pin electrode and expanded toward a plate electrode. On the dielectric surface with space charge accumulation, plasma disk in terms of plasma ring was formed with radius up to 25 mm. The expansion velocity of plasma ring can reach a hypersonic speed of 3.0 km/s. The ionization wave due to electron diffusion is considered to be the mechanism for plasma ring formation and dynamics.

  13. Decomposition of atrazine traces in water by combination of non-thermal electrical discharge and adsorption on nanofiber membrane.

    PubMed

    Vanraes, Patrick; Willems, Gert; Daels, Nele; Van Hulle, Stijn W H; De Clerck, Karen; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Nikiforov, Anton; Leys, Christophe

    2015-04-01

    In recent decades, several types of persistent substances are detected in the aquatic environment at very low concentrations. Unfortunately, conventional water treatment processes are not able to remove these micropollutants. As such, advanced treatment methods are required to meet both current and anticipated maximally allowed concentrations. Plasma discharge in contact with water is a promising new technology, since it produces a wide spectrum of oxidizing species. In this study, a new type of reactor is tested, in which decomposition by atmospheric pulsed direct barrier discharge (pDBD) plasma is combined with micropollutant adsorption on a nanofiber polyamide membrane. Atrazine is chosen as model micropollutant with an initial concentration of 30 μg/L. While the H2O2 and O3 production in the reactor is not influenced by the presence of the membrane, there is a significant increase in atrazine decomposition when the membrane is added. With membrane, 85% atrazine removal can be obtained in comparison to only 61% removal without membrane, at the same experimental parameters. The by-products of atrazine decomposition identified by HPLC-MS are deethylatrazine and ammelide. Formation of these by-products is more pronounced when the membrane is added. These results indicate the synergetic effect of plasma discharge and pollutant adsorption, which is attractive for future applications of water treatment. PMID:25482844

  14. Decomposition of atrazine traces in water by combination of non-thermal electrical discharge and adsorption on nanofiber membrane.

    PubMed

    Vanraes, Patrick; Willems, Gert; Daels, Nele; Van Hulle, Stijn W H; De Clerck, Karen; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Nikiforov, Anton; Leys, Christophe

    2015-04-01

    In recent decades, several types of persistent substances are detected in the aquatic environment at very low concentrations. Unfortunately, conventional water treatment processes are not able to remove these micropollutants. As such, advanced treatment methods are required to meet both current and anticipated maximally allowed concentrations. Plasma discharge in contact with water is a promising new technology, since it produces a wide spectrum of oxidizing species. In this study, a new type of reactor is tested, in which decomposition by atmospheric pulsed direct barrier discharge (pDBD) plasma is combined with micropollutant adsorption on a nanofiber polyamide membrane. Atrazine is chosen as model micropollutant with an initial concentration of 30 μg/L. While the H2O2 and O3 production in the reactor is not influenced by the presence of the membrane, there is a significant increase in atrazine decomposition when the membrane is added. With membrane, 85% atrazine removal can be obtained in comparison to only 61% removal without membrane, at the same experimental parameters. The by-products of atrazine decomposition identified by HPLC-MS are deethylatrazine and ammelide. Formation of these by-products is more pronounced when the membrane is added. These results indicate the synergetic effect of plasma discharge and pollutant adsorption, which is attractive for future applications of water treatment.

  15. Equation of Energy Injection to a Dielectric Barrier Discharge Reactor

    NASA Astrophysics Data System (ADS)

    Yao, Shuiliang; Weng, Shan; Jin, Qi; Han, Jingyi; Jiang, Boqiong; Wu, Zuliang

    2016-08-01

    The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge (DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area, and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27-300 °C but becomes obvious in the range of 300-500 °C. A model was established using which the energy injection can be easily predicted. supported by National Natural Science Foundation of China (No. 11575159), Zhejiang Provincial Natural Science Foundation of China (No. LY13B070004), Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07), and National Natural Science Foundation of China (No. 51206146)

  16. Equation of Energy Injection to a Dielectric Barrier Discharge Reactor

    NASA Astrophysics Data System (ADS)

    Yao, Shuiliang; Weng, Shan; Jin, Qi; Han, Jingyi; Jiang, Boqiong; Wu, Zuliang

    2016-08-01

    The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge (DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area, and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27–300 °C but becomes obvious in the range of 300–500 °C. A model was established using which the energy injection can be easily predicted. supported by National Natural Science Foundation of China (No. 11575159), Zhejiang Provincial Natural Science Foundation of China (No. LY13B070004), Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07), and National Natural Science Foundation of China (No. 51206146)

  17. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  18. Particle simulation of filamentary formation in dielectric barrier discharge.

    NASA Astrophysics Data System (ADS)

    Fan, Weili; Dong, Lifang

    2015-11-01

    Dielectric barrier discharge (DBD) is well known for its extensive industrial applications. Recently, new attention has been paid to DBD as a system of rich nonlinear dynamics to study the self-organized filamentary patterns. Though a number of experimental studies have been implemented, the involved physics is still not completely clear, partially due to the limitation of the available space and time-resolved diagnostics. Computer simulation has proven to be an effective tool to give insights into the discharge mechanism. So far, most simulations presented are based on fluid models. However, since the plasma is non-equilibrium in DBD where the particle velocities may deviate from the Maxwellian distribution, self-consistent kinetic simulations are required. In this paper, two successive filamentary discharges in DBD have been studied by use of two-dimensional particle-in-cell simulation with Monte Carlo collisions included (PIC-MCC). The formation of multiple filaments and the involved electric fields, electric potentials, plasma densities, and particle temperatures are presented. Results show that both of the surface charges and space charges play significant roles in the discharges. The total electric field in the gas gap has been completely reversed before the ac voltage hit zero, due to the accumulation of the surface charges, which triggers the next discharge. The space charges always exist between two successive discharges, which provides the `seed charges' for reignition of the filaments. This modeling has revealed significant details of the discharge behaviors, which greatly improved our understanding of DBD mechanisms.

  19. Handheld Flyback driven coaxial dielectric barrier discharge: Development and characterization

    SciTech Connect

    Law, V. J.; Milosavljevic, V.; O'Connor, N.; Daniels, S.; Lalor, J. F.

    2008-09-15

    The development of a handheld single and triple chamber atmospheric pressure coaxial dielectric barrier discharge driven by Flyback circuitry for helium and argon discharges is described. The Flyback uses external metal-oxide-semiconductor field-effect transistor power switching technology and the transformer operates in the continuous current mode to convert a continuous dc power of 10-33 W to generate a 1.2-1.6 kV 3.5 {mu}s pulse. An argon discharge breakdown voltage of {approx}768 V is measured. With a 50 kHz, pulse repetition rate and an argon flow rate of 0.5-10 argon slm (slm denotes standard liters per minute), the electrical power density deposited in the volume discharge increases linearly at a rate of 75{+-}20% mW/cm{sup 3} per 1 slm of gas. Electrical power transfer efficiency between the secondary Flyback coil and the discharge volume increases from 0.1% to 0.65%. Neutral argon gas forced convection analysis yields a similar energy loss rate to the electrical discharge process. Optical emission spectroscopy studies of the expanding discharge plume into ambient air reveal that the air climatically controls the plume chemistry to produce an abundance of neutral argon atoms and molecular nitrogen.

  20. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect

    Yang, Aijun; Wang, Xiaohua E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe E-mail: mzrong@mail.xjtu.edu.cn; Kong, Michael G.

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  1. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    SciTech Connect

    Du, Yinchang; Li, Yangfang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  2. Effect of barrier capacitance on self-organized structure in dielectric-barrier discharge microplasma

    NASA Astrophysics Data System (ADS)

    Mukaigawa, Seiji; Fujiwara, Kazunobu; Sato, Tomohiko; Odagiri, Ryo; Kudoh, Tomohiro; Yokota, Atsuya; Oguni, Kyohei; Takaki, Koichi

    2016-07-01

    We experimentally observed variations in self-organized microgap barrier discharge with changes in barrier capacitance. We also performed a computer simulation using a reaction–diffusion equation. The simulation results showed the same tendency for the lattice spacing and size of filaments as hexagonal pattern structures in discharge experiments. We confirmed that the experimental result of the dependence of voltage on filament number density is consistent with the simulation result. From a theoretical viewpoint, it is possible that the size of filaments of a hexagonal structure caused by Turing instability corresponds to the characteristic wavelength obtained by simple analysis.

  3. Effect of barrier capacitance on self-organized structure in dielectric-barrier discharge microplasma

    NASA Astrophysics Data System (ADS)

    Mukaigawa, Seiji; Fujiwara, Kazunobu; Sato, Tomohiko; Odagiri, Ryo; Kudoh, Tomohiro; Yokota, Atsuya; Oguni, Kyohei; Takaki, Koichi

    2016-07-01

    We experimentally observed variations in self-organized microgap barrier discharge with changes in barrier capacitance. We also performed a computer simulation using a reaction-diffusion equation. The simulation results showed the same tendency for the lattice spacing and size of filaments as hexagonal pattern structures in discharge experiments. We confirmed that the experimental result of the dependence of voltage on filament number density is consistent with the simulation result. From a theoretical viewpoint, it is possible that the size of filaments of a hexagonal structure caused by Turing instability corresponds to the characteristic wavelength obtained by simple analysis.

  4. The electrical characteristics of the dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf

    2016-06-01

    The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

  5. Safety assessment of discharge chute isolation barrier preparation and installation

    SciTech Connect

    Meichle, R.H.

    1994-10-21

    This analysis examines activities associated with the installation of isolation barriers in the K Basins at the Hanford Reservation. This revision adds evaluation of barrier drops on stored fuel and basin floor, identifies fuel which will be moved and addresses criticality issues with sludge. The safety assessment is made for the activities for the preparation and installation of the discharge chute isolation barriers. The safety assessment includes a hazard assessment and comparisons of potential accidents/events to those addressed by the current safety basis documentation. No significant hazards were identified. An evaluation against the USQ evaluation questions was made and the determination made that the activities do not represent a USQ. Hazard categorization techniques were used to provide a basis for readiness review classifications.

  6. Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Wu, Erka; Yan, Jianhua; Chi, Yong; Cen, Kefa

    2013-01-01

    This note reports on a novel power supply design for gliding arc discharge with applying controlled phase-chopping on the input voltage waveform, aiming at simultaneously satisfying the decomposition efficacy and energy efficiency for volatile organic compound decomposition. With a proper control on the phase-chopping fraction, the energy efficiency can be obviously enhanced, while the decomposition efficacy is almost maintained, possibly due to the compensation from long-life radical induced decomposition during discharge intervals.

  7. Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi; Osawa, Naoki; Wedaa, Hassan; Otani, Yoshio

    2016-06-01

    The aim of this study is to investigate the effect of the intermediate frequency (1-10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect.

  8. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  9. Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun; Ogino, Akihisa; Nagatsu, Masaaki

    2007-11-01

    Characteristics of direct current microhollow cathode discharges (MHCDs) combined with dielectric barrier discharge (DBD) electrodes as preionization source were studied experimentally and theoretically. The DBD preionization significantly reduced the sparking voltage (from 3.1-3.2to2.4-2.5kV) and improved the spatial uniformity of the multihole MHCDs. Theoretical calculations using the finite element method indicate that the electrons generated by DBDs in the negative phase of the applied voltage could be accelerated into the MHCD electrodes and serve as the seeding electrons for initiating MHCDs. It was experimentally demonstrated that pulselike MHCDs were synchronously triggered by the preionized DBD current pulses.

  10. Stability Modeling of DIII-D Discharges with Transport Barriers

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Ferron, J. R.; Lin-Liu, Y. R.; Strait, E. J.; Turnbull, A. D.; Taylor, T. S.; Murakami, M.

    1999-11-01

    The stability of DIII--D discharges with transport barriers is systematically studied by modeling the pressure profiles using a hyperbolic tangent representation with various radii, widths, and amplitudes. The q profiles are modeled using a spline representation with varying q(0), q_min, and ρ_q_min. The equilibria are computed using the EFIT and the TOQ codes based on the parameters from a strongly shaped high triangurality DIII--D long pulse high performance discharge. Stability against the ideal low n=1 and 2 modes is evaluated using the GATO code with a conducting wall at 1.5 a. The results show that the stability improves with increasing transport barrier width and radius but varies weakly with q(0). When the transport barriers are L--mode like and have narrow widths in the plasma core, the stability is limited by the n=1 mode. When they are H--mode like and have large widths extending toward the edge, the stability is limited by the n=2 mode.

  11. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    SciTech Connect

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  12. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  13. Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air

    SciTech Connect

    Cho, J. H.; Koo, I. G.; Choi, M. Y.; Lee, W. M.

    2008-03-10

    This study is aimed at demonstrating plasma-chemical ozone production based on low temperature atmospheric pressure glow discharge through nanoporous dielectric barriers. The 20 kHz ac driven discharge is formed in air or oxygen gas flowing in the axial direction of the cylindrical plasma reactor containing four parallel aluminum rods covered with nanoporous alumina films. The discharge utilizing nanoporous dielectric barrier is more uniform and more energy efficient in ozone generation than the discharge through smooth-surface dielectric barriers.

  14. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  15. [Analysis of characteristics and products of chlorobenzene degradation with dielectric barrier discharge].

    PubMed

    Jiang, Li-Ying; Cao, Shu-Ling; Zhu, Run-Ye; Chen, Jian-Meng; Su, Fei

    2015-03-01

    For non-biodegradable volatile organic compounds (VOCs) with low water solubility, the tradition biological method can not achieve a satisfactory removal efficiency, so development of high efficiency pre-treatment technology is a hot issue of research. In this experiment, using poor biodegradable chlorobenzene as the target pollutant and dielectric barrier discharge (DBD) non-thermal plasma as the pretreatment technology for biotrickling filter (BTF) , the effect of DBD on the degradation of chlorobenzene was studied by adjusting the technical parameters of DBD. The effects of the inlet concentration, residence time, humidity and peak voltage on decomposition efficiency were investigated and the decomposition products of chlorobenzene were analyzed. Experimental results showed that DBD could effectively remove waste gaseous chlorobenzene, the removal rate of chlorobenzene increased with the increasing peak voltage. When the peak voltage was ≥ 12kV, less effect of residence time on the degradation of chlorobenzene was found. The optimal humidity range of degradation chlorobenzene was 65% - 75%. Through the analysis of degradation products, the species and concentrations of degradation products increased with the increase of discharge voltage. The products were mainly consisted of organic acids and chlorinated hydrocarbons. The water solubility of degradation products was preferable. Furthermore, with the increase of discharge voltage, the biodegradability of degradation products became higher and higher and the biological toxicity was reduced. It had a promoting effect on the degradation of chlorobenzene when the voltage reached 20 kV. Meanwhile, the O3 concentration increased with the increasing discharge voltage and also enhanced with the rising humidity under the same voltage.

  16. Dielectric barrier discharge plasma induced degradation of aqueous atrazine.

    PubMed

    Feng, Jingwei; Jiang, Lin; Zhu, Dan; Su, Kuizu; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2016-05-01

    Degradation of herbicide atrazine in aqueous solution was investigated using a plate type dielectric barrier discharge (DBD) plasma reactor. DBD plasma was generated at the gas-liquid interface of the formed water film. At discharge time of 14 min, atrazine was degradated effectively with a degradation rate of 99 % at the discharge power of 200 W. The experimental data fitted well with first-order kinetics and the energy efficiency for 90 % degradation of atrazine (G value) was calculated, obtaining a rate constant of 0.35 min(-1) and a G value of 1.27 × 10(-10) mol J(-1) (98.76 mg kW(-1) h(-1)) at a discharge power of 200 W, respectively. The addition of Fe(2+) increased the rate constant and G value dramatically, and a significant decrease of the rate constant and G value was observed with the addition of radical scavengers (tert-butyl alcohol, isopropyl alcohol, or Na2CO3). The generated aqueous O3 and H2O2 were determined, which promoted the degradation of herbicide atrazine. Dechlorination was observed and the experimentally detected Cl(-) was 1.52 mg L(-1) at a discharge time of 14 min. The degradation intermediates of atrazine were detected by means of liquid chromatography-mass spectrometry; dechlorination, hydroxylation, dealkylation, and alkyl oxidation processes were involved in the degradation pathways of atrazine. PMID:26832879

  17. Average OH density in alternating current dielectric barrier discharge by laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Yang, Hongliang; Feng, Chunlei; Gao, Liang; Ding, Hongbin

    2015-10-01

    The average OH density in atmospheric He-H2O(0.4%) needle-plate dielectric barrier discharge (DBD) was measured by the asynchronous laser-induced fluorescence (LIF) technique and the fluctuation of OH radical density was measured simultaneously to prove that the average OH density can be obtained by the asynchronous LIF technique. The evolution of the average OH density in four different discharge patterns, namely, negative barrier corona discharge, glow discharge, multi glow discharge, and streamer discharge, was studied, and it was found that the average OH density has an observable increase from corona discharge to streamer discharge. The main mechanism of OH production in the four different discharge patterns was analyzed. It was shown that the main mechanism of OH production in negative barrier corona discharge is electron direct collision dissociation, whereas in the other three discharge patterns the He metastable Penning ionization is the main process.

  18. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  19. Timing Control of Self-organized Dielectric Barrier Discharge and Influence of Discharge Driving Frequency

    NASA Astrophysics Data System (ADS)

    Sugawara, Junichi; Kubota, Yuki; Oki, Hidenori; Mukaigawa, Seiji; Takaki, Koichi

    2015-09-01

    The two-dimensional array of filaments generated by the self-organizing of atmospheric dielectric-barrier discharges has plasma photonic crystal applications. The net generation time for the self-organization of discharge in one cycle is expected to be short because of its self-extinguishing feature, but that did not happen. However, we attempted to shorten the net generation time by implementing a time difference to drive the parallel array discharge units. The timing of the voltage applied to the discharge cells was controlled by the metal-oxide-semiconductor field-effect-transistors of the circuits, which were turned on by a signal from a single peripheral interface controller. The resultant duty cycles of the discharge current duration per cycle were 6% (single cell), 12% (two parallel cells), and 27% (three parallel cells). When the frequency was changed from 100 to 300 kHz, the generation time increased from 0.61 to 0.72 μs (100 kHz), 0.91 to 1.23 μs (200 kHz), and 1.54 to 1.91 μs (300 kHz). According to these results, frequency and maintenance time are proportional. This work was supported by JSPS KAKENHI Grant Numbers 26390094, 24540530.

  20. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  1. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  2. Pulsed microwave discharge at atmospheric pressure for NOx decomposition

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Gier, H.; Pott, A.; Uhlenbusch, J.; Höschele, J.; Steinwandel, J.

    2002-02-01

    A 3.0 GHz pulsed microwave source operated at atmospheric pressure with a pulse power of 1.4 MW, a maximum repetition rate of 40 Hz, and a pulse length of 3.5 µs is experimentally studied with respect to the ability to remove NOx from synthetic exhaust gases. Experiments in gas mixtures containing N2/O2/NO with typically 500 ppm NO are carried out. The discharge is embedded in a high-Q microwave resonator, which provides a reliable plasma ignition. Vortex flow is applied to the exhaust gas to improve gas treatment. Concentration measurements by Fourier transform infrared spectroscopy confirm an NOx reduction of more than 90% in the case of N2/NO mixtures. The admixture of oxygen lowers the reductive potential of the reactor, but NOx reduction can still be observed up to 9% O2 concentration. Coherent anti-Stokes Raman scattering technique is applied to measure the vibrational and rotational temperature of N2. Gas temperatures of about 400 K are found, whilst the vibrational temperature is 3000-3500 K in pure N2. The vibrational temperature drops to 1500 K when O2 and/or NO are present. The randomly distributed relative frequency of occurrence of selected breakdown field intensities is measured by a calibrated, short linear-antenna. The breakdown field strength in pure N2 amounts to 2.2×106 V m-1, a value that is reproducible within 2%. In the case of O2 and/or NO admixture, the frequency distribution of the breakdown field strength scatters more and extends over a range from 3 to 8×106 V m-1.

  3. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path.

  4. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path. PMID:26117883

  5. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    SciTech Connect

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  6. Manufacturing of Dielectric Barrier Discharge Plasma Actuator for Degradation Resistance

    NASA Astrophysics Data System (ADS)

    Houser, Nicole M.

    The performance and broader application of dielectric barrier discharge (DBD) plasma actuators are restricted by the manufacturing methods currently employed. In the current work, two methodologies are proposed to build robust plasma actuators for active flow control; a protective silicone oil (PDMS) treatment for hand-cut and laid tape-based actuators and a microfabrication technique for glass-based devices. The microfabrication process, through which thin film electrodes are precisely deposited onto plasma-resistant glass substrates, is presented in detail. The resulting glass-based devices are characterized with respect to electrical properties and output for various operating conditions. The longevity of microfabricated devices is compared against silicone-treated and untreated hand-made devices of comparable geometries over 60 hours of continuous operation. Both tungsten and copper electrodes are considered for microfabricated devices. Human health effects are also considered in an electromagnetic field study of the area surrounding a live plasma actuator for various operating conditions.

  7. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  8. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  9. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  10. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  11. Study on the characteristic decomposition components of air-insulated switchgear cabinet under partial discharge

    NASA Astrophysics Data System (ADS)

    Gui, Yingang; Zhang, Xiaoxing; Zhang, Ying; Qiu, Yinjun; Chen, Lincong

    2016-07-01

    Air-insulated switchgear cabinet plays a critical role in entire power transmission and distribution system. Its stability directly affects the operational reliability of the power system. And the on-line gas detection method, which evaluates the insulation status of insulation equipment by detecting the decomposition components of filled air in cabinet, becomes an innovative way to ensure the running stability of air-insulated switchgear cabinet. In order to study the characteristic gas types and production regularity of decomposition components under partial discharge, three insulation defects: needle-plate, air-gap and impurity defect are proposed to simulate the insulation defects under partial discharge in air-insulated switchgear cabinet. Firstly, the generation pathways and mechanism of composition components are discussed. Then CO and NO2 are selected as the characteristic decomposition components to characterize the partial discharge due to their high concentration and chemical stability. Based on the different change regularity of CO and NO2 concentration under different insulation defect, it provides an effective way to evaluate and predict the insulation defect type and severity in the field.

  12. Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge

    SciTech Connect

    Liu, Ying; Dong, Lifang Niu, Xuejiao; Gao, Yenan; Zhang, Chao

    2015-10-15

    The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.

  13. Investigation of microscale dielectric barrier discharge plasma devices

    NASA Astrophysics Data System (ADS)

    Zito, Justin C.

    This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power

  14. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  15. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  16. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge.

    PubMed

    Vanraes, Patrick; Willems, Gert; Nikiforov, Anton; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Verheust, Yannick P; Van Hulle, Stijn W H; Dumoulin, Ann; Leys, Christophe

    2015-12-15

    Efficiency of modern wastewater treatment plants to remove or decompose persistent contaminants in low concentration is often insufficient to meet the demands imposed by governmental laws. Novel, efficient and cheap methods are required to address this global issue. We developed a new type of plasma reactor, in which atrazine decomposition by atmospheric dielectric barrier discharge (DBD) in dry air is combined with micropollutant adsorption on activated carbon textile and with extra bubbling of generated ozone. Investigation of reaction kinetics and by-product analysis shows that increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. By-products of first and later generations are detected with HPLC-MS analysis in water and adsorbed on the activated carbon textile. Our reactor is compared in energy efficiency with reactors described in literature, showing that combination of plasma discharge with pollutant adsorption and ozone recycling is attractive for future applications of water treatment.

  17. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge.

    PubMed

    Vanraes, Patrick; Willems, Gert; Nikiforov, Anton; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Verheust, Yannick P; Van Hulle, Stijn W H; Dumoulin, Ann; Leys, Christophe

    2015-12-15

    Efficiency of modern wastewater treatment plants to remove or decompose persistent contaminants in low concentration is often insufficient to meet the demands imposed by governmental laws. Novel, efficient and cheap methods are required to address this global issue. We developed a new type of plasma reactor, in which atrazine decomposition by atmospheric dielectric barrier discharge (DBD) in dry air is combined with micropollutant adsorption on activated carbon textile and with extra bubbling of generated ozone. Investigation of reaction kinetics and by-product analysis shows that increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. By-products of first and later generations are detected with HPLC-MS analysis in water and adsorbed on the activated carbon textile. Our reactor is compared in energy efficiency with reactors described in literature, showing that combination of plasma discharge with pollutant adsorption and ozone recycling is attractive for future applications of water treatment. PMID:26282086

  18. Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wu, Haixia; Fang, Zhi; Zhou, Tong; Lu, Chen; Xu, Yanhua

    2016-05-01

    A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses. supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20131412, BK20150951)

  19. Degradation of TAIC by water falling film dielectric barrier discharge--influence of radical scavengers.

    PubMed

    Rong, Shaopeng; Sun, Yabing

    2015-04-28

    This work describes the application of plasma generated by water falling film dielectric barrier discharge for the degradation of triallyl isocyanurate (TAIC). The results indicated that TAIC solution of 1000mg/L was effectively removed within 60min treatment at 120W output power. Six intermediates were identified and a possible evolution of the TAIC degradation process was continuously proposed basing on the results of mass spectrum analysis. The effects of metal ions and radical scavengers were investigated. Results showed that whatever hydrogen radical scavengers (carbon tetrachloride, perfluorooctane) or hydroxyl radical scavengers (iso-propyl alcohol, tert-butyl alcohol) all could further enhance the degradation processes, and both kings of radical scavengers could promote the generation of H2O2. In the present study, we employed a novel method by introducing the mixed additives of Fe(2+) and radical scavengers into the plasma. It was found that the reaction rate constant and energy efficiency were improved by 309.2% and 387.8%, respectively. Among the mixed additives, Fe(2+) could promote the decomposition and increase the oxidizing power of H2O2, which is generated from the plasma discharge and greatly enhanced by the radical scavengers.

  20. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    SciTech Connect

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-15

    Results are presented from experimental studies of decomposition of toluene (C{sub 6}H{sub 5}CH{sub 3}) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C{sub 6}H{sub 5}CH{sub 3} removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N{sub 2}: O{sub 2}: H{sub 2}O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C{sub 6}H{sub 5}CH{sub 3} decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C{sub 6}H{sub 5}CH{sub 3} is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  1. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    SciTech Connect

    Tay, W. H.; Kausik, S. S.; Wong, C. S. Yap, S. L.; Muniandy, S. V.

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  2. Mixing Layer Excitation by Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ely, Richard; Little, Jesse

    2012-11-01

    The response of a mixing layer with velocity ratio 0.28 to perturbations near the high-speed side (U2=11 m/s, ReL = 0.26 × 106) of its origin from dielectric barrier discharge plasma actuators is studied experimentally. Both alternating current (ac) and nanosecond (ns) pulse driven plasma are investigated in an effort to clarify the mechanisms associated with each technique as well as the more general physics associated with flow control via momentum-based versus thermal actuation. Ac-DBD plasma actuators, which function through electrohydrodynamic effects, are found to generate an increase in mixing layer momentum thickness that is strongly dependent on forcing frequency. Results are qualitatively similar to previous archival literature on the topic employing oscillating flaps. Ns-DBD plasma, which is believed to function through thermal effects, has no measureable influence on the mixing layer profile at similar forcing conditions. In the context of previous archival literature, these results suggest different physical mechanisms govern active control via ac- and ns-DBD plasma actuation and more generally, momentum versus thermal perturbations. Further investigation of these phenomena will be provided through variation of the boundary/mixing layer properties and forcing parameters in the context of spatially and temporally resolved experimental data. Supported by: AFOSR and Raytheon Missile Systems.

  3. Carbon dioxide conversion by means of coplanar dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Schiorlin, Milko; Klink, Rouven; Brandenburg, Ronny

    2016-08-01

    To face the worldwide problem of anthropogenic carbon dioxide (CO2) emission new techniques have to be developed. One approach for carbon capture utilization (CCU) is the conversion of CO2 to more valuable chemicals, e.g., carbon monoxide (CO) by means of non-thermal plasma generated at ambient conditions and supplied by excess energy from renewable sources. This paper reports about the effect of the admixture of inert gases, namely nitrogen or argon to CO2 in a coplanar dielectric barrier discharge (DBD). Systematic experiments were conducted to investigate the effects of applied voltage, frequency, flowrate and CO2 concentration in the influent. The composition of products, energy efficiency and yield were determined. Within the investigated parameter ranges, the maximum conversion of CO2 to CO efficiency of 1% was achieved when the specific input energy was 190 J L-1, whereas the maximum CO yield of 0.7% was achieved when the specific input energy was 210 J L-1. In conclusion, the energy efficiency can be significantly increased by operating the plasma in a diluted CO2 gas. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  4. Dielectric barrier discharge induced degradation of diclofenac in aqueous solution.

    PubMed

    Rong, Shaopeng; Sun, Yabing; Zhao, Zehua; Wang, Huiying

    2014-01-01

    A dielectric barrier discharge (DBD) reactor as one of the advanced oxidation processes was applied to the degradation of diclofenac in aqueous solution. The various parameters that affect the degradation of diclofenac and the proposed evolutionary process were investigated. The results indicated that the inner concentrations of 10 mg/L diclofenac can be all removed within 10 min under conditions of 50 W and pH value of 6.15. The existence of Fe(2+) in the liquid phase can promote the degradation of diclofenac. But it was rather ineffective in mineralization, because the intermediates containing the aromatic rings were recalcitrant to be degraded. Five intermediates were identified by liquid chromatography-mass spectrometry (LC-MS), the OH · radical and O(3) were the major reactive species, and played an important role in the degradation of diclofenac. The toxicity of diclofenac degraded by DBD was assessed and the results indicated the efficiency of the DBD in the detoxification of the diclofenac solution.

  5. Particle-in-cell modeling of gas-confined barrier discharge

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  6. Alkaloid decomposition by DC pin-hole discharge in water solution

    NASA Astrophysics Data System (ADS)

    Klimova, Edita J.; Krcma, Frantisek; Jonisova, Lenka

    2016-08-01

    DC diaphragm discharge generated in a batch reactor was used to decompose two selected model alkaloids, caffeine and quinine in concentrations ranging from 10 to 50 ppm or 5 to 15 ppm, respectively. UV-vis spectrometry was utilized in evaluation of H2O2 production during the process as well as degradation of caffeine. Fluorescence spectrometry was used for quantification of quinine. High rates of decomposition were reached in both cases in the anode part of the reactor. On the other hand, up to four times lower decomposition was observed in the cathode part. Total removal efficiency gained up to 300 mg/kWh for caffeine and 210 mg/kWh for quinine. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  7. Effects of gas temperature on NO(x) removal by dielectric barrier discharge.

    PubMed

    Wang, Tao; Sun, Bao-Min; Xiao, Hai-Ping

    2013-01-01

    The purpose of this investigation is to discuss the effect of gas temperature on NO(x) removal by dielectric barrier discharge. The Boltzmann equation was used to analyse the electron distribution function in the reactor, and experiments were conducted to find out the effects of different temperatures. The calculation results show that, with a rise in the temperature, E/N increases, increasing the ionization rate. When the ratio of electric field strength to total gas density (E/N) rises from 50 to 150 Td, the ionization rate and electron mean energy increase by 2.0 x 10(5) and 2.3, respectively. The experiments show that in the NO/N2 system, when the temperature increases to 1 30 degrees C and the applied voltage is 11.1 kV, the discharge power is 44.7 W, which is higher than the discharge power of 35.4 W found at 25 degrees C; in the NO/O2/N2 system, an increase in the temperature increases the decomposition of active O3 species, producing a negative effect on NO oxidation; in the NO/O2/N2/C2H4 system, when the temperature increases, the quantity of active species HO2 increases and the NO removal reaction rate increases, reflecting an obvious improvement in the NO removal; and in the NO/O2/N2/C2H4/H2O system, at 25 degrees C, 90 degrees C, and 130 degrees C, when the energy density is 239.7 J L(-1), the NO removal efficiencies are 52.8%, 66.4%, and 71.0%, respectively.

  8. Treatment of industrial exhaust gases by a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Hołub, Marcin; Jõgi, Indrek; Sikk, Martin

    2016-08-01

    Volatile organic compounds (VOCs) in industrial exhaust gases were treated by a dielectric barrier discharge (DBD) operated with two different mobile power supplies. Together with the plasma source various gas diagnostics were used, namely fourier transform infrared (FTIR) spectroscopy, flame ionization detector (FID) and GC-MS. The analysis revealed that some exhaust gases consist of a rather complex mixture of hydrocarbons and inorganic compounds and also vary in pollutants concentration and flow rate. Thus, analysis of removal efficiencies and byproduct concentrations is more demanding than under laboratory conditions. This contribution presents the experimental apparatus used under the harsh conditions of industrial exhaust systems as well as the mobile power source used. Selected results obtained in a shale oil processing plant, a polymer concrete production facility and a yacht hull factory are discussed. In the case of total volatile organic compounds in oil processing units, up to 60% were removed at input energy of 21-37 J/L when the concentrations were below 500 mg/m3. In the yacht hull factory up to 74% of styrene and methanol were removed at specific input energies around 300 J/L. In the polymer concrete production site 195 ppm of styrene were decomposed with the consumption of 1.8 kJ/L. These results demonstrate the feasibility of plasma assisted methods for treatment of VOCs in the investigated production processes but additional analysis is needed to improve the energy efficiency. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  9. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2014-01-15

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  10. Prediction of mean monthly river discharges in Colombia through Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Carmona, A. M.; Poveda, G.

    2015-04-01

    The hydro-climatology of Colombia exhibits strong natural variability at a broad range of time scales including: inter-decadal, decadal, inter-annual, annual, intra-annual, intra-seasonal, and diurnal. Diverse applied sectors rely on quantitative predictions of river discharges for operational purposes including hydropower generation, agriculture, human health, fluvial navigation, territorial planning and management, risk preparedness and mitigation, among others. Various methodologies have been used to predict monthly mean river discharges that are based on "Predictive Analytics", an area of statistical analysis that studies the extraction of information from historical data to infer future trends and patterns. Our study couples the Empirical Mode Decomposition (EMD) with traditional methods, e.g. Autoregressive Model of Order 1 (AR1) and Neural Networks (NN), to predict mean monthly river discharges in Colombia, South America. The EMD allows us to decompose the historical time series of river discharges into a finite number of intrinsic mode functions (IMF) that capture the different oscillatory modes of different frequencies associated with the inherent time scales coexisting simultaneously in the signal (Huang et al. 1998, Huang and Wu 2008, Rao and Hsu, 2008). Our predictive method states that it is easier and simpler to predict each IMF at a time and then add them up together to obtain the predicted river discharge for a certain month, than predicting the full signal. This method is applied to 10 series of monthly mean river discharges in Colombia, using calibration periods of more than 25 years, and validation periods of about 12 years. Predictions are performed for time horizons spanning from 1 to 12 months. Our results show that predictions obtained through the traditional methods improve when the EMD is used as a previous step, since errors decrease by up to 13% when the AR1 model is used, and by up to 18% when using Neural Networks is combined with the

  11. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Tropea, C.; Grundmann, S.

    2012-07-15

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4

  12. Pre-breakdown phase of coplanar dielectric barrier discharge in helium

    NASA Astrophysics Data System (ADS)

    Morávek, Tomáš; Čech, Jan; Navrátil, Zdeněk; Ráhel', Jozef

    2016-08-01

    Coplanar barrier discharge in single-pair electrode configuration was used to study the formation of helium diffuse mode discharge. Transition from Townsend avalanching to the cathode and anode directed ionization waves was documented by high-speed camera imaging. When alumina dielectric barrier was coated by a thin layer of high permittivity coating (ɛr = 120-140), a new partial discharge preceding the Townsend avalanching phase was clearly visible. We suggest that this new pre-Townsend breakdown event is analogous to the known backward discharge of surface barrier discharge. Low magnitude of local electric field strength during the pre-Townsend breakdown reduces the number of competing electron collision excitation processes. This opens a new opportunity for studying optical emission from surface charge recombination processes. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  13. Electrical and mechanical characteristics of nanosecond pulsed sliding dielectric barrier discharges with different electrode gaps

    NASA Astrophysics Data System (ADS)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-10-01

    This study proposes the characterization of a surface sliding discharge that extends over a length of 80 mm. The gas ionization is caused by series of high voltage pulses with nanosecond rising and decaying times while ion drift is forced by a negative DC component. Different plasma diagnostics such as electrical measurements, iCCD visualizations and strioscopy have been performed. They highlight that a threshold mean electric field between both air-exposed electrodes is required to fully establish a sliding discharge. Compared to a single nanosecond pulsed dielectric barrier discharge, the sliding discharge results in an energy consumption increase. Moreover, the pressure wave induced by the discharge is strongly impacted.

  14. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Wang, Dacheng; Yan, Gui; Ma, Hong; Xiong, Xiaojing; Luo, Jinjing; Zhang, Xianhui; Liu, Dongping; Yang, Size

    2011-10-01

    An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.

