Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.
2012-01-01
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172
Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S
2012-12-13
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Proksch, E; Elias, P M; Feingold, K R
1990-01-01
Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730
Oral intake of beet extract provides protection against skin barrier impairment in hairless mice.
Kawano, Ken-Ichi; Umemura, Kazuo
2013-05-01
The epidermis acts as a functional barrier against the external environment. Disturbances in the function of this barrier cause water loss and increase the chances of penetration by various irritable stimuli, leading to skin diseases such as dry skin, atopic dermatitis, and psoriasis. Ceramides are a critical natural element of the protective epidermal barrier. The aim of this study was to evaluate whether the oral intake of beet (Beta vulgaris) extract, a natural product rich in glucosylceramide (GlcCer), may prevent disturbance in skin barrier function. When HR-1 hairless mice were fed a special diet (HR-AD), transepidermal water loss (TEWL) from the dorsal skin increased, with a compensatory increase in water intake after 5 weeks. Mice fed with HR-AD had dry skin with erythema and showed increased scratching behaviour. Histological examinations revealed a remarkable increase in the thickness of the skin at 8 weeks. Supplemental addition of beet extract, which contained GlcCer at a final concentration of 0.1%, significantly prevented an increase TEWL, water intake, cumulative scratching time, and epidermal thickness at 8 weeks. These results indicate that oral intake of beet extract shows potential for preventing skin diseases associated with impaired skin barrier function. Copyright © 2012 John Wiley & Sons, Ltd.
Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa
2015-01-01
Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018
[Advance in studies on food allergy mechanism based on gut barrier].
Wang, Juan-hong; Li, Huan-zhou; Li, Meng; Pan, Su-hua
2015-04-01
Food allergies, as a type of adverse immune-mediated reactions to ingested food proteins, have become a serious public health issue that harms children and adults health, with increasing incidence year by year. However, without effective therapy for food allergies, doctors-have mostly advised to avoid allergens and provided symptomatic treatment. According to the findings of many studies, allergic diseases are correlated with intestinal barrier function injury, as evidenced by the significant increase in the intestinal permeability among patients with food allergies. In this paper, recent studies on correlations between food allergies and intestinal barrier functions, intestinal barrier function injury mechanisms of allergic foods and food allergy intervention strategies based on intestinal barrier functions were summarized to provide reference for laboratory researches and clinical treatment of food allergic diseases.
Probiotics promote endocytic allergen degradation in gut epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chun-Hua; Liu, Zhi-Qiang; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON
Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barriermore » function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.« less
Abnormal Barrier Function in Gastrointestinal Disorders.
Farré, Ricard; Vicario, María
2017-01-01
There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.
2012-01-01
Background Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. Results In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, 3H-mannitol fluxes, short-circuit current (Cl− secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl− secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca2+]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Conclusions Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS. PMID:22553939
Cuppoletti, John; Blikslager, Anthony T; Chakrabarti, Jayati; Nighot, Prashant K; Malinowska, Danuta H
2012-05-03
Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, (3)H-mannitol fluxes, short-circuit current (Cl(-) secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl(-) secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca(2+)]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.
Huby, Maria P.; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A.; Doursout, Marie-Francoise; Holcomb, John B.; Wade, Charles E.; Ko, Tien C.
2015-01-01
Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared to normal individuals, plasma adiponectin levels decreased to 49% in HS patients prior to resuscitation (p<0.05) and increased to 64% post resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared to baseline (p<0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS. PMID:26263440
Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases
Surapisitchat, James
2014-01-01
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641
Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.
Surapisitchat, James; Beavo, Joseph A
2011-01-01
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.
The impact of aging on epithelial barriers.
Parrish, Alan R
2017-10-02
The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.
Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo
2016-06-01
Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.
Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
Carlson, David E.; Wronski, Christopher R.
1979-01-01
A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.
NASA Technical Reports Server (NTRS)
Nash, Stephen G.; Polyak, R.; Sofer, Ariela
1994-01-01
When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.
Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors.
Tsai, J C; Guy, R H; Thornfeldt, C R; Gao, W N; Feingold, K R; Elias, P M
1996-06-01
The intercellular domains of the stratum corneum, which contain a mixture of cholesterol, free fatty acids, and ceramides, mediate both the epidermal permeability barrier and the transdermal delivery of both lipophilic and hydrophilic molecules. Prior studies have shown that each of the three key lipid classes is required for normal barrier function. For example, selective inhibition of either cholesterol, fatty acid, or ceramide synthesis in the epidermis delays barrier recovery rates after barrier perturbation of hairless mouse skin in vivo. In this study, we investigated the potential of certain inhibitors of lipid synthesis to enhance the transdermal delivery of lidocaine or caffeine as a result of their capacity to perturb barrier homeostasis. After acetone disruption of the barrier, the extent of lidocaine delivery and the degree of altered barrier function paralleled each other. Moreover, the further alteration in barrier function produced by either the fatty acid synthesis inhibitor 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), the cholesterol synthesis inhibitor fluvastatin (FLU), or cholesterol sulfate (CS) resulted in a further increase in lidocaine absorption. Furthermore, coapplications of TOFA and CS together caused an additive increase in lidocaine uptake. Finally, a comparable increase in drug delivery occurred when the barrier was disrupted initially with DMSO instead of acetone; coapplications of TOFA and FLU together again delayed barrier recovery and increased drug delivery by about 8-fold vs delivery from a standard enhancing vehicle. Whereas these metabolic inhibitors also variably increased the octanol/water partitioning of the drugs studied (perhaps via complexion or pH alterations), physicochemical effects of the inhibitors alone did not alter drug uptake in intact skin; i.e., passive mechanisms alone cannot account for the net increase in drug delivery. Our results show that modulations of epidermal lipid biosynthesis, following application of conventional, chemical penetration enhancers, cause a further boost in drug delivery, attributable to the ability of these agents to alter both permeability barrier homeostasis and thermodynamics. This biochemical/metabolic approach provides a novel means to enhance transdermal drug delivery in conjunction with the concurrent or prior use of chemical enhancers.
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
Erickson, Michelle A.
2018-01-01
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890
Douwes, Jeroen; Slater, Tania; Shanthakumar, Mathangi; McLean, Dave; Firestone, Ridvan Tua; Judd, Lissa; Pearce, Neil
2017-04-01
This study assessed the risk of dermatitis, urticaria and loss of skin barrier function in 425 cleaners and 281 reference workers (retail workers and bus drivers). Symptoms, atopy and skin barrier function were assessed by questionnaire, skin prick tests, and measurement of transepidermal water loss. Cleaners had an increased risk of current (past 3 months) hand/arm dermatitis (14.8% vs. 10.0%; OR = 1.9, p < 0.05) and urticaria (11% vs. 5.3%; OR = 2.4, p < 0.05) and were more likely to have dermatitis as adults (17.6% vs. 11.4%; OR = 1.8, p < 0.05). The risk of atopy was not increased, but associations with symptoms were more pronounced in atopics. Transepidermal water loss was significantly higher in cleaners. Wet-work was a significant risk factor for dermatitis and hand washing and drying significantly reduced the risk of urticaria. In conclusion, cleaners have an increased risk of hand/arm dermatitis, urticaria and loss of skin barrier function.
Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua
2018-01-01
Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance in early-weaned piglets and may be a promising antibiotic alternative used for intestinal epithelial barrier function damage prevention in mammals. PMID:29867808
Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska
2018-05-01
Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Lee, J Scott; Wang, Ruth X; Alexeev, Erica E; Lanis, Jordi M; Battista, Kayla D; Glover, Louise E; Colgan, Sean P
2018-04-20
Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
An oncological view on the blood-testis barrier.
Bart, Joost; Groen, Harry J M; van der Graaf, Winette T A; Hollema, Harry; Hendrikse, N Harry; Vaalburg, Willem; Sleijfer, Dirk T; de Vries, Elisabeth G E
2002-06-01
The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular wall, connected together with narrow tight junctions, and a myoid-cell layer around the seminiferous tubule. Second, an efflux-pump barrier that contains P-glycoprotein in the luminal capillary endothelium and on the myoid-cell layer; and multidrug-resistance associated protein 1 located basolaterally on Sertoli cells. Third, an immunological barrier, consisting of Fas ligand on Sertoli cells. Inhibition of P-glycoprotein function offers the opportunity to increase the delivery of cytotoxic drugs to the testis. In the future, visualisation of function in the blood-testis barrier may also be helpful to identify groups of patients in whom testis conservation is safe or to select drugs that are less harmful to fertility.
Spindler, Volker; Waschke, Jens
2011-02-01
cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions. © 2011 John Wiley & Sons Ltd.
Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S
2017-08-15
The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.
Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus
Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.
2015-01-01
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424
Effects of Fe particle irradiation on human endothelial barrier structure and function
NASA Astrophysics Data System (ADS)
Sharma, Preety; Guida, Peter; Grabham, Peter
2014-07-01
Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have impact on human endothelial barrier function and represent a risk for degenerative diseases in the space environment.
Schottky-type grain boundaries in CCTO ceramics
NASA Astrophysics Data System (ADS)
Felix, A. A.; Orlandi, M. O.; Varela, J. A.
2011-10-01
In this work we studied electrical barriers existing at CaCu 3Ti 4O 12 (CCTO) ceramics using dc electrical measurements. CCTO pellets were produced by solid state reaction method and X-ray diffractograms showed which single phase polycrystalline samples were obtained. The samples were electrically characterized by dc and ac measurements as a function of temperature, and semiconductor theory was applied to analyze the barrier at grain boundaries. The ac results showed the sample's permittivity is almost constant ( 104) as function of temperature at low frequencies and it changes from 100 to 104 as the temperature increases at high frequencies. Using dc measurements as a function of temperature, the behavior of barriers was studied in detail. Comparison between Schottky and Poole-Frenkel models was performed, and results prove that CCTO barriers are more influenced by temperature than by electric field (Schottky barriers). Besides, the behavior of barrier width as function of temperature was also studied and experimental results confirm the theoretical assumptions.
Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury
Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun
2012-01-01
Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961
López-Carballo, Gracia; Cava, David; Lagarón, Jose M; Catalá, Ramón; Gavara, Rafael
2005-09-07
The ethylene-vinyl alcohol copolymers (EVOHs) are well-known high oxygen barrier materials that are being used successfully in the design of packaging structures for oxygen-sensitive food or pharmaceutical products. Recently, there has been increasing interest in using EVOH materials to provide a high barrier to organic compounds as a means to reduce food aroma scalping. However, the barrier function of this family of materials diminishes significantly in humid environments, and it is supposed that so does the organic vapor barrier. In this work, a new sorption-based method to characterize the interaction between food aroma and polymer films for packaging as a function of relative humidity is presented and is used to determine the barrier to ethyl butyrate and alpha-pinene of EVOH at 23 degrees C. The results show that although EVOH is an excellent barrier to food aroma when dry, a property that even improves at low relative humidity (RH), the solubility and diffusivity of the compounds tested increase dramatically with humidity at medium to high water activities. However, even in the worst case (100% RH), EVOH outperforms low-density polyethylene (LDPE) as a barrier to organic vapors at least 500,000-fold.
LaDow, Kathy; Schumann, Brenda L; Luse, Nicole; Warshawsky, Dave; Pickens, William L; Hoath, Steven B; Talaska, Glenn
2011-12-01
The dermal route is important in many occupational exposures. Some materials may reduce the barrier function of the skin to enhance absorption and effect on internal organs. We have reported previously that kerosene cleaning following treatment with used engine oil increased DNA adduct levels in the lungs of mice compared with animals treated with used oil alone. To investigate what other physiological parameters might be affected by kerosene, we conducted in vitro and in vivo measurements of skin barrier function. We also topically applied (3)H-BAP(100 nM in 25 μL acetone) and washed half the mice with 25 μL kerosene 1 hr after carcinogen application. Groups of four mice were euthanized from 1 to 72 hr after treatment. Skin, lungs, and livers were harvested from each animal and stored separately. Kerosene application reduced the barrier function of the skin in vitro beyond the effect of the acetone vehicle and the vehicle plus BAP. In vivo studies indicated that kerosene treatment reduced the barrier function at 4 and 8 hr post application and that the barrier function recovered at 24 hr after a single treatment. The fraction of the radiolabel remaining in the skin of animals treated with (3)H-BAP and washed with kerosene was significantly less than those not washed, beginning at 24 hr (p< 0.05). Fractional distribution to the lungs and livers of these animals became significantly elevated at this time. Kerosene treatment compromises dermal barrier function and the ability of the skin to retain water, enhances carcinogen absorption, and alters organ distribution. This appears to contribute to the increase in BAP DNA adducts we reported earlier.
Bernard, Didem; Selden, Thomas; Yeh, Susan
2016-04-01
People with functional limitations and chronic conditions account for the greatest resource use within the health care system. To examine financial burdens and barriers to care among nonelderly adults, focusing on the role of functional limitations and chronic conditions. High financial burden is defined as medical spending exceeding 20 percent of family income. Financial barriers are defined as delaying care/being unable to get care for financial reasons, and reporting that delaying care/going without was a big problem. Data are from the Medical Expenditure Panel Survey (2008-2012). Functional limitations are associated with increased prevalence of financial burdens. Among single adults, the frequency of high burdens is 20.3% for those with functional limitations, versus 7.8% for those without. Among those with functional limitations, those with 3 or more chronic conditions are twice as likely to have high burdens compared to those without chronic conditions (22.2% versus 11.1%, respectively). Similar patterns occur among persons in multi-person families whose members have functional limitations and chronic conditions. Having functional limitations and chronic conditions is also strongly associated with financial barriers to care: 40.2% among the uninsured, 21.9% among those with public coverage, and 13.6% among those with private group insurance were unable to get care. Functional limitations and chronic conditions are associated with increased prevalence of burdens and financial barriers in all insurance categories, with the exception that an association between functional limitations and the prevalence of burdens was not observed for public coverage. Published by Elsevier Inc.
Gutiérrez-Colina, Ana M; Eaton, Cyd K; Lee, Jennifer L; Reed-Knight, Bonney; Loiselle, Kristin; Mee, Laura L; LaMotte, Julia; Liverman, Rochelle; Blount, Ronald L
2016-08-01
OBJECTIVE : To evaluate levels of executive functioning in a sample of adolescent and young adult (AYA) transplant recipients, and to examine executive functioning in association with barriers to adherence and medication nonadherence. METHOD : In all, 41 caregivers and 39 AYAs were administered self- and proxy-report measures. RESULTS : AYA transplant recipients have significant impairments in executive functioning abilities. Greater dysfunction in specific domains of executive functioning was significantly associated with more barriers to adherence and greater medication nonadherence. CONCLUSION : AYA transplant recipients are at increased risk for executive dysfunction. The assessment of executive functioning abilities may guide intervention efforts designed to decrease barriers to adherence and promote developmentally appropriate levels of treatment responsibility. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shot Noise in Superconducting Wires Applied with a Periodic Electric Field.
Chen, Qiao; Xu, Ning
2018-05-01
We have investigated the differential conductance and shot noise for the system of superconducting nanowires irradiated with a periodic electric field by nonequilibrium Green's functions. The numerical results show that the coupling between the Majorana bound states (MBSs) can be tuned by the periodic electric field. The width of barriers has huge influence on the coupling of MBSs, however, the separation between barriers affect the coupling faintly. The coupling increases with the width of barriers, the number of barriers and the strength of barriers. In addition, super-Poissonian shot noise emerges as the coupling increases.
Hydrologic behavior of two engineered barriers following extreme wetting.
Porro, I
2001-01-01
Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage-evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary-biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared with pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared with thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.
Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro
2013-03-27
The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.
Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon
2016-07-20
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.
Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery
Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio
2016-01-01
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149
Kim, Ye-Ryung; Volpert, Giora; Shin, Kyong-Oh; Kim, So-Yeon; Shin, Sun-Hye; Lee, Younghay; Sung, Sun Hee; Lee, Yong-Moon; Ahn, Jung-Hyuck; Pewzner-Jung, Yael; Park, Woo-Jae; Futerman, Anthony H; Park, Joo-Won
2017-12-01
Ceramides mediate crucial cellular processes including cell death and inflammation and have recently been implicated in inflammatory bowel disease. Ceramides consist of a sphingoid long-chain base to which fatty acids of various length can be attached. We now investigate the effect of alerting the ceramide acyl chain length on a mouse model of colitis. Ceramide synthase (CerS) 2 null mice, which lack very-long acyl chain ceramides with concomitant increase of long chain bases and C16-ceramides, were more susceptible to dextran sodium sulphate-induced colitis, and their survival rate was markedly decreased compared with that of wild-type littermates. Using mixed bone-marrow chimeric mice, we showed that the host environment is primarily responsible for intestinal barrier dysfunction and increased intestinal permeability. In the colon of CerS2 null mice, the expression of junctional adhesion molecule-A was markedly decreased and the phosphorylation of myosin light chain 2 was increased. In vitro experiments using Caco-2 cells also confirmed an important role of CerS2 in maintaining epithelial barrier function; CerS2-knockdown via CRISPR-Cas9 technology impaired barrier function. In vivo myriocin administration, which normalized long-chain bases and C16-ceramides of the colon of CerS2 null mice, increased intestinal permeability as measured by serum FITC-dextran levels, indicating that altered SLs including deficiency of very-long-chain ceramides are critical for epithelial barrier function. In conclusion, deficiency of CerS2 influences intestinal barrier function and the severity of experimental colitis and may represent a potential mechanism for inflammatory bowel disease pathogenesis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.
Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard
2016-01-01
Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.
Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Edogawa, Shoko; Peters, Stephanie A; Jenkins, Gregory D; Gurunathan, Sakteesh V; Sundt, Wendy J; Johnson, Stephen; Lennon, Ryan J; Dyer, Roy B; Camilleri, Michael; Kashyap, Purna C; Farrugia, Gianrico; Chen, Jun; Singh, Ravinder J; Grover, Madhusudan
2018-06-13
Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Hou, Maihua; Sun, Richard; Hupe, Melanie; Kim, Peggy L.; Park, Kyungho; Crumrine, Debra; Lin, Tzu-kai; Santiago, Juan Luis; Mauro, Theodora M.; Elias, Peter M.; Man, Mao-Qiang
2013-01-01
The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, Chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In the present study, we first determined whether topical apigenin positively influences permeability barrier homeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice-daily for 9 days. At the end of treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homeostasis after tape stripping, though basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were up-regulated by apigenin. Finally, both CAMP and mBD3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels, and impaired antimicrobial defenses, such as atopic dermatitis. PMID:23489424
Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.
2010-01-01
Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316
Barrier-protective function of intestinal epithelial Toll-like receptor 2.
Cario, E
2008-11-01
The intestinal epithelial cell (IEC) barrier plays an important role in maintaining mucosal immune homeostasis. Dysregulated IEC barrier function appears to trigger and perpetuate inflammation in inflammatory bowel diseases (IBD). Novel risk variants in the Toll-like receptor 2 (TLR2) gene have previously been associated with a more severe disease phenotype in a subgroup of IBD patients. Recent studies have provided important insights of the commensal and host defense mechanisms to maintain functional barrier integrity of the intestinal epithelium through TLR2. Deficient TLR2 signaling may imbalance commensal-dependent intestinal epithelial barrier defense, facilitating mucosal injury and leading to increased susceptibility of colitis. Treatment with a synthetic TLR2 ligand significantly suppresses mucosal inflammation by efficiently protecting tight junction-associated integrity of the intestinal epithelium in vivo. These beneficial effects may be supplemented by TLR2-induced anti-inflammatory immune responses (such as interleukin-10 production) in lamina propria mononuclear cells. Thus, cell-specific TLR2 targeting may offer a novel therapeutic approach to human IBD therapy by protecting IEC barrier function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, M.D.B.
The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study comparesmore » in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.« less
DiGuilio, K M; Valenzano, M C; Rybakovsky, E; Mullin, J M
2018-01-05
Elevation of the transcription factor HIF-1 is a prominent mediator of not only processes that accompany hypoxia, but also the tumor microenvironment and tissue regeneration. This study uses mediators of "chemical hypoxia" to ask the question whether HIF-1α elevation in a healthy epithelial cell layer leads to leakiness in its tight junctional seals. Transepithelial electrical resistance and transepithelial diffusion of 14 C-D-mannitol and other radiolabeled probes are used as indicators of transepithelial barrier function of CaCo-2 BBe human gastrointestinal epithelial cell layers cultured on permeable supports. Western immunoblot analyses of integral tight junctional proteins (occludin and claudins) are used as further indicators of barrier function change. Cobalt, an inhibitor of the prolyl hydroxylase enzymes governing HIF-1α breakdown in the cell, induces transepithelial leakiness in CaCo-2 BBe cell layers in a time and concentration-dependent manner. This increased leakiness is accompanied by significant changes in certain specific integral tight junctional (TJ) proteins such as a decreased level of occludin and increased level of claudin-5. Similar results regarding barrier function compromise also occur with other chemical inhibitors of HIF-1α breakdown, namely ciclopiroxolamine (CPX) and dimethyloxalylglycine (DMOG). The increased leak is manifested by both decreased transepithelial electrical resistance (R t ) and increased paracellular diffusion of D-mannitol (J m ). The induced transepithelial leak shows significant size selectivity, consistent with induced effects on TJ permeability. Less-differentiated cell layers were significantly more affected than well-differentiated cell layers regarding induced transepithelial leak. A genetically modified CaCo-2 variant with reduced levels of HIF-1β, showed reduced transepithelial leak in response to cobalt exposure, further indicating that elevation of HIF-1α levels induced by agents of "chemical hypoxia" is responsible for the compromised barrier function of the CaCo-2 BBe cell layers. Exposure to inducers of chemical hypoxia elevated HIF-1α levels and increased transepithelial leak. The degree of epithelial differentiation has significant effects on this action, possibly explaining the varying effects of HIF-1 modulation in epithelial and endothelial barrier function in different physiological and pathophysiological conditions.
Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes
NASA Astrophysics Data System (ADS)
Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.
2014-09-01
Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.
Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction
Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark
2016-01-01
Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853
Energy Levels in Quantum Wells.
NASA Astrophysics Data System (ADS)
Zang, Jan Xin
Normalized analytical equations for eigenstates of an arbitrary one-dimensional configuration of square potentials in a well have been derived. The general formulation is used to evaluate the energy levels of a particle in a very deep potential well containing seven internal barriers. The configuration can be considered as a finite superlattice sample or as a simplified model for a sample with only several atom layers. The results are shown in graphical forms as functions of the height and width of the potential barriers and as functions of the ratio of the effective mass in barrier to the mass in well. The formation of energy bands and surface eigenstates from eigenstates of a deep single well, the coming close of two energy bands and a surface state which are separate ordinarily, and mixing of the wave function of a surface state with the bulk energy bands are seen. Then the normalized derivation is extended to study the effect of a uniform electric field applied across a one-dimensional well containing an internal configuration of square potentials The general formulation is used to calculate the electric field dependence of the energy levels of a deep well with five internal barriers. Typical results are shown in graphical forms as functions of the barrier height, barrier width, barrier effective mass and the field strength. The formation of Stark ladders and surface states from the eigenstates of a single deep well in an electric field, the localization process of wave functions with changing barrier height, width, and field strength and their anticrossing behaviors are seen. The energy levels of a hydrogenic impurity in a uniform medium and in a uniform magnetic field are calculated with variational methods. The energy eigenvalues for the eigenstates with major quantum number less than or equal to 3 are obtained. The results are consistent with previous results. Furthermore, the energy levels of a hydrogenic impurity at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well are calculated with the finite-basis-set variational method. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. It is found that the energy levels increase with increasing parabolic parameter alpha and increase with increasing normalized magnetic field strength gamma except those levels with magnetic quantum number m < 0 at small gamma.
Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus.
Zhang, Jiyong; Sadowska, Grazyna B; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Banks, William A; Stonestreet, Barbara S
2015-05-01
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia. © FASEB.
A framework for understanding semi-permeable barrier effects on migratory ungulates
Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.
2013-01-01
1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement, semi-permeable barriers allow animals to maintain connectivity between their seasonal ranges. Our results identify the mechanisms (e.g. detouring, increased movement rates, reduced stopover use) by which semi-permeable barriers affect the functionality of ungulate migration routes and emphasize that the management of semi-permeable barriers may play a key role in the conservation of migratory ungulate populations.
Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M.; Richards, Elaine M.; Pepine, Carl J.; Raizada, Mohan K.
2018-01-01
Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut–epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. PMID:29507058
Wnt/β-catenin signaling controls development of the blood–brain barrier
Liebner, Stefan; Corada, Monica; Bangsow, Thorsten; Babbage, Jane; Taddei, Andrea; Czupalla, Cathrin J.; Reis, Marco; Felici, Angelina; Wolburg, Hartwig; Fruttiger, Marcus; Taketo, Makoto M.; von Melchner, Harald; Plate, Karl Heinz; Gerhardt, Holger; Dejana, Elisabetta
2008-01-01
The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown. PMID:18955553
Chromium-induced skin damage among Taiwanese cement workers.
Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng
2016-10-01
Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.
Homeostasis of the gut barrier and potential biomarkers.
Wells, Jerry M; Brummer, Robert J; Derrien, Muriel; MacDonald, Thomas T; Troost, Freddy; Cani, Patrice D; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L
2017-03-01
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts. Copyright © 2017 the American Physiological Society.
Homeostasis of the gut barrier and potential biomarkers
Brummer, Robert J.; Derrien, Muriel; MacDonald, Thomas T.; Troost, Freddy; Cani, Patrice D.; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M.; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L.
2017-01-01
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts. PMID:27908847
Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.
Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B
2017-11-01
Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models ( Villin-CreER T2 ;Klf5 fl/fl designated as Klf5 ΔIND and Villin-Cre;Klf5 fl/fl as Klf5 ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND ). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2 , which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2 , a gene encoding a major component of desmosome structures. NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function, which is commonly exerted by cell junctions, including tight junctions, adherens junctions, and desmosomes. Numerous previous studies were focused on tight junctions and adherens junctions. However, this study provided a new perspective on how the intestinal barrier function is regulated by KLF5 through DSG2, a component of desmosome complexes. Copyright © 2017 the American Physiological Society.
Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni
2017-01-01
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570
Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos
2013-02-01
Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Liu, Xinchun; Zhou, Xiaoshu; Yuan, Wei
2014-10-15
In mammalian central nervous system (CNS), the integrity of the blood-spinal cord barrier (BSCB), formed by tight junctions (TJs) between adjacent microvascular endothelial cells near the basement membrane of capillaries and the accessory structures, is important for relatively independent activities of the cellular constituents inside the spinal cord. The barrier function of the BSCB are tightly regulated and coordinated by a variety of physiological or pathological factors, similar with but not quite the same as its counterpart, the blood-brain barrier (BBB). Herein, angiopoietin 1 (Ang1), an identified ligand of the endothelium-specific tyrosine kinase receptor Tie-2, was verified to regulate barrier functions, including permeability, junction protein interactions and F-actin organization, in cultured spinal cord microvascular endothelial cells (SCMEC) of rat through the activity of Akt. Besides, these roles of Ang1 in the BSCB in vitro were found to be accompanied with an increasing expression of epidermal growth factor receptor pathway substrate 8 (Eps8), an F-actin bundling protein. Furthermore, the silencing of Eps8 by lentiviral shRNA resulted in an antagonistic effect vs. Ang1 on the endothelial barrier function of SCMEC. In summary, the Ang1-Akt pathway serves as a regulator in the barrier function modulation of SCMEC via the actin-binding protein Eps8. Copyright © 2014 Elsevier Inc. All rights reserved.
Anisotropic capillary barrier for waste site surface covers
Stormont, J.C.
1996-08-27
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.
Anisotropic capillary barrier for waste site surface covers
Stormont, John C.
1996-01-01
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.
Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya
2016-09-01
Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.
In vitro models to estimate drug penetration through the compromised stratum corneum barrier.
Engesland, André; Škalko-Basnet, Nataša; Flaten, Gøril Eide
2016-11-01
The phospholipid vesicle-based permeation assay (PVPA) is a recently established in vitro stratum corneum model to estimate the permeability of intact and healthy skin. The aim here was to further evolve this model to mimic the stratum corneum in a compromised skin barrier by reducing the barrier functions in a controlled manner. To mimic compromised skin barriers, PVPA barriers were prepared with explicitly defined reduced barrier function and compared with literature data from both human and animal skin with compromised barrier properties. Caffeine, diclofenac sodium, chloramphenicol and the hydrophilic marker calcein were tested to compare the PVPA models with established models. The established PVPA models mimicking the stratum corneum in healthy skin showed good correlation with biological barriers by ranking drugs similar to those ranked by the pig ear skin model and were comparable to literature data on permeation through healthy human skin. The PVPA models provided reproducible and consistent results with a distinction between the barriers mimicking compromised and healthy skin. The trends in increasing drug permeation with an increasing degree of compromised barriers for the model drugs were similar to the literature data from other in vivo and in vitro models. The PVPA models have the potential to provide permeation predictions when investigating drugs or cosmeceuticals intended for various compromised skin conditions and can thus possibly reduce the time and cost of testing as well as the use of animal testing in the early development of drug candidates, drugs and cosmeceuticals.
Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M
2014-01-01
Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651
Evidence for the effects of yogurt on gut health and obesity.
Pei, Ruisong; Martin, Derek A; DiMarco, Diana M; Bolling, Bradley W
2017-05-24
Obesity is associated with increased risk for chronic diseases, and affects both developed and developing nations. Yogurt is a nutrient-dense food that may benefit individuals with lactose intolerance, constipation and diarrheal diseases, hypertension, cardiovascular diseases, diabetes, and certain types of cancer. Emerging evidence suggests that yogurt consumption might also improve the health of obese individuals. Obesity is often accompanied by chronic, low-grade inflammation perpetuated by adipose tissue and the gut. In the gut, obesity-associated dysregulation of microbiota and impaired gut barrier function may increase endotoxin exposure. Intestinal barrier function can be compromised by pathogens, inflammatory cytokines, endocannabinoids, diet, exercise, and gastrointestinal peptides. Yogurt consumption may improve gut health and reduce chronic inflammation by enhancing innate and adaptive immune responses, intestinal barrier function, lipid profiles, and by regulating appetite. While this evidence suggests that yogurt consumption is beneficial for obese individuals, randomized-controlled trials are needed to further support this hypothesis.
Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice
Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun
2016-01-01
Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes secretory cell lineage differentiation, suppresses inflammation and improves epithelial barrier function in IL10KO mice likely through activation of AMPK, showing its beneficial effects on gut epithelial. PMID:28002460
NASA Astrophysics Data System (ADS)
Noor, F. A.; Nabila, E.; Mardianti, H.; Ariani, T. I.; Khairurrijal
2018-04-01
The transmittance and tunneling current in heterostructures under spin polarization consideration were studied by employing a zinc-blended structure for the heterostructures. An electron tunnels through a potential barrier by applying a bias voltage to the barrier, which is called the trapezoidal potential barrier. In order to study the transmittance, an Airy wave function approach was employed to find the transmittance. The obtained transmittance was then utilized to compute the tunneling current by using a Gauss quadrature method. It was shown that the transmittances were asymmetric with the incident angle of the electron. It was also shown that the tunneling currents increased as the bias voltage increased.
NASA Astrophysics Data System (ADS)
Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood
2017-11-01
The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).
McGuire, Paul G; Rangasamy, Sampathkumar; Maestas, Joann; Das, Arup
2011-12-01
The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.
Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina
2016-02-01
A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Duplan, Hélène; Questel, Emmanuel; Hernandez-Pigeon, Hélène; Galliano, Marie Florence; Caruana, Antony; Ceruti, Isabelle; Ambonati, Marco; Mejean, Carine; Damour, Odile; Castex-Rizzi, Nathalie; Bessou-Touya, Sandrine; Schmitt, Anne-Marie
2011-01-01
10-Hydroxy-2-decenoic acid, a natural fatty acid only found in royal jelly, may be of value in correcting skin barrier dysfunction. We evaluated the activity of Hydroxydecine(®), its synthetic counterpart, in vitro on the regulation of epidermal differentiation markers, ex vivo on the inflammatory response and restoration of skin barrier function, and in vivo on UV-induced xerosis in healthy human volunteers. In cultured normal human keratinocytes, Hydroxydecine(®) induced involucrin, transglutaminase-1 and filaggrin protein production. In topically Hydroxydecine(®)-treated skin equivalents, immunohistochemical analysis revealed an increase in involucrin, transglutaminase-1 and filaggrin staining. In a model of thymic stromal lymphopoietin (TSLP)-induced inflamed epidermis, a Hydroxydecine(®)-containing emulsion inhibited TSLP release. In a model of inflammation and barrier impairment involving human skin explants maintained alive, Hydroxydecine(®) balm restored stratum corneum cohesion and significantly increased filaggrin expression, as shown by immunohistochemistry. It also decreased pro-inflammatory cytokine secretion (IL-4, IL-5 and IL-13). In healthy volunteers with UV-induced xerosis, the hydration index increased by +28.8% (p<0.01) and +60.4% (p<0.001) after 7 and 21 days of treatment with Hydroxydecine(®) cream, respectively. Hydroxydecine(®) thus proved its efficacy in activating keratinocyte differentiation processes in vitro, restoring skin barrier function and reducing inflammation ex vivo, and hydrating dry skin in vivo.
Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean
2012-01-01
Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868
Rantakokko, Merja; Törmäkangas, Timo; Rantanen, Taina; Haak, Maria; Iwarsson, Susanne
2013-08-28
Environmental barriers are associated with disability-related outcomes in older people but little is known of the effect of environmental barriers on mortality. The aim of this study was to examine whether objectively measured barriers in the outdoor, entrance and indoor environments are associated with mortality among community-dwelling 80- to 89-year-old single-living people. This longitudinal study is based on a sample of 397 people who were single-living in ordinary housing in Sweden. Participants were interviewed during 2002-2003, and 393 were followed up for mortality until May 15, 2012.Environmental barriers and functional limitations were assessed with the Housing Enabler instrument, which is intended for objective assessments of Person-Environment (P-E) fit problems in housing and the immediate outdoor environment. Mortality data were gathered from the public national register. Cox regression models were used for the analyses. A total of 264 (67%) participants died during follow-up. Functional limitations increased mortality risk. Among the specific environmental barriers that generate the most P-E fit problems, lack of handrails in stairs at entrances was associated with the highest mortality risk (adjusted RR 1.55, 95% CI 1.14-2.10), whereas the total number of environmental barriers at entrances and outdoors was not associated with mortality. A higher number of environmental barriers indoors showed a slight protective effect against mortality even after adjustment for functional limitations (RR 0.98, 95% CI 0.96-1.00). Specific environmental problems may increase mortality risk among very-old single-living people. However, the association may be confounded by individuals' health status which is difficult to fully control for. Further studies are called for.
Lee, Ji-Hae; Choi, Chang Soon; Bae, Il-Hong; Choi, Jin Kyu; Park, Young-Ho; Park, Miyoung
2018-04-30
Although it is established that epidermal barrier disturbance and immune dysfunction resulting in IgE sensitization are critical factors in the development of cutaneous inflammation, the pathogenesis and targeted therapy of atopic dermatitis (AD)-specific pathways have still been unknown. Taking into account the fact that Th2 cytokines in AD have both unique and overlapping functions including increased epidermal thickening, inflammation, and decreased expressing of the barrier proteins keratinocyte differentiation, we sought to clarify our hypothesis that TRPV1 antagonist plays a critical role in skin barrier function and can be a therapeutic target for AD. AD-like dermatitis was induced in hairless mice by repeated oxazolone (Ox) challenges to hairless mice. The functional studies concerning skin barrier function, anti-inflammatory action, and molecular mechanism by TRPV1 antagonism were conducted by histopathological assays, ELISA, qPCR, western blotting, and skin blood flow measurement. Topically administered TRPV1 antagonist, PAC-14028 (Asivatrep: C 21 H 22 F 5 N 3 O 3 S), improved AD-like dermatitis and skin barrier functions, and restored the expression of epidermal differentiation markers. In addition, the PAC-14028 cream significantly inhibited cutaneous inflammation by decreasing the expression of serum IgE, and the epidermal expression of IL-4, and IL-13 in Ox-AD mice. These results may provide a novel insight into the molecular mechanism of PAC-14028 cream involved in anti-inflammatory effects and skin barrier functions by suppressing the multiple signaling pathways including IL-4/-13-mediated activation of JAK/STAT, TRPV1, and neuropeptides. PAC-14028 cream can be a potential therapeutic tool for the treatment of chronic inflammation and disrupted barrier function in patients with AD. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok
2004-03-01
Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.
Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure
NASA Astrophysics Data System (ADS)
Sağlam, M.; Güzeldir, B.
2016-04-01
We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.
Influence of Repeated Senna Laxative Use on Skin Barrier Function in Mice.
Yokoyama, Satoshi; Hiramoto, Keiichi; Yamate, Yurika; Ooi, Kazuya
2017-08-01
Senna, one of the major stimulant laxatives, is widely used for treating constipation. Chronic senna use has been reported to be associated with colonic disorders such as melanosis coli and/or epithelial hyperplasia. However, there is no obvious information on the influence of chronic senna use on organs except for the intestine. To clarify the influence of senna laxative use on skin barrier function by repeated senna administration. Eight-week-old male hairless mice received senna (10 mg/kg/day) for 21 days. After administration, we evaluated transepidermal water loss (TEWL), and investigated the biomarkers in plasma and skin using protein analysis methods. Fecal water content on day seven was significantly increased; however, on day 21, it was significantly decreased after repeated senna administration. In the senna-administered group, TEWL was significantly higher compared to the control on days seven and 21. Plasma acetylcholine concentration and NO 2 - /NO 3 - were increased on days seven and 21, respectively. In skin, tryptase-positive mast cells and inducible nitric oxide synthase (iNOS)-positive cells were increased on days seven and 21, respectively. The increase of TEWL on days seven and 21 was suppressed by the administration of atropine and N(G)-nitro-L-arginine methyl ester, respectively. It was suggested that diarrhea or constipation induced by repeated senna administration caused the impairment of skin barrier function. There is a possibility that this impaired skin barrier function occurred due to degranulation of mast cells via cholinergic signals or oxidative stress derived from iNOS.
Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe
2016-01-01
Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.
Assessing theoretical uncertainties in fission barriers of superheavy nuclei
Agbemava, S. E.; Afanasjev, A. V.; Ray, D.; ...
2017-05-26
Here, theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements have been investigated in a systematic way for a set of state-of-the-art covariant energy density functionals which represent major classes of the functionals used in covariant density functional theory. They differ in basic model assumptions and fitting protocols. Both systematic and statistical uncertainties have been quantified where the former turn out to be larger. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental datamore » on fission barriers in the actinides allows to reduce the systematic theoretical uncertainties for the inner fission barriers of unknown superheavy elements. However, even then they on average increase on moving away from the region where benchmarking has been performed. In addition, a comparison with the results of non-relativistic approaches is performed in order to define full systematic theoretical uncertainties over the state-of-the-art models. Even for the models benchmarked in the actinides, the difference in the inner fission barrier height of some superheavy elements reaches $5-6$ MeV. This uncertainty in the fission barrier heights will translate into huge (many tens of the orders of magnitude) uncertainties in the spontaneous fission half-lives.« less
Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures.
Schweitzer, Kelly S; Chen, Steven X; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J; Hubbard, Walter C; Kim, Elena S; Lai, Xianyin; Wang, Mu; Kranz, William D; Carroll, Clinton J; Ray, Bruce D; Bittman, Robert; Goodpaster, John; Petrache, Irina
2015-07-15
The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.
Angelova-Fischer, I; Fischer, T W; Abels, C; Zillikens, D
2018-03-25
Increased skin surface pH is an important host-related factor for deteriorated barrier function in the aged. We investigated whether restoration of the skin pH through topical application of a water-in-oil (w/o) emulsion with pH 4 improved the barrier homeostasis in aged skin and compared the effects to an identical galenic formulation with pH 5.8. The effects of the test formulations on the barrier recovery were investigated by repeated measurements of transepidermal water loss (TEWL) and skin pH 3 h, 6 h and 24 h after acetone-induced impairment of the barrier function in aged skin. The long-term effects of the pH 4 and pH 5.8 emulsions were analyzed by investigation of the barrier integrity/cohesion, the skin surface pH and the skin roughness and scaliness before and after a 4-week, controlled application of the formulations. The application of the pH 4 emulsion accelerated the barrier recovery in aged skin: 3 h and 6 h after acetone-induced barrier disruption the differences in the TEWL recovery between the pH4-treated and acetone control field were significant. Furthermore, the long-term application of the pH 4 formulation resulted in significantly decreased skin pH, enhanced barrier integrity and reduced skin surface roughness and scaliness. At the same time points, the pH 5.8 formulation exerted only minor effects on the barrier function parameters. Exogenous acidification through topical application of a w/o emulsion with pH 4 leads to improvement of the barrier function and maintenance of the barrier homeostasis in aged skin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo
2008-05-01
Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.
Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K
1997-10-01
Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.
Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides
NASA Astrophysics Data System (ADS)
Zhao, Jie; Lu, Bing-Nan; Vretenar, Dario; Zhao, En-Guang; Zhou, Shan-Gui
2015-01-01
Background: Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier, the occurrence of a third barrier was predicted by macroscopic-microscopic model calculations in the 1970s, but contradictory results were later reported by a number of studies that used different methods. Purpose: Triple-humped barriers in actinide nuclei are investigated in the framework of covariant density functional theory (CDFT). Methods: Calculations are performed using the multidimensionally constrained relativistic mean field (MDC-RMF) model, with the nonlinear point-coupling functional PC-PK1 and the density-dependent meson exchange functional DD-ME2 in the particle-hole channel. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Results: Two-dimensional PES's of 226,228,230,232Th and 232,235,236,238U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. The functional DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238U . The third minima in 230 ,232Th are very shallow, whereas those in 226 ,228Th and 238U are quite prominent. With the functional PC-PK1 a third barrier is found only in 226 ,228 ,230Th . Single-nucleon levels around the Fermi surface are analyzed in 226Th, and it is found that the formation of the third minimum is mainly due to the Z =90 proton energy gap at β20≈1.5 and β30≈0.7 . Conclusions: The possible occurrence of a third barrier on the PES's of actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with increasing neutron number. The origin of the third minimum is due to the proton Z =90 shell gap at relevant deformations.
Ghosh, Siddhartha S.; Bie, Jinghua; Wang, Jing; Ghosh, Shobha
2014-01-01
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as Type 2 Diabetes and atherosclerosis) has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD) induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR−/− mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin) in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively) and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1). Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR−/− mice. Activation of macrophages by low levels of LPS (50 ng/ml) and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role of intestinal barrier function, but also identify oral supplementation with curcumin as a potential therapeutic strategy to improve intestinal barrier function and prevent the development of metabolic diseases. PMID:25251395
Electrical valley filtering in transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu
2018-03-01
This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.
Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi
2016-01-01
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua
2014-01-01
Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.
Intestinal permeability defects: Is it time to treat?
Odenwald, Matthew A.; Turner, Jerrold R.
2013-01-01
An essential role of the intestinal epithelium is to separate luminal contents from the interstitium, a function primarily determined by the integrity of the epithelium and the tight junction that seals the paracellular space. Intestinal tight junctions are selectively-permeable, and intestinal permeability can be increased physiologically in response to luminal nutrients or pathologically by mucosal immune cells and cytokines, the enteric nervous system, and pathogens. Compromised intestinal barrier function is associated with an array of clinical conditions, both intestinal and systemic. While most available data are correlative, some studies support a model where cycles of increased intestinal permeability, intestinal immune activation, and subsequent immune-mediated barrier loss contribute to disease progression. This model is applicable to intestinal and systemic diseases. However, it has not been proven and both mechanistic and therapeutic studies are ongoing. Nevertheless, the correlation between increased intestinal permeability and disease has caught the attention of the public, leading to a rise in popularity of the diagnosis of “leaky gut syndrome,” which encompasses a range of systemic disorders. Proponents claim that barrier restoration will cure underlying disease, but this has not been demonstrated in clinical trials. Moreover, human and mouse studies show that intestinal barrier loss alone is insufficient to initiate disease. It is therefore uncertain if increased permeability in these patients is a cause or effect of the underlying disorder. Although drug targets that may mediate barrier restoration have been proposed, none have been proven effective. As such, current treatments for barrier dysfunction should target the underlying disease. PMID:23851019
Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S
2012-01-01
Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity <30%RH. Nonstressed (NS) mice were used as controls. Oregon-green-dextran uptake was used to measure corneal barrier function. Levels of small proline-rich protein (SPRR)-2, involucrin, occludin, and MMP-9 were evaluated by immunofluorescent staining in cornea sections. Wholemount corneas immunostained for occludin were used to measure mean apical cell area. Gelatinase activity was evaluated by in situ zymography. Expression of MMP, CE and inflammatory cytokine genes was evaluated by qPCR. C57BL/6 mice exposed to LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.
Döge, Nadine; Avetisyan, Araks; Hadam, Sabrina; Pfannes, Eva Katharina Barbosa; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika
2017-07-01
Topical dermatotherapy is intended to be used on diseased skin. Novel drug delivery systems even address differences between intact and diseased skin underlining the need for pre-clinical assessment of different states of barrier disruption. Herein, we studied how short-term incubation in culture media compared to incubation in humidified chambers affects human skin barrier function and viability. On both models we assessed different types and intensities of physical and chemical barrier disruption methods with regard to structural integrity, biophysical parameters and cytokine levels. Tissue degeneration and proliferative activity limited the use of tissue cultures to 48h. Viability is better preserved in cultured tissue. Tape-stripping (50×TS) and 4h sodium lauryl sulfate (SLS) pre-treatment were identified as highly reproducible and effective procedures for barrier disruption. Transepidermal water loss (TEWL) values reproducibly increased with the intensity of disruption while sebum content and skin surface pH were of limited value. Interleukin (IL)-6/8 and various chemokines and proteases were increased in tape-stripped skin which was more pronounced in SLS-treated skin tissue extracts. Thus, albeit limited to 48h, cultured full-thickness skin maintained several barrier characteristics and responded to different intensities of barrier disruption. Potentially, these models can be used to assess pre-clinically the efficacy and penetration of anti-inflammatory compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lademann, J.; Richter, H.; Astner, S.; Patzelt, A.; Knorr, F.; Sterry, W.; Antoniou, Ch
2008-04-01
Normal skin barrier function is an essential aspect of skin homeostasis and regeneration. Dynamic inflammatory, proliferative and neoplastic skin processes such as wound healing, psoriasis and contact dermatitis are associated with a significant disruption of the skin barrier. In recent years, there has been increasing interest in evaluating cosmetic and pharmacologic products for their ability to restore these protective properties. The gold standard for characterization of barrier function has been the measurement of the transepidermal water loss, however the disadvantage of this method is its interference with several endogenous and exogenous factors such as hydration, perspiration and topically applied substances. This study was aimed to test the clinical applicability of a fluorescence confocal laser scanning microscope (LSM) for a systematic morphologic analysis of the structure, integrity and thickness of the stratum corneum in 10 otherwise healthy volunteers. The influence of skin treatment with commercial moisturizing cream on skin barrier function was evaluated in serial non-invasive examinations. Our findings showed that in vivo LSM may represent a simple and efficient method for the characterization of skin barrier properties, such as the thickness and hydration of the stratum corneum.
Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James
2017-12-01
Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.
Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G
1995-06-01
We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.
Targeting the brain--surmounting or bypassing the blood-brain barrier.
Potschka, Heidrun
2010-01-01
The constituents of the blood-brain barrier, including its efflux transporter system, can efficiently limit brain penetration of potential CNS therapeutics. Effective extrusion from the brain by transporters is a frequent reason for the pharmaceutical industry to exclude novel compounds from further development for CNS therapeutics. Moreover, high transporter expression levels that are present in individual patients or may be generally associated with the pathophysiology seem to be a major cause of therapeutic failure in a variety of CNS diseases including brain tumors, epilepsy, brain HIV infection, and psychiatric disorders. Increasing knowledge of the structure and function of the blood-brain barrier creates a basis for the development of strategies which aim to enhance brain uptake of beneficial pharmaceutical compounds. The different strategies discussed in this review aim to modulate blood-brain barrier function or to bypass constituents of the blood-brain barrier.
Egawa, Gyohei; Kabashima, Kenji
2016-08-01
Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.
2011-01-01
Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944
Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens
2009-05-01
To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.
A Key Claudin Extracellular Loop Domain is Critical for Epithelial Barrier Integrity
Mrsny, Randall J.; Brown, G. Thomas; Gerner-Smidt, Kirsten; Buret, Andre G.; Meddings, Jon B.; Quan, Clifford; Koval, Michael; Nusrat, Asma
2008-01-01
Intercellular tight junctions (TJs) regulate epithelial barrier properties. Claudins are major structural constituents of TJs and belong to a large family of tetra-spanning membrane proteins that have two predicted extracellular loops (ELs). Given that claudin-1 is widely expressed in epithelia, we further defined the role of its EL domains in determining TJ function. The effects of several claudin-1 EL mimetic peptides on epithelial barrier structure and function were examined. Incubation of model human intestinal epithelial cells with a 27-amino acid peptide corresponding to a portion of the first EL domain (Cldn-153–80) reversibly interfered with epithelial barrier function by inducing the rearrangement of key TJ proteins: occludin, claudin-1, junctional adhesion molecule-A, and zonula occludens-1. Cldn-153–80 associated with both claudin-1 and occludin, suggesting both the direct interference with the ability of these proteins to assemble into functional TJs and their close interaction under physiological conditions. These effects were specific for Cldn-153–80, because peptides corresponding to other claudin-1 EL domains failed to influence TJ function. Furthermore, the oral administration of Cldn-153–80 to rats increased paracellular gastric permeability. Thus, the identification of a critical claudin-1 EL motif, Cldn-153–80, capable of regulating TJ structure and function, offers a useful adjunct to treatments that require drug delivery across an epithelial barrier. PMID:18349130
Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott
2013-01-01
Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408
Bacillus cereus Induces Permeability of an In Vitro Blood-Retina Barrier▿
Moyer, A. L.; Ramadan, R. T.; Thurman, J.; Burroughs, A.; Callegan, M. C.
2008-01-01
Most Bacillus cereus toxin production is controlled by the quorum-sensing-dependent, pleiotropic global regulator plcR, which contributes to the organism's virulence in the eye. The purpose of this study was to analyze the effects of B. cereus infection and plcR-regulated toxins on the barrier function of retinal pigment epithelium (RPE) cells, the primary cells of the blood-retina barrier. Human ARPE-19 cells were apically inoculated with wild-type or quorum-sensing-deficient B. cereus, and cytotoxicity was analyzed. plcR-regulated toxins were not required for B. cereus-induced RPE cytotoxicity, but these toxins did increase the rate of cell death, primarily by necrosis. B. cereus infection of polarized RPE cell monolayers resulted in increased barrier permeability, independent of plcR-regulated toxins. Loss of both occludin and ZO-1 expression occurred by 8 h postinfection, but alterations in tight junctions appeared to precede cytotoxicity. Of the several proinflammatory cytokines analyzed, only interleukin-6 was produced in response to B. cereus infection. These results demonstrate the deleterious effects of B. cereus infection on RPE barrier function and suggest that plcR-regulated toxins may not contribute significantly to RPE barrier permeability during infection. PMID:18268029
Stress does not increase blood–brain barrier permeability in mice
Roszkowski, Martin
2016-01-01
Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood–brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood–brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood–brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood–brain barrier permeability. To additionally assess if stress could change blood–brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood–brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood–brain barrier permeability. PMID:27146513
Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G
2002-10-01
Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.
Lennon, Paul F.; Taylor, Cormac T.; Stahl, Gregory L.; Colgan, Sean P.
1998-01-01
During episodes of inflammation, polymorphonuclear leukocyte (PMN) transendothelial migration has the potential to disturb vascular barrier function and give rise to intravascular fluid extravasation and edema. However, little is known regarding innate mechanisms that dampen fluid loss during PMN-endothelial interactions. Using an in vitro endothelial paracellular permeability model, we observed a PMN-mediated decrease in endothelial paracellular permeability. A similar decrease was elicited by cell-free supernatants from activated PMN (FMLP 10−6 M), suggesting the presence of a PMN-derived soluble mediator(s). Biophysical and biochemical analysis of PMN supernatants revealed a role for PMN-derived 5′-adenosine monophosphate (AMP) and its metabolite, adenosine, in modulation of endothelial paracellular permeability. Supernatants from activated PMN contained micromolar concentrations of bioactive 5′-AMP and adenosine. Furthermore, exposure of endothelial monolayers to authentic 5′-AMP and adenosine increased endothelial barrier function more than twofold in both human umbilical vein endothelial cells and human microvascular endothelial cells. 5′-AMP bioactivity required endothelial CD73-mediated conversion of 5′-AMP to adenosine via its 5′-ectonucleotidase activity. Decreased endothelial paracellular permeability occurred through adenosine A2B receptor activation and was accompanied by a parallel increase in intracellular cAMP. We conclude that activated PMN release soluble mediators, such as 5′-AMP and adenosine, that promote endothelial barrier function. During inflammation, this pathway may limit potentially deleterious increases in endothelial paracellular permeability and could serve as a basic mechanism of endothelial resealing during PMN transendothelial migration. PMID:9782120
The barrier function of organotypic non-melanoma skin cancer models.
Zoschke, Christian; Ulrich, Martina; Sochorová, Michaela; Wolff, Christopher; Vávrová, Kateřina; Ma, Nan; Ulrich, Claas; Brandner, Johanna M; Schäfer-Korting, Monika
2016-07-10
Non-melanoma skin cancer (NMSC) is the most frequent human cancer with continuously rising incidences worldwide. Herein, we investigated the molecular basis for the impaired skin barrier function of organotypic NMSC models. We unraveled disturbed epidermal differentiation by reflectance confocal microscopy and histopathological evaluation. While the presence of claudin-4 and occludin were distinctly reduced, zonula occludens protein-1 was more wide-spread, and claudin-1 was heterogeneously distributed within the NMSC models compared with normal reconstructed human skin. Moreover, the cancer altered stratum corneum lipid packing and profile with decreased cholesterol content, increased phospholipid amount, and altered ceramide subclasses. These alterations contributed to increased surface pH and to 1.5 to 2.6-fold enhanced caffeine permeability of the NMSC models. Three topical applications of ingenol mebutate gel (0.015%) caused abundant epidermal cell necrosis, decreased Ki-67 indices, and increased lactate dehydrogenase activity. Taken together, our study provides new biological insights into the microenvironment of organotypic NMSC models, improves the understanding of the disease model by revealing causes for impaired skin barrier function in NMSC models at the molecular level, and fosters human cell-based approaches in preclinical drug evaluation. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.
Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T
2012-01-01
Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.
Fingolimod promotes blood-nerve barrier properties in vitro.
Nishihara, Hideaki; Maeda, Toshihiko; Sano, Yasuteru; Ueno, Maho; Okamoto, Nana; Takeshita, Yukio; Shimizu, Fumitaka; Koga, Michiaki; Kanda, Takashi
2018-04-01
The main effect of fingolimod is thought to be functional antagonism of lymphocytic S1P1 receptors and the prevention of lymphocyte egress from lymphoid tissues, thereby reducing lymphocyte infiltration into the nervous system. However, a growing number of reports suggest that fingolimod also has a direct effect on several cell types in the nervous system. Although we previously reported that fingolimod enhances blood-brain barrier (BBB) functions, there have been no investigations regarding the blood-nerve barrier (BNB). In this study, we examine how fingolimod affects the BNB. An immortalized human peripheral nerve microvascular endothelial cell line (HPnMEC) was used to evaluate BNB barrier properties. We examined tight junction proteins and barrier functions of HPnMECs in conditioned medium with or without fingolimod-phosphate and blood sera from patients with typical chronic inflammatory demyelinating polyneuropathy (CIDP). Incubation with fingolimod-phosphate increased levels of claudin-5 mRNA and protein as well as TEER values in HPnMECs. Conversely, typical CIDP sera decreased claudin-5 mRNA/protein levels and TEER values in HPnMECs; however, pretreatment with fingolimod-phosphate inhibited the effects of the typical CIDP sera. Fingolimod-phosphate directly modifies the BNB and enhances barrier properties. This mechanism may be a viable therapeutic target for CIDP, and fingolimod may be useful in patients with typical CIDP who have severe barrier disruption.
Surfactants have multi-fold effects on skin barrier function.
Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine
2015-01-01
The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.
Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas
2015-10-15
Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling. Copyright © 2015 the American Physiological Society.
Arana, Maite R; Tocchetti, Guillermo N; Rigalli, Juan P; Mottino, Aldo D; Villanueva, Silvina S M
2016-07-01
The gastrointestinal epithelium functions as a selective barrier to absorb nutrients, electrolytes and water, but at the same time restricts the passage into the systemic circulation of intraluminal potentially toxic compounds. This epithelium maintains its selective barrier function through the presence of very selective and complex intercellular junctions and the ability of the absorptive cells to reject those compounds. Accordingly, the enterocytes metabolize orally incorporated xenobiotics and secrete the hydrophilic metabolites back into the intestinal lumen through specific transporters localized apically. In the recent decades, there has been increasing recognition of the existence of the intestinal cellular barrier. In the present review we focus on the role of the multidrug resistance-associated protein 2 (MRP2, ABCC2) in the apical membrane of the enterocytes, as an important component of this intestinal barrier, as well as on its regulation. We provide a detailed compilation of significant contributions demonstrating that MRP2 expression and function vary under relevant physiological and pathophysiological conditions. Because MRP2 activity modulates the availability and pharmacokinetics of many therapeutic drugs administered orally, their therapeutic efficacy and safety may vary as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
Truse, Richard; Hinterberg, Jonas; Schulz, Jan; Herminghaus, Anna; Weber, Andreas; Mettler-Altmann, Tabea; Bauer, Inge; Picker, Olaf; Vollmer, Christian
2017-01-01
Topical drug application is used to avoid systemic side effects. The aim of this study was to analyze whether locally applied iloprost or nitroglycerin influence gastric mucosal perfusion, oxygenation, and barrier function during physiological and hemorrhagic conditions. In repeated experiments, 5 anesthetized dogs received iloprost, nitroglycerin, or normal saline during physiological and hemorrhagic (-20% blood volume) conditions. Macro- and microcirculatory variables were recorded continuously. Gastric barrier function was assessed via translocation of sucrose into the blood. During hemorrhage, gastric mucosal oxygenation decreased from 77 ± 4 to 37 ± 7%. This effect was attenuated by nitroglycerin (78 ± 6 to 47 ± 13%) and iloprost (82 ± 4 to 54 ± 9%). Sucrose plasma levels increased during hemorrhage from 7 ± 4 to 55 ± 15 relative amounts. This was alleviated by nitroglycerin (5 ± 8 to 29 ± 38 relative amounts). These effects were independent of systemic hemodynamic variables. During hemorrhage, topical nitroglycerin and iloprost improve regional gastric oxygenation without affecting perfusion. Nitroglycerin attenuated the shock-induced impairment of the mucosal barrier integrity. Thus, local drug application improves gastric microcirculation without compromising systemic hemodynamic variables, and it may also protect mucosal barrier function. © 2017 S. Karger AG, Basel.
Up-regulation of the tight-junction protein ZO-1 by substance P and IGF-1 in A431 cells.
Ko, Ji-Ae; Murata, Shizuka; Nishida, Teruo
2009-08-01
The formation of a barrier by tight junctions is important in epithelia of various tissues. Substance P (SP) and insulin-like growth factor (IGF)-1 synergistically promote barrier function in the corneal epithelium. We have now examined the effects of SP and IGF-1 on expression of the tight-junction protein zonula occludens (ZO)-1 in A431 human epidermoid carcinoma cells. Reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot analyses revealed that SP and IGF-1 increased the amounts of ZO-1 mRNA and protein in these cells in a concentration-dependent manner, with neither SP nor IGF-1 alone having such an effect. The SP- and IGF-1-induced up-regulation of ZO-1 was accompanied by phosphorylation of extracellular signal-regulated kinase (ERK), and both of these effects were blocked by PD98059, an inhibitor of ERK activation. SP and IGF-1 also increased the transepithelial electrical resistance (TER) (an indicator of barrier function) of an A431 cell monolayer in a manner sensitive to PD98059. Our results thus suggest that the synergistic induction of ZO-1 expression by SP and IGF-1 may promote barrier function in skin epithelial cells. (c) 2009 John Wiley & Sons, Ltd.
Skin barrier function recovery after diamond microdermabrasion.
Kim, Hei Sung; Lim, Sook Hee; Song, Ji Youn; Kim, Mi-Yeon; Lee, Ji Ho; Park, Jong Gap; Kim, Hyung Ok; Park, Young Min
2009-10-01
Microdermabrasion is a popular method for facial rejuvenation and is performed worldwide. Despite its extensive usage, there are few publications on skin barrier change after microdermabrasion and none concerning diamond microdermabrasion. Our object was to see changes in transepidermal water loss (TEWL), hydration and erythema of the face following diamond microdermabrasion. Twenty-eight patients were included in this spilt face study. TEWL, stratum corneum hydration and the degree of erythema were measured from the right and left sides of the face (forehead and cheek) at baseline. One side of the face was treated with diamond microdermabrasion and the other side was left untreated. Measurements were taken right after the procedure and repeated at set time intervals. Diamond microdermabrasion was associated with a statistically significant increase in TEWL immediately after the procedure and at 24 h. However, on day 2, levels of TEWL were back to baseline. An increase in hydration and erythema was observed right after microdermabrasion, but both returned to baseline on day 1. The results show that skin barrier function of the forehead and cheek recovers within 2 days of diamond microdermabrasion. Diamond microdermabrasion performed on a weekly basis, as presently done, is expected to allow sufficient time for the damaged skin to recover its barrier function in most parts of the face.
Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime
2012-08-01
Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.
Benfeldt, E; Serup, J
1999-09-01
The penetration of topically applied drugs is altered in diseased or barrier-damaged skin. We used microdialysis in the dermis to measure salicylic acid (SA) penetration in hairless rats following application to normal (unmodified) skin (n = 11) or skin with perturbed barrier function from (1) tape-stripping (n = 5), (2) sodium lauryl sulphate (SLS) 2% for 24 h (n = 3) or (3) delipidization by acetone (n = 4). Prior to the experiment, transepidermal water loss (TEWL) and erythema were measured. Two microdialysis probes were inserted into the dermis on the side of the trunk and 5% SA in ethanol was applied in a chamber overlying the probes. Microdialysis sampling was continued for 4 h, followed by measurements of probe depth by ultrasound scanning. SA was detectable in all samples and rapidly increasing up to 130 min. Microdialysates collected between 80 and 200 min showed mean SA concentrations of 3 microg/ml in unmodified and acetone-treated skin, whereas mean SA concentrations were 280 microg/ml in SLS-pretreated skin and 530 microg/ml in tape-stripped skin (P < 0.001). The penetration of SA correlated with barrier perturbation measured by TEWL (P < 0.001) and erythema (P < 0.001). A correlation between dermal probe depth and SA concentration was found in unmodified skin (P = 0.04). Microdialysis sampling in anatomical regions remote from the dosed site excluded the possibility that SA levels measured were due to systemic absorption. Microdialysis sampling of cutaneous penetration was highly reproducible. Impaired barrier function, caused by irritant dermatitis or tape stripping, resulted in an 80- to 170-fold increase in the drug level in the dermis. This dramatic increase in drug penetration could be relevant to humans, in particular to topical treatment of skin diseases and to occupational toxicology.
Kulmuni, J; Westram, A M
2017-06-01
The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub
2017-06-01
A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.
Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction
Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.
2017-01-01
Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896
NASA Astrophysics Data System (ADS)
Lugauer, F. P.; Stiehl, T. H.; Zaeh, M. F.
Modern laser systems are widely used in industry due to their excellent flexibility and high beam intensities. This leads to an increased hazard potential, because conventional laser safety barriers only offer a short protection time when illuminated with high laser powers. For that reason active systems are used more and more to prevent accidents with laser machines. These systems must fulfil the requirements of functional safety, e.g. according to IEC 61508, which causes high costs. The safety provided by common passive barriers is usually unconsidered in this context. In the presented approach, active and passive systems are evaluated from a holistic perspective. To assess the functional safety of hybrid safety systems, the failure probability of passive barriers is analysed and added to the failure probability of the active system.
Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette
2014-06-01
The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Leaky gut and diabetes mellitus: what is the link?
de Kort, S; Keszthelyi, D; Masclee, A A M
2011-06-01
Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I
2015-10-01
Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.
Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle
Li, Chunhe; Wang, Jin
2014-01-01
Cell cycles, essential for biological function, have been investigated extensively. However, enabling a global understanding and defining a physical quantification of the stability and function of the cell cycle remains challenging. Based upon a mammalian cell cycle gene network, we uncovered the underlying Mexican hat landscape of the cell cycle. We found the emergence of three local basins of attraction and two major potential barriers along the cell cycle trajectory. The three local basins of attraction characterize the G1, S/G2, and M phases. The barriers characterize the G1 and S/G2 checkpoints, respectively, of the cell cycle, thus providing an explanation of the checkpoint mechanism for the cell cycle from the physical perspective. We found that the progression of a cell cycle is determined by two driving forces: curl flux for acceleration and potential barriers for deceleration along the cycle path. Therefore, the cell cycle can be promoted (suppressed), either by enhancing (suppressing) the flux (representing the energy input) or by lowering (increasing) the barrier along the cell cycle path. We found that both the entropy production rate and energy per cell cycle increase as the growth factor increases. This reflects that cell growth and division are driven by energy or nutrition supply. More energy input increases flux and decreases barrier along the cell cycle path, leading to faster oscillations. We also identified certain key genes and regulations for stability and progression of the cell cycle. Some of these findings were evidenced from experiments whereas others lead to predictions and potential anticancer strategies. PMID:25228772
Désir-Vigné, Axel; Haure-Mirande, Vianney; de Coppet, Pierre; Darmaun, Dominique; Le Dréan, Gwenola; Segain, Jean-Pierre
2018-05-01
Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imamura, Masafumi; Department of Pathology, Sapporo Medical University School of Medicine, S1. W17. Sapporo 060-8556; Kojima, Takashi
2007-05-15
In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions inmore » fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.« less
Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma.
Looi, K; Buckley, A G; Rigby, P J; Garratt, L W; Iosifidis, T; Zosky, G R; Larcombe, A N; Lannigan, F J; Ling, K-M; Martinovich, K M; Kicic-Starcevich, E; Shaw, N C; Sutanto, E N; Knight, D A; Kicic, A; Stick, S M
2018-05-01
Bronchial epithelial tight junctions (TJ) have been extensively assessed in healthy airway epithelium. However, no studies have yet assessed the effect of human rhinovirus (HRV) infection on the expression and resultant barrier function in epithelial tight junctions (TJ) in childhood asthma. To investigate the impact of HRV infection on airway epithelial TJ expression and barrier function in airway epithelial cells (AECs) of children with and without asthma. Furthermore, to test the hypothesis that barrier integrity and function is compromised to a greater extent by HRV in AECs from asthmatic children. Primary AECs were obtained from children with and without asthma, differentiated into air-liquid interface (ALI) cultures and infected with rhinovirus. Expression of claudin-1, occludin and zonula occluden-1 (ZO-1) was assessed via qPCR, immunocytochemistry (ICC), in-cell western (ICW) and confocal microscopy. Barrier function was assessed by transepithelial electrical resistance (TER; R T ) and permeability to fluorescent dextran. Basal TJ gene expression of claudin-1 and occludin was significantly upregulated in asthmatic children compared to non-asthmatics; however, no difference was seen with ZO-1. Interestingly, claudin-1, occludin and ZO-1 protein expression was significantly reduced in AEC of asthmatic children compared to non-asthmatic controls suggesting possible post-transcriptional inherent differences. HRV infection resulted in a transient dissociation of TJ and airway barrier integrity in non-asthmatic children. Although similar dissociation of TJ was observed in asthmatic children, a significant and sustained reduction in TJ expression concurrent with both a significant decrease in TER and an increase in permeability in asthmatic children was observed. This study demonstrates novel intrinsic differences in TJ gene and protein expression between AEC of children with and without asthma. Furthermore, it correlates directly the relationship between HRV infection and the resultant dissociation of epithelial TJ that causes a continued altered barrier function in children with asthma. © 2018 John Wiley & Sons Ltd.
Intestinal permeability in a patient with liver cirrhosis
Aguirre Valadez, Jonathan Manuel; Rivera-Espinosa, Liliana; Méndez-Guerrero, Osvely; Chávez-Pacheco, Juan Luis; García Juárez, Ignacio; Torre, Aldo
2016-01-01
Liver cirrhosis is a worldwide public health problem, and patients with this disease are at high risk of developing complications, bacterial translocation from the intestinal lumen to the mesenteric nodes, and systemic circulation, resulting in the development of severe complications related to high mortality rate. The intestinal barrier is a structure with a physical and biochemical activity to maintain balance between the external environment, including bacteria and their products, and the internal environment. Patients with liver cirrhosis develop a series of alterations in different components of the intestinal barrier directly associated with the severity of liver disease that finally increased intestinal permeability. A “leaky gut” is an effect produced by damaged intestinal barrier; alterations in the function of tight junction proteins are related to bacterial translocation and their products. Instead, increasing serum proinflammatory cytokines and hemodynamics modification, which results in the appearance of complications of liver cirrhosis such as hepatic encephalopathy, variceal hemorrhage, bacterial spontaneous peritonitis, and hepatorenal syndrome. The intestinal microbiota plays a fundamental role in maintaining the proper function of the intestinal barrier; bacterial overgrowth and dysbiosis are two phenomena often present in people with liver cirrhosis favoring bacterial translocation. Increased intestinal permeability has an important role in the genesis of these complications, and treating it could be the base for prevention and partial treatment of these complications. PMID:27920543
Electronic tunneling through a potential barrier on the surface of a topological insulator
NASA Astrophysics Data System (ADS)
Zhou, Benliang; Zhou, Benhu; Zhou, Guanghui
2016-12-01
We investigate the tunneling transport for electrons on the surface of a topological insulator (TI) through an electrostatic potential barrier. By using the Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the transmission probability and conductance for the system. It is demonstrated that, the Klein paradox can also been observed in the system same as in graphene system. Interestingly, the conductance reaches the minimum value when the incident electron energy is equal to the barrier strength. Moreover, with increasing barrier width, the conductance turns up some tunneling oscillation peaks, and larger barrier strength can cause lower conductance, shorter period but larger oscillation amplitude. The oscillation amplitude decreases as the barrier width increases, which is similar as that of the system consisting of the compressive uniaxial strain applied on a TI, but somewhat different from that of graphene system where the oscillation amplitude is a constant. The findings here imply that an electrostatic barrier can greatly influence the electron tunneling transport of the system, and may provide a new way to realize directional filtering of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Kunzhong; Tian Yeping; Yin Liangjie
2011-09-01
Purpose: Epidermal keratinocytes, which can be severely damaged after ionizing radiation (IR), are rapid turnover cells that function as a barrier, protecting the host from pathogenic invasion and fluid loss. We tested fibroblast growth factor-peptide (FGF-P), a small peptide derived from the receptor-binding domain of FGF-2, as a potential mitigator of radiation effects via proliferation and the barrier function of keratinocytes. Methods and Materials: Keratinocytes isolated from neonatal foreskin were grown on transwells. After being exposed to 0, 5, or 10 Gy IR, the cells were treated with a vehicle or FGF-P. The permeability of IR cells was assessed bymore » using transepithelial electrical resistance (TEER) and a paracellular tracer flux of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) with Ussing chambers. The cell proliferation was measured with yellow tetrazolium salt (MTT) and tritiated thymidine ([{sup 3}H]-TdR) assays. The phosphorylation of extracellular signal-regulated kinases (ERK) was measured in an enzyme-linked immunosorbent (ELISA)-like assay, and the proteins related to tight junctions (TJ) and adherens junctions (AJ) were examined with Western blotting. We used a mouse model to assess the ability of FGF-P to promote the healing of skin {beta} burns created with a strontium applicator. Results: We found (1) FGF-P reduced the permeability of irradiated keratinocytes, as evidenced by increased TEER and decreased diffusion of FITC-BSA, both associated with the regulation of different proteins and levels of TJ and AJ; and (2) FGF-P enhanced the proliferation of irradiated keratinocytes, as evidenced by increased MTT activity and [{sup 3}H]-TdR incorporation, which was associated with activation of the ERK pathway; and (3) FGF-P promoted the healing of skin {beta} burns. Conclusions: FGF-P enhances the barrier function, including up-regulation of TJ proteins, increases proliferation of human keratinocytes, and accelerates the healing of skin {beta} burns. FGF-P is a promising mitigator that improves the proliferation and barrier function of keratinocytes after IR.« less
Fang, Shenglin; Zhuo, Zhao; Yu, Xiaonan; Wang, Haichao; Feng, Jie
2018-05-01
The aim of this study was to determine the toxicological effects of excess iron in a liquid iron preparation (especially on intestinal barrier function) and the possible etiology of side effects or diseases caused by the excess iron. In study 1, forty male Sprague-Dawley rats (4-5 wk old) were subjected to oral gavage with 1 ml vehicle (0.01 mol/L HCl) or 1 ml liquid iron preparation containing 8 mg, 16 mg or 24 mg of iron for 30 d. Iron status, oxidative stress, histology (H&E staining), ultrastructure (electron microscopy) and apoptosis (TUNEL assay) in the intestines and liver were assessed. The cecal microbiota was evaluated by 16S rRNA sequencing. In study 2, twenty rats with the same profile as above were subjected to oral gavage with 1 ml vehicle or 24 mg Fe for 30 d. The intestinal barrier function was determined by in vivo studies and an Ussing chamber assay; tight junction proteins and serum pro-inflammatory cytokines were observed by enzyme-linked immunosorbent assay. In study 1, the intestinal mucosa and liver showed apparent oxidative stress. In addition, iron concentration-dependent ultrastructural alterations to duodenal enterocytes and hepatocytes and histological damage to the colonic mucosa were detected. Notably, apoptosis was increased in duodenal enterocytes and hepatocytes. Impaired intestinal barrier function and lower expression of intestinal tight junction proteins were observed, and the phenotype was more severe in the colon than in the duodenum. A trend toward higher expression of serum pro-inflammatory cytokines might indicate systemic inflammation. Furthermore, the caecal microbiota showed a significant change, with increased Defluviitaleaceae, Ruminococcaceae, and Coprococcus and reduced Lachnospiraceae and Allobaculum, which could mediate the detrimental effects of excess iron on gut health. We concluded that excessive iron exposure from liquid iron preparation induces oxidative stress and histopathological alterations in the intestine and liver. Impaired intestinal barrier function could increase iron transportation, and inflammation along with oxidative stress-enhanced liver iron deposition may cause further liver injury in a vicious circle. These effects were accompanied by lower intestinal segment damage and altered gut microbial composition of rats toward a profile with an increased risk of gut disease. Copyright © 2018 Elsevier GmbH. All rights reserved.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes
NASA Astrophysics Data System (ADS)
Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.
2016-05-01
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A
Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations
Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...
2016-04-01
Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less
Kim, Dong Young; Park, Hyun Sun; Yoon, Hyun-Sun; Cho, Soyun
2015-10-01
Keloids and hypertrophic scars are prevalent and psychologically distressful dermatologic conditions. Various treatment modalities have been tried but without complete success by any one method. We evaluated the efficacy of a combination of intense pulsed light (IPL) device and intralesional corticosteroid injection for the treatment of keloids and hypertrophic scars with respect to the recovery of skin barrier function. Totally 52 Korean patients were treated by the combined treatment at 4-8-week intervals. Using digital photographs, changes in scar appearance were assessed with modified Vancouver Scar Scale (MVSS), physicians' global assessment (PGA) and patient's satisfaction score. In 12 patients, the stratum corneum (SC) barrier function was assessed by measuring transepidermal water loss (TEWL) and SC capacitance. Most scars demonstrated significant clinical improvement in MVSS, PGA and patient's satisfaction score after the combined therapy. A significant decrease of TEWL and elevation of SC capacitance were also documented after the treatment. The combination therapy (IPL + corticosteroid injection) not only improves the appearance of keloids and hypertrophic scars but also increases the recovery level of skin hydration status in terms of the skin barrier function.
ROS-activated calcium signaling mechanisms regulating endothelial barrier function.
Di, Anke; Mehta, Dolly; Malik, Asrar B
2016-09-01
Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of environmental humidity and temperature on skin barrier function and dermatitis.
Engebretsen, K A; Johansen, J D; Kezic, S; Linneberg, A; Thyssen, J P
2016-02-01
Physicians are aware that climatic conditions negatively affect the skin. In particular, people living in equator far countries such as the Northern parts of Europe and North America are exposed to harsh weather during the winter and may experience dry and itchy skin, or deterioration of already existing dermatoses. We searched the literature for studies that evaluated the mechanisms behind this phenomenon. Commonly used meteorological terms such as absolute humidity, relative humidity and dew point are explained. Furthermore, we review the negative effect of low humidity, low temperatures and different seasons on the skin barrier and on the risk of dermatitis. We conclude that low humidity and low temperatures lead to a general decrease in skin barrier function and increased susceptible towards mechanical stress. Since pro-inflammatory cytokines and cortisol are released by keratinocytes, and the number of dermal mast cells increases, the skin also becomes more reactive towards skin irritants and allergens. Collectively, published data show that cold and dry weather increase the prevalence and risk of flares in patients with atopic dermatitis. © 2015 European Academy of Dermatology and Venereology.
Blood-brain barrier and its function during inflammation and autoimmunity.
Sonar, Sandip Ashok; Lal, Girdhari
2018-05-01
The blood-brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function. ©2018 Society for Leukocyte Biology.
Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M
2017-06-07
Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.
Influence of functional food components on gut health.
Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F
2018-01-30
Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.
Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer
2017-01-01
Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.
Loss of tight junction barrier function and its role in cancer metastasis.
Martin, Tracey A; Jiang, Wen G
2009-04-01
As the most apical structure between epithelial and endothelial cells, tight junctions (TJ) are well known as functioning as a control for the paracellular diffusion of ions and certain molecules. It has however, become increasingly apparent that the TJ has a vital role in maintaining cell to cell integrity and that the loss of cohesion of the structure can lead to invasion and thus metastasis of cancer cells. This article will present data showing how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the successful metastasis of a number of different cancer types.
Inflammatory Bowel Disease Therapies and Gut Function in a Colitis Mouse Model
Nahidi, Lily; Leach, Steven T.; Mitchell, Hazel M.; Kaakoush, Nadeem O.; Lemberg, Daniel A.; Munday, John S.; Huinao, Karina; Day, Andrew S.
2013-01-01
Background. Exclusive enteral nutrition (EEN) is a well-established approach to the management of Crohn's disease. Aim. To determine effects of EEN upon inflammation and gut barrier function in a colitis mouse model. Methods. Interleukin-10-deficient mice (IL-10−/−) were inoculated with Helicobacter trogontum and then treated with EEN, metronidazole, hydrocortisone, or EEN and metronidazole combination. Blood and tissue were collected at 2 and 4 weeks with histology, mucosal integrity, tight junction integrity, inflammation, and H. trogontum load evaluated. Results. H. trogontum induced colitis in IL-10−/− mice with histological changes in the cecum and colon. Elevated mucosal IL-8 mRNA in infected mice was associated with intestinal barrier dysfunction indicated by decreased transepithelial electrical resistance and mRNA of tight junction proteins and increased short-circuit current, myosin light chain kinase mRNA, paracellular permeability, and tumor necrosis factor-α and myeloperoxidase plasma levels (P < 0.01 for all comparisons). EEN and metronidazole, but not hydrocortisone, treatments restored barrier function, maintained gut barrier integrity, and reversed inflammatory changes along with reduction of H. trogontum load (versus infected controls P < 0.05). Conclusion. H. trogontum infection in IL-10−/− mice induced typhlocolitis with intestinal barrier dysfunction. EEN and metronidazole, but not hydrocortisone, modulate barrier dysfunction and reversal of inflammatory changes. PMID:24027765
Novel routes of albumin passage across the glomerular filtration barrier.
Castrop, H; Schießl, I M
2017-03-01
Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Ozkan, Ozan; Turkoglu Sasmazel, Hilal
2018-04-01
In this study, dry air plasma jet and dielectric barrier discharge Ar + O 2 or Ar + N 2 plasma modifications and their effects on wettability, topography, functionality and biological efficiency of the hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds were reported. The samples treated with Ar + O 2 dielectric barrier discharge plasma (80 sccm O 2 flow rate, 3-min treatment) or with dry air plasma jet (15-cm nozzle-sample distance, 13-min treatment) had the closest wettability (49.11 ± 1.83 and 53.60 ± 0.95, respectively) to the commercial tissue culture polystyrene used for cell cultivation. Scanning electron microscopy images and X-ray photoelectron spectrometry analysis showed increase in topographical roughness and OH/NH 2 functionality, respectively. Increased fluid uptake capacity for the scaffolds treated with Ar + O 2 dielectric barrier discharge plasma (73.60% ± 1.78) and dry air plasma jet (72.48% ± 0.75) were also noted. Finally, initial cell attachment as well as seven-day cell viability, growth and proliferation performances were found to be significantly better for both plasma treated scaffolds than for untreated scaffolds.
Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode
NASA Astrophysics Data System (ADS)
Karataş, Şükrü; Yildirim, Nezir; Türüt, Abdülmecit
2013-12-01
In this study, the electrical characteristics of the Cr/n-type Si (MS) Schottky barrier diode have been investigated by the current-voltage (I-V) and capacitance-voltage (C-V) measurements at 300 K temperature. Using the thermionic emission theory, the values of ideality factor and the barrier height have been obtained to be 1.22, 0.71 and 1.01, 0.83 eV, from the results of the I-V and C-V measurements, respectively. The barrier height (Φb) and the series resistance (RS) obtained from Norde’s function have been compared with those obtained from Cheung functions, and a good agreement between the results of both methods was seen. The interface state density (NSS) calculated without the RS is obtained to be increasing exponentially with bias from 2.40 × 1012 cm-2 eV-1 in (EC-0.623) eV to 1.94 × 1014 cm-2 eV-1 in (EC-0.495) eV, also, the NSS obtained taking into account the RS has increased exponentially with bias from 2.07 × 1012 cm-2 eV-1 to 1.47 × 1014 cm-2 eV-1 in the same interval.
Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.
Wang, Shanshan; Wang, Jun; Zhang, Zengdi; Miao, Hongjun
2017-08-01
Glomerular podocytes are injured in sepsis. We studied, in a sepsis patient, whether microRNAs (miRNAs) play a role in the podocyte injury. Podocytes were cultured and treated with lipopolysaccharide (LPS). Filtration barrier function of podocyte was analyzed with albumin influx assay. Nephrin level was analyzed with reverse transcription polymerase chain reaction (RT-PCR) and western blot. MiRNAs were detected using miRNAs PCR Array and in situ hybridization. MiRNA target sites were evaluated with luciferase reporter assays. LPS impaired the filtration barrier function of podocytes. MiR-128 level was decreased and miR-21 level was increased in podocytes in vitro and in the sepsis patient. The decrease in miR-128 was sufficient to induce the loss of nephrin and the impairment of filtration barrier function, while the increase of miR-21 exacerbated the process. Snail and phosphatase and tensin homolog (PTEN) were identified as the targets of miR-128 and miR-21. Decreased miR-128 induced Snail expression, and the increased miR-21 stabilized Snail by regulating the PTEN/Akt/GSK3β pathway. Supplementation of miR-128 and inhibition of miR-21 suppressed Snail expression and prevented the podocyte injury induced by LPS. Our study suggests that decreased miR-128 and increased miR-21 synergistically cause podocyte injury and are the potential therapeutic targets in sepsis.
NASA Astrophysics Data System (ADS)
Patzelt, A.; Sterry, W.; Lademann, J.
2010-12-01
A major function of the skin is to provide a protective barrier at the interface between external environment and the organism. For skin barrier measurement, a multiplicity of methods is available. As standard methods, the determination of the transepidermal water loss (TEWL) as well as the measurement of the stratum corneum hydration, are widely accepted, although they offer some obvious disadvantages such as increased interference liability. Recently, new optical and spectroscopic methods have been introduced to investigate skin barrier properties in vivo. Especially, laser scanning microscopy has been shown to represent an excellent tool to study skin barrier integrity in many areas of relevance such as cosmetology, occupation, diseased skin, and wound healing.
Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.
2015-01-01
Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245
Portegijs, Erja; Rantakokko, Merja; Viljanen, Anne; Rantanen, Taina; Iwarsson, Susanne
We studied whether entrance-related environmental barriers, perceived and objectively recorded, were associated with moving out-of-home daily in older people with and without limitations in lower extremity performance. Cross-sectional analyses of the "Life-space mobility in old age" cohort including 848 community-dwelling 75-90-year-old of central Finland. Participants reported their frequency of moving out-of-home (daily vs. 0-6 times/week) and perceived entrance-related environmental barriers (yes/no). Lower extremity performance was assessed (Short Physical Performance Battery) and categorized as poorer (score 0-9) or good (score 10-12). Environmental barriers at entrances and in exterior surroundings were objectively registered (Housing Enabler screening tool) and divided into tertiles. Logistic regression analyses were adjusted for age, sex, number of chronic diseases, cognitive function, month of assessment, type of neighborhood, and years lived in the current home. At home entrances a median of 6 and in the exterior surroundings 5 environmental barriers were objectively recorded, and 20% of the participants perceived entrance-related barriers. The odds for moving out-of-home less than daily increased when participants perceived entrance-related barrier(s) or when they lived in homes with higher numbers of objectively recorded environmental barriers at entrances. Participants with limitations in lower extremity performance were more susceptible to these environmental barriers. Objectively recorded environmental barriers in the exterior surroundings did not compromise out-of-home mobility. Entrance-related environmental barriers may hinder community-dwelling older people to move out-of-home daily especially when their functional capacity is compromised. Potentially, reducing entrance-related barriers may help to prevent confinement to the home. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kawada, Chinatsu; Hasegawa, Tatsuya; Watanabe, Mutsuto; Nomura, Yoshihiro
2013-01-01
Dietary glucosylceramide increased the expression of claudin-1 in UVB-irradiated mouse epidermis. Sphingosine and phytosphingosine, metabolites of glucosylceramide, increased trans-epithelial electrical resistance, and phytosphingosine increased claudin-1 mRNA expression in cultured keratinocytes. Our results indicate that the skin barrier improvement induced by dietary glucosylceramide might be due to enhancement of tight junction function, mediated by increased expression of claudin-1 induced by sphingoid metabolites.
Chen, Kang; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin
2018-03-01
In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet. Copyright © 2017. Published by Elsevier Ltd.
Ewaschuk, Julia B; Murdoch, Gordon K; Johnson, Ian R; Madsen, Karen L; Field, Catherine J
2011-09-01
The weaning period is associated with an increased prevalence of gastrointestinal infection in many species. Glutamine (Gln) has been shown to improve intestinal barrier function and immune function in both in vivo and in vitro models. The objective of the present study was to determine the effect of dietary Gln supplementation on intestinal barrier function and intestinal cytokines in a model of Escherichia coli infection. We randomised 21-d-old piglets (n 20) to nutritionally complete isonitrogenous diets with or without Gln (4·4 %, w/w) for 2 weeks. Intestinal loops were isolated from anaesthetised pigs and inoculated with either saline or one of the two E. coli (K88AC or K88 wild-type)-containing solutions. Intestinal tissue was studied for permeability, cytokine expression, fluid secretion and tight-junction protein expression. Animals receiving Gln supplementation had decreased potential difference (PD) and short-circuit current (I(sc)) in E. coli-inoculated intestinal loops (PD 0·628 (SEM 0·151) mV; I(sc) 13·0 (SEM 3·07) μA/cm(2)) compared with control-fed animals (PD 1·36 (SEM 0·227) mV; I(sc) 22·4 (SEM 2·24) μA/cm(2)). Intestinal tissue from control, but not from Gln-supplemented, animals responded to E. coli with a significant increase in mucosal cytokine mRNA (IL-1β, IL-6, transforming growth factor-β and IL-10). Tight-junction protein expression (claudin-1 and occludin) was reduced with exposure to E. coli in control-fed animals and was not influenced in Gln-supplemented piglets. Gln supplementation may be useful in reducing the severity of weaning-related gastrointestinal infections, by reducing the mucosal cytokine response and altering intestinal barrier function.
Qiu, Yueqin; Jiang, Zongyong; Hu, Shenglan; Wang, Li; Ma, Xianyong; Yang, Xuefen
2017-11-13
Interleukin (IL)-22-producing Natural Killer (NK) cells protect the gut epithelial cell barrier from pathogens. A strain of probiotics, Lactobacillus plantarum (L. plantarum, LP), was previously found by our laboratory to significantly improve the mucosal barrier integrity and function of the small intestine in pigs. However, it was unclear whether LP benefited the intestinal mucosal barrier via interactions with the intestinal NK cells. The present study, therefore, was focused on the therapeutic effect of NK cells that were stimulated by LP on attenuating enterotoxigenic Escherichia coli (ETEC)-induced the damage to the integrity of the epithelial cell barrier. The results showed that LP can efficiently increase protein levels of the natural cytotoxicity receptor (NCR) family, and the expression levels of IL-22 mRNA and protein in NK cells. Transfer of NK cells stimulated by LP conferred protection against ETEC K88-induced intestinal epithelial barrier damage in NCM460 cells. We found that NK cells stimulated by LP could partially offset the reduction in NCM460 cell monolayers transepithelial electrical resistance (TEER) caused by ETEC K88, and increase ZO-1 and occludin mRNA and protein expressions by ETEC K88-infected NCM460 cells. Furthermore, adding NK cells that were stimulated by LP to ETEC K88-infected NCM460cells, IL-22R1, p-Stat3, and p-Tyk2 expression by NCM460 cells was increased. Mechanistic experiment showed that NK cells stimulated by LP lost the function of maintaining TEER of NCM460 cells challenged with ETEC K88, when polyclonal anti-IL-22 antibody was used to block IL-22 production. Collectively, our results suggested that LP stimulation of NK could enhance IL-22 production, which might be able to provide defense against ETEC-induced damage to the integrity of intestinal epithelial barrier.
Evaluation of hot corrosion behavior of thermal barrier coatings
NASA Technical Reports Server (NTRS)
Hodge, P. E.; Miller, R. A.; Gedwill, M. A.
1980-01-01
Calcium silicate and yttria stabilized zirconia/MCrAlY thermal barrier coating systems on air-cooled specimens were exposed to sodium plus vanadium doped Mach 0.3 combustion gases. Thermal barrier coating endurance was determined to be a strong inverse function of ceramic coating thickness. Coating system durability was increased through the use of higher Cr + Al NiCrAl and CoCrAlY bond coatings. Chemical and electron microprobe analyses supported the predictions of condensate compositions and the determination of their roles in causing spalling of the ceramic coatings.
Zhang, Yi-Quan; Luo, Cheng-Lin; Zhang, Qiang
2014-05-05
The origin of the magnetic anisotropy energy barriers in a series of bpym(-) (bpym = 2,2'-bipyrimidine) radical-bridged dilanthanide complexes [(Cp*2Ln)2(μ-bpym)](+) [Cp* = pentamethylcyclopentadienyl; Ln = Gd(III) (1), Tb(III) (2), Dy(III) (3), Ho(III) (4), Er(III) (5)] has been explored using density functional theory (DFT) and ab initio methods. DFT calculations show that the exchange coupling between the two lanthanide ions for each complex is very weak, but the antiferromagnetic Ln-bpym(-) couplings are strong. Ab initio calculations show that the effective energy barrier of 2 or 3 mainly comes from the contribution of a single Tb(III) or Dy(III) fragment, which is only about one third of a single Ln energy barrier. For 4 or 5, however, both of the two Ho(III) or Er(III) fragments contribute to the total energy barrier. Thus, it is insufficient to only increase the magnetic anisotropy energy barrier of a single Ln ion, while enhancing the Ln-bpym(-) couplings is also very important. Copyright © 2014 Wiley Periodicals, Inc.
Barriers to exercise for patients with renal disease: an integrative review.
Hannan, Mary; Bronas, Ulf G
2017-12-01
Renal disease is a common health condition that leads to loss of physical function, frailty, and premature loss of independence in addition to other severe comorbidities and increased mortality. Increased levels of physical activity and initiation of exercise training is recommended in the current guidelines for all patients with renal disease, but participation and adherence rates are low. The barriers to exercise and physical activity in patients with renal disease are not well defined and currently based on patient provider perception and opinion. There have been no published reviews that have synthesized published findings on patient reported barriers to exercise. This integrative literature review therefore aimed to identify the current understanding of patient reported barriers to regular exercise. This integrative review found that patient perceived barriers to exercise are not consistent with the barriers that have been identified by renal disease specialists and healthcare providers, which were disinterest, lack of motivation, and being incapable of exercise. The patient reported barriers identified through this review were complex and diverse, and the most frequently reported patient perceived barrier to exercise was low energy levels and fatigue. It is clear that additional research to identify patient perceived barriers to exercise is needed and that patient directed interventions to address these barriers should be developed. This integrative review provides information to the interdisciplinary nephrology team that can be used to tailor their assessment of barriers to exercise and provide exercise education for patients with renal disease.
Berardesca, Enzo; Mortillo, Susan; Cameli, Norma; Ardigo, Marco; Mariano, Maria
2018-05-10
Atopic dermatitis is a chronic, pruritic inflammatory skin disease that adversely affects quality of life. The current study evaluates the efficacy of a shower cream and a lotion, each with skin-identical lipids and emollients, in the treatment of atopic dry skin of subjects with a history of atopic condition. In all, 40 healthy females with clinically dry skin on the lower legs were enrolled in the study and underwent 4 weeks of daily use of the shower cream and 2 additional weeks of both the shower cream and the body lotion. Subjects were evaluated at day 0, week 4, and week 6. Skin barrier function was assessed by Tewameter ® , skin hydration by Corneometer ® , smoothness and desquamation by Visioscan ® , and stratum corneum architecture by reflectance confocal microscopy (RCM). The investigator assessed the degree of dryness, roughness, redness, cracks, tingling and itch, and subjective self-assessment evaluated the perception of skin soothing, smoothness, and softness. Skin barrier function and skin moisture maintenance were significantly improved using the shower cream. The lotion with physiological lipids, together with the shower cream, also improved skin barrier function and moisture. Both the shower cream and the body lotion reduced clinical dryness, roughness, redness, cracks, tingling and itch, according to the dermatologist, and increased soothing, smoothness, and softness, according to the subjects of the study. The combination of a shower cream and a lotion with physiological lipids efficiently restores skin barrier function and increases skin hydration, becoming an effective skin-care option for patients with atopic dry skin. © 2018 Wiley Periodicals, Inc.
Forteza, Rosanna Malbran; Casalino-Matsuda, S. Marina; Falcon, Nieves S.; Valencia Gattas, Monica; Monzon, Maria E.
2012-01-01
Cigarette smoke (CigS) exposure is associated with increased bronchial epithelial permeability and impaired barrier function. Primary cultures of normal human bronchial epithelial cells exposed to CigS exhibit decreased E-cadherin expression and reduced transepithelial electrical resistance. These effects were mediated by hyaluronan (HA) because inhibition of its synthesis with 4-methylumbelliferone prevented these effects, and exposure to HA fragments of <70 kDa mimicked these effects. We show that the HA receptor layilin is expressed apically in human airway epithelium and that cells infected with lentivirus expressing layilin siRNAs were protected against increased permeability triggered by both CigS and HA. We identified RhoA/Rho-associated protein kinase (ROCK) as the signaling effectors downstream layilin. We conclude that HA fragments generated by CigS bind to layilin and signal through Rho/ROCK to inhibit the E-cadherin gene and protein expression, leading to a loss of epithelial cell-cell contact. These studies suggest that HA functions as a master switch protecting or disrupting the epithelial barrier in its high versus low molecular weight form and that its depolymerization is a first and necessary step triggering the inflammatory response to CigS. PMID:23048036
Impact of humidity on functionality of on-paper printed electronics.
Bollström, Roger; Pettersson, Fredrik; Dolietis, Peter; Preston, Janet; Osterbacka, Ronald; Toivakka, Martti
2014-03-07
A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.
White, Sian; Kuper, Hannah; Itimu-Phiri, Ambumulire; Holm, Rochelle; Biran, Adam
2016-01-01
Globally, millions of people lack access to improved water, sanitation and hygiene (WASH). Disabled people, disadvantaged both physically and socially, are likely to be among those facing the greatest inequities in WASH access. This study explores the WASH priorities of disabled people and uses the social model of disability and the World Health Organization's International Classification of Functioning, Disability and Health (ICF) framework to look at the relationships between impairments, contextual factors and barriers to WASH access. 36 disabled people and 15 carers from urban and rural Malawi were purposively selected through key informants. The study employed a range of qualitative methods including interviews, emotion mapping, free-listing of priorities, ranking, photo voice, observation and WASH demonstrations. A thematic analysis was conducted using nVivo 10. WASH access affected all participants and comprised almost a third of the challenges of daily living identified by disabled people. Participants reported 50 barriers which related to water and sanitation access, personal and hand hygiene, social attitudes and participation in WASH programs. No two individuals reported facing the same set of barriers. This study found that being female, being from an urban area and having limited wealth and education were likely to increase the number and intensity of the barriers faced by an individual. The social model proved useful for classifying the majority of barriers. However, this model was weaker when applied to individuals who were more seriously disabled by their body function. This study found that body function limitations such as incontinence, pain and an inability to communicate WASH needs are in and of themselves significant barriers to adequate WASH access. Understanding these access barriers is important for the WASH sector at a time when there is a global push for equitable access.
Kuper, Hannah; Itimu-Phiri, Ambumulire; Holm, Rochelle; Biran, Adam
2016-01-01
Globally, millions of people lack access to improved water, sanitation and hygiene (WASH). Disabled people, disadvantaged both physically and socially, are likely to be among those facing the greatest inequities in WASH access. This study explores the WASH priorities of disabled people and uses the social model of disability and the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) framework to look at the relationships between impairments, contextual factors and barriers to WASH access. 36 disabled people and 15 carers from urban and rural Malawi were purposively selected through key informants. The study employed a range of qualitative methods including interviews, emotion mapping, free-listing of priorities, ranking, photo voice, observation and WASH demonstrations. A thematic analysis was conducted using nVivo 10. WASH access affected all participants and comprised almost a third of the challenges of daily living identified by disabled people. Participants reported 50 barriers which related to water and sanitation access, personal and hand hygiene, social attitudes and participation in WASH programs. No two individuals reported facing the same set of barriers. This study found that being female, being from an urban area and having limited wealth and education were likely to increase the number and intensity of the barriers faced by an individual. The social model proved useful for classifying the majority of barriers. However, this model was weaker when applied to individuals who were more seriously disabled by their body function. This study found that body function limitations such as incontinence, pain and an inability to communicate WASH needs are in and of themselves significant barriers to adequate WASH access. Understanding these access barriers is important for the WASH sector at a time when there is a global push for equitable access. PMID:27171520
The effect of aging on brain barriers and the consequences for Alzheimer's disease development.
Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E
2016-08-01
Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.
Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.
Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo
2017-08-15
Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulation of intestinal permeability: The role of proteases
Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y
2017-01-01
The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139
Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi
2015-04-01
The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.
Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas
2015-01-01
Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773
Possible origin and roles of nano-porosity in ZrO2 scales for hydrogen pick-up in Zr alloys
NASA Astrophysics Data System (ADS)
Lindgren, Mikaela; Geers, Christine; Panas, Itai
2017-08-01
A mechanistic understanding of Wagnerian build-up and subsequent non-Wagnerian break-down of barrier oxide upon oxidation of zirconium alloys by water is reiterated. Hydrogen assisted build-up of nano-porosity is addressed. Growth of sub-nanometer wide stalactitic pores owing to increasing aggregation of neutral oxygen vacancies offering a means to permeate hydrogen into the alloy is explored by density functional theory. The Wagnerian channel utilizes charge separation allowing charged oxygen vacancies and electrons to move separately from nominal anode to nominal cathode. This process becomes increasingly controlled by the charging of the barrier oxide resulting in sub-parabolic rate law for oxide growth. The break-down of the barrier oxide is understood to be preceded by avalanching hydrogen pick-up in the alloy. Pore mediated diffusion allows water to effectively short circuit the barrier oxide.
Kagurusi, Patrick T
2013-09-01
The media has been employed to increase uptake of Family Planning through behaviour change communication (BCC). Understanding the barriers encountered in effectively undertaking this function would increase the strategy's effectiveness. Sixty journalists from East Africa participated in trainings to enhance their BCC skills for Family Planning in which a qualitative study was nested to identify barriers to effective Family Planning BCC in the region's media. The barriers were observed to be insufficient BCC skills, journalists' conflict of interest, interests of media houses, inaccessible sources of family planning information, editorial ideologies and absence of commercially beneficial demand. Coupled with the historical ideologies of the media in the region, the observed barriers have precipitated ineffective family planning BCC in the regions media. Effective BCC for family planning in the regions media requires capacity building among practitioners and alignment of the concept to the media's and consumers' aspirations.
Bourguignon, Lilly Y.W.; Wong, Gabriel; Xia, Weiliang; Man, Mao-Qiang; Holleran, Walter M.; Elias, Peter M.
2013-01-01
Background Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA) -size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. Objective The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs-»HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. Methods A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. Results In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. Conclusion The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin. Second, manipulation of matrix (HA) interaction with CD44 and RhoGTPase signaling could provide further novel therapeutic approaches that could be targeted for the treatment of various aging-related skin disorders. PMID:23790635
Bradley, Charles W.; Morris, Daniel O.; Rankin, Shelley C.; Cain, Christine L.; Misic, Ana M.; Houser, Timothy; Mauldin, Elizabeth A.; Grice, Elizabeth A.
2016-01-01
Host-microbe interactions may play a fundamental role in the pathogenesis of atopic dermatitis (AD), a chronic relapsing inflammatory skin disorder characterized by universal colonization with Staphylococcus. To examine the relationship between epidermal barrier function and the cutaneous microbiota in AD, this study employed a spontaneous model of canine AD (cAD). In a cohort of 14 dogs with cAD, the skin microbiota was longitudinally evaluated with parallel assessment of skin barrier function at disease flare, during antimicrobial therapy and posttherapy. Sequencing of the bacterial 16S ribosomal RNA gene revealed decreased bacterial diversity and increased proportions of Staphylococcus (S. pseudintermedius in particular) and Corynebacterium in comparison to a cohort of healthy control dogs (n=16). Treatment restored bacterial diversity with decreased Staphylococcus proportions, concurrent with decreased cAD severity. Skin barrier function, as measured by corneometry, pH, and transepidermal water loss (TEWL) also normalized with treatment. Bacterial diversity correlated with TEWL and pH, but not corneometry. These findings provide insights into the relationship between the cutaneous microbiome and skin barrier function in AD, the impact of antimicrobial therapy on the skin microbiome, and highlight the utility of cAD as a spontaneous non-rodent model of AD. PMID:26854488
NASA Astrophysics Data System (ADS)
Asha, B.; Harsha, Cirandur Sri; Padma, R.; Rajagopal Reddy, V.
2018-05-01
The electrical characteristics of a V/p-GaN Schottky junction have been investigated by current-voltage (I-V) and capacitance-voltage (C-V) characteristics under the assumption of the thermionic emission (TE) theory in the temperature range of 120-280 K with steps of 40 K. The zero-bias barrier height (ΦB0), ideality factor (n), flat-band barrier height (ΦBF) and series resistance (R S) values were evaluated and were found to be strongly temperature dependent. The results revealed that the ΦB0 values increase, whereas n, ΦFB and R S values decrease, with increasing temperature. Using the conventional Richardson plot, the mean barrier height (0.39 eV) and Richardson constant (8.10 × 10-10 Acm-2 K-2) were attained. The barrier height inhomogeneities were demonstrated by assuming a Gaussian distribution function. The interface state density (N SS) values were found to decrease with increasing temperature. The reverse leakage current mechanism of the V/p-GaN Schottky junction was found to be governed by Poole-Frenkel emission at all temperatures.
Zhao, Tian-Yu; Su, Li-Ping; Ma, Chun-Ye; Zhai, Xiao-Han; Duan, Zhi-Jun; Zhu, Ying; Zhao, Gang; Li, Chun-Yan; Wang, Li-Xia; Yang, Dong
2015-07-08
Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. Tight junction dysfunction develops during the development of liver cirrhosis, and endotoxemia will develop subsequently. Correspondingly, increased endotoxin in portal system worsens tight junction dysfunction via decreasing intestinal occludin and claudin-1 expressions and increasing enterocytic apoptosis. Endotoxemia and intestinal barrier dysfunction form a vicious circle. External administration of IGF-1 breaks this vicious circle. Improvement of tight junctions might be one possible mechanism of the restoration of intestinal barrier function mediated by IGF-1.
Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells
Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.
2014-01-01
Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388
Moeser, Adam-J; Nighot, Prashant-K; Roerig, Birgit; Ueno, Ryuji; Blikslager, Anthony-T
2008-10-21
To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine. Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer's solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function. Application of 1 micromol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of (3)H-mannitol and (14)C-inulin. This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier.
Moeser, Adam J; Nighot, Prashant K; Roerig, Birgit; Ueno, Ryuji; Blikslager, Anthony T
2008-01-01
AIM: To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine. METHODS: Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer’s solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of 3H-mannitol and 14C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function. RESULTS: Application of 1 μmol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of 3H-mannitol and 14C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of 3H-mannitol and 14C-inulin. CONCLUSION: This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier. PMID:18932279
Wildenbos, G A; Peute, Linda; Jaspers, Monique
2018-06-01
With the growing population of older adults as a potential user group of mHealth, the need increases for mHealth interventions to address specific aging characteristics of older adults. The existence of aging barriers to computer use is widely acknowledged. Yet, usability studies show that mHealth still fails to be appropriately designed for older adults and their expectations. To enhance designs of mHealth aimed at older adult populations, it is essential to gain insight into aging barriers that impact the usability of mHealth as experienced by these adults. This study aims to synthesize literature on aging barriers to digital (health) computer use, and explain, map and visualize these barriers in relation to the usability of mHealth by means of a framework. We performed a scoping review to synthesize and summarize reported physical and functional age barriers in relation to digital (mobile) health applications use. Aging barriers reported in the literature were mapped onto usability aspects categorized by Nielsen to explain their influence on user experience of mHealth. A framework (MOLD-US) was developed summarizing the evidence on the influence of aging barriers on mHealth use experienced by older adults. Four key categories of aging barriers influencing usability of mHealth were identified: cognition, motivation, physical ability and perception. Effective and satisfactory use of mHealth by older adults is complicated by cognition and motivation barriers. Physical ability and perceptual barriers further increase the risk of user errors and fail to notice important interaction tasks. Complexities of medical conditions, such as diminished eye sight related to diabetes or deteriorated motor skills as a result of rheumatism, can cause errors in user interaction. This research provides a novel framework for the exploration of aging barriers and their causes influencing mHealth usability in older adults. This framework allows for further systematic empirical testing and analysis of mHealth usability issues, as it enables results to be classified and interpreted based on impediments intrinsic to usability issues experienced by older adults. Importantly, the paper identifies a key need for future research on motivational barriers impeding mhealth use of older adults. More insights are needed in particular to disaggregating normal age related functional changes from specific medical conditions that influence experienced usefulness of mHealth by these adults. Copyright © 2018 Elsevier B.V. All rights reserved.
Tokudome, Yoshihiro; Masutani, Noriomi; Uchino, Shohei; Fukai, Hisano
2017-10-27
Purified glucosylceramide from beet extract (beet GlcCer) and beet extract containing an equal amount of GlcCer were administered orally to ultra violet B (UVB)-irradiated mice, and differences in the protective effects against skin barrier dysfunction caused by UVB irradiation were compared. In the beet GlcCer group, epidermal thickening and the decrease in stratum corneum (SC) ceramide content caused by UVB irradiation were reduced. In the group that was orally administered beet extract containing glucosylceramide, effects similar to those in the beet GlcCer group were observed. Oral administration of beet GlcCer had no obvious effects against an increase in TEWL or decrease in SC water content after UVB irradiation, but there was improvement in the beet extract group. Oral administration of beet GlcCer is effective in improving skin barrier function in UVB-irradiated mice. Beet extract contains constituents other than GlcCer that are also effective in improving skin barrier function.
Electrically tunable g factors in quantum dot molecular spin states.
Doty, M F; Scheibner, M; Ponomarev, I V; Stinaff, E A; Bracker, A S; Korenev, V L; Reinecke, T L; Gammon, D
2006-11-10
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Electrically Tunable g Factors in Quantum Dot Molecular Spin States
NASA Astrophysics Data System (ADS)
Doty, M. F.; Scheibner, M.; Ponomarev, I. V.; Stinaff, E. A.; Bracker, A. S.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2006-11-01
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22
Gulhane, Max; Murray, Lydia; Lourie, Rohan; Tong, Hui; Sheng, Yong H.; Wang, Ran; Kang, Alicia; Schreiber, Veronika; Wong, Kuan Yau; Magor, Graham; Denman, Stuart; Begun, Jakob; Florin, Timothy H.; Perkins, Andrew; Cuív, Páraic Ó.; McGuckin, Michael A.; Hasnain, Sumaira Z.
2016-01-01
Prolonged high fat diets (HFD) induce low-grade chronic intestinal inflammation in mice, and diets high in saturated fat are a risk factor for the development of human inflammatory bowel diseases. We hypothesized that HFD-induced endoplasmic reticulum (ER)/oxidative stress occur in intestinal secretory goblet cells, triggering inflammatory signaling and reducing synthesis/secretion of proteins that form the protective mucus barrier. In cultured intestinal cells non-esterified long-chain saturated fatty acids directly increased oxidative/ER stress leading to protein misfolding. A prolonged HFD elevated the intestinal inflammatory cytokine signature, alongside compromised mucosal barrier integrity with a decrease in goblet cell differentiation and Muc2, a loss in the tight junction protein, claudin-1 and increased serum endotoxin levels. In Winnie mice, that develop spontaneous colitis, HFD-feeding increased ER stress, further compromised the mucosal barrier and increased the severity of colitis. In obese mice IL-22 reduced ER/oxidative stress and improved the integrity of the mucosal barrier, and reversed microbial changes associated with obesity with an increase in Akkermansia muciniphila. Consistent with epidemiological studies, our experiments suggest that HFDs are likely to impair intestinal barrier function, particularly in early life, which partially involves direct effects of free-fatty acids on intestinal cells, and this can be reversed by IL-22 therapy. PMID:27350069
Buist, Harrie E; van de Sandt, Johannes J M; van Burgsteden, Johan A; de Heer, Cees
2005-10-01
The dermal route of exposure is important in worker exposure to biocidal products. Many biocidal active substances which are used on a daily basis may decrease the barrier function of the skin to a larger extent than current risk assessment practice addresses, due to possible skin effects of repeated exposure. The influence of repeated and single exposure to representative biocidal active substances on the skin barrier was investigated in vitro. The biocidal active substances selected were alkyldimethylbenzylammonium chloride (ADBAC), boric acid, deltamethrin, dimethyldidecylammonium chloride (DDAC), formaldehyde, permethrin, piperonyl butoxide, sodium bromide, and tebuconazole. Of these nine compounds, only the quaternary ammonium chlorides ADBAC and DDAC had a clear and consistent influence on skin permeability of the marker compounds tritiated water and [(14)C]propoxur. For these compounds, repeated exposure increased skin permeability more than single exposure. At high concentrations the difference between single and repeated exposure was quantitatively significant: repeated exposure to 300 mg/L ADBAC increased skin permeability two to threefold in comparison to single exposure. Therefore, single and repeated exposure to specific biocidal products may significantly increase skin permeability, especially when used undiluted.
Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y
2010-01-01
Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.
Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2)more » after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP2A/MMP-2 induced PCB153-induced dysfunction of occludin. • Disrupted lipid rafts modulated PCB153-induced increase of permeability. • Lipid rafts act as a signaling platform for PCB153-induced dysfunction of occludin.« less
DaSilva, Sonia C; Sahu, Ravi P; Konger, Raymond L; Perkins, Susan M; Kaplan, Mark H; Travers, Jeffrey B
2012-01-01
Atopic dermatitis (AD) is a pruritic, chronic inflammatory skin disease that affects 10-20% of children and 1-3% of adults worldwide. Recent studies have indicated that the ability of Th2 cytokines, such as interleukin-4 (IL-4) to regulate skin barrier function may be a predisposing factor for AD development. The present studies examined the ability of increased Th2 activity to affect cutaneous barrier function in vivo and epidermal thickening. Mice that express a constitutively active Signal Transducer and Activator of Transcription 6 (STAT6VT) have increased Th2 cells and a predisposition to allergic inflammation were used in these studies, they demonstrate that topical treatment with the irritant sodium lauryl sulfate (SLS) caused increased transepidermal water loss and epidermal thickening in STAT6VT mice over similarly treated wild-type mice. The proliferation marker Ki-67 was increased in the epidermis of STAT6VT compared to the wild-type mice. However, these differences do not appear to be linked to the addition of an irritant as control-treated STAT6VT skin also exhibited elevated Ki-67 levels, suggesting that the increased epidermal thickness in SLS-treated STAT6VT mice is primarily driven by epidermal cell hypertrophy rather than an increase in cellular proliferation. Our results suggest that an environment with increased Th2 cytokines results in abnormal responses to topical irritants.
DaSilva, Sonia C.; Sahu, Ravi P.; Konger, Raymond L.; Perkins, Susan M.; Kaplan, Mark H.; Travers, Jeffrey B.
2011-01-01
Atopic dermatitis (AD) is a pruritic, chronic inflammatory skin disease that affects 10–20% of children and 1–3% of adults worldwide. Recent studies have indicated that the ability of Th2 cytokines such as interleukin-4 (IL-4) to regulate skin barrier function may be a predisposing factor for AD development. The present studies examined the ability of increased Th2 activity to affect cutaneous barrier function in vivo and epidermal thickening. Mice that express a constitutively active Signal Transducer and Activator of Transcription 6 (STAT6VT) have increased Th2 cells and a predisposition to allergic inflammation were used in these studies; they demonstrate that topical treatment with the irritant sodium lauryl sulfate (SLS) caused increased transepidermal water loss and epidermal thickening in STAT6VT mice over similarly treated wild-type mice. The proliferation marker Ki-67 was increased in the epidermis of STAT6VT compared to wild-type mice. However, these differences do not appear to be linked to the addition of an irritant as control-treated STAT6VT skin also exhibited elevated Ki-67 levels, suggesting that the increased epidermal thickness in SLS-treated STAT6VT mice is primarily driven by epidermal cell hypertrophy rather than an increase in cellular proliferation. Our results suggest that an environment with increased Th2 cytokines results in abnormal responses to topical irritants. PMID:21959772
Transfer couplings and hindrance far below the barrier for 40 Ca + 96 Zr
Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; ...
2015-01-29
The sub-barrier fusion excitation function of 40Ca + 96Zr has been measured down to cross sections ≃2.4µb, i.e. two orders of magnitude smaller than obtained in the previous experiment, where the sub-barrier fusion of this system was found to be greatly enhanced with respect to 40Ca + 90Zr, and the need of coupling to transfer channels was suggested. The purpose of this work was to investigate the behavior of 40Ca + 96Zr fusion far below the barrier. The smooth trend of the excitation function has been found to continue, and the logarithmic slope increases very slowly. No indication of hindrancemore » shows up, and a comparison with 48Ca + 96Zr is very useful in this respect. A new CC analysis of the complete excitation function has been performed, including explicitly one- and two-nucleon Q >0 transfer channels. Such transfer couplings bring significant cross section enhancements, even at the level of a few µb. Locating the hindrance threshold, if any, in 40Ca + 96Zr would require challenging measurements of cross sections in the sub-µb range.« less
USDA-ARS?s Scientific Manuscript database
Two major functions of the intestinal epithelium are to act as a physical barrier and to regulate the movement of nutrients, ions and fluid. Nematode infection induces alterations in smooth and epithelial cell function, including increased fluid in the intestinal lumen, which are attributed to a ST...
Li, Yihang; Song, Zehe; Kerr, Katelyn A.; Moeser, Adam J.
2017-01-01
Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and nutrient transport function, corticotropin releasing factor (CRF) signaling and immunological responses. Results from this study showed that CSS resulted in a significant impairment of ileal and colonic barrier function indicated by reduced transepithelial electrical resistance (TER) in the ileum and increased FD4 flux in the ileum (by 0.8 fold) and colon (by 0.7 fold). Ileal sodium glucose linked transporter 1 (SGLT-1) function, measured as glucose-induced changes in short-circuit current (Isc), was diminished (by 52%) in CSS pigs, associated with reduced body weight gain and feed efficiency. Although reductions in SGLT-1 function were observed in CSS pigs, mRNA expression for SGLT-1, villus heights were increased in CSS pigs. Corticotropin releasing factor (CRF) mRNA was upregulated (by 0.9 fold) in the ileum of CSS pigs but not in the colon. Urocortin 2 (Ucn2) mRNA was upregulated (by 1.5 fold) in the colon of CSS pigs, but not in the ileum. In CSS pigs, a downregulation of pro-inflammatory cytokines mRNA (IL1B, TNFA, IL8, and IL6) was observed in both ileum and colon, compared with controls. In contrast CSS induced a marked upregulation of mRNA for IL10 and mast cell chymase gene (CMA1) in the ileum and colon. Together, these data demonstrate that chronic stress in pigs results in significant alterations in intestinal barrier and nutrient transport function and neuro-immune mediator and receptor expression. PMID:28170426
Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.
Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee
2017-08-01
Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Climatic change and skin: diagnostic and therapeutic challenges].
Llamas-Velasco, M; García-Díez, A
2010-06-01
Scientifics are warning us about a global warming tendency and diminished rainfalls. Quantity, causes and human activity influence remain controversial. Warming could increase prevalence of some cutaneous pathology. Sensible skin and skin xerosis would be more prevalent if relative humidity decreases. Alterations of skin barrier;s function would increase seriousness and prevalence of atopic dermatitis. Furthermore, the higher UVB proportion reaching Earth's surface, in conjunction with increased sunbathing population habits, will increase cutaneous cancer and photoaging rates without a correct photoprotection. Also, habitats of some infectious diseases; vectors are changing. The facing of these problems will be a real challenge for the dermatologist, who will have a very important role on prevention, diagnoses and early treatment of them.
Conformation and dynamics of polymer chains on dirty surfaces: A discrete-to-continuum approach
NASA Astrophysics Data System (ADS)
Foo, Grace M.; Pandey, R. B.
1998-07-01
A discrete-to-continuum (DC) simulation approach is introduced to study the statics and dynamics of polymer chains in two dimensions with quenched barriers, a dirty surface. In our DC hybrid approach, the large-scale relaxation of polymer chains on a discrete disordered lattice is followed by off-lattice simulation using a bead-spring chain model with a finitely extensible nonlinear elastic (FENE) potential for covalent bonds and Lennard-Jones (LJ) potential for nonbonded interactions. Segregation/folding of chains, which occurs at low temperatures (T=0.2, 1.0) with LJ interaction, becomes more difficult as the concentration of barriers increases, due to a screening effect of the barriers. In contrast to the chains' contraction at high temperature (i.e., T=5) and their collapse in athermal systems, chains are elongated on increasing the barrier concentration—a barrier-induced stretching. Variations of the root-mean-square (rms) displacements of the center of mass (Rcm) of the chains and their center node (Rcn) with time (t) show power-law behaviors (Rcm˜tν1, Rcn˜tν2) with nonuniversal exponents in the range ν1≃0.40-0.05 and ν2≃0.30-0.05, respectively, depending on temperature and barrier concentration. The radius of gyration (Rg) and the average bond length (
Conductance of graphene based normal-superconductor junction with double magnetic barriers
NASA Astrophysics Data System (ADS)
Abdollahipour, B.; Mohebalipour, A.; Maleki, M. A.
2018-05-01
We study conductance of a graphene based normal metal-superconductor junction with two magnetic barriers. The magnetic barriers are induced via two applied magnetic fields with the same magnitudes and opposite directions accompanied by an applied electrostatic potential. We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation to calculate conductance of the junction. We find that applying the magnetic field leads to suppression of the Andreev reflection and conductance for all energies. On the other hand, we observe a crossover from oscillatory to tunneling behavior of the conductance as a function of the applied potential by increasing the magnetic field.
Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells.
Gardner, T W; Lieth, E; Khin, S A; Barber, A J; Bonsall, D J; Lesher, T; Rice, K; Brennan, W A
1997-10-01
Diabetic retinopathy and other diseases associated with retinal edema are characterized by increased microvascular leakage. Astrocytes have been proposed to maintain endothelial function in the brain, suggesting that glial impairment may underlie the development of retinal edema. The purpose of this study was to test the effects of astrocytes on barrier properties in retinal microvascular endothelial cells. Bovine retinal microvascular endothelial cells were exposed to conditioned media from rat brain astrocytes. Transendothelial electrical resistance (TER) was determined on 24-mm Transwell (Cambridge, MA) polycarbonate filters with the End-Ohm device (World Precision Instruments, Sarasota, FL). ZO-1 protein content was quantified by microtiter enzyme-linked immunosorbent assay. Astrocyte-conditioned medium (ACM) significantly increased TER (P < 0.0001) and ZO-1 content (P < 0.01). Both serum-containing and serum-free N1B defined ACM increased ZO-1 expression, but heating abolished the effect. Serum-free ACM decreased cell proliferation by 16%. Astrocytes release soluble, heat-labile factors that increase barrier properties and tight junction protein content. These results suggest that astrocytes enhance blood-retinal barrier properties, at least in part by increasing tight junction protein expression. Our findings suggest that glial malfunction plays an important role in the pathogenesis of vasogenic retinal edema.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp
We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less
Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao
2017-11-01
Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.
Potential barrier classification by short-time measurement
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2006-03-01
We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.
