Science.gov

Sample records for barrier infrared detector

  1. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  2. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  3. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  4. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  5. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  6. Surface Leakage Mechanisms in III-V Infrared Barrier Detectors

    NASA Astrophysics Data System (ADS)

    Sidor, D. E.; Savich, G. R.; Wicks, G. W.

    2016-09-01

    Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III-V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.

  7. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  8. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  9. Design of InAs/GaSb superlattice infrared barrier detectors

    NASA Astrophysics Data System (ADS)

    Delmas, M.; Rossignol, R.; Rodriguez, J. B.; Christol, P.

    2017-04-01

    Design of InAs/GaSb type-II superlattice (T2SL) infrared barrier detectors is theoretically investigated. Each part of the barrier structures is studied in order to achieve optimal device operation at 150 K and 77 K, in the midwave and longwave infrared domain, respectively. Whatever the spectral domain, nBp structure with a p-type absorbing zone and an n-type contact layer is found to be the most favourable detector architecture allowing a reduction of the dark-current associated with generation-recombination processes. The nBp structures are then compared to pin photodiodes. The MWIR nBp detector with 5 μm cut-off wavelength can operate up to 120 K, resulting in an improvement of 20 K on the operating temperature compared to the pin device. The dark-current density of the LWIR nBp device at 77 K is expected to be as low as 3.5 × 10-4 A/cm2 at 50 mV reverse bias, more than one decade lower than the usual T2SL photodiode. This result, for a device having cut-off wavelength at 12 μm, is at the state of the art compared to the well-known MCT 'rule 07'.

  10. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  11. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector

    SciTech Connect

    Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou; Nguyen, Jean; Hoglund, Linda; Fisher, Anita M.; Keo, Sam. A.; Ting, David Z.-Y.; Gunapala, Sarath D.

    2015-12-28

    In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation. This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.

  12. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  13. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  14. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  15. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  16. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  17. Cadmium mercury telluride infrared detectors

    NASA Astrophysics Data System (ADS)

    Elliott, C. T.

    Signal Processing In The Element (SPITE) detectors used in high performance thermal imaging systems are discussed. Developments to improve spatial and temperature resolution are outlined. Focal plane arrays of electronically scanned two-dimensional arrays of CMT detectors are treated. Use of photovoltaic CMT detectors hybridized with silicon addressing circuits is reported. Research to raise the operating temperature of infrared detectors is summarized.

  18. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  19. Numerical Simulation and Analytical Modeling of InAs nB n Infrared Detectors with n-Type Barrier Layers

    NASA Astrophysics Data System (ADS)

    Reine, Marion; Pinkie, Benjamin; Schuster, Jonathan; Bellotti, Enrico

    2014-08-01

    This paper presents one-dimensional numerical simulations and analytical modeling of InAs nB n detectors having n-type barrier layers (BLs) with donor concentrations ranging from 1.8 × 1015 cm-3 to 2.5 × 1016 cm-3. We consider only "ideal" defect-free nB n detectors, in which dark current is due only to the fundamental mechanisms of Auger-1 and radiative recombination. We employ a simplified nB n geometry, with the absorber layer (AL) and contact layer (CL) having the same donor concentration and comparable thicknesses, to reveal more clearly the underlying device physics and operation of this novel infrared detector. We examine quantitatively the three space-charge regions in the nB n detector with an n-type BL, and determine a criterion for combinations of bias voltage and BL donor concentration that allow operation of the nB n with no depletion region in the narrow-gap AL or CL. We determine the quantitative characteristics of the valence band (VB) barrier that is present for an n-type BL but not for a p-type BL. Solving Poisson's equation in the uniformly doped BL yields analytical expressions for the VB barrier height versus bias voltage, and an approximate expression for the crossover voltage for the onset of a depletion region in the AL. Our simulations lead to a new model for the ideal nB n with an n-type BL that consists of two ideal back-to-back photodiodes connected by a voltage-dependent series resistance representing the BL. Increasing the BL donor concentration lowers exponentially the mobile hole concentration in the BL, thereby exponentially increasing the BL series resistance. Reductions in dark current and photocurrent due to the valence barrier in the n-type BL only become appreciable when the BL series resistance becomes comparable to or exceeds the diffusion current resistances of the AL and CL.

  20. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  1. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  2. Near infrared detectors for SNAP

    SciTech Connect

    Schubnell, M.; Barron, N.; Bebek, C.; Brown, M.G.; Borysow, M.; Cole, D.; Figer, D.; Lorenzon, W.; Mostek, N.; Mufson, S.; Seshadri, S.; Smith, R.; Tarle, G.

    2006-05-23

    Large format (1k x 1k and 2k x 2k) near infrared detectors manufactured by Rockwell Scientific Center and Raytheon Vision Systems are characterized as part of the near infrared R&D effort for SNAP (the Super-Nova/Acceleration Probe). These are hybridized HgCdTe focal plane arrays with a sharp high wavelength cut-off at 1.7 um. This cut-off provides a sufficiently deep reach in redshift while it allows at the same time low dark current operation of the passively cooled detectors at 140 K. Here the baseline SNAP near infrared system is briefly described and the science driven requirements for the near infrared detectors are summarized. A few results obtained during the testing of engineering grade near infrared devices procured for the SNAP project are highlighted. In particular some recent measurements that target correlated noise between adjacent detector pixels due to capacitive coupling and the response uniformity within individual detector pixels are discussed.

  3. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  4. Subminiature infrared detector translation stage

    NASA Technical Reports Server (NTRS)

    Bell, Alan D.

    1989-01-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  5. Growing Crystals for Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Unidirectional solidification yields bulk crystals with compositional homogeneity. Unidirectionaly crystal-growth furnace assembly travels vertically so crystal grows upward from bottom tapered end of ampoule. Separately controlled furnaces used for hot (upper) and cold (lower) zones. New process produces ingots with radial compositional homogeneity suitable for fabricating infrared detectors.

  6. Pixel isolation of low dark-current large-format InAs/GaSb superlattice complementary barrier infrared detector focal plane arrays with high fill factor

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Hill, Cory J.; Rafol, Don; Keo, Sam; Soibel, Alexander; Ting, David Z.-Y.; Mumolo, Jason; Liu, John; Gunapala, Sarath D.

    2011-01-01

    Low dark current and high fill factor are two crucial characteristics for the realization of the InAs/GaSb superlattice (SL) technology as third generation focal plane arrays (FPAs). Recent development proved high performance results for the complementary barrier infrared detector (CBIRD) design, and a high-quality etch technique is required to minimize surface leakage currents. We report on a n-CBIRD with 10.3 μm cutoff, exhibiting a responsivity of 1.7 A/W and dark current density of 1×10-5 A/cm2 at 77K under 0.2 V bias, without AR coating and without passivation. Results from four different mesa isolation techniques are compared on single element diodes: chemical wet etch using C4H6O6:H3PO4:H2O2:H2O, BCl3/Ar inductively coupled plasma (ICP), CH4/H2/Ar ICP, and CH4/H2/BCl3/Cl2/Ar ICP. The CH4/H2/BCl3/Cl2/Ar etched structures yielded more than 2.5 times improvement in dark current density and nearvertical sidewalls. Using this etching technique, we then implement a 1k x 1k p-CBIRD array with 11.5 μm cutoff and peak responsivity of 3 A/W. Operating at T = 80K, the array yielded a 81% fill factor with 98% operability and performance results of 21% quantum efficiency, 53 mK NE▵T, and NEI of 6.9×1013 photons/sec-cm2.

  7. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  8. Infrared detectors for Earth observation

    NASA Astrophysics Data System (ADS)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  9. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  10. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  11. Barrier Engineered Quantum Dot Infrared Photodetectors

    DTIC Science & Technology

    2015-06-01

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT INFRARED PHOTODETECTORS Sanjay Krishna Center for High Technology...2011 – 22 May 2012 4. TITLE AND SUBTITLE Barrier Engineered Quantum Dot Infrared Photodetectors 5a. CONTRACT NUMBER FA9453-12-1-0336 5b. GRANT...is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT To investigate barrier engineered designs to reduce the dark current in quantum dot infrared

  12. Germanium blocked impurity band far infrared detectors

    NASA Astrophysics Data System (ADS)

    Rossington, Carolyn Sally

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the Star Wars nuclear defense scheme proposed by the Reagan administration.

  13. Germanium blocked impurity band far infrared detectors

    SciTech Connect

    Rossington, C.S.

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the ''Star Wars'' nuclear defense scheme proposed by the Reagan administration.

  14. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  15. Infrared properties of the Double Barrier Structure

    NASA Astrophysics Data System (ADS)

    Sheng, H. Y.; Sinkkonen, J.

    The infrared admittance of the Double Barrier Structure (DBS) is investigated by using a time-dependent quantum theory. The analysis is carried out under the small signal condition with no dc bias. The calculated results show conductance oscillations in the infrared frequency region. The oscillations are associated with the quantum well transit time resonances.

  16. New infrared detectors and solar cells

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1979-01-01

    The inventions and published papers related to the project are listed. The research with thin films of LaF3 deposited on GaAs substrates is reported along with improvements in photocapacitative MIS infrared detectors.

  17. Infrared array detectors. [for astronomical observation

    NASA Technical Reports Server (NTRS)

    Arens, J. F.

    1982-01-01

    Arrays of detectors sensitive to infrared radiation will enable astronomical observations to be made with shorter observing times than with discrete detectors and with good relative spatial accuracy. Systems using such arrays are being developed for astronomy in several regions of the electromagnetic spectrum. An example of an infrared system is given here consisting of a 32x32 element bismuth doped silicon charge injection device array that has been used in an astronomical camera.

  18. SAPHIRA detector for infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.

    2014-08-01

    The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the

  19. Doping-Spike PtSi Schottky Infrared Detectors with Extended Cutoff Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1994-01-01

    A technique incorporating a p+ doping spike at the silicide/Si interface to reduce the effective Schottky barrier of the silicide infrared detectors and thus extend the cutoff wavelength has been developed.

  20. A novel electron tunneling infrared detector

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1990-01-01

    The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.

  1. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  2. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    SciTech Connect

    Datskos, P.G. |; Rajic, S.; Datskou, I.; Egert, C.M.

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  3. Ferroelectric infrared detector and method

    DOEpatents

    Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  4. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  5. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  6. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  7. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation

    SciTech Connect

    Roy, S.; Midya, K.; Duttagupta, S. P.; Ramakrishnan, D.

    2014-09-28

    The fabrication of nano-scale NiSi/n-Si Schottky barrier diode by rapid thermal annealing process is reported. The characterization of the nano-scale NiSi film was performed using Micro-Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The thickness of the film (27 nm) has been measured by cross-sectional Secondary Electron Microscopy and XPS based depth profile method. Current–voltage (I–V) characteristics show an excellent rectification ratio (I{sub ON}/I{sub OFF} = 10⁵) at a bias voltage of ±1 V. The diode ideality factor is 1.28. The barrier height was also determined independently based on I–V (0.62 eV) and high frequency capacitance–voltage technique (0.76 eV), and the correlation between them has explained. The diode photo-response was measured in the range of 1.35–2.5 μm under different reverse bias conditions (0.0–1.0 V). The response is observed to increase with increasing reverse bias. From the photo-responsivity study, the zero bias barrier height was determined to be 0.54 eV.

  8. The SNAP near infrared detectors

    SciTech Connect

    Tarle, G.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.D.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, Anne; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kim, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Lampton, M.; Levi, M.E.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Massey, R.; Miguel, R.; McKay, T.; McKee, S.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tomasch, A.; von der Lippe, H.; Vincent, R.; Walder, J.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.

  9. Advances in Detector Technology for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    McCreight, Craig; Cheng, P. L. (Technical Monitor)

    1995-01-01

    Progress in semiconductor materials and processing technology has allowed the development of infrared detector arrays with unprecedented sensitivity, for imaging and spectroscopic applications in astronomy. The earlier discrete-detector approach has been replaced by large-element (up to 1024 x 1024 pixel), multiplexed devices. Progress has been made against a number of key limiting factors, such as quantum efficiency, noise, spectral response, linearity, and dark current. Future developments will focus on the need for even larger arrays, which operate at higher temperatures.

  10. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  11. Infrared SWAP detectors: pushing the limits

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Taalat, R.; Brunner, A.; Rubaldo, L.; Augey, T.; Kerlain, A.; Péré-Laperne, N.; Manissadjian, A.; Gravrand, O.; Castelein, P.; Destéfanis, G.

    2015-06-01

    The growing demand for compact and low consumption infrared cooled detectors is driven by different products segments. Hand Held Thermal Imagers, UAV, small gimbals are some of them. End users are requiring devices easy to use with fast cool down time, excellent portability, low acoustic noise with no trade-offs in reliability and performance. These requirements are pushing the technology developments toward constant innovations on detectors, coolers, read out circuits and proximity electronic boards. In this paper we are discussing the different figures of merit and highlighting the challenges for the different components. An update on the developments of HOT technology for most advanced pixel pitch will be presented. Very compact products are driving the developments for innovative coolers and cryogenic solutions. A low power compact architecture is a must for electronic boards to optimize the overall system power consumption. Finally a look to the future requirements for further shrink will be addressed.

  12. Gerard Kuiper and the Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  13. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  14. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  15. Innovative mid-infrared detector concepts

    NASA Astrophysics Data System (ADS)

    Höfling, Sven; Pfenning, Andreas; Weih, Robert; Ratajczak, Albert; Hartmann, Fabian; Knebl, Georg; Kamp, Martin; Worschech, Lukas

    2016-09-01

    Gas sensing is a key technology with applications in various industrial, medical and environmental areas. Optical detection mechanisms allow for a highly selective, contactless and fast detection. For this purpose, rotational-vibrational absorption bands within the mid infrared (MIR) spectral region are exploited and probed with appropriate light sources. During the past years, the development of novel laser concepts such as interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) has driven a continuous optimization of MIR laser sources. On the other hand side, there has been relatively little progress on detectors in this wavelength range. Here, we study two novel and promising GaSb-based detector concepts: Interband cascade detectors (ICD) and resonant tunneling diode (RTD) photodetectors. ICDs are a promising approach towards highly sensitive room temperature detection of MIR radiation. They make use of the cascading scheme that is enabled by the broken gap alignment of the two binaries GaSb and InAs. The interband transition in GaSb/InAs-superlattices (SL) allows for normal incidence detection. The cut-off wavelength, which determines the low energy detection limit, can be engineered via the SL period. RTD photodetectors act as low noise and high speed amplifiers of small optically generated electrical signals. In contrast to avalanche photodiodes, where the gain originates from multiplication due to impact ionization, in RTD photodetectors a large tunneling current is modulated via Coulomb interaction by the presence of photogenerated minority charge carriers. For both detector concepts, first devices operational at room temperature have been realized.

  16. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1990-01-01

    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies.

  17. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  18. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  19. nBn Infrared Detector Containing Graded Absorption Layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.

    2009-01-01

    It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.

  20. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.; Clark, Ivan O.

    1991-01-01

    Twenty pyroelectric type infrared detectors were flown onboard the Long Duration Exposure Facility (LDEF). The detector chips were of three different pyroelectric materials: lithium-tantalate, strontium-barium-niobate, and triglycine-sulfide. The experiment was passive; no measurements were taken during the flight. Performance of the detectors was measured before and after flight. Postflight measurements revealed that detectors made of lithium-tantalate and strontium-barium-niobate suffered no measureable loss in performance. Detectors made of triglycine-sulfide suffered complete loss of performance, but so did the control samples of the same material. Repoling of the triglycine-sulfide failed to revive the detectors.

  1. Multi-spectral black meta-infrared detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  2. Uncooled infrared detector and imager development at DALI Technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang; Zhu, Xiaorong; Ma, Zhigang

    2015-06-01

    Zhejiang Dali Technology Co. Ltd. is one of the major players in the China Infrared industry. The company has been working on infrared imagers using uncooled FPAs for about 15 years. It started the research and development of uncooled microbolometer detectors since 2006, and has brought several uncooled detectors into mass production, including 35um 384x288, 25um 160x120, 384x288, 640x480, and 17um 384x288, 640x480. In this presentation, we will describe the uncooled infrared detector and imager development at DALI Technology.

  3. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  4. Effect of space exposure on pyroelectric infrared detectors (A0135)

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  5. Infrared Detectors Overview in the Short Wave Infrared to Far Infrared for CLARREO Mission

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Mlynczak, Martin G.; Refaat, Tamer F.

    2010-01-01

    There exists a considerable interest in the broadband detectors for CLARREO Mission, which can be used to detect CO2, O3, H2O, CH4, and other gases. Detection of these species is critical for understanding the Earth?s atmosphere, atmospheric chemistry, and systemic force driving climatic changes. Discussions are focused on current and the most recent detectors developed in SWIR-to-Far infrared range for CLARREO space-based instrument to measure the above-mentioned species. These detector components will make instruments designed for these critical detections more efficient while reducing complexity and associated electronics and weight. We will review the on-going detector technology efforts in the SWIR to Far-IR regions at different organizations in this study.

  6. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    NASA Technical Reports Server (NTRS)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  7. Tunable Bandwidth Quantum Well Infrared Photo Detector (TB-QWIP)

    DTIC Science & Technology

    2003-12-01

    conduction band called the band gap of the material. In a semiconductor the band gap is the minimum energy necessary for an electron to transfer from the...the optical energy from a heated object, instead of relying directly on the transfer of heat energy (like thermal detectors do). A quantum well can...to achieve electronically tunable bandwidth quantum well infrared photo detectors (Choi K. K. 1), or tunable bandwidth quantum dot infrared photo

  8. Characterization and Optimization of Hg sub 1-x Cd sub x Te Infrared Detector Materials.

    DTIC Science & Technology

    MERCURY , *INFRARED DETECTORS, *CADMIUM, *TELLURIUM, *INFRARED PHOTOCONDUCTORS, PROCESSING, SEMICONDUCTORS, TRANSPORT PROPERTIES, SURFACE PROPERTIES, NOISE, INFRARED OPTICAL MATERIALS, LOW FREQUENCY, ABSORPTION COEFFICIENTS.

  9. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  10. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  11. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  12. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  13. Capture time versus barrier thickness in quantum-well structures measured by infrared photoconductive gain

    NASA Astrophysics Data System (ADS)

    Rosencher, E.; Luc, F.; Bois, P.; Nagle, J.; Cordier, Y.

    1993-12-01

    Photoconductive gain measurements in quantum-well (QW) infrared detectors are used to determine the variation of the capture time of electrons in QWs as a function of barrier thickness. The capture time is shown to be proportional to the multi-quantum-well period, which is consistent with a quantum mechanical description of the capture process. The measured values are far higher than the ones measured by time-resolved photoluminescence, ranging from 8 to 150 ps, depending on the applied electric field and barrier thickness. The reasons for this discrepancy are discussed.

  14. Infra-red signature neutron detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  15. Effect of space exposure of pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1992-01-01

    Pyroelectric detectors are one of many different types of infrared radiation detectors. The pyroelectric detectors are of interest for long term space use because they do not require cooling during operation. Also, they can detect at very long wavelengths and they have a relatively flat spectral response. A disadvantage is that the radiation must be chopped in order to be detected by a pyroelectric detector. The objective was to determine the effects of launch and space exposure on the performance of commercially available pyroelectric detectors. The approach was to measure certain detector parameters before and after flight and try to determine the amount and cause of the degradation. The experiment was passive: no data was taken during flight. It is concluded that lithium-tantalate and strontium-barium-niobate are suitable materials for pyroelectric detectors for long term space applications.

  16. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1992-01-01

    Pyroelectric detectors are one of the many different types of infrared radiation detectors. Pyroelectric detectors are of interest for long-term space use because they do not require cooling during operation. Also, they can detect at very long wavelengths and they have a relatively flat spectral response. A disadvantage is that the radiation must be chopped in order to be detected by a pyroelectric detector. The objective of the experiment was to determine the effects of launch and space exposure on the performance of commercially available pyroelectric detectors. The approach was to measure performance parameters of the detectors before and after flight on the Long-Duration Exposure Facility (LDEF) and determine the loss of detector performance. The experiment was passive; no data was taken during flight.

  17. Plasmonic lens enhanced mid-infrared quantum cascade detector

    SciTech Connect

    Harrer, Andreas Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-10-27

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  18. Development of infrared detector with slot antenna-coupled microbolometer

    NASA Astrophysics Data System (ADS)

    Son, Kosol; Kislov, Nikolai; Wang, Jing

    2010-04-01

    The current state-of-the-art infrared detection technology requires either exotic materials or cryogenic conditions to perform its duty. Implementing infrared detection by coupling infrared tuned antenna with a micro-bolometer offers a promising technological platform for mass production of un-cooled infrared detectors and imaging arrays. The design, fabrication, and characterization of a planar slotted antenna have been demonstrated on a thin silicon dioxide (SiO2) membrane for infrared detection. The planar slotted antenna was chosen due to its ease of fabrication and greater fabrication tolerance, higher gain and greater bandwidth coveted for the infrared applications. The employment of the SiO2 membrane technology mitigates the losses due to surface waves generated as the radiation coupling into the substrates. In addition, by retaining the membrane thickness to be less than a wavelength, the amount of interference is greatly reduced. A strategically designed planar slotted dipole antenna is implemented along with an integrated direct current (DC) block enabled by co-fabricated on-chip capacitors between the two DC patches to separate DC and high frequency signals without the need for sub-micron DC separation line. As a result of this revision, standard UV photolithography instead of e-beam lithography can be used to fabricate the infrared detectors for mass production. This research is considered as an important step toward our main goal, which is developing ultrafast infrared detector by coupling a planar slotted antenna with a metal insulator metal (MIM) tunneling diode.

  19. Detector requirements for space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Wright, E. L.

    1986-01-01

    Requirements for background-limited (BLIP) detectors are discussed in terms of number of photons falling on each pixel, dark current, high detective quantum efficiencies, large numbers of pixels, and array size.

  20. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  1. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  2. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    NASA Technical Reports Server (NTRS)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  3. Infrared Superconducting Single-Photon Detectors

    DTIC Science & Technology

    2012-10-05

    group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum

  4. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  5. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  6. Issues Involving Infrared Detector Material Systems

    DTIC Science & Technology

    2006-09-28

    on the ferroelectric properties of thin film ferroelectric (211) Si substrate 1 1 1 1 Area 2 CdTe SiOx (211) Si substrate (110) direction 7 PZT...to develop textured template for growth of epitaxial thin film ferroelectric (TFFE) IR detectors on polyimide coated Si. The commercial TFFE has a...due to limitation of characterization capability on small sample spot on our ARL collaborator side. This project also involved a strong educational

  7. Photoresponse Model for Si_(1-x)Ge_x/Si Heterojunction Internal Photoemission Infrared Detector

    NASA Technical Reports Server (NTRS)

    Lin, T.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1993-01-01

    A photoresponse model has been developed for the Si_(1-x)Ge_x/Si heterojunction internalphotoemission (HIP) infrared detector at wavelengths corresponding to photon energies less than theFermi energy. A Si_(0.7)Ge_(0.3)/Si HIP detector with a cutoff wavelength of 23 micrometers andan emission coefficient of 0.4 eV^(-1) has been demonstrated. The model agrees with the measureddetector response at lambda greater than 8 micrometers. The potential barrier determined by themodel is in close agreement (difference similar to 4 meV) with the potential barrier determined by theRichardson plot, compared to the discrepancies of 20-50 meV usually observed for PtSi Schottkydetectors.

  8. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  9. Fundamental limits to performance of quantum well infrared detectors

    NASA Technical Reports Server (NTRS)

    Yariv, Amnon; Kinch, Michael; Borenstain, S.; Grave, I.

    1990-01-01

    Radiometric, density of states (material), and thermal considerations are used to obtain the figure of merit of the quantum-well GaAs/GaAlAs infrared detectors described by Smith et. al. The results are compared with HgCdTe, the present industry standard, as well as with recent experiments at other laboratories.

  10. Development of Kinetic Inductance Detectors for Far-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Aguirre, James E.; Stevenson, Thomas

    2016-01-01

    An instrument with high sensitivity and spectral resolution at far-infrared wavelengths could contribute significantly to several currently unanswered questions in astrophysics. Here, we describe a detector system suitable for a spectroscopic experiment at far-infrared wavelengths using kinetic inductance detectors (KIDs). KIDs have the potential to achieve high sensitivity and low noise levels. Specifically, the approach we take uses lumped-element KIDs, which consist of separate capacitive and inductive elements combined to form a microresonator. The inductive element serves as a direct radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels, along with results from a prototype detector array.

  11. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, Joseph; Ksendzov, A.; Huberman, Mark L.; Terhune, R.; Krabach, T. N.

    1990-01-01

    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.

  12. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    DTIC Science & Technology

    2007-11-02

    MHz RADR Radar 14 , 30 GHz RS Radio Science 3.6-13 cm UVSI UV Spectrometer 500-3200 A VIMSc Visual/Infrared Mapping Spectrometer 0.4-5.2 jim 5 a...Fhumidity profIes will be derived from 3 ,-, channels selected In ilhe 6.3 jim water 44 Isn 7 vapor banid and the I jIgm windows which I’l 1652 14 W.903 are...2 fl ULIKELYTO BE ACCURACY I - 10 % OR BETTE(I 0 VALUE ASSUMED FOR TEMWERATURE SOUNOUO 14 TROPOSPHERIC EMISSION SPECTROMETER INSTRUMENT DESCRIPTION

  13. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special...

  14. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special...

  15. Competitive technologies of third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-03-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.

  16. Competitive technologies for third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-05-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolor functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.

  17. Performance overview of the Euclid infrared focal plane detector subsystems

    NASA Astrophysics Data System (ADS)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  18. A DSP-based infrared and optical bidimensional detectors controller

    NASA Astrophysics Data System (ADS)

    Iriarte, Arturo; Martínez, Luis A.; Ángeles, Fernando; Bernal, Abel; Lara, Gerardo

    2008-07-01

    The Institute of Astronomy at the Universidad Nacional Autonoma de México have developed and tested a CCD controller based on Texas Instruments Digital Signal Processor (DSP) TMS30C31@50MHz. Images are temporally stored in a 2MB static RAM attached to the DSP and transferred to the host computer running under Linux. Both tasks, acquisition and timing, are programmable so it can be conditioned to control any bidimensional detector. Analog voltage for bias, offsets and gains are fully programmable also. The system has been tested on an infrared Hawaii detector and fast Marconi 80x80 pixels CCD.