  15. Two-dimensional simulation of discharge channels in atmospheric-pressure single dielectric barrier discharges

    SciTech Connect

    Zhang, Jiao; Wang, Yanhui Wang, Dezhen

    2015-11-15

    A two-dimensional fluid model is developed to study the filaments (or discharge channels) in atmospheric-pressure discharge with one plate electrode covered by a dielectric layer. Under certain discharge parameters, one or more stable filaments with wide radii could be regularly arranged in the discharge space. Different from the short-lived randomly distributed microdischarges, this stable and thick filament can carry more current and have longer lifetime. Because only one electrode is covered by a dielectric layer in the simulation, the formed discharge channel extends outwards near the dielectric layer and shrinks inwards near the naked electrode, agreeing with the experimental results. In this paper, the evolution of channel is studied, and its behavior is like a streamer or an ionization wave, but the propagation distance is short. The discharge parameters such as voltage amplitude, electrode width, and N{sub 2} impurities content could significantly influence the number of discharge channel, which is discussed in the paper.

  16. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products.

  17. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products. PMID:20576351

  18. Dielectric barrier discharge in air with a controllable spatial distribution—a tomographic investigation

    NASA Astrophysics Data System (ADS)

    van der Schans, M.; Sobota, A.; Kroesen, G. M. W.

    2016-05-01

    A novel dielectric barrier discharge source with a controllable discharge distribution has been designed for operation in atmospheric air. A predictable distribution has been achieved through the design of the powered electrode and the dielectric barrier. Optical emission tomography is used to study the discharge distribution. The method and its applicability in studies of non-symmetric plasmas are discussed in the paper. The results show that a desired discharge distribution may be achieved through the manipulation of the electric field amplification by the powered electrode and it is found that the discharge shape resembles the field imposed at the powered electrode only. Together with the flexibility of the plasma source design, this can prove highly advantageous for the treatment of irregularly shaped surfaces in plasma medicine and plasma surface processing at atmospheric pressure.

  19. Study of surface dielectric barrier discharge generated using liquid electrodes in different gases

    NASA Astrophysics Data System (ADS)

    Galmiz, O.; Pavlinak, D.; Zemanek, M.; Brablec, A.; Cernak, M.

    2016-02-01

    Surface dielectric barrier discharges with conductive water-solution electrodes were generated at atmospheric pressure air, nitrogen, oxygen, and argon. The discharges were studied by conventional and high-speed camera photography. Plasma rotational and vibrational temperatures and the electron number density were estimated using optical emission spectroscopy. Surprisingly, especially for oxygen, the discharge was found to generate visually diffuse strongly non-isothermal plasma. This observation indicates the interesting application potential of the discharge for surface plasma treatments of, i.e. the inner and outer surfaces of hollow dielectric bodies.

  20. Two-dimensional simulation of spatiotemporal generation of dielectric barrier columnar discharges in atmospheric helium

    SciTech Connect

    Huang, Zhiming; Hao, Yanpeng; Yang, Lin; Han, Yongxia; Li, Licheng

    2015-12-15

    A two-dimensional (2D) fluid model is presented to investigate the spatiotemporal generation and dynamic mechanics of dielectric barrier columnar discharges in atmospheric helium. The model was examined with discharge currents measured in experiments and images taken by an intensified charge couple device camera. Based on the model, a columnar discharge was simulated for several cycles after being ignited. The discharge could be regarded as an initial unstable stage for the first three and a half cycles, then a steady state for the following cycles. In the initial stage, the discharge evolves from a uniform pattern into a columnar one. The calculated equipotential lines, 2D radial electric field, and electron density distributions at the edge of uniform discharges show the radial electric field accounts for the shrinking discharge area and the formation of discharge columns in the end. The columnar glow discharges and the Townsend discharges beyond the columns could coexist in the initial stage, and a Townsend discharge might develop into a new glow column in the next half-cycle. The radial electric field surrounding a glow discharge column has an inhibiting effect on the ionization in the peripheral area.

  1. Microbial decomposition of terrigenic organic matter discharged into the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Manecki, M.; Herlemann, D.; Pollehne, F.; Labrenz, M.; Zimmermann, R.; Dittmar, T.; Schulz-Bull, D.; Jürgens, K.

    2012-04-01

    The permafrost soils in arctic regions contain a large amount of the worldwide organic carbon and global warming is expected to increase drainage of dissolved organic matter (DOM) into the adjacent oceans. It is yet unclear how this terrigenic organic matter will influence the global carbon cycle and the feedback effects to the climate. We used the Baltic Sea as a model system to investigate the role of abiotic factors on the degradation of terrigenic dissolved organic matter (tDOM) upon discharge into a brackish system as well as the response of the microbial community. Water from the Kalix River in Northern Sweden, which drains also permafrost soils, was used as the tDOM source in incubation experiments with Baltic Sea water. Different qualities of tDOM were compared by applying concentration procedures: tDOM was added to fresh Baltic Sea water as untreated Kalix River water or concentrated by commonly use DOC concentration procedures (lyophilization, ultrafiltration, solid phase extraction). We investigated the TDOC degradation by parallel measurements of dissolved organic carbon (DOC) consumption, DOM composition (using a 15 Tesla Fourier Transformation Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS)), microbial activities and microbial community structure. FT-ICR-MS measurements showed qualitative differences in the DOM compositions for the different treatments and a drastic change in DOM composition between the third and fourth week of the incubation experiment. Despite the qualitative differences in DOM composition, the results obtained so far revealed that the added tDOC had, independent of the previous enrichment procedure, only little influence on bacterial activities, bacterial community structure and DOC decomposition dynamics. This indicates that the major portion of the added tDOC is of refractory nature. Instead, bacterial predation by heterotrophic protists had a strong impact on both bacterial community structure and DOC decomposition

  2. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process.

    PubMed

    Byun, Youngchul; Ko, Kyung Bo; Cho, Moohyun; Namkung, Won; Shin, Dong Nam; Koh, Dong Jun

    2009-05-01

    Plasma-assisted selective non-catalytic reduction (SNCR) has been investigated to clarify which species generated by the plasma play a crucial role in NO reduction. We find that the presence of O(2) is indispensable and only H(2) is observed to be a stable product by dielectric barrier discharge (DBD) of NH(3). As the extent of NH(3) decomposition by DBD increases, the commencement temperature of SNCR processes is lowered and the working temperature window is widened. This propensity may be attributed to the chemical reaction of H(2) with O(2) to generate OH and H radicals which make it possible to yield NH(2) radicals even at low temperature.

  3. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  4. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    PubMed

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields. PMID:27209733

  5. Bipolar pulsed electrical discharge for decomposition of methylene blue in aqueous TiO2 nanoparticle dispersions.

    PubMed

    Kim, Byung Hoon; Kim, Sun-Jae; Chung, Minchul; Ahn, Ho-Geun; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2013-03-01

    The objective of this paper is to investigate the decomposition process of organic pollutants by liquid phase plasma. A bipolar pulsed power supply was used to generate discharges in the aqueous TiO2 nanoparticle dispersions. The applied voltage, pulse width, and frequency were 250 V, 5 micros, and 30 kHz, respectively. Properties of generated plasma were investigated by electrical and optical emission spectroscopy methods. The comparison of properties of the discharge operated with and without oxygen gas bubbling is shown. The results of electrical-discharge degradation of methylene blue showed that the decomposition rate increased with the TiO2 particle dosages. Addition of oxygen gas bubbles also increased the degradation rate of methylene blue.

  6. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  7. Separation Control for Wing Surface Flow using Dielectric-barrier Discharge

    NASA Astrophysics Data System (ADS)

    Tanaka, Motofumi; Hayashi, Kazuo; Otomo, Fumio; Matsuda, Hisashi; Noda, Etsuo; Yasui, Hiroyuki; Shimura, Naohiko; Niizeki, Yoshiki; Noda, Shinichi

    The effect of momentum addition by a dielectric-barrier discharge was experimentally investigated. At first, flow induced by the discharge on a flat plate was investigated. Velocity profile was visualized by the smoke-wire technique and measured by a hot-wire anemometer. Maximum velocity was several meters per second at 1mm above the plate. Induced flow affect the velocity profile of boundary layer on the plate. Secondary, separation control for wing surface flow was investigated using a 9cm chord NACA0015 in a wind tunnel at 20m/s of air stream velocity (Re˜105). Barrier discharge electrode was set on the leading edge of the wing. Separation angle was increased by 4 degrees and the maximum of the lift coefficient was improved by 17% with discharge power of 0.4W.

  8. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    SciTech Connect

    Zhang, J.; Wang, Y. H.; Wang, D. Z.

    2013-08-15

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed.

  9. Radial Patterns of Instability and Transport in JT-60U Internal Transport Barrier Discharges

    SciTech Connect

    G. Rewoldt; K.W. Hill; R. Nazikian; W.M. Tang; H Shirai; Y. Sakamoto; Y. Kishimoto; S.Ide; and T. Fujita

    2001-02-27

    One class of internal transport barrier discharges in the JT-60U tokamak is characterized by two relatively flatter regions of the pressure separated by a region with very large pressure gradient. Linear growth rates for toroidal drift-type modes are calculated for discharges in this class, without and with sheared E x B rotation effects. For cases with fully-developed barriers, the results with rotation are consistent with a picture in which the radial electric field generated in part by the steep pressure gradient causes local stabilization, and thus reduction of the local anomalous transport, which allows the steep pressure gradient to persist. If rotation is omitted from the calculation for these cases, or if rotation is included for cases without barriers or with partially developed barriers, the unstable region spreads into the steep pressure gradient region.

  10. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  11. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  12. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115 K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes.

  13. Hexagonal superlattice pattern consisting of colliding filament pairs in a dielectric barrier discharge

    SciTech Connect

    Dong Lifang; Li Ben; Lu Ning; Li Xinchun; Shen Zhongkai

    2012-05-15

    Colliding-pairs hexagonal superlattice pattern (CPHSP) is studied in a dielectric barrier discharge system. The evolution of CPHSP bifurcating from a hexagonal pattern to chaos is shown. The phase diagrams of CPHSP as a function of discharge parameters are given. From a series of pictures taken by a high speed video camera, collisions between two spots are observed and the superposition of many collisions results in each big spot presenting four small spots on long time scales. Measurements of the correlation between filaments indicate that the pattern is an interleaving of four different transient hexagonal sublattices. Depending on the discharging sequence, the forces exerted on one colliding spot are discussed briefly.

  14. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    SciTech Connect

    Hussain, S. E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A.

    2014-03-15

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  15. Three-dimensional patterns in dielectric barrier discharge with "H" shaped gas gap

    NASA Astrophysics Data System (ADS)

    Gao, Xing; Dong, Lifang; Wang, Hao; Zhang, Hao; Liu, Ying; Liu, Weibo; Fan, Weili; Pan, Yuyang

    2016-08-01

    Three-dimensional (3D) patterns are obtained for the first time in dielectric barrier discharge by a special designed device with "H" shaped gas gap which consists of a single gas layer gap and two double gas layer gaps. Three dimensional spatiotemporal characteristics of discharge are investigated by photomultiplier and intensified charge-coupled device camera. Results show that the discharge first generates in the single gas layer gap and the coupled filaments in the double gas layer gap present the simultaneity characteristics. The formation of 3D patterns is determined by the distribution of the effective field of the applied field and the wall charge field.

  16. [Determination of electron density in atmospheric pressure radio frequency dielectric barrier discharges by Stark broadening].

    PubMed

    Li, Sen; Liu, Zhong-wei; Chen, Qiang; Liu, Fu-ping; Wang, Zheng-duo; Yang, Li-zhen

    2012-01-01

    The use of high frequency power to generate plasma at atmospheric pressure is a relatively new development. An apparatus of atmospheric pressure radio frequency dielectric barrier discharge was constructed. Plasma emission based measurement of electron density in discharge columns from Stark broadening Ar is discribed. The spacial profile of electron density was studied. In the middle of the discharge column, as the input power increases from 138 to 248 W, the electron density rises from 4.038 x 10(21) m(-3) to 4.75 x 10(21) m(-3). PMID:22497121

  17. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode

    NASA Astrophysics Data System (ADS)

    Moralev, I.; Boytsov, S.; Kazansky, P.; Bityurin, V.

    2014-05-01

    Three-dimensional structure of the gas-dynamic disturbances, created by surface dielectric barrier discharge in a constricted (saturated) mode, was analyzed simultaneously with the discharge morphology. Discharge was created in the still air under normal conditions. Flow visualization was performed by shadowgraphy and stereo-PIV technique. The wall-normal jets with the origins located in between the positions of the constricted filaments are found. Velocity magnitude in the wall-normal direction is comparable with the tangential component. Flow structure is similar to the one created by the serpentine actuator.

  18. Aqueous p-chloronitrobenzene decomposition induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun

    2009-07-30

    Aqueous p-chloronitrobenzene (PCNB) decomposition induced by contact glow discharge electrolysis under various reaction conditions was investigated. Experimental results showed that, at voltage 450-550 V and initial concentration 50-500 mg/L, the decay of PCNB can be described by a first-order reaction kinetics of In(C(0)/C(t))=0.029 (I/V)t, where C(0), I, V and C(t) denote the initial PCNB concentration (mg/L), applied current (A), solution volume (L) and instantaneous PCNB concentration (mg/L) at treatment time t (min). Major intermediate products such as 4-nitrophenol, 2-chloro-5-nitrophenol, oxalic and formic acids, chloride and nitrate ions were identified by LC/MS and IC, respectively. No chlorophenols present indicated that the dechlorination was easier than denitration from the aromatic ring of PCNB. Formation of hydrogen peroxide during the degradation was observed and the role of Fenton's reaction was examined. Hydroxyl radicals may be the most responsible species for PCNB degradation. PMID:19179010

  19. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds.

    PubMed

    Bo, Zheng; Yan, Jianhua; Li, Xiaodong; Chi, Yong; Cen, Kefa

    2009-07-30

    To apply gliding arc discharge (GAD) plasma processing to volatile organic compounds (VOCs) emission control, the formation of NO(2) as an undesired byproduct needs to be addressed. Comparative results of effluent temperature and product concentrations between experiment and thermodynamic equilibrium calculation show that the NO(2) formation in dry air GAD is totally out of thermodynamic equilibrium. Meanwhile, obvious NO (A(2)Sigma+)) and N(2)(+) (B(2)Sigma(u)(+)) are detected as the major reactive species in the dry air GAD plasma region. These results suggest that the thermal (or Zeldovich) NO(x) formation mechanism is not significant in GAD system, while the energy level and the density of electrons in the plasma region will severely influence the NO(2) formation. The presence of 500 ppm VOCs in the feed gases shows a limiting influence on the NO(2) formation, which is in the order of aromatic hydrocarbon (C(6)H(6) and C(7)H(8))>straight-chain hydrocarbon (C(4)H(10) and C(6)H(14))>halogenated hydrocarbon (CCl(4)). The influences of VOCs chemical structure, supply voltage, feed gas humidity, and reactor geometry on NO(2) formation are investigated, and the results correspond to above mechanism analysis. Based on the above, the possible pathways of the inhibition of NO(2) formation in GAD-assisted VOCs decomposition process are discussed.

  20. Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Lijuan; Li, Ben; Ouyang, Jiting

    2016-06-01

    The electrical and mechanical characteristics of the wire-to-plate surface dielectric barrier discharge and the induced ionic wind are investigated experimentally. The different temporal behaviors in positive and negative half-cycles are studied by time-resolved images. It is shown that the discharge and the light emission are generally stronger in the positive half cycle. The discharge is inhomogeneous and propagates in streamer mode; however, in the negative half-cycle, the discharge appears visually uniformly and operates in the diffuse mode. The surface discharge can produce ionic wind about several m/s above the dielectric surface. There exists an optimal width of the grounded electrode to produce a larger plasma area or active wind region. Increasing of the applied voltage or normalized dielectric constant leads to a larger wind velocity. The performance of ionic wind on flow control is visualized by employing a smoke stream. supported by National Natural Science Foundation of China (Nos. 11175017 and 11475019)

  1. Study Of Sterilization Effect Of Dielectric Barrier Discharge On Eucaryotic Microorganisms

    NASA Astrophysics Data System (ADS)

    Vojkovská, H.; Slámová, J.; Kozáková, Z.; Krcma, F.

    2010-07-01

    The work was focused on studying of the effect of the dielectric barrier discharge (DBD) operating at atmospheric pressure on bioindicator Aspergillus niger. Plasma was generated in nitrogen and argon. Paper and PET-foil were used as the carrying medium. The influence of various working conditions on the efficiency of plasma sterilization was studied. Some partial results are presented.

  2. Inactivation of Spoilage Bacteria in Package by Dielectric Barrier Discharge Atmospheric Cold Plasma - Treatment Time Effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to investigate the effect of treatment time of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) on inactivation of spoilage bacteria, Pseudomonas fluorescens and Macrococcus caseolyticus. P. fluorescens and M. caseolyticus were isolated from spoiled chicken carcasses ...

  3. Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air

    SciTech Connect

    Nudnova, M. M.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2010-01-15

    The properties of a surface barrier discharge in atmospheric-pressure air at different polarities of applied voltage were studied experimentally. The influence of the voltage polarity on the spatial structure of the discharge and the electric field in the discharge plasma was determined by means of spectroscopic measurements. It is found that the energy deposited in the discharge does not depend on the voltage polarity and that discharges of positive polarity are more homogenous and the electric fields in them are higher.

  4. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    PubMed

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data.

  5. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    PubMed

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data. PMID:27209731

  6. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  7. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    SciTech Connect

    Subedi, D. P.; Tyata, R. B.; Shrestha, R.; Wong, C. S.

    2014-03-05

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup −3} while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  8. The influence of negative ions in helium-oxygen barrier discharges: I. Laser photodetachment experiment

    NASA Astrophysics Data System (ADS)

    Tschiersch, R.; Nemschokmichal, S.; Meichsner, J.

    2016-04-01

    This work is the experimental part of a comprehensive study that aims to understand the influence of negative ions on the development of atmospheric pressure barrier discharges in electronegative systems. The investigations will be complemented by a 1D numerical fluid simulation. Laser photodetachment experiments were performed in a glow-like barrier discharge operated in helium with admixtures of oxygen up to 1 vol.% at a gas pressure of 500 mbar. The discharge gap between the glass-coated electrodes was 3 mm. The discharge properties were characterized by electrical measurements and optical emission spectroscopy. Laser photodetachment of {{\\text{O}}-} , {\\text{O}}2- , and {\\text{O}}3- was studied using the fundamental and second harmonic wavelength of a Nd-YAG laser. The laser photodetachment of negative ions influences the breakdown characteristics when the laser is fired during the prephase of the discharge only. The breakdown voltage is reduced, which indicates an enhanced pre-ionization initiated by the detached electrons. Systematic variations in the laser pulse in time, the axial laser beam position, the laser pulse energy, and the laser wavelength provided detailed knowledge on this process. The investigation underlines the importance of the discharge prephase in general and aims to differentiate between the negative ion species {{\\text{O}}-} , {\\text{O}}2- , and {\\text{O}}3- .

  9. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  10. Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor.

    PubMed

    Marotta, Ester; Ceriani, Elisa; Schiorlin, Milko; Ceretta, Claudio; Paradisi, Cristina

    2012-12-01

    Electric non-thermalizing discharges provide promising novel means to induce oxidation of organic pollutants in water. The decomposition of phenol in solutions prepared with deionized (milliQ) and tap water was studied and compared in a Dielectric Barrier Discharge (DBD) reactor. Interestingly, a significant rate increase was found in tap with respect to milliQ water. Control experiments proved that this was not the effect of conductivity or of traces of iron or of residual active chlorine from the depuration process operated in the aqueducts of Italian cities. The same increase in efficiency as observed in tap water was instead obtained when phenol was treated in solutions containing bicarbonate anions in the same concentration as present in tap water, an effect attributed to buffering of the solution pH. The role of pH has been investigated thoroughly by measuring the process efficiency over a wide pH range, from 2 to 10, by using different buffer systems to probe reactivity at near neutral pH, the most relevant for drinking water applications, and by testing the effect of different buffer concentrations. These latter experiments failed to detect any significant kinetic effect attributable to the well known reactivity of bicarbonate as quencher of OH radicals.

  11. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  12. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Van Laer, Koen; Bogaerts, Annemie

    2016-02-01

    A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.

  13. Controlled growth of aligned carbon nanotube using pulsed glow barrier discharge

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Kimura, Yoshihito; Okazaki, Ken

    2002-10-01

    We first achieved a catalytic growth of aligned carbon nanotube (CNT) using atmospheric pressure pulsed glow barrier discharge combined with DC bias (1000 V). Aligned CNT can grow with the directional electric field, and this is a big challenge in barrier discharges since dielectric barrier does not allow DC bias and forces to use AC voltage to maintain stable plasma conditions. To overcome this, we developed a power source generating Gaussian-shape pulses at 20 kpps with 4% duty, and DC bias was applied to the GND electrode where Ni-, Fe-coated substrate existed. With positive pulse, i.e. substrate was the cathode, random growth of CNT was observed at about 10^9 cm-2. Growth rate significantly reduced when applied negative pulse; Negative glow formation near substrate is essential for sufficient supply of radical species to the catalyst. If -DC was biased, aligned CNT with 20 nm was synthesized because negative bias enhanced negative glow formation. Interestingly, 2 to 3 CNTs stuck each other with +DC bias, resulting in 50-70 nm and non-aligned CNT. Atmospheric pressure glow barrier discharges can be highly controlled and be a potential alternative to vacuum plasmas for CVD, micro-scale, nano-scale fabrication.

  14. Numerical investigation of the spatiotemporal distribution of chemical species in an atmospheric surface barrier-discharge

    NASA Astrophysics Data System (ADS)

    Hasan, M. I.; Walsh, J. L.

    2016-05-01

    Using a one dimensional time dependent convection-reaction-diffusion model, the temporal and spatial distributions of species propagating downstream of an atmospheric pressure air surface barrier discharge was studied. It was found that the distribution of negatively charged species is more spatially spread compared to positive ions species, which is attributed to the diffusion of electrons that cool down and attach to background gas molecules, creating different negative ions downstream of the discharge region. Given the widespread use of such discharges in applications involving the remote microbial decontamination of surfaces and liquids, the transport of plasma generated reactive species away from the discharge region was studied by implementing mechanical convection through the discharge region. It was shown that increased convection causes the spatial distribution of species density to become uniform. It was also found that many species have a lower density close to the surface of the discharge as convection prevents their accumulation. While for some species, such as NO2, convection causes a general increase in the density due to a reduced residence time close to the discharge region, where it is rapidly lost through reactions with OH. The impact of the applied power was also investigated, and it was found that the densities of most species, whether charged or neutral, are directly proportional to the applied power.

  15. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air.

    PubMed

    Zhang, Shuai; Jia, Li; Wang, Wen-chun; Yang, De-zheng; Tang, Kai; Liu, Zhi-jie

    2014-01-01

    In this paper, a bipolar nanosecond high pulse voltage with 20 ns rising time was employed to generate homogeneous dielectric barrier discharges using the plate-plate electrode configuration in air at atmospheric pressure. The effects of pulse peak voltage, gas discharge gap, and dielectric plates made by different materials or thicknesses on the discharge homogeneity, voltage-current waveform, and optical emission spectra were investigated. Results show that aforementioned parameters have a strongly impact on the discharge homogeneity and the optical emission spectra, but it is hard to identify definitely their influences on the discharge voltage-current waveform. Homogeneous discharges were easily observed when using low permittivity dielectric plate and the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) increases with the rising of pulse peak voltage and the permittivity of dielectric material but decreases with the increasing of gas discharge gap and the dielectric plate thickness. The rotational and vibrational temperatures (Trot and Tvib) were determined at Trot=350±5 K and Tvib=3045 K via fitting the simulative spectra of N2 (C(3)Πu→B(3)Πg, 0-2) with the measured one.

  16. Atmospheric Pressure Dielectric Barrier Discharges: A Low-Cost System for Surface Modification

    SciTech Connect

    Graz, I.; Schwoediauer, R.; Bauer, S.; Gruber, H.; Romanin, C.

    2005-10-17

    Plasma treatment is a common way for modifying the surface of a material. A simple but effective source for a low-temperature nonequilibrium plasma is dielectric barrier discharges (DBDs), also referred to as silent discharges. DBDs are characterized by the presence of at least one insulating (dielectric) layer in the discharge gap between two metal electrodes. When a high voltage is applied to the DBD configuration, tiny breakdown channels are formed in the discharge gap. These microdischarges are characterized as a weakly ionized plasma containing electrons with energies up to 10 eV and ions at room temperature. The energetic electrons provide an effective tool for chemical surface modification. Typical setups for DBD treatments consist of vacuum chambers and vacuum equipment, and so are very cost-intensive. Atmospheric pressure discharges provide a possibility for low-cost surface chemistry, because the setup consists only of the discharge set-up in normal air or in a specified inert gas atmosphere and a high-voltage amplifier coupled with a frequency generator. Silent discharges in air increase the wettability of polymer foils such as PTFE and FEP, sufficient for cell growth and further for surface-chemical binding of proteins onto the polymer. Thereby a simple and low-cost process to achieve protein chips for biomedical applications may be envisaged.

  17. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air.

    PubMed

    Zhang, Shuai; Jia, Li; Wang, Wen-chun; Yang, De-zheng; Tang, Kai; Liu, Zhi-jie

    2014-01-01

    In this paper, a bipolar nanosecond high pulse voltage with 20 ns rising time was employed to generate homogeneous dielectric barrier discharges using the plate-plate electrode configuration in air at atmospheric pressure. The effects of pulse peak voltage, gas discharge gap, and dielectric plates made by different materials or thicknesses on the discharge homogeneity, voltage-current waveform, and optical emission spectra were investigated. Results show that aforementioned parameters have a strongly impact on the discharge homogeneity and the optical emission spectra, but it is hard to identify definitely their influences on the discharge voltage-current waveform. Homogeneous discharges were easily observed when using low permittivity dielectric plate and the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) increases with the rising of pulse peak voltage and the permittivity of dielectric material but decreases with the increasing of gas discharge gap and the dielectric plate thickness. The rotational and vibrational temperatures (Trot and Tvib) were determined at Trot=350±5 K and Tvib=3045 K via fitting the simulative spectra of N2 (C(3)Πu→B(3)Πg, 0-2) with the measured one. PMID:24036046

  18. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Jia, Li; Wang, Wen-chun; Yang, De-zheng; Tang, Kai; Liu, Zhi-jie

    2014-01-01

    In this paper, a bipolar nanosecond high pulse voltage with 20 ns rising time was employed to generate homogeneous dielectric barrier discharges using the plate-plate electrode configuration in air at atmospheric pressure. The effects of pulse peak voltage, gas discharge gap, and dielectric plates made by different materials or thicknesses on the discharge homogeneity, voltage-current waveform, and optical emission spectra were investigated. Results show that aforementioned parameters have a strongly impact on the discharge homogeneity and the optical emission spectra, but it is hard to identify definitely their influences on the discharge voltage-current waveform. Homogeneous discharges were easily observed when using low permittivity dielectric plate and the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) increases with the rising of pulse peak voltage and the permittivity of dielectric material but decreases with the increasing of gas discharge gap and the dielectric plate thickness. The rotational and vibrational temperatures (Trot and Tvib) were determined at Trot = 350 ± 5 K and Tvib = 3045 K via fitting the simulative spectra of N2 (C3Πu → B3Πg, 0-2) with the measured one.

  19. Rapid mortality of pest arthropods by direct exposure to a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian Lee

    The spread of arthropods due to trade of agricultural commodities and travel of humans is a significant problem in many countries. Limiting the movement of pest species is commonly achieved by the use of chemical pesticides at quarantine facilities. One potential alternative to chemical pesticides is direct exposure of contaminated commodities to ambient pressure electrical discharges. The arthropods are directly exposed to a 5.0 cm helium discharge with power densities on the order of 60 mW/cm3. Direct measurement of chemical species and ambient gas temperature shows the DBD treatment remains effective when the chemically reactive species are suppressed by helium, and when the ambient gas temperature of the discharge is below 40°C. In addition to gas temperature measurements and chemical species identification, the electron temperature and electron density were measured using the neutral bremsstrahlung continuum technique. This study is the first successful implementation of the neutral bremsstrahlung continuum emission diagnostic to a barrier discharge. The primary advantages of the diagnostic for barrier discharges are the measurement is passive and the spatial resolution is only limited by the collimation of the light and the sensitivity of the detector. Although the electron temperature (1.0--1.5 eV) and electron density (˜108 cm-3) are modest, non-chemical dielectric barrier discharge (DBD) treatment of arthropods has proven effective in significantly reducing the population of some arthropods including human body lice, green peach aphids, and western flower thrips. However, the treatment was not universally effective on all arthropod species. German cockroaches and citrus mealy bugs showed substantial resistance to the treatment. The study has shown the treatment does not always induce instant mortality: however, the mortality increases over a 24 hr-period after treatment. Based upon visual observation and the time after treatment to reach maximum

  20. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    NASA Astrophysics Data System (ADS)

    Duben, Ondřej; Boušek, Jaroslav; Dědina, Jiří; Kratzer, Jan

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min- 1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml- 1 Se in the DBD and 0.15 ng ml- 1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer.

  1. Removal Of Nitric Oxide From Different Mixtures Of Gases Using Dielectric Barrier Discharge

    SciTech Connect

    Hashim, Siti Aiasah; San, Wong Chiow; Abas, Radzi

    2009-07-07

    Dielectric barrier discharge (DBD) is employed in this project as the processing medium to remove nitric oxide in gas stream. Gas stream containing different components was released continuously into a series of dielectric barrier discharge cells and the output gas was analyzed using a chemiluminescence's type NO analyzer. Almost complete removal (more than 99%) of NO was observed when the gas stream contained only NO and nitrogen. In the presence of SO{sub 2}, the removal rate was decreased to as low as 70%. Adding air into the stream gave a more erratic results. The removal rate was also affected by the number of DBD cell used and the flow rate of the input gas. However, In this paper, only results using 2 cells whilst varying the flow rate are presented.

  2. Size effects in electronic and breakdown processes during barrier electric discharge in disperse systems

    NASA Astrophysics Data System (ADS)

    Aliev, M. M.; Zelenkova, E. A.

    2009-05-01

    The differences in the breakdown characteristics of barrier electric discharge (BED) in air and disperse systems (air + ZrO2) at 77 and 300 K are determined by polarization, plasma-forming medium charge deposition on the ZrO2 surface, and surface effects on the duration and mechanism of electron avalanches changing with the sizes of air voids between oxide surfaces ( E/ P ˜ const, T ˜ const).

  3. Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Popov, N. A.

    2013-05-15

    Nitrogen molecule dissociation in a pulse-periodic atmospheric-pressure dielectric barrier discharge is numerically analyzed. It is shown that the quenching rate of predissociation states at atmospheric pressure is relatively low and the production of nitrogen atoms in this case can be adequately described using the cross section for electron-impact dissociation of N{sub 2} molecules taken from the paper by P.C. Cosby [J. Chem. Phys. 98, 9544 (1993)].

  4. Charge transfer in surface barrier discharge on μ sec to msec time scales

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey; Adamovich, Igor; Petrishchev, Vitaly; OSU Team

    2014-10-01

    The paper presents experimental results characterizing dynamics of development and kinetics of energy coupling in surface dielectric barrier discharge (SDBD), sustained over dielectric and weakly conducting liquid surfaces, over a wide range of time scales and electrical conductivities. Time-resolved discharge development and mechanisms of coupling with quiescent air are analyzed using nanosecond gate camera imaging, high-sensitivity time-resolved schlieren imaging, surface charge sensor, and Laser Differential Interferometry. It is shown that NS SDBD plasmas generate high-amplitude, broadband, stochastic, point-wise, near-surface perturbations on a long time scale (>100 μs) after the discharge pulse. These perturbations are caused by discharge contraction and originate from the ends of individual streamers where they attach to the surface. It is also demonstrated a significant increase of energy (surface charge) stored on the dielectric surface during the NS discharge pulse, which in this case greatly exceeds energy dissipated as Joule heat (up to a few hundred percent). The present results strongly suggest that surface charge accumulation, along with use of alternating polarity pulse waveform, may significantly improve performance of surface discharge plasma actuators.

  5. Experiment and modeling of laser photodetachment of negative ions in helium oxygen barrier discharges

    NASA Astrophysics Data System (ADS)

    Tschiersch, Robert; Nemschokmichal, Sebastian; Meichsner, Jürgen

    2015-09-01

    Helium oxygen discharges operating at atmospheric pressure are of great interest for applications, such as surface treatment of biological samples. Helium as the buffer gas keeps the driving power low, and oxygen serves as the source of radicals. The large electronegativity of oxygen results in the formation of negative ions which in turn have a remarkable influence on the discharge development. To point out this role of negative ions, the change of the discharge behavior after the laser photodetachment of negative ions is measured in a helium oxygen barrier discharge. These measurements reveal a lower breakdown voltage when firing the laser during the pre-phase of the discharge. The reason is the additional pre-ionization by the detached electrons which was proved by an 1D numeric fluid modeling. The next step is the determination of absolute number densities of negative ions by a comparison of the experimental parameter variations with those from the modeling. Furthermore, the actual role of negative ions on the discharge behavior will be emphasized by the modeling.

  6. Gas breakdown mechanism in pulse-modulated asymmetric ratio frequency dielectric barrier discharges

    SciTech Connect

    Wang, Qi; Sun, Jizhong Ding, Zhenfeng; Ding, Hongbin; Wang, Dezhen; Nozaki, Tomohiro; Wang, Zhanhui

    2014-08-15

    The gas breakdown mechanisms, especially the roles of metastable species in atmospheric pressure pulse-modulated ratio frequency barrier discharges with co-axial cylindrical electrodes, were studied numerically using a one dimensional self-consistent fluid model. Simulation results showed that in low duty cycle cases, the electrons generated from the channels associated with metastable species played a more important role in initializing next breakdown than the direct ionization of helium atoms of electronic grounded states by electron-impact. In order to quantitatively evaluate the contribution to the discharge by the metastables, we defined a “characteristic time” and examined how the value varied with the gap distance and the electrode asymmetry. The results indicated that the lifetime of the metastable species (including He*and He{sub 2}{sup *}) was much longer than that of the pulse-on period and as effective sources of producing electrons they lasted over a period up to millisecond. When the ratio of the outer radius to the inner radius of the cylindrical electrodes was far bigger than one, it was found that the metastables distributed mainly in a cylindrical region around the inner electrode. When the ratio decreased as the inner electrode moved outward, the density of metastables in the discharge region near the outer electrode became gradually noticeable. As the discharging gap continued to decrease, the two hill-shaped distributions gradually merged to one big hill. When the discharge spacing was fixed, asymmetric electrodes facilitated the discharge.

  7. Prediction of nested complementary pattern in argon dielectric-barrier discharge at atmospheric pressure

    PubMed Central

    Jiang, Weiman; Li, Jing; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2015-01-01

    A two-dimensional self-consistent fluid model was employed to investigate the spatiotemporal nonlinear behavior in an argon glow-like/Townsend-like dielectric-barrier discharge (DBD) at atmospheric pressure. The discharge is characterized by a major current pulse with a residual one ahead per half cycle of the external voltage. The two current pulses are operated in glow mode, but with Townsend mode between them. Contrasting spatial discharge structures are complementarily presented not only at two current pulses in the same half cycle but also during the discharge in the two adjacent-half cycles, resulting in the formation of a unique nested complementary pattern each cycle. This peculiar behavior mainly lies in the fact that sufficient charged particles are trapped in the gas gap due to the last discharge and able to dominate the subsequent discharge through the “spatial memory effect”. The charge transport regime reveals that this nested complementary pattern is presented only in a limited range of driving frequency. PMID:26552714

  8. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    SciTech Connect

    Li, Ben; He, Feng; Ouyang, Jiting; Duan, Xiaoxi

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  9. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    SciTech Connect

    Liu, Weibo; Dong, Lifang E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu; Pan, Yuyang E-mail: pyy1616@163.com

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  10. Attenuation of single-tone ultrasound by an atmospheric glow discharge plasma barrier

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2010-09-15

    Propagation of 143 kHz ultrasound through an atmospheric pressure glow discharge in air was studied experimentally. The plasma was a continuous dc discharge formed by a multipin electrode system. Distributions of the gas temperature were also obtained in and around the plasma using laser-induced Rayleigh scattering technique. Results show significant attenuation of the ultrasound by the glow discharge plasma barrier (up to -24 dB). The results indicate that sound attenuation does not depend on the thickness of the plasma and attenuation is caused primarily by reflection of the sound waves from the plasma due to the sharp gas temperatures gradients that form at the plasma boundary. These gradients can be as high as 80 K/mm.

  11. Methane activation using noble gases in a dielectric barrier discharge reactor

    SciTech Connect

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-08-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—He, Ne, and Ar—as additives. The empirical results obtained clearly indicate that methane activation is considerably affected by thy type of noble gas used. Through 0-D calculations, the discharge parameters inside the reactor, i.e., electron temperature and electron density, are estimated using experiment results. A comparison of the discharge characteristics and experimental results shows that the electron temperature is an important factor in achieving high methane activation and the mixture with Ar gas shows the highest methane conversion. These results are constructed using the mechanisms of energy and charge transfer from excited and ionized noble gas atoms to methane molecules, considering the number density of active atoms of noble gases. Finally, electron temperatures obtained for gas mixtures having different reactant compositions and concentrations are analyzed to estimate methane activation.

  12. Experimental and modelling study of organization phenomena in dielectric barrier discharges with structurally inhomogeneous wood substrates

    NASA Astrophysics Data System (ADS)

    Levasseur, O.; Profili, J.; Gangwar, R. K.; Naudé, N.; Clergereaux, R.; Gherardi, N.; Stafford, L.