Lechuga, Susana; Ivanov, Andrei I
2017-07-01
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Walker, Matthew T; Green, Jeremy E; Ferrie, Ryan P; Queener, Ashley M; Kaplan, Mark H; Cook-Mills, Joan M
2018-05-01
Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown. The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy. Mice heterozygous for the filaggrin (Flg) ft and Tmem79 ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured. We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen. These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo
2014-09-09
We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.
Tian, Junqiang; Hao, Li; Chandra, Prakash; Jones, Dean P; Willams, Ifor R; Gewirtz, Andrew T; Ziegler, Thomas R
2009-02-01
Short bowel syndrome (SBS) is associated with gut barrier dysfunction. We examined effects of dietary glutamine (GLN) or oral antibiotics (ABX) on indexes of gut barrier function in a rat model of SBS. Adult rats underwent a 60% distal small bowel + proximal colonic resection (RX) or bowel transection (TX; control). Rats were pair fed diets with or without l-GLN for 20 days after operation. Oral ABX (neomycin, metronidazole, and polymyxin B) were given in some RX rats fed control diet. Stool secretory immunoglobulin A (sIgA) was measured serially. On day 21, mesenteric lymph nodes (MLN) were cultured for gram-negative bacteria. IgA-positive plasma cells in jejunum, stool levels of flagellin- and lipopolysaccharide (LPS)-specific sIgA, and serum total, anti-flagellin- and anti-LPS IgG levels were determined. RX caused gram-negative bacterial translocation to MLN, increased serum total and anti-LPS IgG and increased stool total sIgA. After RX, dietary GLN tended to blunt bacterial translocation to MLN (-29%, P = NS) and significantly decreased anti-LPS IgG levels in serum, increased both stool and jejunal mucosal sIgA and increased stool anti-LPS-specific IgA. Oral ABX eliminated RX-induced bacterial translocation, significantly decreased total and anti-LPS IgG levels in serum, significantly decreased stool total IgA and increased stool LPS-specific IgA. Partial small bowel-colonic resection in rats is associated with gram-negative bacterial translocation from the gut and a concomitant adaptive immune response to LPS. These indexes of gut barrier dysfunction are ameliorated or blunted by administration of dietary GLN or oral ABX, respectively. Dietary GLN upregulates small bowel sIgA in this model.
The effect of topical treatments for CRS on the sinonasal epithelial barrier.
Ramezanpour, M; Rayan, A; Smith, J L P; Vreugde, S
2017-06-01
Several topical treatments are used in the management of Chronic Rhinosinusitis (CRS), some of which the safety and efficacy has yet to be determined. The purpose of this study was to investigate the effect of commonly used topical treatments on the sinonasal epithelial barrier. Normal saline (0.9% Sodium Chloride), hypertonic saline (3% Sodium Chloride), FESS Sinu-Cleanse Hypertonic, FLO Sinus Care and Budesonide 1 mg/ 2 ml were applied to the apical side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS patients (n=3) and non-CRS controls (n=3) for 24 hours. Epithelial barrier structure and function was assessed using trans-epithelial electrical resistance (TEER), measuring the passage of Fluorescein Isothiocyanate labelled Dextrans (FITC-Dextrans) and assessing the expression of the tight junction protein Zona Occludens-1 (ZO-1) using immunofluorescence. Toxicity was assessed using a Lactate Dehydrogenase (LDH) assay. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Hypertonic solution and budesonide significantly increased TEER values in CRS derived HNECs. In contrast, FESS Sinu-Cleanse Hypertonic significantly reduced TEER 5 minutes after application of the solution followed by an increase in paracellular permeability of FITC-Dextrans (30 minutes) and increased LDH levels 6 hours after application of the solution. Our findings confirm that isotonic and hypertonic saline solutions do not compromise epithelial barrier function in vitro but underscore the importance of examining safety and efficacy of over-the-counter wash solutions.
NASA Astrophysics Data System (ADS)
Bonnet, Roméo; Barraud, Clément; Martin, Pascal; Della Rocca, Maria Luisa; Lafarge, Philippe
2016-10-01
Covalent functionalization of multiwall carbon nanotubes is a direct method to suppress the conduction of the outermost shell, subject to interactions with the environment. The rehybridized sp3 external shell of the functionalized multiwall carbon nanotubes becomes naturally a hybrid injection barrier allowing the control of the contact resistances and the study of quantum transport in the more protected inner shells. Charge transport measurements performed on isolated multiwall carbon nanotubes of large diameter show an increase of the contact resistance and stabilization in the MΩ range. Electronic quantum properties of the inner shells are highlighted by the observation of superlattice structures in the conductance, recently attributed to the formation of a one-dimensional Moiré pattern.
Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
2014-06-01
One of the important applications of yttria-stabilized zirconia (YSZ) is as a thermal barrier coating for gas turbine engines. While YSZ performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite-derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability, and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.
2014-08-01
increase in ROS levels as compared to control, and this increased in ROS formation was abrogated by the antioxidant uric acid , UA (Table 1). Table 1...presence of UA antioxidant, uric acid , indicating the involvement of ROS in loss of the HBMEC integrity. The functional changes paralleled enhanced
Ascorbic Acid Prevents VEGF-induced Increases in Endothelial Barrier Permeability
Ulker, Esad; Parker, William H.; Raj, Amita; Qu, Zhi-chao; May, James M.
2015-01-01
Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 μM and complete inhibition at 50 μM. Loading cells with 100 μM ascorbate also decreased basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25%, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 μM L-NAME (but not D-NAME) as well as by 30 μM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088
Vikström, Elena; Magnusson, Karl-Eric; Vécsey-Semjén, Beatrix; Colque-Navarro, Patricia; Möllby, Roland
2012-01-01
Increased microvascular permeability is a hallmark of sepsis and septic shock. Intestinal mucosal dysfunction may allow translocation of bacteria and their products, thereby promoting sepsis and inflammation. Although Staphylococcus aureus alpha-toxin significantly contributes to sepsis and perturbs the endothelial barrier function, little is known about possible effects of S. aureus alpha-toxin on human epithelial barrier functions. We hypothesize that S. aureus alpha-toxin in the blood can impair the intestinal epithelial barrier and thereby facilitate the translocation of luminal bacteria into the blood, which may in turn aggravate a septic condition. Here, we showed that staphylococcal alpha-toxin disrupts the barrier integrity of human intestinal epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER) and reduced cellular levels of junctional proteins, such as ZO-1, ZO-3, and E-cadherin. The Caco-2 cells also responded to alpha-toxin with an elevated cytosolic calcium ion concentration ([Ca2+]i), elicited primarily by calcium influx from the extracellular environment, as well as with a significant reduction in TER, which was modulated by intracellular calcium chelation. Moreover, a significantly larger reduction in TER and amounts of the junctional proteins, viz., ZO-3 and occludin, was achieved by basolateral than by apical application of the alpha-toxin. These experimental findings thus support the hypothesis that free staphylococcal alpha-toxin in the bloodstream may cause intestinal epithelial barrier dysfunction and further aggravate the septic condition by promoting the release of intestinal bacteria into the underlying tissues and the blood. PMID:22354024
Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes.
Hu, Madeleine D; Jia, Luo; Edelblum, Karen L
2018-03-01
This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.
[Recent studies on corneal epithelial barrier function].
Liu, F F; Li, W; Liu, Z G; Chen, W S
2016-08-01
Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635).
Coelho-Santos, Vanessa; Leitão, Ricardo A; Cardoso, Filipa L; Palmela, Inês; Rito, Manuel; Barbosa, Marcos; Brito, Maria A; Fontes-Ribeiro, Carlos A; Silva, Ana P
2015-01-01
Methamphetamine (METH) is a psychostimulant that causes neurologic and psychiatric abnormalities. Recent studies have suggested that its neurotoxicity may also result from its ability to compromise the blood–brain barrier (BBB). Herein, we show that METH rapidly increased the vesicular transport across endothelial cells (ECs), followed by an increase of paracellular transport. Moreover, METH triggered the release of tumor necrosis factor-alpha (TNF-α), and the blockade of this cytokine or the inhibition of nuclear factor-kappa B (NF-κB) pathway prevented endothelial dysfunction. Since astrocytes have a crucial role in modulating BBB function, we further showed that conditioned medium obtained from astrocytes previously exposed to METH had a negative impact on barrier properties also via TNF-α/NF-κB pathway. Animal studies corroborated the in vitro results. Overall, we show that METH directly interferes with EC properties or indirectly via astrocytes through the release of TNF-α and subsequent activation of NF-κB pathway culminating in barrier dysfunction. PMID:25899299
Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens
USDA-ARS?s Scientific Manuscript database
Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect...
Health-related quality of life of children with physical disabilities: a longitudinal study
2014-01-01
Background Outcomes of health and rehabilitation services for children and youth with disabilities increasingly include assessments of health-related quality of life (HRQoL). The purpose of this research was to 1) describe overall patterns of HRQoL, 2) examine changes in parent’s perceptions of child’s HRQoL across 18 months and 3) explore factors that predict these changes. Methods Participants in this study included 427 parents of children (229 boys and 198 girls) with a physically-based disability between the ages of 6 to 14 years. The Child Health Questionnaire (CHQ) was administered three times, at nine month intervals. Comparisons to the CHQ normative data were analyzed at Time 1 using t-tests, and change over time was examined using linear mixed-effects models. Possible predictors were modeled: 1) child’s factors measured by the Activities Scale for Kids, Strengths and Difficulties Questionnaire, and general health measured by SF-36, 2) family characteristics measured by the Impact on Family Scale and 3) environmental barriers measured by the Craig Hospital Inventory of Environmental Factors. Results CHQ scores of the study’s participants demonstrated significantly lower summary scores from the normative sample for both CHQ Physical and Psychosocial summary scores. On average, children did not change significantly over time for physical summary scores. There was an average increase in psychosocial health that was statistically significant, but small. However, there was evidence of heterogeneity among children. Environmental barriers, behavioral difficulties, family functioning/impact, general health and child physical functioning had negative and significant associations with physical QoL at baseline. Change in physical QoL scores over time was dependent on children’s behavioral difficulties, family functioning and environmental barriers. Environmental barriers, behavioral difficulties, family functioning/impact and general health had significant associations with psychosocial scores at baseline, but none served as predictors of change over time. Conclusions Children with physical disabilities differ from the normative group on parent ratings of their physical and psychosocial health. While there was little average change in CHQ scores over 18 months, there is evidence of heterogeneity among children. Factors such as environmental barriers, family functioning/impact, child physical functioning and behavioral difficulties and general health significantly influence QoL scores as measured by the CHQ. PMID:24476085
Health-related quality of life of children with physical disabilities: a longitudinal study.
Law, Mary; Hanna, Steven; Anaby, Dana; Kertoy, Marilyn; King, Gillian; Xu, Liqin
2014-01-30
Outcomes of health and rehabilitation services for children and youth with disabilities increasingly include assessments of health-related quality of life (HRQoL). The purpose of this research was to 1) describe overall patterns of HRQoL, 2) examine changes in parent's perceptions of child's HRQoL across 18 months and 3) explore factors that predict these changes. Participants in this study included 427 parents of children (229 boys and 198 girls) with a physically-based disability between the ages of 6 to 14 years. The Child Health Questionnaire (CHQ) was administered three times, at nine month intervals. Comparisons to the CHQ normative data were analyzed at Time 1 using t-tests, and change over time was examined using linear mixed-effects models. Possible predictors were modeled: 1) child's factors measured by the Activities Scale for Kids, Strengths and Difficulties Questionnaire, and general health measured by SF-36, 2) family characteristics measured by the Impact on Family Scale and 3) environmental barriers measured by the Craig Hospital Inventory of Environmental Factors. CHQ scores of the study's participants demonstrated significantly lower summary scores from the normative sample for both CHQ Physical and Psychosocial summary scores. On average, children did not change significantly over time for physical summary scores. There was an average increase in psychosocial health that was statistically significant, but small. However, there was evidence of heterogeneity among children. Environmental barriers, behavioral difficulties, family functioning/impact, general health and child physical functioning had negative and significant associations with physical QoL at baseline. Change in physical QoL scores over time was dependent on children's behavioral difficulties, family functioning and environmental barriers. Environmental barriers, behavioral difficulties, family functioning/impact and general health had significant associations with psychosocial scores at baseline, but none served as predictors of change over time. Children with physical disabilities differ from the normative group on parent ratings of their physical and psychosocial health. While there was little average change in CHQ scores over 18 months, there is evidence of heterogeneity among children. Factors such as environmental barriers, family functioning/impact, child physical functioning and behavioral difficulties and general health significantly influence QoL scores as measured by the CHQ.
Natarajan, Reka; Northrop, Nicole
2017-01-01
The blood-brain barrier (BBB) is formed in part by vascular endothelial cells that constitute the capillaries and microvessels of the brain. The function of this barrier is to maintain homeostasis within the brain microenvironment and buffer the brain from changes in the periphery. A dysfunction of the BBB would permit circulating molecules and pathogens typically restricted to the periphery to enter the brain and interfere with normal brain function. As increased permeability of the BBB is associated with several neuropathologies, it is important to have a reliable and sensitive method that determines BBB permeability and the degree of BBB disruption. A detailed protocol is presented for assessing the integrity of the BBB by transcardial perfusion of a 10,000 Da FITC labeled dextran molecule and its visualization to determine the degree of extravasation from brain microvessels. PMID:28398646
Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study
NASA Astrophysics Data System (ADS)
Van Bui, Pho; Toh, Daisetsu; Isohashi, Ai; Matsuyama, Satoshi; Inagaki, Kouji; Sano, Yasuhisa; Yamauchi, Kazuto; Morikawa, Yoshitada
2018-05-01
A comprehensive study of the physicochemical interactions and the reaction mechanism of SiC etching with water by Pt catalysts can reveal key details about the surface treatment and catalytic phenomena at interfaces. Therefore, density functional theory simulations were performed to study the kinetics of Pt-assisted water dissociation and breaking of a Si–C bond compared to the HF-assisted mechanism. These calculations carefully considered the elastic and chemical interaction energies at the Pt–SiC interface, activation barriers of Si–C bond dissociation, and the catalytic role of Pt. It was found that the Pt-catalyzed etching of SiC in water is initiated via hydrolysis reactions that break the topmost Si–C bonds. The activation barrier strongly depends on the elastic and chemical interactions. However, chemical interactions are a dominant factor and mainly contribute to the lowering of the activation barrier, resulting in an increased rate of reaction.
Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines.
Hu, Lizhi; Mauro, Theodora M; Dang, Erle; Man, George; Zhang, Jing; Lee, Dale; Wang, Gang; Feingold, Kenneth R; Elias, Peter M; Man, Mao-Qiang
2017-06-01
Even though elderly populations lack visible or other clinical signs of inflammation, their serum cytokine and C-reactive protein levels typically are elevated. However, the origin of age-associated systemic inflammation is unknown. Our previous studies showed that abnormalities in epidermal function provoke cutaneous inflammation, and because intrinsically aged skin displays compromised permeability barrier homeostasis and reduced stratum corneum hydration, we hypothesized here that epidermal dysfunction could contribute to the elevations in serum cytokines in the elderly. Our results show first that acute disruption of the epidermal permeability barrier in young mice leads not only to a rapid increase in cutaneous cytokine mRNA expression but also an increase in serum cytokine levels. Second, cytokine levels in both the skin and serum increase in otherwise normal, aged mice (>12 months). Third, expression of tumor necrosis factor-α and amyloid A mRNA levels increased in the epidermis, but not in the liver, in parallel with a significant elevation in serum levels of cytokines. Fourth, disruption of the permeability barrier induced similar elevations in epidermal and serum cytokine levels in normal and athymic mice, suggesting that T cells play a negligible role in the elevations in cutaneous and serum inflammatory cytokines induced by epidermal dysfunction. Fifth, correction of epidermal function significantly reduced cytokine levels not only in the skin but also in the serum of aged mice. Together, these results indicate that the sustained abnormalities in epidermal function in chronologically aged skin contribute to the elevated serum levels of inflammatory cytokines, potentially predisposing the elderly to the subsequent development or exacerbation of chronic inflammatory disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Woods, Bonnie
2013-01-01
Prevent-Teach-Reinforce (PTR) is a collaborative, standardized process that was developed as a way to address identified barriers to completing effective functional behavior assessments (FBAs) in public schools. Current research literature documents the effectiveness of the PTR process in decreasing problematic behaviors and increasing social…
USDA-ARS?s Scientific Manuscript database
Threonine is an essential amino acid necessary for synthesis of gut mucins that form the protective intestinal mucous layer. In premature infants, this function might be compromised leading to necrotizing enterocolitis (NEC). We hypothesized that enteral feeding with colostrum, relative to infant fo...
Starring role of toll-like receptor-4 activation in the gut-liver axis
Carotti, Simone; Guarino, Michele Pier Luca; Vespasiani-Gentilucci, Umberto; Morini, Sergio
2015-01-01
Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types. PMID:26600967
Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R
2000-08-01
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.
A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.
Dang, Chuangyin; Xu, Lei
2002-02-01
A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.
Dang, C; Xu, L
2001-03-01
In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.
Barrier function and microbiotic dysbiosis in atopic dermatitis
Seite, Sophie; Bieber, Thomas
2015-01-01
Atopic dermatitis (AD) or atopic eczema is the common inflammatory skin disorder, the prevalence of which has considerably increased during the last 30 years. It affects 15%–30% of children and 2%–10% of adults. AD characteristically alternates between periods of exacerbation or flares and periods of remission, which may be therapeutically induced or spontaneous. Current knowledge about AD includes abnormalities of the skin barrier (physical and chemical), the immune barrier, and more recently, the microbial barrier or microbiota. There is growing evidence for a tight relationship between them. To obtain satisfactory control of this condition, the clinical strategy to manage AD involves prescribing both anti-inflammatory medications and dermocosmetic products. The role of the physician is therefore to advise the patient with regard to hygiene measures aimed to help to improve these three barriers or to prevent any further deterioration. PMID:26396539
The role of filaggrin in the skin barrier and disease development.
Armengot-Carbo, M; Hernández-Martín, Á; Torrelo, A
2015-03-01
Filaggrin is a structural protein that is fundamental in the development and maintenance of the skin barrier. The function of filaggrin and its involvement in various cutaneous and extracutaneous disorders has been the subject of considerable research in recent years. Mutations in FLG, the gene that encodes filaggrin, have been shown to cause ichthyosis vulgaris, increase the risk of atopic dermatitis and other atopic diseases, and exacerbate certain conditions. The present article reviews the current knowledge on the role of filaggrin in the skin barrier, FLG mutations, and the consequences of filaggrin deficiency. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.
Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study
Long, Hai; Pivovar, Bryan S.
2014-11-01
The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.
Standards for the Protection of Skin Barrier Function.
Giménez-Arnau, Ana
2016-01-01
The skin is a vital organ, and through our skin we are in close contact with the entire environment. If we lose our skin we lose our life. The barrier function of the skin is mainly driven by the sophisticated epidermis in close relationship with the dermis. The epidermal epithelium is a mechanically, chemically, biologically and immunologically active barrier submitted to continuous turnover. The barrier function of the skin needs to be protected and restored. Its own physiology allows its recovery, but many times this is not sufficient. This chapter is focused on the standards to restore, treat and prevent barrier function disruption. These standards were developed from a scientific, academic and clinical point of view. There is a lack of standardized administrative recommendations. Still, there is a walk to do that will help to reduce the social and economic burden of diseases characterized by an abnormal skin barrier function. © 2016 S. Karger AG, Basel.
Fredenburgh, Laura E.; Velandia, Margarita M. Suarez; Ma, Jun; Olszak, Torsten; Cernadas, Manuela; Englert, Joshua A.; Chung, Su Wol; Liu, Xiaoli; Begay, Cynthia; Padera, Robert F.; Blumberg, Richard S.; Walsh, Stephen R.; Baron, Rebecca M.; Perrella, Mark A.
2011-01-01
Sepsis remains the leading cause of death in critically ill patients despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase-2 (COX-2) is highly upregulated in the intestine during sepsis and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2−/− and COX-2+/+ BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD2, or vehicle and stimulated with cytokines. COX-2−/− mice developed exaggerated bacteremia and increased mortality compared with COX-2+/+ mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD2 attenuated cytokine-induced hyperpermeability and ZO-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis. PMID:21967897
Antimicrobial Barrier of an in vitro Oral Epithelial Model
Kimball, Janet R.; Nittayananta, Wipawee; Klausner, Mitchell; Chung, Whasun O.; Dale, Beverly A.
2008-01-01
Objective Oral epithelia function as a microbial barrier and are actively involved in recognizing and responding to bacteria. Our goal was to examine a tissue engineered model of buccal epithelium for its response to oral bacteria and proinflammatory cytokines and compare the tissue responses with those of a submerged monolayer cell culture. Design The tissue model was characterized for keratin and β-defensin expression. Altered expression of β-defensins was evaluated by RT-PCR after exposure of the apical surface to oral bacteria and after exposure to TNF-α in the medium. These were compared to the response in traditional submerged oral epithelial cell culture. Results The buccal model showed expression of differentiation specific keratin 13, hBD1 and hBD3 in the upper half of the tissue; hBD2 was not detected. hBD1 mRNA was constitutively expressed, while hBD2 mRNA increased 2-fold after exposure of the apical surface to three oral bacteria tested and hBD3 mRNA increased in response to the non-pathogenic bacteria tested. In contrast, hBD2 mRNA increased 3–600 fold in response to bacteria in submerged cell culture. HBD2 mRNA increased over 100 fold in response to TNF-α in the tissue model and 50 fold in submerged cell culture. Thus, the tissue model is capable of upregulating hBD2, however, the minimal response to bacteria suggests that the tissue has an effective antimicrobial barrier due to its morphology, differentiation, and defensin expression. Conclusions The oral mucosal model is differentiated, expresses hBD1 and hBD3, and has an intact surface with a functional antimicrobial barrier. PMID:16815238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourdeau, Raymond W.; Malito, Enrico; Chenal, Alexandre
2009-06-02
Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALOmore » exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.« less
Mohammed, D; Crowther, J M; Matts, P J; Hadgraft, J; Lane, M E
2013-01-30
Niacinamide-containing moisturisers are known be efficacious in alleviating dry skin conditions and improving stratum corneum (SC) barrier function. However, the mechanisms of action of niacinamide at the molecular level in the SC are still not well understood. Previously, we have reported the development of novel methods to probe SC barrier properties in vivo. The aim of the present study was to characterise changes in Trans Epidermal Water Loss (TEWL), corneocyte surface area and maturity, selected protease activities and SC thickness after repeated application of a simple vehicle containing niacinamide. A commercial formulation was also included as a reference. The left and right mid-volar forearms of 20 healthy volunteers were used as study sites, to which topical formulations were applied twice daily for 28 days. After successive tape-stripping, corneocyte maturity and surface area were assessed. In addition, activity of the desquamatory kallikrein (KLK) protease enzymes KLK5 and KLK7, and tryptase and plasmin (implicated in inflammatory process) were measured using a fluorogenic probe assay. The amount of protein removed and TEWL were also recorded. SC thickness before and after treatment was determined using Confocal Raman Spectroscopy (CRS). Overall (i) corneocyte maturity and surface area decreased with increasing number of tape strips, (ii) activity of both the desquamatory and inflammatory enzymes was highest in the outer layers of the SC and decreased with depth (iii) TEWL increased as more SC layers were removed. Furthermore, areas treated with formulations containing niacinamide were significantly different to pre-treatment baseline and untreated/vehicle-control treated sites, with larger and more mature corneocytes, decreased inflammatory activity, decreased TEWL and increased SC thickness. These data (a) confirm the utility of measures and metrics developed previously for the non-invasive assay of SC barrier function, (b) present an holistic picture of a SC compartment managing barrier function through dynamic optimisation of pathlength and quality of building materials used, and (c) shed new light on niacinamide as a topical formulation adjunct with unique SC barrier-augmentation properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Yang, Lu; Chen, Xufeng; Simet, Samantha M.; Hu, Guoku; Cai, Yu; Niu, Fang; Kook, Yeonhee
2016-01-01
Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell–substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2–related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the mechanism(s) by which cocaine mediates barrier dysfunction could provide insights into the development of potential therapeutic targets for cocaine-mediated pulmonary hypertension. PMID:27391108
Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R
2016-07-01
What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased glutathione peroxidase (GPX) activity and an increased glutathione disulfide (GSSG)-to-glutathione (GSH) ratio (both P < 0.05). With increasing dosage of Se and VE, GPX-2 mRNA (P = 0.003) and GPX activity (P = 0.049) increased linearly, the GSSG:GSH ratio decreased linearly (P = 0.037), and the impacts of heat stress on intestinal barrier function were reduced (P < 0.05 for both transepithelial electrical resistance and FD4 permeability). In conclusion, in pigs an increase of dietary Se and VE mitigated the impacts of heat stress on intestinal barrier integrity, associated with a reduction in oxidative stress. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Argüeso, Pablo; Guzman-Aranguez, Ana; Mantelli, Flavio; Cao, Zhiyi; Ricciuto, Jessica; Panjwani, Noorjahan
2009-01-01
Maintenance of an intact mucosal barrier is critical to preventing damage to and infection of wet-surfaced epithelia. The mechanism of defense has been the subject of much investigation, and there is evidence now implicating O-glycosylated mucins on the epithelial cell surface. Here we investigate a new role for the carbohydrate-binding protein galectin-3 in stabilizing mucosal barriers through its interaction with mucins on the apical glycocalyx. Using the surface of the eye as a model system, we found that galectin-3 colocalized with two distinct membrane-associated mucins, MUC1 and MUC16, on the apical surface of epithelial cells and that both mucins bound to galectin-3 affinity columns in a galactose-dependent manner. Abrogation of the mucin-galectin interaction in four different mucosal epithelial cell types using competitive carbohydrate inhibitors of galectin binding, β-lactose and modified citrus pectin, resulted in decreased levels of galectin-3 on the cell surface with concomitant loss of barrier function, as indicated by increased permeability to rose bengal diagnostic dye. Similarly, down-regulation of mucin O-glycosylation using a stable tetracycline-inducible RNA interfering system to knockdown c1galt1 (T-synthase), a critical galactosyltransferase required for the synthesis of core 1 O-glycans, resulted in decreased cell surface O-glycosylation, reduced cell surface galectin-3, and increased epithelial permeability. Taken together, these results suggest that galectin-3 plays a key role in maintaining mucosal barrier function through carbohydrate-dependent interactions with cell surface mucins. PMID:19556244
Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines
Fergus, Jeffrey W.
2014-04-12
One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less
Claudins, dietary milk proteins, and intestinal barrier regulation.
Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L
2013-01-01
The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes.
Obodo, J T; Rungger, I; Sanvito, S; Schwingenschlögl, U
2016-05-21
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.
Tu, M C; Lillywhite, H B; Menon, J G; Menon, G K
2002-10-01
A competent barrier to transepidermal water loss (TEWL) is essential for terrestrial life. In various vertebrates, epidermal water barriers composed of lipids prevent excessive TEWL, which varies inversely with habitat aridity. Little is known, however, about the mechanisms and regulation of permeability relative to natal transition from the 'aqueous' environments of gestation to the 'aerial' environments of terrestrial neonates. We investigated newly hatched California king snakes Lampropeltis getula to test the hypothesis that the first ecdysis is important for establishing the barrier to TEWL. We found that skin resistance to TEWL increases twofold following the first postnatal ecdysis, corresponding with a roughly twofold increase in thickness and deposition of lamellar lipids in the mesos layer, the site of the skin permeability barrier in snakes. In addition, novel observations on lipid inclusions within the alpha layer of epidermis suggest that this layer has functional similarities with avian epidermis. It appears that emergence of the integument from embryonic fluids, and its subsequent pan-body replacement following contact with air, are essential for completion of barrier competence in the newborn. These conditions provide a potentially useful model for investigations on the mechanism of barrier formation. We also found that hatchling snakes are transiently endothermic, with skin temperatures elevated by approximately 0.6 degrees C above ambient air temperature during the period of barrier formation. Behaviourally, hatchlings showed a higher tendency to seek humid microenvironments before the first ecdysis than after. The degree of water movement across the integument might explain the switch from reclusive to dispersive behaviours associated with postnatal ecdysis in snakes.
MacEachern, Sarah J.; Patel, Bhavik A.; Keenan, Catherine M.; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C.; Beck, Paul L.; MacNaughton, Wallace K.; Sharkey, Keith A.
2015-01-01
Background & Aims Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10−/− mice. Methods Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10−/− mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. Results Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. Conclusions Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation. PMID:25865048
MacEachern, Sarah J; Patel, Bhavik A; Keenan, Catherine M; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C; Beck, Paul L; MacNaughton, Wallace K; Sharkey, Keith A
2015-08-01
Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in epithelial hyporesponsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulfonic acid- or dextran sodium sulfate-induced colitis and in Il10(-/-) mice. Electrically evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(-/-) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen, and blood of mice. Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared with mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulfonic acid-induced colitis and associated bacterial translocation. Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Cluff, Mark; Kingston, Joseph; Hill, Denzil; Chen, Haiyan; Hoehne, Soeren; Malleske, Daniel T.; Kaur, Rajwinederjit
2012-01-01
Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies. PMID:22160307
Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.
2018-01-01
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171
Alves, Ricardo N; Sundell, Kristina S; Anjos, Liliana; Sundh, Henrik; Harboe, Torstein; Norberg, Birgitta; Power, Deborah M
2018-06-01
To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na + , K + -ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier's functional properties mature earlier and are independent of metamorphosis.
Bailey, D M; Evans, K A; James, P E; McEneny, J; Young, I S; Fall, L; Gutowski, M; Kewley, E; McCord, J M; Møller, Kirsten; Ainslie, P N
2009-01-15
We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O(2)) and following 6 h passive exposure to hypoxia (12% O(2)). Blood flow velocity in the middle cerebral artery (MCAv) and mean arterial blood pressure (MAP) were measured for determination of CA following calculation of transfer function analysis and rate of regulation (RoR). Nine subjects developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during hypoxia in AMS+ (P < 0.05 versus AMS-). Despite a general decline in total nitric oxide (NO) in hypoxia (P < 0.05 versus normoxia), the normoxic baseline plasma and red blood cell (RBC) NO metabolite pool was lower in AMS+ with normalization observed during hypoxia (P < 0.05 versus AMS-). CA was selectively impaired in AMS+ as indicated both by an increase in the low-frequency (0.07-0.20 Hz) transfer function gain and decrease in RoR (P < 0.05 versus AMS-). However, there was no evidence for cerebral hyper-perfusion, BBB disruption or neuronal-parenchymal damage as indicated by a lack of change in MCAv, S100beta and neuron-specific enolase. In conclusion, these findings suggest that AMS is associated with altered redox homeostasis and disordered CA independent of barrier disruption.
Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota
Ma, Ning; Wu, Yi; Xie, Fei; Du, Kexin; Wang, Yuan; Shi, Linxin; Ji, Linbao; Liu, Tianyi; Ma, Xi
2017-01-01
The effects of dimethyl fumarate (DMF) on mycotoxins and animal growth performance are well documented. However, its mechanism of anti-mildew effects is still unknown. The current study investigated how DMF detoxified the mycotoxin and improved the growth performance using BALB/c mice model, especially its effects on intestinal barrier function and gut micro-ecology. Our study also compared with the ultraviolet radiation (UR) treatment, a traditional anti-mildew control (TC). The results indicated that the DMF treatment had a lower contents of mycotoxin, better growth performance and improved mucosal morphology (P < 0.05), accompanied with the decreased intestinal permeability and the tighter gut barrier. Moreover, the efficiency of DMF was better than TC (P < 0.05). 16S rRNA gene sequence analysis revealed that the richness and diversity of bacteria was increased in DMF treatment. The most abundant OTUs belonged to Firmicutes and Bacteroidetes, and their changes in DMF were more moderate than the TC group, suggesting a more stable micro-ecology and the positive impact of DMF on the biodiversity of intestine. Specifically, the increased abundance of bacteria producing short-chain fatty acids (SCFAs), such as Gemella, Roseburia, Bacillus and Bacteroides in DMF group and prebiotics such as Lactobacillus in TC group, suggested a more healthier microbial composition and distribution. These findings supported that DMF had significant effects on animal's growth performance and intestinal barrier function by modulating the pathway of nutrient absorption and increasing the diversity and balance of gut microbes, which also illuminate that DMF is more efficient than traditional anti-mildew method. PMID:28574825
Shen, Chong; Meng, Qin; Zhang, Guoliang
2013-08-01
Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.
Homoclinic orbits and critical points of barrier functions
NASA Astrophysics Data System (ADS)
Cannarsa, Piermarco; Cheng, Wei
2015-06-01
We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on {{T}}n . We also prove a critical point theorem for barrier functions and the existence of such homoclinic orbits on {{T}}2 as an application.
Chen, Tingting; Kim, Choon Young; Kaur, Amandeep; Lamothe, Lisa; Shaikh, Maliha; Keshavarzian, Ali; Hamaker, Bruce R
2017-03-22
Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.
Could tight junctions regulate the barrier function of the aged skin?
Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš
2016-03-01
The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Impact of chemical peeling combined with negative pressure on human skin.
Kim, S J; Kang, I J; Shin, M K; Jeong, K H; Baek, J H; Koh, J S; Lee, S J
2016-10-01
In vivo changes in skin barrier function after chemical peeling with alpha hydroxyacids (AHAs) have been previously reported. However, the additional effects of physical treatment with chemical agents on skin barrier function have not been adequately studied. This study measured the degree of acute skin damage and the time required for skin barrier repair using non-invasive bioengineering methods in vivo with human skin to investigate the additional effect of a 4% AHA chemical jet accelerated at supersonic velocities. Thirteen female subjects (average age: 29.54 ± 4.86 years) participated in this study. The faces of the subjects were divided into half according to the block randomization design and were then assigned to receive AHA peeling alone or AHA peeling combined with pneumatic pressure on each side of the face. Transepidermal water loss (TEWL), skin colour and skin blood flow were evaluated at baseline and at 30 min, 2, 5 and 7 days after treatment. The TEWL and skin blood flow were significantly increased after 30 min in chemodermabrasion compared with chemical peeling alone (P < 0.05). The TEWL and skin blood flow recovered to baseline after 2 days, and TEWL was significantly decreased at 7 days compared with chemical peeling alone (P < 0.05). Chemodermabrasion can temporarily impair skin barriers, but it is estimated that it can enhance the skin barrier function after 7 days compared to the use of a chemical agent alone. In addition, chemodermabrasion has a more effective impact in the dermis and relatively preserves the skin barrier. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Kurundkar, Ashish R; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Hartman, Yolanda E; He, Dongning; Karnatak, Rajendra K; Neel, Mary L; Clancy, John P; Anantharamaiah, G M; Maheshwari, Akhil
2010-08-01
Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.
Kurundkar, Ashish R.; Killingsworth, Cheryl R.; McILwain, R. Britt; Timpa, Joseph G.; Hartman, Yolanda E.; He, Dongning; Karnatak, Rajendra K.; Neel, Mary Lauren; Clancy, John P.; Anantharamaiah, G. M.; Maheshwari, Akhil
2010-01-01
Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-week-old previously-healthy piglets to venoarterial ECMO for up to 8 hours and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 hours of treatment, leading to a 6–10 fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. Based on these data, we conclude that ECMO is an independent cause of gut barrier dysfunction, and that bacterial translocation may be an important contributor to ECMO-related inflammation. PMID:20442689
Vertical transport in graphene-hexagonal boron nitride heterostructure devices
Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe
2015-01-01
Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656
Barriers to human immunodeficiency virus related risk reduction among male street prostitutes.
Simon, P M; Morse, E V; Balson, P M; Osofsky, H J; Gaumer, H R
1993-01-01
Two hundred eleven male street prostitutes between the ages of 18 and 51 years were interviewed and tested for antibodies to the human immunodeficiency virus (HIV). Economic, social, and emotional barriers to the reduction of HIV-related risk behavior were examined within the context of several concepts present in the Health Belief Model (HBM). Three lifestyle factors were found to function as barriers to engaging in risk reduction behavior. Subjects who were more economically dependent on prostitution, perceived less control over the hustling encounter, and reported increased pleasure from sexual activity with their customers were more likely to engage in risk-taking behavior. Prostitutes' perception of the severity of HIV infection was not significantly associated with their risk behavior. Unexpected findings indicated that increases in perceived susceptibility to HIV and perceived benefit of condom use for HIV prevention were significantly related to increased risk-taking behavior. Practical applications of findings in the design and implementation of future HIV-related preventive health education programs are discussed.
Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.
2013-01-01
A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590
NASA Astrophysics Data System (ADS)
Meena, Shweta; Choudhary, Sudhanshu
2017-12-01
Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg) of graphene, Eg ˜ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF). The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage) and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ˜100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I ↓ ) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).
Bradley, Charles W; Morris, Daniel O; Rankin, Shelley C; Cain, Christine L; Misic, Ana M; Houser, Timothy; Mauldin, Elizabeth A; Grice, Elizabeth A
2016-06-01
Host-microbe interactions may play a fundamental role in the pathogenesis of atopic dermatitis, a chronic relapsing inflammatory skin disorder characterized by universal colonization with Staphylococcus species. To examine the relationship between epidermal barrier function and the cutaneous microbiota in atopic dermatitis, this study used a spontaneous model of canine atopic dermatitis. In a cohort of 14 dogs with canine atopic dermatitis, the skin microbiota were longitudinally evaluated with parallel assessment of skin barrier function at disease flare, during antimicrobial therapy, and post-therapy. Sequencing of the bacterial 16S ribosomal RNA gene showed decreased bacterial diversity and increased proportions of Staphylococcus (S. pseudintermedius in particular) and Corynebacterium species compared with a cohort of healthy control dogs (n = 16). Treatment restored bacterial diversity with decreased proportions of Staphylococcus species, concurrent with decreased canine atopic dermatitis severity. Skin barrier function, as measured by corneometry, pH, and transepidermal water loss also normalized with treatment. Bacterial diversity correlated with transepidermal water loss and pH level but not with corneometry results. These findings provide insights into the relationship between the cutaneous microbiome and skin barrier function in atopic dermatitis, show the impact of antimicrobial therapy on the skin microbiome, and highlight the utility of canine atopic dermatitis as a spontaneous nonrodent model of atopic dermatitis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K
2017-10-01
Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cho, Jaehyun; Jeon, Ikseong; Kim, Seong Yun; Lim, Soonho; Jho, Jae Young
2017-08-23
A series of polyketone (PK) nanocomposite films with varying content of noncovalently functionalized graphene nanoplatelet with 1-aminopyrene (GNP/APy) is prepared by solution blending with a solvent of hexafluoro-2-propanol. GNP/APy, prepared by a facile method, can effectively induce specific interaction such as hydrogen bonding between the amine functional group of GNP/APy and the carbonyl functional group of the PK matrix. With comparison of GNP and GNP/Py as reference materials, intensive investigation on filler-matrix interaction is achieved. In addition, the dispersion state of the functionalized GNP (f-GNPs; GNP/Py and GNP/APy) in the PK matrix is analyzed by three-dimensional nondestructive X-ray microcomputed tomography, and the increased dispersion state of those fillers results in significant improvement in the water vapor transmission rate (WVTR). The enhancement in WVTR of the PK/GNP/APy nanocomposite film at 1 wt % loading of filler leads to a barrier performance approximately 2 times larger compared to that of PK/GNP nanocomposite film and an approximately 92% reduction in WVTR compared to the case of pristine PK film. We expect that this facile method of graphene functionalization to enhance graphene dispersibility as well as interfacial interaction with the polymer matrix will be widely utilized to expand the potential of graphene materials to barrier film applications.
Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C
2017-05-01
Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.
Cancer Cells Regulate Biomechanical Properties of Human Microvascular Endothelial Cells*
Mierke, Claudia Tanja
2011-01-01
Metastasis is a key event of malignant tumor progression. The capability to metastasize depends on the ability of the cancer cell to migrate into connective tissue, adhere, and possibly transmigrate through the endothelium. Previously we reported that the endothelium does not generally act as barrier for cancer cells to migrate in three-dimensional extracellular matrices (3D-ECMs). Instead, the endothelium acts as an enhancer or a promoter for the invasiveness of certain cancer cells. How invasive cancer cells diminish the endothelial barrier function still remains elusive. Therefore, this study investigates whether invasive cancer cells can decrease the endothelial barrier function through alterations of endothelial biomechanical properties. To address this, MDA-MB-231 breast cancer cells were used that invade deeper and more numerous into 3D-ECMs when co-cultured with microvascular endothelial cells. Using magnetic tweezer measurements, MDA-MB-231 cells were found to alter the mechanical properties of endothelial cells by reducing endothelial cell stiffness. Using spontaneous bead diffusion, actin cytoskeletal remodeling dynamics were shown to be increased in endothelial cells co-cultured with MDA-MB-231 cells compared with mono-cultured endothelial cells. In addition, knockdown of the α5 integrin subunit in highly transmigrating α5β1high cells derived from breast, bladder, and kidney cancer cells abolished the endothelial invasion-enhancing effect comparable with the inhibition of myosin light chain kinase. These results indicate that the endothelial invasion-enhancing effect is α5β1 integrin-dependent. Moreover, inhibition of Rac-1, Rho kinase, MEK kinase, and PI3K reduced the endothelial invasion-enhancing effect, indicating that signaling via small GTPases may play a role in the endothelial facilitated increased invasiveness of cancer cells. In conclusion, decreased stiffness and increased cytoskeletal remodeling dynamics of endothelial cells may account for the breakdown of endothelial barrier function, suggesting that biomechanical alterations are sufficient to facilitate the transmigration and invasion of invasive cancer cells into 3D-ECMs. PMID:21940631
Muenyi, Clarisse S.; Carrion, Sandra Leon; Jones, Lynn A.; Kennedy, Lawrence H.; Slominski, Andrzej T.