  19. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  20. JWST Near-Infrared Detectors: Latest Test Results

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.; Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Chiao, Meng; Clemons, Brian L.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Greenhouse, Matthew A.; Henegar, Greg; Hill, Robert J.; Johnson, Thomas; Lavaque, Dodolfo J.; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Cheryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Schnurr, Richard; Smith, Miles; Waczynski, Augustyn

    2009-01-01

    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection.

  1. Kinetic inductance detectors for far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, A.; Aguirre, J.; Stevenson, T.

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels.

  2. Infrared detectors and test technology of cryogenic camera

    NASA Astrophysics Data System (ADS)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  3. Space applications of superconductivity - Microwave and infrared detectors

    NASA Technical Reports Server (NTRS)

    Hamilton, C. A.

    1980-01-01

    This is the fifth of a seven part series on the potential applications of superconductivity in space. The potential of superconducting microwave and infrared detectors for space applications is reviewed. The devices considered include bolometers, super-Schottky diodes and Josephson junctions operating as oscillators, mixers, and parametric amplifiers. In each case the description includes the physical mechanism, theoretical limits and the current state of the art for the superconducting device as well as its nonsuperconducting competitors.

  4. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  5. Cooled and uncooled infrared detectors for missile seekers

    NASA Astrophysics Data System (ADS)

    Fraenkel, Rami; Haski, Jacob; Mizrahi, Udi; Shkedy, Lior; Shtrichman, Itay; Pinsky, Ephi

    2014-06-01

    Electro-optical missile seekers pose exceptional requirements for infrared (IR) detectors. These requirements include: very short mission readiness (time-to-image), one-time and relatively short mission duration, extreme ambient conditions, high sensitivity, fast frame rate, and in some cases small size and cost. SCD is engaged in the development and production of IR detectors for missile seeker applications for many years. 0D, 1D and 2D InSb focal plane arrays (FPAs) are packaged in specially designed fast cool-down Dewars and integrated with Joule-Thomson (JT) coolers. These cooled MWIR detectors were integrated in numerous seekers of various missile types, for short and long range applications, and are combat proven. New technologies for the MWIR, such as epi-InSb and XBn-InAsSb, enable faster cool-down time and higher sensitivity for the next generation seekers. The uncooled micro-bolometer technology for IR detectors has advanced significantly over the last decade, and high resolution - high sensitivity FPAs are now available for different applications. Their much smaller size and cost with regard to the cooled detectors makes these uncooled LWIR detectors natural candidates for short and mid-range missile seekers. In this work we will present SCD's cooled and uncooled solutions for advanced electro-optical missile seekers.

  6. Thin-film infrared absorber structures for advanced thermal detectors

    NASA Astrophysics Data System (ADS)

    Parsons, A. D.; Pedder, D. J.

    1988-06-01

    Imaging thermal detector technology is a rapidly advancing field in which the current emphasis is towards the development of very large arrays of very small pyroelectric detector elements. For maximum responsivity, each of the thin pyroelectric elements in an array must be provided with a thermal absorber to convert incoming infrared radiation into heat. This paper describes one such absorber structure, comprising a thin metal film, impedance matched to free space, and a quarter-wave polymer film which offers an acceptably low thermal mass. The structure and properties of this thin-film absorber are compared with those of an electroplated platinum black absorber commonly used in thermal detectors. The theory of the absorber is presented and good agreement is shown between calculated and experimentally derived absorption spectra.

  7. Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector

    PubMed Central

    Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2013-01-01

    We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm−1, which indicate sits use for single mode laser arrays. We have measured a peak signal of 191.5 mV at theon-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology. PMID:23389348

  8. Cooling and shielding systems for infrared detectors - requirements and limits.

    PubMed

    Wiecek, B

    2005-01-01

    This paper presents three main cooling systems used for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with low efficiency and not to the very low temperature. They do not generate any vibrations and therefore are suitable for thermal detectors, where the microphone effect can decrease their performance. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use the cooler based on thermodynamic cycle such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for a detector. The electromagnetic noise and vibration generation are the main disadvantages of using such devices. Joule-Thomson effect during gas expansion is 3rdcooling system discussed in the paper. It is highly effective process, used for gas liquefaction too. The working gas is being removed during cooling into the atmosphere, so the need of continuous supplying with compressed one, what makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems.

  9. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  10. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  11. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  12. The development of infrared detectors and mechanisms for use in future infrared space missions

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1995-01-01

    The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.

  13. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...; Classification of the Near Infrared Brain Hematoma Detector AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is classifying the Near Infrared (NIR) Brain... generic name Near Infrared (NIR) Brain Hematoma Detector, and it is identified as a noninvasive...

  14. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  15. Low dark current photovoltaic multiquantum well long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.

    1990-01-01

    The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) detector. With a blocking layer, the MQW detector exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron detector at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW detector without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).

  16. Megapixel digital InSb detector for midwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Shkedy, Lior; Markovitz, Tuvy; Calahorra, Zipi; Hirsh, Itay; Shtrichman, Itay

    2011-06-01

    Since the late 1990s Semiconductor devices (SCDs) has developed and manufactured a variety of InSb two-dimensional (2D) focal plane arrays (FPAs) that were implemented in many infrared (IR) systems and applications. SCD routinely manufactures both analog and digital InSb FPAs with array formats of 320×256, 480×384, and 640×512 elements, and pitch size in the range 15 to 30 μm. These FPAs are available in many packaging configurations, including fully integrated detector-Dewar-cooler-assembly, with either closed-cycle Stirling or open-loop Joule-Thomson coolers. In response to a need for very high resolution midwave IR (MWIR) detectors and systems, SCD has developed a large format 2D InSb detector with 1280×1024 elements and pixel size of 15 μm. A digital readout integrated circuit (ROIC) is coupled by flip-chip bonding to the megapixel InSb array. The ROIC is fabricated in CMOS 0.18-μm technology, that enables the small pixel circuitry and relatively low power generation at the focal plane. The digital ROIC has an analog to digital (A/D) converter per-channel and allows for full frame readout at a rate of 100 Hz. Such on-chip A/D conversion eliminates the need for several A/D converters with fairly high power consumption at the system level. The digital readout, together with the InSb detector technology, lead to a wide linear dynamic range and low residual nonuniformity, which is stable over a long period of time following a nonuniformity correction procedure. A special Dewar was designed to withstand harsh environmental conditions while minimizing the contribution to the heat load of the detector. The Dewar together with the low power ROIC, enable a megapixel detector with overall low size, weight, and power with respect to comparable large format detectors. A variety of applications with this detector make use of different cold shields with different f-number and spectral filters. In this paper we present actual performance characteristics of the

  17. InGaAs Detectors for Miniature Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Krabach, T. N.; Staller, C.; Dejewski, S.; Cunningham, T.; Herring, M.; Fossum, E. R.

    1993-01-01

    In the past year, there has been substantial impetus for NASA to consider missions that are of relatively low cost as a trade off for a higher new mission launch rate. To maintain low mission cost, these missions will be of short duration and will use smaller launch vehicles (e.g. Pegasus). Consequently, very low volume, very low mass instrument (a.k.a. miniature instrument) payloads will be required. Furthermore, it is anticipated that the number of instruments flown on a particular mission will also be highly constrained; consequently increased instrument capability will also be desired. In the case of infrared instruments, focal planes typically require cooling to ensure high performance of the detectors, especially in the case of spectrometers where high D* is necessary. In this paper, we discuss the InGaAs detector technology and its potential.

  18. Intra-pixel response of infrared detector arrays for JWST

    NASA Astrophysics Data System (ADS)

    Hardy, Tim; Baril, M. R.; Pazder, J.; Stilburn, J. S.

    2008-07-01

    The near-infrared instruments on the James Webb Space Telescope will use 5 micron cutoff HAWAII-2RG detector arrays. We have investigated the response of this type of detector at sub-pixel resolution to determine whether variations at this scale would affect the performance of the instruments. Using a simple experimental setup we were able to get measurements with a resolution of approximately 4 microns. We have measured an un-hybridized HAWAII-1RG multiplexer, a hybridized HAWAII-1RG device with a 5 micron cutoff HgCdTe detector layer, and a hybridized HAWAII-2RG device with a 5 micron cutoff substrate-removed HgCdTe detector layer. We found that the intra-pixel response functions of the hybrid devices are basically smooth and well behaved, and vary little from pixel to pixel. However, we did find numerous sub-pixel sized defects, notably some long straight thin features like scratches. We were not able to detect any significant variations with wavelength between 0.65 and 2.2 microns, but in the -1RG device there was a variation with temperature. When cooled from 80K to 40K, the pixel response became narrower, and some signal began to be lost at the edges of the pixel. We believe this reflects a reduction in charge diffusion at the lower temperature.

  19. Crosstalk study of near infrared InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  20. Kinetic inductance detectors for far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Aguirre, James; Stevenson, Thomas

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (between redshifts 1 and 3) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation during that period, in particular fine structure lines of nitrogen, carbon, and oxygen, as well as the carbon monoxide molecule. Using an observation technique known as intensity mapping, it would be possible to observe the total line intensity for a given redshift range even without detecting individual sources. Here, we describe a detector system suitable for a balloonborne spectroscopic intensity mapping experiment at far-infrared wavelengths. The experiment requires an "integralfield" type spectrograph, with modest spectral resolution (R 100) for each of a number of spatial pixels spanning several octaves in wavelength. The detector system uses lumped-element kinetic inductance detectors (LEKIDs), which have the potential to achieve the high sensitivity, low noise, and high multiplexing factor required for this experiment. We detail the design requirements and considerations, and the fabrication process for a prototype LEKID array of 1600 pixels. The pixel design is driven by the need for high responsivity, which requires a small physical volume for the LEKID inductor. In order to minimize two-level system noise, the resonators include large-area interdigitated capacitors. High quality factor resonances are required for a large frequency multiplexing factor. Detectors were fabricated using both trilayer TiN/Ti/TiN recipes and thin-film Al, and are operated at base temperatures near 250 mK.

  1. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  2. Aeronomical application of a germanium near infrared (NIR) detector

    NASA Astrophysics Data System (ADS)

    Noto, John; Kerr, Robert B.; Rudy, R. J.; Williams, R.; Hecht, James H.

    1994-09-01

    The wavelength region surrounding 1.0 micrometers has traditionally been a difficult one to observe. GaAs and silicon both have very low quantum efficiency in the NIR, while some improvements can be made by pre-flashing and oxygen soaking a silicon CCD. Greater improvement can be realized by using a material other then silicon as a substrate. Recently, detector technology has improved to the point where NIR observations can be made almost routinely. Scientifically, the NIR region is ideal for the study of molecular line and band emission, as well as low energy atomic transitions. A collaboration between Boston University and the Aerospace Corporation has resulted in a germanium based detector used in conjunction with an infrared optimized Fabry-Perot spectrometer. Gold plated mirrors were installed and the appropriate transmissive optics are used in the Fabry-Perot to optimize the NIR transmission. The detector is a germanium PIN diode coated with a layer of silicon-nitride. Current produced by the detector is measured by using a capacitive trans-impedance amplifier (CITA). An A/D converter samples the amplified capacitor voltage and outputs a 12 bit word that is then passed on to the controlling computer system. The detector, amplifier, and associated electronics are mounted inside a standard IR dewar and operated at 77 degree(s)K. We have operated this detector and spectrometer system at Millstone Hill for about 6 months. Acceptable noise characteristics, a NEP of 10(superscript -17) watts, and a QE of 90% at 1.2 micrometers , have been achieved with an amplifier gain of 200. The system is currently configured for observations of thermospheric helium, and has made the first measurement of the He 10,830 angstrom nightglow emission isolated from OH contamination. In an effort to both increase the sensitivity of our Fabry-Perot in the visible and to adapt it for planetary astronomy we have entered into a collaboration with CIDTEC. A charge injection detector or CID

  3. Type-II superlattice infrared detector technology at Fraunhofer IAF

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Daumer, Volker; Hugger, Tsvetelina; Kohn, Norbert; Luppold, Wolfgang; Müller, Raphael; Niemasz, Jasmin; Schmidt, Johannes; Rutz, Frank; Stadelmann, Tim; Wauro, Matthias; Wörl, Andreas

    2016-05-01

    For more than two decades, Antimony-based type-II superlattice photodetectors for the infrared spectral range between 3-15 μm are under development at the Fraunhofer Institute for Applied Solid State Physics (IAF). Today, Fraunhofer IAF is Germany's only national foundry for InAs/GaSb type-II superlattice detectors and we cover a wide range of aspects from basic materials research to small series production in this field. We develop single-element photodetectors for sensing systems as well as two-dimensional detector arrays for high-performance imaging and threat warning systems in the mid-wavelength and long-wavelength region of the thermal infrared. We continuously enhance our production capabilities by extending our in-line process control facilities. As a recent example, we present a semiautomatic wafer probe station that has developed into an important tool for electrooptical characterization. A large amount of the basic materials research focuses on the reduction of the dark current by the development of bandgap engineered device designs on the basis of heterojunction concepts. Recently, we have successfully demonstrated Europe's first LWIR InAs/GaSb type-II superlattice imager with 640x512 pixels with 15 μm pitch. The demonstrator camera already delivers a good image quality and achieves a thermal resolution better than 30 mK.

  4. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  5. Compact dewar and electronics for large-format infrared detectors

    NASA Astrophysics Data System (ADS)

    Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.

    2011-06-01

    Infrared systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring detectors do show constant improvements regarding detector performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced detectors, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.

  6. Curved infrared detectors: application to spectrometry and astronomy

    NASA Astrophysics Data System (ADS)

    Dumas, D.; Fendler, M.; Berger, F.; Marion, F.; Arnaud, A.; Vialle, C.; Goudon, V.; Primot, J.; Le Coarer, E.; Ribot, H.

    2010-07-01

    The traditional design of optical systems is severely complicated by the curved shape of the image surface which has to be recorded on a planar retina. This constraint decreases the image quality; optical elements are then added to avoid aberrations and lead to increase the dimensions of the system. However, miniaturization could be achieved, without decreasing resolution and sensibility, by recording the image surface on a curved retina. The optical advantages of curved sensors have been demonstrated; the simplification leads to scale down the entire system. Moreover, the hemispherical shape increases the field of view (FOV). In this paper the advantages of curved focal plane will be detailed through two applications: spectrometry and large FOV telescopes. In astronomy, large FOV and miniaturization with good resolution can only be achieved by curving the focal plane; the difficulty is to curve in a hemispherical shape large detectors. The advantages are highlighted by the European Extremely Large Telescope (E-ELT) project. Despite this high interest in curved detectors, only few articles are dedicated to this hemispherical shape technology. Some solutions exist, which mainly consist in structuring the die in sub-devices. We propose a solution to curve an IR sensor with a fill factor equal to 100%. To do so, we developed a dedicated bonding process which allows curving silicon using its mechanical properties. A curved uncooled infrared detector has been performed without mechanical and electrical damage.

  7. Infrared dual-band detectors for next generation

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Chabuel, Fabien; Vaz, Cedric; Billon-Lanfrey, David; Baylet, Jacques; Gravrand, Olivier; Ballet, Philippe; Destefanis, Gérard

    2011-06-01

    The development of DB (Dual-Band) infrared detectors has been the core of research and technological improvements for the last ten years at CEA-LETI and Sofradir: the semi planar structure uses a proven standard process with robust reproducibility, leading to low-risk and a facilitated ramp-up to production. This makes it the natural choice for the third generation detectors proposed by Sofradir. The fabrication of DB MCT detectors is reaching maturity: ALTAIR with 24μm-pixel pitch arrays in TV format are available, showing median NETD around 18mK with operability over 99.5%. A second structure, based on two back to back diodes, with a single contact per pixel translates the DB pixel into smaller cell therefore being more efficient in terms of pitch reduction. These new technologies widen perspectives and open new horizons of applications such as large DB FPA, dual mode capability providing both SAL (Semi Active Laser) and IR operations for more robust target engagement or compact dual color detection with wide-angle integrated optics for missile warning system.

  8. SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon; Ksendzov, A.; Dejewski, Suzan M.; Jones, Eric W.; Fathauer, Robert W.; Krabach, Timothy N.; Maserjian, Joseph

    1991-01-01

    A new SiGe/Si heterojunction internal photoemission (HIP) long-wavelength infrared (LWIR) detector has been fabricated by molecular beam epitaxy (MBE). The detection mechanism of the SiGe/Si HIP detector is infrared absorption in the degenerately doped p+-SiGe layer followed by internal photoemission of photoexcited holes over a heterojunction barrier. By adjusting the Ge concentration in the SiGe layer, and, consequently, the valence band offset between SiGe and Si, the cutoff wavelength of SiGe HIP detectors can be extended into the LWIR (8-17-micron) regime. Detectors were fabricated by growing p+-SiGe layers using MBE on patterned p-type Si substrates. The SiGe layers were boron-doped, with concentrations ranging from 10 to the 19th/cu cm to 4 x 10 to the 20th/cu cm. Infrared absorption of 5-25 percent in a 30-nm-thick p+-SiGe layer was measured in the 3-20-micron range using a Fourier transform infrared spectrometer. Quantum efficiencies of 3-5 percent have been obtained from test devices in the 8-12-micron range.

  9. Application of fast infrared detectors to detonation science

    SciTech Connect

    Von Holle, W.G.; McWilliams, R.A.

    1982-07-28

    Infrared radiometers have been used to make time-resolved emission measurements of shocked explosives. Instruments of moderate time resolution were used to estimate temperatures in shocked but not detonated explosives. The heterogeneity of the shock-induced heating was discovered in pressed explosives by two-band techniques, and the time-resolved emittance or extent of hot spot coverage indicated a great dependence on shock pressures. Temperatures in moderately shocked organic liquids were also measured. Faster response radiometers with 5 ns rise times based on InSb and HgCdTe photovoltaic detectors were constructed and tested. Preliminary data on reactive shocks and detonations reveal a resolution of the heating in the shock wave and the following reaction.

  10. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  11. An infrared motion detector system for lossless real-time monitoring of animal preference tests.

    PubMed

    Pogány, A; Heszberger, J; Szurovecz, Zita; Vincze, E; Székely, T

    2014-12-01

    Automated behavioural observations are routinely used in many fields of biology, including ethology, behavioural ecology and physiology. When preferences for certain resources are investigated, the focus is often on simple response variables, such as duration and frequency of visits to choice chambers. Here we present an automated motion detector system that use passive infrared sensors to eliminate many drawbacks of currently existing methods. Signals from the sensors are processed by a custom-built interface, and after unnecessary data is filtered by a computer software, the total time and frequency of the subject's visits to each of the choice chambers are calculated. We validate the detector system by monitoring (using the system) and in the same time video recording mating preferences of zebra finches in a four-way choice apparatus. Manual scoring of the video recordings showed very high consistency with data from the detector system both for time and for frequency of visits. Furthermore, the validation revealed that if we used micro-switches or light barriers, the most commonly applied automatic detection techniques, this would have resulted in approximately 22% less information compared to our lossless system. The system provides a low-cost alternative for monitoring animal movements, and we discuss its further applicability.

  12. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  13. Surface plasmon resonance based infrared photo-detectors

    NASA Astrophysics Data System (ADS)

    Aytac, Yigit; Perera, Unil

    2012-03-01

    At present materials can be engineered to control propagation of light in certain directions at certain wavelengths. Such materials are called photonic crystals which contain a periodic arrangement of metals and dielectric materials on a wavelength scale. Surface Plasmon Resonances (SPR) in metallic and dielectric nano-arrays can be used to enhance the response of photo-detectors. There are variety of potential ways to increase the performance of infrared photo-detectors by using electromagnetic enhancement and dependence of the resonance wavelength on the arrays size, shape and the local dielectric environment integration of these apertures. A detailed analysis of the optical properties of the waveguides in two and three dimensions with periodically perforated array structures is presented. Transmission and reflection spectra, resonant modes and field patterns of photonic crystals were calculated and imaged with using FDTD (Finite-difference Time-domain) method by numerical analysis of the non-linear dispersion relation. Additionally, by varying the orientation of holes on the wave-guide, polarization sensitivity was achieved in the model.

  14. Infra-red detector and method of making and using same

    DOEpatents

    Craig, Richard A.; Griffin, Jeffrey W.

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  15. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  16. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    SciTech Connect

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z.; Dvoretskii, S.

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  17. Infrared Detectors Containing Stacked Si(1-x)Ge(x)/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, Jin S.; Lin, True-Lon; Jones, Eric; Del Castillo, Hector; Gunapala, Sarath

    1996-01-01

    Long-wavelength-infrared detectors containing multiple layers of high-quality crystalline p(+) Si(1-x)Ge(x) alternating with layers of Si undergoing development. Each detector comprises stack of Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) photodetectors. In comparison with older HIP detectors containing single Si(1-x)Ge(x)/Si heterojunctions, developmental detectors feature greater quantum efficiencies and stronger photoresponses.

  18. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    NASA Astrophysics Data System (ADS)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  19. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xiong, Dayuan; Wen, Jie; Li, Ning; Zhu, Ziqiang

    2016-11-01

    A novel mid-long-infrared two-color photodetector is proposed. It combines quantum cascade detector (QCD) and surface plasmonic coupling structure. The reflection spectrum and electric field are analyzed by algorithm of finite difference time domain method (FDTD). This QCD is sensitive to 4.4 μm and 9.0 μm infrared light. Mid-infrared and long-infrared pixels are interlaced arranged with specific plasmonic micro-cavity structures integrated. 7.1 and 7 times enhancement in optical absorption are obtained for mid-infrared and long-infrared pixels, respectively. Besides, a polarization-discriminating detection performance has been observed.

  20. Measuring Io's Lava Eruption Temperatures with a Novel Infrared Detector and Digital Readout Circuit

    NASA Astrophysics Data System (ADS)

    Davies, Ashley; Gunapala, Sarath; Rafol, B., Sir; Soibel, Alexander; Ting, David Z.

    2016-10-01

    ] Ting et al., 2012, Barrier infrared detector, U.S. Pat. No. 8217480. [5] Schultz et al., 2014, LL Journal, 20, 2, 36-51. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  1. Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers

    PubMed Central

    2011-01-01

    Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV. PMID:27502644

  2. New and Better Near-Infrared Detectors for JWST Near Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Mott, D. Brent; Wen, Yiting; Linder, Don; Greenhouse, Matthew A.; Hill, Robert J.

    2014-01-01

    ESA and NASA recently selected two 5 m cutoff Teledyne H2RG sensor chip assemblies (SCA) for flight on the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These HgCdTe SCAs incorporate Teledynes improved barrier layer design that eliminates the degradation that affected earlier JWST H2RGs(Rauscher et al. 2012a). The better indium barrier, together with other design changes, has improved the performance and reliability of JWSTs SCAs. In this article, we describe the measured performance characteristics that most directly affect scientific observations including read noise, total noise, dark current, quantum efficiency (QE), and image persistence. As part of measuring QE, we measured the quantum yield as a function of photon energy,, and found that it exceeds unity for photon energies E (2.65.2) Eg, where Eg is the HgCdTe bandgap energy. This corresponds to. 2 m for NIRSpecs 5 m cutoff HgCdTe. Our measurements agree well with a previous measurement by McCullough et al. (2008) for. 1.3. For 1.3, we find a slower increase in with photon energy than McCullough et al. did. However, and as McCullough et al. note, their two state model of the yield process is not valid for large 1.

  3. Type-II indium arsenide/gallium antimonide superlattices for infrared detectors

    NASA Astrophysics Data System (ADS)

    Mohseni, Hooman

    In this work, the unique properties of type-II InAs/GaSb heterojunctions were utilized for the realization of novel infrared photodetectors with higher operating temperature, detectivity and uniformity than the commonly available infrared detectors. This effort was concentrated on two major devices: uncooled infrared detectors in the long wavelength infrared (LWIR) range, and cooled devices in the very long wavelength infrared (VLWIR) range. Uncooled infrared (IR) detectors are required for low-cost, lightweight sensor systems that have many industrial and medical applications. Commercially available uncooled IR sensors use ferroelectric or microbolometer detectors. These sensors are inherently slow and cannot detect rapid signal changes needed for high-speed infrared systems. Some of the applications which require a fast detector (tau < 30 msec) are: freespace communication, active infrared countermeasure, non-invasive medical monitoring, and LIDARs. Although photon detectors have frequency responses in the megahertz range, their high temperature detectivity is severely degraded due to high Auger recombination rates. Bandgap engineering was used in order to suppress Auger recombination at room temperature in type-II superlattices. Our experimental results demonstrated nearly one order of magnitude lower Auger recombination rate at room temperature in these type-II superlattices compared to typical intrinsic detectors, such as HgCdTe, with similar bandgap. Uncooled detectors based on the engineered superlattices showed a detectivity of 1.3 x 108g cmHz 1/2/W at 11 Et m, which is comparable to microbolometers. However, the measured response time of the detectors was more than five orders of magnitude faster than microbolometers. In parallel, devices for operation in the VLWIR were developed. High-performance infrared detectors with cutoff wavelength above 14 mum are highly needed for many space-based applications. Commonly used detectors are extrinsic silicon and Hg

  4. Metamorphic InAsSb-based Barrier Photodetectors for the Long Wave Infrared Region

    DTIC Science & Technology

    2013-08-02

    REPORT Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: InAs0.6Sb0.4...Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb substrates by...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region Report Title

  5. Laboratory characterization of direct readout Si:Sb and Si:Ga infrared detector arrays

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Moss, Nicolas N.; Mcmurray, R. E., Jr.; Estrada, John A.; Goebel, John H.; Mccreight, Craig R.; Savage, Maureen L.; Junga, Frank; Whittemore, Thomas

    1989-01-01

    Highlights of recent results obtained at Ames Research Center in performance evaluations of infrared detector arrays are presented. Antimony- and gallium-doped silicon direct readout 58x62 element hybrid devices from Ames' ongoing detector technology development program are described. The observed characteristics meet most of the performance goals specified by the Space Infrared Telescope Facility (SIRTF) instrument teams and compare favorably with the best performance reported for discrete non-integrating extrinsic silicon detectors. Initial results of radiation environment testing are reported, and non-ideal behavior demonstrated by these test devices is discussed.

  6. A low radiation optical system with lens positioned inside of the infrared detector Dewar

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhen, Zheng; Wang, Yingrui; Li, Juan; Ou, Wen; Li, Ang; Xiong, Jian

    2016-10-01

    For the far distance and weak signal detecting, low background noise is essential. Because the spatial noise of infrared system is mostly determined by spontaneous thermal radiation, it is the most directly method to achieve low spatial noise by refrigerating optics. This paper introduced a low radiation optical system with lens positioned inside of the infrared detector Dewar. The system includes two parts: the two mirror Cassegrain system working at room temperature which images the intermediate focus (IF) and the lens positioned inside of infrared detector Dewar which image the IF to focal plane. The working temperature inside of the infrared detector Dewar is 80K, the cryogenic lens contain three pieces lens whose total weight is below 5g. In view of engineering application, the low radiation optical system, the stray light analysis, cryogenic optics mounting and system testing were discussed. Calculations indicate that the equivalent blackbody radiation temperature (EBRT) is less than 180K.