    2014-10-01

    The spatial organization of dielectric barrier discharges operating at atmospheric pressure in the presence of complex wood substrates was analysed using optical imaging, current-voltage (I-V) characteristics, and optical emission spectroscopy combined with a collisional-radiative model to extract the average electron energy. The structural inhomogeneities of selected wood species produced non-uniform light emission patterns while maintaining homogeneous-like I-V characteristics and spatially uniform average electron energy. Based on a simple electrical model of the discharge, this localization was ascribed, at least partially, to a spatial modulation of the relative dielectric permittivity on ‘early’ versus ‘late’ wood affecting the local voltage applied to the gas, and thus the local discharge current.

  13. Determining the energy balance in barrier-discharge Xe2 excilamp by the pressure jump method

    NASA Astrophysics Data System (ADS)

    Sosnin, E. A.; Panarin, V. A.; Skakun, V. S.; Pikulev, A. A.; Tarasenko, V. F.

    2016-08-01

    The energy redistribution in barrier-discharge Xe2 excilamp in various excitation regimes is investigated using the pressure jump method. Analytic expressions are derived for calculating power W dissipated in the excilamp discharge plasma in the form of heat and for calculating total discharge heat power P T spent on heating the excilamp. It is shown that the mechanism of the thermal energy dissipation gradually changes upon an increase in the xenon pressure in the excilamp. The conditions for generating the maximal radiation power of the excilamp are determined. It is shown that the maximum of the average radiation power is attained for an excitation pulse duration of 500 ns and the maximal pulse power is attained for a pulse duration of 100 ns. It is found that the optimal operation regime for the excilamp corresponds to the maximal values of the P T- W difference.

  14. Nonstationary effects in ozone generation by barrier discharges in N2/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Zosimov, A. V.; Lunin, V. V.; Samoilovich, V. G.; Abramovskaya, E. A.; Mankelevich, Yu. A.; Poroykov, A. Yu.; Rakhimova, T. V.; Voloshin, D. G.

    2016-08-01

    The yield of ozone in barrier discharges in oxygen-nitrogen mixtures containing 0.001 to 40% of nitrogen is investigated experimentally. Phenomena of the nonstationarity of processes of ozone generation that differ from the known ozone-zero phenomenon (OZP) apparent in the reduced efficiency of ozone generation in very high purity oxygen at long periods (from hours to tens of hours) of ozonator operation are found. It is established that the characteristic times (from minutes to tens of minutes) of ozone attaining stationary values after changes in the discharge parameters indicate slow adjustment of the surface condition of insulators and thus the heterogeneous decay of ozone to more rapidly changing flows of neutral and charged particles from gas discharge plasma on the surfaces of dielectrics. The possibility of such a scenario is confirmed using a new analytical approach and numerical calculations of the plasma-chemical kinetics of N2/O2 mixtures presented in the accompanying theoretical study.

  15. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen

    SciTech Connect

    Trushkin, A. N.; Kochetov, I. V.

    2012-05-15

    The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Prime {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.

  16. Electrical generators driving microhollow and dielectric barrier discharges applied for analytical chemistry.

    PubMed

    Heming, R; Michels, A; Olenici, S B; Tombrink, S; Franzke, J

    2009-10-01

    Scaling down the size of plasma discharges would reduce the amount of gases, liquids, and consumables required, which in turn would decrease the operating costs. Nevertheless, the application of a specialized plasma generator for microhollow cathode discharges (MHCD) and dielectric barrier discharges are driven with commercially available power sources. Those generators are bulky and expensive and their overall efficiency is poor. This work develops and explains several circuit topologies and design hints to excite MHCD and dielectric barrier discharge (DBD) plasmas with respect to its system with as low as possible input power in a very efficient way. Benefits in sensitivity and life expectancy are shown. The generator for the MHCD needs voltages up to 7 V and consumes up to 5 W. The DBD generator has an input power of 3 W and produces a fast rising output pulse up to 9 kV, which has a time duration of 2 micros. These low-power circuits offer the operation with batteries.

  17. Experimental Study of Coaxial Cylinder Dielectric Barrier Discharge in Ar/NH3 Mixtures under the Atmosphere-Pressure.

    PubMed

    Li, Yan-qin; Bu, De-cai; Di, Lan-bo; Zhang, Xiu-ling; Liu, Zhi-sheng; Li, Xue-hui

    2015-03-01

    An atmosphere-pressure Dielectric Barrier Discharge in Ar/NH3 mixtures between cylinder electrodes is studied by Optical Emission Spectroscopy and the main particles of atmosphere-pressure Ar/NH3 DBD plasma are NH, N, N+, N2, Ar, H(α) and OH. NH is decomposition products of NH3, and NH(c 1π) and NH(A 3π) are two kinds of excited-state neutral particles and produced by penning ionization of Ar* and NH3. The nitrogen active atom is detected at 674.5 nm which may provide the experimental foundation for the synthesis of ε-Fe3N ferroparticles by the atmosphere-pressure Ar/NH3 DBD plasma. The intensities of main particles are analyzed at different NH3 flow rate and applied voltage peak-peak value. The results show that the spectral line intensities of various particles increase with the rise of the applied voltage peak-peak value at the same NH3 flow rate, and first increase and then decrease with the increase of the NH3 flow rate at the same applied voltage peak-peak value. The applied voltage peak-peak value being kept constant, the spectral line intensity of nitrogen active atom first increases and then decreases with the increase of the NH3 flow rate. When NH3 flow rate is 20 mL x min(-1), the spectral line intensity of nitrogen active atom reaches a maximum at the same applied voltage peak-peak value. The spectral line intensity of nitrogen active atom decreases gradually with increasing the applied voltage peak-peak value at the same NH3 flow rate and it is mainly because of the translation of discharge mode from multi-pulse APGD to filamentary discharge in the atmosphere-pressure Ar/NH3 DBD. The microdischarge channels overlap and the microdischarges affect each other in multi-pulse APGD; hence the increasing rate of the spectral line intensity is quicker in multi-pulse APGD than in filamentary discharge with increasing the applied voltage peak-peak value. When the applied voltage peak-peak value is up from 4 600 to 6 400 V, the single-pulse and two-pulse APGD

  18. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  19. Treatment on Low NOx Concentration and DEP Collection with Barrier Discharge System Superposing TiO2

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuhiro; Hosoi, Katsuhiko; Ehara, Yoshiyasu; Takahashi, Takeo; Ito, Tairo; Zukeran, Akinori; Kawada, Yoshihiro; Kono, Yoshihiro; Yasumoto, Koji

    The automobiles exhaust carbon particles and NOx into the air, and then gases accumulate in expressway tunnels. DC corona discharge is used widely in electrostatic precipitator (ESP). However, the ESP with DC corona discharge can little remove NOx. Therefore, we proposed a new barrier discharge type precharger to replace corona discharge type prechargers to remove NOx. When discharge is generated in the air, NOx necessarily is generated. Then, we need to grasp the lower limit NOx concentration to remove NOx from the gas. We focus attention on photocatalyst because it is effective in NOx removal. However, photocatalyst needs ultraviolet ray. Therefore, TiO2 is painted on barrier discharge electrodes, an ultraviolet ray included in discharge luminescence was irradiated to TiO2. Furthermore, the relationship between initial NOx concentration and removal characteristic is investigated in detail.

  20. Degradation of Aniline Wastewater Using Dielectric Barrier Discharges at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    WU, Haixia; FANG, Zhi; XU, Yanhua

    2015-03-01

    Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study to investigate the treatment of aniline in aqueous solution. Discharge characteristics were assessed by measuring voltage and current waveforms, capturing light emission images, and obtaining optical emission spectra. The effects of several parameters were analyzed, including treatment distance, discharge power, DBD treatment time, initial pH of aniline solutions, and addition of sodium carbonate and hydrogen peroxide to the treatment. Aniline degradation increased with increasing discharge power. Under the same conditions, higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances. At a discharge power of 21.5 W, 84.32% of aniline was removed after 10 min of DBD treatment. Initial pH significantly influenced aniline degradation. Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline. Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC. supported by National Natural Science Foundation of China (No. 51377075), the Natural Science Foundation of Jiangsu Province of China (No. BK20131412), the Environmental Protection Scientific Foundation of Jiangsu Province of China (No. 201004)

  1. A novel dielectric barrier discharge reactor with photocatalytic electrode based on sintered metal fibers for abatement of xylene.

    PubMed

    Ye, Zhiping; Wang, Chunxia; Shao, Zhenhua; Ye, Qing; He, Yi; Shi, Yao

    2012-11-30

    A novel dielectric barrier discharge (DBD) reactor was made for the abatement of xylene. This reactor has a photocatalytic electrode prepared by a modified anodic oxidation method which was proposed in this work. The photocatalytic electrode has nano-TiO(2) deposited on sintered metal fiber (SMF). The reactor using the nano-TiO(2)/SMF electrode shows much better performance in abating xylene compared with reactors using other electrodes such as resistance wire or SMF. The conversion ratio of xylene reaches 92.7% in the novel reactor at a relatively voltage (23.6 kV). This ratio is much higher than the conversion ratios of xylene in the traditional reactors with resistance wire or SMF electrodes, which are ~64.7%. The selectivity of CO(2) of the reactor using the nano-TiO(2)/SMF electrode (300 pps, 23.6 kV) was observed to be 86.6%, which is about twice as large as that of a traditional reactor using a resistance wire electrode. If a traditional DBD reactor is replaced by the novel reactor, at the same specific input energy, the energy yield can increase from 0.391 to 0.556 mg/kJ. Finally, the xylene decomposition mechanism with the nano-TiO(2)/SMF electrode was also briefly discussed. PMID:23040659

  2. A novel dielectric barrier discharge reactor with photocatalytic electrode based on sintered metal fibers for abatement of xylene.

    PubMed

    Ye, Zhiping; Wang, Chunxia; Shao, Zhenhua; Ye, Qing; He, Yi; Shi, Yao

    2012-11-30

    A novel dielectric barrier discharge (DBD) reactor was made for the abatement of xylene. This reactor has a photocatalytic electrode prepared by a modified anodic oxidation method which was proposed in this work. The photocatalytic electrode has nano-TiO(2) deposited on sintered metal fiber (SMF). The reactor using the nano-TiO(2)/SMF electrode shows much better performance in abating xylene compared with reactors using other electrodes such as resistance wire or SMF. The conversion ratio of xylene reaches 92.7% in the novel reactor at a relatively voltage (23.6 kV). This ratio is much higher than the conversion ratios of xylene in the traditional reactors with resistance wire or SMF electrodes, which are ~64.7%. The selectivity of CO(2) of the reactor using the nano-TiO(2)/SMF electrode (300 pps, 23.6 kV) was observed to be 86.6%, which is about twice as large as that of a traditional reactor using a resistance wire electrode. If a traditional DBD reactor is replaced by the novel reactor, at the same specific input energy, the energy yield can increase from 0.391 to 0.556 mg/kJ. Finally, the xylene decomposition mechanism with the nano-TiO(2)/SMF electrode was also briefly discussed.

  3. Fabrication of hydrogenated amorphous silicon carbide films by decomposition of hexamethyldisilane with microwave discharge flow of Ar

    NASA Astrophysics Data System (ADS)

    Ito, Haruhiko; Kumakura, Motoki; Suzuki, Tsuneo; Niibe, Masahito; Kanda, Kazuhiro; Saitoh, Hidetoshi

    2016-06-01

    Hydrogenated amorphous silicon carbide films have been fabricated by the decomposition of hexamethyldisilane with a microwave discharge flow of Ar. Mechanically hard films were obtained by applying radio-frequency (RF) bias voltages to the substrate. The atomic compositions of the films were analyzed by a combination of Rutherford backscattering and elastic recoil detection, X-ray photoelectron spectroscopy (XPS), and glow discharge optical emission spectroscopy. The chemical structure was analyzed by carbon-K near-edge X-ray absorption fine structure spectroscopy, high-resolution XPS, and Fourier transform infrared absorption spectroscopy. The structural changes upon the application of RF bias were investigated, and the concentration of O atoms near the film surface was found to play a key role in the mechanical hardness of the present films.

  4. Mechanism of the decomposition of H/sub 2/ in a glow discharge in Ar /plus/ H/sub 2/

    SciTech Connect

    Ivanov, Yu.A.; Rytova, N.M.; Soldatova, I.V.; Timakin, V.N.; Epshtein, I.L.

    1988-09-01

    The decomposition of molecular hydrogen in dc glow discharges in Ar /plus/ H/sub 2/ mixtures with pressures ranging from 13 to 532 Pa and a content of H/sub 2/ from 0 to 10 vol. % at discharge currents from 5 to 100 mA has been investigated. The concentrations of the Ar atoms in 4s states and of the H atoms in 2S and 2P states and the parameter E/N (E is the strength of the longitudinal electric field, and N is the concentration of the heavy particles) have been measured. A mathematical model of the excitation, ionization, and dissociation processes has been constructed. Satisfactory agreement between the theoretical and experimental results has been obtained.

  5. Decomposition analysis of wastewater pollutant discharges in industrial sectors of China (2001-2009) using the LMDI I Method.

    PubMed

    Lei, Hongjun; Xia, Xunfeng; Li, Changjia; Xi, Beidou

    2012-06-01

    China's industry accounts for 46.8% of the national Gross Domestic Product (GDP) and plays an important strategic role in its economic growth. On the other hand, industrial wastewater is also the major source of water pollution. In order to examine the relationship between the underlying driving forces and various environmental indicators, values of two critical industrial wastewater pollutant discharge parameters (Chemical Oxygen Demand (COD) and ammonia nitrogen (NH(4)-N)), between 2001 and 2009, were decomposed into three factors: i.e., production effects (caused by change in the scale of economic activity), structure effects (caused by change in economic structure) and intensity effects (caused by change in technological level of each sector), using additive version of the Logarithmic Mean Divisia Index (LMDI I) decomposition method. Results showed that: (1) the average annual effect of COD discharges in China was -2.99%, whereas the production effect, the structure effect, and the intensity effect were 14.64%, -1.39%, and -16.24%, respectively. Similarly, the average effect of NH(4)-N discharges was -4.03%, while the production effect, the structure effect, and the intensity effect were 16.18%, -2.88%, and -17.33%, respectively; (2) the production effect was the major factor responsible for the increase in COD and NH(4)-N discharges, accounting for 45% and 44% of the total contribution, respectively; (3) the intensity effect, which accounted for 50% and 48% of the total contribution, respectively, exerted a dominant decremental effect on COD and NH(4)-N discharges; intensity effect was further decomposed into cleaner production effect and pollution abatement effect with the cleaner production effect accounting for 60% and 55% of the reduction of COD and NH(4)-N, respectively; (4) the major contributors to incremental COD and NH(4)-N discharges were divided among industrial sub-sectors and the top contributors were identified. Potential restructuring and

  6. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    SciTech Connect

    Nishihara, M.; Takashima, K.; Rich, J. W.; Adamovich, I. V.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generated by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.

  7. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space

    NASA Astrophysics Data System (ADS)

    Che, Xueke; Shao, Tao; Nie, Wansheng; Yan, Ping

    2012-04-01

    Lift-enhancement-drag-reduction technology is strongly required by near-space vehicles with low Reynolds number. It is known that a flow control method by a surface dielectric barrier discharge (SDBD) plasma can play an important role in this field. In order to obtain the discharge characteristics and evaluate the flow control effect of a SDBD actuator, the nanosecond-pulse discharge and induced flow field by the SDBD plasma are simulated at various altitudes using discharge-aerodynamics models. The results show that the ignition voltage decreases with altitude and it is very easy to discharge in near space. Compared with a SDBD at ground level, the plasma is produced on both sides of the exposed electrode and distributes more uniformly in near space. Although the body force generated by the SDBD actuator is less effective in inducing a jet with nanosecond-pulse excitation than that with alternating voltage excitation, the induced jet by body force is with longer extent, thicker profile and higher velocity in near space than at ground level. The plasma bulk heating should be taken into account for nanosecond-pulse excitation. The Joule heating of electrons is the main source of plasma bulk heating which acts as a micro-explosion and mainly induces pressure perturbation. The discharge at ground level is like a ‘point explosion’, but a ‘region explosion’ in near space, which indicates a diffuse distribution of energy, should be responsible for the fact that the effect of bulk heating is reduced in near space.

  8. Surface characteristics and printing properties of PET fabric treated by atmospheric dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Rashed, U. M.; Ahmed, H.; Al-Halwagy, A.; Garamoon, A. A.

    2009-01-01

    PET (Poly ethylene terephthalate) fabric was treated using dielectric barrier discharge (DBD) as a type of low temperature plasma under atmospheric pressure for 1 to 15min and different powers ranging between 0.3 to 5W. Effects of DBD treatment on the surface of a test PET fabric are examined, reported and discussed. The surface analysis and characterization were performed using X-ray diffraction (XRD), Fourier transition infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) before and following the DBD processing. SEM analysis shows significant surface morphology changes in plasma treated polyester fabric surface, while FTIR analysis indicates that the reactivity of the surface was increased. The discharge parameters used are correlated with the changes in the surface characteristics found after DBD processing of various durations, in atmospheric air environment.

  9. A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet

    SciTech Connect

    Shi Jianjun; Zhong Fangchun; Zhang Jing; Liu, D. W.; Kong, M. G.

    2008-01-15

    An experimental observation of fast-moving plasma bullets produced in an atmospheric dielectric-barrier discharge jet is reported in this paper. Nanosecond imaging suggests that the atmospheric discharge jet consists of a plasma bullet train traveling at a hypersonic speed from 7.0 km/s to 43.1 km/s. Yet on a millisecond scale, the bullet train appears as a plasma jet of several centimeters long. The plasma bullets are produced through several possible mechanisms, the most likely of which is related to the ionization wave. Time and space resolved optical emission spectroscopy show that reactive plasma species can be delivered to different spatial sites with varying quantities.

  10. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    SciTech Connect

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulated charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].

  11. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    PubMed

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.

  12. Methane activation using Kr and Xe in a dielectric barrier discharge reactor

    SciTech Connect

    Jo, Sungkwon; Lee, Dae Hoon Kim, Kwan-Tae; Kang, Woo Seok; Song, Young-Hoon

    2014-10-15

    Methane has interested many researchers as a possible new energy source, but the high stability of methane causes a bottleneck in methane activation, limiting its practical utilization. To determine how to effectively activate methane using non-thermal plasma, the conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—Ar, Kr, and Xe—as additives. In addition to the methane conversion results at various applied voltages, the discharge characteristics such as electron temperature and electron density were calculated through zero-dimensional calculations. Moreover, the threshold energies of excitation and ionization were used to distinguish the dominant particle for activating methane between electrons, excited atoms, and ionized atoms. From the experiments and calculations, the selection of the additive noble gas is found to affect not only the conversion of methane but also the selectivity of product gases even under similar electron temperature and electron density conditions.

  13. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    PubMed

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general. PMID:25641832

  14. Spectral and energy parameters of multiband barrier-discharge KrBr excilamps

    SciTech Connect

    Avdeev, S M; Erofeev, M V; Skakun, V S; Sosnin, E A; Suslov, A I; Tarasenko, V F; Schitz, D V

    2008-07-31

    The spectral and energy characteristics of multiband barrier-discharge coaxial KrBr excilamps are studied experimentally at pressures from a few tens of Torr to 0.4 atm. It is shown that an increase in the Br{sub 2} concentration reduces the emission intensity of KrBr* molecules with respect to the emission intensity of Br{sub 2}* molecules and reduces the total emission power of the excilamp. This can be explained by the nonradiative decay of exciplex KrBr* molecules caused by their quenching by molecular bromine. The emission power and efficiency in the Kr:Br{sub 2} = 400:1 mixture at a pressure of {approx}230 Torr and a discharge gap of 8.5 mm were 4.8 W and 2.4%, respectively. (laser applications and other topics in quantum electronics)

  15. Study on ozone treatment of soil for agricultural application of surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Nagatomo, Takuya; Abiru, Tomoya; Mitsugi, Fumiaki; Ebihara, Kenji; Nagahama, Kazuhiro

    2016-01-01

    Recently, application of plasma technologies to the agricultural field has attracted much interest because residual pesticides and excessive nitrogen oxides contained in plants, soil, and groundwater have become a serious issue worldwide. Since almost all of the atmospheric discharge plasma generates ozone, the effects of ozone are among the key factors for their agricultural applications. We have proposed the use of ozone generated using surface barrier discharge plasma for soil disinfection or sterilization. In this work, the ozone consumption coefficient and diffusion coefficient in soil were measured by the ultraviolet absorption method. The pH(H2O) and amount of nitrogen nutrient in soil after ozone diffusion treatment were studied and plant growth was observed simultaneously. The effect of ozone treatment on the amount of DNA in soil was also investigated and compared with that determined from the obtained ozone consumption coefficient.

  16. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  17. Note: A novel dielectric barrier discharge system for generating stable patterns in wide range

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Wang, Yongjie; Zhang, Hao; Pan, Yuyang; Dong, Lifang

    2016-05-01

    We develop a novel dielectric barrier discharge (DBD) system with a meshed water electrode to generate stable square superlattice patterns (MSSP) in Ar/air mixture in a wide range of experimental environments. Discharge scenarios with the applied voltage increasing in the meshed DBD and ordinary DBD are presented respectively under the same experimental conditions. It is found that a square pattern and MSSP can be obtained stably and easily in meshed DBD, while no pattern emerges in ordinary DBD. MSSP can be formed when the Ar content is from 0% to 70%, and the corresponding applied voltage decreases with Ar content increasing. Results based on optical methods show that MSSP is generated by artificially designed electrodes together with nonlinear characteristics of DBD, which may account for why patterns in meshed DBD exist in a wide range.

  18. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Li, Sen; Gu, Fan

    2010-10-01

    Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications.

  19. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    SciTech Connect

    Liu, Fucheng He, Yafeng; Dong, Lifang

    2014-12-15

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage, and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.

  20. Spectroscopic Investigation of a Dielectric Barrier Discharge Over a Wide Range of Pulse Parameters

    NASA Astrophysics Data System (ADS)

    Picard, Julian; Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Hashim, Akel

    2015-09-01

    Most high voltage pulser used to drive dielectric barrier discharges (DBDs), produce a single pulse shape (width and voltage), thus making it challenging to assess the effect of pulse shape on the production of different chemical species during a discharge. Eagle Harbor Technologies (EHT), Inc. has developed a nanosecond pulser that allows for independent control of the output voltage, pulse width, and pulse repetition frequency. Through the utilization of this technology, presented here is a precise characterization of reactive species generated by the DBD under the independent variation of voltage (0-20 kV), frequency (0-20 kHz) and pulse width (20-260 ns). A better understanding of this parameter dependency can allow for more targeted and effective application of plasma in medical, environmental, industrial, and other applications.

  1. Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?

    NASA Astrophysics Data System (ADS)

    Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund

    2016-06-01

    The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets.

  2. Monolithic structure of integrated coaxial microhollow dielectric barrier discharges: Characterization for environmental and biomedical applications

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Motomura, Hideki

    2016-07-01

    The characteristics of microhollow dielectric barrier discharge devices in a thin monolithic planar structure with many holes were analyzed regarding the production of OH radicals, using optical emission and laser-induced fluorescence (LIF) spectroscopy techniques. Spatial distributions of OH radical density depended on the diameter of electrode holes from 0.6 to 1.5 mm and the discharge operating gas species. Apparent emission intensity from OH radicals and the LIF signals were very high in He and Ar gases but quite low in N2. However, taking into account the LIF quenching rate in each gas, the existing densities of OH radicals in all tested gases were not greatly different from each other. The absolute density of OH radicals estimated by a comparison of the LIF intensity with our measured result on a conventional He plasma jet referring to reported densities in similar situations was on the order of 1014 cm‑3.

  3. Optical Emission Spectroscopy for CO2 Dissociation using a Dielectric Barrier Discharge (VADER)

    NASA Astrophysics Data System (ADS)

    Lindon, Michael; Scime, Earl; Gallagher, Michael; Shekhawat, Dushyant; Bergen, Mike; Berry, Dave

    2010-11-01

    VADER (the Versatile Atmospheric Dielectric barrier discharge ExpeRiment) operates at atmospheric pressure and employs high voltage pulses across a quartz dielectric spanning an anode-cathode pair to create a high density, non-thermal, cool plasma in a variety of gasses. In CO2 plasmas, energetic electrons from the tail of the non-thermal electron distribution excite CO2 molecular states and provide a pathway for CO2 dissociation that requires less energy per molecule than conventional thermal dissociation processes. CO2 dissociation by-products can then be used as feedstock gasses for chemical synthesis. Here we have used optical emission spectroscopy in the reaction zone of VADER to monitor the density of reaction products and optimize the dissociation process. The optical emission measurements are correlated with real-time residual gas analyzer (RGA) measurements of the discharge exhaust gas.

  4. Fluid modelling of CO2 dissociation in a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Ponduri, S.; Becker, M. M.; Welzel, S.; van de Sanden, M. C. M.; Loffhagen, D.; Engeln, R.

    2016-03-01

    The dissociation of CO2 in a geometrically symmetric dielectric barrier discharge has been analysed by means of numerical modelling. A time- and space-dependent fluid model has been used, taking into account the spatial variation of the plasma between the plane-parallel dielectrics covering the electrodes. The main features of the model, including an extensive reaction kinetics for the vibrational states of CO2, are given. The modelling studies have been performed for different applied voltages, discharge frequencies, pressures, gas temperatures, and relative permittivities of the dielectrics. The model calculations show that the discharges in the positive and negative half-cycles are different for the considered standard condition, leading to a spatially asymmetric distribution of the stable neutrals like CO molecules and O atoms. The generation of CO mainly takes place during the discharge pulses, and it is dominated by electron impact dissociation. The specific energy input obtained for the broad range of parameters considered and determined for residence times reported in the literature agrees well with the corresponding experimental values. In accordance with these experiments, the calculated degree of CO2 conversion has been found to increase almost linearly with the specific energy input. Remaining discrepancies between the measured and calculated energy efficiencies are discussed.

  5. Effect of packing material on methane activation in a dielectric barrier discharge reactor

    SciTech Connect

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-12-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using γ-Al{sub 2}O{sub 3} (sphere), α-Al{sub 2}O{sub 3} (sphere), and γ-Al{sub 2}O{sub 3} (16–20 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from charge–voltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between γ- and α-phase Al{sub 2}O{sub 3} affects the discharge characteristics. Moreover, all packing conditions show different charge characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.

  6. Wire-cylinder dielectric barrier discharge induced degradation of aqueous atrazine.

    PubMed

    Zhu, Dan; Jiang, Lin; Liu, Run-Long; Chen, Pei; Lang, Lin; Feng, Jing-Wei; Yuan, Shou-Jun; Zhao, Da-Yong

    2014-12-01

    The wire-cylinder dielectric barrier discharge reactor was adopted for removal of aqueous atrazine. The effect of different parameters on the degradation efficiency of atrazine was investigated, and the degradation mechanism of atrazine was studied. The experimental results showed that when the discharge power was 50 W and the air flow rate was 140 L h(-1), 93.7% of atrazine was degraded after 18 min of discharge time. The concentrations of generated O3 and H2O2 increased with increasing discharge time. The pH decreased from 6.80 to 2.50, 12.7% of TOC was removed after 18 min. The concentrations of generated Cl(-) and NO3(-) increased significantly during the degradation process of atrazine, and the decreasing toxicity trend was observed for the treated atrazine solution. The degradation byproducts of atrazine were identified using liquid chromatography-time-of-flight mass spectrometry (LC-TOF-MS), which might be formed mainly in dechlorination hydroxylation, alkyl oxidation, dechlorination hydroxylation combined with alkyl oxidation and demethylation oxidation reactions. PMID:25268075

  7. Wire-cylinder dielectric barrier discharge induced degradation of aqueous atrazine.

    PubMed

    Zhu, Dan; Jiang, Lin; Liu, Run-Long; Chen, Pei; Lang, Lin; Feng, Jing-Wei; Yuan, Shou-Jun; Zhao, Da-Yong

    2014-12-01

    The wire-cylinder dielectric barrier discharge reactor was adopted for removal of aqueous atrazine. The effect of different parameters on the degradation efficiency of atrazine was investigated, and the degradation mechanism of atrazine was studied. The experimental results showed that when the discharge power was 50 W and the air flow rate was 140 L h(-1), 93.7% of atrazine was degraded after 18 min of discharge time. The concentrations of generated O3 and H2O2 increased with increasing discharge time. The pH decreased from 6.80 to 2.50, 12.7% of TOC was removed after 18 min. The concentrations of generated Cl(-) and NO3(-) increased significantly during the degradation process of atrazine, and the decreasing toxicity trend was observed for the treated atrazine solution. The degradation byproducts of atrazine were identified using liquid chromatography-time-of-flight mass spectrometry (LC-TOF-MS), which might be formed mainly in dechlorination hydroxylation, alkyl oxidation, dechlorination hydroxylation combined with alkyl oxidation and demethylation oxidation reactions.

  8. Effect of packing material on methane activation in a dielectric barrier discharge reactor

    NASA Astrophysics Data System (ADS)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-12-01

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using γ-Al2O3 (sphere), α-Al2O3 (sphere), and γ-Al2O3 (16-20 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from charge-voltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between γ- and α-phase Al2O3 affects the discharge characteristics. Moreover, all packing conditions show different charge characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.

  9. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  10. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  11. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-05-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  12. In situ encapsulation of copper nanoparticles by the dielectric barrier discharge

    SciTech Connect

    Lei Haile; Tang Yongjian; Li Jun; Luo Jiangshan; Zhang Jingmin

    2007-09-10

    An experimental investigation is reported on in situ encapsulating copper nanoparticles with a nanolayer of hydrocarbon coating. Copper nanoparticles produced by the flow-levitation method are in situ encapsulated by the dielectric barrier discharge, which generates carbon and hydrogen plasmas for forming a polymerized nanolayer of hydrocarbon at the surface of Cu nanoparticles. The structural, chemical components and optical properties of the encapsulated Cu nanoparticles are characterized by transmission electron microscopy, energy dispersive x-ray spectra, x-ray diffraction, x-ray photoelectron spectra, and UV-visible absorption.

  13. Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure

    SciTech Connect

    Tang Jie; Li Shibo; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-06-18

    A stable nonthermal laminar atmospheric-pressure plasma source equipped with dielectric-barrier discharge was developed to realize more efficient plasma generation, with the total energy consumption reduced to nearly 25% of the original. Temperature and emission spectra monitoring indicates that this plasma is uniform in the lateral direction of the jet core region. It is also found that this plasma contains not only abundant excited argon atoms but also sufficient excited N{sub 2} and OH. This is mainly resulted from the escape of abundant electrons from the exit, due to the sharp decrease of sustaining voltage and the coupling between ions and electrons.

  14. Polymer film deposition on agar using a dielectric barrier discharge jet and its bacterial growth inhibition

    NASA Astrophysics Data System (ADS)

    Tsai, T.-C.; Cho, J.; Mcintyre, K.; Jo, Y.-K.; Staack, D.

    2012-08-01

    Polymer film deposition on agar in ambient air was achieved using the helium dielectric barrier discharge jet (DBD jet) fed with polymer precursors, and the bacterial growth inhibition due to the deposited film was observed. The DBD jet with precursor addition was more efficient at sterilization than a helium-only DBD jet. On the areas where polymer films cover the agar the bacterial growth was significantly inhibited. The inhibition efficacy showed dependence on the film thickness. The DBD jet without precursor also created a modified agar layer, which may slow the growth of some bacterial strains.

  15. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Eto, Hiroyuki; Ono, Yoshihito; Ogino, Akihisa; Nagatsu, Masaaki

    2008-12-01

    A flexible sheet-type dielectric barrier discharge (DBD) was studied for the low-temperature sterilization of medical instruments wrapped with Tyvek packaging. Sterilization experiments using Geobacillus stearothermophilus spores with a population of 106 were carried out with various mixtures of nitrogen and oxygen. We confirmed the inactivation of spores after 4.5 min of DBD irradiation at a temperature of 28.4 °C and relative humidity of 64.4%. The main sterilizing factors of this method are the ozone and UV emissions generated by DBD in dry air and synergistic OH radicals generated by DBD in moist air.

  16. Phase resolved analysis of the homogeneity of a diffuse dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Kogelheide, Friederike; Bibinov, Nikita; Stapelmann, Katharina; Awakowicz, Peter

    2015-09-01

    Cold atmospheric pressure plasmas have already proven their ability of supporting the healing process of chronic wounds. Especially simple configurations like a dielectric barrier discharge (DBD), comprising of one driven electrode which is coated with a dielectric layer, are of interest, because they are cost-effective and easy to handle. The homogeneity of such plasmas during treatment is necessary since the whole wound should be treated evenly. In this investigation phase resolved optical emission spectroscopy is used to investigate the homogeneity of a DBD. Electron densities and reduced electric field distributions are determined with temporal and spatial resolution and the differences for applied positive and negative voltage pulses are studied.

  17. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-01

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  18. Honeycomb superlattice pattern in a dielectric barrier discharge in argon/air

    SciTech Connect

    Zhu, Ping; Dong, Lifang Yang, Jing; Gao, Yenan; Wang, Yongjie; Li, Ben

    2015-02-15

    We report on a honeycomb superlattice pattern in a dielectric barrier discharge in argon/air for the first time. It consists of hexagon lattice and honeycomb framework and bifurcates from a hexagon pattern as the applied voltage increases. A phase diagram of the pattern as a function of the gas component and gas pressure is presented. The instantaneous images show that the hexagon lattice and honeycomb framework are ignited in turn in each half voltage cycle. The honeycomb framework is composed of filaments ignited randomly. The spatiotemporal dynamics of honeycomb superlattice pattern is discussed by wall charges.

  19. Safety assessment of discharge chute isolation barrier preparation and installation activities. Revision 3

    SciTech Connect

    Meichle, R.H.

    1994-11-08

    This revision adds a section addressing impacts of dropping surfacing tool and rack cutter on the basin floor, and corrects typographical errors. The safety assessment is made for the activities for the preparation and installation of the discharge chute isolation barriers. The safety assessment includes a hazard assessment and comparisons of potential accidents/events to those addressed by the current safety basis documentation. No significant hazards were identified. An evaluation against the USQ evaluation questions was made and the determination made that the activities do not represent a USQ. Hazard categorization techniques were used to provide a basis for readiness review classifications.

  20. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  1. Production of iodine atoms by RF discharge decomposition of CF3I

    NASA Astrophysics Data System (ADS)

    Jirásek, Vít; Schmiedberger, Josef; Čenský, Miroslav; Kodymová, Jarmila

    2011-03-01

    Generation of atomic iodine by dissociation of CF3I in a RF discharge was studied experimentally in a configuration ready for direct use of the method in an oxygen-iodine laser. The discharge was ignited between coaxial electrodes with a radial distance of 3.5 mm in a flowing mixture of 0.1-0.9 mmol s-1 of CF3I and 0.5-6 mmol s-1 of buffer gas (Ar, He) at a pressure of 2-3 kPa. The discharge stability was improved by different approaches so that the discharge could be operated up to a RF source limit of 500 W without sparking. The gas leaving the discharge was injected into the subsonic or supersonic flow of N2 and the concentration of generated atomic iodine and gas temperature were measured downstream of the injection. An inhomogeneous distribution of the produced iodine atoms among the injector exit holes was observed, which was attributed to a different gas residence time corresponding to each hole. The dissociation fraction was better with pure argon as a diluting gas than in the mixture of Ar-He, although the variation in the Ar flow rate had no significant effect on CF3I dissociation. The dissociation fraction calculated from the atomic iodine concentration measured several centimetres downstream of the injection was in the range 7-30% when the absorbed electric energy ranged from 200 to 4000 J per 1 mmol of CF3I. The corresponding values of the fraction of power spent on the dissociation decreased from 8% to 2% and the energy cost for one iodine atom increased from 30 to 130 eV. Due to a possible high rate of the atomic iodine loss by recombination after leaving the discharge, these values were considered as lower limits of those achieved in the discharge.

  2. Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing -- SPCP

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Haga, Ichiro; Takahashi, Tadashi; Masuda, Senichi

    1996-01-01

    The decomposition performance of the surface induced plasma chemical processing (SPCP) for chlorofluorocarbon (83 ppm CFC-113 in air), acetone, trichloroethylene, and isopropylalcohol was experimentally examined. In every case, very high decomposition performance, more than 90 or 99% removal rate, is realized when the residence time is about 1 second and the input electric power for a 16 cm{sup 3} reactor is about 10 W. Acetone is the most stable compound and alcohol is most easily decomposed. The decomposed product-analysis by a GasChromato-MassSpectrometer has just started but very poor results are obtained. In fact, some portion of the isopropylalcohol may change to acetone which is worse than alcohol. The necessary energy to decompose one mol gas diluted in the air is calculated form the experiments. The necessary energy level for acetone and trichloroethylene is about one-tenth or one-fiftieth of that for chlorofluorocarbon.

  3. Decomposition of frequency characteristics of acoustic emission signals for different types of partial discharges sources

    NASA Astrophysics Data System (ADS)

    Witos, F.; Gacek, Z.; Paduch, P.