2014-01-01
Background: Development of the epidermal permeability barrier (EPB) is essential for neonatal life. Defects in this barrier are found in many skin diseases such as atopic dermatitis. Objective: We investigated the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development and function of the EPB. Methods: Timed-pregnant C57BL/6J mice were gavaged with corn oil or TCDD (10 μg/kg body weight) on gestation day 12. Embryos were harvested on embryonic day (E) 15, E16, E17, and postnatal day (PND) 1. Results: A skin permeability assay showed that TCDD accelerated the development of the EPB, beginning at E15. This was accompanied by a significant decrease in transepidermal water loss (TEWL), enhanced stratification, and formation of the stratum corneum (SC). The levels of several ceramides were significantly increased at E15 and E16. PND1 histology revealed TCDD-induced acanthosis and epidermal hyperkeratosis. This was accompanied by disrupted epidermal tight junction (TJ) function, with increased dye leakage at the terminal claudin-1–staining TJs of the stratum granulosum. Because the animals did not have enhanced rates of TEWL, a commonly observed phenotype in animals with TJ defects, we performed tape-stripping. Removal of most of the SC resulted in a significant increase in TEWL in TCDD-exposed PND1 pups compared with their control group. Conclusions: These findings demonstrate that in utero exposure to TCDD accelerates the formation of an abnormal EPB with leaky TJs, warranting further study of environmental exposures, epithelial TJ integrity, and atopic disease. Citation: Muenyi CS, Leon Carrion S, Jones LA, Kennedy LH, Slominski AT, Sutter CH, Sutter TR. 2014. Effects of in utero exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin on epidermal permeability barrier development and function. Environ Health Perspect 122:1052–1058; http://dx.doi.org/10.1289/ehp.1308045 PMID:24904982
Czikora, Istvan; Sridhar, Supriya; Gorshkov, Boris; Alieva, Irina B; Kasa, Anita; Gonzales, Joyce; Potapenko, Olena; Umapathy, Nagavedi S; Pillich, Helena; Rick, Ferenc G; Block, Norman L; Verin, Alexander D; Chakraborty, Trinad; Matthay, Michael A; Schally, Andrew V; Lucas, Rudolf
2014-01-01
Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.
Symmetry analysis of a model for the exercise of a barrier option
NASA Astrophysics Data System (ADS)
O'Hara, J. G.; Sophocleous, C.; Leach, P. G. L.
2013-09-01
A barrier option takes into account the possibility of an unacceptable change in the price of the underlying stock. Such a change could carry considerable financial loss. We examine one model based upon the Black-Scholes-Merton Equation and determine the functional forms of the barrier function and rebate function which are consistent with a solution of the underlying evolution partial differential equation using the Lie Theory of Extended Groups. The solution is consistent with the possibility of no rebate and the barrier function is very similar to one adopted on an heuristic basis.
Flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John; Tonge, James Steven; Weidner, William Kenneth
2013-03-26
A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.
Sleep Restriction Impairs Blood–Brain Barrier Function
He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping
2014-01-01
The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222
Sleep restriction impairs blood-brain barrier function.
He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong
2014-10-29
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.
Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins
Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David
2015-01-01
Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257
Amone-P'Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio
2014-12-01
Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The effects of hypertension on the cerebral circulation
Pires, Paulo W.; Dams Ramos, Carla M.; Matin, Nusrat
2013-01-01
Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease. PMID:23585139
A fast method to produce strong NFC films as a platform for barrier and functional materials.
Osterberg, Monika; Vartiainen, Jari; Lucenius, Jessica; Hippi, Ulla; Seppälä, Jukka; Serimaa, Ritva; Laine, Janne
2013-06-12
In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease. At a relative humidity below 65%, oxygen permeability of the pure and unmodified NFC films was below 0.6 cm(3) μm m(-2) d(-1) kPa(-1), and no grease penetrated the film. However, the largest advantage of these films was their resistance to various solvents, such as water, methanol, toluene, and dimethylacetamide. Although they absorbed a substantial amount of solvent, the films could still be handled after 24 h of solvent soaking. Hot-pressing was introduced as a convenient method to not only increase the drying speed of the films but also enhance the robustness of the films. The wet strength of the films increased due to the pressing. Thus, they can be chemically or physically modified through adsorption or direct chemical reaction in both aqueous and organic solvents. Through these modifications, the properties of the film can be enhanced, introducing, for example, functionality, hydrophobicity, or bioactivity. Herein, a simple method using surface coating with wax to improve hydrophobicity and oxygen barrier properties at very high humidity is described. Through this modification, the oxygen permeability decreased further and was below 17 cm(3) μm m(-2) d(-1) kPa(-1) even at 97.4% RH, and the water vapor transmission rate decreased from 600 to 40 g/m(2) day. The wax treatment did not deteriorate the dry strength of the film. Possible reasons for the unique properties are discussed. The developed robust NFC films can be used as a generic, environmentally sustainable platform for functional materials.
Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro
2017-01-01
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.
Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.
Jin, Mingliang; Zhu, Yimin; Shao, Dongyan; Zhao, Ke; Xu, Chunlan; Li, Qi; Yang, Hui; Huang, Qingsheng; Shi, Junling
2017-01-01
The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel approach to maintain gut mucosal integrity using an oral enzyme supplement.
Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Economopoulos, Konstantinos P; Morrison, Sara A; Phupitakphol, Tanit; Tantillo, Tyler J; Gul, Sarah S; Gharedaghi, Mohammad Hadi; Tao, Qingsong; Kaliannan, Kanakaraju; Narisawa, Sonoko; Millán, José L; van der Wilden, Gwendolyn M; Fagenholz, Peter J; Malo, Madhu S; Hodin, Richard A
2014-10-01
To determine the role of intestinal alkaline phosphatase (IAP) in enteral starvation-induced gut barrier dysfunction and to study its therapeutic effect as a supplement to prevent gut-derived sepsis. Critically ill patients are at increased risk for systemic sepsis and, in some cases, multiorgan failure leading to death. Years ago, the gut was identified as a major source for this systemic sepsis syndrome. Previously, we have shown that IAP detoxifies bacterial toxins, prevents endotoxemia, and preserves intestinal microbiotal homeostasis. WT and IAP-KO mice were used to examine gut barrier function and tight junction protein levels during 48-hour starvation and fed states. Human ileal fluid samples were collected from 20 patients postileostomy and IAP levels were compared between fasted and fed states. To study the effect of IAP supplementation on starvation-induced gut barrier dysfunction, WT mice were fasted for 48 hours +/- IAP supplementation in the drinking water. The loss of IAP expression is associated with decreased expression of intestinal junctional proteins and impaired barrier function. For the first time, we demonstrate that IAP expression is also decreased in humans who are deprived of enteral feeding. Finally, our data demonstrate that IAP supplementation reverses the gut barrier dysfunction and tight junction protein losses due to a lack of enteral feeding. IAP is a major regulator of gut mucosal permeability and is able to ameliorate starvation-induced gut barrier dysfunction. Enteral IAP supplementation may represent a novel approach to maintain bowel integrity in critically ill patients.
Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2016-12-13
Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca 2+ -free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or Ca V 1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.
IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia.
Kominsky, Douglas J; Campbell, Eric L; Ehrentraut, Stefan F; Wilson, Kelly E; Kelly, Caleb J; Glover, Louise E; Collins, Colm B; Bayless, Amanda J; Saeedi, Bejan; Dobrinskikh, Evgenia; Bowers, Brittelle E; MacManus, Christopher F; Müller, Werner; Colgan, Sean P; Bruder, Dunja
2014-02-01
Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.
Kinetics of nitric oxide and oxygen gases on porous Y-stabilized ZrO2-based sensors.
Killa, Sajin; Cui, Ling; Murray, Erica P; Mainardi, Daniela S
2013-08-16
Using impedance spectroscopy the electrical response of sensors with various porous Y-stabilized ZrO2 (YSZ) microstructures was measured for gas concentrations containing 0-100 ppm NO with 10.5%O2 at temperatures ranging from 600-700 °C. The impedance response increased substantially as the sensor porosity increased from 46%-50%. Activation energies calculated based on data from the impedance measurements increased in magnitude (97.4-104.9 kJ/mol for 100 ppm NO) with respect to increasing YSZ porosity. Analysis of the oxygen partial pressure dependence of the sensors suggested that dissociative adsorption was the dominant rate limiting. The PWC/DNP theory level was used to investigate the gas-phase energy barrier of the 2NO+O2 → 2NO2 reaction on a 56-atom YSZ/Au model cluster using Density Functional Theory and Linear Synchronous Transit/Quadratic Synchronous Transit calculations. The reaction path shows oxygen surface reactions that begin with NO association with adsorbed O2 on a Zr surface site, followed by O2 dissociative adsorption, atomic oxygen diffusion, and further NO2 formation. The free energy barrier was calculated to be 181.7 kJ/mol at PWC/DNP. A qualitative comparison with the extrapolated data at 62% ± 2% porosity representing the YSZ model cluster indicates that the calculated barriers are in reasonable agreement with experiments, especially when the RPBE functional is used.
Kim, Yeojung; Kessler, Sean P; Obery, Dana R; Homer, Craig R; McDonald, Christine; de la Motte, Carol A
2017-10-01
Maintaining a healthy intestinal barrier, the primary physical barrier between intestinal microbiota and the underlying lamina propria, is critical for optimal health. Epithelial integrity is essential for the prevention of the entrance of luminal contents, such as bacteria and their products, through the large intestinal barrier. In this study, we investigated the protective functions of biosynthetic, specific sized, hyaluronan around 35kDa (HA35) on intestinal epithelium in healthy mice, as well as mice infected Citrobacter rodentium, an established model that mimics infection with a serious human pathogen, enteropathogenic E. coli (EPEC). Our results reveal that treatment with HA35 protects mice from Citrobacter infection and enhances the epithelial barrier function. In particular, we have found that HA35 induces the expression of tight junction protein zonula occludens (ZO)-1 in both healthy and Citrobacter infected mice, as demonstrated by immunoflurorescence and Western blot analyses. Furthermore, we determined that HA35 treatment enhances ZO-1 expression and reduces intestinal permeability at the early stages of dextran sulfate sodium (DSS)-induced colitis in mice. Together, our data demonstrate that the expression and functionality of tight junctions, are increased by HA35 treatment, suggesting a novel mechanism for the protection from Citrobacter infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Donnelly, Ryan F.; Mooney, Karen; McCrudden, Maelíosa T.C.; Vicente-Pérez, Eva M.; Belaid, Luc; González-Vázquez, Patricia; McElnay, James C.; Woolfson, A. David
2014-01-01
We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle arrays (MN) and skin barrier recovery in human volunteers. Such MN, prepared from aqueous blends of hydrolysed poly(methylvinylether/maleicanhydride) (15% w/w) and the crosslinker poly(ethyleneglycol) 10,000 daltons (7.5% w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 hours in skin. Importantly, however, skin barrier function recovered within 24 hours post microneedle removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required, since transepidermal water loss measurements suggested micropore closure, while optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 hours after MN had been removed. There were no complaints of skin reactions, adverse events or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 hours and no adverse events were present on follow-up. PMID:24633895
Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S
2015-01-01
We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus. Copyright © 2014 Elsevier Inc. All rights reserved.
Albumin-associated free fatty acids induce macropinocytosis in podocytes
Chung, Jun-Jae; Huber, Tobias B.; Gödel, Markus; Jarad, George; Hartleben, Björn; Kwoh, Christopher; Keil, Alexander; Karpitskiy, Aleksey; Hu, Jiancheng; Huh, Christine J.; Cella, Marina; Gross, Richard W.; Miner, Jeffrey H.; Shaw, Andrey S.
2015-01-01
Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder. Here, we used fluid-phase tracers in murine models and determined that podocytes actively internalize fluid from the plasma and that the rate of internalization is increased when the filtration barrier is disrupted. In cultured podocytes, the presence of free fatty acids (FFAs) associated with serum albumin stimulated macropinocytosis through a pathway that involves FFA receptors, the Gβ/Gγ complex, and RAC1. Moreover, mice with elevated levels of plasma FFAs as the result of a high-fat diet were more susceptible to Adriamycin-induced proteinuria than were animals on standard chow. Together, these results support a model in which podocytes sense the disruption of the filtration barrier via FFAs bound to albumin and respond by enhancing fluid-phase uptake. The response to FFAs may function in the development of nephrotic syndrome by amplifying the effects of proteinuria. PMID:25915582
NASA Astrophysics Data System (ADS)
Gorai, Anup; Mistry, Apu; Panda, Siddhartha; Biswas, Dipankar
2018-02-01
Although that the continuous tunability of InGaN/GaN QW LEDs, carries the promise of a significant impact in optoelectronics, the reduction of the square of the overlap of electron and hole wave functions (Meh2) in InGaN/GaN QW LEDs, under certain conditions, is a sizable problem, difficult to overcome. Theoretical investigations have been carried out on the incorporation of Indium (In) in the GaN barrier layers, with an aim of increasing the overlap of electron and hole wave functions. Rigorous studies through the self consistent solution of Schrödinger and Poison equations expose some new and striking results. With suitable doping, the inclusion of In in the barriers can increase Meh2 to more than two times that of a conventional InGaN/GaN QW LED. In in the barrier along with doping may be suitably utilized to tailor the transition energy and Meh2 with current density, as desired. The transition energy and the Meh2 may be made to have a positive or a negative slope with current density or they may be made fairly constant. This paper will outline the theoretical details, computational methodologies, the parameters used, and the striking new results with suitable depictions and discussions. These new information ought to be interesting for current optoelectronics.
Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F
2015-01-01
Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704
Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F
2015-03-01
Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.
Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction.
Kozan, Philip A; McGeough, Matthew D; Peña, Carla A; Mueller, James L; Barrett, Kim E; Marchelletta, Ronald R; Sivagnanam, Mamata
2015-05-01
Congenital tufting enteropathy (CTE) is a devastating diarrheal disease seen in infancy that is typically associated with villous changes and the appearance of epithelial tufts. We previously found mutations in epithelial cell adhesion molecule (EpCAM) to be causative in CTE. We developed a knock-down cell model of CTE through transfection of an EpCAM shRNA construct into T84 colonic epithelial cells to elucidate the in vitro role of EpCAM in barrier function and ion transport. Cells with EpCAM deficiency exhibited decreased electrical resistance, increased permeability, and decreased ion transport. Based on mutations in CTE patients, an in vivo mouse model was developed, with tamoxifen-inducible deletion of exon 4 in Epcam resulting in mutant protein with decreased expression. Tamoxifen treatment of Epcam (Δ4/Δ4) mice resulted in pathological features of villous atrophy and epithelial tufts, similar to those in human CTE patients, within 4 days post induction. Epcam (Δ4/Δ4) mice also showed decreased expression of tight junctional proteins, increased permeability, and decreased ion transport in the intestines. Taken together, these findings reveal mechanisms that may underlie disease in CTE. Knock-down EpCAM cell model of congenital tufting enteropathy was developed. In vivo inducible mouse model was developed resulting in mutant EpCAM protein. Cells with EpCAM deficiency demonstrated barrier and ion transport dysfunction. Tamoxifen-treated Epcam (Δ4/Δ4) mice demonstrated pathological features. Epcam (Δ4/Δ4) mice showed improper barrier function and ion transport.
Causality, apparent ``superluminality,'' and reshaping in barrier penetration
NASA Astrophysics Data System (ADS)
Sokolovski, D.
2010-04-01
We consider tunneling of a nonrelativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backward relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac δ function, the transmission amplitude is superoscillatory for finite momenta and tunneling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the increase in its velocity. It is argued that analyzing apparent “superluminality” in terms of spacial displacements helps avoid contradiction associated with time parameters such as the phase time.
Gentle cleansing and moisturizing for patients with atopic dermatitis and sensitive skin.
Cheong, Wai Kwong
2009-01-01
Atopic dermatitis is a common condition characterized by pruritus, inflammation, and dryness of the skin. Inflammation disrupts the barrier function of the stratum corneum, predisposing the skin to be dry, and increases susceptibility to irritants and secondary bacterial infection. Sensitive skin is common, reported by 40-50% of women and 30% of men in the US, Europe, and Japan. Basic requirements in managing eczema and sensitive skin include effective cleansers that do not compromise skin barrier integrity, alleviation of skin dryness, and restoration of skin barrier function through the use of therapeutic moisturizers. The selection of a skin cleanser is therefore an important part of managing these conditions. Studies have reported clinical improvement with the use of soap-free cleansers in combination with topical treatments. While topical corticosteroids and immunosuppressive agents are mainstays of treatment for atopic dermatitis, therapeutic moisturizers are important adjuncts. Moisturizers improve skin hydration, reduce susceptibility to irritation, restore the integrity of the stratum corneum, and enhance the efficacy of topical corticosteroids.
Eisele, Nico B.; Labokha, Aksana A.; Frey, Steffen; Görlich, Dirk; Richter, Ralf P.
2013-01-01
Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport. PMID:24138862
Sundh, Henrik; Kvamme, Bjørn Olav; Fridell, Frode; Olsen, Rolf Erik; Ellis, Tim; Taranger, Geir Lasse; Sundell, Kristina
2010-11-09
Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon.
2010-01-01
Background Fish farmed under high intensity aquaculture conditions are subjected to unnatural environments that may cause stress. Therefore awareness of how to maintain good health and welfare of farmed fish is important. For Atlantic salmon held in sea cages, water flow, dissolved oxygen (DO) levels and temperature will fluctuate over time and the fish can at times be exposed to detrimentally low DO levels and high temperatures. This experimental study investigates primary and secondary stress responses of Atlantic salmon post smolts to long-term exposure to reduced and fluctuating DO levels and high water temperatures, mimicking situations in the sea cages. Plasma cortisol levels and cortisol release to the water were assessed as indicators of the primary stress response and intestinal barrier integrity and physiological functions as indicators of secondary responses to changes in environmental conditions. Results Plasma cortisol levels were elevated in fish exposed to low (50% and 60% saturation) DO levels and low temperature (9°C), at days 9, 29 and 48. The intestinal barrier function, measured as electrical resistance (TER) and permeability of mannitol at the end of the experiment, were reduced at 50% DO, in both proximal and distal intestine. When low DO levels were combined with high temperature (16°C), plasma cortisol levels were elevated in the cyclic 1:5 h at 85%:50% DO group and fixed 50% DO group compared to the control (85% DO) group at day 10 but not at later time points. The intestinal barrier function was clearly disturbed in the 50% DO group; TER was reduced in both intestinal regions concomitant with increased paracellular permeability in the distal region. Conclusions This study reveals that adverse environmental conditions (low water flow, low DO levels at low and high temperature), that can occur in sea cages, elicits primary and secondary stress responses in Atlantic salmon post smolts. The intestinal barrier function was significantly affected by prolonged hypoxic stress even when no primary stress response was observed. This suggests that intestinal barrier function is a good experimental marker for evaluation of chronic stress and that it can be a valuable tool to study the impact of various husbandry conditions on health and welfare of farmed Atlantic salmon. PMID:21062437
Wardill, Hannah R; Mander, Kimberley A; Van Sebille, Ysabella Z A; Gibson, Rachel J; Logan, Richard M; Bowen, Joanne M; Sonis, Stephen T
2016-12-15
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity. © 2016 UICC.
EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.
Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei
2015-10-01
Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results indicate that EPA pretreatment is more effective than DHA pretreatment in attenuating heat-induced intestinal dysfunction and preventing TJ damage. Enhanced expression of TJ proteins that support the epithelial barrier integrity may be important for maintaining a functional intestinal barrier during heatstroke.
Hill, Jennifer N; Balbale, Salva; Lones, Keshonna; LaVela, Sherri L
2017-01-01
Assessments of function in persons with spinal cord injury (SCI) often utilize pre-defined constructs and measures without consideration of patient context, including how patients define function and what matters to them. We utilized photovoice to understand how individuals define function, facilitators and barriers to function, and adaptations to support functioning. Veterans with SCI were provided with cameras and guidelines to take photographs of things that: (1) help with functioning, (2) are barriers to function, and (3) represent adaptations used to support functioning. Interviews to discuss photographs followed and were audio-recorded, transcribed, and analyzed using grounded-thematic coding. Nvivo 8 was used to store and organize data. Participants (n = 9) were male (89%), Caucasian (67%), had paraplegia (75%), averaged 64 years of age, and were injured, on average, for 22 years. Function was described in several ways: the concept of 'normalcy,' aspects of daily living, and ability to be independent. Facilitators included: helpful tools, physical therapy/therapists, transportation, and caregivers. Barriers included: wheelchair-related issues and interior/exterior barriers both in the community and in the hospital. Examples of adaptations included: traditional examples like ramps, and also creative examples like the use of rubber bands on a can to help with grip. Patient-perspectives elicited in-depth information that expanded the common definition of function by highlighting the concept of "normality," facilitators and barriers to function, and adaptations to optimize function. These insights emphasize function within a patient-context, emphasizing a holistic definition of function that can be used to develop personalized, patient-driven care plans. Published by Elsevier Inc.
Schukfeh, Muhammed Ihab; Storm, Kristian; Mahmoud, Ahmed; Søndergaard, Roar R; Szwajca, Anna; Hansen, Allan; Hinze, Peter; Weimann, Thomas; Svensson, Sofia Fahlvik; Bora, Achyut; Dick, Kimberly A; Thelander, Claes; Krebs, Frederik C; Lugli, Paolo; Samuelson, Lars; Tornow, Marc
2013-05-28
We have investigated the electronic transport through 3 μm long, 45 nm diameter InAs nanowires comprising a 5 nm long InP segment as electronic barrier. After assembly of 12 nm long oligo(phenylene vinylene) derivative molecules onto these InAs/InP nanowires, we observed a pronounced, nonlinear I-V characteristic with significantly increased currents of up to 1 μA at 1 V bias, for a back-gate voltage of 3 V. As supported by our model calculations based on a nonequilibrium Green Function approach, we attribute this effect to charge transport through those surface-bound molecules, which electrically bridge both InAs regions across the embedded InP barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.
2007-08-15
Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposuresmore » to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.« less
Björklund, Sebastian; Pham, Quoc Dat; Jensen, Louise Bastholm; Knudsen, Nina Østergaard; Nielsen, Lars Dencker; Ekelund, Katarina; Ruzgas, Tautgirdas; Engblom, Johan; Sparr, Emma
2016-10-01
In the development of transdermal and topical products it is important to understand how formulation ingredients interact with the molecular components of the upper layer of the skin, the stratum corneum (SC), and thereby influence its macroscopic barrier properties. The aim here was to investigate the effect of two commonly used excipients, transcutol and dexpanthenol, on the molecular as well as the macroscopic properties of the skin membrane. Polarization transfer solid-state NMR methods were combined with steady-state flux and impedance spectroscopy measurements to investigate how these common excipients influence the molecular components of SC and its barrier function at strictly controlled hydration conditions in vitro with excised porcine skin. The NMR results provide completely new molecular insight into how transcutol and dexpanthenol affect specific molecular segments of both SC lipids and proteins. The presence of transcutol or dexpanthenol in the formulation at fixed water activity results in increased effective skin permeability of the model drug metronidazole. Finally, impedance spectroscopy data show clear changes of the effective skin capacitance after treatment with transcutol or dexpanthenol. Based on the complementary data, we are able to draw direct links between effects on the molecular properties and on the macroscopic barrier function of the skin barrier under treatment with formulations containing transcutol or dexpanthenol. Copyright © 2016 Elsevier Inc. All rights reserved.
Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim
2009-01-21
The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.
Quispe Calla, N E; Vicetti Miguel, R D; Boyaka, P N; Hall-Stoodley, L; Kaur, B; Trout, W; Pavelko, S D; Cherpes, T L
2016-11-01
Depot-medroxyprogesterone acetate (DMPA) is a hormonal contraceptive especially popular in areas with high prevalence of HIV and other sexually transmitted infections (STI). Although observational studies identify DMPA as an important STI risk factor, mechanisms underlying this connection are undefined. Levonorgestrel (LNG) is another progestin used for hormonal contraception, but its effect on STI susceptibility is much less explored. Using a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, we herein found that DMPA and LNG similarly reduced genital expression of the desmosomal cadherin desmoglein-1α (DSG1α), enhanced access of inflammatory cells to genital tissue by increasing mucosal epithelial permeability, and increased susceptibility to viral infection. Additional studies with uninfected mice revealed that DMPA-mediated increases in mucosal permeability promoted tissue inflammation by facilitating endogenous vaginal microbiota invasion. Conversely, concomitant treatment of mice with DMPA and intravaginal estrogen restored mucosal barrier function and prevented HSV-2 infection. Evaluating ectocervical biopsy tissue from women before and 1 month after initiating DMPA remarkably revealed that inflammation and barrier protection were altered by treatment identically to changes seen in progestin-treated mice. Together, our work reveals DMPA and LNG diminish the genital mucosal barrier; a first-line defense against all STI, but may offer foundation for new contraceptive strategies less compromising of barrier protection.
Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders.
Fiorentino, Maria; Sapone, Anna; Senger, Stefania; Camhi, Stephanie S; Kadzielski, Sarah M; Buie, Timothy M; Kelly, Deanna L; Cascella, Nicola; Fasano, Alessio
2016-01-01
Autism spectrum disorders (ASD) are complex conditions whose pathogenesis may be attributed to gene-environment interactions. There are no definitive mechanisms explaining how environmental triggers can lead to ASD although the involvement of inflammation and immunity has been suggested. Inappropriate antigen trafficking through an impaired intestinal barrier, followed by passage of these antigens or immune-activated complexes through a permissive blood-brain barrier (BBB), can be part of the chain of events leading to these disorders. Our goal was to investigate whether an altered BBB and gut permeability is part of the pathophysiology of ASD. Postmortem cerebral cortex and cerebellum tissues from ASD, schizophrenia (SCZ), and healthy subjects (HC) and duodenal biopsies from ASD and HC were analyzed for gene and protein expression profiles. Tight junctions and other key molecules associated with the neurovascular unit integrity and function and neuroinflammation were investigated. Claudin ( CLDN )-5 and -12 were increased in the ASD cortex and cerebellum. CLDN-3 , tricellulin , and MMP-9 were higher in the ASD cortex. IL-8 , tPA , and IBA-1 were downregulated in SCZ cortex; IL-1b was increased in the SCZ cerebellum. Differences between SCZ and ASD were observed for most of the genes analyzed in both brain areas. CLDN-5 protein was increased in ASD cortex and cerebellum, while CLDN-12 appeared reduced in both ASD and SCZ cortexes. In the intestine, 75% of the ASD samples analyzed had reduced expression of barrier-forming TJ components ( CLDN-1 , OCLN , TRIC ), whereas 66% had increased pore-forming CLDNs ( CLDN-2 , -10 , -15 ) compared to controls. In the ASD brain, there is an altered expression of genes associated with BBB integrity coupled with increased neuroinflammation and possibly impaired gut barrier integrity. While these findings seem to be specific for ASD, the possibility of more distinct SCZ subgroups should be explored with additional studies.
Shakeoff Ionization near the Coulomb Barrier Energy.
Sharma, Prashant; Nandi, T
2017-11-17
We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (∼10^{-21} sec) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.
Shakeoff Ionization near the Coulomb Barrier Energy
NASA Astrophysics Data System (ADS)
Sharma, Prashant; Nandi, T.
2017-11-01
We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.
Seitz, Christian G; Zhang, Huaiyu; Mo, Yirong; Karty, Joel M
2016-05-06
Contributions by resonance and inductive effects toward the net activation barrier were determined computationally for the gas-phase SN2 reaction between the acetaldehyde enolate anion and methyl fluoride, for both O-methylation and C-methylation, in order to understand why this reaction favors O-methylation. With the use of the vinylogue extrapolation methodology, resonance effects were determined to contribute toward increasing the size of the barrier by about 9.5 kcal/mol for O-methylation and by about 21.2 kcal/mol for C-methylation. Inductive effects were determined to contribute toward increasing the size of the barrier by about 1.7 kcal/mol for O-methylation and 4.2 kcal/mol for C-methylation. Employing our block-localized wave function methodology, we determined the contributions by resonance to be 12.8 kcal/mol for O-methylation and 22.3 kcal/mol for C-methylation. Thus, whereas inductive effects have significant contributions, resonance is the dominant factor that leads to O-methylation being favored. More specifically, resonance serves to increase the size the barrier for C-methylation significantly more than it does for O-methylation.
Dalton, Jane E; Cruickshank, Sheena M; Egan, Charlotte E; Mears, Rainy; Newton, Darren J; Andrew, Elizabeth M; Lawrence, Beth; Howell, Gareth; Else, Kathryn J; Gubbels, Marc-Jan; Striepen, Boris; Smith, Judith E; White, Stanley J; Carding, Simon R
2006-09-01
Intestinal epithelial integrity and permeability is dependent on intercellular tight junction (TJ) complexes. How TJ integrity is regulated remains unclear, although phosphorylation and dephosphorylation of the integral membrane protein occludin is an important determinant of TJ formation and epithelial permeability. We have investigated the role intestinal intraepithelial lymphocytes (iIELs) play in regulating epithelial permeability in response to infection. Recombinant strains of Toxoplasma gondii were used to assess intestinal epithelial barrier function and TJ integrity in mice with intact or depleted populations of iIELs. Alterations in epithelial permeability were correlated with TJ structure and the state of phosphorylation of occludin. iIEL in vivo reconstitution experiments were used to identify the iIELs required to maintain epithelial permeability and TJ integrity. In the absence of gammadelta+ iIELs, intestinal epithelial barrier function and the ability to restrict epithelial transmigration of Toxoplasma and the unrelated intracellular bacterial pathogen Salmonella typhimurium was severely compromised. Leaky epithelium in gammadelta+ iIEL-deficient mice was associated with the absence of phosphorylation of serine residues of occludin and lack of claudin 3 and zona occludens-1 proteins in TJ complexes. These deficiencies were attributable to the absence of a single subset of gammadelta T-cell receptor (TCR-Vgamma7+) iIELs that, after reconstituting gammadelta iIEL-deficient mice, restored epithelial barrier function and TJ complexes, resulting in increased resistance to infection. These findings identify a novel role for gammadelta+ iIELs in maintaining TJ integrity and epithelial barrier function that have implications for understanding the pathogenesis of intestinal inflammatory diseases associated with disruption of TJ complexes.
Barriers to activity and participation for stroke survivors in rural China.
Zhang, Lifang; Yan, Tiebin; You, Liming; Li, Kun
2015-07-01
To investigate environmental barriers reported by stroke survivors in the rural areas of China and to determine the impact of environmental barriers on activity and participation relative to demographic characteristics and body functioning. Cross-sectional survey. Structured interviews in the participants' homes. Community-dwelling stroke survivors in the rural areas of China (N=639). Not applicable. Activity and participation (Chinese version of the World Health Organization Disability Assessment Schedule 2.0), environmental barriers (Craig Hospital Inventory of Environmental Factors), neurological function (Canadian Neurological Scale), cognitive function (Abbreviated Mental Test), and depression (6-item Hamilton Rating Scale for Depression). Physical/structural barriers are the major impediment to activity and participation for these participants (odds ratio, 1.86 and 1.99 for activity and participation, respectively; P<.01). Services/assistance barriers primarily impede participation rather than activity (odds ratio, 1.58 in participation; P<.05). Physical/structural and services/assistance barriers were considered the dominant barriers to activity and participation for stroke survivors in the rural areas of China. Attitudinal/support and policy barriers did not emerge as serious concerns. To generate an enabling environment, physical/structural and services/assistance barriers are the environmental barriers to be decreased and eliminated first. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Participation in recreational physical activity: why do socioeconomic groups differ?
Burton, Nicola W; Turrell, Gavin; Oldenburg, Brian
2003-04-01
This qualitative study explored how influences on recreational physical activity (RPA) were patterned by socioeconomic position. Face-to-face interviews were conducted with 10 males and 10 females in three socioeconomic groups (N = 60). Influences salient across all groups included previous opportunities, physical health. social assistance. safety. environmental aesthetics and urban design, physical and health benefits, and barriers of self-consciousness, low skill, and weather/time of year. Influences more salient to the high socioeconomic group included social benefits, achieving a balanced lifestyle, and the barrier of an unpredictable lifestyle. Influences more salient to the high and mid socioeconomic groups included efficacy, perceived need, activity demands, affiliation, emotional benefits, and the barrier of competing demands. Influences more salient to the low socioeconomic group included poor health and barriers of inconvenient access and low personal functioning. Data suggest that efforts to increase RPA in the population should include both general and socioeconomically targeted strategies.
Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin
2018-03-06
Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.
Barrier inhomogeneities at vertically stacked graphene-based heterostructures.
Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito
2014-01-21
The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.
Li, Cheng; Credgington, Dan; Ko, Doo-Hyun; Rong, Zhuxia; Wang, Jianpu; Greenham, Neil C
2014-06-28
The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.
Wan Saudi, Wan Salman
2017-01-01
Alcohol disrupts the intestinal mucosal barrier by inducing metabolic and functional changes in epithelial cells. Recently, we showed that neuropeptide S (NPS) decreases duodenal motility and increases mucosal paracellular permeability, suggesting a role of NPS in the pathogenesis of disorders and dysfunctions in the small intestine. The aim of the present study was to investigate the effects of NPS on ethanol- and HCl-induced changes of duodenal mucosal barrier function and motility. Rats were anaesthetized with thiobarbiturate, and a 30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ. The effects on duodenal bicarbonate secretion, the blood-to-lumen clearance of 51Cr-EDTA, motility and transepithelial net fluid flux were investigated. Intravenous (i.v.) administration of NPS significantly reduced duodenal mucosal bicarbonate secretion and stimulated mucosal transepithelial fluid absorption, mechanisms dependent on nitrergic signaling. NPS dose-dependently reduced ethanol-induced increases in duodenal motility. NPS (83 pmol·kg-1·min-1, i.v.) reduced the bicarbonate and fluid secretory response to luminal ethanol, whereas a 10-fold higher dose stimulated fluid secretion but did not influence bicarbonate secretion. In NPS-treated animals, duodenal perfusion of acid (pH 3) induced greater bicarbonate secretory rates than in controls. Pre-treating animals with Nω-nitro-L-arginine methyl ester (L-NAME) inhibited the effect of NPS on bicarbonate secretion. In response to luminal acid, NPS-treated animals had significantly higher paracellular permeability compared to controls, an effect that was abolished by L-NAME. Our findings demonstrate that NPS reduces basal and ethanol-induced increases in duodenal motility. In addition, NPS increases luminal alkalinization and mucosal permeability in response to luminal acid via mechanisms that are dependent on nitric oxide signaling. The data support a role for NPS in neurohumoral regulation of duodenal mucosal barrier function and motility. PMID:28384243
Functions of an engineered barrier system for a nuclear waste repository in basalt
NASA Astrophysics Data System (ADS)
Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.
1980-01-01
The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.
Piche, T
2014-03-01
In this issue of Neurogastroenterology and Motility, Dr Ewa Wilcz-Villega and colleagues report low expression of E-cadherin, a tight junction protein involved in the regulation of paracellular permeability, in the colonic mucosa of patients with the irritable bowel syndrome (IBS) with predominance of diarrhea (IBS-D) or alternating symptoms (IBS-A). These findings constitute an improvement in our knowledge of epithelial barrier disruption associated with IBS. There is mounting evidence to indicate that a compromised epithelial barrier is associated with low-grade immune activation and intestinal dysfunction in at least a proportion of IBS patients. During the last 10 years of research, much interest has focused on the increase in the number of different types of immune cells in the gut mucosa of IBS patients including: mast cells, T lymphocytes, and other local cells such as enteroendocrine cells. The inflammatory mediators released by these cells or other luminal factors could be at the origin of altered epithelial barrier functions and enteric nervous system signaling, which lead to gut hypersensitivity. A current conceptual framework states that clinical symptoms of IBS could be associated with structural and functional abnormalities of the mucosal barrier, highlighting the crucial importance of elucidating the contributory role of epithelial barrier defects in the pathogenesis of IBS. More importantly, disruption of the epithelial barrier could also participate in the generation of persistent abdominal pain and discomfort mimicking IBS in patients with inflammatory bowel diseases considered in remission. This mini review gives a brief summary of clinical and experimental evidence concerning the mechanisms underlying epithelial barrier defects in IBS. © 2014 John Wiley & Sons Ltd.
Preservation of the gut by preoperative carbohydrate loading improves postoperative food intake.
Luttikhold, Joanna; Oosting, Annemarie; van den Braak, Claudia C M; van Norren, Klaske; Rijna, Herman; van Leeuwen, Paul A M; Bouritius, Hetty
2013-08-01
A carbohydrate (CHO) drink given preoperatively changes the fasted state into a fed state. The ESPEN guidelines for perioperative care include preoperative CHO loading and re-establishment of oral feeding as early as possible after surgery. An intestinal ischaemia reperfusion (IR) animal model was used to investigate whether preoperative CHO loading increases spontaneous postoperative food intake, intestinal barrier function and the catabolic response. Male Wistar rats (n = 65) were subjected to 16 h fasting with ad libitum water and: A) sham laparotomy (Sham fasted, n = 24); B) intestinal ischaemia (IR fasted, n = 27); and C) intestinal ischaemia with preoperatively access to a CHO drink (IR CHO, n = 14). Spontaneous food intake, intestinal barrier function, insulin sensitivity, intestinal motility and plasma amino acids were measured after surgery. The IR CHO animals started eating significantly earlier and also ate significantly more than the IR fasted animals. Furthermore, preoperative CHO loading improved the intestinal barrier function, functional enterocyte metabolic mass measured by citrulline and reduced muscle protein catabolism, as indicated by normalization of the biomarker 3-methylhistidine. Preoperative CHO loading improves food intake, preserves the GI function and reduces the catabolic response in an IR animal model. These findings suggest that preoperative CHO loading preserves the intestinal function in order to accelerate recovery and food intake. If this effect is caused by overcoming the fasted state or CHO loading remains unclear. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.
Jain, Swati; Sharma, Bhupesh
2015-12-01
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhong, Yan; Huang, Juan; Tang, Wenjing; Chen, Bing; Cai, Wei
2012-10-01
The aim of the study was to investigate the effect of living probiotics, probiotic DNA and the synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODN) on both immune response and intestinal barrier function in ovalbumin-sensitized rat and the underlying mechanisms. Brown-Norway rats were orally sensitized with ovalbumin, and living probiotics, probiotic DNA extraction, synthetic CpG-ODN or non-CpG ODN control was administered. In the living probiotics, probiotic DNA and CpG-ODN groups, the allergic response was significantly inhibited, the Th1/Th2 cytokine balance was shifted away from Th2 side, the percentage of CD4(+) CD25(+high) Treg cells was increased, and the intestinal barrier function was improved. The levels of toll-like receptor (TLR) 9 mRNA and nuclear factor (NF)-κB activity, as well as the IκB-α phosphorylation (p-IκB-α) was significantly increased in these three intervention groups compared with the OVA-positive group, whereas no such effects were found in the non-CpG ODN control group. These data show that the probiotic genomic DNA and the synthetic CpG-ODN was comparable with living probiotics in preventing food allergic response by immune modulation and intestinal barrier function enhancement, and the activation of TLR9/NF-κB signal pathway might be involved in this process. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.
2007-01-01
To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827
Stratum corneum integrity as a predictor for peristomal skin problems in ostomates.