  7. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors.

    PubMed

    Lu, Rongtao; Christianson, Caleb; Kirkeminde, Alec; Ren, Shenqiang; Wu, Judy

    2012-12-12

    Despite the potentials and the efforts put in the development of uncooled carbon nanotube infrared detectors during the past two decades, their figure-of-merit detectivity remains orders of magnitude lower than that of conventional semiconductor counterparts due to the lack of efficient exciton dissociation schemes. In this paper, we report an extraordinary photocurrent harvesting configuration at a semiconducting single-walled carbon nanotube (s-SWCNT)/polymer type-II heterojunction interface, which provides highly efficient exciton dissociation through the intrinsic energy offset by designing the s-SWCNT/polymer interface band alignment. This results in significantly enhanced near-infrared detectivity of 2.3 × 10(8) cm·Hz(1/2)/W, comparable to that of the many conventional uncooled infrared detectors. With further optimization, the s-SWCNT/polymer nanohybrid uncooled infrared detectors could be highly competitive for practical applications.

  8. A high-speed and low-noise intelligent test system for infrared detectors

    NASA Astrophysics Data System (ADS)

    Jia, Tianshi; Xue, Yulong; Cui, Kun; Kong, Fansheng

    2016-11-01

    With the development of infrared focal plane technology, the scale of the detector becomes larger and larger, and the pixel noise level is lower and lower. We designed and implemented a set of infrared high-speed low noise intelligent test system based on OPENVPX standard, which is used to test the index, long term monitoring and life test of infrared detector. The system is mainly composed of main control board, image acquisition board, temperature acquisition board and the high speed back board, which has high speed image acquisition, processing, temperature monitoring and alarm function. Through testing and simulation, the results show that the system noise is less than 100uV, the dynamic range reaches 100dB, and the data throughput rate reaches 4Gbps, which can meet the requirements of the infrared detector test currently.

  9. Overview of DRS uncooled VOx infrared detector development

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George

    2011-06-01

    Significant progress has been made over the past decade on uncooled focal plane array technologies and production capabilities. The detector pixel dimensions have continually decreased with an increase in pixel performance making large format, high-density array products affordable. In turn, this has resulted in the proliferation of uncooled IR detectors in commercial and military markets. Presently, uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. Within the military arena, uncooled detectors are ubiquitous in Army soldier systems such as weapon sights, driver's viewers, and helmet-mounted sights. Uncooled detectors are also employed in airborne and ground surveillance sensors including unmanned aerial vehicles and robot vehicles.

  10. Progress on the characterization activities of new infrared detectors from Leonardo, UK at the UKATC

    NASA Astrophysics Data System (ADS)

    Bezawada, Naidu; Atkinson, David; Miller, Chris; Bryson, Ian; Hipwood, Les; Shorrocks, Nick; Weller, Harald; Jackson, Malcolm; Davis, Ray; Barnes, Keith; Baker, Ian

    2016-08-01

    ESA has been funding the industry in Europe to bring the technologies together to manufacture high performance infrared detectors from near infrared (NIR) to very long wavelength infrared (VLWIR) detectors. The UK Astronomy Technology Centre (UKATC) has undertaken the tasks of test and characterizing the new detectors being manufactured by Leonardo, UK (Selex ES Ltd). Initial test results from these programs were presented at previous SPIE meetings in 2012 and 2014. The work since has much progressed to test and characterize the Large Format NIR, SWIR and LW and VLWIR detectors. This paper will present the custom built test facilities for evaluation of large format (currently 1280x1024, 15μm pixel format) near infrared detectors for astronomy applications, the characterization of 1Kx1K shortwave infrared detectors (cut off at 2.5μm on a 2Kx2K ROIC) for satellite based earth observation programs, long wavelength (8 to 11.5μm) and very long wavelength (10 to 14.5μm) 288 x 384 pixel infrared arrays for cosmos applications. Also being evaluated in at the UKATC is a SAPHIRA APD array (mark 5) for photon sensing and high speed AO applications. Custom test facilities have been setup at the UKATC and are being routinely used to test and characterize these detectors under conditions representative of the applications. The paper will discuss the requirements placed on testing in each of these programs along with the associated challenges to evaluate the performance of these detectors. The paper will also include some of the latest test results from the characterization programs, where appropriate.

  11. An automatic measuring system for the lifetime testing of infrared detectors

    NASA Astrophysics Data System (ADS)

    Cao, Lan; Zhang, Haiyan; Zhu, Xianliang; Gong, Haimei

    2012-10-01

    In this paper, an automatic measuring system based on LABVIEW and PLC is introduced; it uses the mutual controls of Single-Chip computer (MCU) and LABVIEW to accomplish the electrical parameter measurements of infrared detectors. This system can realize the multiple parameter measurements of no less than 160 IR detectors, it can realize the collection and storage of results by the LABVIEW; and it can avoid the damage of the IR detector during the measurement. After thousands times of test, the results show that the system runs stably and it can meet the accurate parameter measurement of detector.

  12. Polycrystalline lead selenide: the resurgence of an old infrared detector

    NASA Astrophysics Data System (ADS)

    Vergara, G.; Montojo, M. T.; Torquemada, M. C.; Rodrigo, M. T.; Sánchez, F. J.; Gómez, L. J.; Almazán, R. M.; Verdú, M.; Rodríguez, P.; Villamayor, V.; Álvarez, M.; Diezhandino, J.; Plaza, J.; Catalán, I.

    2007-06-01

    The existing technology for uncooled MWIR photon detectors based on polycrystalline lead salts is stigmatized for being a 50-year-old technology. It has been traditionally relegated to single-element detectors and relatively small linear arrays due to the limitations imposed by its standard manufacture process based on a chemical bath deposition technique (CBD) developed more than 40 years ago. Recently, an innovative method for processing detectors, based on a vapour phase deposition (VPD) technique, has allowed manufacturing the first 2D array of polycrystalline PbSe with good electro optical characteristics. The new method of processing PbSe is an all silicon technology and it is compatible with standard CMOS circuitry. In addition to its affordability, VPD PbSe constitutes a perfect candidate to fill the existing gap in the photonic and uncooled IR imaging detectors sensitive to the MWIR photons. The perspectives opened are numerous and very important, converting the old PbSe detector in a serious alternative to others uncooled technologies in the low cost IR detection market. The number of potential applications is huge, some of them with high commercial impact such as personal IR imagers, enhanced vision systems for automotive applications and other not less important in the security/defence domain such as sensors for active protection systems (APS) or low cost seekers. Despite the fact, unanimously accepted, that uncooled will dominate the majority of the future IR detection applications, today, thermal detectors are the unique plausible alternative. There is plenty of room for photonic uncooled and complementary alternatives are needed. This work allocates polycrystalline PbSe in the current panorama of the uncooled IR detectors, underlining its potentiality in two areas of interest, i.e., very low cost imaging IR detectors and MWIR fast uncooled detectors for security and defence applications. The new method of processing again converts PbSe into an

  13. Infrared detector circuits using monolithic CMOS Op-Amps with InSb detectors in a transimpedance configuration

    NASA Astrophysics Data System (ADS)

    Smith, David S.

    1992-09-01

    As the emphasis in infrared detector research shifts toward larger and more complicated arrays the amount of time spent on simple single-element and small arrays is decreasing. One set of applications where discrete detectors and arrays are still finding use is in satellites. In addition, scanned imaging arrays based on single element detectors and small arrays are still being manufactured. Discussion here is for small arrays and single element detectors. One of the aspects of detector operation that always needs to be addressed is amplification. Often detectors are attached to amplifiers through rather long leads. Such systems are subject to unwanted microphonic response as a result of the motion of the leads relative to each other or to the ground plane. This sort of microphonic response can many times be eliminated through careful wiring and routing techniques, however, in some severe environments it is not possible to eliminate all microphonic response. A commonly used solution to this problem is to hybridize the detector with a JFET front end to reduce the effective output resistance of the detector circuit relative to the amplifier input. The TIA in such configurations is completed off the focal plane at room temperature. This means that half the circuit is operating at cryogenic temperatures while the other part is operating at room temperature some distance away. Ideally it would be more convenient, if not better, to include the amplifier on the focal plane with the detector. (Of course this hybridization is necessary for large two-dimensional arrays.) Data have been acquired to show some of the limitations and opportunities for such an approach. Typical bipolar operational amplifiers (OP-27, OP-37, LM108) will not operate well at cryogenic temperatures. CMOS operational amplifiers generally will operate at cryogenic temperatures but suffer from high front-end voltage noise. The TLC2201 from Texas Instruments is a CMOS op-amp manufactured for low voltage

  14. Calibration of diffusion barrier charcoal detectors and application to radon sampling in dwellings

    NASA Astrophysics Data System (ADS)

    Cabrera, M. E. M.; Sujo, L. C.; Villalba, L.; Peinado, J. S.; Jimenez, A. C.; Baca, A. M.; Gandara, S. D.; Villalobos, M. R.; Miranda, A. L.; Peraza, E. F. H.

    2003-10-01

    Some calibration conditions of diffusion barrier charcoal canister (DBCC) detectors for measuring radon concentration in air were studied. A series of functional expressions and graphs were developed to describe relationship between radon concentration in air and the activity adsorbed in DBCC, when placed in small chambers. A semi-empirical expression for the DBCC calibration was obtained, based on the detector integration time and the adsorption coefficient of radon on activated charcoal. Both, the integration time for 10% of DBCC of the same batch, and the adsorption coefficient of radon for the activated charcoal used in these detectors, were experimentally determined. Using these values as the calibration parameters, a semi-empirical calibration function was used for the interpretation of the radon activities in the detectors used for sampling more than 200 dwellings in the major cities of the state of Chihuahua, Mexico.

  15. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    PubMed

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm(3) and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone.

  16. Quantum cascade detectors for very long wave infrared detection

    NASA Astrophysics Data System (ADS)

    Buffaz, A.; Carras, M.; Doyennette, L.; Nedelcu, A.; Marcadet, X.; Berger, V.

    2010-04-01

    A high responsivity GaAs/AlGaAs quantum cascade detector is demonstrated at a wavelength of 15 μm. The quantum design is optimized for negative bias operation, so that the capture of photoexcited electrons back to the fundamental level is minimized. The detectivity of the detector presented here reaches 1.1×1012 Jones at 25 K for an applied bias of -0.6 V.

  17. Uncooled Infrared Detector Arrays With Electrostatically Levitated Sensing Elements

    DTIC Science & Technology

    2005-03-28

    detectors"" vout operating at room temperature . Their resistance changes V2 Ni l following a temperature rise from the absorption of incident radiation...advantages of this approach are: Although in recent times, uncooled microbolometer 1) The detector temperature is not disturbed by thermal arrays have seen...levels by performing the deposition at an elevated temperature . The technology developed here was applied to a new class of acoustic transducer, a

  18. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  19. The test of response sensitivity of infrared detector in the laser fuze

    NASA Astrophysics Data System (ADS)

    Tan, Zuo-jun; Kang, Jing-ran; Gong, Wei; Chen, Hai-qing

    2008-02-01

    Analyze the theory of testing detector's response sensitivity. In accordance with the synthetical requisition of full-automatic testing of the laser fuze, the response sensitivity of infrared detector in the laser fuze were testing by the way of the double light route. The spectral optical system divided the light beam into two beams which were same size, shape and even after the laser light beam were collimated and reformed. The two light rayed the standard detector and unknown detector separately. After we adopted the technology of optical system resisting the stray light, the oscilloscope achieved the response output of two detectors simultaneously. The output data were transferred into the computer by GPIB. It realized the accurate measurement of the detector's response sensitivity. The repeatability of the testing was smaller than 5%. So it was in keeping with the technical target of the laser fuze.

  20. De-polarization of a CdZnTe radiation detector by pulsed infrared light

    SciTech Connect

    Dědič, V. Franc, J.; Rejhon, M.; Grill, R.; Zázvorka, J.; Sellin, P. J.

    2015-07-20

    This work is focused on a detailed study of pulsed mode infrared light induced depolarization of CdZnTe detectors operating at high photon fluxes. This depolarizing effect is a result of the decrease of positive space charge that is caused by the trapping of photogenerated holes at a deep level. The reduction in positive space charge is due to the optical transition of electrons from a valence band to the deep level due to additional infrared illumination. In this paper, we present the results of pulse mode infrared depolarization, by which it is possible to keep the detector in the depolarized state during its operation. The demonstrated mechanism represents a promising way to increase the charge collection efficiency of CdZnTe X-ray detectors operating at high photon fluxes.

  1. Application and Design of Satellite Infrared Spectral Imaging Radiometers with Uncooled Microbolometer Array Detectors

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Lancaster, Regie; Maschhoff, Kevin; Starr, David OC (Technical Monitor)

    2001-01-01

    Uncooled infrared microbolometer array detectors have application for space borne spectral imaging radiometer of several types to lower size, power and cost and provide improved performance. Other advantages of eliminating cooling requirement are simplified systems, simplified satellite integration and improved reliability. A prototype microbolometer instrument for cloud observations was flown on the STS-85 space shuttle mission. Extensive data were acquired at_km resolution at four thermal infrared wavelength bands. From the 320x280 detector array both spectral and angular information can be used to advantage in cloud retrievals and has been demonstrated. An engineering model Compact Visible and Infrared Imaging Radiometer (COVIR) for small satellite missions has been developed. Application of advanced microbolometer array detectors for three axis stabilized GOES thermal imagers has been studied.

  2. Extension of long wavelength response by modulation doping in extrinsic germanium infrared detectors

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Farhoomand, J.; Beichman, C. A.; Watson, D. M.; Jack, M. D.

    1985-01-01

    A new concept for infrared detectors based on multilayer epitaxy and modulation doping has been investigated. This permits a high doping concentration and lower excitation energy in the photodetecting layer as is necessary for longer wavelength response, without incurring the detrimental effects of increased dark current and noise as would be the case with conventional detector designs. Germanium photodetectors using conventional materials and designs have a long wavelength cutoff in the infrared at 138 microns, which can only be extended through the inconvenient application of mechanical stress or magnetic fields. As a result of this approach which was arrived at from theoretical considerations and subsequently demonstrated experimentally, the long wavelength cutoff for germanium extrinsic detectors was extended beyond 200 microns, as determined by direct infrared optical measurements.

  3. Stress induced long wavelength photoconductivity in doped silicon infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1982-01-01

    The long wavelength cutoff of a Si:P detector was extended to 34 microns by the application of a uniaxial stress. An unstressed Si:P photoconductive detector responds to photons of up to 28 microns wavelength. By applying a uniaxial stress to a detector along the /100/ crystal axis, the response was extended to approximately 34 microns. The /100/ axis was chosen as the stress direction because theoretical calculations predicted that such a stress extends the wavelength response more than one along the /110/ axis. These theoretical calculations were based upon fits to experimental data obtained at stresses of up to approximately kbar, and indicated that the extension in wavelength response continues to increase at much larger stresses.

  4. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  5. DRS uncooled VOx infrared detector development and production status

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Hess, Cory

    2010-04-01

    Significant progress has been made over the past decade on uncooled focal plane array (UFPA) technology development and production capacity at DRS as well as other domestic and overseas suppliers. This resulted in the proliferation of uncooled IR detectors in commercial and military markets. The uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. In the military arena, uncooled detectors are fielded among diverse systems such as weapon sights, driver enhancement viewers, helmet-mounted sights, airborne and ground surveillance sensors including UAVs and robot vehicles. Pixel dimensions have continually decreased with an increase in pixel performance. This paper presents an overview of the DRS 25- and 17-micron pixel pitch uncooled VOx detector technology development and production status. The DRS uncooled FPA products include 320x240 and 640x480 arrays while the larger 1024x768 17-micron pitch array is at engineering prototype quantities. Current production of the 25-micron pitch 320x240 and 640x480 arrays exceeds 5,000 units per month, supporting U.S. military systems such as Army thermal weapon sights (TWS) and driver vision enhancers (DVE). Next generation systems are moving towards the 17-micron pixel pitch detectors. Advancement in small pixel technology has enabled the 17-micron pitch detectors performance to surpass their 25-micron pitch counterparts. To meet future production demand of the 17-micron pitch UFPAs, DRS has made significant investment in production infrastructure to upgrade its tools. These investments include a new DUV stepper, coater, and plasma etcher plus improvements in its manufacturing techniques to enhance yield. These advanced tools reduce the minimum line width in production below 0.35μm and are now being used to manufacture the 17-micron 320x240 and 640x480 arrays. To further technology development, DRS continues to engage in R&D activities

  6. Miniature Uncooled Infrared Sensitive Detectors for in Vivo Biomedical Imaging Applications

    SciTech Connect

    Datskos, P. G.; Demos, S. G.; Rajic, S.

    1998-06-01

    Broadband infrared (OR) radiation detectors have been developed using miniature, inexpensive, mass produced microcantilevers capable of detecting temperature differences as small as lea(-6) K. Microcantilevers made out of semiconductor materials can be used either as uncurled photon or thermal detectors. Mounted on a probe mm in diameter a number of microcantilevers can be accommodated in the working channel of existing endoscopes for in vivo proximity focus measurements inside the human body.

  7. Infrared photo-interrupter as an eyeblink detector

    NASA Astrophysics Data System (ADS)

    Utsuki, Narisuke; Takeuchi, Yoshinori

    1990-06-01

    An infrared light-emitting diode (IR-LED) and a phototransistor were paired to make an easy-to-use equipment to record eyeblinking. Since reflecting power is different between the eyelid and the cornea, the amount of reflected light cab indicate whether the eyelid is closed or opened. The IR-LED was driven by a 1,200 Hz electric pulse so that the detected infrared light could be amplified as an alternative current, filtered, and recorded on a regular cassette tape recorder. The devices were attached to eyeglasses. The estimated infrared radiation level was 0.5 mW/sq cm on the surface of the cornea. The safety limit of the IR exposure is discussed.

  8. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  9. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    DTIC Science & Technology

    2015-04-09

    2010 14-Mar-2013 Approved for Public Release; Distribution Unlimited Final Report: Metalorganic Vapor Phase Epitaxial Reactor for the Deposition of...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Epitaxial reactor , MOCVD, Infrared Materials, CdTe and...Final Report: Metalorganic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials Report Title A fully automated

  10. AFRL Nanotechnology Initiative: Hybrid Nanomaterials in Photonic Crystal Cavities for Multi-Spectral Infrared Detector Arrays

    DTIC Science & Technology

    2010-03-31

    INITIATIVE) HYBRID NANOMATERIALS IN PHOTONIC CRYSTAL CAVITIES FOR MULTI -SPECTRAL INFRARED DETECTOR ARRAYS 5b. GRANT NUMBER F A9550-06-1-0482 5c...IR) photodetector using hybrid nanornaterials in photonic crystal (PC) cavities for enhanced absorption at selected wavelengths. The simultaneous...infrared photodetection, quantum dots, photonic crystal cavities, matrix-assisted pulsed laser evaporation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  11. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  12. JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente; Engelbracht, Chad; Hall, Don; Hoffman, Alan; Jeffers, Basil; Jhabvala, Christine; Kimble, Randy; Kopp, Robert; Lee, Don; Leidecker, Henning; Lindler, Don; McMurray, Bob; Mott, D. Brent; Ohl, Ray; Polis, Don; Pontius, Jim

    2012-01-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  13. Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Reyner, Charles J.; Duran, Joshua M.; Reding, Joshua D.; Scheihing, John E.; Steenbergen, Elizabeth H.

    2016-07-01

    Growth and characteristics of mid-wave infrared (MWIR) InGaAs/InAsSb strained layer superlattice (SLS) detectors are reported. InGaAs/InAsSb SLSs, identified as ternary SLSs, not only provide an extra degree of freedom for superlattice strain compensation but also show enhanced absorption properties compared to InAs/InAsSb SLSs. Utilizing In1-yGayAs/InAs0.65Sb0.35 ternary SLSs (y = 0, 5, 10, and 20%) designed to have the same bandgap, a set of four unipolar detectors are investigated. These demonstrate an enhancement in the detector quantum efficiency due to the increased absorption coefficient. The detectors exhibit dark current performance within a factor of 10 of Rule 07 at temperatures above 120 K, and external quantum efficiencies in the 15%-25% range. This work demonstrates ternary SLSs are a potential absorber material for future high performance MWIR detectors.

  14. Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    NASA Technical Reports Server (NTRS)

    Boggess, N. W.; Greenberg, L. T.; Hauser, M. G.; Houck, J. R.; Low, F. J.; Mccreight, C. R.; Rank, D. M.; Richards, P. L.; Weiss, R.

    1979-01-01

    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices.

  15. Development of long wave infrared detectors for space astronomy

    NASA Astrophysics Data System (ADS)

    Bacon, Candice Marie

    This thesis details the research and development of 10[mu]m cutoff detector arrays conducted at the University of Rochester in conjunction with Rockwell Scientific. Through my data analysis and theoretical modeling of detector characteristics, processes which prevent the detector arrays from meeting low background astronomical specifications are determined and fed back to the manufacturer. The first set of deliveries were manufactured in a banded form at with multiple diode structures. Data analysis indicated that the smallest capacitance diode structure exhibited the lowest dark currents and the highest yield of pixels (28%) meeting the goal of less than 100 e - /s dark current with adequate (> 45mV) well depth. The mechanisms limiting dark current were found to be surface current at lower biases and tunneling (trap-to-band and band-to-band) at higher biases. In order to reduce stress at the junction during hybridization (a leading cause of the observed tunneling current), a proprietary bonding method was developed by Rockwell Scientific. New detector arrays, manufactured with the optimum diode structure and bonded with the new bonding technique to the HAWAII-1RG multiplexer, showed an impressive 75% of pixels exhibiting dark current less than 30 e - /s with sufficient (> 40mV) well depth. Most of these pixels exhibited extremely low dark currents, less than 0.3 e - /s. I found that the dark current limiting mechanism at lower biases was still surface current on the front-side, caused by passivation processing techniques. The limiting mechanism at high biases was dislocation- induced early breakdown which took the shape of a screw dislocation (or micropipe) on an I-V curve of dark current, manifesting as a sharp increase in trap-to-band tunneling current. Burst noise was also detected in the source follower unit cell FET of the multiplexer and was fully characterized and explored. It was discovered that the burst noise was a result of oxide trapping of a single

  16. Novel Heterongineered Detectors for Multi-Color Infrared Sensing

    DTIC Science & Technology

    2012-01-30

    PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL NSN 7540-01-280-5500 Standard Form 298... limited amount of time (5 min). Passivation details as well as the improvement of device performance were published in Infrared Physics & Technology...CommunICATIons | 2:286 | DoI: 10.1038/ncomms1283 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited . All rights reserved. Received 5

  17. Long-Wavelength Stacked Si(sub 1-x)/Si Heterojunction Internal Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; George, T.; Gunapala, S. D.

    1993-01-01

    Utilizing the low temperature silicon molecular beam epitaxy (MBE) growth of degenerately doped SiGe layers on Si, long wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Se layers have been fabricated and demonstrated.

  18. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  19. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  20. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  1. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-07

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures.

  2. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  3. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    NASA Astrophysics Data System (ADS)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  4. Infrared and visible detector electronics for the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Langford, D. L.; Simmonds, J. J.; Ozawa, T.; Long, E. C.; Paris, R.

    1984-01-01

    The paper describes the detectors, preamplifiers, and processing electronics; the system characterization test methods and results; and the performance of the detectors and electronics during the first month of on-orbit operation of the IRAS telescope. The Focal Plane Array (FPA) consists of 62 IR channels and 8 visible channels operating at 2.5 K. The IR detectors are grouped in eight 7 or 8 channel staggered linear subarrays with shared bias voltage; the visible detectors are grouped in two 4 channel skewed arrays, also with shared bias. Each channel detector is dc coupled to a TIA preamplifier through a very low power thermally isolated JFET source follower operating at about 65 K within the FPA housing. The visible channel detectors are ac coupled to TIA preamplifiers and signal chain electronics using MOSFET source followers operating at about 2.5 K within the FPA housing. The detectors, preamplifiers, analog electronics, and grounding are discussed as they evolved and were implemented during FPA retrofit, telescope integration, and preparation for launch.

  5. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  6. Infrared Optical Readout of a Gas-Based Recoil Tracking Detector

    NASA Astrophysics Data System (ADS)

    Miller, Katrina; Barbeau, Phillip; Rich, Grayson; Awe, Connor

    2016-03-01

    Gas-based recoil tracking detectors are used in a variety of nuclear and particle physics experiments to identify particles based on distinct interaction signatures. Past research shows that this technology, if further developed, may prove useful in the ongoing search for dark matter and coherent neutrino scattering observations. This research presents the original design and development of a tracking detector that uses gaseous argon as a scintillating material to measure infrared optical readout. The initial model of this detector, consisting of a wire chamber filled with P-10, has produced unambiguous ionization signals. Current studies are focused toward using pure gaseous argon to detect coincident scintillation signals, which will demonstrate the capability of the detector to image particle tracks using nonvisible radiation.

  7. Long-wave infrared (LWIR) detectors based on III-V materials

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Future NASA missions for earth observation and planetary science require large photovoltaic detector arrays with high performance in the long wavelength region to 18 microns and at operating temperatures above 65 K where single-cycle long-life cryocoolers are being developed. Since these detector array requirements exceed the state of current HgCdTe technology, alternative detector materials are being investigated as a possible option for future missions. Advanced growth techniques (e.g., MBE and MOCVD) of column III-V semiconductors have opened opportunities for engineering new detector materials and device structures. The technical approaches under investigation at JPL (with university and industry participation) include: quantum well infrared photodetectors, heterojunction internal photoemission (HIP) photodetectors, type-II strained layer superlattices, and nipi doping superlattices. Each of these options are briefly described with some of their pros and cons. A more detailed description is given for the HIP approach being pioneered at JPL.

  8. Proposal for strained type II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Mailhiot, C.

    1987-09-01

    It is shown that strained type II superlattices made of InAs-Ga(1-x)In(x)Sb(x) about 0.4 have favorable optical properties for infrared detection. By adjusting the layer thicknesses and the alloy composition, a wide range of wavelengths can be reached. Optical absorption calculations for a case where the cutoff wavelength is about 10 microns show that, near threshold, the absorption is as good as for the HgCdTe alloy with the same band gap. The electron effective mass is nearly isotropic and equal to 0.04 m. This effective mass should give favorable electrical properties, such as small diode tunneling currents and good mobilities, and diffusion lengths.