    2006-11-01

    The problem touched in the article is decomposition of frequency characteristic of AE signals into elementary form of three-parametrical Gauss function. At the first stage, for modelled curves in form of sum of three-parametrical Gauss peaks, accordance of modelled curve and a curve resulting from a solutions obtained using method with dynamic windows, Levenberg-Marquardt algorithm, genetic algorithms and differential evolution algorithm are discussed. It is founded that analyses carried out by means differential evolution algorithm are effective and the computer system served an analysis of AE signal frequency characteristics was constructed. Decomposition of frequency characteristics for selected AE signals coming from modelled PD sources using different ends of the bushing, and real PD sources in generator coil bars are carried out.

  4. Phenol Decomposition Process by Pulsed-discharge Plasma above a Water Surface in Oxygen and Argon Atmosphere

    NASA Astrophysics Data System (ADS)

    Shiota, Haruki; Itabashi, Hideyuki; Satoh, Kohki; Itoh, Hidenori

    By-products from phenol by the exposure of pulsed-discharge plasma above a phenol aqueous solution are investigated by gas chromatography mass spectrometry, and the decomposition process of phenol is deduced. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is detected; therefore, active species such as OH, O, HO2, H2O2, which are produced from H2O in the discharge, can convert phenol into those by-products. When O2 is used as a background gas, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced in addition to catechol and hydroquinone. O3 is produced in the discharge plasma, so that phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and then 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into formic acid, maleic acid and succinic acid by 1,3-dipolar addition reaction with O3.

  5. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  6. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  7. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    SciTech Connect

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-04-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  8. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  9. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    SciTech Connect

    Belasri, A.; Harrache, Z.

    2010-12-15

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  10. New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge

    PubMed Central

    Li, Lamei; Zhang, Hong; Huang, Qing

    2015-01-01

    We report the new insight into the dielectric barrier discharge (DBD) induced inactivation of Microcystis aeruginosa, the dominant algae which caused harmful cyanobacterial blooms in many developing countries. In contrast with the previous work, we employed flow cytometry to examine the algal cells, so that we could assess the dead and living cells with more accuracy, and distinguish an intermediate state of algal cells which were verified as apoptotic. Our results showed that the numbers of both dead and apoptotic cells increased with DBD treatment delay time, and hydrogen peroxide produced by DBD was the main reason for the time-delayed inactivation effect. However, apart from the influence of hydrogen peroxide, the DBD-induced initial injures on the algal cells during the discharge period also played a considerable role in the inactivation of the DBD treated cells, as indicated by the measurement of intracellular reactive oxygen species (ROS) inside the algal cells. We therefore propose an effective approach to utilization of non-thermal plasma technique that makes good use of the residual inactivation effect to optimize the experimental conditions in terms of discharge time and delay time, so that more efficient treatment of cyanobacterial blooms can be achieved. PMID:26347270

  11. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer

    2007-07-15

    Cost effective and a very simple dielectric barrier discharge plasma processing apparatus for thin film deposition and mass spectroscopic analysis of organic gas mixture has been described. The interesting features of the apparatus are the construction of the dielectric electrodes made of aluminum oxide or alumina (Al{sub 2}O{sub 3}) and glass and the generation of high ignition voltage from the spark plug transformer taken from car. Metal capacitor is introduced in between ground and oscilloscope to measure the executing power during the discharge and the average electron density in the plasma region. The organic polymer films have been deposited on Si (100) substrate using several organic gas compositions. The experimental setup provides a unique drainage system from the reaction chamber controlled by a membrane pump to suck out and remove the poisonous gases or residuals (cyanogens, H-CN, CH{sub x}NH{sub 2}, etc.) which have been produced during the discharge of CH{sub 4}/N{sub 2} mixture.

  12. Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge.

    PubMed

    Li, Shanping; Ma, Xiaolong; Jiang, Yanyan; Cao, Xiaohong

    2014-08-01

    Degradation of acetamiprid in wastewater was studied in a dielectric barrier discharge (DBD) reactor. This reactor produces ultraviolet light and reactive species like ozone (O₃) can be used for the treatment of wastewater. We examined the factors that could affect the degradation process, including the discharge power, and the initial concentrations of acetamiprid, and O₃ which is generated by the DBD reactor. We also investigated the effect of adding Na₂B₄O₇ as a radical scavenger to probe the role of hydroxyl radical in the reaction. The results indicated that acetamiprid could be removed from aqueous solution effectively and hydroxyl radicals played an important role during the degradation by the low temperature plasma. The degradation process of acetamiprid fits the first-order kinetics. The degradation efficiency was 83.48 percent at 200 min when the discharge power was 170 W and the initial acetamiprid concentration was 50 mg/L. The removal efficiency of acetamiprid decreased with the increasing concentration of Na₂B₄O₇ because B₄O₇(2-) is an excellent radical scavenger that inhibited the generation of OH during the DBD process. The removal efficiency of acetamiprid improved in the presence of O₃. The main reason was that O₃ can oxidize certain organic compounds directly or indirectly by generating hydroxyl radicals. The degradation products of acetamiprid were characterized qualitatively and quantitatively using high performance liquid chromatography, mass spectrometry and UV-vis spectroscopy. PMID:24840877

  13. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation.

    PubMed

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-11-15

    In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO2, H2O, and formic acid. Discharge products such as O3, N2O, N2O5, and HNO3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants.

  14. Investigation of nanosecond pulsed dielectric barrier discharge using plate-to-plate electrode with asymmetric dielectric arrangement in airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Atmospheric pressure dielectric barrier discharge plasma is produced in airflow by applying nanosecond high voltage pulses with peak voltage about 35 kV and rising time about 40 ns on a plate-to-plate electrode arrangement. The effects of airflow rate (0-50 m/s) on the discharge characteristics are investigated under different barrier conditions (the bare anode case and the bare cathode case). For both cases, the breakdown voltage and the time lag increase distinctly and the discharge intensity decreases sharply when the airflow rate increases from 0 to 30 m/s, and then keep almost constant until the airflow rate is further increased to 50 m/s. For the bare anode case (the cathode is covered by dielectric plate), the discharge mode transforms gradually from filamentary to diffuse discharge with the increasing airflow rate. While for the bare cathode case, some micro-discharge channels are still excited, though the discharge becomes more diffuse when the airflow rate is higher than 30 m/s. By acquiring the time-resolved images of the discharge, it is proved that it is the primary discharge which becomes diffuse when airflow is introduced and the following two discharges of the same voltage pulse occur principally at the positions where the primary discharge is more intense. And in both cases, the plasma temperatures are reduced, but the degree is different. All the phenomena can be explained mainly by the variation of the space charge distribution when the airflow is introduced into the discharge gap. And it is indicated that the bare anode case has an advantage in obtaining diffuse discharge.

  15. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry.

    PubMed

    Novák, Petr; Dědina, Jiří; Kratzer, Jan

    2016-06-01

    Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period. PMID:27159266

  16. Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001-2009) Using the LMDI I Metho

    PubMed Central

    Lei, Hongjun; Xia, Xunfeng; Li, Changjia; Xi, Beidou

    2012-01-01

    China’s industry accounts for 46.8% of the national Gross Domestic Product (GDP) and plays an important strategic role in its economic growth. On the other hand, industrial wastewater is also the major source of water pollution. In order to examine the relationship between the underlying driving forces and various environmental indicators, values of two critical industrial wastewater pollutant discharge parameters (Chemical Oxygen Demand (COD) and ammonia nitrogen (NH4-N)), between 2001 and 2009, were decomposed into three factors: i.e., production effects (caused by change in the scale of economic activity), structure effects (caused by change in economic structure) and intensity effects (caused by change in technological level of each sector), using additive version of the Logarithmic Mean Divisia Index (LMDI I) decomposition method. Results showed that: (1) the average annual effect of COD discharges in China was −2.99%, whereas the production effect, the structure effect, and the intensity effect were 14.64%, −1.39%, and −16.24%, respectively. Similarly, the average effect of NH4-N discharges was −4.03%, while the production effect, the structure effect, and the intensity effect were 16.18%, −2.88%, and −17.33%, respectively; (2) the production effect was the major factor responsible for the increase in COD and NH4-N discharges, accounting for 45% and 44% of the total contribution, respectively; (3) the intensity effect, which accounted for 50% and 48% of the total contribution, respectively, exerted a dominant decremental effect on COD and NH4-N discharges; intensity effect was further decomposed into cleaner production effect and pollution abatement effect with the cleaner production effect accounting for 60% and 55% of the reduction of COD and NH4-N, respectively; (4) the major contributors to incremental COD and NH4-N discharges were divided among industrial sub-sectors and the top contributors were identified. Potential restructuring and

  17. Monitoring the removal of phosphate from ground water discharging through a pond-bottom permeable reactive barrier

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Massey, A.J.

    2009-01-01

    Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO 4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%. ?? 2009 National Ground Water Association.

  18. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control.

    PubMed

    Pescini, E; Martínez, D S; De Giorgi, M G; Francioso, L; Ficarella, A

    2015-12-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled "Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields" by Pescini et al. [6]. PMID:26425667

  19. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  20. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control.

    PubMed

    Pescini, E; Martínez, D S; De Giorgi, M G; Francioso, L; Ficarella, A

    2015-12-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled "Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields" by Pescini et al. [6].

  1. [Study on A White-Eye Pattern in Dielectric Barrier Discharge by Optical Emission Spectrum].

    PubMed

    Zhu, Ping; Dong, Li-fang; Yang, Jing; Zhang, Yu; Zhang, Chao

    2015-06-01

    The white-eye pattern was firstly observed and investigated in a dielectric barrier discharge system in the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the center spot, the halo, and the ambient spots. The white-eye pattern is observed at a lower applied voltage. In this experiment, the heat capacity of water is high so that the water in water electrode is good at absorbing heat. In the process of pattern discharging the gas gap didn't increase its temperature, and the discharging phenomenon of this pattern has not changed. The temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long-term stable measurement. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the center spot, the halo, and the ambient spots og the white-eye pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences of brightness not only on the center spot, the halo, and the ambient spots at the same pressure but also at the different pressure, which shows that its plasma state also changed with the variation of the pressure. Given this, in this experiment plasma temperatures of the central spot, halo, and ambient spots in a white-eye pattern at different gas pressure were studied by using optical emission spectra. The molecular vibration temperature is investigated by the emission spectra of nitrogen band of second positive system ( C3Πu --> B3Πg ). The electron excitation temperature is researched by the relative intensity ratio method of spectral lines of Ar I 763. 51 nm (2P6 --> 1S5) and Ar I 772. 42 nm (2P2 --> 1S3). The electronic density is investigated by the broadening of spectral line 696.5 nm. Through the analysis of experimental results, it

  2. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  3. Morphological and chemical changes of aerosolized E. coli treated with a dielectric barrier discharge.

    PubMed

    Romero-Mangado, Jaione; Nordlund, Dennis; Soberon, Felipe; Deane, Graham; Maughan, Kevin; Sainio, Sami; Singh, Gurusharan; Daniels, Stephen; Saunders, Ian T; Loftus, David; Meyyappan, M; Koehne, Jessica; Gandhiraman, Ram P

    2016-06-01

    This study presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure (NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure. The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne E. coli upon treating with DBD. PMID:26872580

  4. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    NASA Astrophysics Data System (ADS)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  5. Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen

    NASA Astrophysics Data System (ADS)

    Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.

    2007-08-01

    The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.

  6. Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage

    PubMed Central

    Li, Xuechen; Li, Yaru; Zhang, Panpan; Jia, Pengying; Dong, Lifang

    2016-01-01

    One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction. PMID:27759080

  7. Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Peng, Shi; Li, Lingjun; Li, Wei; Wang, Chaoliang; Guo, Ying; Shi, Jianjun; Zhang, Jing

    2016-04-01

    In this paper, polyimide (PI) films are modified using an atmospheric pressure plasma generated by a dielectric barrier discharge (DBD) in argon. Surface performance of PI film and its dependence on exposure time from 0 s to 300 s are investigated by dynamic water contact angle (WCA), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy in attenuated total multiple reflection mode (FTIR-ATR). The study demonstrates that dynamic WCA exhibits a minimum with 40 s plasma treatment, and evenly distributed nano-dots and shadow concaves appeared for 40 s and 12 s Ar plasma treatment individually. A short period of plasma modification can contribute to the scission of the imide ring and the introduction of C-O and C=O (-COOH) by detailed analysis of FTIR-ATR.

  8. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Tučeková, Zlata; Koval'ová, Zuzana; Zahoranová, Anna; Machala, Zdenko; Černák, Mirko

    2016-08-01

    The non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) was tested for decontamination of bacteria Escherichia coli on polymer surfaces. We investigated the optical parameters of DCSBD plasma generated in synthetic air with different relative humidity. Our study was provided to estimate the main plasma components active during the DCSBD plasma degradation of E. coli contamination prepared on polytetrafluoroethylene (PTFE, Teflon) surface, in ambient air at atmospheric pressure. The DCSBD plasma was characterized by means of electrical measurements and optical emission spectroscopy. The inactivation of E. coli bacteria was evaluated by standard microbiological cultivation (CFU plate counting). The experimental results of the germicidal efficiency obtained for short plasma exposure times proved the effectiveness of DCSBD plasma for the polymer surface decontamination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  9. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  10. Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey (Inventor); Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Wilkinson, Stephen P. (Inventor); Meador, Mary Ann B. (Inventor); Guo, Haiquan N. (Inventor)

    2015-01-01

    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

  11. Dynamic Properties of Helium Atmospheric Dielectric-Barrier-Discharge Plasma Jet.

    PubMed

    Uchida, Giichiro; Takenaka, Kosuke; Miyazaki, Atsushi; Kawabata, Kazufumi; Setsuhara, Yuichi

    2015-03-01

    We present here experiments on helium atmospheric dielectric-barrier discharge jet in open air. A long stable plasma plume is realized at high applied voltage and high gas flow rate. Optical emission measurements show that the plasma plume consists of two part: a plume head with high energy electrons and a tail part with low energy electrons. The plasma plume propagates away from the quartz-tube outlet with about 30-80 km/sec along the helium gas flow channel. The propagation velocity of plasma plume is in the time scale of electron drift velocity, and the electric field plays an important role as a driving force of the plasma plume propagation. PMID:26413660

  12. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge.

    PubMed

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-01-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology. PMID:26439402

  13. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-10-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology.

  14. Isotope labelling to study molecular fragmentation during the dielectric barrier discharge wet reforming of methane

    NASA Astrophysics Data System (ADS)

    Montoro-Damas, Antonio M.; Gómez-Ramírez, Ana; Gonzalez-Elipe, Agustín R.; Cotrino, José

    2016-09-01

    Isotope labelling is used to study the wet plasma reforming of methane in a dielectric barrier discharge reactor using D2O and CH4 as reactants. Besides the formation of CO and hydrogen as main products, different partitions of H and D atoms are found in the hydrogen (i.e., H2, HD, D2), methane (i.e., CH4, CH3D and CH2D2) and water (D2O, DHO) molecules detected by mass spectrometry as outlet gases of the plasma process. The effect of operating parameters such as applied current, residence time and the addition of oxygen to the reaction mixture is correlated with the H/D distribution in these molecules, the overall reaction yield and the energetic efficiency of the process. The results prove the plasma formation of intermediate excited species that rendering water and methane instead of CO and hydrogen greatly contribute to decrease the overall energy efficiency of the reforming process.

  15. Dielectric Barrier Discharge Ionization in Characterization of Organic Compounds Separated on Thin-Layer Chromatography Plates

    PubMed Central

    Cegłowski, Michał; Smoluch, Marek; Babij, Michał; Gotszalk, Teodor; Silberring, Jerzy; Schroeder, Grzegorz

    2014-01-01

    A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound. PMID:25170762

  16. Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets

    SciTech Connect

    Li Qing; Zhu Ximing; Li Jiangtao; Pu Yikang

    2010-02-15

    In the experiment of plasma jets generated in a tube dielectric barrier discharge configuration, three distinguishable modes, namely, laminar, transition, and turbulent jet modes, have been identified. Flows of helium, neon, and argon gases shared the hydrodynamic law when their plasma jets spraying into ambient air of atmospheric pressure and room temperature. Aiming to reveal the basic processes, we propose that plasma jet length is mainly determined by reactions involving metastable atoms. These processes are responsible for the variation in plasma jet length versus gas flow rate and working gas species. To investigate this proposal in detail, we have obtained three significant experimental results, i.e., (1) the plasma jet lengths of helium, neon, and argon are different; (2) the plasma jet length of krypton slightly changes with gas flow rate, with three modes indistinguishable; and (3) there are large differences between optical emission spectra of helium, neon, argon, and krypton flow gases. These observations are in good agreement with our proposal.

  17. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    SciTech Connect

    Huang Jun; Chen Wei; Li Hui; Wang Xingquan; Lv Guohua; Wang Pengye; Khohsa, M. Latif; Guo Ming; Feng Kecheng; Yang Size

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  18. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  19. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    NASA Astrophysics Data System (ADS)

    Tang, Shoufeng; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (•OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of •OH. Oxygen atmosphere and a suitable GAC water content were contributed to •OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  20. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    PubMed Central

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-01-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2−0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology. PMID:26439402

  1. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    SciTech Connect

    Wang, Yongjie; Dong, Lifang Liu, Weibo; He, Yafeng; Li, Yonghui

    2014-07-15

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.

  2. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor

    NASA Astrophysics Data System (ADS)

    Montoro-Damas, A. M.; Brey, J. Javier; Rodríguez, Miguel A.; González-Elipe, Agustín R.; Cotrino, José

    2015-11-01

    In a tunable circular parallel plate dielectric barrier discharge reactor with pellets of a ferroelectric material separating the electrodes we investigate the plasma reforming of methane trying to maximize both the reaction yield and the energetic efficiency of the process. The geometrical configuration of the reactor (gap between electrodes, active electrode area) and the ferroelectric pellet size have been systematically varied to determine their influence on the process efficiency. The comparison between wet (with H2O as reactant), oxidative (with O2), and dry (with CO2) reforming reactions reveals a higher efficiency for the former with CO + H2 as main reaction products. The maximum energetic efficiency EE, defined as the produced number of litres of H2 per kWh, found for optimized working conditions at low-level applied power is higher than the up to date best-known results. A comprehensive discussion of the influence of the different parameters affecting the reaction yield is carried out.

  3. Influence of Nitrogen Gas Flow Rate on the Electrical Behavior of an Atmospheric Pressure Dielectric Barrier Jet Discharge

    SciTech Connect

    Choo, C. Y.; Chin, O. H.

    2011-03-30

    The dielectric barrier discharge configuration used consists of a hemispherical electrode insulated by 1 mm thick borosilicate glass and a grounded plate with a hole through which the jet is formed externally in the surrounding air. The effect of gas flow rate on the behavior of an atmospheric pressure dielectric barrier jet discharge was studied for different air-gap distance and drive voltage, V{sub DD}, to the MOSFET. It is found that at higher rate of nitrogen gas flow, the current spikes reduce in number when the driving voltage and air-gap distance are kept constant.

  4. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Judée, F.; Merbahi, N.; Wattieaux, G.; Yousfi, M.

    2016-09-01

    The aim is the comparison of different plasma parameters of single and double dielectric barrier discharge plasma jet configurations (S-DBD and D-DBD) which are potentially usable in biomedical applications. Both configurations are studied in terms of electric field distribution, electrical discharge characteristics, plasma parameters (estimated by optical emission spectroscopy analysis), and hydrodynamics of the plasma jet for electrical parameters of power supplies corresponding to an applied voltage of 10 kV, pulse duration of 1 μs, frequency of 9.69 kHz, and Ar flow of 2 l/min. We observed that the D-DBD configuration requires half the electrical power one needs to provide in the S-DBD case to generate a plasma jet with similar characteristics: excitation temperature around 4700 K, electron density around 2.5 × 1014 cm-3, gas temperature of about 320 K, a relatively high atomic oxygen concentration reaching up to 1000 ppm, the presence of reactive oxygen and nitrogen species (nitric oxide, hydroxyl radical, and atomic oxygen), and an irradiance in the UV-C range of about 20 μW cm-2. Moreover, it has been observed that D-DBD plasma jet is more sensitive to short pulse durations, probably due to the charge accumulation over the dielectric barrier around the internal electrode. This results in a significantly longer plasma length in the D-DBD configuration than in the S-DBD one up to a critical flow rate (2.25 l/min) before the occurrence of turbulence in the D-DBD case. Conversely, ionization wave velocities are significantly higher in the S-DBD setup (3.35 × 105 m/s against 1.02 × 105 m/s for D-DBD), probably due to the higher electrostatic field close to the high voltage electrode in the S-DBD plasma jet.

  5. Simulation study of one-dimensional self-organized pattern in an atmospheric-pressure dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Wang, Yanhui; Wang, Dezhen

    2015-04-01

    A two-dimensional fluid model is developed to simulate the one-dimensional self-organized patterns in an atmospheric-pressure dielectric barrier discharge (DBD) driven by sinusoidal voltage in argon. Under certain conditions, by changing applied voltage amplitude, the transversely uniform discharge can evolve into the patterned discharge and the varied self-organized patterned discharges with different numbers and arrangements of discharge channels can be observed. Similar to the uniform atmospheric-pressure DBD, the patterned discharge mode is found to undergo a transition from Townsend regime, sub-glow regime to glow regime with increasing applied voltage amplitude. In the different regimes, charged particles and electric field display different dynamical behaviors. If the voltage amplitude is increased over a certain value, the discharge enters an asymmetric patterned discharge mode, and then transforms into the spatially chaotic state with out-of-order discharge channels. The reason for forming the one-dimensional self-organized pattern is mainly due to the so-called activation-inhibition effect resulting from the local high electron density region appearing in discharge space. Electrode arrangement is the reason that induces local high electron density.

  6. Simulation study of one-dimensional self-organized pattern in an atmospheric-pressure dielectric barrier discharge

    SciTech Connect

    Zhang, Jiao; Wang, Yanhui Wang, Dezhen

    2015-04-15

    A two-dimensional fluid model is developed to simulate the one-dimensional self-organized patterns in an atmospheric-pressure dielectric barrier discharge (DBD) driven by sinusoidal voltage in argon. Under certain conditions, by changing applied voltage amplitude, the transversely uniform discharge can evolve into the patterned discharge and the varied self-organized patterned discharges with different numbers and arrangements of discharge channels can be observed. Similar to the uniform atmospheric-pressure DBD, the patterned discharge mode is found to undergo a transition from Townsend regime, sub-glow regime to glow regime with increasing applied voltage amplitude. In the different regimes, charged particles and electric field display different dynamical behaviors. If the voltage amplitude is increased over a certain value, the discharge enters an asymmetric patterned discharge mode, and then transforms into the spatially chaotic state with out-of-order discharge channels. The reason for forming the one-dimensional self-organized pattern is mainly due to the so-called activation-inhibition effect resulting from the local high electron density region appearing in discharge space. Electrode arrangement is the reason that induces local high electron density.

  7. Ozone production using dielectric barrier discharge in oxygen and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Pontiga, Francisco; Abidat, Roukia; Moreno, Helena; Agustín, Fernández-Rueda; Rebiaï, Saida

    2015-09-01

    The generation of ozone in oxygen and carbon dioxide using a planar dielectric barrier discharge (DBD) has been experimentally investigated. The DBD reactor was operated at moderate voltages (4.2 to 5.6 kV) and frequencies (50 to 500 Hz) and the gas flow rate was varied in the range 50 to 200 cm3/min. The averaged consumed power (<1 W) was evaluated using a monitor capacitor of known capacitance (1 μF). The effluent gas from the DBD reactor was diverted to a gas cell situated inside the sample compartment of a UV spectrophotometer. Therefore, ozone concentration was determined from the measurement of absorbance using Beer-Lambert law. The results have shown that ozone concentration in oxygen grows very linearly with the input power. In contrast, the production of ozone in carbon dioxide is less regular, which may be due to the deposition of a thin layer over the stainless steel electrode during the application of the electrical discharge. Moreover, the rate of ozone production with the injected energy density was found to be 500 times weaker in carbon dioxide than in pure oxygen. This work was supported by the Spanish Government Agency ``Ministerio de Ciencia e Innovación'' under Contract No. FIS2011-25161.

  8. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma

    SciTech Connect

    Wu Yun; Li Yinghong; Jia Min; Song Huimin; Liang Hua

    2013-01-21

    This paper reports an experimental study of the optical emission characteristics of the surface dielectric barrier discharge plasma excited by nanosecond pulsed voltage. N{sub 2}(C{sup 3}{Pi}{sub u}) rotational and vibrational temperatures are almost the same with upper electrode powered with positive polarity and lower electrode grounded or upper electrode grounded and lower electrode powered with positive polarity. While the electron temperature is 12% higher with upper electrode powered with positive polarity and lower electrode grounded. When the frequency is below 2000 Hz, there is almost no influence of applied voltage amplitude and frequency on N{sub 2}(C{sup 3}{Pi}{sub u}) rotational, vibrational temperature and electron temperature. As the pressure decreases from 760 Torr to 5 Torr, N{sub 2}(C{sup 3}{Pi}{sub u}) rotational temperature remains almost unchanged, while its vibrational temperature decreases initially and then increases. The discharge mode changes from a filamentary type to a glow type around 80 Torr. In the filamentary mode, the electron temperature remains almost unchanged. In the glow mode, the electron temperature increases while the pressure decreases.

  9. Reaction of Small Insects to an Ambient Pressure Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Gray, Travis; Bourham, Mohamed; Roe, R. Michael; Long, Shengyou; Donohue, Kevin

    2003-10-01

    Ambient Pressure Dielectric Barrier Discharges (DBD's) are commonly studied for rapid sterilization of surfaces. In an effort to expand the application of DBD's to larger biological species, small insect species are directly exposed to a large gap(5 cm) DBD composed primarily of helium gas. In order to control the temperature, the electrodes are actively cooled and the current density remains low (<1 mA/cm^2). A direct measurement of the gas temperature by electrically insulated thermocouples shows that the ambient temperature in the discharge volume is below the threshold for thermal damage to the insect (40 ^oC). A microwave interferometer is used to measure the line average, time average, electron density. The electron density is between 10^8 and 10^10 cm-3 for the operating conditions of interest. Under these operating conditions, optical emission spectroscopy shows only a significant emission of helium lines with some emission of molecular nitrogen lines. Under these operational conditions green peach aphids and western flower thrips show a reduction in population by at least 50% with a 60 s exposure time. The goal of this research is to replace currently existing chemical and thermal insect control techniques with the more rapid plasma techniques for quarantine applications.

  10. Radiation of nitrogen molecules in a dielectric barrier discharge with small additives of chlorine and bromine

    SciTech Connect

    Avtaeva, S. V.; Avdeev, S. M.; Sosnin, E. A.

    2010-08-15

    Spectral and energy characteristics of nitrogen molecule radiation in dielectric barrier discharges in Ar-N{sub 2}, Ar-N{sub 2}-Cl{sub 2}, and Ar-N{sub 2}-Br{sub 2} mixtures were investigated experimentally. Small additives of molecular chlorine or bromine to an Ar-N{sub 2} mixture are found to increase the radiation intensity of the second positive system of nitrogen. The conditions at which the radiation spectrum predominantly consists of vibronic bands of this system are determined. Using a numerical model of plasmachemical processes, it is shown that, at electron temperatures typical of gas discharges (2-4 eV), a minor additive of molecular chlorine to an Ar-N{sub 2} mixture leads to an increase in the concentrations of electrons, positive ions, and metastable argon atoms. In turn, collisional energy transfer from metastable argon atoms to nitrogen molecules results in the excitation of the N{sub 2}(C{sup 3{Pi}}{sub u}) state.

  11. Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2013-01-01

    The application of atmospheric-pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. In this paper, we report on a computational study of the intersection of plasma filaments in a dielectric barrier discharge (DBD) with a small wound in human skin in the context of plasma medicine. The wound is represented as a small cut in the epidermal layer of cells. Intracellular structures and their electrical properties were incorporated into the two-dimensional computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the wound. We quantify the fluxes of reactive oxygen and nitrogen species, ions and photons produced in or diffusing into the wound as might occur during the first few discharge pulses of treatment. Comparison is made to fluxes predicted by global modelling. We show that the relative location of the plasma filament with respect to the wound is important on plasma time scales (ns) for ions and photons, and for radicals directly produced by electron impact processes. On the longer-term diffusion time scales (ms) the position of the plasma filament relative to the wound is not so critical. For typical DBD conditions, the magnitude of these fluxes to the cellular surfaces corresponds to fluences of radicals nearly equal to the surface site density. These results imply that the biological reactivity is limited by reaction probabilities and not the availability of radical fluxes.

  12. On spatial stabilization of dielectric barrier discharge microfilaments by residual heat build-up in air

    NASA Astrophysics Data System (ADS)

    Ráhel, Jozef; Szalay, Zsolt; Čech, Jan; Morávek, Tomás

    2016-04-01

    Microfilaments of dielectric barrier discharge are known for their multiple re-appearance at the same spot on dielectrics. This effect of localized re-appearance is driven by residual excited species and ions, surface charge deposited on the dielectric and the local temperature build-up resulting in the local increase of reduced electric field E/ΔN. To assess the magnitude of the latter, the breakdown voltage vs. temperature up to 180 °C was carefully measured at coplanar DBD and used as an input into the numerical simulation of heat build-up by the train of discharge pulses. An average reduction of breakdown voltage was found to be 20 V/K. The model predicted a quasi-stable microfilament temperature into which the thermal build-up rapidly converges. Its magnitude agreed well with the reported rotational temperature of similar electrode configuration. The impact of quasi-stable temperature on microfilament formation dynamics is further discussed. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  13. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma.

    PubMed

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Alahakoon, Amali U; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    Pathogen inactivation induced by atmospheric pressure dielectric barrier discharge (DBD) (250 W, 15 kHz, air discharge) produced in a rectangular plastic container and the effect of post-treatment storage time on inactivation were evaluated using agar plates and cheese slices. When agar plates were treated with plasma, populations of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes showed 3.57, 6.69, and 6.53 decimal reductions at 60 s, 45 s, and 7 min, respectively. When the pathogens tested were inoculated on cheese slices, 2.67, 3.10, and 1.65 decimal reductions were achieved at the same respective treatment times. The post-treatment storage duration following plasma treatment potently affected further reduction in pathogen populations. Therefore, the newly developed encapsulated DBD-plasma system for use in a container can be applied to improve the safety of sliced cheese, and increasing post-treatment storage time can greatly enhance the system's pathogen-inactivation efficiency.

  14. Schlieren imaging in a dielectric barrier discharge actuator for airflow control

    NASA Astrophysics Data System (ADS)

    Cristofolini, A.; Neretti, G.; Roveda, F.; Borghi, C. A.

    2012-02-01

    The operation of a surface dielectric barrier discharge actuator for airflow control has been experimentally investigated. The actuator is constituted by an electrode pair separated by a dielectric Teflon sheet. Several ac supply conditions have been utilized. An electrohydrodynamics interaction was induced in still air, and several fluid-dynamic regimes were obtained. Visualization of the plasma boundary layer during the discharge ignition phase and during the steady state regime was obtained by utilizing a Schlieren diagnostic technique. The vortex morphology and propagation velocities at all supply conditions utilized have been evaluated. Velocity profiles perpendicular to the actuator surface, obtained from Pitot tube measurements, and line intensity profiles, determined by means of Schlieren imaging, have been determined for the steady regime operation. The integral along a line perpendicular to the actuator surface of the light intensity of the Schlieren image has been calculated. The profile obtained is in good agreement with the Pitot velocity profile in all the supply conditions investigated. Numerical simulations were also performed. The calculations confirm the relation between the flow velocity distribution in the boundary layer and the gas density distribution, which is the cause of the Schlieren image.

  15. Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Mrkvičková, M.; Ráheľ, J.; Dvořák, P.; Trunec, D.; Morávek, T.

    2016-10-01

    Spatially and temporally resolved measurements of atomic hydrogen concentration above the dielectric of coplanar barrier discharge are presented for atmospheric pressure in 2.2% H2/Ar. The measurements were carried out in the afterglow phase by means of two-photon absorption laser-induced fluorescence (TALIF). The difficulties of employing the TALIF technique in close proximity to the dielectric surface wall were successfully addressed by taking measurements on a suitable convexly curved dielectric barrier, and by proper mathematical treatment of parasitic signals from laser-surface interactions. It was found that the maximum atomic hydrogen concentration is situated closest to the dielectric wall from which it gradually decays. The maximum absolute concentration was more than 1022 m-3. In the afterglow phase, the concentration of atomic hydrogen above the dielectric surface stays constant for a considerable time (10 μs-1 ms), with longer times for areas situated farther from the dielectric surface. The existence of such a temporal plateau was explained by the presented 1D model: the recombination losses of atomic hydrogen farther from the dielectric surface are compensated by the diffusion of atomic hydrogen from regions close to the dielectric surface. The fact that a temporal plateau exists even closest to the dielectric surface suggests that the dielectric surface acts as a source of atomic hydrogen in the afterglow phase.

  16. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    SciTech Connect

    Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon; Birecki, Henryk; Gila, Omer

    2013-01-21

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will be discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.

  17. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Chang, Hung-Wen; Sakiyama, Yukinori; Clark, Douglas S.; Graves, David B.

    2013-04-01

    Ambient-condition air plasma produced by indirect dielectric barrier discharges can rapidly disinfect aqueous solutions contaminated with bacteria and other microorganisms. In this study, we measured key chemical species in plasma-treated aqueous solutions and the associated antimicrobial effect for varying discharge power densities, exposure times, and buffer components in the aqueous medium. The aqueous chemistry corresponded to air plasma chemistry, and we observed a transition in composition from ozone mode to nitrogen oxides mode as the discharge power density increased. The inactivation of E. coli correlates well with the aqueous-phase ozone concentration, suggesting that ozone is the dominant species for bacterial inactivation under these conditions. Published values of ozone-water antibacterial inactivation kinetics as a function of the product of ozone concentration and contact time are consistent with our results. In contrast to earlier studies of plasma-treated water disinfection, ozone-dependent bacterial inactivation does not require acidification of the aqueous medium and the bacterial inactivation rates are far higher. Furthermore, we show that the antimicrobial effect depends strongly on gas-liquid mixing following plasma treatment, apparently because of the low solubility of ozone and the slow rate of mass transfer from the gas phase to the liquid. Without thorough mixing of the ozone-containing gas and bacteria-laden water, the antimicrobial effect will not be observed. However, it should be recognized that the complexity of atmospheric pressure plasma devices, and their sensitivity to subtle differences in design and operation, can lead to different results with different mechanisms.

  18. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  19. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    NASA Astrophysics Data System (ADS)

    Lindon, Michael Allen

    As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge Expe

  20. Experimental and computational study of dielectric barrier discharges for environmental applications

    NASA Astrophysics Data System (ADS)

    Aerts, Robby

    Air pollution has become a major global concern which affects all inhabitants of our precious earth. Nowadays it is fact that our climate is changing and the sea level is rising. Moreover, we are facing an energy crisis because all our fossil fuel resources will sooner or later be running empty. It is clear that drastic measures are needed to keep our planet as it is today for generations to come. One of these measures is the 20-20-20 targets imposed by the European Commission, which stimulates the research for environmental energy applications. In this PhD dissertation two environmental applications of plasma technology are investigated. The first one is the abatement of flue gases, and more specifically the destruction of volatile organic compounds (VOCs). The second one is the conversion of CO2 into valuable chemicals. Both of these applications suffer from a large energy cost under classical (thermodynamic) conditions, due to the chemical stability of these molecules. Plasma technology is quite promising to overcome these thermodynamic barriers. Plasmas allow reactions at different time-scales with different species, such as electrons, ions, radicals, molecules and excited species, creating new chemical pathways. Indeed, in a plasma the applied electrical energy is directly transferred to the electrons, which activate the gas by ionization, excitation and dissociation, hence creating reactive species (ions, excited species, radicals), that can further easily undergo other chemical reactions. Especially gas discharges, which are low temperature plasmas, show promising results in the destruction of pollutants at mild conditions. A common type of gas discharge is the dielectric barrier discharge (DBD) which has been successfully scaled up for industrial ozone generation and is widely investigated in the field of environmental applications. The complexity of DBDs creates difficulties for experimental diagnostics and therefore numerical studies can help to improve

  1. [Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].

    PubMed

    Zhao, Yang; Dong, Li-fang; Fu, Hong-yan

    2015-01-01

    By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon

  2. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    NASA Astrophysics Data System (ADS)

    Purwins, H.-G.; Stollenwerk, L.

    2014-12-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  3. Noise control of a flow around a cylinder using high-frequency dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Belyaev, I. V.; Zaytsev, M. Yu.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.

    2015-03-01

    The effect of high-frequency dielectric barrier discharge plasma actuators on the noise of a flow around a circular cylinder is experimentally studied. It is shown that the plasma actuators are able to reduce the vortex noise of a cylinder within the range of velocities typical for aeroacoustic applications.

  4. Dielectric barrier discharge atmospheric cold plasma treatments to inhibit foodborne pathogens and tulane virus in Romaine lettuce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric barrier discharge atmospheric cold plasma (ACP) treatment is a novel, promising antimicrobial method. Of particular interest is the potential for ACP as an in-package decontamination method for fresh produce. Such tools are highly desirable, as they minimize the possibility of post-proces...

  5. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    SciTech Connect

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. There is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.

  6. Effect of avalanche-type barrier discharge on a silver halide photographic material in the case of blocked ionic conductivity

    SciTech Connect

    Boychenko, A. P.