Nybaek, H; Lophagen, S; Karlsmark, T; Bang Knudsen, D; Jemec, G B E
2010-02-01
Peristomal skin problems are common, most often the result is disruption of the skin barrier and this may account for more than one in three visits to ostomy nurses. Therefore a specific assessment of individual risk factors relating to the skin barrier function would be of great interest. Skin barrier integrity in ostomy patients with peristomal skin problems (PSP) was compared with that of ostomy patients with normal skin (controls) using transepidermal water loss (TEWL). Mechanical barrier disruption was determined by a tape stripping test and chemical barrier disruption [sodium lauryl sulphate (SLS) 0.25%]. Patients and controls had a highly significant increase in TEWL value in the peristomal area compared with nonperistomal contralateral abdominal skin (P < 0.0001 for both groups). The skin barrier of normal-looking contralateral skin of ostomates was found to be borderline impaired in patients with PSP compared with those without. A linear association was seen between the number of tape strips removed and TEWL for both cases and controls. Tape stripping suggested that patients with PSP had less resilient skin (P = 0.002). A significant difference in TEWL value between cases and controls was also seen for the SLS patch test on the dorsal skin (P = 0.02). Successive tape stripping, a situation analogous to the normal use of a pouching system, caused a higher degree of barrier damage more rapidly in patients with PSP, indicating an impaired mechanical quality of the barrier. The SLS exposure test suggested a generally increased susceptibility to irritant dermatitis as assessed by TEWL. Our findings suggest tape stripping and SLS testing may have a role as predictive tests to identify patients at risk of PSP.
Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G
2007-01-26
Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions.
Brown, Rachel C.; Morris, Andrew P.; O’Neil, Roger G.
2007-01-01
Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions. PMID:17169347
NASA Astrophysics Data System (ADS)
Gülnahar, Murat
2014-12-01
In this study, the current-voltage (I-V) and capacitance-voltage (C-V) measurements of an Au/4H-SiC Schottky diode are characterized as a function of the temperature in 50-300 K temperature range. The experimental parameters such as ideality factor and apparent barrier height presents to be strongly temperature dependent, that is, the ideality factor increases and the apparent barrier height decreases with decreasing temperature, whereas the barrier height values increase with the temperature for C-V data. Likewise, the Richardson plot deviates at low temperatures. These anomaly behaviors observed for Au/4H-SiC are attributed to Schottky barrier inhomogeneities. The barrier anomaly which relates to interface of Au/4H-SiC is also confirmed by the C-V measurements versus the frequency measured in 300 K and it is interpreted by both Tung's lateral inhomogeneity model and multi-Gaussian distribution approach. The values of the weighting coefficients, standard deviations and mean barrier height are calculated for each distribution region of Au/4H-SiC using the multi-Gaussian distribution approach. In addition, the total effective area of the patches NAe is obtained at separate temperatures and as a result, it is expressed that the low barrier regions influence meaningfully to the current transport at the junction. The homogeneous barrier height value is calculated from the correlation between the ideality factor and barrier height and it is noted that the values of standard deviation from ideality factor versus q/3kT curve are in close agreement with the values obtained from the barrier height versus q/2kT variation. As a result, it can be concluded that the temperature dependent electrical characteristics of Au/4H-SiC can be successfully commented on the basis of the thermionic emission theory with both models.
NASA Astrophysics Data System (ADS)
Gordon, Geoffrey; Lo, Chun-Min
2007-03-01
Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.
C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions.
Mohanan, Vishnu; Nakata, Toru; Desch, A Nicole; Lévesque, Chloé; Boroughs, Angela; Guzman, Gaelen; Cao, Zhifang; Creasey, Elizabeth; Yao, Junmei; Boucher, Gabrielle; Charron, Guy; Bhan, Atul K; Schenone, Monica; Carr, Steven A; Reinecker, Hans-Christian; Daly, Mark J; Rioux, John D; Lassen, Kara G; Xavier, Ramnik J
2018-03-09
Polymorphisms in C1orf106 are associated with increased risk of inflammatory bowel disease (IBD). However, the function of C1orf106 and the consequences of disease-associated polymorphisms are unknown. Here we demonstrate that C1orf106 regulates adherens junction stability by regulating the degradation of cytohesin-1, a guanine nucleotide exchange factor that controls activation of ARF6. By limiting cytohesin-1-dependent ARF6 activation, C1orf106 stabilizes adherens junctions. Consistent with this model, C1orf106 -/- mice exhibit defects in the intestinal epithelial cell barrier, a phenotype observed in IBD patients that confers increased susceptibility to intestinal pathogens. Furthermore, the IBD risk variant increases C1orf106 ubiquitination and turnover with consequent functional impairments. These findings delineate a mechanism by which a genetic polymorphism fine-tunes intestinal epithelial barrier integrity and elucidate a fundamental mechanism of cellular junctional control. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G
2010-04-01
The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.
Carias, Ann M; Allen, Shannon A; Fought, Angela J; Kotnik Halavaty, Katarina; Anderson, Meegan R; Jimenez, Maria L; McRaven, Michael D; Gioia, Casey J; Henning, Tara R; Kersh, Ellen N; Smith, James M; Pereira, Lara E; Butler, Katherine; McNicholl, S Janet M; Hendry, R Michael; Kiser, Patrick F; Veazey, Ronald S; Hope, Thomas J
2016-09-01
Currently, there are mounting data suggesting that HIV-1 acquisition in women can be affected by the use of certain hormonal contraceptives. However, in non-human primate models, endogenous or exogenous progestin-dominant states are shown to increase acquisition. To gain mechanistic insights into this increased acquisition, we studied how mucosal barrier function and CD4+ T-cell and CD68+ macrophage density and localization changed in the presence of natural progestins or after injection with high-dose DMPA. The presence of natural or injected progestins increased virus penetration of the columnar epithelium and the infiltration of susceptible cells into a thinned squamous epithelium of the vaginal vault, increasing the likelihood of potential virus interactions with target cells. These data suggest that increasing either endogenous or exogenous progestin can alter female reproductive tract barrier properties and provide plausible mechanisms for increased HIV-1 acquisition risk in the presence of increased progestin levels.
Brufau, M Teresa; Campo-Sabariz, Joan; Carné, Sergi; Ferrer, Ruth; Martín-Venegas, Raquel
2017-03-01
Mannan-oligosaccharides (MOSs) are mannose-rich substrates with several intestinal health-promoting properties. The aim of this study was to investigate the potential capacity of Salmosan (S-βGM), a β-galactomannan-rich MOS product, to restore epithelial barrier function independently from its capacity to reduce bacterial invasion. In addition, the combination of S-βGM with the proven probiotic Lactobacillus plantarum (LP) was also tested. Paracellular permeability was assessed by transepithelial electrical resistance (TER) in co-cultures of Caco-2 cells and macrophages (differentiated from THP-1 cells) stimulated with LPS of Salmonella Enteritidis and in Caco-2 cell cultures stimulated with TNF-α in the absence or presence of 500 μg/ml S-βGM, LP (MOI 10) or a combination of both. In both culture models, TER was significantly reduced up to 25% by LPS or TNF-α stimulation, and the addition of S-βGM or LP alone did not modify TER, whereas the combination of both restored TER to values of nonstimulated cells. Under LPS stimulation, TNF-α production was significantly increased by 10-fold, whereas IL-10 and IL-6 levels were not modified. The combination of S-βGM and LP reduced TNF-α production to nonstimulated cell values and significantly increased IL-10 and IL-6 levels (5- and 7.5-fold, respectively). Moreover, S-βGM has the capacity to induce an increase of fivefold in LP growth. In conclusion, we have demonstrated that S-βGM in combination with LP protects epithelial barrier function by modulation of cytokine secretion, thus giving an additional value to this MOS as a potential symbiotic. Copyright © 2016 Elsevier Inc. All rights reserved.
Looi, Kevin; Troy, Niamh M; Garratt, Luke W; Iosifidis, Thomas; Bosco, Anthony; Buckley, Alysia G; Ling, Kak-Ming; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Shaw, Nicole C; Sutanto, Erika N; Zosky, Graeme R; Rigby, Paul J; Larcombe, Alexander N; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M
2016-10-11
No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID 50 ) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT 2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. HRV-1B infection affected viability that was both time and TCID 50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID 50 , while a significant decrease in all three TJ protein expressions occurred at higher TCID 50 . Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.
Optimizing Barrier Removal to Restore Connectivity in Utah's Weber Basin
NASA Astrophysics Data System (ADS)
Kraft, M.; Null, S. E.
2016-12-01
Instream barriers, such as dams, culverts and diversions are economically important for water supply, but negatively affect river ecosystems and disrupt hydrologic processes. Removal of uneconomical and aging in-stream barriers to improve habitat connectivity is increasingly used to restore river connectivity. Most past barrier removal projects focused on individual barriers using a score-and-rank technique, ignoring cumulative change from multiple, spatially-connected barrier removals. Similarly, most water supply models optimize either human water use or aquatic connectivity, failing to holistically represent human and environmental benefits. In this study, a dual objective optimization model identified in-stream barriers that impede aquatic habitat connectivity for trout, using streamflow, temperature, and channel gradient as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions to incorporate water supply benefits and a budget monetizes costs of removing small barriers like culverts and road crossings. The optimization model developed is applied to a case study in Utah's Weber basin to prioritize removal of the most environmentally harmful barriers, while maintaining human water uses. The dual objective solution basis was developed to quantify and graphically visualize tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Modeled results include a spectrum of barrier removal alternatives based on budget and quality-weighted reconnected habitat that can be communicated with local stakeholders. This research will help prioritize barrier removals and future restoration decisions. The modeling approach expands current barrier removal optimization methods by explicitly including economic and environmental water uses.
The Drosophila blood-brain barrier: development and function of a glial endothelium.
Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian
2014-01-01
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Wet Work and Barrier Function.
Fartasch, Manigé
2016-01-01
Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours. © 2016 S. Karger AG, Basel.
Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha
2017-04-01
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.
Ishikawa, Akio; Neurock, Matthew; Iglesia, Enrique
2007-10-31
The identity and reversibility of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined by combining isotopic and kinetic analyses with density functional theory estimates of reaction energies and activation barriers to probe the lowest energy paths. Reaction rates are limited by C-H bond activation in DME molecules adsorbed on surfaces of Pt clusters containing chemisorbed oxygen atoms at near-saturation coverages. Reaction energies and activation barriers for C-H bond activation in DME to form methoxymethyl and hydroxyl surface intermediates show that this step is more favorable than the activation of C-O bonds to form two methoxides, consistent with measured rates and kinetic isotope effects. This kinetic preference is driven by the greater stability of the CH3OCH2* and OH* intermediates relative to chemisorbed methoxides. Experimental activation barriers on Pt clusters agree with density functional theory (DFT)-derived barriers on oxygen-covered Pt(111). Measured DME turnover rates increased with increasing DME pressure, but decreased as the O2 pressure increased, because vacancies (*) on Pt surfaces nearly saturated with chemisorbed oxygen are required for DME chemisorption. DFT calculations show that although these surface vacancies are required, higher oxygen coverages lead to lower C-H activation barriers, because the basicity of oxygen adatoms increases with coverage and they become more effective in hydrogen abstraction from DME. Water inhibits reaction rates via quasi-equilibrated adsorption on vacancy sites, consistent with DFT results indicating that water binds more strongly than DME on vacancies. These conclusions are consistent with the measured kinetic response of combustion rates to DME, O2, and H2O, with H/D kinetic isotope effects, and with the absence of isotopic scrambling in reactants containing isotopic mixtures of 18O2-16O2 or 12CH3O12CH3-13CH3O13CH3. Turnover rates increased with Pt cluster size, because small clusters, with more coordinatively unsaturated surface atoms, bind oxygen atoms more strongly than larger clusters and exhibit lower steady-state vacancy concentrations and a consequently smaller number of adsorbed DME intermediates involved in kinetically relevant steps. These effects of cluster size and metal-oxygen bond energies on reactivity are ubiquitous in oxidation reactions requiring vacancies on surfaces nearly saturated with intermediates derived from O2.
Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier.
Lazear, Helen M; Daniels, Brian P; Pinto, Amelia K; Huang, Albert C; Vick, Sarah C; Doyle, Sean E; Gale, Michael; Klein, Robyn S; Diamond, Michael S
2015-04-22
Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis. Copyright © 2015, American Association for the Advancement of Science.
Onaizi, Sagheer A
2018-03-01
The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yablonsky, A. N., E-mail: yablonsk@ipmras.ru; Zhukavin, R. Kh.; Bekin, N. A.
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si{sub 0.8}5Ge{sub 0.15}more » layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.« less
Schmid, Markus
2013-01-01
Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434
Wu, Po-Yuan; Lyu, Jia-Ling; Liu, Yi-Jung; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching; Chiang, Hsiu-Mei
2017-10-10
Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.
Wu, Po-Yuan; Lyu, Jia-Ling; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching
2017-01-01
Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin’s antiphotodamage and antiphotoinflammation activities. PMID:28994699
Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal
2015-01-01
Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573
Apoplastic Diffusion Barriers in Arabidopsis
Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka
2013-01-01
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172
DiBona, G F
2001-06-01
Increases in renal sympathetic nerve activity (RSNA) regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. As increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between RSNA and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, that is, the direct (via specific innervation) and indirect (via angiotensin II) contributions of increased RSNA to the regulation of renal function. The effects of increased RSNA on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with angiotensin-converting enzyme inhibitors or angiotensin II-type AT1 receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated following renal denervation. These interactions can also be extrarenal, that is, in the central nervous system, wherein RSNA and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, the permeable blood-brain barrier of which permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II type AT1 receptor antagonists, into the ventricular system or microinjected into the rostral ventrolateral medulla, are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (e.g., congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and RSNA are involved in influencing the neural control of renal function.
DiBona, G F
2000-12-01
Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.
The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.
Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek
2014-08-08
A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Pan, Qunwen; Zhao, Yuhui; Chen, Ji; Zhao, Bin; Chen, Yanfang
2013-01-01
This study explores the effect of citicoline on the permeability and expression of tight junction proteins (TJPs) in endothelial cells under hypoxia/aglycemia conditions. Hypoxia or oxygen and glucose deprivation (OGD) was utilized to induce endothelial barrier breakdown model on human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (bEnd.3s). The effect of citicoline on endothelial barrier breakdown models was determined at either low or high concentrations. FITC-Dextran flux was used to examine the endothelial permeability. The expression of TJPs was measured by immunofluorescence, Real-time PCR and Western Blot methods. Results showed that hypoxia or OGD increased the permeability of HUVECs accompanied with down-regulation of occludens-1 (ZO-1) and occludin at both mRNA and protein levels. Similarly in bEnd.3s, hypoxia increased the permeability and decreased the expression of ZO-1 and claudin-5. Citicoline treatment dose-dependently decreased the permeability in these two models, which paralleled with elevated expression of TJPs. The data demonstrate that citicoline restores the barrier function of endothelial cells compromised by hypoxia/aglycemia probably via up-regulating the expression of TJPs. PMID:24358213
Free energy barriers to evaporation of water in hydrophobic confinement.
Sharma, Sumit; Debenedetti, Pablo G
2012-11-08
We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.
Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels
Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A
2017-01-01
BACKGROUND Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. STUDY DESIGN The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). RESULTS Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP over-expression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. CONCLUSIONS Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. PMID:27106638
Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels.
Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A
2016-06-01
Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP overexpression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Emmons, D. J.; Weeks, D. E.; Eshel, B.; Perram, G. P.
2018-01-01
Simulations of an α-mode radio frequency dielectric barrier discharge are performed for varying mixtures of argon and helium at pressures ranging from 200 to 500 Torr using both zero and one-dimensional models. Metastable densities are analyzed as a function of argon-helium mixture and pressure to determine the optimal conditions, maximizing metastable density for use in an optically pumped rare gas laser. Argon fractions corresponding to the peak metastable densities are found to be pressure dependent, shifting from approximately 15% Ar in He at 200 Torr to 10% at 500 Torr. A decrease in metastable density is observed as pressure is increased due to a diminution in the reduced electric field and a quadratic increase in metastable loss rates through A r2* formation. A zero-dimensional effective direct current model of the dielectric barrier discharge is implemented, showing agreement with the trends predicted by the one-dimensional fluid model in the bulk plasma.
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe
2007-01-01
The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.
Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun
2018-01-01
The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL -/- mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL -/- mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL -/- mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.
Montoya, Jessica L; Wing, David; Knight, Adam; Moore, David J; Henry, Brook L
2015-01-01
A randomized controlled trial is being conducted in the United States to test the efficacy of a personalized interactive mobile health intervention (iSTEP) designed to increase physical activity (PA) and improve neurocognitive functioning among HIV-positive persons. This article describes an initial qualitative study performed to develop iSTEP for the HIV-positive population, including assessment of PA barriers and facilitators. Two focus groups, with 9 and 12 unique HIV-positive individuals, respectively, were administered to evaluate barriers limiting PA and potential iSTEP content created to encourage greater PA. Group discussions revealed prominent PA barriers, including HIV symptoms (neuropathy, lipoatrophy), antiretroviral medication effects, and fatigue; significant PA facilitators included self-monitoring and family support. Participants provided feedback on strategies to increase PA and expressed positive support for a mobile intervention adapted to personal priorities. These findings will assist the development of novel PA interventions focused on treating the epidemic of HIV-associated neurocognitive disorders. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosche, Bert, E-mail: bert.bosche@uk-essen.de; Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne; Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com
Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, whichmore » results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca{sup 2+}]{sub i} increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca{sup 2+}]{sub i} overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca{sup 2+}-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to protect the endothelium against imminent barrier failure.« less
Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro
2009-02-01
The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.
The impact of microglial activation on blood-brain barrier in brain diseases
da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza
2014-01-01
The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894
Linking microbiota and respiratory disease.
Hauptmann, Matthias; Schaible, Ulrich E
2016-11-01
An increasing body of evidence indicates the relevance of microbiota for pulmonary health and disease. Independent investigations recently demonstrated that the lung harbors a resident microbiota. Therefore, it is intriguing that a lung microbiota can shape pulmonary immunity and epithelial barrier functions. Here, we discuss the ways how the composition of the microbial community in the lung may influence pulmonary health and vice versa, factors that determine community composition. Prominent microbiota at other body sites such as the intestinal one may also contribute to pulmonary health and disease. However, it is difficult to discriminate between influences of lung vs. gut microbiota due to systemic mutuality between both communities. With focuses on asthma and respiratory infections, we discuss how microbiota of lung and gut can determine pulmonary immunity and barrier functions. © 2016 Federation of European Biochemical Societies.
Brunse, Anders; Abbaspour, Afrouz; Sangild, Per Torp
2018-06-06
Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (n = 43-44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (n = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal micro-glial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and- 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants. © 2018 S. Karger AG, Basel.
Iwamatsu, Masao
2016-09-20
The free-energy barrier of filling a spherical cavity having an inner wall of various wettabilities is studied. The morphology and free energy of a lens-shaped droplet are determined from the minimum of the free energy. The effect of line tension on the free energy is also studied. Then, the equilibrium contact angle of the droplet is determined from the generalized Young's equation. By increasing the droplet volume within the spherical cavity, the droplet morphology changes from spherical with an equilibrium contact angle of 180° to a lens with a convex meniscus, where the morphological complete drying transition occurs. By further increasing the droplet volume, the meniscus changes from convex to concave. Then, the lens-shaped droplet with concave meniscus spreads over the whole inner wall, resulting in an equilibrium contact angle of 0° to leave a spherical bubble, where the morphological complete wetting transition occurs. Finally, the whole cavity is filled with liquid. The free energy shows a barrier from complete drying to complete wetting as a function of droplet volume, which corresponds to the energy barrier between the Cassie and Wenzel states of the superhydrophobic surface with spherical cavities. The free-energy maximum occurs when the meniscus of the droplet becomes flat, and it is given by an analytic formula. The effect of line tension is expressed by the scaled line tension, and this effect is largest at the free-energy maximum. The positive line tension increases the free-energy maximum, which thus increases the stability of the Cassie superhydrophobic state, whereas the negative line tension destabilizes the superhydrophobic state.
External electric field effects on Schottky barrier at Gd3N@C80/Au interface
NASA Astrophysics Data System (ADS)
Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong
2017-08-01
The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.
Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.
MacMillan, Heath A; Yerushalmi, Gil Y; Jonusaite, Sima; Kelly, Scott P; Donini, Andrew
2017-08-18
Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.
Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya
2015-01-01
Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.
Song, Hui; Wei, Man; Zhang, Nan; Li, He; Tan, Xiaochuan; Zhang, Yujia; Zheng, Wensheng
2018-01-01
The incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood-brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy. Borneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica , can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study. The borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood-brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung. The present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood-brain barrier.
Benefits, barriers and opinions on multidisciplinary team meetings: a survey in Swedish cancer care.
Rosell, Linn; Alexandersson, Nathalie; Hagberg, Oskar; Nilbert, Mef
2018-04-05
Case review and discussion at multidisciplinary team meetings (MDTMs) have evolved into standard practice in cancer care with the aim to provide evidence-based treatment recommendations. As a basis for work to optimize the MDTMs, we investigated participants' views on the meeting function, including perceived benefits and barriers. In a cross-sectional study design, 244 health professionals from south Sweden rated MDTM meeting structure and function, benefits from these meetings and barriers to reach a treatment recommendation. The top-ranked advantages from MDTMs were support for patient management and competence development. Low ratings applied to monitoring patients for clinical trial inclusion and structured work to improve the MDTM. Nurses and cancer care coordinators did less often than physicians report involvement in the case discussions. Major benefits from MDTM were reported to be more accurate treatment recommendations, multidisciplinary evaluation and adherence to clinical guidelines. Major barriers to a joint treatment recommendation were reported to be need for supplementary investigations and insufficient pathology reports. Health professionals' report multiple benefits from MDTMs, but also define areas for improvement, e.g. access to complete information and clarified roles for the different health professions. The emerging picture suggests that structures for regular MDTM evaluations and increased focus on patient-related perspectives should be developed and implemented.
The effect of urothelial damage on ureteric motility. An ultrastructural and functional study.
Ugaily-Thulesius, L; Thulesius, O; Sabha, M
1988-07-01
Evidence of a leaky urothelial barrier in bilharzial uropathy is presented. The ultrastructural basis of this concept is demonstrated together with its functional consequences. The study was conducted on 4 ureters obtained at surgery from patients with non-functioning kidneys due to chronic bilharzial infections. Six normal ureters from kidney donors served as controls. Light and electron microscopic studies showed a reduced thickness of the transitional epithelium together with localised disruption of intercellular junctions and infiltration of red blood cells. The functional studies involved in vitro demonstration of stable phasic peristaltic contractions which were fundamentally altered by the addition of urine. The changes in motility included increase in contractile frequency and elevation of basal tone, inducing a state of hypermotility which could be equated with ureteric spasm. These changes were partly reversible upon administration of the histamine l-blocker, mepyramine. Evidence is presented to show that these changes might be induced in vivo by histamine released from mast cells triggered by urine leaking through a damaged urothelial barrier. The functional consequences (pain, spasm) are discussed.
The Infant Skin Barrier: Can We Preserve, Protect, and Enhance the Barrier?
Telofski, Lorena S.; Morello, A. Peter; Mack Correa, M. Catherine; Stamatas, Georgios N.
2012-01-01
Infant skin is different from adult in structure, function, and composition. Despite these differences, the skin barrier is competent at birth in healthy, full-term neonates. The primary focus of this paper is on the developing skin barrier in healthy, full-term neonates and infants. Additionally, a brief discussion of the properties of the skin barrier in premature neonates and infants with abnormal skin conditions (i.e., atopic dermatitis and eczema) is included. As infant skin continues to mature through the first years of life, it is important that skin care products (e.g., cleansers and emollients) are formulated appropriately. Ideally, products that are used on infants should not interfere with skin surface pH or perturb the skin barrier. For cleansers, this can be achieved by choosing the right type of surfactant, by blending surfactants, or by blending hydrophobically-modified polymers (HMPs) with surfactants to increase product mildness. Similarly, choosing the right type of oil for emollients is important. Unlike some vegetable oils, mineral oil is more stable and is not subject to oxidation and hydrolysis. Although emollients can improve the skin barrier, more studies are needed to determine the potential long-term benefits of using emollients on healthy, full-term neonates and infants. PMID:22988452
First-principles study for the enhanced sulfur tolerance of Ni(1 1 1) surface alloyed with Pb
NASA Astrophysics Data System (ADS)
Zhang, Yanxing; Yang, Zongxian
2018-04-01
The adsorption of H2S, HS, S, H and the dissociation of H2S on the Ni2Pb/Ni (1 1 1) are systematically studied using the first-principles method based on density functional theory. It is found that H2S dissociation barriers are greatly increased by alloying with Pb atoms in the Ni(1 1 1) surface, while the barrier for H2S formation is greatly reduced. In addition, the adsorption of sulfur atom is weakened a lot. The results indicate that alloying with Pb may be a good way to increase the sulfur tolerance of Ni based anode catalysts of solid oxide fuel cells.
Khavinson, V Kh; Timofeeva, N M; Malinin, V V; Gordova, L A; Nikitina, A A
2002-12-01
Per os administration of Vilon (Lys-Glu) or Epithalon (Ala-Glu-Asp-Gly) to aged Wistar rats for 1 month significantly increased activity of membrane enzymes maltase and alkaline phosphatase in epithelial layer of the small intestine. In addition, Vilon significantly increased activity of cytosolic glycyl-L-leucine dipeptidase in the stromal and seromuscular layers of the small intestine in comparison with the control rats not treated with this agent. These findings suggest improvement of trophic and barrier functions of the small intestine and corroborate the hypothesis on the existence of not only epithelial, but also subepithelial enzymatic barrier supporting the enzyme system in the small intestine, especially in aged animals.
Towards self-correcting quantum memories
NASA Astrophysics Data System (ADS)
Michnicki, Kamil
This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real implementations of quantum memories. Numerical evidence also suggests that the cellular automaton could function as a decoder with a soft threshold.
Fink, Cornelia; Weigel, Roswitha; Hembes, Tanja; Lauke-Wettwer, Heidrun; Kliesch, Sabine; Bergmann, Martin; Brehm, Ralph H
2006-01-01
Abstract Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function. PMID:17217619
NASA Astrophysics Data System (ADS)
Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Privitera, V.; Romano, L.; Ruiz, C.; Zadro, M.
2015-12-01
For low energy reaction studies involving radioactive ion beams, the experimental reaction yields are generally small due to the low intensity of the beams. For this reason, the stacked target technique has been often used to measure excitation functions. This technique offers considerable advantages since the reaction cross-section at several energies can be simultaneously measured. In a further effort to increase yields, thick targets are also employed. The main disadvantage of the method is the degradation of the beam quality as it passes through the stack due to the statistical nature of energy loss processes and any nonuniformity of the stacked targets. This degradation can lead to ambiguities of associating effective beam energies to reaction product yields for the targets within the stack and, as a consequence, to an error in the determination of the excitation function for the reaction under study. A thorough investigation of these ambiguities is reported, and a best practice procedure of analyzing data obtained using the stacked target technique with radioactive ion beams is recommended. Using this procedure a re-evaluation is reported of some previously published sub-barrier fusion data in order to demonstrate the possibility of misinterpretations of derived excitation functions. In addition, this best practice procedure has been used to evaluate, from a new data set, the sub-barrier fusion excitation function for the reaction 6Li+120Sn .
Lawton, Graham R.; Ranaivo, Hantamalala Ralay; Chico, Laura K.; Ji, Haitao; Xue, Fengtian; Martásek, Pavel; Roman, Linda J.; Watterson, D. Martin; Silverman, Richard B.
2009-01-01
Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been linked to several neurodegenerative diseases. We have recently designed potent and isoform selective inhibitors of nNOS, but the lead compound contains several basic functional groups. A large number of charges and hydrogen bond donors can impede the ability of molecules to cross the blood brain barrier and thereby limit the effectiveness of potential neurological therapeutics. Replacement of secondary amines in our lead compound with neutral ether and amide groups was made to increase bioavailability and to determine if the potency and selectivity of the inhibitor would be impacted. An ether analogue has been identified that retains a similar potency and selectivity to that of the lead compound, and shows increased ability to penetrate the blood brain barrier. PMID:19268602
Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D
1999-09-01
We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.
Usui, Yuki; Kimura, Yasumasa; Satoh, Takeshi; Takemura, Naoki; Ouchi, Yasuo; Ohmiya, Hiroko; Kobayashi, Kyosuke; Suzuki, Hiromi; Koyama, Satomi; Hagiwara, Satoko; Tanaka, Hirotoshi; Imoto, Seiya; Eberl, Gérard; Asami, Yukio; Fujimoto, Kosuke; Uematsu, Satoshi
2018-05-15
The gut is an extremely complicated ecosystem where microorganisms, nutrients and host cells interact vigorously. Although the function of the intestine and its barrier system weakens with age, some probiotics can potentially prevent age-related intestinal dysfunction. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, which are the constituents of LB81 yogurt, are representative probiotics. However, it is unclear whether their long-term intake has a beneficial influence on systemic function. Here, we examined the gut microbiome, fecal metabolites and gene expression profiles of various organs in mice. Although age-related alterations were apparent in them, long-term LB81 yogurt intake led to an increased Bacteroidetes to Firmicutes ratio and elevated abundance of the bacterial family S24-7 (Bacteroidetes), which is known to be associated with butyrate and propanoate production. According to our fecal metabolite analysis to detect enrichment, long-term LB81 yogurt intake altered the intestinal metabolic pathways associated with propanoate and butanoate in the mice. Gene ontology analysis also revealed that long-term LB81 yogurt intake influenced many physiological functions related to the defense response. The profiles of various genes associated with antimicrobial peptides-, tight junctions-, adherens junctions- and mucus-associated intestinal barrier functions were also drastically altered in the LB81 yogurt-fed mice. Thus, long-term intake of LB81 yogurt has the potential to maintain systemic homeostasis, such as the gut barrier function, by controlling the intestinal microbiome and its metabolites.
The influence of body mass index on skin susceptibility to sodium lauryl sulphate.
Löffler, H; Aramaki, J U N; Effendy, Isaak
2002-02-01
The influence of nutrition on the physiological functions of man is well studied. Numerous diseases can be exacerbated by obesity. However, it has not yet been determined whether body weight and body mass index (BMI), as an indicator of a high body fat store, can influence skin sensitivity. This study investigates the correlation between body mass index and the epidermal functions, evaluated by bioengineering methods, before and after an irritant patch test with sodium lauryl sulphate (SLS). Epidermal functions were evaluated using an evaporimeter, chromameter and laser-Doppler-flowmeter. Patch testing was conducted for 48 h with two different concentrations of SLS (0.25% and 0.5%) on the forearms of healthy volunteers. Measurements were performed 24h after patch removal. Obese individuals showed significantly increased transepidermal water loss (TEWL), skin blood flow and skin colour (red) as compared to a control group. However, the degree of skin sensitivity to SLS was not correlated with BMI. Basal biophysical parameters of the skin are primarily correlated with the BMI. This may be caused by obesity-induced physiological changes, e.g. increased sweat gland activity, high blood pressure and physiological temperature-regulating system. The epidermal barrier function, as evaluated after SLS patch testing is, however, not correlated with a high BMI, indicating a normal skin barrier.
Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier
Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.
2016-01-01
Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403
Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?
Guzman, Javier Rivera; Conlin, Victoria Susan; Jobin, Christian
2013-01-01
The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function. PMID:23586037
Foote, A P; Penner, G B; Walpole, M E; Klotz, J L; Brown, K R; Bush, L P; Harmon, D L
2014-07-01
Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in volatile fatty acids (VFA) absorption from the washed rumen of steers. Previous data also indicates that incubating an extract of endophyte-infected tall fescue seed causes an increase in the amount of VFA absorbed per unit of blood flow, which could result from an alteration in the absorptive or barrier function of the rumen epithelium. An experiment was conducted to determine the acute effects of an endophyte-infected tall fescue seed extract (EXT) on total, passive or facilitated acetate and butyrate flux across the isolated bovine rumen as well as the barrier function measured by inulin flux and tissue conductance (G t ). Flux of ergovaline across the rumen epithelium was also evaluated. Rumen tissue from the caudal dorsal sac of Holstein steers (n=6), fed a common diet, was collected and isolated shortly after slaughter and mounted between two halves of Ussing chambers. In vitro treatments included vehicle control (80% methanol, 0.5% of total volume), Low EXT (50 ng ergovaline/ml) and High EXT (250 ng ergovaline/ml). Results indicate that there is no effect of acute exposure to ergot alkaloids on total, passive or facilitated flux of acetate or butyrate across the isolate bovine rumen epithelium (P>0.51). Inulin flux (P=0.16) and G t (P>0.17) were not affected by EXT treatment, indicating no alteration in barrier function due to acute ergot alkaloid exposure. Ergovaline was detected in the serosal buffer of the High EXT treatment indicating that the flux rate is ~0.25 to 0.44 ng/cm2 per hour. Data indicate that specific pathways for VFA absorption and barrier function of the rumen epithelium are not affected by acute exposure to ergot alkaloids from tall fescue at the concentrations tested. Ergovaline has the potential to be absorbed from the rumen of cattle that could contribute to reduced blood flow and motility and lead to reduced growth rates of cattle.
Nicholson, Sarah L; Donaghy, Marie; Johnston, Marie; Sniehotta, Falko F; van Wijck, Frederike; Johnston, Derek; Greig, Carolyn; McMurdo, Marion E T; Mead, Gillian
2014-01-01
After stroke, physical activity and physical fitness levels are low, impacting on health, activity and participation. It is unclear how best to support stroke survivors to increase physical activity. Little is known about the barriers and facilitators to physical activity after stroke. Thus, our aim was to explore stroke survivors' perceived barriers and facilitators to physical activity. Semi-structured interviews with 13 ambulatory stroke survivors exploring perceived barriers and facilitators to physical activity post stroke were conducted in participants' homes, audio-recorded and transcribed verbatim. The Theoretical Domains Framework (TDF) informed content analysis of the interview transcripts. Data saturation was reached after interviews with 13 participants (median age of 76 years (inter-quartile range (IQR) = 69-83 years). The median time since stroke was 345 d (IQR = 316-366 d). The most commonly reported TDF domains were "beliefs about capabilities", "environmental context and resources" and "social influence". The most commonly reported perceived motivators were: social interaction, beliefs of benefits of exercise, high self-efficacy and the necessity of routine behaviours. The most commonly reported perceived barriers were: lack of professional support on discharge from hospital and follow-up, transport issues to structured classes/interventions, lack of control and negative affect. Stroke survivors perceive several different barriers and facilitators to physical activity. Stroke services need to address barriers to physical activity and to build on facilitators to promote physical activity after stroke. Physical activity post stroke can improve physical fitness and function, yet physical activity remains low among stroke survivors. Understanding stroke survivors' perceived barriers and facilitators to physical activity is essential to develop targeted interventions to increase physical activity. Beliefs about capabilities, environmental context and resources and social influences were the mostly commonly report influences on stroke survivors' perceived barriers and facilitators to physical activity.
Goins, Karin Valentine; Schneider, Kristin L; Brownson, Ross; Carnoske, Cheryl; Evenson, Kelly R; Eyler, Amy; Heinrich, Katie; Litt, Jill; Lyn, Rodney; Maddock, Jay; Reed, Hannah; Tompkins, Nancy Oʼhara; Lemon, Stephenie C
2013-01-01
Built environment-focused interventions and policies are recommended as sustainable approaches for promoting physical activity. Physical activity has not traditionally been considered in land use and transportation decision making. Effective collaboration with non-public health partners requires knowledge of their perceived barriers to such consideration. This analysis sought to (a) establish prevalence estimates of selected barriers to the consideration of physical activity in community design and layout decisions and (b) describe how barrier reporting by public health officials differs from other municipal officials among a wide range of job functions and departments in a geographically diverse sample. A Web-based survey was conducted among municipal officials in 94 cities and towns with populations of at least 50 000 residents in 8 states. A total of 453 municipal officials from public health, planning, transportation/public works, community and economic development, parks and recreation, city management, and municipal legislatures in 83 cities and towns responded to the survey. Five barriers to consideration of physical activity in community design and layout were assessed. The most common barriers included lack of political will (23.5%), limited staff (20.4%), and lack of collaboration across municipal departments (16.2%). Fewer participants reported opposition from the business community or residents as barriers. Public health department personnel were more likely to report the barriers of limited staff and lack of collaboration across municipal departments than other professionals. They were also more likely to report lack of political will than city managers or mayors and municipal legislators. Barriers to increasing consideration of physical activity in decision making about community design and layout are encouragingly low. Implications for public health practice include the need to strategically increase political will despite public health staffing constraints and perceived lack of collaboration with relevant departments such as planning and public works/transportation.
Advanced technique for long term culture of epithelia in a continuous luminal-basal medium gradient.
Schumacher, Karl; Strehl, Raimund; de, Vries Uwe; Minuth, Will W
2002-02-01
The majority of epithelia in our organism perform barrier functions on being exposed to different fluids at the luminal and basal sides. To simulate this natural situation under in vitro conditions for biomaterial testing and tissue engineering the epithelia have to withstand mechanical and fluid stress over a prolonged period of time. Leakage, edge damage and pressure differences in the culture system have to be avoided so that the epithelial barrier function is maintained. Besides, the environmental influences on important cell biological features such as, sealing or transport functions, have to remain upregulated and a loss of characteristics by dedifferentiation is prevented. Our aim is to expose embryonic renal collecting duct (CD) epithelia as model tissue for 14 days to fluid gradients and to monitor the development of tissue-specific features. For these experiments, cultured embryonic epithelia are placed in tissue carriers and in gradient containers, where different media are superfused at the luminal and basal sides. Epithelia growing on the tissue carriers act as a physiological barrier during the whole culture period. To avoid mechanical damage of the tissue and to suppress fluid pressure differences between the luminal and basal compartments improved transport of the medium and an elimination of unilaterally accumulated gas bubbles in the gradient container compartments by newly developed gas expander modules is introduced. By the application of these tools the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material could be increased significantly as compared to earlier experiments. Epithelia treated with a luminal NaCl load ranging from 3 to 24 mmol l were analyzed by immunohistochemical methods to determine the degree of differentiation. The tissue showed an upregulation of individual CD cell features as compared to embryonic epithelia in the neonatal kidney.
Muizzuddin, Neelam; Ingrassia, Michael; Marenus, Kenneth D; Maes, Daniel H; Mammone, Thomas
2013-01-01
Human skin maintains an optimal permeability barrier function in a terrestrial environment that varies considerably in humidity. Cells cultured under hyperosmotic stress accumulate osmolytes including sorbitol. Epidermal keratinocytes experience similar high osmolality under dry environmental conditions because of increased transepidermal water loss (TEWL) and concomitant drying of the skin. This study was designed to determine if epidermal keratinocytes, in vitro, could be protected from high osmotic stress, with the exogenous addition of sorbitol. In addition, we evaluated the effect of a formulation containing topical sorbitol on skin barrier and moisturization of subjects living in arid and humid regions in summer as well as in winter. Results from in vitro experiments showed that 50 mM sorbitol protected epidermal keratinocytes from osmotic toxicity induced by sodium chloride. Clinical studies indicated that skin chronically exposed to hot, dry environment appeared to exhibit stronger skin barrier and a lower baseline TEWL. In addition, skin barrier was stronger in summer than in winter. Sorbitol exhibited significant improvement in both barrier repair and moisturization, especially in individuals subjected to arid environmental conditions.
Injectable barriers for waste isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persoff, P.; Finsterle, S.; Moridis, G.J.
In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less
Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems
NASA Astrophysics Data System (ADS)
Atta, Debasis; Basu, D. N.
2014-12-01
Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.
Sundling, Catherine; Berglund, Birgitta; Nilsson, Mats E; Emardson, Ragne; Pendrill, Leslie R
2014-12-01
Elderly persons' perceived accessibility to railway traveling depends on their functional limitations/diseases, their functional abilities and their travel behaviors in interaction with the barriers encountered during whole trips. A survey was conducted on a random sample of 1000 city residents (65-85 years old; 57% response rate). The travels were perceived least accessible by respondents with severely reduced functional ability and by those with more than one functional limitation/disease (e.g., restricted mobility and chronic pain). Those who traveled "often", perceived the accessibility to be better than those who traveled less frequently. For travelers with high functional ability, the main barriers to more frequent traveling were travel costs and low punctuality. For those with low functional ability, one's own health was reported to be the main barrier. Our results clarify the links among existing functional limitations/functional abilities, the barriers encountered, the travel behavior, and the overall accessibility to traveling. By operationalizing the whole-trip concept as a chain of events, we deliver practical knowledge on vulnerable groups for decision-making to improve the transport environment for all.
Fiorentino, Maria; Levine, Myron M.