  9. Characterization of liquid phase epitaxial GaAs forblocked-impurity-band far-infrared detectors

    SciTech Connect

    Cardozo, B.L.; Reichertz, L.A.; Beeman, J.W.; Haller, E.E.

    2004-04-07

    GaAs Blocked-Impurity-Band (BIB) photoconductor detectors have the potential to become the most sensitive, low noise detectors in the far-infrared below 45.5 cm{sup -1} (220 {micro}m). We have studied the characteristics of liquid phase epitaxial GaAs films relevant to BIB production, including impurity band formation and the infrared absorption of the active section of the device. Knowledge of the far-infrared absorption spectrum as a function of donor concentration combined with variable temperature Hall effect and resistivity studies leads us to conclude that the optimal concentration for the absorbing layer of a GaAs BIB detector lies between 1 x 10{sup 15} and 6.7 x 10{sup 15} cm{sup -3}. At these concentrations there is significant wavefunction overlap which in turn leads to absorption beyond the 1s ground to 2p bound excited state transition of 35.5 cm{sup -1} (282 {micro}m). There still remains a gap between the upper edge of the donor band and the bottom of the conduction band, a necessity for proper BIB detector operation.

  10. High-resolution infrared detector and its electronic unit for space application

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Montmessin, F.; Korablev, O.; Trokhimovsky, A.; Poiet, G.; Bel, J.-B.

    2015-05-01

    High-resolution infrared detector is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, and tracking. Civilian applications include, among others, scientific observations. For our space systems, we want to use the products developed by SOFRADIR Company. Thus, we have developed a space electronic unit that is used to control the high-resolution SCORPIO-MW infrared detector, which has a format of 640×512 pixels with 15μm×15μm pixel pitch. The detector within microelectronics based on infrared mid-wave (MW) complementary metal oxide semiconductors (CMOS) uses a micro-cooler in order to keep its temperature around 100 K. The standard wavelength range (3 to 5μm) is adapted to the 2.2 to 4.3μm wavelength range thanks to adaptation of the optical interface of the detector and with an antireflection coating. With our electronic system, we can acquire 3 images per second. To increase the signal to noise ratio, we have the opportunity to make a summation of 15 frames per image. Through this article, we will describe the space electronic system that we have developed in order to achieve space observations (e.g. Atmospheric Chemistry Suite package for ExoMars Trace Gas Orbiter).

  11. Research on infrared-image denoising algorithm based on the noise analysis of the detector

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Zhou, Xiaodong; Shen, Tongsheng; Han, Yanli

    2005-01-01

    Since the conventional denoising algorithms have not considered the influence of certain concrete detector, they are not very effective to remove various noises contained in the low signal-to-noise ration infrared image. In this paper, a new thinking for infrared image denoising is proposed, which is based on the noise analyses of detector with an example of L model infrared multi-element detector. According to the noise analyses of this detector, the emphasis is placed on how to filter white noise and fractal noise in the preprocessing phase. Wavelet analysis is a good tool for analyzing 1/f process. 1/f process can be viewed as white noise approximately since its wavelet coefficients are stationary and uncorrelated. So if wavelet transform is adopted, the problem of removing white noise and fraction noise is simplified as the only one problem, i.e., removing white noise. To address this problem, a new wavelet domain adaptive wiener filtering algorithm is presented. From the viewpoint of quantitative and qualitative analyses, the filtering effect of our method is compared with those of traditional median filter, mean filter and wavelet thresholding algorithm in detail. The results show that our method can reduce various noises effectively and raise the ratio of signal-to-noise evidently.

  12. Synthesis arrangement and parity correction of linear array infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Hong, Pu; Wang, Bo; Wang, Chensheng

    2010-11-01

    According to the configuration and technical specification of the detector, which has multiple channels, channels mixing, high speed outputs and separate columns between odd and even, a real time digital processing unit based on the CPLD, FPGA and DSP has been developed to achieve the data synthesis and arrangement function and the parity correction algorithm. A special interface circuit with 4 CPLDs is designed to complete the first synthesis step where the 16 channels of data are combined into 4 channels. The second step is finished in FPGA and ROM address encoder where the 4 channels of data are combined into 1 channel. For output data synchronization, FIFO is adopted to achieve the delay of even channels in the parity correction. Data of odd channels enters the columns synthesis unit without any processing and even channels shall be processed in the columns synthesis unit after entering the FIFO unit first and experiencing the delay process. Thereby the pre-processing before image processing of the linear array thermal imager is accomplished.

  13. Stability of the spectral responsivity of cryogenically cooled InSb infrared detectors

    SciTech Connect

    Theocharous, Evangelos

    2005-10-10

    The spectral responsivity of two cryogenically cooled InSb detectors was observed to drift slowly with time. The origin of these drifts was investigated and was shown to occur due to a water-ice thin film that was deposited onto the active areas of the cold detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the antireflection coatings deposited on the active areas of the detectors, thus giving rise to the observed drifts. The magnitude of the drifts was drastically reduced by evacuating the detector dewars while baking them at 50 deg. C for approximately 48 h. All InSb detectors have antireflection coatings to reduce the Fresnel reflections and therefore enhance their spectral responsivity. This work demonstrates that InSb infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to InSb detectors mounted in dewars that use rubber O rings since the ingress of moisture was found to be particularly serious in this type of dewar.

  14. Infrared responsivity enhancement for silicon detectors by non-mask reactive ion etching

    NASA Astrophysics Data System (ADS)

    Liao, Naiman; Kou, Linlai; Luo, Chunlin; Li, Renhao

    2016-10-01

    Near Infrared responsivity of silicon-based detectors is low for weak light absorption in the wavelengths exceeding 1000nm. For 1064nm wavelength applications, it is necessary to use thick Si wafers to manufacturing devices for higher NIR responsivity performance. However, this leads to high applied voltage, long response time, imposing limitations on device characteristics and applications. Black silicon (BS) appears very high absorptance of light from the near-ultraviolet (250nm) to the near-infrared (2500nm) wavelength region. And the black silicon detectors are many times more responsivity than conventional silicon detectors in the near infrared. In this article, BS is prepared using non-mask reactive ion etching technique and PIN BS detectors are fabricated. It is indicated that there is a disordered layer that is 2.0μm -3.5μm thick and made up of pillars with 90nm-400nm in diameter and 200nm-600nm in spacing interval. The reflectance of BS is less than 7% in the wavelength from 400nm to 1100nm, and rises from 1040nm. The absorptance of BS sample prepared by non-mask reactive ion etching remains more than 93% from 400nm to 1040nm, and the absorptance of 60% is observed at the wavelengths longer than 1500nm. High temperature annealing does not deteriorate its light absorption performance. The front-illuminated and back-illuminated BS PIN detectors are structured. At the wavelength of 1064nm, the responsivities of front-illuminated and back-illuminated BS PIN detectors are improved from 0.30A/W to 0.43A/W and 0.58A/W respectively.

  15. A new generation of small pixel pitch/SWaP cooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  16. INAS hole-immobilized doping superlattice long-wave-infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1992-01-01

    An approach to long-wave-infrared (LWIR) technology is discussed. The approach is based on molecular beam epitaxy (MBE) growth of hole immobilized doping superlattices in narrow band gap 3-5 semiconductors, specifically, InAs and InSb. Such superlattices are incorporated into detector structures suitable for focal plane arrays. An LWIR detector that has high detectivity performance to wavelengths of about 16 microns at operating temperatures of 65K, where long-duration space refrigeration is plausible, is presented.

  17. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  18. Nanopillar optical antenna nBn detectors for subwavelength infrared pixels

    NASA Astrophysics Data System (ADS)

    Hung, Chung Hong; Senanayake, Pradeep; Lee, Wook-Jae; Farrell, Alan; Hsieh, Nick; Huffaker, Diana L.

    2015-06-01

    The size, weight and power (SWaP) of state of the art infrared focal plane arrays are limited by the pixel size approaching the diffraction limit. We investigate a novel detector architecture which allows improvements in detectivity by shrinking the absorber volume while maintaining high quantum efficiency and wide field of view (FOV). It has been previously shown that the Nanopillar Optical Antenna (NOA) utilizes 3D plasmonic modes to funnel light into a subwavelength nanopillar absorber. We show detailed electro-optical simulations for the NOA-nBn architecture for overcoming generation recombination current with suitable surface passivation to achieve background limited infrared performance.

  19. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    SciTech Connect

    Goldflam, Michael D.; Kadlec, Emil Andrew; Olson, Ben V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, S.; Coon, Wesley Thomas; Keeler, Gordon Arthur; Fortune, Torben Ray; Tauke-Pedretti, Anna; Wendt, Joel R.; Shaner, Eric A.; Davids, Paul S.; Kim, Jin K.; Peters, David W.

    2016-12-22

    Here we examined the spectral responsivity of a 1.77μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber’s subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  20. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    DOE PAGES

    Goldflam, Michael D.; Kadlec, Emil Andrew; Olson, Ben V.; ...

    2016-12-22

    Here we examined the spectral responsivity of a 1.77μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber’s subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency.more » The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.« less

  1. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    NASA Astrophysics Data System (ADS)

    Goldflam, M. D.; Kadlec, E. A.; Olson, B. V.; Klem, J. F.; Hawkins, S. D.; Parameswaran, S.; Coon, W. T.; Keeler, G. A.; Fortune, T. R.; Tauke-Pedretti, A.; Wendt, J. R.; Shaner, E. A.; Davids, P. S.; Kim, J. K.; Peters, D. W.

    2016-12-01

    We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  2. Infrared kinetic/structural studies of barrier reformation in intact stratum corneum following thermal perturbation.

    PubMed

    Pensack, Ryan D; Michniak, Bozena B; Moore, David J; Mendelsohn, Richard

    2006-12-01

    Stratum corneum, the outermost layer of the epidermis, constitutes the main barrier to permeability in skin. As such, it has been the target of many approaches for transdermal drug delivery based on methods involving transient modifications of the barrier. An infrared (IR) spectroscopic method has been developed to monitor the kinetics of barrier restoration following an external perturbation. In the current case, temperature perturbation was selected as a convenient means to induce structural changes in the barrier. The method is based on the observation that the ordered lipid phases of the barrier in isolated human stratum corneum exist in part in orthorhombically packed subcells. Such phases display a characteristic splitting of the CH2 rocking vibrations with component frequencies at 720 and 729 cm(-1). The latter is reliably diagnostic for orthorhombic phases and is markedly reduced in intensity following a thermal perturbation to 55 degrees C. The kinetics of barrier recovery following quenching to either 25 degrees C or 30 degrees C were monitored by tracking the restoration of the 729 cm(-1) band intensity. The kinetics were dominated by exponential growth in the initial stages, followed by linear increases at longer times. The half lives for exponential growth regimes were 52.4 h for the 25 degrees C quench and 13.8 h for the 30 degrees C quench. These values are in reasonable accord with those determined with more phenomenological approaches, typically based on restoration of some barrier function. This novel method for monitoring structural reorganization kinetics in intact stratum corneum can readily be extended to evaluate barrier recovery following a variety of treatments used to enhance drug delivery.

  3. Performances Of Arrays Of Ge:Ga Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Mccreight, C.; Farhoomand, J.

    1992-01-01

    Report presents evaluation of performances of two electronic modules containing few-element linear focal-plane arrays of Ge:Ga photodetectors and associated multiplexing readout circuitry. Tested to demonstrate feasibility of many-element, two-dimensional focal-plane arrays of far-infrared detectors and associated circuitry for use in astronomical and other low-background scientific observations. Revealed deficiencies that must be overcome in future designs.

  4. LK21T1 S/N V-3 infrared detector. [photoconductivity, performance prediction

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An infrared detector was fabricated to determine the feasibility of atmospheric sounding from synchronous orbit for water vapor and carbon dioxide. The device was extensively tested both before and after a 24-hour soak at 50 C and relative humidity of 95 percent. No degradation in performance as a result of the soak was observed. The device contains a single photoconductive HgCdTe element designed to operate in the six to fifteen micron region.

  5. A new test facility for the E-ELT infrared detector program

    NASA Astrophysics Data System (ADS)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  6. Development status of Type-II superlattice infrared detector in JAXA

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Murooka, Junpei; Kumeta, Ayaka; Katayama, Haruyoshi; Kimura, Toshiyoshi; Inada, Hiroshi; Iguchi, Yasuhiro; Hiroe, Yuta; Kimata, Masafumi

    2016-09-01

    One of JAXA's future missions, using an imaging Fourier Transform Spectrometer (FTS), require the focal plane array (FPA) that has high sensitivity and a very long-wavelength infrared (VLWIR) cutoff wavelength. Since a Type-II superlattice (T2SL) is the only known infrared material to have a theoretically predicted performance superior to that of HgCdTe and the cutoff wavelength can be tailored in the wavelength region of 3-30 μm, we started the research and development of the T2SL detector in 2009. In order to confirm our final goal which is to realize an FPA with a cutoff wavelength of 15 μm, we fabricated InAs/GaInSb T2SL infrared detectors with a cutoff wavelength of 15 μm. We show the results of the dark current and responsivity measurement of single pixel detectors and the development status of FPAs including the image taken by a 320 × 256 InAs/GaInSb T2SL FPA with a cutoff wavelength of 15 μm.

  7. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.

    PubMed

    Huang, Huixin; Wang, Fanglin; Liu, Yang; Wang, Sheng; Peng, Lian-Mao

    2017-04-12

    The carbon nanotube (CNT) has been proved to be a promising material in infrared detection, due to its many advantages of high mobility, strong infrared light absorption, and carrier collection efficiency. However, the absorption restriction from the single layer limits its effective utilization of incident light. In this paper, we introduce a plasmonic electrode structure in a CNT thin-film photodetector based on random deposited high-purity semiconducting CNTs, which can collect photoinduced carriers effectively and enhance light absorption at the same time. The largest enhancement of photocurrents can be achieved at 1650 nm wavelength with suitable plasmonic structure size. Especially, we further discuss the influence of plasmonic structures on the performance of devices. We demonstrate that the best performance improvement of the carbon nanotube detector with plasmonic structure can be enhanced by 13.7 times for photocurrent mode and 5.62 times for photovoltage mode compared to those devices without structure at 1650 nm resonant wavelength. At last, the plasmonic structures are applied on tandem photodetectors with nine virtual contacts, and both the photocurrent and photovoltage are increased. The application of plasmonic electrodes can improve detector performance and retain compact device structures, which shows great potential for optimizing infrared detectors based on nanomaterials.

  8. Towards a life-time-limited 8-octave-infrared photoconductive germanium detector

    NASA Astrophysics Data System (ADS)

    Pavlov, S. G.; Deßmann, N.; Pohl, A.; Abrosimov, N. V.; Mittendorff, M.; Winnerl, S.; Zhukavin, R. Kh; Tsyplenkov, V. V.; Shengurov, D. V.; Shastin, V. N.; Hübers, H.-W.

    2015-10-01

    Ultrafast, ultra-broad-band photoconductive detector based on heavily doped and highly compensated germanium has been demonstrated. Such a material demonstrates optical sensitivity in the more than 8 octaves, in the infrared, from about 2 mm to about 8 μm. The spectral sensitivity peaks up between 2 THz and 2.5 THz and is slowly reduced towards lower and higher frequencies. The life times of free electrons/holes measured by a pump-probe technique approach a few tenths of picoseconds and remain almost independent on the optical input intensity and on the temperature of a detector in the operation range. During operation, a detector is cooled down to liquid helium temperature but has been approved to detect, with a reduced sensitivity, up to liquid nitrogen temperature. The response time is shorter than 200 ps that is significantly faster than previously reported times.

  9. Bowtie nanoantenna integrated with indium gallium arsenide antimonide for uncooled infrared detector with enhanced sensitivity.

    PubMed

    Choi, Sangjo; Sarabandi, Kamal

    2013-12-10

    A novel high-impedance nanoantenna with an embedded matching network is implemented to realize a highly sensitive infrared detector. A bowtie antenna is operated at its antiparallel resonance and loaded with a small low-bandgap (E(g)=0.52  eV) indium gallium arsenide antimonide (InGaAsSb) p-n junction. The structure is optimized for maximum power transfer and significant field enhancement at its terminals for a desired frequency band where the maximum quantum efficiency of InGaAsSb is observed. The sensitivity improvement of the proposed detector is evaluated against the traditional bulk detector and it is shown that the detectivity is improved by the field enhancement factor, which is approximately 20 for the case considered here.

  10. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  11. Design of near-infrared single photon detector at 1550nm wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Jiali

    2016-09-01

    Technology of near-infrared single photon detection is used in quantum communication, laser ranging and weak light detection. Present single photon detectors are usually expensive and bulky. To overcome their disadvantages, a hand-held single photon detector based on InGaAs/InP avalanche photo diode (APD) is developed. A circuit program for temperature control and bias voltage is offered. The gating signal is generated and the avalanche signal is extracted by FPGA. Experiment results show that, the single photon detector yields only 8.2×10-6/ns dark count rate (DCR) when photon detection efficiency is 12%, and the maximum photon detection efficiency of 16% is obtained at temperature of -55°C.

  12. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-08-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz}. We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  13. Development of low-noise kinetic inductance detectors for far-infrared astrophysics

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Hailey-Dunsheath, Steven; Bradford, Charles M.; McKenney, Christopher; Le Duc, Henry G.; Aguirre, James

    2017-01-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many spectral lines at far-infrared wavelengths (10 μm < λ < 1 mm) are excellent tracers of star formation, but detecting them requires the next generation of sensitive detectors. We are working to develop a detector system for a far-infrared balloon-borne spectroscopic experiment using kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity, low noise levels, high multiplexing factor, and may enable future space missions. We describe the design, fabrication, and noise performance measurements of prototype detector devices targeting an optical noise equivalent power below 1 ×10-17 WHz - 1 / 2 with readout frequencies below 250 MHz. The devices consist of arrays of 45 lumped-element KID pixels patterned out of thin-film aluminum on silicon wafers. They are optically coupled to incident radiation with a set of feedhorns. We use an FPGA-based readout system to read out the response of all the pixels in the array simultaneously. This work was supported by a NASA Space Technology Research Fellowship.

  14. LDEF (Prelaunch), AO135 : Effect of Space Exposure on Pyroelectric Infrared Detectors, Tray E05

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO135 : Effect of Space Exposure on Pyroelectric Infrared Detectors, Tray E05 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Space Exposure on Pyroelectric Infrared Detectors Experiment (AO135) consist of twenty detectors of three different types of materials, lithium-tantalate, strontium-barium-niobate and triglycine-sulfide. The Pyroelectric infrered detector experiment is an integral part of the Active Optical System Component Experiment (S0050) that contains 136 test specimen and is located in a six (6) inch deep LDEF peripheral experiment tray. The experiment tray is divided into six sections, each consisting of a 1/4 inch thick chromic anodized aluminum base plate and a 1/16th inch thick aluminum hat shaped structure for mounting the test specimen. The test specimen are typi- cally placed in fiberglass-epoxy retainer strip assemblies prior to installation on the hat shaped mounting structure. Five of the six sections are covered by a 1/8 inch thick anodized aluminum sun screen with openings that allowed 56 percent transmission over the central region. Two subexperiments, The Optical Materials and UV Detectors Experiment (S0050-01) consist of 15 optical windows, filters and detectors and occupies one of the trays six sub-sections and The Optical Substrates and Coatings Experiment (S0050-02 ) that includes 12 substrates and coatings and a secondary experiment, The Holographic Data Storage Crystal Experiment (AO044) with four crystals, are also mounted in the integrated tray. The experiment structure was assembled with non-magnetic stainless steel fasteners.

  15. Early detection of combustible gas leaks using open path infrared (IR) gas detectors

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward; Baliga, Shankar

    2012-06-01

    Open path IR gas detectors are a mainstay in the oil and gas industry. They are used in a variety of instances to identify gas accumulations or monitor gas cloud migrations. In offshore installations, open path optical gas detectors are used to monitor drilling and production operations, crude oil separation, compression, and exhaust and ventilation systems. Because they can monitor a perimeter or fence line, they are ideally suited for detecting gas in open facilities, where point gas detectors would be difficult or expensive to deploy. Despite their widespread use, open path optical gas detectors are rarely employed to detect low level concentrations of combustible gases. Standard models are typically set to alarm at 50% LEL-m (50% LEL extended over one meter), providing sufficiently early warning when gas accumulations occur. Nevertheless, in cases in which a combustible gas is diluted quickly, such as ventilation exhaust ducting, it may be necessary to set the detector to alarm at the lowest predictable level. Further, interest in low level infrared gas detection has been growing as gases such as CH4 and CO2 are greenhouse gases. The present paper describes a mid-wave infrared (MWIR) open path system designed to detect combustible and carbon dioxide gas leaks in the parts-per-million-meter (ppm-m or mg/cm2). The detector has been installed in offshore platforms and large onshore facilities to detect a variety of flammable gases and vapors. Advantages and limitations of the system are presented. False alarm immunity and resilience to atmospheric interferences are also discussed.

  16. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  17. A novel long-wave infrared high resolution continuous zoom lens with uncooled thermal detector

    NASA Astrophysics Data System (ADS)

    Bao, Jiaqi; Yu, Kan; Ji, Zijuan

    2016-09-01

    Infrared imaging lens is one of the key components of a video security camera. A novel long-wave infrared continuous zoom lens is developed based on the 640×512 high resolution uncooled infrared thermal detector which can substitute the high cost cooled infrared detector. The zoom lens contains five germanium lens and one chalcogenide glass lens, which working in the wavelength range of 8 12 μm. Its F number range is in 1 1.1 while the focus length is changing from 20 to 120 mm. Based on the zoom lens design theory, the positive lens mechanical compensation structure is used to calculate the optical parameters and optimize the cam zoom curve, which can have a smooth continuous zoom in the range of all focus lengths. The image analysis show that the system has achieved the modulation transfer function (MTF) value above 0.45 which spatial frequency is 30 lp/mm. The spot diagrams RMS radius is less than 6.3μm which is near the diffraction limit. The real test photos indicate that the lens has the advantages of high resolution, large aperture, smooth zoom and stable image plane. Due to the high image quality and low cost, the continuous zoom lens is easily to be fabricated.

  18. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  19. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-09-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  20. Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara

    2005-01-01

    NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.

  1. Parylene supported 20um*20um uncooled thermoelectric infrared detector with high fill factor

    NASA Astrophysics Data System (ADS)

    Modarres-Zadeh, Mohammad J.; Carpenter, Zachary S.; Rockley, Mark G.; Abdolvand, Reza

    2012-06-01

    Presented is a novel design for an uncooled surface-micromachined thermoelectric (TE) infrared (IR) detector. The detector features a P-doped polysilicon/Nichrome (Cr20-Ni80) thermocouple, which is embedded into a thin layer of Parylene-N to provide structural support. The low thermal conductivity (~0.1W/m.K), chemical resistance, and ease of deposition/patterning of Parylene-N make it an excellent choice of material for use in MEMS thermal detectors. This detector also features an umbrella-like IR absorber composed of a three layer stack of NiCr/SiN/NiCr to optimize IR absorption. The total device area is 20 um * 20 um per pixel with an absorber area of ~19 um * 19 um resulting in a fill factor of 90%. At room temperature, a DC responsivity of ~170V/W with a rise time of less than 8 ms is measured from the fabricated devices in vacuum when viewing a 500K blackbody without any concentrating optics. The dominant source of noise in thermoelectric IR detectors is typically Johnson noise when the detectors are operating in an open circuit condition. The fabricated detectors have resistances about 85KOhm which results in Johnson noise of about 38nV/Hz^0.5. The D* is calculated to be 9 * 106 cm*Hz0.5/ W. Preliminary finite element analysis indicates that the thermal conduction from the hot junction to the substrate through the TE wires is dominant ( GTE >> Gparylene) considering the fabricated dimensions of the parylene film and the TE wires. Thus, by further reducing the size of the TE wires, GTE can be decreased and hence, responsivity can be improved while the parylene film sustains the structural integrity of the cell.

  2. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  3. Evidence for Coincident Fusion Products Using Silicon Surface-barrier Detectors

    NASA Astrophysics Data System (ADS)

    Jones, Steven; Scott, Mark; Keeney, Frank

    2002-10-01

    We report experimental results showing coincident proton and triton production from the reaction: d + d --> t (1.01 MeV) + p (3.02 MeV). Partially-deuterided thin titanium foils were positioned between two silicon surface-barrier detectors which were mounted in a small cylindrical vacuum chamber which also served as a Faraday cage. We performed Monte Carlo studies using the SRIM code to determine the expected energies of arriving particles after they exit the host foil. The dual-coincidence requirement reduces background to very low levels so that low yields from very thin TiD foils can be readily detected. In one sequence of experiments, we observed 74 foreground coincidences in the regions of interest compared with 24 background counts; the statistical significance is approximately ten standard deviations. A striking advance is that the repeatability from the dual-coincidence experiments is currently greater than 70%.

  4. Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons.

    PubMed

    Li, Wei; Zheng, Chengbin; Fan, Guangyu; Tang, Li; Xu, Kailai; Lv, Yi; Hou, Xiandeng

    2011-07-01

    A novel microplasma molecular emission spectrometer based on an atmospheric pressure dielectric barrier discharge (DBD) is described and further used as a promising multichannel GC detector for halohydrocarbons. The plasma is generated in a DBD device consisting of an outer electrode (1.2 mm in diameter) and an inner electrode (1.7 mm in diameter) within a small quartz tube (3.0 mm i.d. × 5.0 mm o.d. × 50 mm), wherein analyte molecules are excited by the microplasma to generate molecular emission. Therefore, the analytes are selectively and simultaneously detected with a portable charge-coupled device (CCD) via multichannel detection of their specific emission lines. The performance of this method was evaluated by separation and detection of a model mixture of chlorinated hydrocarbons (CHCl(3) and CCl(4)), brominated hydrocarbons (CH(2)Br(2) and CH(2)BrCH(2)Br), and iodinated hydrocarbons (CH(3)I and (CH(3))(2)CHI) undergoing GC with the new detector. The completely resolved identification of the tested compounds was achieved by taking advantages of both chromatographic and spectral resolution. Under the optimized conditions with the CCD spectrometer set at 258, 292, and 342 nm channels for determination of chlorinated hydrocarbons, brominated hydrocarbons, and iodinated hydrocarbons, respectively, this detector with direct injection provided detection limits of 0.07, 0.06, 0.3, 0.04, 0.05, and 0.02 μg mL(-1) for CCl(4), CHCl(3), CH(2)Cl(2), CH(3)I, CH(3)CH(2)I, and (CH(3))(2)CHI, respectively.