    2012-04-15

    Imaging of avalanche-type barrier gas discharge excited by single videopulses {approx}7 {mu}s long is studied via chemical activation of an ion subsystem of microcrystals of silver halide photographic emulsions by 1-phenyl-5-mercaptotetrazole. Using 'Retina' commercial X-ray film and specially fabricated photoemulsion microcrystals with effective surface and deep electron traps as an example, the selective gas-discharge sensitivity of photographic layers to applied-voltage polarity is detected. It is shown that their sensitivity to barrier discharge ignited by negative-polarity pulses (on the electrode with a photographic material) is higher than in the case of positive pulses, irrespective of the photographic material's position in the capacitor system.

  7. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  8. Elemental determination of microsamples by liquid film dielectric barrier discharge atomic emission spectrometry.

    PubMed

    He, Qian; Zhu, Zhenli; Hu, Shenghong; Zheng, Hongtao; Jin, Lanlan

    2012-05-01

    In this study, a new liquid-film dielectric barrier discharge (LFDBD) atomic emission source was developed for microsample elemental determination. It consists of a copper electrode, a tungsten wire electrode, and a piece of glass slide between them, which serves as the dielectric barrier as well as the sample plate. The sample solution with 1 mol L(-1) nitric acid, when deposited onto the surface of the glass slide, forms a thin liquid film. The plasma is generated between the tip of the tungsten wire electrode and the liquid film surface when alternating-current (ac) high voltage (peak voltage ~3.7 kV, frequency ~30 kHz) is applied on the electrodes. Qualitative and quantitative determinations of metal ions in the sample solution were achieved by atomic emission measurements in the plasma and were demonstrated in this study with elements Na, K, Cu, Zn, and Cd. Detection limits were in the range from 0.6 ng (7 μg L(-1)) for Na to 6 ng (79 μg L(-1)) for Zn. Repeatability, expressed as relative standard deviation from seven repetitive analyses of samples with analyte concentrations at 1 mg L(-1), varied from 2.1% to 4.4%. Compared with other liquid discharge systems that operate at atmospheric pressure, the current system offers several advantages: First, it eliminates the use of a sample flow system (e.g., syringe or peristaltic pump); instead, a small aliquot of sample is directly pipetted onto the glass slide for analysis. Second, it is a microanalysis system and requires sample volume ≤80 μL, a benefit when a limited amount of sample is available. Third, because the sample is applied in aliquot, there is no washout time, and the analysis can be easily extended to sample array for high-throughput analysis. The proposed LFDBD is promising for in-field elemental determination because of its simplicity, cost effectiveness, low power supply, and no inert gas requirement. PMID:22486234

  9. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  10. Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Sujar-Garrido, P.; Benard, N.; Moreau, E.; Bonnet, J. P.

    2015-04-01

    The objective of these experiments was to determine the optimal forcing location and unsteady forcing actuation produced by a single dielectric barrier discharge plasma actuator for controlling the flow downstream of a backward-facing step. The investigated configuration is a 30-mm-height step mounted in a closed-loop wind tunnel. The flow velocity is fixed at 15 m/s, corresponding to a Reynolds number based on the step height equal to 3 × 104 ( Re θ = 1400). The control authority of the plasma discharge is highlighted by the time-averaged modification of the reattachment point and by the effects obtained on the turbulent dynamics of the reattached shear layer. Several locations of the device actuator are considered, and a parametric study of the input signal is investigated for each location. This procedure leads to the definition of an optimal control configuration regarding the minimization of the reattachment length. When the actuator—that produces an electrohydrodynamic force resulting in an electric wind jet—is located upstream the separation point, it can manipulate the first stages of the formation of the turbulent free shear layer and consequently to modify the flow dynamics. Maximum effects have been observed when the high voltage is burst modulated at a frequency f BM = 125 Hz with a duty-cycle of 50 %. This forcing corresponds to a Strouhal number based on the momentum thickness equal to 0.011, a value corresponding to the convective instability or Kelvin-Helmholtz instability of the separated shear layer.

  11. Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment

    NASA Astrophysics Data System (ADS)

    Fu, Yuwei; Yang, Aijun; Wang, Xiaohua; Murphy, Anthony B.; Li, Xi; Liu, Dingxin; Wu, Yi; Rong, Mingzhe

    2016-09-01

    In the presence of H2O and O2, the dissociation products of SF6 will decompose to form several main stable byproducts (i.e. SOF2, SOF4 and SO2F2) in an electrical discharge. These byproducts are chemically active and have been shown experimentally to be associated with discharge faults. However, the relationships between the discharges and types of decomposition components are still not clear, mainly due to the fact that the complex chemical processes during SF6 discharges are not fully understood. In order to comprehensively investigate the decomposition of SF6, an approach combining density functional theory (DFT) and transition state theory (TST) was used to study the pathways of SF6 decomposition in mixtures with H2O and O2 that involve electrically-neutral species. The complex chemical reactions were analyzed, and the corresponding rate constants were predicted. The structural optimizations, vibrational frequency calculations and zero-point energy calculations of the species involved in each chemical reaction considered were carried out using the DFT-B3LYP method. Single-point energies were calculated using the CCSD(T) method. Based on the energy information obtained, the rate constants were predicted by TST, over a large temperature range, from 300 to 12 000 K.

  12. One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust

    NASA Astrophysics Data System (ADS)

    Yoon, Jae-San; Han, Jae-Hung

    2014-10-01

    Dielectric barrier discharge (DBD) plasma actuators with an asymmetric electrode configuration can generate a wall-bounded jet without mechanical moving parts, which require considerable modifications of existing aeronautical objects and which incur high maintenance costs. Despite this potential, one factor preventing the wider application of such actuators is the lack of a reliable actuator model. It is difficult to develop such a model because calculating the ion-electric field and fluid interaction consume a high amount calculation effort during the numerical analysis. Thus, the authors proposed a semi-empirical model which predicted the thrust of plasma actuators with a simple equation. It gave a numeric thrust value, and we implemented the value on a computational fluid dynamics (CFD) solver to describe the two-dimensional flow field induced by the actuator. However, the model had a narrow validation range, depending on the empirical formula, and it did not fully consider environment variables. This study presents an improved model by replacing the empirical formulae in the previous model with physical equations that take into account physical phenomena and environmental variables. During this process, additional operation parameters, such as pressure, temperature and ac waveforms, are newly taken to predict the thrust performance of the actuators with a wider range of existing parameters, the thickness of the dielectric barrier, the exposed electrode, the dielectric constant, the ac frequency and the voltage amplitude. Thrust prediction curves from the model are compared to those of earlier experimental results, showing that the average error is less than 5% for more than one hundred instances of data. As in the earlier work, the predicted thrust value is implemented on a CFD solver, and two-dimensional wall-jet velocity profiles induced by the actuator are compared to the previous experimental results.

  13. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  14. Dielectric barrier discharge-based investigation and analysis of wastewater treatment and pollutant removal.

    PubMed

    Ramdani, N; Lousdad, A; Tilmatine, A; Nemmich, S

    2016-01-01

    Current research reveals that the oxidation by ozone is considered as an effective solution and offers irrefutable advantages in wastewater treatment. It is also well known that ozone is used to treat different types of water due to its effectiveness in water purification and for its oxidation potential. This process of ozonation is becoming progressively an alternative technology and is inscribed in a sustainable development perspective in Algeria. In this regards, the present paper investigates the wastewater treatment process by ozone produced by dielectric barrier discharge (DBD) under high potential. Three (DBD) ozone generators of cylindrical form have been used, at a laboratory scale, for treating collected samples from the wastewater treatment plant (WWTP) of the city of Sidi-Bel-Abbes located in the west of Algeria. Our experimental results reveal the efficiency of this type of treatment on the basis of the physicochemical analysis (pH, turbidity, chemical oxygen demand, biological oxygen demand, heavy metals) and microbial analysis downstream of the WWTP, which showed a high rate of elimination of all the parameters. PMID:27332830

  15. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  16. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    NASA Astrophysics Data System (ADS)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  17. Wake Control of a Blunt Trailing Edge Profiled Body Using Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Naghib-Lahouti, Arash; Lavoie, Philippe

    2012-11-01

    The periodic shedding of von Karman vortices is the source of cyclic aerodynamic forces on nominally 2D bluff bodies. Beyond a threshold Reynolds number, which can be as high as 700 depending on profile geometry, secondary instabilities, appearing as undulations in the von Karman vortices and pairs of counter-rotating streamwise vortices, emerge in the wake. The secondary instabilities are found to persist at Reynolds numbers in the order of 104. It has been shown that amplification of the secondary instabilities can lead to disorganization of the von Karman vortices, and attenuation of the cyclic forces. In the present study, this relationship is used as the basis of a wake flow control approach for a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge. An array of dielectric barrier discharge plasma actuators placed at the trailing edge is used for control actuation, with a spanwise spacing based on the wavelength of the secondary instabilities, to achieve maximum amplification of the instabilities. PIV and hot-wire measurements have been conducted at Reynolds numbers between 2,000 and 24,000 to determine the effect of flow control on the wake characteristics, and the total drag. Funded in part by the Government of Ontario, Mitacs, and Bombardier Aerospace.

  18. Streamer development in barrier discharge in air: spectral signatures and electric field

    NASA Astrophysics Data System (ADS)

    Hoder, Tomas; Simek, Milan; Bonaventura, Zdenek; Prukner, Vaclav

    2015-09-01

    Electrical breakdown in the upper atmosphere takes form of so called Transient Luminous Events (TLE). Down to the certain pressure limit, the first phases of the TLE-phenomena are controlled by the streamer mechanism. In order to understand the development of these events, streamers in 10 torr air were generated in volume barrier discharge. Stability and reproducibility of generated streamers were secured by proper electrode geometry and specific applied voltage waveform. In this work, spectrally resolved measurements of the streamer head emission with high spatial and temporal resolution are presented. Precise recordings of the emission of the second positive and first negative systems of molecular nitrogen allowed the determination of the spatio-temporal development of the reduced electric field in the streamer head. This unique experimental result reveals in more details the early stages of the streamer development and gives, besides values for streamer velocity and its diameter, quantitative information on the magnitude of the electric field. T.H. was financed through the ESF Programme TEA-IS (Grant No. 4219), M.S. and V.P. by the AVCR under collaborative project M100431201 and Z.B. acknowledges the support of grant of Czech Science Foundation GA15-04023S.

  19. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge.

    PubMed

    Dojčinović, Biljana P; Roglić, Goran M; Obradović, Bratislav M; Kuraica, Milorad M; Kostić, Mirjana M; Nešić, Jelena; Manojlović, Dragan D

    2011-08-30

    Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H(2)O(2), Fe(2+) and Cu(2+)) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315kJ/L) were studied. Influence of residence time was investigated over a period of 24h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10mM H(2)O(2) in a system of 80.0mg/L Reactive Black 5 with applied energy density of 45kJ/L, after residence time of 24h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.

  20. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  1. Removal of cyanobacteria from synthetic and real water by dielectric barrier discharge process.

    PubMed

    Zhang, Yi; Chew, Stephanie Ting Yu; Te, Shu Harn; Lim, Tuti Mariana

    2015-12-01

    The feasibility of cyanobacteria removal from freshwater by a dielectric barrier discharge (DBD) process is investigated. Seven commercial and environmental cyanobacteria strains, as well as real algae-laden water, were tested. The removal of the cyanobacteria was evaluated by analyzing the changes in chlorophyll a content, total organic carbon (TOC) concentration, and cell morphology. Nearly total removal of chlorophyll a was achieved within 20 min, while the TOC analysis exhibited an increase-decrease-increase trend in 60 min of treatment, likely due to the oxidation of intracellular and intercellular materials. Observation under light microscopy revealed the disruption of intracellular and intercellular structures within 5 min of DBD treatment and thus supported the TOC analysis. Increasing the salinity of the medium from 0 to 5 parts per thousand (ppt) improved treatment efficiency, where similar level of chlorophyll a removal (around 93%) was achieved in only half the treatment time. Application of DBD on real algae-laden water from a fish farm yielded higher treatment efficiency than in synthetic medium, indicating the promising application of DBD as a means to control cyanobacteria bloom in fresh and estuary water bodies.

  2. Alumina and quartz as dielectrics in a dielectric barrier discharges DBD system for CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Mora, E. Y.; Sarmiento, A.; Vera, E.

    2016-02-01

    In this work was studied the CO2 carbon dioxide treatment, which is a pollutant gas and the main cause of global warming. For this aim, plasma was generated, through dielectric barrier discharges DBD, using hydrogen H2 together with the CO2 as reaction gases. There were used as dielectrics, alumina and quartz tubes of identical geometry. It was studied the CO2 conversion in function of mixture composition CO2+H2, of the electrical power and the operation frequency, for three different gas flows. In all cases it was achieved better conversion levels with the alumina; this is because the alumina has a relative dielectric permittivity coefficient higher than the quartz. As products of CO2 conversion in the chemical reactions, water H2O and methane gas CH4 were identified. The CO2 conversion percentage to fixed work conditions was higher with the decrease the quantity of this gas in the mixture, with increase the active electrical power, and with decrease the operation electrical frequency.

  3. A Radical-Mediated Pathway for the Formation of [M + H](+) in Dielectric Barrier Discharge Ionization.

    PubMed

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-09-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ.

  4. Morphological and chemical changes of aerosolized E. coli treated with a dielectric barrier discharge

    DOE PAGESBeta

    Romero-Mangado, Jaione; Nordlund, Dennis; Soberon, Felipe; Deane, Graham; Maughan, Kevin; Sainio, Sami; Singh, Gurusharan; Daniels, Stephen; Saunders, Ian T.; Loftus, David; et al

    2016-02-12

    This paper presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure(NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure.more » The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne E. coli upon treating with DBD.« less

  5. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge.

    PubMed

    Dojčinović, Biljana P; Roglić, Goran M; Obradović, Bratislav M; Kuraica, Milorad M; Kostić, Mirjana M; Nešić, Jelena; Manojlović, Dragan D

    2011-08-30

    Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H(2)O(2), Fe(2+) and Cu(2+)) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315kJ/L) were studied. Influence of residence time was investigated over a period of 24h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10mM H(2)O(2) in a system of 80.0mg/L Reactive Black 5 with applied energy density of 45kJ/L, after residence time of 24h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism. PMID:21703757

  6. High-repetition rate laser ablation coupled to dielectric barrier discharge postionization for ambient mass spectrometry.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-07-15

    Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100μJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded. PMID:26851554

  7. Generation of dusty plasmas in supercritical carbon dioxide using surface dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2015-11-01

    Dusty plasmas are a class of plasmas that not only have repercussions for many branches of plasma science and technology, but also thermodynamics and statistical mechanics. However, in ground-based experiments, gravity influences the dynamics and formation of plasma crystals, and the realization of zero-gravity dusty plasmas in space is very costly and time-consuming. To overcome some of these limitations, we propose dusty plasmas in supercritical fluids as a means for realizing ground-based experiments under pseudo-microgravity conditions, to study the formation and self-organization of plasma crystals. Dusty plasmas were realized by using surface dielectric barrier discharges (DBDs) generated in supercritical carbon dioxide (\\text{scC}{{\\text{O}}2} ), and the motion of fine particles above the electrode surface was studied by high-speed imaging. The plasmas deposited charge on the particles, and the particles formed a self-organized structure above the surface DBD reactor. The particle charge estimated from the analysis of particle motion was on the order of  -104 to -105 e C, and the estimation of the Coulomb coupling parameter of the charged particles with a value of 102 to 104 confirmed the formation of strongly coupled plasmas.

  8. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers.

  9. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  10. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program. PMID:26421625

  11. Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection.

    PubMed

    Zhu, Hongbo; Zhou, Menglian; Lee, Jiwon; Nidetz, Robert; Kurabayashi, Katsuo; Fan, Xudong

    2016-09-01

    This paper presents the design, fabrication, and characterization of a microhelium dielectric barrier discharge photoionization detector (μHDBD-PID) on chip with dimensions of only ∼15 mm × ∼10 mm × ∼0.7 mm and weight of only ∼0.25 g. It offers low power consumption (<400 mW), low helium consumption (5.8 mL/min), rapid response (up to ∼60 ms at a flow rate of 1.5 mL/min), quick warm-up time (∼5 min), an excellent detection limit (a few picograms), a large linear dynamic range (>4 orders of magnitude), and maintenance-free operation. Furthermore, the μHDBD-PID can be driven with a miniaturized (∼5 cm × ∼2.5 cm × ∼2.5 cm), light (22 g), and low cost (∼$2) power supply with only 1.5 VDC input. The dependence of the μHDBD-PID performance on bias voltage, auxiliary helium flow rate, carrier gas flow rate, and temperature was also systematically investigated. Finally, the μHDBD-PID was employed to detect permanent gases and a sublist of the EPA 8260 standard reagents that include 51 analytes. The μHDBD-PID developed here can have a broad range of applications in portable and microgas chromatography systems for in situ, real-time, and sensitive gas analysis. PMID:27559931

  12. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    NASA Astrophysics Data System (ADS)

    Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei

    2016-07-01

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6-7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  13. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  14. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  15. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  16. Saffman-Taylor-like instability in a narrow gap induced by dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Hou, Shang-Yan; Chu, Hong-Yu

    2015-07-01

    This work is inspired by the expansion of the plasma bubble in a narrow gap reported by Chu and Lee [Phys. Rev. Lett. 107, 225001 (2011)], 10.1103/PhysRevLett.107.225001. We report the unstable phenomena of the plasma-liquid interface with different curvature in a Hele-Shaw cell. Dielectric barrier discharge is produced in the cell at atmospheric pressure which is partially filled with silicone oil. We show that the Saffman-Taylor-like instability is observed on the bubble-type, channel-type, and drop-type interfaces. The Schlieren observation of the plasma-drop interaction reveals that there is a vapor layer around the drop and the particle image velocimetry shows the liquid flow inside the drop. We propose that the thermal Marangoni effect induced by the plasma heating is responsible for the unstable phenomena of the plasma-liquid interaction. The fluctuation of the interface is shown consistently with the Saffman-Taylor instability modified by the temperature-dependent velocity and surface tension.

  17. The Influence of Relative Humidity on Dielectric Barrier Discharge Plasma Flow Control Actuator Performance

    NASA Astrophysics Data System (ADS)

    Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.

    2012-11-01

    Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.

  18. A Radical-Mediated Pathway for the Formation of [M + H]+ in Dielectric Barrier Discharge Ionization

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F.; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-09-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H]+) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H]+). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH]+ and [M - H]+ were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI.

  19. Experimental Study on Inactivation of Bacterial Endotoxin by Using Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Shi, Xingmin; Li, Yaxi; Zhang, Guanjun; Ma, Yue; Shao, Xianjun

    2011-12-01

    The low-temperature plasma (LTP) generated by dielectric barrier discharge (DBD) was used to sterilize the E.coli endotoxin, which is usually difficult to kill by traditional methods. Three different concentrations of bacterial endotoxin (1 EU/mL, 0.5 EU/mL and 0.25 EU/mL) were treated by LTP for different time (20 s, 40 s and 60 s). Tachypleus amebocyte lysate (TAL) method was employed to detect the concentration variation of bacterial endotoxin before and after the plasma treatment, and endotoxic shock mice model was used to evaluate the inactivation effects of LTP on endotoxin for further study. Experimental results demonstrated that, DBD plasma can inactivate the bacterial endotoxin quickly and effectively, and when the LTP treatment time was increased, the concentrations of bacterial endotoxin decreased gradually (after 60 s plasma treatment, its inactivation effect was beyond the Chinese pharmacopoeia standard), and the average survival time of mice gradually extended. The possible inactivation mechanisms are proposed to be related to reactive oxygen species (ROSs).

  20. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  1. STUDENT AWARD FINALIST: Characteristics of Arrays of Independently Controlled RF Micro-Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chieh; Leoni, Napoleon; Birecki, Henryk; Gila, Omer; Kushner, Mark J.

    2011-10-01

    Micro dielectric barrier discharges (mDBD's) are being developed for high pressure, non-thermal plasma sources. The micro-plasma devices (10-100 μm) of interest are RF-excited arrays where individually controlled apertures are used for charge extraction to treat or pattern surfaces. When using mDBDs to produce plumes of charged species, there are potential interactions between the mDBD devices. In this presentation, we discuss properties of atmospheric pressure mDBD's arrays using results from a 2D simulation. The devices consist of sandwich structures of dc and rf biased electrodes to help shape the plume. The model solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation and Green's function propagator for radiation transport. A Monte Carlo simulation tracks sheath accelerated electrons. We find that the adjacency of the mDBDs and the dielectric properties of the materials being treated are important to operation. Charge extraction and the shape of the plume can be optimized by choice of gas composition and pressure. Scaling laws will be presented for mDBD arrays as a function of frequency and phasing of the arrays. Work supported by Hewlett-Packard Research Labs.

  2. Plasma activated dissociation of CO2 studied in a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Engeln, Richard; Brehmer, Florian; Welzel, Stefan; Klarenaar, Bart; van de Sanden, Richard; Tu/E Collaboration; Afs Gmbh Collaboration; Differ Collaboration

    2014-10-01

    The ever-increasing emission of carbon dioxide into the atmosphere as well as the intermittency problem of electricity produced by renewable energy sources are challenges that urgently need to be addressed. An approach addressing both issues at the same time is converting CO2 to a fuel using plasma driven by electricity from renewable sources. We will present in this contribution the results of a study on the conversion of CO2 to CO in a dielectric barrier discharge in pure CO2 at pressures up to 1000 mbar: FTIR absorption and Raman spectroscopy were applied to measure CO number densities and gas temperatures as function of the specific injected energy. CO densities with a maximum at 1018 cm-3 (mixing ratio of 4.4%) at 46 kJ/sl, energy efficiencies in the range of a few percent and gas temperatures up to 550 K were detected. The CO production is directly linked with the total number of transferred charges q during the residence time tres of CO2 molecules. Also ozone has been detected with a maximum mixing ratio of 0.075%.

  3. A Radical-Mediated Pathway for the Formation of [M + H](+) in Dielectric Barrier Discharge Ionization.

    PubMed

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-09-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ. PMID:27380388

  4. Removal of cyanobacteria from synthetic and real water by dielectric barrier discharge process.

    PubMed

    Zhang, Yi; Chew, Stephanie Ting Yu; Te, Shu Harn; Lim, Tuti Mariana

    2015-12-01

    The feasibility of cyanobacteria removal from freshwater by a dielectric barrier discharge (DBD) process is investigated. Seven commercial and environmental cyanobacteria strains, as well as real algae-laden water, were tested. The removal of the cyanobacteria was evaluated by analyzing the changes in chlorophyll a content, total organic carbon (TOC) concentration, and cell morphology. Nearly total removal of chlorophyll a was achieved within 20 min, while the TOC analysis exhibited an increase-decrease-increase trend in 60 min of treatment, likely due to the oxidation of intracellular and intercellular materials. Observation under light microscopy revealed the disruption of intracellular and intercellular structures within 5 min of DBD treatment and thus supported the TOC analysis. Increasing the salinity of the medium from 0 to 5 parts per thousand (ppt) improved treatment efficiency, where similar level of chlorophyll a removal (around 93%) was achieved in only half the treatment time. Application of DBD on real algae-laden water from a fish farm yielded higher treatment efficiency than in synthetic medium, indicating the promising application of DBD as a means to control cyanobacteria bloom in fresh and estuary water bodies. PMID:26213133

  5. Beneficial and detrimental fatigue effects of dielectric barrier discharges on the piezoelectricity of polypropylene ferroelectrets

    NASA Astrophysics Data System (ADS)

    Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund

    2011-07-01

    Cellular polypropylene (PP) ferroelectrets combine a large piezoelectricity with mechanical flexibility and elastic compliance. Their charging process represents a series of dielectric barrier discharges (DBDs) that generate a cold plasma with numerous active species and thus modify the inner polymer surfaces of the foam cells. Both the threshold for the onset of DBDs and the piezoelectricity of ferroelectrets are sensitive to repeated DBDs in the voids. It is found that the threshold voltage is approximately halved and the charging efficiency is clearly improved after only 103 DBD cycles. However, plasma modification of the inner surfaces from repeated DBDs deteriorates the chargeability of the voids, leading to a significant reduction of the piezoelectricity in ferroelectrets. After a significant waiting period, the chargeability of previously fatigued voids shows a partial recovery. The plasma modification is, however, detrimental to the stability of the deposited charges and thus also of the macroscopic dipoles and of the piezoelectricity. Fatigue from only 103 DBD cycles already results in significantly less stable piezoelectricity in cellular PP ferroelectrets. The fatigue rate as a function of the number of voltage cycles follows a stretched exponential. Fatigue from repeated DBDs can be avoided if most of the gas molecules inside the voids are removed via a suitable evacuation process.

  6. Atomic oxygen characteristics in a dielectric barrier discharge developed for wound treatment

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Schroeder, Daniel; Schulz-von der Gathen, Volker; Bibinov, Nikita; Awakowicz, Peter

    2014-10-01

    Nowadays, infected chronic wounds are a major problem of society. Atmospheric pressure plasmas like dielectric barrier discharges (DBDs) have already shown their ability of improving the wound healing process of chronic wounds in clinical trials. Yet, the mechanism of action is poorly understood. A DBD comprising a single driven electrode is a beneficial configuration for wound treatment. The patient itself functions as the counter electrode. Hence, reactive oxygen species (ROS) like ozone or atomic oxygen produced in the plasma reach the wound directly. Some ROS, including superoxide or nitric oxide, are produced by skin cells to repulse invading bacteria. Nevertheless, a very high amount of ROS leads to oxidative stress and can cause cell damage or even cell death. Therefore it is crucial to have a well characterized plasma for effective wound treatment. Plasma parameters are determined using absolutely calibrated optical emission spectroscopy. Density of atomic oxygen is measured applying xenon-calibrated two photon absorption laser induced fluorescence spectroscopy. A simulation of the afterglow chemistry, developed to gain insight in the characteristics of the atomic oxygen and its flux towards the treated surface, is cross-checked with measurement results. Work supported by the German Research Foundation within PAK816.

  7. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. PMID:26695309

  8. Energetics of Molecular Excitation, Fragmentation, and Polymerization in a Dielectric Barrier Discharge with Argon Carrier Gas.

    PubMed

    Watson, Sean; Nisol, Bernard; Lerouge, Sophie; Wertheimer, Michael Robert

    2015-09-22

    We report experiments at atmospheric pressure (AP) using a dielectric barrier discharge (DBD) reactor designed for plasma polymerization (PP) with "monomers" at ‰ concentrations in ca.10 standard liters per minute of argon (Ar) carrier gas. We have perfected a method for measuring Eg, the energy dissipated per cycle of the applied a.c. high voltage, Va(f), but the focus here is on ΔEg, the energy difference with and without a flow, Fd, of monomer in the Ar flow, with the plasma being sustained at Va(f) = 2.8 kVrms, f = 20 kHz. From ΔEg and Fd, we derive a characteristic energy per molecule, Em (in eV), and investigate plots of Em versus Fd and 1/Fd for three model "monomers": formic, acetic, and acrylic acid. These data, along with those for lighter or heavier organic compounds, reveal novel information about energy absorption from the plasma and ensuing polymerization reactions. PMID:26343365

  9. Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Nonomura, Taku; Okada, Koichi; Asada, Kengo; Aono, Hikaru; Yakeno, Aiko; Abe, Yoshiaki; Fujii, Kozo

    2015-11-01

    Large-eddy simulations have been conducted to investigate the mechanisms of separated-flow control using a dielectric barrier discharge plasma actuator at a low Reynolds number. In the present study, the mechanisms are classified according to the means of momentum injection to the boundary layer. The separated flow around the NACA 0015 airfoil at a Reynolds number of 63 000 is used as the base flow for separation control. Both normal and burst mode actuations are adopted in separation control. The burst frequency non-dimensionalized by the freestream velocity and the chord length (F+) is varied from 0.25 to 25, and we discuss the control mechanism through the comparison of the aerodynamic performance and controlled flow-fields in each normal and burst case. Lift and drag coefficients are significantly improved for the cases of F+ = 1, 5, and 15 due to flow reattachment associated with a laminar-separation bubble. Frequency and linear stability analyses indicate that the F+ = 5 and 15 cases effectively excite the natural unstable frequency at the separated shear layer, which is caused by the Kelvin-Helmholtz instability. This excitation results in earlier flow reattachment due to earlier turbulent transition. Furthermore, the Reynolds stress decomposition is conducted in order to identify the means of momentum entrainment resulted from large-scale spanwise vortical structure or small-scale turbulent vortices. For the cases with flow reattachment, the large-scale spanwise vortices, which shed from the separated shear layer through plasma actuation, significantly increase the periodic component of the Reynolds stress near the leading edge. These large-scale vortices collapse to small-scale turbulent vortices, and the turbulent component of the Reynolds stress increases around the large-scale vortices. In these cases, although the combination of momentum entrainment by both Reynolds stress components results in flow reattachment, the dominant component is identified as

  10. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  11. The Influence of Gas Composition in Dielectric Barrier Discharges on the Broadening of the Hydrogen H{alpha} Transition

    SciTech Connect

    Janus, H. W.

    2006-01-15

    The distribution of hydrogen atoms responsible for emission of the Balmer H{alpha} line in the region of the dielectric barrier discharges in the helium and hydrogen as well as in the argon and hydrogen mixtures, in the direction perpendicular to the electrode surfaces, has bee determined by the optical emission spectroscopy accounting for the polarization of the emitted light. The procedure of fitting the measured line profiles accounting for the Stark effect has been used for determination of the distribution of the electric field in the discharge region.

  12. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  13. The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps.

    PubMed

    Hong, Jun; Han, Bo; Yuan, Nannan; Gu, Jingli

    2015-07-01

    Knowledge of the effective radiation spectrum irradiating substrates from microwave powered electrodeless discharge lamps (MEDLs), and the active species that directly oxidize substrates in the photolytic process, is fragmentary and unclear. In this work, we conducted a comparative study using MEDLs made with quartz envelopes (MEDL-quartz) and with borosilicate Pyrex envelopes (MEDL-Pyrex) targeting the degradation of Rhodamine B (RhB) via radical-extinguishing tests. We found that UVC/UVB radiation is essential to generate •OH and H2O2 in the MEDL-quartz system. The degradation of RhB mostly originates from •OH species, which account for a contribution of 53.8%, while the remaining contribution is attributed to oxidation by H2O2 and direct photolysis. This degradation is influenced by several parameters. Acidic and neutral pHs, but not extreme alkaline pH, benefit the degradation. To ensure a high intensity of UVC/UVB, the optimum ratio of the MEDL volume to the aqueous solution volume (VL/VS) is 0.4. Concentrations of 0.15-0.20 mmol/L of RhB are suitable to obtain an effective quantum absorbance in the MEDL-quartz system, showing a high decomposition rate of 5.6×10(-3) (mmol/L) min(-1). Moreover, two other substrates, Reactive Brilliant Red X-3B and Safranine T, were tested and found to be efficiently degraded in the MEDL-quartz system.

  14. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    NASA Astrophysics Data System (ADS)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  15. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma

    SciTech Connect

    Jukes, Timothy N.; Choi, Kwing-So

    2009-08-15

    Dielectric barrier discharge (DBD) plasma actuators have been used to control the flow around a circular cylinder at Re=15 000, where the near-wake structure was studied using time-resolved particle image velocimetry with simultaneous measurements of the dynamic lift and drag forces. It was shown that the vortex shedding was suppressed when the surface plasma placed near the natural separation point was activated in a pulsed mode at nondimensional frequency, f{sub p}{sup +}, above 0.6 with a force coefficient, C{sub p}, greater than 0.05%. Plasma actuator performance on flow control was summarized by mapping the changes in drag and lift fluctuations as a function of the forcing frequency and the force coefficient. They showed that more than 70% reduction in lift fluctuations was obtained with up to 32% drag reduction at f{sub p}{sup +}=2.0 and C{sub p}=0.32%. Here, narrowing of the wake was observed as the plasma promoted shear-layer roll-ups at the forcing frequency. This, however, did not affect the shear layer on the opposite side of the wake. At nondimensional forcing frequencies less than 0.6, the vortex shedding locked onto a multiple of the plasma frequency to amplify the wake oscillations. This caused more than 85% increase in lift fluctuations with 8% drag increase at f{sub p}{sup +}=0.2 and C{sub p}=0.01%. The efficiency of flow control using DBD plasma was found to be 1%-2% for drag reduction while around 6% for drag increase.

  16. Plasma Filaments in Dielectric Barrier Discharges Penetrating into High Aspect Ratio Cracks for Sterilization

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    The ability of surface-hugging-plasmas, as produced in dielectric barrier discharges (DBDs), to penetrate into crevices, turn corners and navigate geometrical obstructions, is important in plasma-wound healing and sterilization. In this talk, we discuss results from a computational investigation of the plasma filaments produced in an air DBD and impinging on and penetrating into deep, high aspect ratio cracks in the bottom dielectric. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential, concurrent with radiation transport. A Monte Carlo simulation is used to obtain ion energy distributions (IEDs) to surfaces. Cracks are 1 mm deep and 3 μm to 250 μm wide (aspect ratios of 333 to 4). We found that when impinging onto the cracked dielectric, the plasma filament conformally spreads over the surface. The conductive plasma transfers the applied potential to the opening of the crack. The width of the crack, w, then determines the penetration of the plasma. If w is large compared to the filament, the penetration is surface hugging. If w is commensurate with the filament, the plasma fills the crack. If the Debye length is about w or larger, there is not significant penetration. For the conditions investigated, penetration occurred for w > 5-6 μm. IEDs onto the surfaces of the trenches produce transient pulses of ions with energies >150 eV.

  17. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    PubMed

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  18. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  19. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma.

    PubMed

    Hijosa-Valsero, María; Molina, Ricardo; Schikora, Hendrik; Müller, Michael; Bayona, Josep M

    2013-11-15

    Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1-5 mg L(-1)) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments. The kinetic constants (k) were slightly faster in R1 (0.534 min(-1) for atrazine; 0.567 min(-1) for chlorfenvinfos; 0.802 min(-1) for 2,4-dibromophenol; 0.389 min(-1) for lindane) than in R2 (0.104 min(-1) for atrazine; 0.523 min(-1) for chlorfenvinfos; 0.273 min(-1) for 2,4-dibromophenol; 0.294 min(-1) for lindane). However, energy efficiencies were about one order of magnitude higher in R2 (89 mg kW(-1) h(-1) for atrazine; 447 mg kW(-1) h(-1) for c hlorfenvinfos; 47 mg kW(-1) h(-1) for 2,4-dibromophenol; 50 mg kW(-1) h(-1) for lindane) than in R1. Degradation by -products of all four compounds were identified in R1. As expected, when the plasma treatment (R1) was applied to industrial wastewater spiked with atrazine or lindane, micropollutant removal was also achieved, although at a lower rate than with aqueous solutions (k = 0.117 min(-1) for atrazine; k = 0.061 min(-1) for lindane). PMID:24121639

  20. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  1. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process.

    PubMed

    Ko, Kyung Bo; Byun, Youngchul; Cho, Moohyun; Namkung, Won; Shin, Dong Nam; Koh, Dong Jun; Kim, Kyoung Tae

    2008-04-01

    The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants. PMID:18313101

  2. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  3. Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms

    PubMed Central

    Matthes, Rutger; Bender, Claudia; Schlüter, Rabea; Koban, Ina; Bussiahn, René; Reuter, Stephan; Lademann, Jürgen; Weltmann, Klaus-Dieter; Kramer, Axel

    2013-01-01

    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds. PMID:23894661

  4. A diffuse plasma generated by bipolar nanosecond pulsed dielectric barrier discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Jia, Li; Yang, De-Zheng; Shi, Heng-Chao; Wang, Wen-Chun; Wang, Sen

    2014-05-01

    In this study, a bipolar high-voltage pulse with 20 ns rising time is employed to generate diffuse dielectric barrier discharge plasma using wire-plate electrode configuration in nitrogen at atmospheric pressure. The gas temperature of the plasma is determined by comparing the experimental and the best fitted optical emission spectra of the second positive bands of N2(C3Πu → B3 Πg, 0-2) and the first negative bands of N2+ (B2 Σu+ → X2 Σg+, 0-0). The effects of the concentration of argon and oxygen on the emission intensities of N2 (C3Πu → B3Πg, 0-0, 337.1 nm), OH (A 2Σ → X2Π, 0-0) and N2+ (B2 Σu+ → X2 Σg+, 0-0, 391.4 nm) are investigated. It is shown that the plasma gas temperature keeps almost constant with the pulse repetition rate and pulse peak voltage increasing. The emission intensities of N2 (C3Πu → B3Πg, 0-0, 337.1 nm), OH(A2Σ → X2Π, 0-0) and N2+ (B2 Σu+ → X2 Σg+, 0-0, 391.4 nm) rise with increasing the concentration of argon, but decrease with increasing the concentration of oxygen, and the influences of oxygen concentration on the emission intensities of N2(C3Πu → B3Πg, 0-0, 337.1 nm) and OH (A2Σ → X2Π, 0-0) are more greater than that on the emission intensity of N2+ (B2 Σu+ → X2 Σg+, 0-0, 391.4 nm).

  5. A nanosecond surface dielectric barrier discharge at elevated pressures: time-resolved electric field and efficiency of initiation of combustion

    NASA Astrophysics Data System (ADS)

    Kosarev, I. N.; Khorunzhenko, V. I.; Mintoussov, E. I.; Sagulenko, P. N.; Popov, N. A.; Starikovskaia, S. M.