2014-01-01
Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response. PMID:24416363
Origin of hydrogen-inclusion-induced critical current deviation in Nb/AlOx/Al/Nb Josephson junctions
NASA Astrophysics Data System (ADS)
Hinode, Kenji; Satoh, Tetsuro; Nagasawa, Shuichi; Hidaka, Mutsuo
2010-04-01
We investigated the mechanisms that change the critical current density (Jc) of Nb/AlOx/Al/Nb Josephson junctions due to the inclusion of hydrogen in the Nb electrodes. Our investigations were performed according to three aspects: the superconductivity change, the change in thickness of the barrier layer, and the change in the barrier height due to the electronic effect. The results are as follows: (a) the hydrogen-inclusion-accompanied changes in the superconductivity parameters, such as the junction gap voltage, were much less than those of the critical current density, (b) the effect of hydrogen inclusion on Jc varied depending on the electrodes, i.e., the upper electrode above the barrier layer was the most affected, (c) the junctions with increased Ics due to hydrogen exclusion showed the identical amount of decrease in the junction resistance measured at room temperature, and (d) the hydrogen exclusion from the junction electrodes had no influence on the Nb/Al/AlOx/Al/Nb junctions, which had an extra Al layer. Based on these results we conclude that the Jc change is mainly caused by the change in junction resistance. A one order of magnitude smaller effect is caused by the superconductivity change. We believe the Jc change is caused by a Nb work function increase due to the hydrogen inclusion, resulting in an increase in barrier height.
Total Quality Management (TQM): Group Dynamics Workshop
1990-05-15
interactions with other OSD decision-making bodies. " Remove barriers /facilitate implementation. " Direct action on unresolved process problems referred...TQM leadership. - Total Quality Management FUNCTIONS: * Translate goals to tangible internal initiatives. " Remove barriers . " Establish and...Quality Management FUNCTIONS: • Identify and remove barriers . " Develop practical process improvements. " Install solutions and measurement systems for
Protein-Based Drug-Delivery Materials.
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-05-09
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function-including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments-are summarized at the end of this review.
Zou, Xiao-Ping; Chen, Min; Wei, Wei; Cao, Jun; Chen, Lei; Tian, Mi
2010-01-01
This study evaluated the effects of enteral immunonutrition (EIN) supplemented with glutamine, arginine, and probiotics on gut barrier function and immune function in pigs with severe acute pancreatitis (SAP). The model was induced by retrograde injection of 5% sodium taurocholate and trypsin via the pancreatic duct. After induction of SAP, 18 pigs were randomly divided into 3 groups, in which either parenteral nutrition (PN), control enteral nutrition (CEN), or EIN was applied for 8 days. Serum and pancreatic fluid amylase concentration was determined. Intestinal permeability (lactulose to mannitol ratio) was measured by high-performance liquid chromatography, and plasma endotoxin was quantified by the chromogenic limulus amebocyte lysate technique. Samples of venous blood and organs were cultured using standard techniques. Pancreatitis severity and villi of ileum were scored according to histopathologic grading. Plasma T-lymphocyte subsets were measured by flow cytometry, and immunoglobulins (Igs) were determined via enzyme-linked immunosorbent assay. There were no significant differences in serum and pancreatic fluid amylases concentrations or in pancreatitis severity between any 2 of the 3 groups. Compared with PN and CEN, EIN significantly decreased intestinal permeability, plasma endotoxin concentration, and the incidence and magnitudes of bacterial translocation, but increased ileal mucosal thickness, villous height, crypt depth, and percentage of normal intestinal villi. Significant differences were found in CD3+, CD4+ lymphocyte subsets, the ratio of CD4+: CD8+ lymphocyte subsets, and serum IgA and IgG, but not IgM, between any 2 of the 3 groups. EIN maintained gut barrier function and immune function in pigs with SAP.
Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model
Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle
2015-01-01
Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914
Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S; Heijink, Irene H
2018-02-01
The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are interconnected structures that restrict permeability to inhaled pathogens and environmental stressors. Destruction of the epithelial barrier not only exposes subepithelial layers to hazardous agents in the inspired air, but also alters the normal function of epithelial cells, which may eventually contribute to the development of COPD. Of note, disruption of epithelial junctions may lead to modulation of signaling pathways involved in differentiation, repair, and proinflammatory responses. Epithelial barrier dysfunction may be particularly relevant in COPD, where repeated injury by cigarette smoke exposure, pathogens, inflammatory mediators, and impaired epithelial regeneration may compromise the barrier function. In the current review, we discuss recent advances in understanding the mechanisms of barrier dysfunction in COPD, as well as the molecular mechanisms that underlie the impaired repair response of the injured epithelium in COPD and its inability to redifferentiate into a functionally intact epithelium.
Universal potential-barrier penetration by initially confined wave packets
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2007-07-01
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
Physical activity in older adults in a combined functional circuit and walking program.
Gallagher, Nancy Ambrose; Clarke, Philippa; Carr, Emily
Our study examined the impact of a 16-week functional circuit/walking program on physical activity (PA) in older adults in independent-living facilities. Exploratory goals included examination of associations among self-efficacy, neighborhood and mobility. Participants (N = 13) were female (M = 77.8, SD = 7.44, range = 65-85 years). One third were African-American; the remainder Caucasian; 1/3 used assistive devices. PA increased from 70 min/week (SD = 35.51) at baseline to 81.31 min/week (SD = 34.21) at 16 weeks. PA was associated with self-efficacy for overcoming neighborhood and facility barriers to walking at all measurement points (baseline r = .73, p < .05 and r = .68, p < .05, respectively). At eight weeks, PA was associated with self-efficacy for walking duration (r = .58, p < .05), self-efficacy for individual (r = .66, p < .05), facility (r = .58, p < .05) and neighborhood (r = .70, p < .05) barriers. At sixteen weeks, physical activity was associated with balance confidence (r = .72, p < .05), and self-efficacy for individual (r = .76, p < .05), facility (r = .71, p < .05), and neighborhood (r = .80, p < .01) barriers. Functional circuit/walking interventions can increase PA in older adults. Further examination of self-efficacy, mobility, neighborhoods and PA is needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A
2014-01-01
Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.
Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.
Andersen, P S; Fuchs, M
1975-01-01
Tetraphenylborate-induced current transients were studied in lipid bilayers formed from bacterial phosphatidylethanolamine in decane. This ion movement was essentially confined to the membrane in terior during the current transients. Charge movement through the interior of the membrane during the current transients was studied as a function of the applied potential. The transferred charge approached an upper limit with increasing potential, which is interpreted to be the amount of charge due to tetraphenylborate ions absorbed into the boundary regions of the bilayer. A further analysis of the charge transfer as a function of potential indicates that the movement of tetraphenylborate ions is only influenced by a certain farction of the applied potential. For bacterial phosphatidylethanolamine bilayers the effective potential is 77 +/- 4% of the applied potential. The initial conductance and the time constant of the current transients were studied as a function of the applied potential using a Nernst-Planck electrodiffusion regime. It was found that an image-force potential energy barrier gave a good prediction of the observed behavior, provided that the effective potential was used in the calculations. We could not get a satisfactory prediction of the observed behavior with an Eyring rate theory model or a trapezoidal potential energy barrier. PMID:1148364
P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers
Cario, Elke
2017-01-01
The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD. PMID:28321153
P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers.
Cario, Elke
2017-03-07
The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD.
Geonnotti, Anthony R; Katz, David F
2006-09-15
Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.
Cicciarello, R; Russi, E; Albiero, F; Mesiti, M; Torre, E; D'Aquino, A; Raffaele, L; Bertolani, S; D'Avella, D
1990-11-01
Whole brain irradiation (WBR) can produce acute and chronic neurological adverse effects, which are usually divided into acute, early delayed and late delayed reactions according to the time of onset. To assess the impact of WBR on brain functional parameters during the early-delayed phase, we employed the [14C]-2-deoxyglucose (2-DG) and the [14C]-alfa-aminoisobutyric (AIB) acid quantitative autoradiographic techniques to study local cerebral glucose utilization and blood-brain barrier permeability, respectively. Sprague-Dowley albino rats were exposed to conventional fractionation (200 Gy/day 5 days a week) for a total dose of 4000 Gy. Experiments were made 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. As a rule, brain areas with the highest basal metabolic rates showed the highest percentage drop in glucose utilization. Changes in blood-brain barrier function, as assessed by an increased transcapillary transport of AIB, were also demonstrated in specific brain regions. This study illustrates how moderate doses of WBR induce well-defined changes in brain metabolism and BBB function, which are possibly involved in the pathogenesis of the early-delayed radiation-induced cerebral dysfunction in humans.
Klem, John F; Kim, Jin K
2014-05-13
A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.
Provitamin A carotenoids and immune function
USDA-ARS?s Scientific Manuscript database
Vitamin A was called the anti-infective vitamin early in the 20th century when vitamin A deficiency was shown to increase the severity of infections of experimental animals. Squamous metaplasia caused by vitamin A deficiency was known to disrupt the mucosal barrier to infection at that time but lat...
Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W
2017-02-01
To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.
Crossing safety barriers: influence of children's morphological and functional variables.
Cordovil, Rita; Vieira, Filomena; Barreiros, João
2012-05-01
Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Gehring, W; Gloor, M
2000-07-01
In a randomized, double-blind, placebo-controlled study the effect of topical dexpanthenol (CAS 81-13-0) formulated in two different lipophilic vehicles on epidermal barrier function in vivo was carried out. Seven days' treatment with dexpanthenol improved stratum corneum hydration and reduced transepidermal water loss. Active treatment was statistically different from the vehicle control on both measures. Our results suggest that topical dexpanthenol formulated in either lipophilic vehicle stabilizes the skin barrier function.
Tight junction proteins contribute to barrier properties in human pleura.
Markov, Alexander G; Voronkova, Maria A; Volgin, George N; Yablonsky, Piotr K; Fromm, Michael; Amasheh, Salah
2011-03-15
The permeability of pleural mesothelium helps to control the volume and composition of the liquid lubricating pleural surfaces. Information on pleural barrier function in health and disease, however, is scarce. Tissue specimens of human pleura were mounted in Ussing chambers for measurement of transmesothelial resistance. Expression of tight junction (TJ) proteins was studied by Western blots and immune fluorescence confocal microscopy. Both visceral and parietal pleura showed barrier properties represented by transmesothelial resistance. Occludin, claudin-1, -3, -5, and -7, were detected in visceral pleura. In parietal pleura, the same TJ proteins were detected, except claudin-7. In tissues from patients with pleural inflammation these tightening claudins were decreased and in visceral pleura claudin-2, a paracellular channel former, became apparent. We report that barrier function in human pleura coincides with expression of claudins known to be key determinants of epithelial barrier properties. In inflamed tissue, claudin expression indicates a reduced barrier function. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.
2016-07-01
We perform first-principles density functional calculations to investigate the effects of Al incorporation on the p-type Schottky barrier height ≤ft({φ\\text{p}}\\right) and the effective work function for various high-k/metal gate stacks, such as TiN/HfO2 with interface Al impurities, Ti1-x Al x N/HfO2, and TiAl/TiN/HfO2. When Al atoms substitute for the interface Ti atoms at TiN/HfO2 interface, interface dipole fields become stronger, leading to the increase of {φ\\text{p}} and thereby the n-type shift of effective work function. In Ti1-x Al x N/HfO2 interface, {φ\\text{p}} linearly increases with the Al content, attributed to the presence of interface Al atoms. On the other hand, in TiAl/TiN/HfO2 interface, where Al is assumed not to segregate from TiAl to TiN, {φ\\text{p}} is nearly independent of the thickness of TiAl. Our results indicate that Al impurities at the metal/dielectric interface play an important role in controlling the effective work function, and provide a clue to understanding the n-type shift of the effective work function observed in TiAl/TiN/HfO2 gate stacks fabricated by using thegate-last process.
Bao, Jialing; Yura, Renee E.; Matters, Gail L.; Bradley, S. Gaylen; Shi, Pan; Tian, Fang
2013-01-01
Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly100 and Ser101 on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation. PMID:23804454
Pederzolli, Rae-Leigh A; Van Kessel, Andrew G; Campbell, John; Hendrick, Steve; Wood, Katie M; Penner, Gregory B
2018-02-15
The objective of this study was to determine effect of ruminal acidosis (RA) and low feed intake [LFI] on the regional barrier function of the gastrointestinal tract. Twenty-one Holstein steers were fed for ad libitum intake for 5 d (control [CON]), fed at 25% of ad libitum intake for 5 d (LFI), or provided 2 d of ad libitum intake followed by 1-d of feed restriction (25% of ad libitum intake), 1 d where 30% of ad libitum dry matter intake (DMI) was provided as pelleted barley followed by the full allocation (RA) and fed for ad libitum intake the following day. Tissues and digesta from the rumen, omasum, duodenum, jejunum, ileum, cecum, proximal, and distal colon were collected. Permeability was assessed using the mucosal-to-serosal flux of inulin (JMS-inulin) and mannitol (JMS-mannitol). Digesta pH was 0.81, 0.63, and 0.42 pH units less for RA than CON in the rumen, cecum, and proximal colon; while, LFI had pH that was 0.47 and 0.36 pH units greater in the rumen and proximal colon compared to CON. Total ruminal short-chain fatty acid (SCFA) concentration were less for LFI (92 mM; P = 0.010) and RA (87 mM; P = 0.007) than CON (172 mM) steers. In the proximal colon, the proportion of butyrate (P = 0.025 and P = 0.022) and isobutyrate (P = 0.019 and P = 0.019) were greater, and acetate (P = 0.028 and P = 0.028) was less for LFI and RA, respectively, when compared to CON steers. Ruminal papillae length, width, perimeter, and surface area were 1.21 mm, 0.78 mm, 3.84 mm, and 11.15 mm2 less for LFI than CON; while, RA decreased papillae width by 0.52 mm relative to CON. The JMS-mannitol was less for LFI steers than CON in the proximal colon (P = 0.041) and in the distal colon (P = 0.015). Increased gene expression for claudin 1, occludin, tight-cell junction protein 1 and 2, and toll-like receptor 4 were detected for LFI relative to CON in the rumen, jejunum, and proximal colon. For RA steers, expression of toll-like receptor 4 in the rumen, and occludin and tight-cell junction protein 1 were greater in the jejunum than CON. An acute RA challenge decreased pH in the rumen and large intestine but did not increase tissue permeability due to increases in the expression of genes related to barrier function within 1 d of the challenge. Steers exposed to LFI for 5 d had reduced ruminal SCFA concentrations, smaller ruminal papillae dimensions, and increased tissue permeability in the proximal and distal colon despite increases for genes related to barrier function and immune function.
Buehringer, Martina U; Padberg, Kevin; Phleps, Martin; Maid, Harald; Placht, Christian; Neiss, Christian; Ferguson, Michael; Goerling, Andreas; Tykwinski, Rik R
2018-03-31
Bonding is the fundamental aspect of organic chemistry, yet the magnitude of C=C bonding in [n]cumulenes as a function of increasing chain length has yet to be experimentally verified for derivatives longer than n = 5. The synthesis of a series of apolar and unsymmetrically substituted tetraaryl[n]cumulenes (n = 3, 5, 7, 9) has been developed and rotational barriers for Z-/E-isomerization have been measured using dynamic VT-NMR spectroscopy. Both experiment and theory confirm a dramatic reduction of the rotational barrier (through estimation of G≠rot for the isomerization) from >24 to 19 to 15 to 11 kcal-1 in [n]cumulenes with n = 3, 5, 7, 9, respectively. Thus, the reduction of cumulenic bonding in longer cumulenes affords bond rotational barriers that are more characteristic of a sterically hindered single bond than that of a double bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros
Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. Inmore » contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.« less
Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; ...
2018-03-06
Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. Inmore » contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.« less
Keita, Asa V; Söderholm, Johan D
2012-07-01
The ability to control uptake across the mucosa and protect from harmful substances in the gut lumen is defined as intestinal barrier function. The etiology of Crohn's disease is unknown, but genetic, environmental, and immunological factors all contribute. The frontline between these factors lies in the intestinal barrier. The most important inflammation-driving environmental factor in Crohn's disease is the microbiota, where Esherichia coli strains have been assigned a key role. The first observable signs of Crohn's disease are small aphtoid ulcers over Peyer's patches and lymphoid follicles. The overlaying follicle-associated epithelium (FAE) is specialized for luminal sampling and is an entry site for antigens and bacteria. We have demonstrated increased E. coli uptake across the FAE in Crohn's disease, which may initiate inflammation. This short review will discuss barrier dysfunction and bacteria in the context of ileal Crohn's disease, and how the FAE might be the site of initial inflammation. © 2012 New York Academy of Sciences.
Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.
Shenoy, Anitha K; Lu, Jianrong
2016-10-01
Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott
2016-01-27
Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.
Erman, Andreja; Kerec Kos, Mojca; Žakelj, Simon; Resnik, Nataša; Romih, Rok; Veranič, Peter
2013-11-01
High transepithelial electrical resistance (TEER) demonstrates a functional permeability barrier of the normal urothelium, which is maintained by a layer of highly differentiated superficial cells. When the barrier is challenged, a quick regeneration is induced. We used side-by-side diffusion chambers as an ex vivo system to determine the time course of functional and structural urothelial regeneration after chitosan-induced injury. The exposure of the urothelium to chitosan caused a 60 % decrease in TEER, the exposure of undifferentiated urothelial cells to the luminal surface and leaky tight junctions. During the regeneration period (350 min), TEER recovered to control values after approximately 200 min, while structural regeneration continued until 350 min after injury. The tight junctions are the earliest and predominant component of the barrier to appear, while complete barrier regeneration is achieved by delayed superficial cell terminal differentiation. The barrier function and the structure of untreated urothelium were unaffected in side-by-side diffusion chambers for at least 6 h. The urinary bladder tissue excised from an animal thus retains the ability to maintain and restore the transepithelial barrier and cellular ultrastructure for a sufficient period to allow for studies of regeneration in ex vivo conditions.
In vitro effects of preserved and unpreserved anti-allergic drugs on human corneal epithelial cells.
Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús
2014-11-01
Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures.
[Advances in the research of effects of glutamine on immune function of burn patients].
Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J
2018-04-20
Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.
Tun, Temdara; Kang, Young-Sook
2017-05-01
Hyperglycemia causes the breakdown of the blood-retinal barrier by impairing endothelial nitric oxide synthase (eNOS) function. Statins have many pleiotropic effects such as improving endothelial barrier permeability and increasing eNOS mRNA stability. The objective of this study was to determine effect of simvastatin on l-arginine transport and NO production under high-glucose conditions in conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB). Changes in l-arginine transport uptake and, expression levels of cationic amino acid transporter 1 (CAT-1) and eNOS mRNA were investigated after pre-treatment with simvastatin and NOS inhibitors (l-NMMA and l-NAME) under high-glucose conditions using TR-iBRB, an in vitro model of iBRB. The NO level released from TR-iBRB cells was examined using Griess reagents. Under high glucose conditions, [ 3 H]l-arginine uptake was decreased in TR-iBRB cells. Simvastatin pretreatment elevated [ 3 H]l-arginine uptake, the expression levels of CAT-1 and eNOS mRNA, and NO production under high-glucose conditions. Moreover, the co-treatment with simvastatin and NOS inhibitors reduced [ 3 H]l-arginine uptake compared to pretreatment with simvastatin alone. Our results suggest that, in the presence of high-glucose levels, increased l-arginine uptake due to simvastatin treatment was associated with increased CAT-1 and eNOS mRNA levels, leading to higher NO production in TR-iBRB cells. Thus, simvastatin might be a good modulator for diabetic retinopathy therapy by increasing of the l-arginine uptake and improving endothelial function in retinal capillary endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina
2011-12-01
The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione modulators or by inhibitors of neutral sphingomyelinase, p38 MAPK, JNK, and Rho kinase. Amelioration of endothelial permeability may alleviate lung and systemic vascular dysfunction associated with smoking-related chronic obstructive lung diseases.
Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J
2016-12-01
The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.
Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Huang, Chi-Ting; Lee, Chiang-Wen; Fang, Jia-You
2015-04-01
Ambient particulate matters (PMs) are known as inducers that adversely affect a variety of human organs. In this study, we aimed to evaluate the influence of PMs on the permeation of drugs and sunscreens via the skin. The role of skin-barrier properties such as the stratum corneum (SC) and tight junctions (TJs) during the delivery process was explored. This work was conducted using both in vitro and in vivo experiments in pigs to check the responses of the skin to PMs. PMs primarily containing heavy metals (1648a) and polycyclic aromatic hydrocarbons (PAHs, 1649b) were employed to treat the skin. According to the transepidermal water loss (TEWL), 1649b but not 1648a significantly disrupted the SC integrity by 2-fold compared to the PBS control. The immunohistochemistry (IHC) of cytokeratin, filaggrin, and E-cadherin exhibited that 1649b mildly damaged TJs. The cytotoxicity of keratinocytes and skin fibroblasts caused by 1649b was stronger than that caused by 1648a. The 1649b elicited apoptosis via caspase-3 activation. The proteomic profiles showed that PMs upregulated Annexin A2 by >5-fold, which can be a biomarker of PM-induced barrier disruption. We found that the skin uptake of ascorbic acid, an extremely hydrophilic drug, was increased from 74 to 112 μg/g by 1649b treatment. The extremely lipophilic drug tretinoin also showed a 2.6-fold increase of skin accumulation. Oxybenzone and dextran absorption was not affected by PMs. The in vivo dye distribution visualized by fluorescence microscopy had indicated that 1649b intervention promoted permeant partitioning into SC. Caution should be taken in exposing the skin to airborne dust due to its ability to reduce barrier function and increase the risk of drug overabsorption, although this effect was not very marked. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Doerflinger, Sylvie Y; Throop, Andrea L; Herbst-Kralovetz, Melissa M
2014-06-15
Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sundling, Catherine; Berglund, Birgitta; Nilsson, Mats E.; Emardson, Ragne; Pendrill, Leslie R.
2014-01-01
Elderly persons’ perceived accessibility to railway traveling depends on their functional limitations/diseases, their functional abilities and their travel behaviors in interaction with the barriers encountered during whole trips. A survey was conducted on a random sample of 1000 city residents (65–85 years old; 57% response rate). The travels were perceived least accessible by respondents with severely reduced functional ability and by those with more than one functional limitation/disease (e.g., restricted mobility and chronic pain). Those who traveled “often”, perceived the accessibility to be better than those who traveled less frequently. For travelers with high functional ability, the main barriers to more frequent traveling were travel costs and low punctuality. For those with low functional ability, one’s own health was reported to be the main barrier. Our results clarify the links among existing functional limitations/functional abilities, the barriers encountered, the travel behavior, and the overall accessibility to traveling. By operationalizing the whole-trip concept as a chain of events, we deliver practical knowledge on vulnerable groups for decision-making to improve the transport environment for all. PMID:25514149
Simultaneous assessment of glomerular filtration and barrier function in live zebrafish
Kotb, Ahmed M.; Müller, Tobias; Xie, Jing; Anand-Apte, Bela; Endlich, Nicole
2014-01-01
The zebrafish pronephros is a well-established model to study glomerular development, structure, and function. A few methods have been described to evaluate glomerular barrier function in zebrafish larvae so far. However, there is a need to assess glomerular filtration as well. In the present study, we extended the available methods by simultaneously measuring the intravascular clearances of Alexa fluor 647-conjugated 10-kDa dextran and FITC-conjugated 500-kDa dextran as indicators of glomerular filtration and barrier function, respectively. After intravascular injection of the dextrans, mean fluorescence intensities of both dextrans were measured in the cardinal vein of living zebrafish (4 days postfertilization) by confocal microscopy over time. We demonstrated that injected 10-kDa dextran was rapidly cleared from the circulation, became visible in the lumen of the pronephric tubule, quickly accumulated in tubular cells, and was detectably excreted at the cloaca. In contrast, 500-kDa dextran could not be visualized in the tubule at any time point. To check whether alterations in glomerular function can be quantified by our method, we injected morpholino oligonucleotides (MOs) against zebrafish nonmuscle myosin heavy chain IIA (zMyh9) or apolipoprotein L1 (zApol1). While glomerular filtration was reduced in zebrafish nonmuscle myosin heavy chain IIA MO-injected larvae, glomerular barrier function remained intact. In contrast, in zebrafish apolipoprotein L1 MO-injected larvae, glomerular barrier function was compromised as 500-kDa dextran disappeared from the circulation and became visible in tubular cells. In summary, we present a novel method that allows to simultaneously assess glomerular filtration and barrier function in live zebrafish. PMID:25298528
Synergistic effect of amino acids modified on dendrimer surface in gene delivery.
Wang, Fei; Wang, Yitong; Wang, Hui; Shao, Naimin; Chen, Yuanyuan; Cheng, Yiyun
2014-11-01
Design of an efficient gene vector based on dendrimer remains a great challenge due to the presence of multiple barriers in gene delivery. Single-functionalization on dendrimer cannot overcome all the barriers. In this study, we synthesized a list of single-, dual- and triple-functionalized dendrimers with arginine, phenylalanine and histidine for gene delivery using a one-pot approach. The three amino acids play different roles in gene delivery: arginine is essential in formation of stable complexes, phenylalanine improves cellular uptake efficacy, and histidine increases pH-buffering capacity and minimizes cytotoxicity of the cationic dendrimer. A combination of these amino acids on dendrimer generates a synergistic effect in gene delivery. The dual- and triple-functionalized dendrimers show minimal cytotoxicity on the transfected NIH 3T3 cells. Using this combination strategy, we can obtain triple-functionalized dendrimers with comparable transfection efficacy to several commercial transfection reagents. Such a combination strategy should be applicable to the design of efficient and biocompatible gene vectors for gene delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baxter, David
2010-06-01
Newborn infants, particularly those born prematurely are at increased risk of infections, including vaccine preventable ones, resulting in an increased morbidity and mortality risk. Defects associated with higher mortality may involve external barriers and the innate and adaptive systems. The available evidence suggests a complex situation that ranges from pathogen/immunogen non-responsiveness to fully mature adult-equivalent functionality depending on both host and vaccine characteristics. This review considers potential qualitative and quantitative differences with respect to immune defences between premature/term infants and adults and evaluates implications of such differences for immunization outcomes.
Recommendations for managing cutaneous disorders associated with advancing age
Humbert, Philippe; Dréno, Brigitte; Krutmann, Jean; Luger, Thomas Anton; Triller, Raoul; Meaume, Sylvie; Seité, Sophie
2016-01-01
The increasingly aged population worldwide means more people are living with chronic diseases, reduced autonomy, and taking various medications. Health professionals should take these into consideration when managing dermatological problems in elderly patients. Accordingly, current research is investigating the dermatological problems associated with the loss of cutaneous function with age. As cell renewal slows, the physical and chemical barrier function declines, cutaneous permeability increases, and the skin becomes increasingly vulnerable to external factors. In geriatric dermatology, the consequences of cutaneous aging lead to xerosis, skin folding, moisture-associated skin damage, and impaired wound healing. These problems pose significant challenges for both the elderly and their carers. Most often, nurses manage skin care in the elderly. However, until recently, little attention has been paid to developing appropriate, evidence-based, skincare protocols. The objective of this paper is to highlight common clinical problems with aging skin and provide some appropriate advice on cosmetic protocols for managing them. A review of the literature from 2004 to 2014 using PubMed was performed by a working group of six European dermatologists with clinical and research experience in dermatology. Basic topical therapy can restore and protect skin barrier function, which relieves problems associated with xerosis, prevents aggravating moisture-associated skin damage, and enhances quality of life. In conclusion, the authors provide physicians with practical recommendations to assist them in implementing basic skin care for the elderly in an integrated care approach. PMID:26929610
Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B
2018-01-01
Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.
Bowie, Rachel V; Donatello, Simona; Lyes, Clíona; Owens, Mark B; Babina, Irina S; Hudson, Lance; Walsh, Shaun V; O'Donoghue, Diarmuid P; Amu, Sylvie; Barry, Sean P; Fallon, Padraic G; Hopkins, Ann M
2012-04-15
Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to subsequent disruption of epithelial barrier function.
Saunders, Norman R; Dziegielewska, Katarzyna M; Unsicker, Klaus; Ek, C Joakim
2016-11-01
The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016. © 2016 Wiley Periodicals, Inc.
Surface pre-treatment for barrier coatings on polyethylene terephthalate
NASA Astrophysics Data System (ADS)
Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.
2013-02-01
Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.
Axelsen, Karina Rahbek; Nafei, Hanne; Jakobsen, Stine Finne; Gandrup, Per; Knudsen, Janne Lehmann
2014-10-13
Case managers are increasingly used to optimize trajectories for patients. This study is based on a questionnaire among case managers in cancer care, aiming at the clarification of the function and its impact on especially patient safety, when handing over the responsibility. The results show a major variation in how the function is organized, the level of competence and the task to be handled. The responsibility has in general been narrowed to department level. Overall, the case managers believe that the function has optimized pathways for cancer patients and improved safety, but barriers persist.
NASA Astrophysics Data System (ADS)
Kapri, Priyadarshini; Adhikary, Priyanka; Sinha, Shubham; Basu, Saurabh
2018-05-01
Thermoelectric effect for metal, insulator and the superconductor junctions has been studied with Rashba spin-orbit coupling (RSOC) being present at the interfaces via modified Blonder-Tinkham-Klapwijk (BTK) theory. We find that the thermopower, as a function of an effective barrier potential that characterizes the intermediate insulating layer, displays an oscillatory behavior. Interesting interplay between the strength of RSOC and the effective barrier potential has been carried out in details in this regard. For specific ranges of the effective barrier potential, RSOC enhances the thermopower, while the reverse happens for other values. Moreover it is found that the effective barrier potential plays a crucial role in determining the thermopower spectrum. For a tunable Rashba coupling, the thermopower of the junction can be controlled with precision, which may useful for the thermoelectric applications, at low temperatures. Further the efficiency of the system is obtained for different pairing correlations of the superconducting lead where we find that the system with a d-wave symmetry is more efficient as compared to a s-wave correlation, in some selective regions of effective barrier potential. It is found that for some selective regions of effective barrier potential, the efficiency of the system increases with RSOC and the opposite happens for other values.
Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function.
Tessema, Efrem N; Gebre-Mariam, Tsige; Neubert, Reinhard H H; Wohlrab, Johannes
2017-01-01
The outer most layer of the skin, the stratum corneum, consists of corneocytes which are coated by a cornified envelope and embedded in a lipid matrix of ordered lamellar structure. It is responsible for the skin barrier function. Ceramides (CERs) are the backbone of the intercellular lipid membranes. Skin diseases such as atopic dermatitis and psoriasis and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Previously, the effectiveness of supplementation of synthetic and animal-based CERs in replenishing the depleted natural skin CERs and restoring the skin barrier function have been investigated. Recently, however, the barrier function improving effect of plant-derived CERs has attracted much attention. Phyto-derived CERs (phytoCERs) are preferable due to their assumed higher safety as they are mostly isolated from dietary sources. The beneficial effects of phytoCER-based oral dietary supplements for skin hydration and skin barrier reinforcement have been indicated in several studies involving animal models as well as human subjects. Ingestible dietary supplements containing phytoCERs are also widely available on the market. Nonetheless, little effort has been made to investigate the potential cosmetic applications of topically administered phytoCERs. Therefore, summarizing the foregoing investigations and identifying the gap in the scientific data on plant-derived CERs intended for skin-health benefits are of paramount importance. In this review, an attempt is made to synthesize the information available in the literature regarding the effects of phytoCER-based oral dietary supplements on skin hydration and barrier function with the underlying mechanisms. © 2017 S. Karger AG, Basel.
List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H.
2006-01-01
The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma. PMID:16651618
List, Karin; Szabo, Roman; Molinolo, Alfredo; Nielsen, Boye Schnack; Bugge, Thomas H
2006-05-01
The membrane serine protease matriptase is required for epidermal barrier function, hair formation, and thymocyte development in mice, and dysregulated matriptase expression causes epidermal squamous cell carcinoma. To elucidate the specific functions of matriptase in normal and aberrant epidermal differentiation, we used enzymatic gene trapping combined with immunohistochemical, ultrastructural, and barrier function assays to delineate the spatio-temporal expression and function of matriptase in mouse keratinized tissue development, homeostasis, and malignant transformation. In the interfollicular epidermis, matriptase expression was restricted to postmitotic transitional layer keratinocytes undergoing terminal differentiation. Matriptase was also expressed in keratinizing oral epithelium, where it was required for oral barrier function, and in thymic epithelium. In all three tissues, matriptase colocalized with profilaggrin. In staged embryos, the onset of epidermal matriptase expression coincided with that of profilaggrin expression and acquisition of the epidermal barrier. In marked contrast to stratifying keritinized epithelium, matripase expression commenced already in undifferentiated and rapidly proliferating profilaggrin-negative matrix cells and displayed hair growth cycle-dependent expression. Exposure of the epidermis to carcinogens led to the gradual appearance of matriptase in a keratin-5-positive proliferative cell compartment during malignant progression. Combined with previous studies, these data suggest that matriptase has diverging functions in the genesis of stratified keratinized epithelium, hair follicles, and squamous cell carcinoma.
Henselmans, Inge; Heijmans, Monique; Rademakers, Jany; van Dulmen, Sandra
2015-12-01
Chronic patients are increasingly expected to participate actively in medical consultations. This study examined (i) patients' perceived efficacy and barriers to participation in consultations, (ii) patients' interest in communication support and (iii) correlates of perceived efficacy and barriers, with an emphasis on differences across providers' disciplines. A representative panel of chronic patients (n = 1314) filled out the short Perceived Efficacy in Patient-Provider Interaction scale and were questioned about barriers to participation and interest in communication support. Potential correlates included socio-demographic (age, sex, education, living situation), clinical (discipline care provider, type of illness, comorbidity, illness duration, functional disabilities, health consultations in last year) and personal characteristics (information preference, health literacy, level of general patient activation). Most patients felt efficacious in consultations, although 46% reported barriers to participation and 39% had an interest in support. Barriers most frequently recognized were 'not wanting to be bothersome', 'perception there is too little time' and 'remembering subjects only afterwards'. Patients most frequently endorsed relatively simple support. Patients perceived the least barriers and were least likely to endorse support when seeing a nurse. In multivariate models, consistent risk factors for low efficacy and perceived barriers were low health literacy and a low general patient activation. Many chronically ill patients feel confident in medical interactions. Still, a significant number might benefit from support. Often this concerned more generally vulnerable patients, that is, the low literate and generally less activated. Relatively simple supportive interventions are likely to be endorsed and might overcome frequent barriers. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.
2010-07-02
The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less
Hirotani, Yoshihiko; Ikeda, Kenji; Kato, Ryuji; Myotoku, Michiaki; Umeda, Takashi; Ijiri, Yoshio; Tanaka, Kazuhiko
2008-09-01
Indirect evidence suggests that lactoferrin (Lf), a major iron-binding protein in human milk, induces enterocyte growth and proliferation, depending on its concentration and affects the function and permeability of the intestinal mucosa. The bacterial endotoxin (lipopolysaccharide, LPS) is known to cause mucosal hyperpermeability in vivo. However, protective effects of Lf against LPS-mediated intestinal mucosal damage and barrier function in epithelial cells are not yet fully clarified. The aim of this study was to investigate whether Lf can reduce the cellular injury and alter epithelial hyperpermeability caused by LPS in human intestinal Caco-2 cells. When cell viability was measured by a WST-1 assay (tetrazolium salt-based assay), the protective effects against LPS-induced damage to Caco-2 cells were observed at doses of 800 and 1000 microg/ml Lf. The barrier function of Caco-2 monolayer tight junctions was assessed by measuring transepithelial electrical resistance (TEER) and permeability of FITC-labeled dextran 4000 (FD-4). The treatment of Caco-2 cells with Lf at doses of 400 and 1000 microg/ml significantly increased TEER as compared to treatment with LPS alone for 2 h (p<0.05). Further, at doses of 400 and 1000 microg/ml, Lf inhibited the enhancement of LPS-mediated permeability in Caco-2 cell monolayer. The results of this study suggest that Lf may have protective effects against LPS-mediated intestinal mucosal damage and impairment of barrier function in intestinal epithelial cells.
Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon
2017-05-01
The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.
Fusion enhancement at near and sub-barrier energies in 19O + 12C
Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; ...
2016-12-12
Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O+ 12C system. The measured excitation function is compared with the fusion excitation function of 18O+ 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. As a result, the experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.
Wong, Christine T; Wais, Joshua; Crawford, Dorota A
2015-11-01
The prevalence of autism spectrum disorders (ASDs) has been on the rise over recent years. The presence of diverse subsets of candidate genes in each individual with an ASD and the vast variability of phenotypical differences suggest that the interference of an exogenous environmental component may greatly contribute to the development of ASDs. The lipid mediator prostaglandin E2 (PGE2 ) is released from phospholipids of cell membranes, and is important in brain development and function; PGE2 is involved in differentiation, synaptic plasticity and calcium regulation. The previous review already described extrinsic factors, including deficient dietary supplementation, and exposure to oxidative stress, infections and inflammation that can disrupt signaling of the PGE2 pathway and contribute to ASDs. In this review, the structure and establishment of two key protective barriers for the brain during early development are described: the blood-brain barrier; and the placental barrier. Then, the first comprehensive summary of other environmental factors, such as exposure to chemicals in air pollution, pesticides and consumer products, which can also disturb PGE2 signaling and increase the risk for developing ASDs is provided. Also, how these exogenous agents are capable of crossing the protective barriers of the brain during critical developmental periods when barrier components are still being formed is described. This review underlines the importance of avoiding or limiting exposure to these factors during vulnerable periods in development. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg
Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barriermore » for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.« less
A Pilot of a Gerontological Advanced Practice Nurse Preventive Intervention
ERIC Educational Resources Information Center
Hahn, Joan Earle; Aronow, Harriet Udin
2005-01-01
Background: Persons with an intellectual and developmental disability frequently face barriers in accessing preventive services in community-based health care systems. As they age into middle years, they are at increased risk for functional decline. This paper presents a description of an advanced practice nurse (APN) intervention used in a pilot…
Quantum finance Hamiltonian for coupon bond European and barrier options.
Baaquie, Belal E
2008-03-01
Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.
Li, Wei; Huang, Li; Evans, James W.; ...
2016-04-11
Epitaxial growth of Ag on Fe(100) and postdeposition relaxation have been studied in several experiments. We provide a first-principles density functional theory analysis of key adatom interaction energies and diffusion barriers controlling growth and relaxation kinetics for the submonolayer regime, as these have not been assessed previously. A cluster expansion approach is used to obtain an extensive set of conventional lateral interactions between adatoms on fourfold hollow adsorption sites. We find robust oscillatory decay of pair interactions with increasing separation, and of trio interactions with increasing perimeter length. First- and second-nearest-neighbor pair interactions, as well as compact linear and bentmore » trio interactions, dominate. The adatom terrace diffusion barrier is estimated to be E d ≈ 0.39 eV. We also provide a limited analysis of unconventional interactions for which one adatom is at the bridge-site transition state for hopping and one or more others are at fourfold hollow sites. Furthermore, energy barriers for diffusion along island edges can be determined with the aid of both conventional and unconventional interactions.« less
Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun
2018-01-01
The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization. PMID:29456533
[Assisted peritoneal dialysis: home-based renal replacement therapy for the elderly patient].
Wiesholzer, Martin
2013-06-01
The number of elderly patients with end stage renal disease is constantly increasing. Conventional hämodiaylsis as the mainstay of renal replacement therapy is often poorly tolerated by frail eldery patients with multiple comorbidities. Although many of these patients would prefer a home based dialysis treatment, the number of elderly patients using peritoneal dialysis (PD) is still low. Impaired physical and cognitive function often generates insurmountable barriers for self care peritoneal dialysis. Assisted peritoneal dialysis can overcome many of these barriers and give elderly patients the ability of a renal replacement therapy in their own homes respecting their needs.
He, Yujun; Zhang, Jin; Li, Dongqi; Wang, Jiangtao; Wu, Qiong; Wei, Yang; Zhang, Lina; Wang, Jiaping; Liu, Peng; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2013-01-01
We show that the Schottky barrier at the metal-single walled carbon nanotube (SWCNT) contact can be clearly observed in scanning electron microscopy (SEM) images as a bright contrast segment with length up to micrometers due to the space charge distribution in the depletion region. The lengths of the charge depletion increase with the diameters of semiconducting SWCNTs (s-SWCNTs) when connected to one metal electrode, which enables direct and efficient evaluation of the bandgap distributions of s-SWCNTs. Moreover, this approach can also be applied for a wide variety of semiconducting nanomaterials, adding a new function to conventional SEM.
Chemical Vapor Deposition of Turbine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Haven, Victor E.
1999-01-01
Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.
Barrier-free design: a review and critique of the occupational therapy perspective.
Cooper, B A; Cohen, U; Hasselkus, B R
1991-04-01
This review of the occupational therapy literature on barrier-free design identifies both a paucity of related occupational therapy research on the topic and a lack of a common conceptual base with which to guide the development and use of environmental assessments. Nonetheless, two fledgling themes can be extrapolated: the consistent reference to the concepts of accessibility, mobility, function, and safety and an increased awareness among occupational therapists regarding the accessibility standards developed by the American National Standards Institute (ANSI) (ANSI, 1971, 1980). A problem-solving model suggested by designers for the 1979 revision of ANSI standards that incorporates these conceptual themes is described and discussed.
Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli.
Sutterlin, Holly A; Zhang, Sisi; Silhavy, Thomas J
2014-09-01
In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
The relationship between skin function, barrier properties, and body-dependent factors.
Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M
2018-05-01
Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lee, Gwenyth O; McCormick, Benjamin J J; Seidman, Jessica C; Kosek, Margaret N; Haque, Rashidul; Olortegui, Maribel Paredes; Lima, Aldo A M; Bhutta, Zulfiqar A; Kang, Gagandeep; Samie, Amidou; Amour, Caroline; Mason, Carl J; Ahmed, Tahmeed; Yori, Pablo Peñataro; Oliveira, Domingos B; Alam, Didar; Babji, Sudhir; Bessong, Pascal; Mduma, Estomih; Shrestha, Sanjaya K; Ambikapathi, Ramya; Lang, Dennis R; Gottlieb, Michael; Guerrant, Richard L; Caulfield, Laura E; For The Mal-Ed Network Investigators
2017-07-01
The lactulose mannitol (LM) dual sugar permeability test is the most commonly used test of environmental enteropathy in developing countries. However, there is a large but conflicting literature on its association with enteric infection and host nutritional status. We conducted a longitudinal cohort using a single field protocol and comparable laboratory procedures to examine intestinal permeability in multiple, geographically diverse pediatric populations. Using a previously published systematic review to guide the selection of factors potentially associated with LM test results, we examined the relationships between these factors and mucosal breach, represented by percent lactulose excretion; absorptive area, represented by percent mannitol excretion; and gut barrier function, represented by the L/M ratio. A total of 6,602 LM tests were conducted in 1,980 children at 3, 6, 9, and 15 months old; percent lactulose excretion, percent mannitol excretion, and the L/M ratio were expressed as age- and sex-specific normalized values using the Brazil cohort as the reference population. Among the factors considered, recent severe diarrhea, lower socioeconomic status, and recent asymptomatic enteropathogen infections were associated with decreased percent mannitol excretion and higher L/M ratios. Poorer concurrent weight-for-age, infection, and recent breastfeeding were associated with increased percent lactulose excretion and increased L/M ratios. Our results support previously reported associations between the L/M ratio and factors related to child nutritional status and enteropathogen exposure. These results were remarkably consistent across sites and support the hypothesis that the frequency of these exposures in communities living in poverty leads to alterations in gut barrier function.
Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition.
Kang, Dae J; Kakiyama, Genta; Betrapally, Naga S; Herzog, Jeremy; Nittono, Hiroshi; Hylemon, Phillip B; Zhou, Huiping; Carroll, Ian; Yang, Jing; Gillevet, Patrick M; Jiao, Chunhua; Takei, Hajime; Pandak, William M; Iida, Takashi; Heuman, Douglas M; Fan, Sili; Fiehn, Oliver; Kurosawa, Takao; Sikaroodi, Masoumeh; Sartor, R B; Bajaj, Jasmohan S
2016-08-25
Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin. Four germ-free (GF) mice groups were used (1) GF, (2) GF+rifaximin, (3) Humanized with stools from an MHE patient, and (4) Humanized+rifaximin. Mice were followed for 30 days while rifaximin was administered in chow at 100 mg/kg from days 16-30. We tested for ammonia generation (small-intestinal glutaminase, serum ammonia, and cecal glutamine/amino-acid moieties), systemic inflammation (serum IL-1β, IL-6), intestinal barrier (FITC-dextran, large-/small-intestinal expression of IL-1β, IL-6, MCP-1, e-cadherin and zonulin) along with microbiota composition (colonic and fecal multi-tagged sequencing) and function (endotoxemia, fecal bile acid deconjugation and de-hydroxylation). All mice survived until day 30. In the GF setting, rifaximin decreased intestinal ammonia generation (lower serum ammonia, increased small-intestinal glutaminase, and cecal glutamine content) without changing inflammation or intestinal barrier function. Humanized microbiota increased systemic/intestinal inflammation and endotoxemia without hyperammonemia. Rifaximin therapy significantly ameliorated these inflammatory cytokines. Rifaximin also favorably impacted microbiota function (reduced endotoxin and decreased deconjugation and formation of potentially toxic secondary bile acids), but not microbial composition in humanized mice. Rifaximin beneficially alters intestinal ammonia generation by regulating intestinal glutaminase expression independent of gut microbiota. MHE-associated fecal colonization results in intestinal and systemic inflammation in GF mice, which is also ameliorated with rifaximin.
Sellmann, Cathrin; Priebs, Josephine; Landmann, Marianne; Degen, Christian; Engstler, Anna Janina; Jin, Cheng Jun; Gärttner, Stefanie; Spruss, Astrid; Huber, Otmar; Bergheim, Ina
2015-11-01
General overnutrition but also a diet rich in certain macronutrients, age, insulin resistance and an impaired intestinal barrier function may be critical factors in the development of nonalcoholic fatty liver disease (NAFLD). Here the effect of chronic intake of diets rich in different macronutrients, i.e. fructose and/or fat on liver status in mice, was studied over time. C57BL/6J mice were fed plain water, 30% fructose solution, a high-fat diet or a combination of both for 8 and 16 weeks. Indices of liver damage, toll-like receptor 4 (TLR-4) signaling cascade, macrophage polarization and insulin resistance in the liver and intestinal barrier function were analyzed. Chronic exposure to a diet rich in fructose and/or fat was associated with the development of hepatic steatosis that progressed with time to steatohepatitis in mice fed a combination of macronutrients. The development of NAFLD was also associated with a marked reduction of the mRNA expression of insulin receptor, whereas hepatic expressions of TLR-4, myeloid differentiation primary response gene 88 and markers of M1 polarization of macrophages were induced in comparison to controls. Bacterial endotoxin levels in portal plasma were found to be increased while levels of the tight junction protein occludin and zonula occludens 1 were found to be significantly lower in the duodenum of all treated groups after 8 and 16 weeks. Our data suggest that chronic intake of fructose and/or fat may lead to the development of NAFLD over time and that this is associated with an increased translocation of bacterial endotoxin. Copyright © 2015 Elsevier Inc. All rights reserved.
Simpson, Eric; Dutronc, Yves
2011-07-01
Moisturizers result in an increase of skin hydration and restoration of the skin barrier function and play a prominent role in the longterm management of atopic dermatitis (AD). Cetaphil RestoradermTM Moisturizer (CRM) contains novel ingredients specifically designed for AD, and its effects on skin hydration, skin barrier function and signs of AD were assessed in four studies, three of which were evaluator-blinded, randomized and intra-individual comparison trials. A single application of CRM induced significantly greater hydration than the untreated control for at least 24 hours (P is less than 0.001). After the skin was disrupted with 0.5% sodium dodecyl sulfate (SDS), applications of CRM led to a more rapid restoration of skin barrier function and maintained significantly greater skin hydration compared to the untreated control (both P is less than 0.05). After four weeks of twice-daily CRM application among subjects with a history of AD, a significant decrease of itching/stinging scores compared to baseline was reported, as well as an improvement in the quality-of- life and a high level of satisfaction regarding the product. When CRM was used as an adjunctive treatment with topical steroid for four weeks among subjects with mild-to-moderate AD, a more rapid decrease of overall disease severity was observed on days 7, 14 and 21 by the blinded investigator (P is less than 0.05), compared to steroid treatment alone. In summary, CRM is suitable for the specific needs of patients with AD and can be used either alone for long-term management or in adjunction with traditional treatment for both short and long-term disease control.
Lee, Gwenyth O.; McCormick, Benjamin J. J.; Seidman, Jessica C.; Kosek, Margaret N.; Haque, Rashidul; Olortegui, Maribel Paredes; Lima, Aldo A. M.; Bhutta, Zulfiqar A.; Kang, Gagandeep; Samie, Amidou; Amour, Caroline; Mason, Carl J.; Ahmed, Tahmeed; Yori, Pablo Peñataro; Oliveira, Domingos B.; Alam, Didar; Babji, Sudhir; Bessong, Pascal; Mduma, Estomih; Shrestha, Sanjaya K.; Ambikapathi, Ramya; Lang, Dennis R.; Gottlieb, Michael; Guerrant, Richard L.; Caulfield, Laura E.
2017-01-01
Abstract. The lactulose mannitol (LM) dual sugar permeability test is the most commonly used test of environmental enteropathy in developing countries. However, there is a large but conflicting literature on its association with enteric infection and host nutritional status. We conducted a longitudinal cohort using a single field protocol and comparable laboratory procedures to examine intestinal permeability in multiple, geographically diverse pediatric populations. Using a previously published systematic review to guide the selection of factors potentially associated with LM test results, we examined the relationships between these factors and mucosal breach, represented by percent lactulose excretion; absorptive area, represented by percent mannitol excretion; and gut barrier function, represented by the L/M ratio. A total of 6,602 LM tests were conducted in 1,980 children at 3, 6, 9, and 15 months old; percent lactulose excretion, percent mannitol excretion, and the L/M ratio were expressed as age- and sex-specific normalized values using the Brazil cohort as the reference population. Among the factors considered, recent severe diarrhea, lower socioeconomic status, and recent asymptomatic enteropathogen infections were associated with decreased percent mannitol excretion and higher L/M ratios. Poorer concurrent weight-for-age, infection, and recent breastfeeding were associated with increased percent lactulose excretion and increased L/M ratios. Our results support previously reported associations between the L/M ratio and factors related to child nutritional status and enteropathogen exposure. These results were remarkably consistent across sites and support the hypothesis that the frequency of these exposures in communities living in poverty leads to alterations in gut barrier function. PMID:28719336
Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei
2018-02-21
Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.
Shalumon, K T; Sheu, Chialin; Chen, Chih-Hao; Chen, Shih-Heng; Jose, Gils; Kuo, Chang-Yi; Chen, Jyh-Ping
2018-05-01
The possibility of endowing an electrospun anti-adhesive barrier membrane with multi-functionality, such as lubrication, prevention of fibroblast attachment and anti-infection and anti-inflammation properties, is highly desirable for the management of post-surgical tendon adhesion. To this end, we fabricated core-shell nanofibrous membranes (CSNMs) with embedded silver nanoparticles (Ag NPs) in the poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) shell and hyaluronic acid (HA)/ibuprofen in the core. HA imparted a lubrication effect for smooth tendon gliding and reduced fibroblast attachment, while Ag NPs and ibuprofen functioned as anti-infection and anti-inflammation agents, respectively. CSNMs with a PEG/PCL/Ag shell (PPA) and HA core containing 0% (H/PPA), 10% (HI10/PPA), 30% (HI30/PPA) and 50% (HI50/PPA) ibuprofen were fabricated through co-axial electrospinning and assessed through microscopic, spectroscopic, thermal, mechanical and drug release analyses. Considering nutrient passage through the barrier, the microporous CSNMs exerted the same barrier effect but drastically increased the mass transfer coefficients of bovine serum albumin compared with the commercial anti-adhesive membrane SurgiWrap®. Cell attachment/focal adhesion formation of fibroblasts revealed effective reduction of initial cell attachment on the CSNM surface with minimum cytotoxicity (except HI50/PPA). The anti-bacterial effect against both Gram-negative and Gram-positive bacteria was verified to be due to the Ag NPs in the membranes. In vivo studies using H/PPA and HI30/PPA CSNMs and SurgiWrap® in a rabbit flexor tendon rupture model demonstrated the improved efficacy of HI30/PPA CSNMs in reducing inflammation and tendon adhesion formation based on gross observation, histological analysis and functional assays. We conclude that HI30/PPA CSNMs can act as a multifunctional barrier membrane to prevent peritendinous adhesion after tendon surgery. A multi-functional anti-adhesion barrier membrane that could reduce fibroblasts attachment and penetration while simultaneously prevent post-surgical infection and inflammation is urgently needed. To this end, we prepared electrospun core-shell hyaluronic acid + ibuprofen/polyethylene glycol + polycaprolactone + Ag nanoparticles nanofibrous membranes by co-axial electrospinning as an ideal anti-adhesive membrane. The core-shell structure could meet the need of a desirable anti-adhesion barrier through release of ibuprofen and Ag nanoparticles to reduce infection and inflammation while hyaluronic acid can reduce fibroblasts adhesion. The superior performance of this multi-functional core-shell nanofibrous membrane in preventing peritendinous adhesion and post-surgical inflammation was demonstrated in a rabbit flexor tendon rupture model. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cultural Barriers to Change in Assessment Practices in Higher Education
ERIC Educational Resources Information Center
Jenkins, Deborah Bainer
2007-01-01
The culture at the authors' institution raised barriers to changing from traditional assessment to portfolio assessment in the doctoral program. A Culture of Independence presented barriers of time and functional inadequacy. A Culture of Compliance raised trust, group process, and membership issues. These barriers were managed and overcome using…
The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Link, Steven O.; Hasan, Nazmul
2009-09-01
A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above themore » surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils collected before and after the fire. However, there were fewer species emerging from the seed bank on the side slopes and more species emerging from two analog sites. Leaf area index measures confirmed the substantial differences in plant communities after fire. Xylem pressure potential were considerably higher on the burned half of the barrier in September 2009 suggesting that not all the water in the soil profile will be removed before the fall rains begin. The results of this study are expected to contribute to a better understanding of barrier performance after major disturbances in a post-institutional control environment. Such an understanding is needed to enhance stakeholder acceptance regarding the long-term efficacy of engineered barriers. This study will also support improvements in the design of evapotranspiration (ET) and hybrid (ET + capacitive) barriers and the performance monitoring systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav
2015-05-15
This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier createdmore » in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.« less
Jeong, Sekyoo; Lee, Sin Hee; Park, Byeong Deog; Wu, Yan; Man, George; Man, Mao-Qiang
2016-03-01
The management of sensitive skin, which affects over 60% of the general population, has been a long-standing challenge for both patients and clinicians. Because defective epidermal permeability barrier is one of the clinical features of sensitive skin, barrier-enhancing products could be an optimal regimen for sensitive skin. In the present study, we evaluated the efficacy and safety of two barrier-enhancing products, i.e., Atopalm (®) Multi-Lamellar Emulsion (MLE) Cream and Physiogel (®) Intensive Cream for sensitive skin. 60 patients with sensitive skin, aged 22-40 years old, were randomly assigned to one group treated with Atopalm MLE Cream, and another group treated with Physiogel Intensive Cream twice daily for 4 weeks. Lactic acid stinging test scores (LASTS), stratum hydration (SC) and transepidermal water loss (TEWL) were assessed before, 2 and 4 weeks after the treatment. Atopalm MLE Cream significantly lowered TEWL after 2 and 4 weeks of treatment (p < 0.01). In contrast, Physiogel Intensive Cream significantly increased TEWL after 2 weeks of treatment (p < 0.05) while TEWL significantly decreased after 4-week treatments. Moreover, both Atopalm MLE Cream and Physiogel Intensive Cream significantly increased SC hydration, and improved LASTS after 4 weeks of treatment. Both barrier-enhancing products are effective and safe for improving epidermal functions, including permeability barrier, SC hydration and LASTS, in sensitive skin. These products could be a valuable alternative for management of sensitive skin. Veterans Affairs Medical Center, San Francisco, California, USA, and NeoPharm Co., Ltd., Daejeon, Korea.
NASA Astrophysics Data System (ADS)
Prasanna Lakshmi, B.; Rajagopal Reddy, V.; Janardhanam, V.; Siva Pratap Reddy, M.; Lee, Jung-Hee
2013-11-01
We report on the effect of an annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal-insulator-semiconductor (MIS) structure by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The measured Schottky barrier height ( Φ bo) and ideality factor n values of the as-deposited Au/Ta2O5/n-GaN MIS structure are 0.93 eV ( I- V) and 1.19. The barrier height (BH) increases to 1.03 eV and ideality factor decreases to 1.13 upon annealing at 500 ∘C for 1 min under nitrogen ambient. When the contact is annealed at 600 ∘C, the barrier height decreases and the ideality factor increases to 0.99 eV and 1.15. The barrier heights obtained from the C- V measurements are higher than those obtained from I- V measurements, and this indicates the existence of spatial inhomogeneity at the interface. Cheung’s functions are also used to calculate the barrier height ( Φ bo), ideality factor ( n), and series resistance ( R s ) of the Au/Ta2O5/n-GaN MIS structure. Investigations reveal that the Schottky emission is the dominant mechanism and the Poole-Frenkel emission occurs only in the high voltage region. The energy distribution of interface states is determined from the forward bias I- V characteristics by taking into account the bias dependence of the effective barrier height. It is observed that the density value of interface states for the annealed samples with interfacial layer is lower than that of the density value of interface states of the as-deposited sample.
Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis
Lee, Sang Eun; Jeong, Se Kyoo
2010-01-01
Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045
Natural and Human-Induced Variability in Barrier-Island Response to Sea Level Rise
NASA Astrophysics Data System (ADS)
Miselis, Jennifer L.; Lorenzo-Trueba, Jorge
2017-12-01
Storm-driven sediment fluxes onto and behind barrier islands help coastal barrier systems keep pace with sea level rise (SLR). Understanding what controls cross-shore sediment flux magnitudes is critical for making accurate forecasts of barrier response to increased SLR rates. Here, using an existing morphodynamic model for barrier island evolution, observations are used to constrain model parameters and explore potential variability in future barrier behavior. Using modeled drowning outcomes as a proxy for vulnerability to SLR, 0%, 28%, and 100% of the barrier is vulnerable to SLR rates of 4, 7, and 10 mm/yr, respectively. When only overwash fluxes are increased in the model, drowning vulnerability increases for the same rates of SLR, suggesting that future increases in storminess may increase island vulnerability particularly where sediment resources are limited. Developed sites are more vulnerable to SLR, indicating that anthropogenic changes to overwash fluxes and estuary depths could profoundly affect future barrier response to SLR.
Natural and human-induced variability in barrier-island response to sea level rise
Miselis, Jennifer L.; Lorenzo-Trueba, Jorge
2017-01-01
Storm-driven sediment fluxes onto and behind barrier islands help coastal barrier systems keep pace with sea level rise (SLR). Understanding what controls cross-shore sediment flux magnitudes is critical for making accurate forecasts of barrier response to increased SLR rates. Here, using an existing morphodynamic model for barrier island evolution, observations are used to constrain model parameters and explore potential variability in future barrier behavior. Using modeled drowning outcomes as a proxy for vulnerability to SLR, 0%, 28%, and 100% of the barrier is vulnerable to SLR rates of 4, 7, and 10 mm/yr, respectively. When only overwash fluxes are increased in the model, drowning vulnerability increases for the same rates of SLR, suggesting that future increases in storminess may increase island vulnerability particularly where sediment resources are limited. Developed sites are more vulnerable to SLR, indicating that anthropogenic changes to overwash fluxes and estuary depths could profoundly affect future barrier response to SLR.
Resonant activation in a colored multiplicative thermal noise driven closed system.
Ray, Somrita; Mondal, Debasish; Bag, Bidhan Chandra
2014-05-28
In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.
Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S
2018-04-01
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.
Chiral tunneling in gated inversion symmetric Weyl semimetal.
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-02-18
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.
Probiotics: immunomodulatory properties in allergy and eczema.
Drago, L; Toscano, M; Pigatto, P D
2013-10-01
In the last decades the prevalence of allergic diseases and eczema raised significantly, and today they are the most common chronic pathologies affecting children. It has been shown that a functional intestinal mucosa provides a defensive barrier to the host against potential dangerous antigens, regulating the tolerance to them. Some inflammatory diseases of the gut weaken the barrier causing an increase in the mucosa permeability and in antigenic transition. As a consequence, there is an aberrant immune response and the release of pro-inflammatory cytokines further compromises the barrier functionality. It has been demonstrated that a correlation between allergy and eczema onset and the intestinal microflora composition exists, and in particular, it has been showed that some microorganisms are able to influence the immune response. For these reasons it has been hypothesized that probiotics may have a beneficial role in preventing and treating allergies and eczema. However, the benefits of this treatment depend on many factors, such as the bacterial strain, the duration of administration, the pathology, the patient characteristics (age, diet, allergy predisposition). The aim of this work was to review the present knowledge about the use of probiotics in allergic diseases and eczema, highlighting their role in the aforementioned pathologies.
Satoh, T; Izumi, H; Iwabuchi, N; Odamaki, T; Namba, K; Abe, F; Xiao, J Z
2016-02-01
Necrotising enterocolitis (NEC) is associated with inflammatory responses and barrier dysfunction in the gut. In this study, we investigated the effect of Bifidobacterium breve M-16V on factors related to NEC development using an experimental rat model. Caesarean-sectioned rats were given formula milk with or without B. breve M-16V by oral gavage thrice daily, and experimental NEC was induced by exposing the rats to hypoxic conditions. Naturally delivered rats that were reared by their mother were used as healthy controls. The pathological score of NEC and the expression of molecules related to inflammatory responses and the barrier function were assessed in the ileum. B. breve M-16V reduced the pathological scores of NEC and resulted in some improvement in survivability. B. breve M-16V suppressed the increased expression of molecules related to inflammation and barrier function that resulted from NEC induction. B. breve M-16V normalised Toll-like receptor (TRL)4 expression and enhanced TLR2 expression. Our data suggest that B. breve M-16V prevents NEC development by modulating TLR expressions and suppressing inflammatory responses in a rat model.
Chiral tunneling in gated inversion symmetric Weyl semimetal
Bai, Chunxu; Yang, Yanling; Chang, Kai
2016-01-01
Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491
Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei
2016-06-01
Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.
Che, Fanglin; Zhang, Renqin; Hensley, Alyssa J; Ha, Su; McEwen, Jean-Sabin
2014-02-14
To provide a basis for understanding the reactive processes on nickel surfaces at fuel cell anodes, we investigate the influence of an external electric field on the dehydrogenation of methyl species on a Ni(111) surface using density functional theory calculations. The structures, adsorption energies and reaction barriers for all methyl species dissociation on the Ni(111) surface are identified. Our results show that the presence of an external electric field does not affect the structures and favorable adsorption sites of the adsorbed species, but causes the adsorption energies of the CHx species at the stable site to fluctuate around 0.2 eV. Calculations give an energy barrier of 0.692 eV for CH3* → CH2* + H*, 0.323 eV for CH2* → CH* + H* and 1.373 eV for CH* → C* + H*. Finally, we conclude that the presence of a large positive electric field significantly increases the energy barrier of the CH* → C* + H* reaction more than the other two reactions, suggesting that the presence of pure C atoms on Ni(111) are impeded in the presence of an external positive electric field.
Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice.
Malaisé, Yann; Ménard, Sandrine; Cartier, Christel; Lencina, Corinne; Sommer, Caroline; Gaultier, Eric; Houdeau, Eric; Guzylack-Piriou, Laurence
2018-01-01
The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A. Gravid mice were orally exposed to bisphenol (50 μg/kg body weight/day) from day 15 of pregnancy until weaning. Gut barrier function, local and systemic immunity were assessed in adult female offspring. Mice perinatally exposed to bisphenol showed a decrease in ileal lysozyme expression and a fall of fecal antimicrobial activity. In offspring mice exposed to bisphenol, an increase in colonic permeability was observed associated with an increase in interferon-γ level and a drop of colonic IgA + cells and fecal IgA production. Interestingly, altered frequency of innate lymphoid cells type 3 occurred in the small intestine, with an increase in IgG response against commensal bacteria in sera. These effects were related to a defect in dendritic cell maturation in the lamina propria and spleen. Activated and regulatory T cells were decreased in the lamina propria. Furthermore, perinatal exposure to bisphenol promoted a sharp increase in interferon-γ and interleukin-17 production in the intestine and elicited a T helper 17 profile in the spleen. To conclude, perinatal exposure to bisphenol weakens protective and regulatory immune functions in the intestine and at systemic level in adult offspring. The increased susceptibility to inflammatory response is an interesting lead supporting bisphenol-mediated adverse consequences on food reactions and infections.
Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice
Yang, Siming; Gu, Changping; Mandeville, Emiri T.; Dong, Yuanlin; Esposito, Elga; Zhang, Yiying; Yang, Guang; Shen, Yuan; Fu, Xiaobing; Lo, Eng H.; Xie, Zhongcong
2017-01-01
Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium. PMID:28848542
How good is the neosquamous epithelium?
Orlando, Roy C
2014-01-01
Endoscopic radiofrequency ablation of dysplastic Barrett's esophagus (BE) combined with proton pump inhibitor therapy is commonly utilized for preventing progression of dysplastic BE to esophageal adenocarcinoma. Fundamental to the success of this and all ablative approaches is the healing of the ablated areas of BE with a stratified squamous epithelium referred to as 'neosquamous epithelium' (NSE). Although NSE appears 'normal' endoscopically, the reemergence of BE over time in the previously ablated segments raises the question of the health and integrity of NSE. The health of NSE was recently investigated in endoscopic biopsies in vitro in a group of patients after ablation while on proton pump inhibitors. Biopsies of NSE were compared to upper squamous epithelium (USE) from the same patients morphologically (light microscopy) and with respect to barrier function by measuring electrical resistance and fluorescein flux in mini-Ussing chambers. Compared to USE, NSE exhibited dilated intercellular spaces and inflammation and defective barrier function by low electrical resistance and high fluorescein flux. Moreover, NSE exhibited downregulation of claudin-4, a highly expressed protein in squamous tight junctions. NSE has defective barrier function in part due to downregulation of claudin-4. Since downregulation of claudin-4 increases paracellular permeability to cations, e.g. hydrogen ions, NSE is more vulnerable to attack and damage by acidic and weakly acidic refluxates--a phenomenon that may contribute in part to the reemergence of BE. 2014 S. Karger AG, Basel.
Barrier properties of cultured retinal pigment epithelium.
Rizzolo, Lawrence J
2014-09-01
The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Horvath, A; Leber, B; Schmerboeck, B; Tawdrous, M; Zettel, G; Hartl, A; Madl, T; Stryeck, S; Fuchs, D; Lemesch, S; Douschan, P; Krones, E; Spindelboeck, W; Durchschein, F; Rainer, F; Zollner, G; Stauber, R E; Fickert, P; Stiegler, P; Stadlbauer, V
2016-11-01
Probiotics may correct intestinal dysbiosis and proinflammatory conditions in patients with liver cirrhosis. To test the effects of a multispecies probiotic on innate immune function, bacterial translocation and gut permeability. In a randomised, double blind, placebo-controlled study, stable cirrhotic out-patients either received a daily dose of a probiotic powder containing eight different bacterial strains (Ecologic Barrier, Winclove, Amsterdam, The Netherlands) (n = 44) or a placebo (n = 36) for 6 months and were followed up for another 6 months. We found a significant but subclinical increase in neutrophil resting burst (2.6-3.2%, P = 0.0134) and neopterin levels (7.7-8.4 nmol/L, P = 0.001) with probiotics but not with placebo. Probiotic supplementation did not have a significant influence on neutrophil phagocytosis, endotoxin load, gut permeability or inflammatory markers. Ten severe infections occurred in total; one during intervention in the placebo group, and five and four after the intervention has ended in the probiotic and placebo group, respectively. Liver function showed some improvement with probiotics but not with placebo. Probiotic supplementation significantly increased serum neopterin levels and the production of reactive oxygen species by neutrophils. These findings might explain the beneficial effects of probiotics on immune function. Furthermore, probiotic supplementation may be a well-tolerated method to maintain or even improve liver function in stable cirrhosis. However, its influence on gut barrier function and bacterial translocation in cirrhotic patients is minimal. © 2016 The Authors. Alimentary Pharmacology & Therapeutics Published by John Wiley & Sons Ltd.
Defenders and Challengers of Endothelial Barrier Function
Rahimi, Nader
2017-01-01
Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721
Liévin-Le Moal, Vanessa
2013-06-01
Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.
In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.
The rate of the reaction between CN and C2H2 at interstellar temperatures.
Woon, D E; Herbst, E
1997-03-01
The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.
A new DFT functional based on spin-states and SN2 barriers
NASA Astrophysics Data System (ADS)
Swart, M.; Solà, M.; Bickelhaupt, F. M.
2012-12-01
We recently reported a study into what causes the dramatic differences between OPBE and PBE for reaction barriers, spin-state energies, hydrogen-bonding and π-π stacking energies.1 It was achieved by smoothly switching from OPBE to PBE at a predefined point P of the reduced density gradient s. By letting the point P run as function of the reduced density gradient s, with values from s=0.1 to s=10, we could determine which part of the exchange functional determines its behavior for the different interactions. Based on the thus obtained results, we created a new exchange functional that showed the good results of OPBE for reaction barriers and spin-state energies, and combined it with the good (H-bonds) and reasonable (π-stacking) results of PBE for weak interactions. In other words, it combined the best of OPBE with the best of PBE. Encouraged by these good results, we have further improved the new exchange functional and fine-tuned its parameters.2 Similar to the switched functional from ref. 1, our new SSB functional2 works well for SN2 barriers (see e.g. ref. 3), spin states and H-bonding interactions. Moreover, by including Grimme's dispersion corrections4,5 (to give our final SSB-D functional) it also works well for π-π stacking interactions.2 In summary, we have constructed a new GGA exchange functional that when combined with the sPBE correlation functional6 gives the correct spin ground-state of iron complexes, and small deviations for SN2 barriers (2.7 kcalṡmol-1), geometries (0.005 Å), Hbond distances (0.012 Å), weak interactions (S22 set, 0.5 kcalṡmol-1), and transition-metal ligand distances (0.008 Å).
Gut barrier in health and disease: focus on childhood.
Viggiano, D; Ianiro, G; Vanella, G; Bibbò, S; Bruno, G; Simeone, G; Mele, G
2015-01-01
The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the immune tolerance and the immune response to pathogens. Other mechanisms, such as gastric juice and pancreatic enzymes (which both have antibacterial properties) participate in the luminal integrity of the gut barrier. From the outer layer to the inner layer, the physical barrier is composed of gut microbiota (that competes with pathogens to gain space and energy resources, processes the molecules necessary to mucosal integrity and modulates the immunological activity of deep barrier), mucus (which separates the intraluminal content from more internal layers and contains antimicrobial products and secretory IgA), epithelial cells (which form a physical and immunological barrier) and the innate and adaptive immune cells forming the gut-associated lymphoid tissue (which is responsible for antigen sampling and immune responses). Disruption of the gut barrier has been associated with many gastrointestinal diseases, but also with extra-intestinal pathological condition, such as type 1 diabetes mellitus, allergic diseases or autism spectrum disorders. The maintenance of a healthy intestinal barrier is therefore of paramount importance in children, for both health and economic reasons. Many drugs or compounds used in the treatment of gastrointestinal disorders act through the restoration of a normal intestinal permeability. Several studies have highlighted the role of probiotics in the modulation and reduction of intestinal permeability, considering the strong influence of gut microbiota in the modulation of the function and structure of gut barrier, but also on the immune response of the host. To date, available weapons for the maintenance and repair of gut barrier are however few, even if promising. Considerable efforts, including both a better understanding of the gut barrier features and mechanisms in health and disease, and the development of new pharmacological approaches for the modulation of gut barrier components, are needed for the prevention and treatment of gastrointestinal and extraintestinal diseases associated with gut barrier impairment.
Genova, Jennifer L.; Fehon, Richard G.
2003-01-01
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the α and β subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron–glial interactions in the mammalian nervous system. PMID:12782686
Genova, Jennifer L; Fehon, Richard G
2003-06-09
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the alpha and beta subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron-glial interactions in the mammalian nervous system.
A new discussion of the cutaneous vascular reactivity in sensitive skin: A sub-group of SS?
Chen, S Y; Yin, J; Wang, X M; Liu, Y Q; Gao, Y R; Liu, X P
2018-02-02
Sensitive skin (SS) seems not to be a one-dimensional condition and many scholars concentrate on skin barrier disruption or sensorineural change, but few focus on its increased vascular reactivity. This study explored the possibility of using the different selection methods and measurement methods to verify a high vascular reactivity in SS without an impaired cutaneous barrier function. Sixty "self-perceived sensitive skin" volunteers were enlisted and each one completed three kinds of screening tests: assess cutaneous sensory using questionnaire survey and Lactic Acid Sting Test (LAST); assess barrier function using Sodium lauryl sulphate (SLS) skin irritation test and assess cutaneous vascular reactivity using 98% DMSO test and non-invasive measurement. Volunteers were divided into different groups based on response to SLS. The DMSO clinical score and the biophysical parameters obtained by non-invasive measurement were subsequently analysed. (1) The positive correlations could be seen between sum LAST score and sum DMSO score regardless of the observation time; (2) The biological parameters (CBF、a*values and L* values) are all keeping with DMSO score; (3) If the participants were divided into SLS reactors and non-reactors, a composition ratio of DMSO score was significant difference in these two groups and in SLS non-reactors, there were still seven participants showed high reaction to DMSO. There is a sub-group of SS for characteristics of a high vascular reactivity without an impaired cutaneous barrier function. The DMSO test and novel non-invasive measurements which are conducive to assess cutaneous vascular reactivity, combined with SLS skin irritation test could help us to screen this kind of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells
Calvo, Patricia; Ropero, Inés; Pintor, Jesús
2014-01-01
Abstract Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Methods: Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. Results: The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. Conclusions: The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures. PMID:25100331
Bourke, Claire D.; Mountford, Adrian P.
2015-01-01
The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens. PMID:25974019
Clearance of amyloid-β peptide across the choroid plexus in Alzheimer's disease.
Alvira-Botero, Ximena; Carro, Eva M
2010-12-01
Aging and several neurodegenerative diseases bring about changes in the anatomy and physiology of the choroid plexus. The identification of specific membrane receptors that bind and internalize extracellular ligands has revolutionized the traditional roles of this tissue. Amyloid beta peptide (Aβ), the major constituent of the amyloid core of senile plaques in patients with Alzheimer's disease (AD) is known to contribute to disease neuropathology and progression. Recent emphasis on comorbidity of AD and a deficient clearance of Aβ across the blood-brain barrier and blood-cerebrospinal fluid barrier have highlighted the importance of brain Aβ clearance in AD. The megalin receptor has also been implicated in the pathogenesis of AD. Faulty Aβ clearance from the brain across the choroid plexus epithelium by megalin appears to mediate focal Aβ accumulation in AD. Patients with AD have reduced levels of megalin at the choroid plexus, which in turn seem to increase brain levels of Aβ through a decreased efflux of brain Aβ. Therapies that increase megalin expression at the choroid plexus could potentially control accumulation of brain Aβ. This review covers in depth the anatomy and function of the choroid plexus, focusing on the brain barrier at the choroid plexus, as it actively participates in Aβ clearance. In addition, we describe the role of the choroid plexus in brain functions, aging and AD, as well as the role of megalin in the process of Aβ clearance. Finally, we present current data on the use of choroid plexus cells to repair the damaged brain.
Mast cells are dispensable in a genetic mouse model of chronic dermatitis.
Sulcova, Jitka; Meyer, Michael; Guiducci, Eva; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Werner, Sabine
2015-06-01
Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells. Mast cells accumulated and degranulated in the skin of young Fgfr1-/Fgfr2-deficient mice, most likely as a consequence of increased expression of the mast cell chemokine Ccl2. The increase in mast cells occurred before the development of histological abnormalities, indicating a functional role of these cells in the inflammatory skin phenotype. To test this hypothesis, we mated the Fgfr1-/Fgfr2-deficient mice with mast cell-deficient CreMaster mice. Surprisingly, loss of mast cells did not or only mildly affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, accumulation and activation of different immune cells, or expression of different proinflammatory cytokines in the skin. These results reveal that mast cells are dispensable for the development of chronic inflammation in response to a defect in the epidermal barrier. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Allsopp, Philip; Possemiers, Sam; Campbell, David; Oyarzábal, Iván Saldaña; Gill, Chris; Rowland, Ian
2013-08-01
Linear inulin-type fructan (ITF) prebiotics have a putative role in the prevention of colorectal cancer, whereas relatively little is known about branched fructans. This study aims to investigate the fermentation properties and potential prebiotic activity of branched fructans derived from Agave angustifolia Haw, using the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model. The proximal, transverse and distal vessels were used to investigate fructan fermentation throughout the colon and to assess the alterations of the microbial composition and fermentation metabolites (short chain fatty acids and ammonia). The influence on bioactivity of the fermentation supernatant was assessed by MTT, Comet and transepithelial electrical resistance (TER), respectively. Addition of Agave fructan to the SHIME model significantly increased (P < 0.05), bifidobacteria populations (proximal and transverse), SCFA concentrations (proximal, transverse and distal) and decreased ammonia concentrations in the distal vessel. Furthermore, the fermentation supernatant significantly (P < 0.05) increased the TER of a Caco-2 cell monolayer (%) and decreased fluorescein-based paracellular flux, suggesting enhanced barrier function and reduced epithelial barrier permeability (proximal and distal vessel). While cytotoxicity and genotoxicity remained unaltered in response to the presence of Agave fructans. To conclude, branched Agave fructans show indications of prebiotic activity, particularly in relation to colon health by exerting a positive influence on gut barrier function, an important aspect of colon carcinogenesis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Median barrier crash severity: some new insights.
Hu, Wen; Donnell, Eric T
2010-11-01
Median barrier is used to prevent cross-median crashes on divided highways. Although it is well documented that crash frequencies increase after installing median barrier, little is known about median barrier crash severity outcomes. The present study estimated a nested logit model of median barrier crash severity using 5 years of data from rural divided highways in North Carolina. Vehicle, driver, roadway, and median cross-section design data were factors considered in the model. A unique aspect of the data used to estimate the model was the availability of median barrier placement and median cross-slope data, two elements not commonly included in roadway inventory data files. The estimation results indicate that collisions with a cable median barrier increase the probability of less-severe crash outcomes relative to collisions with a concrete or guardrail median barrier. Increasing the median barrier offset was associated with a lower probability of severe crash outcomes. The presence of a cable median barrier installed on foreslopes that were between 6H:1V and 10H:1V were associated with an increase in severe crash probabilities when compared to cable median barrier installations on foreslopes that were 10H:1V or flatter. 2010 Elsevier Ltd. All rights reserved.
Using FLIM in the study of permeability barrier function of aged and young skin
NASA Astrophysics Data System (ADS)
Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.
2006-02-01
Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.
Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott
2017-09-21
Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.
Nickols, Jordan; Obiako, Boniface; Ramila, K C; Putinta, Kevin; Schilling, Sarah; Sayner, Sarah L
2015-12-15
Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. Copyright © 2015 the American Physiological Society.
Nickols, Jordan; Obiako, Boniface; Ramila, K. C.; Putinta, Kevin; Schilling, Sarah
2015-01-01
Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. PMID:26475732
Giant oscillating magnetoresistance in silicene-based structures
NASA Astrophysics Data System (ADS)
Oubram, O.; Navarro, O.; Rodríguez-Vargas, I.; Guzman, E. J.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.
2018-02-01
Ballistic electron transport in a silicene structure, composed of a pair of magnetic gates, in the ferromagnetic and an-tiferromagnetic configuration is studied. This theoretical study has been done using the matrix transfer method to calculate the transmission, the conductance for parallel and antiparallel magnetic alignment and the magnetoresistance. Results show that conductance and magnetoresistance oscillate as a function of the length between the two magnetic domains. The forbidden transmission region also increases as a function of the barrier separation distance.
Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).
DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C
2017-08-04
The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation of tight junctions decreases cell motility and prevents any morphological transitions, (3) flow serves to increase the contact area between cells, resulting in very low cell displacement in the monolayer, (4) since tight junctions are already formed under static conditions, increasing the contact area between cells does not cause upregulation in protein and gene expression of BBB markers, and (5) the increase in contact area induced by flow makes barrier function more robust.
Landes, Sara J; Rodriguez, Allison L; Smith, Brandy N; Matthieu, Monica M; Trent, Lindsay R; Kemp, Janet; Thompson, Caitlin
2017-12-01
National implementation of evidence-based psychotherapies (EBPs) in the Veterans Health Administration (VHA) provides important lessons on the barriers and facilitators to implementation in a large healthcare system. Little is known about barriers and facilitators to the implementation of a complex EBP for emotional and behavioral dysregulation-dialectical behavioral therapy (DBT). The purpose of this study was to understand VHA clinicians' experiences with barriers, facilitators, and benefits from implementing DBT into routine care. This national program evaluation survey measured site characteristics of VHA sites (N = 59) that had implemented DBT. DBT was most often implemented in general mental health outpatient clinics. While 42% of sites offered all four modes of DBT, skills group was the most frequently implemented mode. Fifty-nine percent of sites offered phone coaching in any form, yet only 11% of those offered it all the time. Providers were often provided little to no time to support implementation of DBT. Barriers that were difficult to overcome were related to phone coaching outside of business hours. Facilitators to implementation included staff interest and expertise. Perceived benefits included increased hope and functioning for clients, greater self-efficacy and compassion for providers, and ability to treat unique symptoms for clinics. There was considerable variability in the capacity to address implementation barriers among sites implementing DBT in VHA routine care. Mental health policy makers should note the barriers and facilitators reported here, with specific attention to phone coaching barriers.