  5. Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey

    2009-01-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  6. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    SciTech Connect

    Cardozo, Benjamin Lewin

    2004-01-01

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 1013 cm-3, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  7. True differential pyroelectric infrared detector with improved D* test results with analysis

    NASA Astrophysics Data System (ADS)

    Doctor, Alan

    2016-10-01

    Pyroelectric infrared detectors are used in many commercial and industrial applications. Typically these devices have been "single ended" and thus any electronic perturbation from a non-detector related noise source such as line frequency interference or microprocessor clock and other sources of electronic noise can be coupled onto the detector's output signal. We have solved this problem by employing a rather unique connection which also provides an increase in the signal to noise of any pyroelectric detector by a factor of the square root of 2 or by about 1.41 times greater than devices not utilizing this connection. Many devices using this connection have been built, fully tested and the data analyzed which provide a true differential or double ended output and the increase in D* as predicted. This scheme will work with any pyroelectric material (LTO, DLATGS, PLZT, PVDF etc.) with current or voltage mode impedance conversion and configurations such as parallel or series with and without temperature fluctuation compensation and of course with standard single elements. This talk will present this data and conclusions regarding the approach.

  8. Limiting dark current mechanisms in antimony-based superlattice infrared detectors for the long-wavelength infrared regime

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Lemke, Florian; Schmitz, Johannes; Wauro, Matthias; Walther, Martin

    2015-06-01

    A detailed understanding of limiting dark current mechanisms in InAs/GaSb type-II superlattice (T2SL) infrared detectors is key to improve the electrooptical performance of these devices. We present a six-component dark current analysis which, for the first time, takes account of sidewall-related dark current contributions in mesa-etched T2SL photodiodes. In a wide temperature range from 30K to 130K, the paper compares limiting mechanisms in two homojunction T2SL photodiode wafers for the long-wavelength infrared regime. While the two epi wafers were fabricated with nominally the same frontside process they were grown on different molecular beam epitaxy systems. In the available literature a limitation by Shockley-Read-Hall processes in the space charge region giving rise to generation-recombination (GR) dark current is the prevailing verdict on the bulk dark current mechanism in T2SL homojunction photodiodes around 77K. In contrast, we find that investigated photodiode wafers are instead limited by the diffusion mechanism and the ohmic shunt component, respectively. Furthermore, our in-depth analysis of the various dark current components has led to an interesting observation on the temperature dependence of the shunt resistance in T2SL homojunction photodiodes. Our results indicate that the GR and the shunt mechanism share the same dependence on bandgap and temperature, i.e., a proportionality to exp(-Eg/2kT).

  9. Growth and study of triglycine sulfate (TGS) crystals in low-G for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Batra, A. K.; Aggarwal, M. D.; Wilcox, W. R.; Trolinger, J. D.

    1991-01-01

    Experiments on growth of TGS crystals using (010) and (001) oriented disc shape seeds in the low gravity environment aboard Spacelab-3 are presented. The holographic interferograms reconstructed on the ground demonstrated diffusion limited growth. The morphology of the crystals grown was similar to that of crystals grown on earth, except the faces were not fully developed and planar. The device quality of these crytals is considered to be comparable with the best crystals grown on earth. Better infrared detector characteristics were obtained by doping TGS with Cs and L-alanine simultaneously on the ground. Crystals grown on (010) poled seeds show improved morphology and pyroelectric properties.

  10. Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeff I.; Spuckler, Charles M.; Street, Ken W.; Markham, Jim R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The infrared (IR) transmittance and reflectance of translucent thermal barrier coatings (TBCs) have important implications for both the performance of these coatings as radiation barriers and emitters as well as affecting measurements of TBC thermal conductivity, especially as TBCs are being pushed to higher temperatures. In this paper, the infrared spectral directional-hemispherical transmittance and reflectance of plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs are reported. These measurements are compared to those for single crystal YSZ specimens to show the effects of the plasma-sprayed coating microstructure. It is shown that the coatings exhibit negligible absorption at wavelengths up to about 5 micrometers, and that internal scattering rather than surface reflections dominates the hemispherical reflectance. The translucent nature of the 8YSZ TBCs results in the absorptance/emittance and reflectance of TBC-coated substrates depending on the TBC thickness, microstructure, as well as the radiative properties of the underlying substrate. The effects of these properties on TBC measurements and performance are discussed.

  11. Photoelectronic studies of an asymmetric step quantum-well middle wavelength infrared detector

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Gang; Chen, Zhibin

    2001-10-01

    Photoelectronic characteristics of the fabricated InxGa1-xAs/AlyGa1- yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3 to approximately 5 micrometers ) infrared detectors are studied. The components display photovoltaic-type photocurrent response as well as the bias- controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3 to approximately 5.3 micrometers infrared atmospheric transmission window. The blackbody detectivity (Dbb*) of the detectors reaches to about 1.0 X 1010 cm(DOT)Hz1/2/W at 77 K under bias of +/- 7 V. By expanding the electron wave function in terms of normalized plane wave basis withn the framwork of the effective-mass envelope-function theory, the linear Stark effects of the intersubband tansitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements.

  12. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.

    2016-05-01

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  13. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei

    2015-11-01

    High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.

  14. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height

    PubMed Central

    Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei

    2015-01-01

    High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.

  15. Development of a new readout system for the near-infrared detector of HONIR

    NASA Astrophysics Data System (ADS)

    Ui, Takahiro; Sako, Shigeyuki; Yamashita, Takuya; Akitaya, Hiroshi; Kawabata, Koji S.; Nakaya, Hidehiko; Moritani, Yuki; Itoh, Ryosuke; Takaki, Katsutoshi; Urano, Takeshi; Ueno, Issei; Ohsugi, Takashi; Yoshida, Michitoshi; Nakao, Hikaru; Hashiba, Yasuhito

    2014-08-01

    We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ˜ 37 μV rms.

  16. Development and application of InAsP/InP quantum well infrared detector

    NASA Astrophysics Data System (ADS)

    Geetanjali, Porwal, S.; Kumar, R.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2016-05-01

    InAsxP1-x/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9-1.46 µm by inter-band transitions and 7-18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAsxP1-x/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 June 2016. The original version supplied to AIP Publishing contained an error in the Figures 1 and 2 where the right side of the images were cutoff. The error has been corrected in the updated and re-published article.

  17. Photon-Assisted Transmission through a Double-Barrier Structure

    SciTech Connect

    LYO,SUNGKWUN K.

    2000-06-27

    The authors study multi-photon-assisted transmission of electrons through single-step, single-barrier and double-barrier potential-energy structures as a function of the photon energy and the temperature. Sharp resonances in the spectra of the tunneling current through double-barrier structures are relevant to infra-red detectors.

  18. Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection.

    PubMed

    Zhu, Hongbo; Zhou, Menglian; Lee, Jiwon; Nidetz, Robert; Kurabayashi, Katsuo; Fan, Xudong

    2016-09-06

    This paper presents the design, fabrication, and characterization of a microhelium dielectric barrier discharge photoionization detector (μHDBD-PID) on chip with dimensions of only ∼15 mm × ∼10 mm × ∼0.7 mm and weight of only ∼0.25 g. It offers low power consumption (<400 mW), low helium consumption (5.8 mL/min), rapid response (up to ∼60 ms at a flow rate of 1.5 mL/min), quick warm-up time (∼5 min), an excellent detection limit (a few picograms), a large linear dynamic range (>4 orders of magnitude), and maintenance-free operation. Furthermore, the μHDBD-PID can be driven with a miniaturized (∼5 cm × ∼2.5 cm × ∼2.5 cm), light (22 g), and low cost (∼$2) power supply with only 1.5 VDC input. The dependence of the μHDBD-PID performance on bias voltage, auxiliary helium flow rate, carrier gas flow rate, and temperature was also systematically investigated. Finally, the μHDBD-PID was employed to detect permanent gases and a sublist of the EPA 8260 standard reagents that include 51 analytes. The μHDBD-PID developed here can have a broad range of applications in portable and microgas chromatography systems for in situ, real-time, and sensitive gas analysis.

  19. Characterization of the dark current of a quantum well infrared photodetector (QWIP) with selectively doped barrier layers

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yasuhito; Nishino, Hironori; Matsukura, Yusuke; Miyatake, Tetsuya; Yamamoto, Kousaku; Fujii, Toshio

    2002-08-01

    We investigated the behavior of the dark current (Id) in quantum well infrared photodetectors (QWIPs) in which the barrier layers were selectively doped instead of the well layers. Because the selective doping bends the conduction band (CB) edge in the portion of the barrier near the interface, the mechanism by which carriers in the wells can be emitted over the barriers, i.e. thermal emission and tunneling through this portion of the barrier, could be emphasized. We first confirmed that selectively doping the barrier layers clearly affects the Id-V characteristics. Then, by evaluating the activation energy obtained from the temperature dependence of Id, we found that the Poole-Frenkel emission (PFE) mechanism and the thermal-assisted tunneling (TAT)-like mechanism are dominant in the lower bias and higher bias regions, respectively.

  20. Near-Infrared Single-Photon-Counting Detectors for Laser Instrument Applications at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Xiaoli, Sun; Abshire, James B.

    2005-01-01

    We discuss single-photon-counting detectors requirements for NASA remote sensing and communications systems. We present experimental measurements on several different near-infrared single-photon-counting detectors including InGaAs/InP and InGaAs/InAlAs avalanche photodiodes (APD), an InGaAsP photocathode hybrid photomultiplier (PMT) and an InGaAs photomultiplier. We present the experimental performance of prototype instruments for laser ranging, communication, and trace-gas detection that use these detectors.

  1. A Near-Infrared Laser-Activated "Nanobomb" for Breaking the Barriers to MicroRNA Delivery.

    PubMed

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-01-13

    A near-infrared laser-activated "nanobomb" is synthesized using lipid and multiple polymers to break the extra-cellular and intracellular barriers to cytosolic delivery of microRNAs. The nanobomb can be used to effectively destroy tumors and cancer stem-like cells in vitro and in vivo with minimal side effects.

  2. How to align a new detector and micro shutter inside JWST's Near Infrared Spectrograph (NIRSpec)

    NASA Astrophysics Data System (ADS)

    te Plate, Maurice; Rumler, Peter; Jensen, Peter; Eder, Robert; Ehrenwinkler, Ralf; Merkle, Frank; Roedel, Andreas; Speckmaier, Max; Johnson, Thomas E.; Mott, Brent; Snodgrass, Stephen; Gunn, Chris; Ward, Justin

    2016-09-01

    JWST will be the biggest space telescope ever built and it will lead to astounding scientific breakthroughs. The mission will be launched in October 2018 from Kourou, French Guyana by an ESA provided Ariane 5 rocket. NIRSpec, one of the four instruments on board of the mission, recently underwent a major upgrade. New infrared detectors were installed and the Micro Shutter Assembly (MSA) was replaced as well. The rework was necessary because both systems were found to be degrading beyond a level that could be accepted. The installation and "in situ" alignment of these new systems required special techniques and alignment jigs that will be described in this paper. Some first results will be presented as well.

  3. Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.

  4. Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)

    2016-01-01

    The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.

  5. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  6. Detectors of Infrared Radiation Based on High T(c) Superconducting YBCO Films

    DTIC Science & Technology

    1991-06-01

    d4 . mvuAT.OATS 3. AIPOST ’l ’ TE ’OEE FINAL REPORT 1 Dec 87-30 Apr 90 Detectors of Infrared Radiation Based on High T(c) Superconducting YBCO Films...YBa2CU3O7 film on LaAlO3 at 6.8 K biased with 20.6 mA. > .11 --- . I’ M e nsq FW m.. E\\pe of th .5.i.=nl 3(0wnN n UA*. ). l=btototpte vCV ra. dt mdm lenmo ,5,25 ind 9W nj/pu- 4=5mAT=8s’

  7. NGP: a new large format infrared detector for observation, hyperspectral and spectroscopic space missions in VISIR, SWIR and MWIR wavebands

    NASA Astrophysics Data System (ADS)

    Delannoy, Anne; Fièque, Bruno; Chorier, Philippe; Riuné, Céline

    2015-10-01

    SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is present in many space programs in visible and SWIR spectral ranges. Most of these programs concern hyperspectral imagery observation of the earth but also some scientific applications. For more than 10 years, the Saturn generation detector (VISIR or SWIR) of Sofradir was the basis of numerous space missions. In order to answer future mission needs which require larger detector for better spatial and spectral resolutions while complying with all specifications reflecting the state of requirements for space detectors, SOFRADIR has developed a new detector in a frame of an ESA R and T program, named Next Generation Panchromatic Detector (NGP). While designed for VISIR and SWIR spectral ranges, this detector is also studied to be extended in MWIR spectral range. In this paper, NGP detector will be described as well as its performances. Space applications using this detector will be presented also showing appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.

  8. Design of monocrystalline Si/SiGe multi-quantum well microbolometer detector for infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Shafique, Atia; Durmaz, Emre C.; Cetindogan, Barbaros; Yazici, Melik; Kaynak, Mehmet; Kaynak, Canan B.; Gurbuz, Yasar

    2016-05-01

    This paper presents the design, modelling and simulation results of silicon/silicon-germanium (Si/SiGe) multi-quantum well based bolometer detector for uncooled infrared imaging system. The microbolometer is designed to detect light in the long wave length infrared (LWIR) range from 8 to 14 μm with pixel size of 25 x 25 μm. The design optimization strategy leads to achieve the temperature coefficient of resistance (TCR) 4.5%/K with maximum germanium (Ge) concentration of 50%. The design of microbolometer entirely relies on standard CMOS and MEMS processes which makes it suitable candidate for commercial infrared imaging systems.

  9. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  10. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    NASA Technical Reports Server (NTRS)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  11. Ruggedizing infrared integrated Dewar-detector assemblies for harsh environmental conditions

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Ashush, Nataniel; Shlomovich, Baruch; Oppenhaim, Yaakov; Gridish, Yaakov; Kahanov, Ezra; Koifman, Alina; Tuito, Avi

    2014-06-01

    Cryogenically cooled infrared electro-optical payloads have to operate and survive frequent exposure to harsh vibrational and shock conditions typical of the modern battlefield. This necessitates the development of special approaches to ruggedizing their sensitive components. The ruggedization requirement holds true specifically for Integrated Dewar-Detector Assemblies (IDDA), where the infrared Focal Plane Array (FPA) is usually supported by a thin-walled cold finger enveloped by an evacuated tubular Dewar. Without sufficient ruggedization, harsh environmental vibration may give rise to structural resonance responses resulting in spoiled image quality and even mechanical fractures due to material fatigue. The authors present their approach for the ruggedization of the IDDA by attaching the FPA to a semi-rigid support extending from the dynamically damped Dewar envelope. A mathematical model relies on an experimentally evaluated set of frequency response functions for a reference system and a lumped model of a wideband dynamic absorber. By adding only 2% to the weight of the IDDA, the authors have managed to attenuate the relative deflection and absolute acceleration of the FPA by a factor of 3. The analytical predictions are in full agreement with experiment.

  12. Detector-level spectral characterization of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite long-wave infrared bands M15 and M16.

    PubMed

    Padula, Francis; Cao, Changyong

    2015-06-01

    The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data record (SDR) product achieved validated maturity status in March 2014 after roughly two years of on-orbit characterization (S-NPP spacecraft launched on 28 October 2011). During post-launch analysis the VIIRS Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the daytime SST data. Daytime SST retrievals use the two VIIRS long-wave infrared bands: M15 (10.7 μm) and M16 (11.8 μm). To assess possible root causes due to detector-level spectral response function (SRF) effects, a study was conducted to compare the radiometric response of the detector-level and operational-band averaged SRFs of VIIRS bands M15 and M16. The study used simulated hyperspectral blackbody radiance data and clear-sky ocean hyperspectral radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs and that if users require optimal radiometric performance, detector-level processing is recommended for both SDR and EDR products. Future work should investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  13. Near-Infrared Image Reconstruction of Newborns' Brains: Robustness to Perturbations of the Source/Detector Location.

    PubMed

    Ahnen, L; Wolf, M; Hagmann, C; Sanchez, S

    2016-01-01

    The brain of preterm infants is the most vulnerable organ and can be severely injured by cerebral ischemia. We are working on a near-infrared imager to early detect cerebral ischemia. During imaging of the brain, movements of the newborn infants are inevitable and the near-infrared sensor has to be able to function on irregular geometries. Our aim is to determine the robustness of the near-infrared image reconstruction to small variations of the source and detector locations. In analytical and numerical simulations, the error estimations for a homogeneous medium agree well. The worst case estimates of errors in reduced scattering and absorption coefficient for distances of r=40 mm are acceptable for a single source-detector pair. The optical properties of an inhomogeneity representing an ischemia are reconstructed correctly within a homogeneous medium, if the error in placement is random.

  14. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    cooled device without liquid nitrogen in very demanding environmental conditions. A successful test of this device was performed on sky on the PIONIER 4 telescopes beam combiner on the VLTi at ESOParanal in June 2014. First Light Imaging, which will commercialize a camera system using also APD infrared arrays in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC, First Light Imaging). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO.

  15. Optical-absorption model for molecular-beam epitaxy HgCdTe and application to infrared detector photoresponse

    NASA Astrophysics Data System (ADS)

    Moazzami, K.; Phillips, J.; Lee, D.; Edwall, D.; Carmody, M.; Piquette, E.; Zandian, M.; Arias, J.

    2004-06-01

    Accurate knowledge of the optical-absorption coefficient in HgCdTe is important for infrared (IR) detector design, production process (layer screening), and interpretation of detector performance. Measurements of the optical-absorption coefficient of HgCdTe layers with uniform composition are presented with the goal of developing a revised model in the interest of IR detector technology. Existing methods of determining HgCdTe alloy composition from IR transmission measurements are compared, where one self-consistent method is suggested and shown to agree with experimental detector data. An exponential Urbach and hyperbolic model are presented to represent band tail and above-bandgap absorption regions, respectively. Parameters associated with these models are extracted for Hg1-xCdxTe compositions of x=0.22-0.60 and temperatures of T=40-300 K using samples of varying thickness to obtain accurate data for varying spectral regions of the absorption coefficient. An initial analytical expression for the absorption coefficient is presented and compared to experimental detector-response data. Detector-response simulations indicate that accurate optical-absorption models are needed, where detector structures with thin layers and arbitrary composition profiles in current and future IR detectors will be the most demanding.

  16. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  17. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    SciTech Connect

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    2015-07-01

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity and direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)

  18. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  19. Multi-Band and Broad-Band Infrared Detectors Based on III-V Materials for Spectral Imaging Instruments

    NASA Technical Reports Server (NTRS)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Rafol, S. B.; Hill, C. J.; Ting, D. Z.; Mumolo, J. M.; Trinh, T. Q.

    2005-01-01

    Quantum well infrared photodetector technology has shown remarkable success by realizing large-format focal plane arrays in both broad-bands and in multi-bands. The spectral response of these detectors based on the III-V material system are tailorable within the mid and long wavelength IR bands (similar to 3-25 mu m) and possibly beyond. Multi-band and broad-band detector arrays have been developed by vertically integrating stacks of multi quantum wells tailored for response in different wavelengths bands. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission other photons, thus efficiently permitting multiband detection. Flexibility in many design parameters of these detectors allows for tuning and tailoring the spectral shape according to application requirements, specifically for spectral imaging instruments.

  20. Design of non-dispersion Infrared detector's data processor on measurement of automobile emission CO and CO2

    NASA Astrophysics Data System (ADS)

    Liu, Guohua; Zhang, Yujun; Chen, Chen; Lu, Yibing; He, Chungui; Gao, Yanwei; You, Kun; He, Ying; Zhang, Kai; Liu, Wenqing

    2016-10-01

    For the technical requirements of automobile emission CO and CO2 detector's data processor, the scheme is based on the detection principle of NDIR method and the implementation of the data processor software as well as hardware is discussed. High-speed, high-precision DSP is selected as the core of the detector's data acquisition and processing, while four-channel thermoelectricity sensor TPS4339 as infrared detector, digital-analog data acquisition circuit of NDIR is designed and simulated. Then Fast Fourier Transform (FFT) is adopted for signal processing. Automobile emission CO and CO2 concentration can be accurately obtained by appropriately adjusting sampling period and the light source modulation frequencies, the system SNR is improved and the detection limit is reduced. The experimental results show that the detector's data processor has 3% accuracy and stability which can meet the measurement and analysis of automobile emission CO and CO2 concentration.

  1. Characterization and simulation of fast neutron detectors based on surface-barrier VPE GaAs structures with polyethylene converter

    NASA Astrophysics Data System (ADS)

    Chernykh, A. V.; Chernykh, S. V.; Baryshnikov, F. M.; Didenko, S. I.; Burtebayev, N.; Britvich, G. I.; Kostin, M. Yu.; Chubenko, A. P.; Nassurlla, Marzhan; Nassurlla, Maulen; Kerimkulov, Zh.; Zholdybayev, T.; Glybin, Yu. N.; Sadykov, T. Kh.

    2016-12-01

    Fast neutron detectors with an active area of 80 mm2 based on surface-barrier VPE GaAs structures were fabricated and tested. Polyethylene with density of 0.90 g/cm3 was used as a converter layer. The recoil-proton surface-barrier sensor was fabricated on high purity VPE GaAs epilayers with a thickness of 50 μm. The neutron detection efficiency measured with a 241Am-Be source was 1.30 · 10-3 puls./neutr. for the PE converter thickness of 670 μm. The signal-to-gamma-background ratio was at the level of 50. Simulation of the detector characteristics with Geant4 toolkit has showed good correlation with the experimental data and allowed to estimate the maximal theoretical detection efficiency of the detector which is determined by the PE converter and equals to 1.37 · 10-3 puls./neutr. The difference between the measured and simulated values of the detection efficiency is due to the fact that the events with energies below 0.5 MeV were not taken into account during the measurements.

  2. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  3. Nondestructive Evaluation of Thermal Barrier Coatings by Mid-infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I; Spuckler, Charles M.; Nesbitt, James A.; Martin, Richard E.

    2005-01-01

    The application of mid-infrared reflectance (MIR) imaging to monitor damage in thermal barrier coatings (TBCs) has been extended from a previously demonstrated area-averaged spectroscopic analysis tool to become a practical imaging tool that provides the spatial resolution needed to quickly identify localized regions of TBC damage by visual inspection, Illumination optics and image collection procedures were developed to produce illumination-normalized flatfield reflectance images after subtraction of the background thermal emission. MIR reflectance images were collected with a bandpass filter centered at a wavelength of 4 microns, which provided the optimum balance between good sensitivity to buried cracks and coating erosion, but with a desirable sensitivity to TBC sintering and absorption from ambient gases. Examples are presented of the application of MIR reflectance imaging to monitor damage progression in plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs subjected to either furnace cycling or alumina particle jet erosion. These results show that MIR reflectance imaging can reliably track the progression of buried delamination cracks produced by thermal cycling and can also be used to determine when any local section of the TBC has eroded beyond an acceptable limit. Modeling of the effects of buried cracks and erosion on reflectance will be presented to show the dependence of damage sensitivity to TBC thickness.

  4. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs at MIR wavelengths (3 to 5 pm), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  5. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs, particularly at MIR wavelengths (3 to 5 microns), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  6. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana

    2001-01-01

    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 1013 cm-3) approximately 1 mm thick grown on a heavily doped active layer (~ 1016cm-3) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02° and 10° from the {111} toward the {100}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained ~1015 cm-3 phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to ~ 1014 cm-3 but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony (~1016 cm-3) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset (~6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface dropped by an order of magnitude

  7. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  8. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    SciTech Connect

    Oh Kim, Jun; Ku, Zahyun; Urbas, Augustine E-mail: Augustine.Urbas@wpafb.af.mil; Krishna, Sanjay; Kang, Sang-Woo; Jun Lee, Sang; Chul Jun, Young E-mail: Augustine.Urbas@wpafb.af.mil

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  9. High in content InGaAs near-infrared detectors: growth, structural design and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Miao, Guoqing; Song, Hang; Li, Dabing; Jiang, Hong; Li, Zhiming; Chen, Yiren; Sun, Xiaojuan

    2017-04-01

    The design of novel structural material is an effective way to improve photodetection device performance. In this paper, the fabrication and performance of high In content InGaAs detectors were investigated. Using the two-step growth method, mismatch defect was effectively inhibited even with larger lattice mismatch at the interface. Meanwhile, the spectral response can cover the entire near-infrared region at room temperature. Through experiments and simulation, the optoelectronic properties of detector with different materials in the p-region are explored, elucidating the critical role of cap material in the transport properties of carriers. Compared to the typical InP cap detector, the InAsP cap detector shows better device performance. Also the dark current mechanism is analyzed on the basis of bias-temperature relation, and the result shows that the tunneling current plays a key role at high bias or low temperature. The introduction of a novel InGaAs detector provides a potential application to the development of near-infrared detection.

  10. InAs/GaInSb superlattices as a promising material system for third generation infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, Antoni

    2005-06-01

    Hitherto two families of multielement detectors have been used for infrared applications scanning systems (first generation) and staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding third generation JR systems provide enhanced capabilities like larger number of pixels higher frame rates better thermal resolution as well as multicolour functionality and other on-chip functions. In the class of third generation infrared photon detectors two main competitors HgCdTe photodiodes and AlGaAs/GaAs quantum well infrared photoconductors (QWIPs) are considered. However in the long wavelength infrared (LWIR) region the HgCdTe material fail to give the requirements of large format two-dimensional (2D) arrays due to metallurgical problems of the epitaxial layers such as uniformity and number of defected elements. A superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 tm. The recently published results have indicated that high performance middle wavelength infrared (MWIR) InAs/GaInSb superlatice focal plane arrays can be fabricated. Based on these very promising results it is obvious now that the antimonide superlattice technology is competing with HgCdTe dual colour technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing.

  11. A portable cross-shape near-infrared spectroscopic detector for bone marrow lesions diagnosis

    NASA Astrophysics Data System (ADS)

    Su, Yu; Li, Ting

    2016-02-01

    Bone marrow lesions (BMLs) is an incidence-increasing disease which seriously hazard to human health and possibly contribute to paralysis. Delayed treatment often occurred to BMLs patients due to its characteristics such as complex and diverse clinical manifestations, non-specific, easy to misdiagnosis and etc. The conventional diagnosis methods of BMLs mainly rely on bone marrow biopsy/aspiration, which are invasive, painful, high health risk, and discontinuous which disabled monitoring and during-surgery guidance. Thus we proposed to develop a noninvasive, real-time, continuous measurement, easy-operated device aimed at detecting bone marrow diseases. This device is based on near-infrared spectroscopy and the probe is designed with a cross-shape to tightly and comfortably attach human spine. Space-resolved source-detector placement and measurement algorithm are employed. Four selected wavelength were utilized here to extract BMLs-related component contents of oxy-, deoxy-hemoglobin, fat, scattering index corresponding to fibrosis. We carried out an ink experiment and one clinical measurement to verify the feasibility of our device. The potential of NIRS in BMLs clinics is revealed.