    2012-08-01

    We study a nanosecond surface dielectric barrier discharge (SDBD) initiated by negative or positive polarity pulses 10-15 kV in amplitude in a cable, 25-30 ns FWHM, 5 ns rise time, in the regime of a single shot or 3 Hz repetitive frequency. Discharge parameters, namely spatial structure of the discharge and time- and space-resolved electric field are studied in a N2 : O2 = 4 : 1 mixture for P = 1-5 atm. The possibility of igniting a combustible mixture with the help of an SDBD is demonstrated using the example of a stoichiometric C2H6 : O2 mixture at ambient initial temperature and at 1 atm pressure. Flame propagation and ignited volume as a function of time are compared experimentally for two discharge geometries: SDBD and pin-to-pin configurations at the same shape and amplitude of the incident pulse. It is shown that the SDBD can be considered as a multi-point ignition system with maximum energy release near the high-voltage electrode. Numerical modeling of the discharge and subsequent combustion kinetics for the SDBD conditions is performed. The discharge action leads to the production of atoms and radicals as well as to fast gas heating, due to the relaxation of electronic and vibrational degrees of freedom. The calculated ignition delay time is in reasonable agreement with the experimental results.

  6. Field-emitting Townsend regime of surface dielectric barrier discharges generated in CO2 emerging at high pressure

    NASA Astrophysics Data System (ADS)

    Pai, David; Stauss, Sven; Terashima, Kazuo

    2015-09-01

    Surface dielectric barrier discharges (DBDs) in CO2 from atmospheric pressure up to supercritical conditions (Tc = 304.13 K, pc = 7.4 MPa) generated using 10-kHz ac excitation are studied experimentally. Two discharge regimes are obtained: the standard and field-emitting Townsend regimes. The former resembles typical surface DBDs that have streamer-like characteristics, but the latter has not been reported previously. Here we present an analysis of the electrical and optical diagnostics of the field-emitting Townsend discharge regime using current-voltage and charge-voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy. Using an electrical model, it is possible to calculate the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The model also accounts for the space-averaged Laplacian field by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are similar to those of atmospheric-pressure Townsend DBDs, i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron-neutral bremsstrahlung, with a corresponding average electron temperature of 2600 K. Raman spectra of CO2 near the critical point demonstrate that the discharge increases the average gas temperature by less than 1 K. This work was supported financially in part by MEXT and JSPS.

  7. Determination of bismuth in solid samples by hydride generation atomic fluorescence spectrometry with a dielectric barrier discharge atomizer.

    PubMed

    Xing, Zhi; Wang, Juan; Zhang, Sichun; Zhang, Xinrong

    2009-11-15

    An atmospheric pressure dielectric barrier discharge (DBD) atomizer was investigated for bismuth (Bi) determination with hydride generation (HG) atomic fluorescence spectrometry (AFS). The characteristics of the atomizer and the effects of experimental parameters, including observation height, discharge power, flow rate of discharge gas and AFS carrier gas were optimized. The linear range of present method for Bi determination is 0.5-300.0 microg L(-1) with a detection limit of 0.07 microg L(-1) (3 sigma). The method was validated by the analysis of reference materials (GBW08517 and GSB-14) and the results agreed well with the reference values. The established method was applied to the determination of Bi in ore, soil and ash samples.

  8. Characteristics of NOx Removal Combining Dielectric Barrier Discharge Plasma with Selective Catalytic Reduction by C3H6

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Li, Yi; Chen, Wei; Lv, Guo-Hua; Huang, Jun; Zhu, Guo-Xian; Wang, Xiao-Qian; Zhang, Xian-Hui; Wang, Da-Cheng; Feng, Ke-Cheng; Yang, Si-Ze

    2010-08-01

    Characteristics of NOx removal combining dielectric barrier discharge (DBD) plasma with selective catalytic reduction (SCR) by C3H6 were investigated under the conditions of high NOx concentration and high space velocity at various temperatures. Experiment results show that there were no obvious removal of NOx and NO in the only C3H6-SCR system and only DBD system individually. But the high NOx removal rate was achieved in C3H6-SCR cooperating with DBD plasma system. Especially NOx removal rate can reach up to 88.5% at 150 °C simulating diesel engine exhaust temperature. It can be seen that when discharge comes into being, the catalystic activity was enhanced with discharge strengthened, so that the NOx was almost completely removed. In the course of NOx removal, DBD played an important role in oxidizing NO to NO2 and activating C3H6 and catalysts to reduce NOx.

  9. Computational Investigation of the Influence of Gravitational Convection on the Gaseous Mixture Parameters of the Barrier Discharge Xecl Excilamp

    NASA Astrophysics Data System (ADS)

    Pikulev, A. A.; Turutin, S. L.; Sosnin, É. A.

    2016-07-01

    Calculations have been performed of the influence of gravitational convection on the thermodynamic parameters of the gaseous mixture of the barrier discharge (BD) XeCl excilamp. It has been shown that the presence of convection leads to a three-to-fivefold decrease in the average temperature of the gaseous mixture in the discharge region. Analysis of the experiments carried out for the BD XeCl excilamp has been performed, and the temperature and convection rate distributions of the gaseous mixture have been determined. It has been shown that the decrease in the ultraviolet radiation power of the excilamp in the absence of convection is due to the increase in the gaseous mixture temperature to above 400 K, which corresponds to a total discharge power of ~45 W and a heat power of ~2 W.

  10. Methane conversion in surface- and volume-type dielectric barrier discharges generated in the presence of metal-mesh electrodes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Kulinich, S. A.; Ito, Tsuyohito

    2014-09-01

    Methane gas conversion was studied in customized flow-type reactors with different dielectric barrier discharge generated in Ar-CH4-O2 gas mixtures. Different reactor geometries (with either volume or surface-type discharges) and different electrode materials were compared, and gas temperatures during methane conversion processes were evaluated. The discharge was generated by applying either a conventional sinusoid or nanosecond-pulsed voltage. The methane conversion rate was as high as ˜99% with the total gas flow rate of 15 sccm, while the temperatures did not exceed 450 K. No significant effect of electrode material (stainless steel, aluminum, or CuO coated copper) was found, confirming that the conversion temperatures were much lower than those required for activity of typical catalysts. The reactor geometry, flow rate, and oxygen amount could be used to govern both the methane conversion rate and the fractions of components in the final product.

  11. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations--a critical review.

    PubMed

    Mouele, Emile S Massima; Tijani, Jimoh O; Fatoba, Ojo O; Petrik, Leslie F

    2015-12-01

    The growing global drinking water crisis requires the development of novel advanced, sustainable, and cost-effective water treatment technologies to supplement the existing conventional methods. One such technology is advanced oxidation based on dielectric barrier discharge (DBD). DBD such as single and double planar and single and double cylindrical dielectric barrier configurations have been utilized for efficient degradation of recalcitrant organic pollutants. The overall performance of the different DBD system varies and depends on several factors. Therefore, this review was compiled to give an overview of different DBD configurations vis-a-viz their applications and the in situ mechanism of generation of free reactive species for water and wastewater treatment. Our survey of the literature indicated that application of double cylindrical dielectric barrier configuration represents an ideal and viable route for achieving greater water and wastewater purification efficiency.

  12. Understanding and overcoming barriers to timely discharge from the pediatric units

    PubMed Central

    Mustafa, Amira; Mahgoub, Samar

    2016-01-01

    Delays in the discharge of hospital patients cause a backlog for new admissions from the Emergency Departments (ED), outpatient clinics, and transfers from the Intensive Care Units (ICU). A variety of initiatives have been reported on previously which aim to tackle this problem with variable success. In this quality improvement project, we aimed to increase the proportion of discharged patients who leave the paediatric unit by 12:00 Noon from 7% to 30% by May 2015. A baseline discharge process map was studied to understand the possible causes of the delays. A survey was conducted to look for the most likely cause for the delay. A data collection tool was designed to record the various steps in the discharge process for the pre-and post-intervention phases. Using a series of PDSA cycles, interventions were introduced. The average time for the discharge process was two hours and the baseline average percent of patients discharged by 12:00 Noon was 7% of all discharges. The leading cause for the delayed discharges was late orders by the physicians. Post-intervention, there was increase in the percentage of patients discharged by 12:00 Noon from 7% to 34%. 42% of discharged patients had appropriate reasons for afternoon discharge. By excluding these patients, the percentage of adjusted timely morning discharge has increased from 36% to 70%. Continuous monitoring and engagement of teams with regular feedback were the most important factors in achieving and sustaining improvement in the timely morning discharge of patients from our paediatric units. PMID:27752313

  13. Nonintrusive microwave diagnostics of collisional plasmas in Hall thrusters and dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Stults, Joshua

    This research presents a numerical framework for diagnosing electron properties in collisional plasmas. Microwave diagnostics achieved a significant level of development during the middle part of the last century due to work in nuclear weapons and fusion plasma research. With the growing use of plasma-based devices in fields as diverse as space propulsion, materials processing and fluid flow control, there is a need for improved, flexible diagnostic techniques suitable for use under the practical constraints imposed by plasma fields generated in a wide variety of aerospace devices. Much of the current diagnostic methodology in the engineering literature is based on analytical diagnostic, or forward, models. The Appleton-Hartree formula is an oft-used analytical relation for the refractive index of a cold, collisional plasma. Most of the assumptions underlying the model are applicable to diagnostics for plasma fields such as those found in Hall Thrusters and dielectric barrier discharge (DBD) plasma actuators. Among the assumptions is uniform material properties, this assumption is relaxed in the present research by introducing a flexible, numerical model of diagnostic wave propagation that can capture the effects of spatial gradients in the plasma state. The numerical approach is chosen for its flexibility in handling future extensions such as multiple spatial dimensions to account for scattering effects when the spatial extent of the plasma is small relative to the probing beam's width, and velocity dependent collision frequency for situations where the constant collision frequency assumption is not justified. The numerical wave propagation model (forward model) is incorporated into a general tomographic reconstruction framework that enables the combination of multiple interferometry measurements. The combined measurements provide a quantitative picture of the spatial variation in the plasma properties. The benefit of combining multiple measurements in a coherent

  14. Determination of the HO2 radical in dielectric barrier discharge plasmas using near-infrared cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Wei; Xu, Yong; Yang, Xue-Feng; Zhu, Ai-Min; Zhao, Guo-Li; Wang, Wei-Guo

    2008-02-01

    The hydroperoxyl radical (HO2) plays an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. This work reports the determination of the hydroperoxyl radical in dielectric barrier discharge plasmas via near-infrared continuous wave cavity ring-down spectroscopy. HO2 radicals were observed in discharges of HCHO/O2/H2O/N2 mixtures around 6625.7 cm-1 in the first H-OO stretching overtone, (2, 0, 0)-(0, 0, 0), of its ground electronic state \\tilde{X}\\,^{2}A^{\\prime \\prime} . At certain discharge conditions (ac frequency of 5 kHz, peak-to-peak voltage of 6.5 kV, 1900 ppm HCHO, 20% O2, 3.5% H2O in N2, Ptotal = 30 Torr), HO2 radical concentration was determined to be 1.0 × 1013 molecules cm-3. The temporary evolution of HO2 concentration was obtained using the 'time window' method. The effects of oxygen concentration, water concentration, the discharge voltage and discharge gas pressure on the concentration of HO2 radicals have been investigated. The detection limit of our setup for the HO2 radical is ~1 × 1011 molecules cm-3.

  15. Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

    NASA Astrophysics Data System (ADS)

    Wang, Yanhui; Ye, Huanhuan; Zhang, Jiao; Wang, Qi; Zhang, Jie; Wang, Dezhen

    2016-05-01

    In this paper, we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model. The results show that, the DBDs driven by positive pulse, negative pulse and bipolar pulse possess different behaviors. Moreover, the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes. For the case of the positive pulse, the breakdown field is much lower than that of the negative pulse, and its propagation characteristic is different from the negative pulse DBD. When the DBD is driven by a bipolar pulse voltage, there exists the interaction between the positive and negative pulses, resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors. In addition, the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied. supported by National Natural Science Foundation of China (No. 11405022)

  16. Determination of the electron temperature in plane-to-plane He dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gangwar, R. K.; Levasseur, O.; Naudé, N.; Gherardi, N.; Massines, F.; Margot, J.; Stafford, L.

    2016-02-01

    Optical emission spectroscopy (OES) measurements coupled with a collisional-radiative model were used to characterize a plane-to-plane dielectric barrier discharge at atmospheric pressure operated in nominally pure helium. The model predicts the population densities for the n  =  3 levels of He excited by electron impact processes from either ground or metastable states and takes into account excitation transfer processes between He n  =  3 levels as well as all relevant radiative decays and quenching reactions. Time-resolved OES measurements indicate that line ratios from He n  =  3 triplet states (for example, 587.5 nm-to-706.5 nm) and singlet states (for example, 667.8 nm-to-728.1 nm) first sharply rise as the discharge ignites and then slowly decrease as it extinguishes. Assuming that n  =  3 levels are first populated only by electron impact on ground state He atoms and then only by electron impact on metastable He atoms as the discharge current and thus the metastable number density rise, triplet and singlet line ratios predicted by the model become in each opposite case solely dependent on the electron temperature T e (assuming Maxwellian electron energy distribution function). The values of T e deduced from the analysis of both ratios were relatively high early in the discharge cycle (around 1.0-1.4 eV) and then much lower near discharge extinction (around 0.15 eV). For analysis of time-integrated (or cycle-averaged) OES measurements, the electron temperatures were closer to the 0.15 eV values near the end of the discharge cycle, in good agreement with the values expected from theoretical predictions in the positive columns of He glow discharges at atmospheric pressure.

  17. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  18. Airflow produced by dielectric barrier discharge between asymmetric parallel rod electrodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazuo; Tanaka, Motofumi; Yasui, Hiroyuki; Hashimoto, Kiyoshi

    2007-09-01

    We observed a novel type of airflow produced by an atmospheric rf discharge between asymmetric parallel rod electrodes. The electrodes were a bare metal rod 1mm in diameter and a glass-coated metal rod 3.2mm in diameter. The thrust, measured by a pendulum, increased with discharge input power.

  19. Airflow produced by dielectric barrier discharge between asymmetric parallel rod electrodes

    SciTech Connect

    Hayashi, Kazuo; Tanaka, Motofumi; Yasui, Hiroyuki; Hashimoto, Kiyoshi

    2007-09-15

    We observed a novel type of airflow produced by an atmospheric rf discharge between asymmetric parallel rod electrodes. The electrodes were a bare metal rod 1 mm in diameter and a glass-coated metal rod 3.2 mm in diameter. The thrust, measured by a pendulum, increased with discharge input power.

  20. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  1. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  2. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material. PMID:23673240

  3. The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor

    SciTech Connect

    Yin, S.E.; Sun, B.M.; Gao, X.D.; Xiao, H.P.

    2009-12-15

    The effect of O{sub 2} and H{sub 2}O vapor on the Nitric oxide (NO) removal rate, the NO{sub 2} generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20{sup o}). The results showed that the O{sub 2} present in the flue gas always hampered the removal of NO and the generation of N{sub 2}O, but that the O{sub 2} could enhance the generation of NO{sub 2} in the NO/N{sub 2}/O{sub 2} mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H{sub 2}O present in N-2/NO hindered the removal of NO and the generation of NO{sub 2} but had no impact on the average discharge current in the reactor in the NO/N{sub 2}/H{sub 2}O mixtures in which the HNO{sub 2} and HNO{sub 3} was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.

  4. Time-resolved spectroscopy of a homogeneous dielectric barrier discharge for soft ionization driven by square wave high voltage.

    PubMed

    Horvatic, Vlasta; Michels, Antje; Ahlmann, Norman; Jestel, Günter; Veza, Damir; Vadla, Cedomil; Franzke, Joachim

    2015-10-01

    Helium capillary dielectric barrier discharge driven by the square wave-shaped high voltage was investigated spatially and temporally by means of optical emission spectroscopy. The finding of the previous investigation conducted with the sinusoidal-like high voltage was confirmed, i.e., the plasma in the jet and the plasma in the capillary constitute two temporally separated events. The plasma in the jet occurs prior to the discharge in the capillary and exists only during the positive half period of the applied high voltage. The time delay of the capillary discharge with respect to the discharge in the jet depended on the high voltage, and it was between 2.4 and 8.4 μs for the voltage amplitude change in the range from 1.96 to 2.31 kV, respectively. It was found that, compared to sinusoidal-like voltage, application of the square wave high voltage results with stronger (~6 times) He line emission in the jet, which makes the latter more favorable for efficient soft ionization. The use of the square wave high voltage enabled comparison of the currents (~1 mA) flowing in the capillary during the positive and negative high voltage periods, which yielded the estimation for the charge dissipated in the atmosphere ((4 ± 20 %) × 10(-11) C) through the plasma jet.

  5. Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2016-07-01

    The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.

  6. Time-resolved spectroscopy of a homogeneous dielectric barrier discharge for soft ionization driven by square wave high voltage.

    PubMed

    Horvatic, Vlasta; Michels, Antje; Ahlmann, Norman; Jestel, Günter; Veza, Damir; Vadla, Cedomil; Franzke, Joachim

    2015-10-01

    Helium capillary dielectric barrier discharge driven by the square wave-shaped high voltage was investigated spatially and temporally by means of optical emission spectroscopy. The finding of the previous investigation conducted with the sinusoidal-like high voltage was confirmed, i.e., the plasma in the jet and the plasma in the capillary constitute two temporally separated events. The plasma in the jet occurs prior to the discharge in the capillary and exists only during the positive half period of the applied high voltage. The time delay of the capillary discharge with respect to the discharge in the jet depended on the high voltage, and it was between 2.4 and 8.4 μs for the voltage amplitude change in the range from 1.96 to 2.31 kV, respectively. It was found that, compared to sinusoidal-like voltage, application of the square wave high voltage results with stronger (~6 times) He line emission in the jet, which makes the latter more favorable for efficient soft ionization. The use of the square wave high voltage enabled comparison of the currents (~1 mA) flowing in the capillary during the positive and negative high voltage periods, which yielded the estimation for the charge dissipated in the atmosphere ((4 ± 20 %) × 10(-11) C) through the plasma jet. PMID:26297466

  7. Mass spectrometric investigation of the ionic species in a dielectric barrier discharge operating in helium-water vapour mixtures

    NASA Astrophysics Data System (ADS)

    Abd-Allah, Z.; Sawtell, D. A. G.; McKay, K.; West, G. T.; Kelly, P. J.; Bradley, J. W.

    2015-03-01

    Using advanced mass spectrometry the chemistry of ionic species present in an atmospheric-pressure parallel plate dielectric barrier discharge (DBD) with a single dielectric on the powered electrode have been identified. The discharge was driven in helium with controllable concentrations of water vapour using an excitation frequency of 10 kHz and an applied voltage of 1.2 kV. Both negative and positive ions were identified and their relative intensity determined with variation of water concentration in the discharge, inter-electrode spacing, gas residence time and nominal applied power. The most abundant negative ions were of the family \\text{O}{{\\text{H}}-}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} , while the positive ions were dominated by those of the form {{{H}}^ + }{{{(}}{{{H}}_2}{{O)}}_n} , with n up to 9 in both cases. Negative and positive ions responded in a similar way to changes in the operating parameters, with the particular response depending on the ion mass. Increasing the inter-electrode spacing and the water concentration in the discharge led to an increase in the intensity of large mass ionic water clusters. However, increasing the residence time of the species in the plasma region and increasing the applied power resulted in fragmentation of large water clusters to produce smaller ions.

  8. Tidal pumping as a driver of groundwater discharge to a back barrier salt marsh ecosystem

    NASA Astrophysics Data System (ADS)

    Carter, M. L.; Viso, R. F.; Peterson, R. N.; Hill, J. C.

    2013-12-01

    Submarine groundwater discharge (SGD) typically consists of both terrestrial groundwater and recirculated seawater and has been shown to be a significant pathway of dissolved substances to the coastal zone. The fresh and saline water mixture in the subsurface creates a salinity gradient that can impact biogeochemical processes. Located along the South Atlantic Bight, Georgia's coastline is an approximately 100-mile stretch of complex primary and secondary barrier islands resulting from geologic interactions driven by long-term sea level rise and retreat, accretion, seasonal tidal events, storm overwash, and wave driven erosion. Our study site is located in the Duplin River near Sapelo Island, GA and is part of the Georgia Coastal Ecosystems Long Term Ecosystem Research (GCE-LTER) program. This area is considered mesotidal (2-4m) and tidal pumping may be a dominating process in controlling SGD rates. The Duplin River is connected to the Atlantic Ocean through Doboy Sound to the south. To the north, the river terminates in extensive salt marsh and therefore has no overland freshwater input. Previous studies show a salinity gradient within the Duplin River indicating that SGD must be present as a source of brackish water. To place constraints on SGD processes, we employ a combination of geochemical and geophysical techniques to determine the magnitude of SGD in the Duplin River. Together these techniques permit a more complete understanding of the groundwater system. Three time series stations at the upper, mid and lower reaches of the Duplin River were deployed in June of 2013 to measure groundwater influences during daily and fortnightly tidal cycles. At each station, continuous radon-222 measurements were conducted at 30 minute intervals along with measurements of water level, temperature and conductivity using standard hydrological data loggers. During this period, eight time series resistivity profiles using a 56 electrode (110m long) cable were recorded to

  9. Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling

    NASA Astrophysics Data System (ADS)

    Indarto, Antonius

    2016-04-01

    Non-catalytic conversion of methane (CH4) and nitrogen dioxide (NO2) into methanol (CH3OH) has been conducted and presented in this paper. Experiments were carried out using dielectric barrier discharge as the reaction medium in atmospheric pressure and temperature conditions. High yield production of methanol was achieved (18-20% mol) by single-stage plasma reaction with maximum selectivity of 32% mol. Compared to other oxidants, such as O2, the presence of NO2 in the plasma reaction resulted in higher methanol selectivity. For better understanding of the reactions, density functional theory calculations were also performed and discussed.

  10. Emission characteristics of a barrier discharge in an argon-freon-water vapor mixture in the UV-VUV spectral range

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Minya, A. I.; Gomoki, Z. T.; Gritsak, R. V.

    2013-05-01

    Optical characteristics of an ArCl*-OH* lamp excited by a nanosecond barrier discharge are studied. This discharge is a source of the ArCl ( B → X), ( D' → A'), and OH( A → X) molecular band emission with peaks at 175, 258, and 309 nm, respectively. The intensity of the barrier discharge plasma radiation is optimized as a function of the CCl4 vapor partial pressure at p(Ar) = 24 kPa and p(H2O) = 10-20 Pa.

  11. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    NASA Astrophysics Data System (ADS)

    Kratzer, Jan; Mester, Zoltán; Sturgeon, Ralph E.

    2011-08-01

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  12. Transition from Townsend to radio-frequency homogeneous dielectric barrier discharge in a roll-to-roll configuration

    NASA Astrophysics Data System (ADS)

    Bazinette, R.; Paillol, J.; Massines, F.

    2016-06-01

    The aim of this paper is to better understand the transition from Townsend to radio-frequency homogeneous dielectric barrier discharge (DBD) at atmospheric pressure. The study is done in an Ar/NH3 Penning mixture for an electrode configuration adapted to roll-to-roll plasma surface treatment. The study was led in a frequency range running from 50 kHz up to 8.3 MHz leading to different DBD modes with a 1 mm gas gap: Glow (GDBD), Townsend (TDBD), and Radio-frequency (RF-DBD). In the frequency range between TDBD and RF-DBD, from 250 kHz to 2.3 MHz, additional discharges are observed outside the inter-electrode gas gap. Because each high voltage electrode are inside a dielectric barrel, these additional discharges occur on the side of the barrel where the gap is larger. They disappear when the RF-DBD mode is attained in the 1 mm inter-electrode gas gap, i.e., for frequencies equal or higher than 3 MHz. Fast imaging and optical emission spectroscopy show that the additional discharges are radio-frequency DBDs while the inter-electrode discharge is a TDBD. The RF-DBD discharge mode is attained when electrons drift becomes low enough compared to the voltage oscillation frequency to limit electron loss at the anode. To check that the additional discharges are due to a larger gas gap and a lower voltage amplitude, the TDBD/RF-DBD transition is investigated as a function of the gas gap and the applied voltage frequency and amplitude. Results show that the increase in the frequency at constant gas gap or in the gas gap at constant frequency allows to obtain RF-DBD instead of TDBD. At low frequency and large gap, the increase in the applied voltage allows RF-DBD/TDBD transition. As a consequence, an electrode configuration allowing different gap values is a solution to successively have different discharge modes with the same applied voltage.

  13. Manipulation of a grid-generated mixing with an active honeycomb dielectric barrier plasma discharge

    NASA Astrophysics Data System (ADS)

    Benard, N.; Mizuno, A.; Moreau, E.

    2015-12-01

    This study defines and characterizes an active system for turbulent and scalar mixing enhancement. This system is made of an active grid composed of 121 holes where the gas flows. A high voltage is applied between printed electrodes and embedded ground electrodes in order to produce a non-thermal surface discharge at the hole exits. The goal is to modify the flow downstream of the active grid. First, electrical and optical characterizations of the actuator are proposed. Second, it is shown that the discharge strongly modifies the flow distribution of the multi-jet exhaust, and the flow change depends on the high voltage applied to the active plasma grid. A minimization of the potential core by 40% is reported when discharge frequency corresponds to jet column mode instability.

  14. Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Chen, Wei; Guo, Qi-Pei; Li, Yi; Lv, Guo-Hua; Sun, Xiu-Ping; Zhang, Xian-Hui; Feng, Ke-Cheng; Yang, Si-Ze

    2009-07-01

    With the assistance of dielectric barrier discharge (DBD) plasma, selective catalytic reduction of NOx by ethanol over Ag/Al2O3 catalysts was studied. Experimental results show that NOx conversion was greatly enhanced due to the presence of DBD plasma at lower temperature. By varying the DBD voltages or power in 13 kHz frequency at different temperatures, NOx conversion was increased to 40.7% from 6.4% at 176 °C, even to 66.8% from 17.3% at 200 °C. NOx conversion could even be improved to 90% at temperature above 255 °C. It was proposed that nonthermal plasma generated by dielectric barrier discharge reactor was very effective for oxidizing NO to NO2 under excess O2 conditions, which possesses high reactivity with C2H5OH to yield CxHyNzO compound. By reacting with CxHyNzO compound and oxygen, NOx is converted to N2 at low temperatures.

  15. Determination of gaseous semi- and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry.

    PubMed

    Sun, Yifei; Watanabe, Nobuhisa; Wang, Wei; Zhu, Tianle

    2013-01-01

    A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described the use of barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry, for the detection of semi- and low-volatile organic halogen compounds (SLVOXs), which can be collected by Carbotrap adsorbents and analyzed using thermal desorption. The optimal carrier gas flow rates at the injection and desorption lines were established to be 100 mL/min. The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms. Measuring F was more difficult than measuring C1 or Br, because the wavelength of F is close to that of air. The barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample. It has been found that Carbotrap B is appropriate for high-boiling-point compounds, and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points, in the range 200-2300C. Under optimal analysis conditions, a chlorine-containing plastic was destroyed using different oxygen concentrations. Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds. PMID:23586317

  16. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry.

    PubMed

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo

    2014-08-11

    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine.

  17. Determination of gaseous semi- and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry.

    PubMed

    Sun, Yifei; Watanabe, Nobuhisa; Wang, Wei; Zhu, Tianle

    2013-01-01

    A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described the use of barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry, for the detection of semi- and low-volatile organic halogen compounds (SLVOXs), which can be collected by Carbotrap adsorbents and analyzed using thermal desorption. The optimal carrier gas flow rates at the injection and desorption lines were established to be 100 mL/min. The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms. Measuring F was more difficult than measuring C1 or Br, because the wavelength of F is close to that of air. The barrier-discharge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample. It has been found that Carbotrap B is appropriate for high-boiling-point compounds, and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points, in the range 200-2300C. Under optimal analysis conditions, a chlorine-containing plastic was destroyed using different oxygen concentrations. Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds.

  18. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-10-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ-1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ-1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ-1 higher, respectively, than in the PBD reactor at 53 J l-1. The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment.

  19. Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Li, Chuanhui

    2014-01-01

    A new contact glow discharge electrode on the surface of water was designed and employed in this study. Because of the strong field strength in the small air gap formed by the electrode and the water surface, glow discharge plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D® simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.

  20. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    SciTech Connect

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  1. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2-, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  2. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  3. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  4. Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity

    NASA Astrophysics Data System (ADS)

    Mu, Haibao; Yu, Lin; Li, Ping; Tang, Chenglong; Wang, Jinhua; Zhang, Guanjun

    2015-12-01

    Recently, plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios. In this paper, a dielectric barrier discharge (DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process, and several properties of combustion are considered. First, in the presence or absence of plasma discharge, physical appearance of the flame is examined and analyzed. Second, the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method. Finally, the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process. We also discuss the possible kinetic regime of plasma-assisted combustion. Experimental results imply that plasma discharge applied to the premixed CH4/O2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10, with the flame speed improved by 17% to 35%. It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer, especially at a low equivalence ratio. supported by the Fundamental Research Funds for the Central Universities of China (No. xjj2013086), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ7254) and National Natural Science Foundation of China (No. 51477135)

  5. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Cai, J. S.; Li, J.

    2016-10-01

    A simplified (7 species and 9 processes) plasma kinetic model is proposed to investigate the mechanism of the plasma aerodynamic actuation driven by nanosecond-pulsed dielectric barrier discharge (NS-DBD). The governing equations include conservation equations for each species, the Poisson equation for the electric potential, and Navier-Stokes equations for the gas dynamic flow. Numerical simulations of plasma discharge and flow actuation on NS-DBD plasma actuators have been carried out. Key discharge characteristics and the responses of the quiescent air were reproduced and compared to those obtained in experiments and numerical simulations. Results demonstrate that the reduced plasma kinetic model is able to capture the dominant species and reactions to predict the actuation in complicated hydrodynamics. For the one-dimensional planar and two-dimensional symmetric NS-DBD, the forming of the sheath collapse is mainly due to the charge accumulation and secondary emission from the grounded electrode. Rapid species number density rise and electric field drop occur at the edge of the plasma sheath, where the space charge density gradient peaks. For the aerodynamic actuation with typical asymmetry electrodes, discharge characteristics have a core area on the right edge of the upper electrode, where the value can be much higher. The formation and propagation of the compression waves generated through rapid heating have also been performed and compared to those measured in a recent experiment. Energy release leads to gas expansion and forms a cylindrical shock wave, centering at the upper electrode tip with low gas acceleration. For the present single pulsed 12 kV case, the mean temperature of gas heating reaches about 575 K at 1 μs and decreases to about 460 K at 10 μs.

  6. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    PubMed

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  7. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  8. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    SciTech Connect

    Baadj, S.; Harrache, Z. Belasri, A.

    2013-12-15

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

  9. Reduction of aerodynamic friction drag of moving bodies using a Microwave-Dielectric-Barrier-Discharge actuator controlling the boundary layer

    NASA Astrophysics Data System (ADS)

    Pierre, Thiery

    2015-11-01

    A new plasma device named M-DBD (Microwave Dielectric Barrier Discharge) is used for controlling the boundary layer in order to reduce the drag force. A compact resonant UHF structure comprising a resonant element in the form of a quarter-wave antenna creates a mini-plasma insulated from the UHF electrodes by mica sheets. Additional electrodes induce an electric field in the plasma and transiently move the ions of the plasma. The high collision rate with the neutral molecules induce the global transient flow of the neutral gas. The temporal variation of the applied electric field is chosen in order to obtain a modification of the local boundary layer. First tests using an array of M-DBD plasma actuators are underway (see Patent ref. WO 2014111469 A1).

  10. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Sasaki, Koichi

    2016-08-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18–0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.

  11. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Dahle, S.

    2015-10-01

    The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  12. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Sasaki, Koichi

    2016-08-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.

  13. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    SciTech Connect

    Miller, V. Lin, A.; Brettschneider, J.; Fridman, G.; Fridman, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Autieri, M.

    2015-12-15

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  14. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    NASA Astrophysics Data System (ADS)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  15. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  16. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.

    2015-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  17. Thin film deposition at atmospheric pressure using dielectric barrier discharges: Advances on three-dimensional porous substrates and functional coatings

    NASA Astrophysics Data System (ADS)

    Fanelli, Fiorenza; Bosso, Piera; Mastrangelo, Anna Maria; Fracassi, Francesco

    2016-07-01

    Surface processing of materials by atmospheric pressure dielectric barrier discharges (DBDs) has experienced significant growth in recent years. Considerable research efforts have been directed for instance to develop a large variety of processes which exploit different DBD electrode geometries for the direct and remote deposition of thin films from precursors in gas, vapor and aerosol form. This article briefly reviews our recent progress in thin film deposition by DBDs with particular focus on process optimization. The following examples are provided: (i) the plasma-enhanced chemical vapor deposition of thin films on an open-cell foam accomplished by igniting the DBD throughout the entire three-dimensional (3D) porous structure of the substrate, (ii) the preparation of hybrid organic/inorganic nanocomposite coatings using an aerosol-assisted process, (iii) the DBD jet deposition of coatings containing carboxylic acid groups and the improvement of their chemical and morphological stability upon immersion in water.

  18. Study of corrosion protection of alumimium by siliconoxid-polymer coatings deposited by a dielectric barrier discharge under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Behnke, J. F.; Sonnenfeld, A.; Ivanova, O.; Hippler, R.; To, T. X. H.; Pham, G. V.; Vu, K. O.; Nguyen, T. D.

    2003-10-01

    Aluminum surfaces were treated with the plasma of a dielectric barrier discharge under atmospheric pressure in air and in nitrogen. Tetraethoxysilan (TEOS) was used as the precursor for the deposition of a thin SiOx polymer film with an anticorrosive and an adhesive characteristics. The substrate temperature was varied from 25 C to 50 C. The coated aluminum surface was provided with a painting of primer. The corrosion performance of the layers was evaluated by adhesion measurements, by salt spraying test and by electrochemical impedance spectroscopy. The corrosion resistance of the layers depends on the substrate temperature. The results of the impedance measurements show that a surface treatment with a substrate temperature of 50 C supplies the best corrosion protection. The same results were found by using the salt spaying test.

  19. Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Qi, Xiaohua; Yang, Liang; Yan, Huijie; Jin, Ying; Hua, Yue; Ren, Chunsheng

    2016-10-01

    The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths. supported by National Natural Science Foundation of China (No. 11175037), National Natural Science Foundation for Young Scientists of China (No. 11305017) and Special Fund for Theoretical Physics (No. 11247239)

  20. Dielectric Barrier Discharges in Helium at Atmospheric Pressure: Experiments and Model in the Needle-Plane Geometry

    NASA Astrophysics Data System (ADS)

    Radu, Ion; Bartnikas, Raymond; Wertheimer, Michael

    2002-10-01

    We present an experimental and theoretical modeling study of "dielectric barrier discharges" (DBD) at atmospheric pressure in a needle-plane configuration. Synchronous, Ultra High Speed Imaging (UHSI, using a Princeton Instruments PI-MAX 512RB Digital ICCD Camera System) and real-time dual detection (optical-electrical) diagnostics have been carried out in a flow of He. A phase-resolved synchronizing circuit was used to trigger the ICCD camera's shutter for durations varying from 2 ns up to 100 ms. All diagnostics, including the PI-MAX images, could be precisely synchronized and processed on a PC computer. The high voltage electrode was a steel needle with a sharp point of precisely-machined radius, while a thin (1.6 mm) ceramic (Al2O3) plate with a metallized bottom surface was used as the ground electrode. Three different situations have been studied, namely (i) the bare Al2O3, and with an ultra-thin coatings of (ii) graphite (a semiconductor) or (iii) metal, the latter two at floating potential. The purpose of these experiments was to investigate possible effects of surface charging on the discharge behavior [1]. The axial [y(t)] and radial [x(t)] time evolutions of the discharge have been measured by UHSI, plotted, and found to differ very significantly among cases (i) to (iii). In the needle-plane configuration (like in the plane-plane case), the DBD is characterized by a single pulse per half-period of the applied voltage. A two-dimensional model of the needle-plane discharge, based upon the continuity equations for electrons, ions, excited particles, and the Poisson equation, is developed; it assumes a low degree of ionization, so that the transport coefficients of the gas are uniquely determined by the local electric field [2]. In order to determine the electric field and the electrical potential in the (hyperboloidal) needle-plane geometry, the finite element method is used. We have found excellent agreement between measured and calculated [y(t)] and [x

  1. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  2. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  3. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

    PubMed

    Park, Ji Hoon; Kumar, Naresh; Park, Dae Hoon; Yusupov, Maksudbek; Neyts, Erik C; Verlackt, Christof C W; Bogaerts, Annemie; Kang, Min Ho; Uhm, Han Sup; Choi, Eun Ha; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  4. Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp

    SciTech Connect

    Belasri, A.; Bendella, S.; Baba-Hamed, T.