  12. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1989-01-01

    Polycrystalline thin films of CrSi2, LaSi2, and ReSi2 were grown on silicon substrates. Normal incidence optical transmittance and reflectance measurements were made as a function of wavelength. It was demonstrated that LaSi2 is a metallic conductor, but that CrSi2 and ReSi2 are, in fact, narrow bandgap semiconductors. For CrSi2, the complex index of refraction was determined by computer analysis of the optical data. From the imaginary part, the optical absorption coefficient was determined as a function of photon energy. It was shown that CrSi2 possesses an indirect forbidden energy gap of slightly less than 0.31 eV, and yet it is a very strong absorber of light above the absorption edge. On the other hand, the ReSi2 films exhibit an absorption edge in the vicinity of 0.2 eV. Measurements of the thermal activation energy of resistivity for ReSi2 indicate a bandgap of 0.18 eV. It is concluded that the semiconducting silicides merit further investigation for development as new silicon-compatible infrared detector materials.

  13. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  14. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors

    SciTech Connect

    Ariyawansa, Gamini Reyner, Charles J.; Steenbergen, Elizabeth H.; Duran, Joshua M.; Reding, Joshua D.; Scheihing, John E.; Bourassa, Henry R.; Liang, Baolai L.; Huffaker, Diana L.

    2016-01-11

    Investigation of growth and properties of InGaAs/InAsSb strained layer superlattices, identified as ternary strained layer superlattices (ternary SLSs), is reported. The material space for the antimony-based SLS detector development is expanded beyond InAs/InAsSb and InAs/(In)GaSb by incorporating Ga into InAs. It was found that this not only provides support for strain compensation but also enhances the infrared (IR) absorption properties. A unique InGaAs/InAsSb SLS exists when the conduction band of InGaAs aligns with that of InAsSb. The bandgap of this specific InGaAs/InAsSb SLS can then be tuned by adjusting the thickness of both constituents. Due to the enhanced electron-hole wavefunction overlap, a significant increase in the absorption coefficient was theoretically predicted for ternary SLS as compared to current state-of-the-art InAs/InAsSb SLS structures, and an approximately 30%–35% increase in the absorption coefficient was experimentally observed. All the samples examined in this work were designed to have the same bandgap of approximately 0.240 eV (5.6 μm) at 150 K.

  15. Simultaneous real-time visible and infrared video with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-05-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics.

  16. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  17. The lifetime prediction model of stirling cryocooler for infrared detector assembly

    NASA Astrophysics Data System (ADS)

    Yang, Shao-hua; Liu, Xin-guang; Wu, Yi-nong

    2013-09-01

    With the rapid development of infrared focal plane array detector, stirling cyrocooler as a cold source has played an important role in space application. However, it is difficult to qualify its reliability and life expectancy before space application. Existing experiment and research data show that the most critical factor to restrict stirling cryocooler's service life is working gas contamination. Based on outgassing of stirling cryocooler internal material and its relationship with temperature, time and outgassing experimental data, the failure life model of contamination is proposed. By thousands of hours of accelerated life test, two types of prototype cryocooler have been verified for applicability of the proposed life model, and the working gas analysis of tested cryocoolers also proved the existence of contamination. Afterwards, through three group contaminations adding experiment of different level water vapor, the degradation characteristics of more than 1000 hour have proved complying with the life model above. Finally, the paper further verified the applicability of this model by the fitting of experimental data of long-term running in working condition. Consequently, the life model of stirling cryocooler caused contamination degradation is established, as well as an accelerated lifetime evaluation technique was proposed for stirling cryocooler.

  18. Detector control and data acquisition for the wide field infrared survey telescope (WFIRST) with a custom ASIC

    NASA Astrophysics Data System (ADS)

    Smith, Brian; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; Luppino, Gerard; Culver, Harry; Wollack, Edward; Content, David

    2016-07-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally 300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  19. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; Luppino, Gerard; Culver, Harry; Wollack, Edward; Content, David

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  20. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  1. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2011-08-15

    An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi(2) detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device's size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used.

  2. Optical modeling techniques for multimode horn-coupled power detectors for submillimeter and far-infrared astronomy.

    PubMed

    Thomas, Christopher N; Withington, Stafford

    2013-08-01

    An important class of detectors for the submillimeter and far-infrared uses a multimode horn to couple incident radiation into an absorbing film made from a thin conductor. We consider how to model the full, partially coherent, optical behavior of these multimode detectors using extensions of mode-matching techniques. We validate modeling the absorber as a resistive sheet, and demonstrate the equivalence of mode-matching and Green's function methods for calculating the scattering matrix representation of the film. Finally, we show how the scattering matrix of the film can be cascaded with those of the other components, as determined by mode matching, so as to calculate the overall optical response of the detector. Simulations are presented of the optical behavior of a square absorbing film in a circular waveguide.

  3. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Yuan, Zijian; Larson, Preston R.; Strout, Gregory W.; Shi, Zhisheng

    2014-01-01

    The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 × 1010 cm . Hz1/2/W at 3.8 μm, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.

  4. Long-Wavelength Stacked SiGe/Si Heterojunction Internal Photoemission Infrared Detectors Using Multiple SiGe/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; Gunapala, S. D.

    1994-01-01

    Utilizing low temperature silicon molecular beam epitaxy (MBE) growth, long-wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Si layers have been fabricated and demonstrated. Using an elemental boron source, high doping concentrations (approximately equal to 4 x 10(sup 20) cm(sup -3)) has been achieved and high crystalline quality multiple Si(sub 0.7)Ge(sub 0.3)/Si layers have been obtained. The detector structure consists of several periods of degenerately boron doped (approximately equal to 4 x 10(sup 20) cm(sup -3)) thin (less than or equal to 50 u Si(sub 0.7)Ge(sub 0.3) layers and undoped thick (approximately equal to 300u Si layers. The multiple p(sup +) - Si(sub 0.7)Ge(sub 0.3)/undoped-Si layers show strong infrared absorption in the long-wavelength regime mainly through free carrier absorption. The stacked Si(sub 0.7)Ge(sub 0.3)/Si HIP detectors with p = 4 x 10(sup 20) cm(sup -3) exhibit strong photoresponse at wavelengths ranging from 2 to 20 (micro)m with quantum efficiencies of about 4% and 1.5% at 10 and 15 (micro)m wavelengths, respectively. The detectors show near ideal thermionic-emission limited dark current characteristics.

  5. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  6. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x

  7. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    SciTech Connect

    Golshani, Negin Mohammadi, V.; Schellevis, H.; Beenakker, C. I. M.; Ishihara, R.

    2014-10-01

    In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN) layer deposited by reactive sputtering in a mixture of Ar/N{sub 2}, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  8. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    PubMed Central

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-01-01

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024

  9. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays.

    PubMed

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-09-27

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm - 2 ·s - 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  10. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS.

    PubMed

    Saager, Rolf B; Telleri, Nicole L; Berger, Andrew J

    2011-04-15

    In near-infrared spectroscopy (NIRS) of human cerebral hemodynamics, detection of stimulus-related responses is confounded by the presence of unrelated trends in both the brain and the overlying scalp. A proposed strategy for reducing hemodynamic noise has been to record "scalp only" trends simultaneously via a second shorter-separation detector (~5 mm rather than ~30 mm) and perform a subtraction (C-NIRS, for "corrected near-infrared spectroscopy"). To compare the single- and dual-detector strategies, a 21-volunteer study of visual stimulation responses (6 stimulation blocks and 8 recording channels per measurement run) has been conducted. Activation-flagged channels were defined based upon (a) the significance (p-value) of the average rise in oxyhemoglobin concentration and (b) the average signal-to-noise over 6 stimulation epochs. At reasonable thresholds (p<0.025, SNR>1), the C-NIRS method increased the number of activation-flagged channels from 47 to 66, an increase of 40%, adding 24 channels and eliminating only 5. Of the 71 channels that were activation-flagged by at least one modality, the C-NIRS time series exhibited more significant oxyhemoglobin rise in 80% of such channels, and better signal-to-noise in 73%. In addition, single-subject C-NIRS stimulus responses were more consistent than NIRS over the six stimulation epochs, with significantly lower coefficients of variation in both amplitude and latency (i.e. time between stimulus onset and maximum hemoglobin rise). These results demonstrate that two-detector C-NIRS provides a straightforward way of (a) removing hemodynamic interference from NIRS data, (b) increasing the detection rate of cerebrally-unique responses, and (c) improving the quality of those recorded responses. Parallel insights regarding deoxyhemoglobin trends could not be drawn from this data set but should be attainable in future studies with higher signal to noise ratios.

  11. InAs/GaInSb superlattices as a promising material system for third generation infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.

    2006-04-01

    Hitherto, two families of multielement detectors have been used for infrared applications: scanning systems (first generation) and staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the class of third generation infrared photon detectors, two main competitors, HgCdTe photodiodes and AlGaAs/GaAs quantum well infrared photoconductors (QWIPs) are considered. However, in the long wavelength infrared (LWIR) region, the HgCdTe material fail to give the requirements of large format two-dimensional (2-D) arrays due to metallurgical problems of the epitaxial layers such as uniformity and number of defective elements. A superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive alternative to HgCdTe with good spatial uniformity and an ability to span cut-off wavelength from 3 to 25 μm. The recently published results have indicated that high performance middle wavelength infrared (MWIR) InAs/GaInSb superlattice focal plane arrays can be fabricated. Also LWIR photodiodes with the R0A values exceeding 100 Ωcm 2 even with a cut-off wavelength of 14 μm can be achieved. Based on these very promising results it is obvious now that the antimonide superlattice technology is competing with HgCdTe dual colour technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing.

  12. Suppression of dark current through barrier engineer for solution-processed colloidal quantum-dots infrared photodetectors

    SciTech Connect

    Jiang, Zhenyu E-mail: jianxu@engr.psu.edu; Liu, Yan; Mo, Chen; Wang, Li; Atalla, Mahmoud R. M.; Liu, Jie; Kurhade, Kandhar K.; Xu, Jian E-mail: jianxu@engr.psu.edu; Hu, Wenjia; Zhang, Wenjun; You, Guanjun; Zhang, Yu

    2015-08-31

    In an attempt to suppress the dark current, the barrier layer engineer for solution-processed PbSe colloidal quantum-dot (CQD) photodetectors has been investigated in the present study. It was found that the dark current can be significantly suppressed by implementing two types of carrier blocking layers, namely, hole blocking layer and electron blocking layer, sandwiched in between two active PbSe CQD layers. Meanwhile no adverse impact has been observed for the photo current. Our study suggests that this improvement resides on the transport pathway created via carrier recombination at intermediate layer, which provides wide implications for the suppression of dark current for infrared photodetectors.

  13. A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance

    NASA Astrophysics Data System (ADS)

    Li, Chaobo; Jiao, Binbin; Shi, Shali; Chen, Dapeng; Ye, Tianchun; Zhang, Qingchuan; Guo, Zheying; Dong, Fengliang; Miao, Zhengyu

    2006-07-01

    A novel substrate-free uncooled IR detector based on an optical-readable method is presented and fabricated successfully. The detector is composed of a bi-material (BM) cantilever array, without a silicon substrate, which is eliminated in the fabrication process. Compared with the generally used sacrificial layer cantilever, the loss of incident IR energy caused by the reflection from and absorption by the silicon substrate is eliminated completely in the substrate-free structure. The IR radiation reaching the IR detector surface increases by over 80% in the case of the novel substrate-free detector array structure, compared to the sacrificial layer structure. Moreover, the substrate-free structure has less heat loss than the sacrificial layer structure. The results of thermal imaging of the human body show the detector is able to sense objects at room temperature. The experimental NETD was estimated to be 200 mK.

  14. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  15. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    SciTech Connect

    Craig, A. P.; Percy, B.; Marshall, A. R. J.; Jain, M.; Wicks, G.; Hossain, K.; Golding, T.; McEwan, K.; Howle, C.

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  16. An infrared pyroelectric detector improved by cool isostatic pressing with cup-shaped PZT thick film on silicon substrate

    NASA Astrophysics Data System (ADS)

    Peng, Q. X.; Wu, C. G.; Luo, W. B.; Chen, C.; Cai, G. Q.; Sun, X. Y.; Qian, D. P.

    2013-11-01

    In this paper, we presented a new pyroelectric detector with back to back silicon cups and micro-bridge structure. The PZT thick film shaped in the front cup was directly deposited with designed pattern by electrophoresis deposition (EPD). Pt/Ti Metal film, which was fabricated by standard photolithography and lift-off technology, was sputtered to connect the top electrode and the bonding pad. The cold isostatic press (CIP) treatment could be applied to improve the pyroelectric properties of PZT thick film. The infrared (IR) properties the CIP-optimized detector were measured. The voltage responsivity (RV) was 4.5 × 102 V/W at 5.3 Hz, the specific detectivity (D*) was greater than 6.34 × 108 cm Hz1/2 W-1 (frequency > 110 Hz), and the thermal time constant was 51 ms, respectively.

  17. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and far-infrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5 micrometer thick silicon membrane, and 380 micrometer thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  18. Anomalous spectral response in heterojunction PbTe/PbSnTe infrared detectors - A new effect: Two Peak Effect

    SciTech Connect

    Gong Shuxing; Chen Boliang; Yuan Shixin )

    1991-03-01

    In the measurements of the spectral responses of PbTe/PbSnTe p-n heterojunction infrared detectors, the authors have discovered that there is an anomalous phenomenon in a few detectors when reverse bias is applied: there is not only a response peak in the 8-14 {mu}m long-wavelength range, but also another response peak in the 3-6 {mu}m short-wavelength range. They have also discovered that when reverse bias is increased, the heights of both spectral peaks can be adjusted, and the height of short-wavelength peak may be quickly increased, even if its long-wavelength peak is exceeded. This is an unreported new phenomenon up to now. It is shortly called anomalous phenomenon,' or Two Peak Effect' (TPE). This paper describes the new effect TPE' firstly, and makes a theoretical explanation. On the basis of this effect, it would be possible to make a new type of IR detector, which is quite different from the available detectors.

  19. Characterization of direct readout Si:Sb and Si:Ga infrared detector arrays for space-based astronomy

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Mccreight, Craig R.; Goebel, John H.; Moss, Nicolas N.; Savage, Maureen L.

    1988-01-01

    Preliminary test results from the evaluation of Si:Sb and Si:Ga 58 x 62-element infrared detector arrays are presented. These devices are being characterized under background conditions and readout rates representative of operation in orbiting, crogenically-cooled infrared observatories. The arrays are hybridized to silicon direct-readout multiplexers which allow random-access and nondestructive readout. Array performance optimization is being conducted with a flexible microcomputer-based drive and readoaut electronics system. Preliminary Si:Sb measurements indicate a sense node capacitance of 0.06 pF, peak (28-micron) responsivity above 3 A/W at 2V bias, read noise of 130 rms e(-), dark current approximately 10 e(-)/s, and a well capacity greater than 10 to the 5th e(-). The limited test data available on the performance of the Si:Ga array are also discussed.

  20. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.

  1. In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique.

    PubMed

    Mukai, K; Peterson, B J; Takayama, S; Sano, R

    2016-11-01

    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.

  2. The Python pit organ: imaging and immunocytochemical analysis of an extremely sensitive natural infrared detector.

    PubMed

    Grace, M S; Church, D R; Kelly, C T; Lynn, W F; Cooper, T M

    1999-01-01

    The Python infrared-sensitive pit organ is a natural infrared imager that combines high sensitivity, ambient temperature function, microscopic dimensions, and self-repair. We are investigating the spectral sensitivity and signal transduction process in snake infrared-sensitive neurons, neither of which is understood. For example, it is unknown whether infrared receptor neurons function on a thermal or a photic mechanism. We imaged pit organs in living Python molurus and Python regius using infrared-sensitive digital video cameras. Pit organs were significantly more absorptive and/or emissive than surrounding tissues in both 3-5 microns and 8-12 microns wavelength ranges. Pit organs exhibited greater absorption/emissivity in the 8-12 microns range than in the 3-5 microns range. To directly test the relationship between photoreceptors and pit organ infrared-sensitive neurons, we performed immunocytochemistry using antisera directed against retinal photoreceptor opsins. Retinal photoreceptors were labeled with antisera specific for retinal opsins, but these antisera failed to label terminals of infrared-sensitive neurons in the pit organ. Infrared-receptive neurons were also distinguished from retinal photoreceptors on the basis of their calcium-binding protein content. These results indicate that the pit organ absorbs infrared radiation in two major atmospheric transmission windows, one of which (8-12 microns) matches emission of targeted prey, and that infrared receptors are biochemically distinct from retinal photoreceptors. These results also provide the first identification of prospective biochemical components of infrared signal transduction in pit organ receptor neurons.

  3. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  4. Infrared detector Dewars - Increased LN2 hold time and vacuum jacket life spans

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyd, W. J.; Blass, W. E.

    1976-01-01

    IR detector Dewars commonly suffer from shorter than desired LN2 hold times and insulation jacket vacuum corruption over relatively short time periods. In an attempt to solve this problem for a 9144 detector Dewar, small 1 liter/s appendage ion pumps were selected for continuous pumping of the vacuum jackets. This procedure extended LN2 hold times from 20 to 60 h and virtually eliminated vacuum jacket corruption. Thus the detector systems are usable continuously over periods of 6 months or more.

  5. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  6. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  7. Method and Characterization of Pyroelectric Coefficients for Determining Material Figures of Merit for Infrared (IR) Detectors

    DTIC Science & Technology

    2013-12-01

    iii Contents List of Figures iv 1. Introduction 1 2. Pyroelectric Effect 2 3. IR Detector Figure-of-Merits 2 4. Pyroelectric Measurement 4 5...accuracy and internal consistency of the characterization setup. Also, the basic pyroelectric effect , the material FoM for pyroelectric detectors...and methods to measure the material pyroelectric coefficient are briefly reviewed. 2. Pyroelectric Effect Pyroelectricity is a property of polar

  8. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Olsen, C. S.

    1998-01-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 10(sup 13) cm(exp -3) can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm(exp -1) with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  9. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    SciTech Connect

    Olsen, Christopher Sean

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  10. Development of Short Wavelength Infrared Array Detectors for Space Astronomy Application

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1997-01-01

    The Smithsonian Astrophysical Observatory (SAO) and its team - the University of Arizona (UA), the University of Rochester (UR), Santa Barbara Research Center (SBRC), Ames Research Center (ARC), and Goddard Space Flight Center (GSFC) - are carrying out a research program with the goal of developing and optimizing infrared arrays in the 2-27 micron range for space infrared astronomy. This report summarizes research results for the entire grant period 1 January 1992 through 30 June 1996.

  11. Random telegraph signal (RTS) noise and other anomalies in the near-infrared detector systems for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Kohley, Ralf; Barbier, Rémi; Kubik, Bogna; Ferriol, Sylvain; Clemens, Jean-Claude; Ealet, Anne; Secroun, Aurélia; Conversi, Luca; Strada, Paolo

    2016-08-01

    Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared spectro-photometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3μm cut-off wavelength and SIDECAR readout electronics. The performance of the detector systems is critical to the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses a variety of undesired pixel behaviour including the known effect of random telegraph signal (RTS) noise based on initial on-ground test results from demonstrator model detector systems. Some stability aspects of the RTS pixel populations are addressed as well.

  12. AUTHENTIC: a very low-cost infrared detector and camera system

    NASA Astrophysics Data System (ADS)

    Mansi, Mike V.; Brookfield, Martin; Porter, Stephen G.; Edwards, Ivan; Bold, Brendon; Shannon, John; Lambkin, Paul; Mathewson, Alan

    2003-01-01

    An Oxide over Titanium metal resistance bolometer technology developed by NMRC, Ireland) has been transferred to the X-FAB UK CMOS foundry at Plymouth, UK. Prototypes of the bolometers have been manufactured in the X-FAB production facility and tests show performance comparable with the NMRC prototypes. The bolometer design has been integrated with a CMOS read-out chip and the first wafers are currently being packaged for evaluation. The development of a low cost thermal imaging camera using the detector is under way. We present an overview of the detector and camera design, together with preliminary results from the detector test programme. The work is partly funded by the European Union IST programme.

  13. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.

    PubMed

    Jayasinghe, R C; Perera, A G U; Zhu, H; Zhao, Y

    2012-10-15

    Oblique-angle deposited titanium dioxide (TiO(2)) nanorods have attracted much attention as good antireflection (AR) coating material due to their low n profile. Therefore, it is necessary to better understand the optical properties of these nanorods. TiO(2) nanorods grown on glass and Si substrates were characterized in the visible (0.4-0.8 μm) and infrared (2-12 μm) regions to extract their complex n profiles empirically. Application of these nanorods in multilayer AR coatings on infrared detectors is also discussed. Optimization of graded index profile of these AR coatings in the broad infrared region (2-12 μm) even at oblique angles of incidence is discussed. The effective coupling between the incoming light and multiple nanorod layers for reducing the reflection is obtained by optimizing the effect from Fabry-Perot oscillations. An optimized five-layer AR coating on GaN shows the reflectance less than 3.3% for normal incidence and 10.5% at 60° across the whole 2-8 μm spectral range.

  14. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2010-04-01

    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (< 200 ns). These devices are very simple to operate in the non-gated mode under a constant dc bias voltage. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. This unique feature of self quenching and self-recovery makes it simple to less complex readout integrated circuit to realize large format detector arrays. In this paper, we present the discrete amplification design approach used for the development of self reset, high gain photodetector arrays in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. These devices are ideal for researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  15. Design, development, characterization and qualification of infrared focal plane area array detectors for space-borne imaging applications

    NASA Astrophysics Data System (ADS)

    Jain, Ankur; Banerjee, Arup

    2016-05-01

    This paper discusses the design, development, characterization and qualification aspects of large format Infrared Focal Plane Arrays (IRFPA) required for panchromatic, multi-, hyper- and ultra-spectral imaging applications from a space-borne imager. Detection of feeble radiant flux from the intended target in narrow spectral bands requires a highly sensitive low noise sensor array with high well capacity. For this the photodiode arrays responsive in desired spectral band are grown using different growth techniques and flip-chip bonded with a suitable Si Read-out ICs (ROICs) for signal conditioning. IR detectors require cryogenic cooling to achieve background limited performance. Although passive radiative cooling is always the preferred choice of cooling in space, it is not suitable for cooling IRFPAs due to high thermal loads. To facilitate characterization of IRFPAs and cool them to desired cryogenic temperature, an Integrated Detector Dewar Cooler Assembly (IDDCA) is essential where the detector array sits over the cold tip of an active cooler and the detector cooler assembly is vacuum sealed in a thermally isolated Dewar. A cold shield above the sensor array inside the Dewar restricts its field-of-view and a cold filter fine tunes its spectral response. In this paper, various constituents of an IRFPA like sensor array materials, growth techniques, ROICs, filters, cold shields, cooling techniques etc., their types and selection criteria for different applications are discussed in detail. Design aspects of IRFPA characterization test bench, challenges involved in radiometric and spectral characterization and space qualification of such IDDCA based IRFPAs are also discussed.

  16. Angular dependence of source-target-detector in active mode standoff infrared detection

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.

    2013-06-01

    Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.

  17. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.

    PubMed

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  18. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades

    NASA Astrophysics Data System (ADS)

    Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian

    2014-12-01

    This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.

  19. Single-element PV and PC infrared detectors for medical applications

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ho; Han, Myung-Soo; Jeoung, Min-Suk; Yim, Nam-Su; Hahn, Suk-Ryong

    2001-11-01

    In Korea, Japan and China, the measurement of surface temperature profile shown in abnormalities in neural and vascular functions, facial lesions, changes of blood stream in peripheral tissues (breast cancer, etc.), and psychosomatic problems is widely used for the diagnosis and the progress monitor of disease and symptoms (pains). For this application, single element LWIR Hg0.78Cd0.22Te photo-conductive (PC) detectors were fabricated with the wafers having a cutoff wavelength larger than 12.5 mm. The optical characteristics such as responsivity and detectivity were tested and the operation of the detectors was proved by the thermal imaging system IRIS5000. It was found that the 1/f noise makes lines and seriously degrades the thermal images. MWIR Hg0.70Cd0.30Te photo-voltaic (PV) detectors were also fabricated and tested for the medical application. However, owing to the low signal, the results were far from satisfactory. It is supposed that the integration methods are required for the single element MWIR detector.

  20. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Farrell, Richard; Tario, Joseph D., Jr.; Podniesinski, Edward; Wallace, Paul K.; Christian, James F.

    2006-02-01

    We report on the development and application of a flow cytometer using a 16-channel avalanche photodiode (APD) linear detector array. The array is configured with a dispersive grating to simultaneously record emission over a broad wavelength range using the 16 APD channels of the linear APD array. The APD detector elements have a peak quantum efficiency of 80% near 900 nm and have at least 40% quantum efficiency over the 400-nm to 1000-nm wavelength range. The extended red sensitivity of the detector array facilitates the use of lower energy excitation sources and near IR emitting dyes which reduces the impact of autofluorescence in signal starved measurements. The wide wavelength sensitivity of the APD array permits the use of multiple excitation sources and many different fluorescent labels to maximize the number of independent parameters in a given experiment. We show the sensitivity and linearity measurements for a single APD detector. Initial results for the flow cytometer with the 16-element APD array and the 16-channel readout ASIC (application specific integrated circuit) are presented.

  1. Infrared imaging of cotton fibers using a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy studies can be used to examine the quality and structure of cotton fibers. An emerging area of research relates to the imaging of cotton fibers. Herein, we report the use of a Fourier-transform infrared (FTIR) microscope to image developing cotton fibers. Studies were perfor...

  2. Reflectance near-infrared measurements for determining changes in skin barrier function and scattering in relation to moisturizer application.

    PubMed

    Qassem, Meha; Kyriacou, Panayiotis A

    2015-09-01

    Skin moisture relates to the state of multiple skin constituents and aspects, but unfortunately, a device which could provide comprehensive and in vivo analysis is not available. Nevertheless, several reports have demonstrated accurate estimations of dermal water content using near-infrared spectroscopy (NIRS), and the potential of employing this technique in skin analysis. We aim to investigate whether NIRS could detect changes in skin barrier function through evaluation of skin water uptake in relation to moisturizer application. NIR and capacitance data were collected from 20 volunteers at both forearms, prior to and after seven days of regular moisturizer use. Results indicated lower peak intensities at the 1940-nm minima and higher intensities at the 1450-nm equivalent minima with moisturizer abstinence, while the opposite was true with regular moisturizer application. As the light beam would have traveled deeper into the skin at 1450 nm, it has been concluded that long-term, frequent moisturizer use had limited the penetration of extrinsic water. Partial least squares analysis showed that separation of sample’s scores increased with abstinence of moisturizer use. Thus, NIRS can provide valuable information not only on dermal water contents but also on additional parameters such as skin barrier function.

  3. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long-wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, J.

    1990-01-01

    The feasibility of a novel p(+)-Si(1-x)Ge(x)-p-Si heterojunction internal photoemission (HIP) IR detector is demonstrated. A degenerately doped p(x)-Si(1-x)Ge(x) layer is required for strong IR absorption to generate photoexcited holes. The Si(1-x)Ge(x) layers are grown by molecular beam epitaxy, with boron concentrations up to 10 to the 20th/cu cm achieved by using an HBO2 source. Photoresponse at wavelengths ranging from 2 to 10 microns has been obtained with quantum efficiencies above 1 percent. The tailorable cutoff wavelength of the HIP detector has been demonstrated by varying the Ge composition ratio in the Si(1-x)Ge(x) layers.

  4. Use of Near-Infrared Detector to Sense RF Antenna Heating

    SciTech Connect

    Legg, R.A.; Lee, R.L.; Baity, W.F.

    1999-11-01

    The three antennas used for ion cyclotron heating (ICH) experiments on DIII-D have experienced localized heating of the Faraday shield rods during plasma operations which has resulted in some melting. This melting is of great concern not only because of the damage it does to the rf system's ability to deliver rf to the plasma, but because of its potential to contaminate the plasma during a shot and cast the experimental results from the shot into question. A real-time sensor to detect the temperature of the antennae during plasma operations is described. The sensor uses an avalanche photo diode (APD) with sensitivity from 0.4 to 1.0 {micro}m to monitor the temperature of the antennae. Calculations for the detector sensitivity based on Planck's law are compared with experimental results and detector data taken during plasma operations are presented.

  5. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Abolmaali, Farzaneh; Duran, Joshua M.; Ariyawansa, Gamini; Limberopoulos, Nicholaos I.; Urbas, Augustine M.; Astratov, Vasily N.

    2016-06-01

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2-5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90-300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collection efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.

  6. InGaAsP Quaternary Materials for Near Infrared Detector and Laser Applications

    DTIC Science & Technology

    1980-06-01

    1 III. LPE Quaternary Material for Detectors..................... 6 IV. Vapor Phase Growth of (In-Ga-As-P) Alloys and Compounds... 10 A... alloys has been assumed in the earlier work of others to be mainly controlled by diffusion of the solute toward the melt-substrate interface, at least...IlI-V alloys . The problem of non-uniform growth of a thick quaternary layer, once identified (this work), can be eliminated (Refs.ll and 12) by

  7. Room temperature detector array technology for the terahertz to far-infrared.

    SciTech Connect

    Camacho, Ryan; Shaw, Michael; Zhang, X.; Tao, Hu; Lentine, Anthony L.; Wright, Jeremy Benjamin; Shaner, Eric Arthur; Trotter, Douglas Chandler; Averitt, Richard D.; Kadlec, Emil G; Rakich, Peter T.

    2011-10-01

    Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.

  8. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template.

    PubMed

    Strangman, Gary E; Li, Zhi; Zhang, Quan

    2013-01-01

    Understanding the spatial and depth sensitivity of non-invasive near-infrared spectroscopy (NIRS) measurements to brain tissue-i.e., near-infrared neuromonitoring (NIN) - is essential for designing experiments as well as interpreting research findings. However, a thorough characterization of such sensitivity in realistic head models has remained unavailable. In this study, we conducted 3,555 Monte Carlo (MC) simulations to densely cover the scalp of a well-characterized, adult male template brain (Colin27). We sought to evaluate: (i) the spatial sensitivity profile of NIRS to brain tissue as a function of source-detector separation, (ii) the NIRS sensitivity to brain tissue as a function of depth in this realistic and complex head model, and (iii) the effect of NIRS instrument sensitivity on detecting brain activation. We found that increasing the source-detector (SD) separation from 20 to 65 mm provides monotonic increases in sensitivity to brain tissue. For every 10 mm increase in SD separation (up to ~45 mm), sensitivity to gray matter increased an additional 4%. Our analyses also demonstrate that sensitivity in depth (S) decreases exponentially, with a "rule-of-thumb" formula S=0.75*0.85(depth). Thus, while the depth sensitivity of NIRS is not strictly limited, NIN signals in adult humans are strongly biased towards the outermost 10-15 mm of intracranial space. These general results, along with the detailed quantitation of sensitivity estimates around the head, can provide detailed guidance for interpreting the likely sources of NIRS signals, as well as help NIRS investigators design and plan better NIRS experiments, head probes and instruments.

  9. C-RED One : the infrared camera using the Saphira e-APD detector

    NASA Astrophysics Data System (ADS)

    Greffe, Timothée.; Feautrier, Philippe; Gach, Jean-Luc; Stadler, Eric; Clop, Fabien; Lemarchand, Stephane; Boutolleau, David; Baker, Ian

    2016-08-01

    Name for Person Card: Observatoire de la Côte d'Azur First Light Imaging' C-RED One infrared camera is capable of capturing up to 3500 full frames per second with a sub-electron readout noise and very low background. This breakthrough has been made possible thanks to the use of an e- APD infrared focal plane array which is a real disruptive technology in imagery. C-RED One is an autonomous system with an integrated cooling system and a vacuum regeneration system. It operates its sensor with a wide variety of read out techniques and processes video on-board thanks to an FPGA. We will show its performances and expose its main features. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944.

  10. Electrical tunability of infrared detectors using compositionally asymmetric GaAs/AlGaAs multiquantum wells

    NASA Astrophysics Data System (ADS)

    Martinet, E.; Luc, F.; Rosencher, E.; Bois, Ph.; Delaitre, S.

    1992-02-01

    For the first time, an electrically tunable infrared photoconductor is made with GaAs/AlGaAs asymmetric step multiquantum wells, using the linear Stark shift of the intersubband transition. An applied electric field excursion of +/- 40 kV/cm is sufficient to shift the peak responsivity wavelength from 8.5 to 13.5 micron. The photoresponse tunability is studied by comparing photocurrent and absorption spectra for different applied electric fields.

  11. Near infrared single photon avalanche detector with negative feedback and self quenching

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor < 1.05, Rise time < 350ps, Fall time < 500ps, Dark current < 2×106 cps at room temperature, and Operating Voltage < 60V. These devices are ideal for researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  12. Development of an infrared ultra-compact multichannel camera integrated in a SOFRADIR's detector Dewar cooler assembly

    NASA Astrophysics Data System (ADS)

    de la Barrière, F.; Druart, G.; Guérineau, N.; Chambon, M.; Plyer, A.; Lasfargues, G.; de Borniol, E.; Magli, S.

    2015-05-01

    We present a prototype of an infrared cryogenic camera directly integrated inside an off-the-shelf SOFRADIR's Detector Dewar Cooler Assembly (DDCA) and whose field of view is equal to 120°. Based on the co-design principle between optical design and image processing, we have designed a multichannel camera which produces four non-redundant images on a single SCORPIO detector, with 640 × 512 pixels and a pixel pitch of 15 μm. This leads to an ultra-miniaturized optical system with a very low additional optical and mechanical mass to be cooled. By this way, the cool-down time of the camera is comparable to the one of an equivalent DDCA without an imagery function. Indeed, we obtain a cool-down time of 6 minutes with a THALES Cryogenics RM3. With a superresolution algorithm, the four images produced by the camera are combined to process a single full-resolution image with an equivalent sampling pitch equal to 7.5μm. The performances of this camera, assessed by experimental characterizations, are presented.

  13. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  14. Near-infrared spectral image analysis of pork marbling based on Gabor filter and wide line detector techniques.

    PubMed

    Huang, Hui; Liu, Li; Ngadi, Michael O; Gariépy, Claude; Prasher, Shiv O

    2014-01-01

    Marbling is an important quality attribute of pork. Detection of pork marbling usually involves subjective scoring, which raises the efficiency costs to the processor. In this study, the ability to predict pork marbling using near-infrared (NIR) hyperspectral imaging (900-1700 nm) and the proper image processing techniques were studied. Near-infrared images were collected from pork after marbling evaluation according to current standard chart from the National Pork Producers Council. Image analysis techniques-Gabor filter, wide line detector, and spectral averaging-were applied to extract texture, line, and spectral features, respectively, from NIR images of pork. Samples were grouped into calibration and validation sets. Wavelength selection was performed on calibration set by stepwise regression procedure. Prediction models of pork marbling scores were built using multiple linear regressions based on derivatives of mean spectra and line features at key wavelengths. The results showed that the derivatives of both texture and spectral features produced good results, with correlation coefficients of validation of 0.90 and 0.86, respectively, using wavelengths of 961, 1186, and 1220 nm. The results revealed the great potential of the Gabor filter for analyzing NIR images of pork for the effective and efficient objective evaluation of pork marbling.

  15. Evaluation of a far infrared Ge:Ga multiplexed detector array

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of a multielement Ge:Ga linear array under low-background conditions is investigated. On-focal plane switching is accomplished by MOSFET switches and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the responsivity was measured to be nominally 584 A/W, and the NEP was 1.0 x 10 exp -16 W/sq rt Hz. A detailed description of the test setup and the procedure is presented.

  16. InAs/Ga(In)Sb type-II superlattices short/middle dual color infrared detectors

    NASA Astrophysics Data System (ADS)

    Shi, Yanli; Hu, Rui; Deng, Gongrong; He, Wenjing; Feng, Jiangmin; Fang, Mingguo; Li, Xue; Deng, Jun

    2015-06-01

    Short wavelength and middle wavelength dual color infrared detector were designed and prepared with InAs/Ga(In)Sb type-II superlattices materials. The Crosslight software was used to calculate the relation between wavelength and material parameter such as thickness of InAs, GaSb, then energy strucutre of 100 periods 8ML/8ML InAs/GaSb and the absorption wavelength was calculated. After fixing InAs/GaSb thickness parameter, devices with nBn and pin structure were designed and prepared to compare performance of these two structures. Comparison results showed both structure devices were available for high temperature operation which black detectivity under 200K were 7.9×108cmHz1/2/W for nBn and 1.9×109cmHz1/2/W for pin respectively. Considering the simultaneous readout requirement for further FPAs application the NIP/PIN InAs/GaSb dual-color structure was grown by MBE method. Both two mesas and one mesa devices structure were designed and prepared to appreciate the short/middle dual color devices. Cl2-based ICP etching combined with phosphoric acid based chemicals were utilized to form mesas, silicon dioxide was deposited via PECVD as passivation layer. Ti/Au was used as metallization. Once the devices were finished, the electro-optical performance was measured. Measurement results showed that optical spectrum response with peak wavelength of 2.7μm and 4.3μm under 77K temperature was gained, the test results agree well with calculated results. Peak detectivity was measured as 2.08×1011cmHz1/2/W and 6.2×1010cmHz1/2/W for short and middle wavelength infrared detector respectively. Study results disclosed that InAs/Ga(In)Sb type-II SLs is available for both short and middle wavelength infrared detecting with good performance by simply altering the thickness of InAs layer and GaSb layer.

  17. Molecular Beam Epitaxial Growth and Characterization of Metastable Compound Semiconductors for Infrared Detector Applications

    DTIC Science & Technology

    1988-11-25

    2= C, will be dominated by the barrier capacitance. Fcr 𔃽. Tersoff. Phys. Rev. Lett. 56,.2755 (1986).’C. Tejedor . J.MN. Calleja. F . Meseguer. E. E...8217Dite IR ; a. Is & LAES4 ..A Of ~.P~ f f I( V’t A4ep V bi t, VIA’Chlud a0 ; . 4-1-- Cep * ,s C .1 ’ ,,S L/, . 17 COSATI CODES 18 SUBJECT TERMS (Continue...thinned, and further experiments are planned for the near future. 2 Resonani tunneling in A..,b/lnAs/AlSb double-barrle, .eterostructures L F . Luo, R

  18. Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors

    SciTech Connect

    Fathipour, Vala; Jang, Sung Jun; Nia, Iman Hassani; Mohseni, Hooman

    2015-01-12

    We present a quantitative study of the influence of three-dimensional geometry of the isolated electron–injection detectors on their characteristics. Significant improvements in the device performance are obtained as a result of scaling the injector diameter with respect to the trapping/absorbing layer diameters. Devices with about ten times smaller injector area with respect to the trapping/absorbing layer areas show more than an order of magnitude lower dark current, as well as an order of magnitude higher optical gain compared with devices of same size injector and trapping/absorbing layer areas. Devices with 10 μm injector diameter and 30 μm trapping/absorbing layer diameter show an optical gain of ∼2000 at bias voltage of −3 V with a cutoff wavelength of 1700 nm. Analytical expressions are derived for the electron-injection detector optical gain to qualitatively explain the significance of scaling the injector with respect to the absorber.

  19. Evaluation of high temperature superconductive thermal bridges for space-borne cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1993-01-01

    The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.

  20. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  1. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  2. Performance of multiplexed Ge:Ga detector arrays in the far infrared

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of two multi-element, multiplexed Ge:Ga linear arrays under low-background conditions was investigated. The on-focal switching is accomplished by MOSFET switches, and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns, and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the highest responsivity was 584 A/W, the noise equivalent power was 1.0 x 10(exp -16) W/square root of Hz, and the read noise was 6100 electrons/sample. A detailed description of the test setup and procedure is presented.

  3. Development of ultra pure germanium epi layers for blocked impurity band far infrared detectors

    SciTech Connect

    Lutz, M.P.

    1991-05-01

    The main goals of this paper are: (1) To develop a low-pressure CVD (LPCVD) process that allows epitaxial growth at lower temperatures. Lower temperatures will allow the achievement of a sharp dopant profile at the substrate/epi-layer interface. Less out-diffusion from the substrate would allow the use of thinner epitaxial layers, which would lead to a larger depletion width in the photoactive region. LPCVD also avoids, to a great extent, gas-phase nucleation, which would cause Ge particulates to fall onto the wafer surface during growth. (2) To reduce high levels of oxygen and copper present at the wafer interface, as observed by secondary ion mass spectroscopy (SIMS). In order to achieve high-quality epitaxial layers, it is imperative that the substrate surface be of excellent quality. (3) To make and test detectors, after satisfactory epitaxial layers have been made.

  4. A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.

    1993-01-01

    We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.

  5. Performance evaluation of integrating detectors for near-infrared fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-05-01

    Although there has been a plethora of devices advanced for clinical translation, there has been no standards to compare and determine the optical device for fluorescence molecular imaging. In this work, we compare different CCD configurations using a solid phantom developed to mimic pM - fM concentrations of near-infrared fluorescent dyes in tissues. Our results show that intensified CCD systems (ICCDs) offer greater contrast at larger signal-tonoise ratios (SNRs) in comparison to their un-intensified CCD systems operated at clinically reasonable, sub-second acquisition times. Furthermore, we compared our investigational ICCD device to the commercial NOVADAQ SPY system, demonstrating different performance in both SNR and contrast.

  6. Detecting Thermal Barrier Coating Delamination Using Visible and Near-Infrared Luminescence from Erbium-Doped Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bencic, T. J.; Martin, R. E.; Singh, J.; Wolfe, D. E.

    2007-01-01

    Nondestructive diagnostic tools are needed to monitor early stages of delamination progression in thermal barrier coatings (TBCs) because the risk of delamination induced coating failure will compromise engine performance and safety. Previous work has demonstrated that for TBCs composed of yttria-stabilized zirconia (YSZ), luminescence from a buried europium-doped sublayer can be utilized to identify the location of TBC delamination from the substantially higher luminescence intensity observed from the delaminated regions of the TBC. Luminescence measurements from buried europium-doped layers depend on sufficient transmittance of the 532 nm excitation and 606 nm emission wavelengths through the attenuating undoped YSZ overlayer to produce easily detected luminescence. In the present work, improved delamination indication is demonstrated using erbium-doped YSZ sublayers. For visible-wavelength luminescence, the erbium-doped sublayer offers the advantage of a very strong excitation peak at 517 nm that can be conveniently excited a 514 nm Ar ion laser. More importantly, the erbium-doped sublayer also produces near-infrared luminescence at 1550 nm that is effectively excited by a 980 nm laser diode. Both the 980 nm excitation and the 1550 nm emission are transmitted through the TBC with much less attenuation than visible wavelengths and therefore show great promise for delamination monitoring through thicker or more highly scattering TBCs. The application of this approach for both electron beam physical vapor deposited (EB-PVD) and plasma-sprayed TBCs is discussed.

  7. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    SciTech Connect

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-25

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  8. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    SciTech Connect

    Gopal, Vishnu E-mail: wdhu@mail.sitp.ac.cn; Qiu, WeiCheng; Hu, Weida E-mail: wdhu@mail.sitp.ac.cn

    2014-11-14

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.

  9. Low-volume aluminum and aluminum / titanium nitride bilayer lumped-element kinetic inductance detectors for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Fyhrie, Adalyn; Wheeler, Jordan; Day, Peter K.; Eom, Byeong H.; Leduc, Henry G.

    2016-07-01

    We present the design and characterization of low-volume, lumped-element aluminum kinetic inductance de- tectors for sensitive far-infrared astronomy observations. The lumped-element kinetic inductance detectors are comprised of meandered inductors that serve as radiation absorbers in parallel with interdigitated capacitors, forming high quality factor resonators. Low inductor volumes lead to low noise equivalent powers by raising quasiparticles densities, and hence responsivities, with respect to larger volumes. Low volumes are achieved with thin (20 nm), narrow (150 nm) inductors. The interdigitated capacitor architecture is designed to mitigate two-level system noise by lowering electric fields in the silicon substrate. Resonance frequencies are in the range of 190 to 500 MHz, with measured internal quality factors in excess of 1 x 105. In a prior incarnation, a titanium nitride layer on top of the aluminum served as a protective layer, but complicated the superconducting proper- ties. These results were reported previously. In the current incarnation, the aluminum layer is left bare with no titanium nitride over-layer. The results for these bare aluminum devices include a yield of 88%, frequency responsivity of 109 W-1, and noise equivalent power of 1 x 10-17 W Hz-1/2 for a 350μm array. There is no evidence for 1=f noise down to at least 200 mHz. The sensitivity is currently limited by white noise, very likely from stray light in the testbed; for this detector design, sensitivities limited by generation-recombination noise in a lower-background environment should be several orders of magnitude lower.

  10. High-performance near-infrared spectrally encoded microscopy by using a balanced detector

    NASA Astrophysics Data System (ADS)

    Liao, Jiuling; Gao, Wanrong

    2015-08-01

    Spectrally encoded microscopy (SEM) is a new microscopic imaging technique in which a grating is used to illuminate different positions along a line on the sample with different wavelengths, reducing the size of system and imaging time. In this paper, a SEM device is described which is based on a swept source and a balanced detection. A fixed gain balanced detector (BD) was employed in the system for detecting the low sample light without amplifier. Compared to conventional SEM detection method, our BD-SEM device has two significant advantages, one is its capability of suppressing common-mode noise and thermal noise, resulting in the lateral resolution better than direct detection, the other is that it can amplify the signal intensity which is particularly helpful for tissue reflectance imaging. The lateral resolution was measured by imaging a USAF resolution target. The images of onion cells were obtained. The data showed that both the lateral resolution and signal noise ratio are better than non-BD method. The method presented in this work is helpful for developing miniature endoscopic probe for in vivo tissue visualization with high acquisition speed and high imaging quality.

  11. Filter-based infrared detectors for high temperature size exclusion chromatography analysis of polyolefins: calibration with a small number of standards and error analysis.

    PubMed

    Ortín, A; López, E; Monrabal, B; Torres-Lapasió, J R; García-Álvarez-Coque, M C

    2012-09-28

    Infrared detection has been shown to be very appropriate for high temperature analysis of polyolefins. After some early reports in which dispersive or single-band filter-based detectors were applied, Fourier transform detectors have been described for this application, in order to improve the method sensitivity. Modern simple filter-based detectors prove, however, comparable sensitivity while providing a number of practical advantages when coupled to chromatographic systems: reduced cell volume, simplified hardware, continuous generation of absorbance chromatograms, as well as simpler data collection and processing. A practical method for calibration, using multiple-band signals obtained with filter-based detectors and a small number of reference materials, is here discussed. Calibration data are used to compare the performance of detectors based on different opto-electronic technologies and filter designs. A procedure for estimation of errors in the slice-by-slice measured methyl frequency, based on signal-to-noise ratio considerations, is described. The good accuracy provided by the filter-based IR detectors was noticeable, considering that it was obtained using a small set of reference materials. A minimal concentration of 0.009 mg/mL was estimated to be required at the detector cell, in order to keep the errors below one unit of methyl per one thousand total carbons. This low minimal concentration requirement allows using standard SEC conditions, without compromising the molar mass distribution accuracy and resolution.

  12. InAs/Ga(1-x)In(x)Sb superlattices for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Miles, Richard H.; Schulman, Joel N.; Chow, D. H.; Mcgill, Tom C.

    1990-01-01

    The successful growth of InAs/Ga(1-x)In(x)Sb superlattices and their optical and structural characterization is discussed. Samples were grown by molecular beam epitaxy at fairly low substrate temperatures (less than 400 C). Structural quality was assessed by reflection high energy electron difrraction, transmission electron microscopy, and x ray diffraction. Excellent structures were achieved for growth on thick, strain relaxed GaSb buffer layers on GaAs substrates, despite a residual threading dislocation density of 10(exp 9)cm(exp -2) originating at the GaSb/GaAs interface. Despite a lattice mismatch of 1.7 percent, InAs/Ga(0.75)In(0.25)Sb superlattices are observed to be free of misfit dislocations at the thicknesses examined here, owing to the close lattice match between the superlattice and GaSb, which evenly distributes compressive and tensile stresses between the InAs and Ga(0.75)In(0.25)Sb layers. Photoluminescence and photoconductivity measurements indicate that the energy gaps of the strain-layer superlattices are smaller than those of InAs/GaSb superlattices with the same layer thicknesses, and are in agreement with the theoretical predictions of Smith and Mailhiot. Energy gaps of 80 to 250 meV (15 to 5 microns) have been measured for InAs/Ga(0.75)In(0.25)Sb superlattices with 45 to 25 A/25 A layer thickness. Results demonstrate that far-infrared cutoff wavelengths are compatible with the thin superlattice layers required for strong optical absorption in type-II superlattices.

  13. How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy

    PubMed Central

    Brigadoi, Sabrina; Cooper, Robert J.

    2015-01-01

    Abstract. In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source–detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant. PMID:26158009

  14. APDs as single-photon detectors for visible and near-infrared wavelengths down to Hz rates

    NASA Astrophysics Data System (ADS)

    Jöhren, R.; Berendes, R.; Buglak, W.; Hampf, D.; Hannen, V.; Mader, J.; Nörtershäuser, W.; Sánchez, R.; Weinheimer, C.

    2012-02-01

    For the SPECTRAP experiment at GSI, Germany, detectors with single-photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2 × 2 mm2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170°C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve relative gains in excess of 2ṡ104. Custom-made low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a relative gain of 2.2ṡ104. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 230 s-1. With these settings the studied APDs are able to detect single-photons at 628 nm wavelength with a photo detection efficiency of (67±7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a light bulb as photon source. With this setup the photo detection efficiency at 1020 nm has been determined to be (13±3)%, again at a threshold of 6 mV.

  15. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  16. Adapting Schottky Diode Detector Technology to a Space Platform

    DTIC Science & Technology

    1988-02-10

    consists of a front end set of digital electronics that interfaces to an existing IRIG wideband analog recorder. Incoming digital data is converted...section, at the end of the design study. Schottky diode detector operation is based on the potential barrier created when a metal and a semiconductor are...out at the end of the staring time using a network of CCD shift registers and is a measure of the infrared signal. The detector schematic in Figure 3.1

  17. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  18. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  19. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  20. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  1. Advanced Si IR detectors using molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Jones, E. W.; George, T.; Ksendzov, A.; Huberman, M. L.

    1991-01-01

    SiGe/Si heterojunction internal photoemission (HIP) long wavelength infrared (LWIR) detectors have been fabricated by MBE. The SiGe/Si HIP detector offers a tailorable spectral response in the long wavelength infrared regime by varying the SiGe/Si heterojunction barrier. Degenerately doped p(+) SiGe layers were grown using elemental boron, as the dopant source allows a low growth temperature. Good crystalline quality was achieved for boron-doped SiGe due to the reduced growth temperature. The dark current density of the boron-doped HIP detectors was found to be thermionic emission limited. HIP detectors with a 0.066 eV were fabricated and characterized using activation energy analysis, corresponding to a 18 micron cutoff wavelength. Photoresponse of the detectors at wavelengths ranging from 2 to 12 microns has been characterized with corresponding quantum efficiencies of 5 - 0.1 percent.

  2. Optimization on source detector distance for the glucose sensing in a tissue phantom using near-infrared diffuse spectra

    NASA Astrophysics Data System (ADS)

    Guo, Chao; Han, Tongshuai; Zhang, Ziyang; Sun, Di; Liu, Jin

    2016-10-01

    In the non-invasive blood glucose concentration (BGC) sensing, the measurement based on near infrared spectroscopy has been a promising technology since it had acquired dozens of satisfactory results in short-term glucose monitoring tests. However, it's still necessary to improve the measurement precision because it has challenges of the reduced precision in a long-term test when a lot of variables in the test would exist. Considering the requirement of multivariable analysis, the signals of diffuse reflectance spectra should include enough absorption information from glucose. However, the sensitivity of diffuse light intensity to the absorption variation at different source detector separations (SDSs) could be different. We present an analysis method using Monte-Carlo (MC) simulation and the diffuse equation for reasonably selecting proper SDS to get a satisfactory glucose measurement precision when there are multivariable disturbances. In the case of measuring glucose in a tissue phantom using the waveband of 1000-1340 nm, we show the SDS optimization result by using this analysis method. The experiment was designed to measure the diffuse reflectance spectra at 0.1-3.0 mm with the step of 0.1 mm, and the phantom solutions with different glucose concentrations and hemoglobin concentrations are tested. The glucose prediction precision was evaluated using the root mean squared error of prediction (RMSEP) for the all SDSs of 0.1-3.0 mm, and the SDSs with the lower RMSEP were selected for use. Moreover, the selected SDSs in the experiment shows a similar conclusion from the MC simulation. This work could be referenced to the in vivo BGC measurement.