    2008-05-15

    A global one-dimensional model of a dielectric barrier discharge which includes the sheath region and the positive column was developed. The model was used to study the electrical properties under operating conditions of the vacuum ultraviolet excimer lamp and to understand the basic processes of plasma kinetics. A 0.5 cm interelectrode gap distance is filled with a Ne-Xe-HCl mixture. Time variations of the charged particles and excited species in the positive column were described. Then the one-dimensional model was used in the cathode region to illustrate (i) the spatio-temporal behavior of electronic and ionic densities and the electric field, and (ii) the time variation of the voltage, the current, and secondary currents due to ion and photon ({lambda}=172 nm) impact on the cathode. It shows a good resolution inside the sheath at high pressure and it correctly predicts the waveform of the discharge behavior. The obtained results have been discussed and analyzed.

  5. Particle-in-Cell Simulation for the Control of Electron Energy Distribution of Dielectric Barrier Discharges at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bae, Hyo Won; Yel Lee, Jung; Lee, Ho-Jun; Lee, Hae June

    2011-10-01

    Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 1 MHz to 50 MHz and with a gap distance from 60 to 500 micrometers. The variation of control parameters such as the gap distance, the driving wave form, and the applied voltage results in the change in the electron energy distribution function (EEDF). Through the relation between the ionization mean free path and the gap size, a significant change of EEDFs is achievable with the decrease of gap distance. Therefore, it is possible to categorize the operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals. This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100670).

  6. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  7. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  8. Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng

    2016-04-01

    The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  9. On a dielectric-barrier and a microwave-cavity discharge in synchronized operation—the case of a helium/oxygen mixture

    NASA Astrophysics Data System (ADS)

    Nikolic, M.; Popovic, S.; Upadhyay, J.; Vuskovic, L.; Leiweke, R.; Ganguly, B.

    2012-02-01

    We have investigated the performance of a microwave-cavity discharge (MWD) operating in tandem with a fast rise-time pulsed dielectric-barrier discharge (DBD). The tandem discharge operated in a helium/oxygen mixture, where metastable molecular oxygen could be produced efficiently using MWD in proportionally large quantities (order of 20% of total oxygen number density). In this new arrangement, a DBD operating at high E/N provided a metastables-rich mixture, thereby modifying the discharge kinetics of the MWD, which operated in the E/N range centered around 10 Td. Both discharges operated in synchronized pulse-repetitive mode, which was tailored to maximize the oxygen metastable production efficiency. The system operated at pressures up to 350 Torr with an average power between 3 and 20 W.

  10. Study of nonlinear oscillations in a glow discharge plasma using empirical mode decomposition and Hilbert Huang transform

    SciTech Connect

    Wharton, A. M.; Sekar Iyengar, A. N.; Janaki, M. S.

    2013-02-15

    Hilbert Huang transform (HHT) based time series analysis was carried out on nonlinear floating potential fluctuations obtained from hollow cathode glow discharge plasma in the presence of anode glow. HHT was used to obtain contour plots and the presence of nonlinearity was studied. Frequency shift with time, which is a typical nonlinear behaviour, was detected from the contour plots. Various plasma parameters were measured and the concepts of correlation coefficients and the physical contribution of each intrinsic mode function have been discussed. Physically important quantities such as instantaneous energy and their uses in studying physical phenomena such as intermittency and non-stationary data have also been discussed.

  11. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Pacheco, M.; Alva, E.; Valdivia, R.; Pacheco, J.; Rivera, C.; Santana, A.; Huertas, J.; Lefort, B.; Estrada, N.

    2012-06-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  12. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli 0157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus (TV) on Romaine lettuce, assessing the influences of moisture vaporization, modifi...

  13. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...

  14. The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) strongly depend on the integrated fluences of reactive species incident onto the tissue, which are determined by power, frequency and treatment time. The reactivity produced by such plasmas is often expected to be proportional to treatment time due to the accumulation of radicals in the liquid over the tissue. However, one of the typically uncontrolled parameters in DBD treatment of liquids and tissue is gas flow, which could affect the delivery of plasma produced radicals to the tissue. Gas flow can redistribute long-lived, plasma produced gas phase species prior to solvating in the liquid, while not greatly affecting the solvation of short-lived species. Gas flow can therefore potentially be a control mechanism for tailoring the fluences of reactive species to the tissue. In this paper, we report on a computational investigation of the consequences of gas flow on treatment of liquid layers covering tissue by atmospheric DBDs by up to 100 pulses. We found that gas flow (through residence time of the gas) can control the production of gas phase species requiring many collisions to form, such as reactive nitrogen species (RNS). The resulting solvation of the RNS in turn controls the production of aqueous species such as \\text{NO}\\text{3aq}- and \\text{ONOO}\\text{aq}- (aq denotes an aqueous species). With the exception of O3 and O3aq, reactive oxygen species (ROS) are less sensitive to gas flow, and so OHaq and H2O2aq, are determined primarily by discharge properties.

  15. Towards a better understanding of dielectric barrier discharges in ferroelectrets: Paschen breakdown fields in micrometer sized voids

    NASA Astrophysics Data System (ADS)

    Harris, Scott; Mellinger, Axel

    2014-04-01

    Charged cellular polypropylene foams (i.e., ferro- or piezoelectrets) demonstrate high piezoelectric activity upon being electrically charged. When an external electric field is applied, dielectric barrier discharges (DBDs) occur, resulting in a separation of charges which are subsequently deposited on dielectric surfaces of internal micrometer sized voids. This deposited space charge is responsible for the piezoelectric activity of the material. Previous studies have indicated charging fields larger than predicted by Townsend's model of Paschen breakdown applied to a multilayered electromechanical model; a discrepancy which prompted the present study. The actual breakdown fields for micrometer sized voids were determined by constructing single cell voids using polypropylene spacers with heights ranging from 8 to 75 μm, "sandwiched" between two polypropylene dielectric barriers and glass slides with semi-transparent electrodes. Subsequently, a bipolar triangular charging waveform with a peak voltage of 6 kV was applied to the samples. The breakdown fields were determined by monitoring the emission of light due to the onset of DBDs using an electron multiplying CCD camera. The breakdown fields at absolute pressures from 101 to 251 kPa were found to be in good agreement with the standard Paschen curves. Additionally, the magnitude of the light emission was found to scale linearly with the amount of gas, i.e., the height of the voids. Emissions were homogeneous over the observed regions of the voids for voids with heights of 25 μm or less and increasingly inhomogeneous for void heights greater than 40 μm at high electric fields.

  16. Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2

    NASA Astrophysics Data System (ADS)

    Pan, J.; Tan, Z. Y.; Wang, X. L.; Sha, C.; Nie, L. L.; Chen, X. X.

    2014-12-01

    In this work, the atmospheric-pressure dielectric barrier discharges in Ar and N2 excited by repetitive voltage pulses have been numerically studied using a 1D fluid model. The differences between the discharge characteristics for Ar and N2 have been presented when changing the parameters of the applied pulse voltage. In this work we present the following significant results. With an increase of the amplitude of the applied pulse voltage, the increase of the maximum discharge current density in Ar is evident, compared with N2; and the discharge mode changes from the weak atmospheric-pressure glow discharge (APGD) to the standard APGD for Ar, and from the atmospheric-pressure Townsend discharge to the APGD for N2. In addition, the increase of the averaged electron density in N2 is more evident than that in Ar, especially when the standard APGD occurs in N2. The increasing frequency leads to lower maximum discharge current density for Ar, however, the reverse is true for N2. With an increase of the pulse width of the applied pulse voltage, the averaged electron density and the maximum discharge current density change slightly in Ar, but they increase drastically in N2.

  17. Spatio-temporally resolved diagnostics of the barrier discharge by cross-correlation spectroscopy in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wagner, Hans-Erich

    2002-10-01

    The technique of spatially resolved cross-correlation spectroscopy (CCS) is used to carry out diagnostic measurements of the barrier discharge (BD) in air at atmospheric pressure.(Kozlov K V, Wagner H-E, Brandenburg R, Michel P 2001 J. Phys. D: Appl. Phys. 34 3164-3176.) (Kozlov K V, Dobryakov V V, Monyakin A P, Samoilovich V G, Shepeliuk O S, and Wagner H-E, Brandenburg R, Michel P 2002 in: Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures, Vladimir N. Ochkin, Editor, Proceedings of SPIE vol. 4460, 165-176 Washington (USA).) Quantitative estimates for the electric field strength E(x,t) and for relative electron density n_e(x,t)/ne max are derived from the experimentally determined spatio-temporal distributions of the luminosity for the spectral bands of the 00 transitions of the second positive system of N2 (λ =337.1 nm) and the first negative system of N_2^+ (λ =391.5 nm). All the measurements and calculations have been performed for a BD with the symmetrical electrode arrangement (glass - glass), discharge gap width of 1.2 mm, in flowing synthetic air (80 % N2 + 20 % O_2) at atmospheric pressure. It is shown that the streamer starts directly from the surface of the anode and crosses the gap with an increasing velocity that reaches 10^6 m/s. The reduced electric field of the streamer grows from 120 Td at the anode to 240 Td at the cathode, respectively. The influence of the spatio-temporal structure of the discharge on the chemical kinetics of ozone synthesis is studied within the frame of the kinetic model based on the results of spatially resolved CCS measurements. It is demonstrated that the properties of the plasma in the region near the anode (where the electric field is lower but electron density is higher than near the cathode), favor dissociation of molecular oxygen by direct electron impact. In the case of the excitation of triplet nitrogen states, the contributions of both regions to this process appear to be

  18. Characterization of argon/air atmospheric pressure capacitively coupled radio frequency dielectric barrier discharge regarding parasitic capacitor at 13.56 MHz

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, Farshad; Mirzanejhad, Saeed; Mahdavi, Hoda; Omidi, Zahra

    2012-11-01

    In this paper, uniform argon glow discharge at atmospheric pressure in a diffuse mode driven by a 300-W radio-frequency (13.56 MHz) power supply based on dielectric barrier discharge was investigated. In this work, the effect of the parasitic capacitor on the electrical characteristics of the capacitively coupled atmospheric pressure plasma was investigated. It was revealed that more than half of the RF current is parasitic in our system as a characteristic of the capacitively coupled plasma. It was also proved that the discharge resistance and sheath capacitance increase at higher input powers while the impedance decreases. In order to recognize plasma, optical emission spectroscopy apparatus was used. Argon, oxygen, copper, and nitrogen spectrum lines were diagnosed. The plasma gas temperature and electronic excitation temperature were investigated showing a non-equilibrium discharge.

  19. Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge

    SciTech Connect

    Shao, Tao Yang, Wenjin; Zhang, Cheng; Yan, Ping; Niu, Zheng; Schamiloglu, Edl

    2014-08-18

    Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etch the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.

  20. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Rincón, R.; Hendaoui, A.; de Matos, J.; Chaker, M.

    2016-06-01

    An Ar/CH4 atmospheric pressure dielectric barrier discharge (AP-DBD) was used to synthesize sticky hydrophobic diamond-like carbon (DLC) films on glass surface. The film is formed with plasma treatment duration shorter than 30 s, and water contact angles larger than 90° together with contact angle hysteresis larger than 10° can be achieved. According to Fourier transform infrared spectroscopy and atomic force microscopy analysis, hydrocarbon functional groups are created on the glass substrate, producing coatings with low surface energy (˜35 mJ m-2) with no modification of the surface roughness. To infer the plasma processes leading to the formation of low energy DLC surfaces, optical emission spectroscopy was used. From the results, a direct relationship between the CH species present in the plasma and the carbon concentration in the hydrophobic layer was found, which suggests that the CH species are the precursors of DLC film growth. Additionally, the plasma gas temperature was measured to be below 350 K which highlights the suitability of using AP-DBD to treat thermo-sensitive surfaces.

  1. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  2. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance. PMID:26072049

  3. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  4. The Changes in Electrical and Interfacial Properties of Polyimide Exposed to Dielectric Barrier Discharge in SF6 Medium

    PubMed Central

    Alisoy, Hafiz Z.; Koseoglu, Murat

    2013-01-01

    The formation mechanism of space charges in polyimide (PI) which was exposed to dielectric barrier discharge (DBD) in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample. Then, the contact angle values were measured to obtain the relation between the surface energy and the surface charge density. The expressions for the total charge and the concentration of trapped electrons were derived by using Poisson and continuity equations at stationary state. The space charges were determined experimentally by using thermally stimulated depolarization current (TSDC) method. Also, SEM image and FTIR spectrum of virgin and treated samples were presented to observe the structural variations. It was seen that the approach for the formation mechanism of the space charges agreed with the experimental data. However, it was concluded particularly for the short-time DBD treatments that the space charges accumulated in the sample should be considered besides the effects of surface functionalization in the determination of the surface energy. PMID:23844414

  5. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  6. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  7. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  8. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    PubMed Central

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles. PMID:25992482

  9. Wind Tunnel Testing of a Hydrogen Jet in a Turbulent Crossflow Altered by a Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Fontaine, Ryan; Retter, Jonathan; Freund, Jonathan; Glumac, Nick; Elliott, Gregory

    2015-11-01

    It has been demonstrated that plasmas can fundamentally alter the combustion process. The radical production can decrease combustion timescales and the body force produced by the driving electric currents can improve fuel/oxidizer mixing and alter the shape of the steady state flame. We study these mechanisms for a fuel jet exhausting into a well-characterized turbulent cross-flow of air acted upon by a Dielectric Barrier Discharge (DBD) plasma produced at the jet exit. The fuel is hydrogen diluted in cases with N2 and Ar. Laser breakdown provides the energy deposition for ignition above the jet. The likelihood of sustained ignition for various fuel compositions and cross-flow conditions is considered along with flame properties once ignited both under the influence of the DBD plasma and without. Additionally, the effect of the DBD on flame blow-off is investigated. The jet is varied from low-momentum ratios (~ 10-4) to high (~ 1) to alter the relative contributions of the body forces and radical production on the combustion process. This system is studied to quantify the effect of the DBD plasma and discover opportunities for control. This material is supported by the DOE, NNSA, Award DE-NA0002374.

  10. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  11. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  12. Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment

    NASA Astrophysics Data System (ADS)

    Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei

    2010-12-01

    In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.

  13. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-12-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  14. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme.

    PubMed

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K

    2015-01-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  15. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    PubMed Central

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-01-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma. PMID:26656857

  16. Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-07-01

    A simple, rapid, and portable system consisted of a laboratory-built miniaturized dielectric barrier discharge atomic emission spectrometer and a microwave-assisted persulfate oxidation reactor was developed for sensitive flow injection analysis or continuous monitoring of total organic carbon (TOC) in environmental water samples. The standard/sample solution together with persulfate was pumped to the reactor to convert organic compounds to CO2, which was separated from liquid phase and transported to the spectrometer for detection of the elemental specific carbon atomic emission at 193.0 nm. The experimental parameters were systematically investigated. A limit of detection of 0.01 mg L(-1) (as C) was obtained based on a 10 mL sample injection volume, and the precision was better than 6.5% (relative standard deviation, RSD) at 0.1 mg L(-1). The system was successfully applied for TOC analysis of real environmental water samples. The obtained TOC value of 30 test samples agreed well with those by the standard high-temperature combustion coupled nondispersive infrared absorption method. Most importantly, the system showed good capability of in situ continuous monitoring of total organic carbon in environmental water.

  17. Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia.

    PubMed

    Wu, Zhongchen; Chen, Mingli; Li, Ping; Zhu, Qianqian; Wang, Jianhua

    2011-06-21

    Dielectric-barrier discharge (DBD) in argon as a cold source is used for the excitation of gaseous inorganic small molecules at atmospheric pressure. By choosing ammonia as a model molecule, the excitation process and the characteristics of the emission spectra are investigated. The emission spectra are recorded by designing either an open-end or an enclosed DBD excitation/emission source. The enclosed excitation mode effectively eliminates the background emissions arising from the ambient air components, especially those from nitrogen. Two emission lines attributed to the excitation of ammonia, i.e., 326.2 and 336.5 nm, are clearly isolated from the background emission spectra of argon, providing the basis for quantitative analysis. A detection limit of 0.37 ppm is achieved within a linear range of 1.2-35 ppm by monitoring at 326.2 nm. In practice, gaseous samples containing ammonia collected in a public toilet are excited in an enclosed excitation source and the emission at 326.2 nm is monitored for quantitative analysis. An ammonia concentration of 2.4 ppm is derived in the original atmospheric sample, and a spiking recovery of 94.7% is achieved at a 10 ppm ammonia level. This study shows that DBD cold excitation in combination with optical emission spectrometry (OES) offers a promising approach for the detection of ammonia pollution.

  18. Identification of the different diffuse dielectric barrier discharges obtained between 50 kHz to 9 MHz in Ar/NH3 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bazinette, R.; Subileau, R.; Paillol, J.; Massines, F.

    2014-06-01

    The aim of this work was to identify the different diffuse dielectric barrier discharges (DBDs) obtained in the same electrode configuration and in the same gas for an excitation frequency ranging from 50 kHz to 9 MHz. The gas mixture was argon with 133 ppm of NH3. This Penning mixture is useful to obtain both low-frequency glow DBDs (GDBDs) and diffuse radio-frequency (RF) discharges. Electrical measurements and short exposure time photographs showed that whatever the frequency, a discharge free of micro-discharge was obtained. In the same configuration, the discharge was a GDBD up to 200 kHz. For frequencies higher than 250 kHz, the discharge behavior was that of a Townsend-like discharge associated with a maximum energy transfer close to the anode and a higher power (about twice that of the GDBD). The cathode fall formation was no longer observed during the discharge current increase because of ion trapping in the gas gap by the rapid electric field oscillations. In the same configuration, the alpha RF mode was observed from 1.3 MHz. Gamma secondary electron emission gave way to electron acceleration by the cathode sheath formation. Bulk ionization was important due to the high electron collision rate at atmospheric pressure. One consequence of the transition from low-frequency to high-frequency discharge was a significant increase in the power (factor ≈30), which reached 35 W cm-3, while the breakdown voltage decreased from 900 V to less than 200 V.

  19. Experimental Research on the Sterilization of Escherichia Coli and Bacillus Subtilis in Drinking Water by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yi, Chengwu; Li, Jingjing; Yi, Rongjie; Wang, Huijuan

    2016-02-01

    The bactericidal effect on the representative type of Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge (DBD) advanced oxidation technology. The sterilizing rates under different conditions of reaction time t, input voltage V, pH value, and initial concentration of bacteria C0 were investigated to figure out the optimum sterilization conditions. Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms. The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V. The optimal sterilization effect was achieved when the pH value was 7.1. As the initial concentration of bacteria rose, the sterilizing rate decreased. When the input voltage was 2.2 kV and the initial concentration of bacteria was relatively low, the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution. The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O3, OH and the accumulation of active species produced by DBD. The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment. supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province, China (No. BE2011732), the Science and Technology Support Project Plan and Social Development of Zhenjiang, Jiangsu Province, China (No. SH2012013)

  20. Nonthermal Dielectric Barrier Discharge (DBD) Plasma Suppresses Herpes Simplex Virus Type 1 (HSV-1) Replication in Corneal Epithelium

    PubMed Central

    Alekseev, Oleg; Donovan, Kelly; Limonnik, Vladimir; Azizkhan-Clifford, Jane

    2014-01-01

    Purpose Herpes keratitis (HK) is the leading cause of cornea-derived and infection-associated blindness in the developed world. Despite the availability of effective antivirals, some patients develop refractory disease, drug-resistant infection, and topical toxicity. A nonpharmaceutical treatment modality may offer a unique advantage in the management of such cases. This study investigated the antiviral effect of nonthermal dielectric barrier discharge (DBD) plasma, a partially ionized gas that can be applied to organic substances to produce various biological effects. Methods Human corneal epithelial cells and explanted corneas were infected with herpes simplex virus type 1 (HSV-1) and exposed to culture medium treated with nonthermal DBD plasma. The extent of infection was measured by plaque assay, quantitative PCR, and Western blot. Corneal toxicity assessment was performed with fluorescein staining, histologic examination, and 8-OHdG detection. Results Application of DBD plasma–treated medium to human corneal epithelial cells and explanted corneas produced a dose-dependent reduction of the cytopathic effect, viral genome replication, and the overall production of infectious viral progeny. Toxicity studies showed lack of detrimental effects in explanted human corneas. Conclusions Nonthermal DBD plasma substantially suppresses corneal HSV-1 infection in vitro and ex vivo without causing pronounced toxicity. Translational Relevance Nonthermal plasma is a versatile tool that holds great biomedical potential for ophthalmology, where it is being investigated for wound healing and sterilization and is already in use for ocular microsurgery. The anti-HSV-1 activity of DBD plasma demonstrated here could be directly translated to the clinic for use against drug-resistant herpes keratitis. PMID:24757592

  1. Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry.

    PubMed

    Liu, Zhifu; Zhu, Zhenli; Wu, Qingju; Hu, Shenghong; Zheng, Hongtao

    2011-11-01

    This paper describes a low-temperature dielectric barrier discharge (DBD)-plasma induced vaporization technique using mercury as a model analyte. The evaporation and atomization of dissolved mercury species in the sample solution can be achieved rapidly in one step, allowing mercury to be directly detected by atomic fluorescence spectrometry. The DBD plasma was generated concentrically in-between two quartz tube (outer tube: i.d. 5 mm and o.d. 6 mm, inner tube: i.d. 2 mm and o.d. 3 mm). A copper electrode was embedded inside the inner quartz tube and sample solution was applied onto the outer surface of the inner tube. The effects of operating parameters such as plasma power, plasma gas identity, plasma gas flow rate and interferences from concomitant elements have been investigated. The difference in the sensitivities of Hg(2+), methylmercury (MeHg) and ethylmercury (EtHg) was found to be negligible in the presence of formic acid (≥1% v/v). The analytical performance of the present technique was evaluated under optimized conditions. The limits of detection were calculated to be 0.02 ng mL(-1) for Hg(2+), MeHg and EtHg, and repeatability was 6.2%, 4.9% and 4.3% RSD (n = 11) for 1 ng mL(-1) of Hg(2+), MeHg and EtHg, respectively. This provides a simple mercury detection method for small-volume samples with an absolute limit of detection at femtogram level. The accuracy of the system was verified by the determination of mercury in reference materials including freeze-dried urine ZK020-2, simulated water matrix reference material GBW(E) 080392 and tuna fish GBW10029, and the concentration of mercury determined by the present method agreed well with the reference values. PMID:21935545

  2. Plasma etching of SiO2 using remote-type pin-to-plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Park, Jae Beom; Kyung, Se Jin; Yeom, Geun Young

    2008-10-01

    Atmospheric pressure plasma etching of SiO2 was examined using a modified remote-type dielectric barrier discharge (DBD), called "pin-to-plate DBD." The effect of adding four gases CF4, C4F8, O2, and Ar to the base gas mixture containing N2 (60 slm) (slm denotes standard liters per minute)/NF3 (600 SCCM) (SCCM denotes cubic centimeter per minute at STP) on the SiO2 etch characteristics was investigated. The results showed that the SiO2 etch rate decreased continuously with increasing C4F8 (200-800 SCCM) addition, whereas the SiO2 etch rate increased with increasing CF4 (1-10 slm) addition up to 7 slm CF4. This increase in the SiO2 etch rate up to 7 slm CF4 was attributed to the effective removal of Si in SiO2 by F atoms through the removal of oxygen in SiO2 by carbon in the CFX in the plasma. However, the decrease in SiO2 etch rate with further increases in CF4 flow rate above 7 slm was attributed to the formation of a thick C-F polymer layer on the SiO2 surface. A SiO2 etch rate of approximately 243 nm/min was obtained with a gas mixture of N2 (60 slm)/NF3 (600 SCCM)/CF4 (7 slm), and an input voltage and operating frequency to the source of 10 kV and 30 kHz, respectively. The addition of 200 SCCM Ar to the above gas mixture increased the SiO2 etch rate to approximately 263 nm/min. This is possibly due to the increased ionization and dissociation of reactive species through penning ionization of Ar.

  3. Volume-surface barrier discharge in dried air in three-electrode system fed by impulse high voltage with nanosecond rise time

    NASA Astrophysics Data System (ADS)

    Malashin, Maxim; Rebrov, Igor; Nebogatkin, Sergey; Sokolova, Marina; Nikitin, Alexey; Voevodin, Vadim; Krivov, Sergey

    2016-08-01

    Results of experimental investigation of a volume-surface barrier discharge in a three-electrode system under periodic impulse voltage applied to the surface discharge (SD) electrodes and a d.c. potential applied to an additional third electrode are presented. It is shown that there is a strong influence of polarity and amplitude of the d.c. potential on the direct current "extracted" out of the surface discharge plasma layer by electric field of the third electrode. The amount of charged positive species that constitute the "extracted" current prevails under positive impulse voltage for low values of the negative d.c. potential of the third electrode. The amount of negative species prevails with higher values of the positive d.c. positive of the third electrode. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  4. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  5. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  6. Calculation of the gas temperature in a throughflow atmospheric pressure dielectric barrier discharge torch by spectral line shape analysis

    SciTech Connect

    Ionascut-Nedelcescu, A.; Carlone, C.; Kogelschatz, U.; Gravelle, D. V.; Boulos, M. I

    2008-03-15

    An analysis of spectral line profiles is used to calculate the gas temperature and to estimate the upper limit of the electron density in an atmospheric pressure dielectric barrier discharge torch. Two transitions are studied, that of helium (He) at 587.5 nm and that of hydrogen (H{sub {beta}}) at 486.1 nm, both observed in the spectra of the light emitted from the gap-space region. Relevant broadening mechanisms including the Doppler and Stark effects, as well as the collision processes between an emitter and a neutral particle, are reviewed. It is deduced that the main contribution to the broadened profiles is due to collisions. Through knowledge of the van der Waals interaction potential, a general expression for determining the gas temperature is derived and applied to each transition. The results obtained from both lines are in agreement; i.e., the gas temperature is found to be 460{+-}60 K at the highest voltage applied. This value is consistent with the experimental observation that at these conditions the afterglow plasma cannot ignite paper, whose ignition temperature is 507 K. Since no signature of the Stark effect can be detected either in He or H{sub {beta}} transition, the upper limit of the electron density, estimated from the uncertainty on the H{sub {beta}} linewidth, is 4x10{sup 12} cm{sup -3}. The generality of the method allows one to determine the temperature as a function of other parameters, such as voltage and flow rate. Concerning the applied voltage, the gas temperature increases linearly from 315{+-}30 to 460{+-}60 K, as derived from both lines. Over the same voltage range, a similar behavior is found for the rotational temperature, as deduced from the first negative B({sup 2}{sigma}{sub u}{sup +},v=0){yields}X({sup 2}{sigma}{sub g}{sup +},v=0) transition of the molecular nitrogen ion. However, the temperature varies between 325{+-}30 and 533{+-}15 K, indicating an overestimation of the gas temperature. On the other hand, the gas

  7. The influence of negative ions in helium-oxygen barrier discharges: II. 1D fluid simulation and adaption to the experiment

    NASA Astrophysics Data System (ADS)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Meichsner, Jürgen

    2016-10-01

    A 1D fluid simulation was developed to investigate the influence of negative ions in a helium-oxygen barrier discharge between two glass plates at a distance of 3~\\text{mm} . The paper describes setting up the simulation for a pressure of 500~\\text{mbar} and an admixture of 400~\\text{ppm} oxygen to helium. In order to enable the comparison with laser photodetachment experiments, the simulation is adapted to the experimentally observed discharge current and gap voltage by varying gas temperature, flux of thermally desorpted electrons and secondary electron emission coefficients. The discharge is characterized by evaluation of the most important elementary collision processes as well as the kinetics of the charged species. Besides, the influence of long-living species on the discharge behavior is taken into account by long-time simulations. The negative ions are characterized by their spatio-temporal distribution in the gap and their production and loss processes. The comparison between simulations without and with consideration of negative ions reveals the importance of negative ions on the discharge development.

  8. Development of a real time monitor and multivariate method for long term diagnostics of atmospheric pressure dielectric barrier discharges: Application to He, He/N2, and He/O2 discharges

    NASA Astrophysics Data System (ADS)

    O'Connor, N.; Milosavljević, V.; Daniels, S.

    2011-08-01

    In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future.

  9. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  10. Emission characteristics of pulse-periodic barrier-discharge plasma in a mixture of krypton with argon and liquid freon vapor

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Minya, A. I.; Gritsak, R. V.; Gomoki, Z. T.

    2014-02-01

    Radiation of a nanosecond barrier discharge in a mixture of krypton, argon, and carbon-tetrachloride vapor is studied in the spectral range of 150-300 nm. The plasma radiation spectra and the dependences of the intensities of the 258 nm Cl2( D' → A'), 222 nm KrCl( B → X), and 175 nm ArCl( B → X) bands on the partial pressure of liquid freon vapor, argon, and krypton, as well as on the discharge excitation conditions, are studied. The optimal compositions of gas mixtures for creating a broadband UV-VUV emitter based on the band system of argon chloride, krypton chloride, and chlorine molecule are determined.

  11. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  12. Optical characteristics and parameters of the plasma of a barrier discharge excited in a mixture of mercury dibromide vapor with nitrogen and helium

    SciTech Connect

    Malinina, A. A.; Guivan, N. N.; Shimon, L. L.; Shuaibov, A. K.

    2010-09-15

    Results are presented from experimental and theoretical studies of the optical characteristics and parameters of the plasma of an atmospheric-pressure barrier discharge excited in a HgBr{sub 2}: N{sub 2}: He mixture, which was used as the working medium of a small-size (with a radiation area of 8 cm{sup 2}) exciplex gas-discharge radiation source. The mean radiation power of 87 mW was achieved at the radiation wavelength {lambda}{sub max} = 502 nm. The electron energy distribution function, the transport characteristics, the specific energy lost in the processes involving electrons, the electron temperature and density, and the rate constants of elastic and inelastic electron scattering by the components of the working mixture were calculated as functions of the reduced field E/N. The plasma of a discharge excited in a HgBr{sub 2}: N{sub 2}: He mixture can be used as the working medium of a small-size blue-green radiation source. Such a source can find application in biotechnology, photonics, and medicine and can also be used to manufacture gas-discharge display panels.

  13. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  14. Attaining 2D Black Phosphorus and Investigations into Floating-Electrode Dielectric Barrier Discharge Treatment of Solutions

    NASA Astrophysics Data System (ADS)

    Smith, Joshua Benjamin

    -ray diffraction, transmission electron microscopy, and Raman spectroscopy have confirmed successful growth of 2D black phosphorus from red phosphorus thin films for potential uses in 2D semiconductor applications. Additionally, this work discusses some of the chemistry occurring in solution as a result of nonthermal plasma treatment from a floating-electrode dielectric barrier discharge (FE-DBD) configuration. Nonthermal plasma generation allows for the treatment of heat sensitive materials. This has opened up the field to numerous clinical applications of nonthermal plasma treatment including sterilization and wound healing along with potentials in dentistry, dermatology, and even food industries. FE-DBD plasma treatment of water was found to provide a wide-range antimicrobial solution that remained active following 2 years of aging. This plasma-treated water was found to generate a number of ROS/RNS and the formation of these components was studied and verified with UV/Vis and ESR spectroscopy. Enhanced effects were observed when cell culture medium was plasma treated, suggesting the formation of additional reactive species from the plasma treatment of a variety of biomolecules. It is essential to understand these effects for a number of reasons. The possibility to generate a wide range of antimicrobial solutions from air, water, and basic biomolecules could provide a solution for those bacteria that have developed antibiotic resistances. Simultaneously, information into the reaction mechanisms of this FE-DBD plasma treatment can be investigated. All of the applications mentioned above involve complex networks of basic biomolecules, from skin tissue to bacteria cell walls. This work analyzes the effects of plasma treatment on several biomolecule solutions and simultaneously takes aim at understanding some of the potential mechanisms of plasma treatment. Studies were carried out using NMR and GC/MS. This information was used to investigate the possible targeted areas for FE

  15. Study of Periodic Forcing with a Dielectric Barrier Discharge Device for the Control of Flow Separation on a NACA 0012

    NASA Astrophysics Data System (ADS)

    Dygert, Joseph P.

    The continued high global demand for passenger and freight air traffic as well as increased use of unmanned aerial vehicles (UAVs), in spite of rising fuel costs and several tragic cases involving loss-of-control events, has resulted in researchers examining alternative technologies, which would result in safer, more reliable, and superior performing aircraft. Aerodynamic flow control may be the most promising approach to this problem having already proven its ability to enable higher flow efficiency while also simultaneously improving overall flow control. Recent research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices such as slats and flaps to plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. In addition, plasma actuator technology has the potential of application to a host of other aircraft performance parameters including applications in radar mitigation and in situ wing deicing. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device, which uses dominant electric fields and the respective electrically related body forces for actuation. Unlike momentum jets or other traditional flow control methods used on wings and tail surfaces, a DBD device operates without moving components or injecting any mass into the flow stream. Work performed focuses on qualitatively investigating experimentally the use of DBD devices for flow separation control on a NACA 0012-based 2D wing model. Flow visualization techniques illuminated flow seed particles around the model to determine the state of the flow (i.e., attached or separated) for various actuator cases. The DBD was operated in a steady-on mode as well as for three different pulsing frequencies (only for low power testing) based on the Strouhal frequency for each flight condition and compared to the clean (i.e., plasma off) case. Some of

  16. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV - VUV lamp on a mixture of argon, krypton and vapours of freon

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Minya, A. I.; Hrytsak, R. V.; Gomoki, Z. T.

    2015-02-01

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar - Kr - CCl4, which emits in the spectral range of 170 - 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl2 (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised.

  17. Medication reconciliation at hospital admission and discharge: insufficient knowledge, unclear task reallocation and lack of collaboration as major barriers to medication safety

    PubMed Central

    2012-01-01

    Background Medication errors are a leading cause of patient harm. Many of these errors result from an incomplete overview of medication either at a patient’s referral to or at discharge from the hospital. One solution is medication reconciliation, a formal process in which health care professionals partner with patients to ensure an accurate and complete transfer of medication information at interfaces of care. In 2007, the Dutch government compelled hospitals to implement a bundle concerning medication reconciliation at hospital admission and discharge. But to date many hospitals have failed to implement this bundle fully. The aim of this study was to gain insight into the barriers and drivers of the implementation process. Methods We performed face to face, semi-structured interviews with twenty health care professionals and managers from several departments at a 953 bed university hospital in the Netherlands and also from the surrounding community health services. The interviews were analysed using a combined theoretical framework of Grol and Cabana to classify the drivers and barriers identified. Results There is lack of awareness and insufficient knowledge of health care professionals about the health care problem and the bundle medication reconciliation. These result in a lack of support for implementing the bundle. In addition clinicians are reluctant to reallocate tasks to nurses or pharmacy technicians. Another major barrier is a lack of communication, understanding and collaboration between hospital and community caregivers. The introduction of more competitive market forces has made matters worse. Major drivers are a good implementation plan, patient awareness, and obligation by the government. Conclusions We identified a wide range of barriers and drivers which health care professionals believe influence the implementation of medication reconciliation. This reflects the complexity of implementation. Implementation can be improved if these factors are

  18. Dynamic model of streamer coupling for the homogeneity of glowlike dielectric barrier discharges at near-atmospheric pressure

    SciTech Connect

    Li Qing; Pu Yikang; Lieberman, Michael A.; Economou, Demetre J.

    2011-04-15

    A streamer coupling theory is developed to describe the formation of homogenous emission and the high propagation speed of emission patterns in near-atmospheric pressure discharges. By considering the effects of both electron diffusion and electronic drift in the streamer head, the minimum required preionization level n{sub min} for the formation of streamer coupling is found to be dependent on electric field strength, gas pressure, and electron temperature. The final stage of discharge is a microdischarge, when the preionization level n{sub 0} is smaller than n{sub min}. However, when n{sub 0} is larger than n{sub min}, streamers can couple to each other and form a glowlike discharge, and the homogeneity and propagation speed of the emission pattern in the streamer coupling head increases with the preionization level. The streamer coupling model can also be possibly used to explain many phenomenon in near-atmospheric pressure discharges, such as the bulletlike luminous discharge when atmospheric pressure plasma jets eject into ambient air.

  19. [Study on Hexagonal Super-Lattice Pattern with Light Spot and Dim Spot in Dielectric Barrier Discharge by Optical Emission Spectra].

    PubMed

    Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao

    2016-02-01

    The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and

  20. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    SciTech Connect

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  1. Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage.

    PubMed

    Horvatic, Vlasta; Michels, Antje; Ahlmann, Norman; Jestel, Günter; Veza, Damir; Vadla, Cedomil; Franzke, Joachim

    2015-09-01

    A helium capillary dielectric barrier discharge was investigated by means of time-resolved optical emission spectroscopy with the aim of elucidating the process of the formation of the plasma jet. The helium emission line at 706 nm was utilized to monitor spatial and temporal propagation of the excitation of helium atoms. The discharge was sustained with quasi-sinusoidal high voltage, and the temporal evolution of the helium atomic emission was measured simultaneously with the discharge current. The spatial development of the plasma was investigated along the discharge axis in the whole region, which covers the positions in the capillary between the electrodes as well as the plasma jet outside the capillary. The high voltage electrode was placed 2 mm from the capillary orifice, and the distance between the ground and high voltage electrode was 10 mm. The complete spatiotemporal grid of the development of the helium excitation has shown that during the positive half-period of the applied voltage, two independent plasmas, separated in time, are formed. First, the early plasma that constitutes the plasma jet is formed, while the discharge in the capillary follows subsequently. In the early plasma, the helium atom excitation propagation starts in the vicinity of the high voltage electrode and departs from the capillary towards the ground electrode as well as several millimeters outside of the capillary in the form of the plasma jet. After relatively slow propagation of the early plasma in the capillary and the jet, the second plasma starts between the electrodes. During the negative voltage period, only the plasma in the capillary between the electrodes occurs. PMID:26077750

  2. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  3. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    NASA Astrophysics Data System (ADS)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  4. Ambient-Temperature Trap/Release of Arsenic by Dielectric Barrier Discharge and Its Application to Ultratrace Arsenic Determination in Surface Water Followed by Atomic Fluorescence Spectrometry.

    PubMed

    Mao, Xuefei; Qi, Yuehan; Huang, Junwei; Liu, Jixin; Chen, Guoying; Na, Xing; Wang, Min; Qian, Yongzhong

    2016-04-01

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HG-AFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical method was established for ultratrace arsenic in real samples. Moreover, the effects of voltage, oxygen, hydrogen, and water vapor on trapping and releasing arsenic by DBDR were investigated. For trapping, arsenic could be completely trapped in DBDR at 40 mL/min of O2 input mixed with 600 mL/min Ar carrier gas and 9.2 kV discharge potential; prior to release, the Ar carrier gas input should be changed from the upstream gas liquid separator (GLS) to the downstream GLS and kept for 180 s to eliminate possible water vapor interference; for arsenic release, O2 was replaced by 200 mL/min H2 and discharge potential was adjusted to 9.5 kV. Under optimized conditions, arsenic could be detected as low as 1.0 ng/L with an 8-fold enrichment factor; the linearity of calibration reached R(2) > 0.995 in the 0.05 μg/L-5 μg/L range. The mean spiked recoveries for tap, river, lake, and seawater samples were 98% to 103%; and the measured values of the CRMs including GSB-Z50004-200431, GBW08605, and GBW(E)080390 were in good agreement with the certified values. These findings proved the feasibility of DBDR as an arsenic preconcentration tool for atomic spectrometric instrumentation and arsenic recycling in industrial waste gas discharge.

  5. Ambient-Temperature Trap/Release of Arsenic by Dielectric Barrier Discharge and Its Application to Ultratrace Arsenic Determination in Surface Water Followed by Atomic Fluorescence Spectrometry.

    PubMed

    Mao, Xuefei; Qi, Yuehan; Huang, Junwei; Liu, Jixin; Chen, Guoying; Na, Xing; Wang, Min; Qian, Yongzhong

    2016-04-01

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HG-AFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical method was established for ultratrace arsenic in real samples. Moreover, the effects of voltage, oxygen, hydrogen, and water vapor on trapping and releasing arsenic by DBDR were investigated. For trapping, arsenic could be completely trapped in DBDR at 40 mL/min of O2 input mixed with 600 mL/min Ar carrier gas and 9.2 kV discharge potential; prior to release, the Ar carrier gas input should be changed from the upstream gas liquid separator (GLS) to the downstream GLS and kept for 180 s to eliminate possible water vapor interference; for arsenic release, O2 was replaced by 200 mL/min H2 and discharge potential was adjusted to 9.5 kV. Under optimized conditions, arsenic could be detected as low as 1.0 ng/L with an 8-fold enrichment factor; the linearity of calibration reached R(2) > 0.995 in the 0.05 μg/L-5 μg/L range. The mean spiked recoveries for tap, river, lake, and seawater samples were 98% to 103%; and the measured values of the CRMs including GSB-Z50004-200431, GBW08605, and GBW(E)080390 were in good agreement with the certified values. These findings proved the feasibility of DBDR as an arsenic preconcentration tool for atomic spectrometric instrumentation and arsenic recycling in industrial waste gas discharge. PMID:26976077

  6. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-01

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  7. Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Wang, Hong-yu; Jiang, Wei; Bogaerts, Annemie

    2015-08-01

    The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of -20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of 4× {10}8 V m-1, which is much higher than the electric field in the empty DBD reactor, i.e., in the order of 2× {10}7 V m-1, thus resulting in stronger and faster development of the plasma, and also in a higher electron density. The locally enhanced electric field and the electron density in the case of a packed bed DBD are also examined and discussed for three different dielectric constants, i.e., {ɛ }r=22 (ZrO2), {ɛ }r=9 (Al2O3) and {ɛ }r=4 (SiO2). The enhanced electric field is stronger and the electron density is higher for a larger dielectric constant, because the dielectric material is more effectively polarized. These simulations are very important, because of the increasing interest in packed bed DBDs for environmental applications.

  8. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    SciTech Connect

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-15

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N{sub 2}) and electronegative gases (O{sub 2} and SF{sub 6}) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N{sub 2} discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  9. Dependency of temperature on polarization in CH{sub 4}/N{sub 2} dielectric barrier discharge plasma: A crude assumption

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer; Ghosh, Basudev

    2010-11-15

    We have investigated the variations of polarization (P) and the temperature ({Delta}T) at the electrode surfaces during the deposition of C-N layer in CH{sub 4}/N{sub 2} (1:2) dielectric barrier discharge plasma. The reactive deposition process influences the surface temperature, polarization, and the value of the in situ dielectric constant. We have developed a crude model that correlates the surface temperature and surface polarization with thin film properties. We assume that during the thin film deposition process, the atomic mean kinetic energy is equal to the electrostatic energy stored in the electrode surface area. Theoretically estimated temperature is found to agree well with the experimental results. However, the linear model thus developed cannot be used to explain the phenomena in the interfacial polarization stage that requires a nonlinear theory.

  10. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    NASA Astrophysics Data System (ADS)

    Bai, Suli; Huang, Chengdu; Lv, Jing; Li, Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N2-physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO2 catalyst showed an enhanced activity, C5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO2 catalyst.

  11. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  12. Dielectric barrier discharge-assisted one-pot synthesis of carbon quantum dots as fluorescent probes for selective and sensitive detection of hydrogen peroxide and glucose.

    PubMed

    He, Duhong; Zheng, Chengbin; Wang, Qiang; He, Chunlin; Lee, Yong-Ill; Wu, Li; Hou, Xiandeng

    2015-09-01

    In this work, we proposed a dielectric barrier discharge (DBD)-assisted one-pot strategy to fabricate carbon quantum dots (CQDs) using only one reagent N, N-dimethylformamide (DMF) at atmospheric pressure and room temperature. The experimental conditions were carefully investigated, and the prepared CQDs were characterized by using UV-vis spectrophotometer, fluorescence spectrophotometer, Fourier transform infrared (FTIR) spectrometer, transmission electron microscopy (TEM) and X-ray photoelectron spectrometer (XPS). The CQDs have an average size of 3.6 nm in diameter with narrow size distribution, and can be used as highly selective and sensitive fluorescence probes for hydrogen peroxide and glucose, with limits of detection of 3.8 μM and 3.5 μM, respectively.

  13. Wood Surface Modification in Diffuse Coplanar Surface Barrier Discharge for Creating Water Repellent Films from N{sub 2}/HMDSO and N{sub 2}/HMDS Mixtures

    SciTech Connect

    Odraskova, M.; Szalay, Z.; Zahoranova, A.; Rahel, J.; Cernak, M.

    2008-03-19

    Diffuse Coplanar Surface Barrier Discharge was successfully tested for creating a water-repellent surface from HMDSO and HMDS compounds on samples of spruce wood (Picea abies, Karst). The best results were achieved when the treated sample was in continuous motion during the course of film deposition. Best hydrophobic coating was achieved for 29% of total gas flow through the HMDSO and HMDS liquid. The surface free energy of modified surface was 30 mJ/m{sup 2} for HMDSO and 24 mJ/m{sup 2} for HMDS mixtures. The 50 {mu}l water droplet required (180{+-}30) min to penetrate into the modified spruce in HMDSO mixture and (213{+-}30) min in HMDS mixture. This is more than 20 fold increase compared to the unmodified spruce. The chemical composition of deposited layer was analyzed by ATR-FTIR. The presence of Si-O-Si and Si(CH{sub 3}) functional groups was confirmed.

  14. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    NASA Astrophysics Data System (ADS)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l-1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  15. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  16. Modeling of plasma chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge described using the one-dimensional fluid model

    SciTech Connect

    Li Zhi; Zhao Zhen; Li Xuehui

    2013-01-15

    The keynote of our research is to study the gas phase chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge, which is very important to produce the iron-nitride magnetic fluid. For this purpose, a home-made one dimensional fluid model with the Scharfetter-Gummel method has been developed. The equations solved are the particle balances, assuming a drift-diffusion approximation for the fluxes, and the electron energy equation. The self-consistent electric field is obtained by the simultaneous solution of Poisson's equation. The simulations were carried out for the different ammonia concentrations (2%, 3.5%, and 7%), at a voltage of 1 kV, and a driving frequency of 20 kHz. It concluded that the major ion products of Ar are Ar{sup +} and Ar{sub 2}{sup +}. Ar{sup +} is the most important positive ions, followed by Ar{sub 2}{sup +}. It is shown that the NH{sup +} density is smaller than that of the other ammonia ions. The density of NH{sub 4}{sup +} is more than that of the other ammonia ions when the ammonia concentration increased. The diffuse mode can be established after the discharge was ignited, and the mode changes to filamentary mode with an increase in ammonia concentration.

  17. Synthesis and investigation of reaction mechanisms of diamondoids obtained by dielectric barrier discharge microplasma reactors operated in adamantane - argon - methane - hydrogen mixtures at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Ishii, Chikako; Pai, David Z.; Terashima, Kazuo

    2013-09-01

    Diamondoids, sp3 hybridized molecules consisting of a cage-like carbon framework with hydrogen terminations, hold promise for many applications: biotechnology, medicine, and opto- and nanoelectronics. So far, diamondoids consisting of more than four cage units have been synthesized by electric discharge and pulsed laser plasmas in supercritical fluids, but the generation of plasmas in high-pressure media is not straightforward. Here we present an alternative, continuous flow process, where diamondoids are synthesized by dielectric barrier discharges inside microreactors. The plasmas were generated at peak-to-peak voltages of 3 - 4 kV at a frequency of 10 kHz, in Ar (96 - 100%-vol) - methane (0 - 4%-vol) - hydrogen (0 - 4%-vol) mixtures, at atmospheric pressure and flow rates of 2 - 20 sccm. As a precursor we used the first diamondoid, adamantane, whose density was controlled by adjusting the reactor temperature in the range from 293 to 323 K. Gas chromatography - mass spectrometry analysis indicated the synthesis of the second diamondoid, diamantane, and the presence of alkylated adamantane derivatives suggests a stepwise reaction mechanism. We will also discuss the influence of the plasma gas composition and precursor density on the diamondoid synthesis. Grant No. 21110002, MEXT, Japan.

  18. A ‘tissue model’ to study the barrier effects of living tissues on the reactive species generated by surface air discharge

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Xu, Han; liu, Zhichao; Xu, Dehui; Li, Dong; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2016-05-01

    Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of nitrite and O3 are comparably smaller than that for H2O2 and nitrate due to differences in their chemistry in gelatin gels. These results provide a quantitative basis to estimate the penetration processes of RONS in human tissues, and they also confirm that the composition of RONS is strongly dependent on the tissue depth and the plasma treatment time. A small electric field of up to 20 V cm‑1 can greatly reduce the barrier effects of the tissue model regardless of their directions, for which the underlying mechanism is unclear. However, the electric field force on the objective RONS should not be the dominant mechanism.

  19. A ‘tissue model’ to study the barrier effects of living tissues on the reactive species generated by surface air discharge

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Xu, Han; liu, Zhichao; Xu, Dehui; Li, Dong; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2016-05-01

    Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of nitrite and O3 are comparably smaller than that for H2O2 and nitrate due to differences in their chemistry in gelatin gels. These results provide a quantitative basis to estimate the penetration processes of RONS in human tissues, and they also confirm that the composition of RONS is strongly dependent on the tissue depth and the plasma treatment time. A small electric field of up to 20 V cm-1 can greatly reduce the barrier effects of the tissue model regardless of their directions, for which the underlying mechanism is unclear. However, the electric field force on the objective RONS should not be the dominant mechanism.

  20. Ion energy and angular distributions onto polymer surfaces delivered by dielectric barrier discharge filaments in air: II. Particles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2011-06-01

    Atmospheric pressure streamers intersecting particles are of interest in the context of plasma aided combustion, where the particle may be a fuel aerosol droplet, or in sterilization of air, where the particle may be a bacterium. The ion energy and angular distributions (IEADs) incident on the particles, small curved dielectric surfaces, then in part determine the propensity for activating chemical reactions or, in the case of bacteria, the plasma's sterilization capability. In this paper, we discuss results from a computational investigation of IEADs on small particles (45 µm radius) produced by atmospheric pressure discharge. Streamers intersecting a particle momentarily generate a large sheath potential as the streamer passes by as the particle charges towards the plasma floating potential. During that time, ions of energies up to 3-10 eV can strike the particle. The permittivity of the particle and the streamer polarity in part determine the character of the IEAD.

  1. Mastectomy - discharge

    MedlinePlus

    Breast removal surgery - discharge; Nipple-sparing mastectomy - discharge; Total mastectomy - discharge; Simple mastectomy - discharge; Modified radical mastectomy - discharge; Breast cancer - mastectomy -discharge

  2. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  3. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji

    2015-10-01

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  4. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    SciTech Connect

    Khan, Muhammad Saiful Islam; Lee, Eun-Jung; Kim, Yun-Ji

    2015-10-15

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  5. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  6. Role of nitrogen in the formation of HC-N films by CH(4)/N(2) barrier discharge plasma: aliphatic tendency.

    PubMed

    Majumdar, Abhijit; Das, Gobind; Basvani, Kaleswara Rao; Heinicke, Joachim; Hippler, Rainer

    2009-12-01

    We have studied the influence of nitrogen on the chemical properties of the hydrogenated carbon nitride (a-CN(x):H) film deposited by CH(4)/N(2) dielectric barrier discharge (DBD) plasma. X-ray photoelectron spectroscopy (XPS) indicates that carbon and nitrogen form an unpolarized covalent bond in these C-N(x) materials, and the observed chemical shift in the C 1s and N 1s binding energy is explained with respect to N 1s incorporation. Furthermore, the average nitrogen content (N/C approximately 0.76) in the films was systematically varied by changing the nitrogen partial pressure (CH(4)/N(2) approximately from 5:1 to 1:7) which is well supported by the elemental analysis. Fourier transform infrared (FTIR) absorption spectra exhibit significant changes in different C-N, C identical withN, and NH/OH molecular bands at higher nitrogen concentration in the film. The isonitrile and nitrile groups (-NC and -CN) are increased with the increase of deposition time. In addition, the elemental analysis, proton NMR, and thermolysis mass spectrum show that the composition of the film with the ratio CH(4)/N(2) approximately 1:1 is C, 67.68; H, 9.88; N, 16.53 (in wt %) and that the film is composed of polymers, probably containing linear chains which are cleaved off on heating in vacuum. PMID:19894689

  7. Rapid thermal annealing effect on amorphous hydrocarbon film deposited by CH{sub 4}/Ar dielectric barrier discharge plasma on Si wafer: Surface morphology and chemical evaluation

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer; Bhattacharayya, S. R.

    2009-05-01

    The effects of rapid thermal annealing (RTA) on amorphous hydrogenated carbon-coated film on Si wafer, deposited by CH{sub 4}/Ar dielectric barrier discharge plasma (at half of the atmospheric pressure), was examined. Bubbles-like structures were formed on the surface of the deposited carbon-coated film. The surface morphology studied by scanning electron microscopy (SEM), which showed that the effect of RTA on the film changing the morphological property drastically at 600 deg. C and most of the bubbles started evaporating above 200 deg. C. The inbuilt energy dispersive x-ray in SEM gives the quantitative analysis of the annealed surface. X-ray photoelectron spectroscopy results of the as-deposited films agree with the IR results in that the percent of Si-CH{sub 3}, Si-O-Si and C-O(H) stretching vibrational band in the film. Most of these bands disappeared as the sample was annealed at 600 deg. C in Ar medium.

  8. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    SciTech Connect

    Joshi, Ujjwal Man Subedi, Deepak Prasad

    2015-07-31

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  9. Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition.

    PubMed

    Nudnova, M M; Kindysheva, S V; Aleksandrov, N L; Starikovskii, A Yu

    2015-08-13

    The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N(2)/O(2) mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300-750 Torr) gas pressures and (50-100%) N(2) percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O(2) in N(2)/O(2) mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O(2) is due to a notable contribution of heat release during quenching of electronically excited N(2) states in collisions with O(2) molecules and to ion-ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon-air mixtures.

  10. Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures

    NASA Astrophysics Data System (ADS)

    Chandrashekaraiah, Thejaswini Halethimmanahally; Bogdanowicz, Robert; Danilov, Vladimir; Schäfer, Jan; Meichsner, Jürgen; Hippler, Rainer

    2015-06-01

    Organic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2H m /N2 ( m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface chemical compositions have been derived from X-ray photo electron spectroscopy (XPS). FT-IRRAS and XPS show the presence of sp, s p 2 and s p 3 bonds of carbon and nitrogen. Various functional groups such as NH containing, saturated and unsaturated alkyl groups have been identified. Thin films obtained from C2H2/N2 and C2H4/N2 gas mixtures revealed a higher N/C ratio when compared to thin films obtained from C2H6/N2. Thickness, refractive index and extinction coefficient were evaluated by spectroscopic ellipsometry (SE). Significant differences between the films obtained with different gas mixtures are observed.

  11. Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures

    NASA Astrophysics Data System (ADS)

    Halethimmanahally Chandrashekaraiah, Thejaswini; Bogdanowicz, Robert; Danilov, Vladimir; Schäfer, Jan; Meichsner, Jürgen; Hippler, Rainer

    2015-06-01

    Organic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2Hm/N2 (m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface chemical compositions have been derived from X-ray photo electron spectroscopy (XPS). FT-IRRAS and XPS show the presence of sp, sp2 and sp3 bonds of carbon and nitrogen. Various functional groups such as NH containing, saturated and unsaturated alkyl groups have been identified. Thin films obtained from C2H2/N2 and C2H4/N2 gas mixtures revealed a higher N/C ratio when compared to thin films obtained from C2H6/N2. Thickness, refractive index and extinction coefficient were evaluated by spectroscopic ellipsometry (SE). Significant differences between the films obtained with different gas mixtures are observed.

  12. Direct Coupling of Solid-Phase Microextraction with Mass Spectrometry: Sub-pg/g Sensitivity Achieved Using a Dielectric Barrier Discharge Ionization Source.

    PubMed

    Mirabelli, Mario F; Wolf, Jan-Christoph; Zenobi, Renato

    2016-07-19

    We report a new strategy for the direct coupling of Solid-Phase Microextraction (SPME) with mass spectrometry, based on thermal desorption of analytes extracted on the fibers, followed by ionization by a dielectric barrier discharge ionization (DBDI) source. Limits of detection as low as 0.3 pg/mL and a linear dynamic range of ≥3 orders of magnitude were achieved, with a very simple and reproducible approach. Different from direct analysis in real time (DART), desorption electrospray ionization (DESI), or low-temperature plasma (LTP), the desorption of the analytes from the SPME devices in our setup is completely separated from the ionization event. This enhances the reproducibility of the method and minimizes ion suppression phenomena. The analytes were quantitatively transferred from the SPME to the DBDI source, and the use of an active capillary ionization embodiment of the DBDI source greatly enhanced the ion transmission to the MS. This, together with the extraordinary sensitivity of DBDI, allowed subpg/mL sensitivities to be reached and to skip conventional and time-consuming chromatographic separation. PMID:27332082

  13. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. PMID:26889929

  14. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.

    PubMed

    Wolf, Jan-Christoph; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2015-01-01

    A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of 13 chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity. The investigated compounds include an intact chemical warfare agent and structurally related molecules, hydrolysis products and/or precursors of highly toxic nerve agents (G-series, V-series, and "new" nerve agents), and blistering and incapacitating warfare agents. Well-defined analyte gas phase concentrations were generated by a pressure-assisted nanospray with consecutive thermal evaporation and dilution. Identification was achieved by selected reaction monitoring (SRM). The most abundant fragment ion intensity of each compound was used for quantification. For DBDI and SESI, absolute gas phase detection limits in the low ppt range (in MS/MS mode) were achieved for all compounds investigated. Although the sensitivity of both methods was comparable, the active capillary DBDI sensitivity was found to be dependent on the applied AC voltage, thus enabling direct tuning of the sensitivity and the in-source fragmentation, which may become a key feature in terms of field applicability. Our findings underline the applicability of DBDI and SESI for the direct, sensitive detection and quantification of several CWA types and their degradation products. Furthermore, they suggest the use of DBDI in combination with hand-held instruments for CWAs on-site monitoring.

  15. DeNOx Study in Diesel Engine Exhaust Using Barrier Discharge Corona Assisted by V2O5/TiO2 Catalyst

    NASA Astrophysics Data System (ADS)

    B, S. Rajanikanth; V, Ravi

    2004-08-01

    A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx) from diesel engine exhaust operated under different load conditions. Initial studies were focused on plasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at various temperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust was treated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust was treated. Studies were then made with plasma reactor combined with a catalytic reactor consisting of a selective catalytic reduction (SCR) catalyst, V2O5/TiO2. Ammonia was used as a reducing agent for SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCR catalytic reactor below 200°C. The plasma-assisted catalytic reactor was operated well to remove NOx under no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficiencies obtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperature of 100°C.

  16. Computational study of temporal behavior of incident species impinging on a water surface in dielectric barrier discharge for the understanding of plasma-liquid interface

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Oda, Akinori; Kato, Ryo; Yamashita, Ryuma; Tanoue, Hideto; Takikawa, Hirofumi; Tero, Ryugo

    2015-01-01

    A lipid bilayer is a basic structure of the cell membrane and is stable in liquid solution. In this study, we analyzed dielectric barrier discharge (DBD) containing water on a quartz substrate using a one-dimensional fluid model. To simulate atmospheric pressure plasma for practical use, a tiny amount of N2 gas (0.5 ppm) was added to He gas ambient as an impure gas. The calculated current-voltage (I-V) characteristics reproduced the measured ones qualitatively. We focused on the behavior of DBD at the plasma-liquid interface and analyzed the temporal behavior of the electric field strength and incident fluxes of charged, excited, and radical species on the water surface. By varying the gap length, it was shown that the maximum electric field strength in an AC cycle saturated at gap lengths ≥0.15 cm. The incident fluxes of N2+ and He2+ on the water surface are almost the same and show strong correlations with the electric field in the vicinity of the water surface.

  17. Development of a portable mass spectrometer characterized by discontinuous sample gas introduction, a low-pressure dielectric barrier discharge ionization source, and a vacuumed headspace technique.

    PubMed

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2013-05-21

    The present study has attempted to downscale a mass spectrometer in order to make it portable and enable onsite analysis with it. The development of a small mass spectrometer required the use of a compact pump whose displacement was small, decreasing the sensitivity of that spectrometer. To get high sensitivity with a small mass spectrometer, we have integrated novel techniques: a highly sensitive ionization source and efficient extraction of sample vapor. The low-pressure dielectric barrier discharge ionization (LP-DBDI) source made it possible to increase the conductance between the source and the mass analyzer, compared with ambient ionization sources, enhancing the efficiency of the ion transfer from the ionization source to the mass analyzer. We have also developed a vacuumed headspace method efficiently transporting the sample vapor to the ionization source. The sensitivity was further enhanced by also using a discontinuous sample gas introduction technique. A prototype portable mass spectrometer using those novel techniques was found to be sensitive enough to detect 0.1 ppm methamphetamine, 1 ppm amphetamine, 1 ppm 3,4-methylenedioxymethamphetamine, and 10 ppm cocaine in liquid.

  18. Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition

    PubMed Central

    Nudnova, M. M; Kindysheva, S. V; Aleksandrov, N. L; Starikovskii, A. Yu

    2015-01-01

    The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N2/O2 mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300–750 Torr) gas pressures and (50–100%) N2 percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O2 in N2/O2 mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O2 is due to a notable contribution of heat release during quenching of electronically excited N2 states in collisions with O2 molecules and to ion–ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon–air mixtures. PMID:26170431

  19. Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro.

    PubMed

    Matthes, R; Hübner, N-O; Bender, C; Koban, I; Horn, S; Bekeschus, S; Weltmann, K-D; Kocher, T; Kramer, A; Assadian, O

    2014-01-01

    Because of its antimicrobial properties, nonthermal plasma could serve as an alternative to chemical antisepsis in wound treatment. Therefore, this study investigated the inactivation of biofilm-embedded Pseudomonas aeruginosa SG81 by a surface barrier-discharged (SBD) plasma for 30, 60, 150 and 300 s. In order to optimize the efficacy of the plasma, different carrier gases (argon, argon admixed with 1% oxygen, and argon with increased humidity up to approx. 80%) were tested and compared against 0.1% chlorhexidine digluconate (CHG) exposure for 600 s. The antimicrobial efficacy was determined by calculating the difference between the numbers of colony-forming units (CFU) of treated and untreated biofilms. Living bacteria were distinguished from dead by fluorescent staining and confocal laser scanning microscopy. Both SBD plasmas and CHG showed significant antimicrobial effects compared to the untreated control. However, plasma treatment led to a higher antimicrobial reduction (argon plasma 4.9 log10 CFU/cm(2), argon with admixed oxygen 3 log10 CFU/cm(2), and with increased gas humidity 2.7 log10 CFU/cm(2) after 300 s) compared to CHG. In conclusion, SBD plasma is suitable as an alternative to CHG for inactivation of Pseudomonas aeruginosa embedded in biofilm. Further development of SBD plasma sources and research on the role of carrier gases and humidity may allow their clinical application for wound management in the future.

  20. Nucleation and initial growth of atomic layer deposited titanium oxide determined by spectroscopic ellipsometry and the effect of pretreatment by surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Cameron, David C.; Krumpolec, Richard; Ivanova, Tatiana V.; Homola, Tomáš; Černák, Mirko

    2015-08-01

    This paper reports on the use of spectroscopic ellipsometry to characterise the initial nucleation stage of the atomic layer deposition of the anatase phase of titanium dioxide on silicon substrates. Careful control and analysis of the ellipsometric measurements enables the determination of the evolution of crystallite diameter and surface density in the nucleation stage before a continuous film is formed. This growth behaviour is in line with atomic force microscopy measurements of the crystallite size. The crystallite diameter is a linear function of the number of ALD cycles with a slope of approximately 1.7 Å cycle-1 which is equivalent to a layer growth rate of 0.85 Å cycle-1 consistent with a ripening process which increases the crystallite size while reducing their density. The crystallite density decreases from ∼3 × 1017 m-3 in the initial nucleation stages to ∼3 × 1015 m-3 before the film becomes continuous. The effect of exposing the substrate to a diffuse coplanar surface barrier discharge in an air atmosphere before deposition was measured and only small differences were found: the plasma treated samples were slightly rougher in the initial stages and required a greater number of cycles to form a continuous film (∼80) compared to the untreated films (∼50). A thicker layer of native oxide was found after plasma treatment.

  1. In Situ Synthesis of Porous Carbons by Using Room-Temperature, Atmospheric-Pressure Dielectric Barrier Discharge Plasma as High-Performance Adsorbents for Solid-Phase Microextraction.

    PubMed

    Lin, Yao; Wu, Li; Xu, Kailai; Tian, Yunfei; Hou, Xiandeng; Zheng, Chengbin

    2015-09-21

    A one-step, template-free method is described to synthesize porous carbons (PCs) in situ on a metal surface by using a room-temperature, atmospheric-pressure dielectric barrier discharge (DBD) plasma. This method not only features high efficiency, environmentally friendliness, and low cost and simple equipment, but also can conveniently realize large-area synthesis of PCs by only changing the design of the DBD reactor. The synthesized PCs have a regulated nestlike morphology, and thus, provide a high specific surface area and high pore volume, which result in excellent adsorption properties. Its applicability was demonstrated by using a PC-coated stainless-steel fiber as a solid-phase microextraction (SPME) fiber to preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to analysis by gas chromatography with flame ionization detection (GC-FID). The results showed that the fiber exhibited excellent enrichment factors (4.1×10(4) to 3.1×10(5)) toward all tested PAHs. Thus, the PC-based SPME-GC-FID provides low limits of detection (2 to 20 ng L(-1)), good precision (<7.8%), and good recoveries (80-115%) for ultra-sensitive determination of PAHs in real water samples. In addition, the PC-coated fiber could be stable enough for more than 500 replicate extraction cycles. PMID:26267394

  2. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation.

  3. Cancer cells (MCF-7, Colo-357, and LNCaP) viability on amorphous hydrogenated carbon nitride film deposited by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Ummanni, Ramesh; Schröder, Karsten; Walther, Reinhard; Hippler, Rainer

    2009-08-01

    Atmospheric pressure dielectric barrier discharge plasma in CH4/N2 (1:1) gas mixture has been employed to deposit amorphous hydrogenated carbon nitride (aH-CNx) film. In vitro studies with three different cancer cell lines were carried out on the coated surfaces. Preliminary biocompatibility and effect of CH4/N2 films have been investigated by measuring cell proliferation. Three different cancer cell (MCF-7, Colo-357, and LNCaP) suspensions have been exposed on the surface of aH-CNx film to investigate the effect of deposited films on viability of cells. Results from the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium, inner salt) proliferation assays indicated that the deposited aH-CNx film is cytotoxic to cancer cell lines. Time course cell viability assay indicated maximum cell death at 24 h after seeding the cells. This effect is dependant on physicochemical and mechanical properties of the deposited films. The deposited film has been characterized by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results confirm the presence of C-N, C≡N, C-Hx, C-O, N-O, overlapping NH, and OH bonds in the film.

  4. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e

  5. A comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in He/O2 and in Ar/O2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pan, Guangsheng; Tan, Zhenyu; Pan, Jie; Wang, Xiaolong; Shan, Chunhong

    2016-04-01

    In this work, a comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharges in He/O2 and in Ar/O2 at atmospheric pressure has been performed by means of the numerical simulation based on a 1-D fluid model at frequencies below 100 kHz. The frequency dependences of the characteristic quantities of the discharges in the two gases have been systematically calculated and analyzed under the oxygen concentrations below 2%. The characteristic quantities include the discharge current density, the averaged electron density, the electric field, and the averaged electron temperature. Especially, the frequency effects on the averaged particle densities of the reactive species have also been calculated. This work gives the following significant results. For the two gases, there are two bipolar discharges in one period of applied voltage pulse under the considered frequency range and oxygen concentrations, as occurred in the pure noble gases. The frequency affects the two discharges in He/O2, but in Ar/O2, it induces a strong effect only on the first discharge. For the first discharge in each gas, there is a characteristic frequency at which the characteristic quantities reach their respective minimum, and this frequency appears earlier for Ar/O2. For the second discharge in Ar/O2, the averaged electron density presents a slight variation with the frequency. In addition, the discharge in Ar/O2 is strong and the averaged electron temperature is low, compared to those in He/O2. The total averaged particle density of the reactive species in Ar/O2 is larger than those in He/O2 by about one order of magnitude.

  6. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry.

    PubMed

    Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin

    2016-03-01

    Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques.

  7. Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: stationary and random streamers

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2015-12-01

    Tissue covered by thin liquid layers treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluence of radicals, ions, electric fields and UV/VUV photons incident onto the tissue. These fluences are controlled by power, frequency and treatment time. To first order, these parameters determine the energy deposition (J cm-2) onto the tissue. However, energy deposition may not be the only parameter that determines the fluences of reactants to the underlying tissue. In this paper, we report on a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 pulses at different repetition rates and liquid thicknesses followed by 10 s or more of afterglow. Two schemes were investigated—stationary and random. In the stationary scheme, the DBD plasma streamer continues to strike at the same location on the liquid layer, whereas in the random scheme the plasma streamer strikes at random locations on the liquid layer. These differences in streamer locations strongly affect the spatial distribution of solvated species such as OHaq and H2O2aq (‘aq’ represents an aqueous species), which have high rates of solvation. The spatial distribution of species such as NOaq, which have low rates of solvation, are less affected by the location of the streamer due to the remediating effects of diffusion in the air. The end result is that fluences to the tissue are sensitive to the spatial location of the streamer due to the ensuing reactions in the liquid between species that have low and high rates of solvation. These reactions can be controlled not only through location of the streamer, but also by repetition rate and thickness of the liquid layer.

  8. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  9. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  10. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates.

  11. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  12. Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide.

    PubMed

    Balzer, Julian; Heuer, Kiara; Demir, Erhan; Hoffmanns, Martin A; Baldus, Sabrina; Fuchs, Paul C; Awakowicz, Peter; Suschek, Christoph V; Opländer, Christian

    2015-01-01

    The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal "cold" atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60-300 s; ~77-66%) or exposure to freshly DBD-treated PBS (60-300 s; ~75-55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in

  13. Investigation on the reaction mechanisms of generation and loss of oxygen-related species in atmospheric-pressure pulsed dielectric barrier discharge in argon/oxygen mixture

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Tan, Zhenyu; Pan, Guangsheng; Shan, Chunhong; Wang, Xiaolong; Liu, Yadi; Jiang, Jixiang

    2016-07-01

    This work presents a numerical investigation, using a 1-D fluid model, on the generation and loss of oxygen-related species and the spatial-temporal evolutions of the species densities in the atmospheric-pressure pulsed dielectric barrier discharge in the argon/oxygen mixture. The reaction pathways as well as their contributions to the generation and loss of oxygen-related species are given. The considered oxygen-related species include O, O(1D), O2(1Δg), O3, O+, O2+, O-, O2-, and O3-. The following significant results are obtained. O, O(1D), O2(1Δg), and O- are produced mainly via the electron impact with O2. Ar+ plays an essential role in the generation of O+ and O2+. Almost all of O3 derives from the reaction O2 + O2 + O → O3 + O2. The O3-related reactions produce an essential proportion of O2- and O3-. The substantial loss of O-, O2-, and O3- is induced by their reactions with O2+. Loss of O+, O, and O(1D) is mainly due to their reactions with O2, loss of O2(1Δg) due to O2(1Δg) impacts with O3 as well as the de-excitation reactions between O2(1Δg) and e, O2, and O, and loss of O3 due to the reactions between O3 and other neutral species. In addition, the densities of O+ and O(1D) present two obvious peaks at the pulse duration, but the densities of O2+, O, O2(1Δg), and O3 are almost unchanged. The densities of negative oxygen ions increase at the pulse duration and then decline. O- density is obviously large nearby the dielectric surfaces and the densities of O2- and O3- present generally uniform distributions.

  14. Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide

    PubMed Central

    Demir, Erhan; Hoffmanns, Martin A.; Baldus, Sabrina; Fuchs, Paul C.; Awakowicz, Peter; Suschek, Christoph V.; Opländer, Christian

    2015-01-01

    The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal “cold” atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60–300 s; ~77–66%) or exposure to freshly DBD-treated PBS (60–300 s; ~75–55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well

  15. Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide.

    PubMed

    Balzer, Julian; Heuer, Kiara; Demir, Erhan; Hoffmanns, Martin A; Baldus, Sabrina; Fuchs, Paul C; Awakowicz, Peter; Suschek, Christoph V; Opländer, Christian

    2015-01-01

    The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal "cold" atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60-300 s; ~77-66%) or exposure to freshly DBD-treated PBS (60-300 s; ~75-55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in

  16. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  17. Pancreatitis - discharge

    MedlinePlus

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... fluids through an intravenous (IV) tube in your vein and nutrition through a feeding tube or IV. ...

  18. Knee arthroscopy - discharge

    MedlinePlus

    ... retinacular release - discharge; Synovectomy - discharge; Patellar debridement - discharge; Meniscus repair - discharge; Lateral release - discharge; Collateral ligament repair - discharge; Knee surgery - ...

  19. Stereotactic radiosurgery - discharge

    MedlinePlus

    Gamma knife - discharge; Cyberknife - discharge; Stereotactic radiotherapy - discharge; Fractionated stereotactic radiotherapy- discharge; Cyclotrons- discharge; Linear accelerator- discharge; Lineacs - discharge; Proton beam radiosurgery - discharge

  20. FLUIDS, PLASMAS AND ELECTRIC DISCHARGES: The influence of the structures and compounds of DLC coatings on the barrier properties of PET bottles

    NASA Astrophysics Data System (ADS)

    Yang, Li; Wang, Zhen-Duo; Zhang, Shou-Ye; Yang, Li-Zhen; Chen, Qiang

    2009-12-01

    To reduce the oxygen transmission rate through a polyethylene terephthalate (PET) bottle (an organic plastic) diamond-like carbon (DLC) coatings on the inner surface of the PET bottle were deposited by radio frequency plasma-enhanced chemical vapour deposition (RF-PECVD) technology with C2H2 as the source of carbon and Ar as the diluted gas. As the barrier layer to humidity and gas permeation, this paper analyses the DLC film structure, composition, morphology and barrier properties by Fourier transform infrared, atomic force microscopy, scanning electron microscopy and oxygen transmission rate in detail. From the spectrum, it is found that the DLC film mainly consists of sp3 bonds. The barrier property of the films is significantly relevant to the sp3 bond concentration in the coating, the film thickness and morphology. Additionally, it is found that DLC film deposited in an inductively coupled plasma enhanced capacitively coupled plasma source shows a compact, homogeneous and crack-free surface, which is beneficial for a good gas barrier property in PET bottles.