  3. Dual silicon surface-barrier detectors and associated electronics for monitoring chemical separation of sup 249 Cf and sup 249 Bk

    SciTech Connect

    Chiles, M.M.

    1990-01-01

    The isotopes {sup 249}Cf and {sup 249}Bk are chemically separated by ion exchange chromatography at the Oak Ridge National Laboratory Transuranium Processing Plant. Control of the separation depends on the operator's ability to distinguish electronically between alpha radiation from the {sup 249}Cf and beta particles from the {sup 249}Bk. This new monitoring system consists of two surface-barrier detectors, each having its own channel of electronics and data acquisition. The two detectors are mounted in a Teflon holder and positioned near the tip of the ion exchange column, where droplets of solution are formed as the nuclides are eluted from the column. Amplifier gain and window settings on the single-channel analyzer (SCA) for one detector are adjusted to count the energetic alpha particles from the {sup 249}Cf, while the electronic settings of the other channel are adjusted to count the lower energy beta particles from {sup 249}Bk. The alpha count rate will increase first as {sup 249}Cf passes from the column; then the beta count rate increases, indicating that {sup 249}Bk is being eluted. At this point, the operator can make a cut in the separation process. 4 figs.

  4. Development of a near-infrared detector and a fiber-optic integral field unit for a space solar observatory SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Kamata, Yukiko; Anan, Tetsu; Hara, Hirohisa; Suematsu, Yoshinori; Bando, Takamasa; Ichimoto, Kiyoshi; Shimizu, Toshifumi

    2016-07-01

    We are developing a high sensitivity and fast readout near-infrared (NIR) detector and an integral field unit (IFU) for making spectro-polarimetric observations of rapidly varying chromospheric spectrum lines, such as He I 1083 nm and Ca II 854 nm, in the next space-based solar mission SOLAR-C. We made tests of a 1.7 μm cutoff H2RG detector with the SIDECAR ASIC for the application in SOLAR-C. It's important to verify its perfor- mance in the temperature condition around -100 °C, which is hotter than the typical temperature environment used for a NIR detector. We built a system for testing the detector between -70 °C and -140 °C. We verified linearity, read-out noise, and dark current in both the slow and fast readout modes. We found the detector has to be cooled down lower than -100 °C because of significant increase of the number of hot pixels in the hotter environment. The compact and polarization maintenance IFU was designed using fiber-optic ribbons consisting of rectangular cores which exhibit good polarization maintenance. A Silicone adhesive DC-SE9187L was used to hold the fragile fiber-optic ribbons in a metal housing. Polarization maintenance property was confirmed though polarization calibration as well as temperature control are required to suppress polarization crosstalk and to achieve the polarization accuracy in SOLAR-C.

  5. Infrared Detector Research

    DTIC Science & Technology

    1976-08-01

    single constant, x , which controls the0 overall magnitude of acoustic phonon scattering. We have included non- parabolicity in a manner similar to...which controls the magnitude of the acoustic phonnon scattering contrilution to the mobility, the coupling constant W, the donor density N, , the scale...to optical phonon scattering could be neglected. This has allowed us to fix the parameter -32- controlling the contribution of optical phonon

  6. Combination of temporal phase unwrapping and long-wave infrared digital holographic interferometry for metrology of mosaic detector under space simulated conditions

    NASA Astrophysics Data System (ADS)

    Vandenrijt, Jean-François; Thizy, Cédric; Beaumont, Florent; Garcia, José; Martin, Laurent; Fabron, Christophe; Prieto, Eric; Maciaszek, Thierry; Georges, Marc P.

    2015-08-01

    We present digital holographic interferometry (DHI) in the long-wave infrared for monitoring the deformation under cryogenic conditions of a segmented focal plane array to be used in a space mission. The long wavelength was chosen for its ability to allow measurement of displacements 20 times larger than DHI in the visible and which were foreseen with the test object under such temperature changes. The specimen consists of 4x4 mosaic of detectors assembled on a frame. It was required to assess the global deformation of the ensemble, the deformation of each detector, and piston movements of each of them with respect to their neighbors. For that reason we incorporated the temporal phase unwrapping by capturing a sufficiently high number of holograms between which the phase does not suffer strong variations. At last since the specimen exhibit specular reflectivity at that wavelength, it is illuminated through a reflective diffuser.

  7. Development of the III-V Barrier PhotoDetector Heterostructures for Spectral Range Above 10 microns

    DTIC Science & Technology

    2016-02-14

    SECURITY CLASSIFICATION OF: Novel approach to growth of quality narrow gap InAsSb-based materials using metamorphic buffers on GaSb substrates was...pursued. The developed GaInSb and AlInSb graded buffers served as a platform for growth of strain-free low-dislocation-density bulk InAsSb layers. The...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Metamorphic growth , MBE, LWIR, InAsSb, carrier lifetime, barrier photodetectors REPORT

  8. Influence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans.

    PubMed

    Hirasawa, Ai; Yanagisawa, Shintaro; Tanaka, Naoki; Funane, Tsukasa; Kiguchi, Masashi; Sørensen, Henrik; Secher, Niels H; Ogoh, Shigehiko

    2015-05-01

    Most near-infrared spectroscopy (NIRS) apparatus fails to isolate cerebral oxygenation from an extracranial contribution although they use different source-detector distances. Nevertheless, the effect of different source-detector distances and change in extracranial blood flow on the NIRS signal has not been identified in humans. This study evaluated the extracranial contribution, as indicated by forehead skin blood flow (SkBF) to changes in the NIRS-determined cerebral oxyhaemoglobin concentration (O2 Hb) by use of a custom-made multidistance probe. Seven males (age 21 ± 1 year) were in a semi-recumbent position, while extracranial blood flow was restricted by application of four different pressures (+20 to +80 mmHg) to the left temporal artery. The O2 Hb was measured at the forehead via a multidistance probe (source-detector distance; 15, 22·5 and 30 mm), and SkBF was determined by laser Doppler. Heart rate and blood pressure were unaffected by application of pressure to the temporal artery, while SkBF gradually decreased (P<0·001), indicating that extracranial blood flow was manipulated without haemodynamic changes. Also, O2 Hb gradually decreased with increasing applied pressure (P<0·05), and the decrease was related to that in SkBF (r = 0·737, P<0·01) independent of the NIRS source to detector distance. These findings suggest that the NIRS-determined cerebral oxyhaemoglobin is affected by change in extracranial blood flow independent of the source-detector distance from 15 to 30 mm. Therefore, new algorithms need to be developed for unbiased NIRS detection of cerebral oxygenation.

  9. InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, W. G.; Chang, K.; Jiang, D. S.; Li, Y. X.; Zheng, H. Z.; Liu, H. C.

    2001-10-01

    InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3-5 μm) infrared detectors are fabricated. The components display photovoltaic-type photocurrent response as well as the bias-controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3-5.3 μm infrared atmospheric transmission window. The blackbody detectivity (Dbb*) of the detectors reaches to about 1.0×1010cm Hz1/2/W at 77 K under bias of ±7 V. By expanding the electron wave function in terms of normalized plane wave basis within the framework of the effective-mass envelope-function theory, the linear Stark effects of the intersubband transitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements.

  10. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes.

    PubMed

    Skolová, Barbora; Jandovská, Kateřina; Pullmannová, Petra; Tesař, Ondřej; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-05-20

    Dihydroceramides (dCer) are members of the sphingolipid family that lack the C4 trans double bond in their sphingoid backbone. In addition to being precursors of ceramides (Cer) and phytoceramides, dCer have also been found in the extracellular lipid membranes of the epidermal barrier, the stratum corneum. However, their role in barrier homeostasis is not known. We studied how the lack of the trans double bond in dCer compared to Cer influences the permeability, lipid chain order, and packing of multilamellar membranes composed of the major skin barrier lipids: (d)Cer, fatty acids, cholesterol, and cholesteryl sulfate. The permeability of the membranes with long-chain dCer was measured using various markers and was either comparable to or only slightly greater than (by up to 35%, not significant) that of the Cer membranes. The dCer were less sensitive to acyl chain shortening than Cer (the short dCer membranes were up to 6-fold less permeable that the corresponding short Cer membranes). Infrared spectroscopy showed that long dCer mixed less with fatty acids but formed more thermally stable ordered domains than Cer. The key parameter explaining the differences in permeability in the short dCer and Cer was the proportion of the orthorhombic phase. Our results suggest that the presence of the trans double bond in Cer is not crucial for the permeability of skin lipid membranes and that dCer may be underappreciated members of the stratum corneum lipid barrier that increase its heterogeneity.

  11. Analysis and Suppression of Dark Currents in Mid-Wave Infrared Photodetectors

    NASA Astrophysics Data System (ADS)

    Savich, Gregory Robert

    Mid-wave infrared photodetectors have wide-ranging civilian and military applications but remain complicated and expensive to produce. Maximizing detector performance while also reducing costs is critical for furthering the efficacy of the technology. Understanding the causes of dark current generation in infrared detectors, the limitations defects impose on performance, and strategies for suppression of dark currents is important for maximizing performance and creating detector architectures that are more robust and cost effective. Ideal infrared detectors are expected to be limited by fundamental material properties rather than specific device architecture or material quality considerations. When defect concentrations are sufficiently low, a carefully engineered detector will exhibit the best possible performance; however, maintaining low defect concentrations is not always feasible. Detectors with elevated defect concentrations are subject to a series of defect-induced dark current mechanisms dependent on device architecture. Defect-dominated unipolar barrier detector architectures are typically subject to Shockley-Read-Hall generation and subsequent diffusion of carriers in quasi-neutral regions. Defect-dominated conventional photodiodes are also subject to neutral region Shockley-Read-Hall generation but Shockley-Read-Hall generation and trap-assisted-tunneling in the depletion layer will have a far greater effect on the overall dark current of a device. Unipolar barrier architecture detectors show greatly improved performance compared to conventional pn junction-based photodiodes. The performance of defect-limited nBn detectors is demonstrated, showing the effects of quasi-neutral region Shockley-Read-Hall in these devices and improved performance over conventional photodiodes. The unipolar barrier photodiode combines the advantages of the nBn with a pn junction architecture. A properly engineered unipolar barrier photodiode will suppress both surface leakage

  12. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    NASA Astrophysics Data System (ADS)

    Le Jeannic, Hanna; Verma, Varun B.; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D.; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-01

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6\\times10^4$ photons/(s$\\cdot$mW$\\cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  13. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared.

    PubMed

    Le Jeannic, Hanna; Verma, Varun B; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-15

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous tungsten silicide and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric downconversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×104 photons/(s·mW·MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  14. Thermal design and verification of an instrument cooling system for infrared detectors utilizing the Oxford Stirling cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Werrett, Stephen; Seivold, Alfred L.

    1990-01-01

    A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.

  15. Identification of Defect Candidates and their Effects on Carrier Lifetimes and Dark Currents in InAs/InAsSb Strained-Layer Superlattices for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas

    The InAs/GaSb and InAs/InAsSb type-II strain-layer superlattices (T2SLS) are of great importance and show great promise for mid-wave and long-wave infrared (IR) detectors for a variety of civil and military applications. The T2SLS offer several advantages over present day detection technologies including suppressed Auger recombination relative to the bulk MCT material, high quantum efficiencies, and commercial availability of low defect density substrates. While the T2SLS detectors are approaching the empirical Rule-07 benchmark of MCT's performance level, the dark-current density is still significantly higher than that of bulk MCT detectors. One of the major origins of dark current is associated with the Shockley-Read- Hall (SRH) process in the depletion region of the detector. I will present results of ab initio electronic structure calculations of the stability of a wide range of point defects [As and In vacancies, In, As and Sb antisites, In interstitials, As interstitials, and Sb interstitials] in various charged states in bulk InAs, InSb, and InAsSb systems and T2SLS. I will also present results of the transition energy levels. The calculations reveal that compared to defects in bulk materials, the formation and defect properties in InAs/InAsSb T2SLS can be affected by various structural features, such as strain, interface, and local chemical environment. I will present examples where the effect of strain or local chemical environment shifts the transition energy levels of certain point defects either above or below the conduction band minimum, thus suppressing their contribution to the SRH recombination.

  16. Modeling of normal incidence absorption in p-type GaAs/AlGaAs quantum well infrared detectors

    NASA Astrophysics Data System (ADS)

    Brown, Gail J.; Szmulowicz, Frank

    1995-04-01

    The absorption of infrared radiation at normal incidence in p-type GaAs/AlGaAs quantum wells, unlike in n-type, is fundamentally allowed. We have measured and theoretically modeled the bound-to-continuum absorption in these p-type materials. The infrared absorption coefficient was calculated are based on the electronic structure, wave functions and optical matrix elements obtained from an 8 X 8 envelope-function approximation (EFA) calculation. The 8 X 8 EFA Hamiltonian incorporates the coupling between the heavy, light, spin-orbit, and conduction bands. In calculating the continuum states for bound-to- continuum intersubband absorption, we do not enclose the well in an artificial box with infinite walls. A comparison of the theoretical absorption and measured photoresponse results verified the accuracy of our model and provided a basis for optimizing the design of p-type quantum wells for infrared detection.

  17. Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Lu, Wei; Yang, Guangning; Sun, Xiaoli; Sykora, Derek; Jurkovic, Mike; Aebi, Verle; Costello, Ken; Burns, Richard

    2011-01-01

    We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, less than 500 ps FWHM impulse response, greater than 15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.

  18. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  19. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors

    NASA Astrophysics Data System (ADS)

    Hinkey, Robert T.; Yang, Rui Q.

    2013-09-01

    A theoretical framework for studying signal and noise in multiple-stage interband infrared photovoltaic devices is presented. The theory flows from a general picture of electrons transitioning between thermalized reservoirs. Making the assumption of bulk-like absorbers, we show how the standard semiconductor transport and recombination equations can be extended to the case of multiple-stage devices. The electronic noise arising from thermal fluctuations in the transition rates between reservoirs is derived using the Shockley-Ramo and Wiener-Khinchin theorems. This provides a unified noise treatment accounting for both the Johnson and shot noise. Using a Green's function formalism, we derive consistent analytic expressions for the quantum efficiency and thermal noise in terms of the design parameters and macroscopic material properties of the absorber. The theory is then used to quantify the potential performance improvement from the use of multiple stages. We show that multiple-stage detectors can achieve higher sensitivities for applications requiring a fast temporal response. This is shown by deriving an expression for the optimal number of stages in terms of the absorption coefficient and absorber thicknesses for a multiple-stage detector with short absorbers. The multiple-stage architecture may also be useful for improving the sensitivity of high operating temperature detectors in situations where the quantum efficiency is limited by a short diffusion length. The potential sensitivity improvement offered by a multiple-stage architecture can be judged from the product of the absorption coefficient, α, and diffusion length, Ln, of the absorber material. For detector designs where the absorber lengths in each of the stages are equal, the multiple-stage architecture offers the potential for significant detectivity improvement when αLn ≤ 0.2. We also explore the potential of multiple-stage detectors with photocurrent-matched absorbers. In this architecture, the

  20. Theoretical investigation of InAs/GaSb type-II pin superlattice infrared detector in the mid wavelength infrared range

    NASA Astrophysics Data System (ADS)

    Kaya, U.; Hostut, M.; Kilic, A.; Sakiroglu, S.; Sokmen, I.; Ergun, Y.; Aydinli, A.

    2013-02-01

    In this study, we present the theoretical investigation of type-II InAs/GaSb superlattice p-i-n detector. Kronig-Penney and envelope function approximation is used to calculate band gap energy and superlattice minibands. Variational method is also used to calculate exciton binding energies. Our results show that carriers overlap increases at GaSb/InAs interface on the higher energy side while it decreases at InAs/GaSb interface on the lower energy side with increasing reverse bias due to shifting the hole wavefunction toward to the GaSb/InAs interface decisively. Binding energies increase with increasing electric field due to overall overlap of electron and hole wave functions at the both interfaces in contrast with type I superlattices. This predicts that optical absorption is enhanced with increasing electric field.

  1. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    PubMed

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO2 and N2O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO2 and N2O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppmv for CO2 and 62.0ppbv for N2O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N2O and CO2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO2 levels less than 12,000mg/L.

  2. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  3. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    PubMed

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair.

  4. Heterojunction depth in P+-on-n eSWIR HgCdTe infrared detectors: generation-recombination suppression

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2015-08-01

    A key design feature of P+-on-n HgCdTe detectors is the depth of the p-type region. Normally, homojunction architectures are utilized where the p-type region extends into the narrow-gap absorber layer. This facilitates the collection of photo-carriers from the absorber layer to the contact; however, this may result in excess generation-recombination (G-R) current if defects are present. Alternatively, properly adopting a heterojunction architecture confines the p-type region (and the majority of the electric field) solely to the wide-gap layer. Junction placement is critical since the detector performance is now dependent on the following sensitivity parameters: p-type region depth, doping, valence band offset, lifetime and detector bias. Understanding the parameter dependence near the hetero-metallurgical interface where the compositional grading occurs and the doping is varied as either a Gaussian or error function is vital to device design. Numerical modeling is now essential to properly engineer the electric field in the device to suppress G-R current while accounting for the aforementioned sensitivity parameters. The simulations reveal that through proper device design the p-type region can be confined to the wide-gap layer, reducing G-R related dark current, without significantly reducing the quantum efficiency at the operating bias V = -0.100V.

  5. A New Large-Well 1024x1024 Si:As Detector for the Mid-Infrared

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Hong, John H.; Stapelbroek, M. G.; Hogue, Henry; Molyneux, Dale; Ressler, Michael E.; Watkins, Ernie; Reekstin, John; Werner, Mike; Young, Erick

    2005-01-01

    We present a description of a new 1024x1024 Si:As array designed for ground-based use from 5 - 28 microns. With a maximum well depth of 5e6 electrons, this device brings large-format array technology to bear on ground-based mid-infrared programs, allowing entry to the mega-pixel realm previously only accessible to the near-IR. The multiplexer design features switchable gain, a 256x256 windowing mode for extremely bright sources, and it is two-edge buttable. The device is currently in its final design phase at DRS in Cypress, CA. We anticipate completion of the foundry run in October 2005. This new array will enable wide field, high angular resolution ground-based follow up of targets found by space-based missions such as the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE).

  6. Test results of Spacelab 2 infrared telescope focal plane. [photoconductive detector fabrication and JFET transimpedance amplifier design

    NASA Technical Reports Server (NTRS)

    Young, E. T.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.; Fazio, G. G.; Koch, D.; Traub, W. A.; Urban, E. W.

    1981-01-01

    The small helium cooled infrared telescope for Spacelab 2 is designed for sensitive mapping of extended, low-surface-brightness celestial sources as well as highly sensitive investigations of the shuttle contamination environment (FPA) for this mission is described as well as the design for a thermally isolated, self-heated J-FET transimpedance amplifier. This amplifier is Johnson noise limited for feedback resistances from less than 10 to the 8th power Omega to greater than 2 x 10 to the 10th power Omega at T = 4.2K. Work on the focal plane array is complete. Performance testing for qualification of the flight hardware is discussed, and results are presented. All infrared data channels are measured to be background limited by the expected level of zodiacal emission.

  7. Switchable bicolor (5.5-9.0 microns) infrared detector using asymmetric GaAs/AlGaAs multiquantum well

    NASA Astrophysics Data System (ADS)

    Martinet, E.; Rosencher, E.; Luc, F.; Bois, Ph.; Costard, E.; Delaitre, S.

    1992-07-01

    Electrical switching of a bispectral infrared photoconductor is demonstrated with GaAs/AlGaAs asymmetric step multiquantum wells, presenting bound-to-bound (tunable 8.5-9.0 microns) and bound-to-extended (about 5.5 microns) intersubband transitions of similar oscillator strengths. The bound-to-bound photoresponse is switched on by applying an electric field of sufficient magnitude to permit the collection of the photoexcited bound electrons of tunneling.

  8. Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors

    NASA Technical Reports Server (NTRS)

    Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.

    2007-01-01

    A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.

  9. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems.

    PubMed

    Garidel, Patrick; Fölting, Bettina; Schaller, Ingrid; Kerth, Andreas

    2010-08-01

    The current mid-infrared spectroscopic study is a systematic investigation of hydrated stratum corneum lipid barrier model systems composed of an equimolar mixture of a ceramide, free palmitic acid and cholesterol. Four different ceramide molecules (CER NS, CER NP, CER NP-18:1, CER AS) were investigated with regard to their microstructure arrangement in a stratum corneum lipid barrier model system. Ceramide molecules were chosen from the sphingosine and phytosphingosine groups. The main differences in the used ceramide molecules result from their polar head group architecture as well as hydrocarbon chain properties. The mixing properties with cholesterol and palmitic acid are considered. This is feasible by using perdeuterated palmitic acid and proteated ceramides. Both molecules can be monitored separately, within the same experiment, using mid-infrared spectroscopy; no external label is necessary. At physiological relevant temperatures, between 30 and 35 degrees C, orthorhombic as well as hexagonal chain packing of the ceramide molecules is observed. The formation of these chain packings are extremely dependent on lipid hydration, with a decrease in ceramide hydration favouring the formation of orthorhombic hydrocarbon chain packing, as well as temperature. The presented data suggest in specific cases phase segregation in ceramide and palmitic acid rich phases. However, other ceramides like CER NP-18:1 show a rather high miscibility with palmitic acid and cholesterol. For all investigated ternary systems, more or less mixing of palmitic acid with cholesterol is observed. The investigated stratum corneum mixtures exhibit a rich polymorphism from crystalline domains with heterogeneous lipid composition to a "fluid" homogeneous phase. Thus, a single gel phase is not evident for the presented stratum corneum model systems. The study shows, that under skin physiological conditions (pH 5.5, hydrated, 30-35 degrees C) ternary systems composed of an equimolar ratio of

  10. Influence of the Sb dopant distribution on far infrared photoconductivity in Ge:Sb blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana; Beeman, Jeffrey W.; Haller, Eugene E.; Samperi, Stacy; Haegel, Nancy M.

    2002-02-06

    Extended long wavelength response to {approx}200 {micro}m (50 cm{sup -1}) has been observed in Ge:Sb Blocked Impurity Band (BIB) detectors with N{sub D} {approx} 1 x 10{sup 16} cm{sup -3}. The cut-off wavelength increases from 150 {micro}m (65 cm{sup -1}) to 200 {micro}m (50 cm{sup -1}) with increasing bias. The responsivity at long wavelengths was lower than expected. This can be explained by considering the observed Sb diffusion profile in a transition region between the blocking layer and active layer. BIB modeling is presented which indicates that this Sb concentration profile increases the electric field in the transition region and reduces the field in the blocking layer. The depletion region consists partially of the transition region between the active and blocking layer, which could contribute to the reduced long wavelength response. The field spike at the interface is the likely cause of breakdown at a lower bias than expected.

  11. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors.

    PubMed

    Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K

    2011-11-01

    A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles.

  12. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.

  13. Preliminary validation results of an ASIC for the readout and control of near-infrared large array detectors

    NASA Astrophysics Data System (ADS)

    Pâhlsson, Philip; Meier, Dirk; Otnes Berge, Hans Kristian; Øya, Petter; Steenari, David; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar

    2015-06-01

    In this paper we present initial test results of the Near Infrared Readout and Controller ASIC (NIRCA), designed for large area image sensors under contract from the European Space Agency (ESA) and the Norwegian Space Center. The ASIC is designed to read out image sensors based on mercury cadmium telluride (HgCdTe, or MCT) operating down to 77 K. IDEAS has developed, designed and initiated testing of NIRCA with promising results, showing complete functionality of all ASIC sub-components. The ASIC generates programmable digital signals to clock out the contents of an image array and to amplify, digitize and transfer the resulting pixel charge. The digital signals can be programmed into the ASIC during run-time and allows for windowing and custom readout schemes. The clocked out voltages are amplified by programmable gain amplifiers and digitized by 12-bit, 3-Msps successive approximation register (SAR) analogue-to-digital converters (ADC). Digitized data is encoded using 8-bit to 10-bit encoding and transferred over LVDS to the readout system. The ASIC will give European researchers access to high spectral sensitivity, very low noise and radiation hardened readout electronics for astronomy and Earth observation missions operating at 77 K and room temperature. The versatility of the chip makes the architecture a possible candidate for other research areas, or defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  14. Surface conductivity of InAs/GaSb superlattice infrared detectors treated with thiolated self assembled monolayers

    NASA Astrophysics Data System (ADS)

    Henry, Nathan C.; Brown, Alexander; Knorr, Daniel B.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Tidrow, Meimei; Bandara, Sumith

    2016-01-01

    The surface conductivity of InAs/GaSb based type II superlattice (T2SL) long wavelength infrared material following the deposition of thiolated self-assembled monolayers (SAMs) of cysteamine, octadecanethiol, dodecanethiol, and hexanethiol are reported. Quantitative mobility spectrum analysis (QMSA) was employed to study the mobility and to isolate and identify surface carriers following SAM treatments on planar samples. QMSA data collected following the deposition of the SAMs on InAs/GaSb material correlates well with dark current measurements, demonstrating the usefulness of QMSA as a tool for evaluating surface conductivity and predicting device performance. All samples displayed a reduction in surface conductivity and dark current density following thiol treatment. Dark current densities were reduced to 1.1 × 10-5, 1.3 × 10-5, 1.6 × 10-5, and 5 × 10-6 A/cm2 for hexanethiol, dodecanethiol, octadecanethiol, and cysteamine, respectively, from 5.7 × 10-4 A cm2 for unpassivated devices.

  15. Low operating bias InAs/GaSb strain layer superlattice LWIR detector

    NASA Astrophysics Data System (ADS)

    Baril, Neil; Bandara, Sumith; Hoeglund, Linda; Henry, Nathan; Brown, Alexander; Billman, Curtis; Maloney, Patrick; Nallon, Eric; Tidrow, Meimei; Pellegrino, Joseph

    2015-05-01

    Minimization of operating bias and generation-recombination dark current in long wavelength infrared (LWIR) strained layer superlattice (SLS) detectors, consisting of a lightly doped p-type absorber layer and a wide band gap hole barrier, are investigated with respect to the band alignment between the wide band gap barrier and absorber layers. Dark current vs. bias, photoresponse, quantum efficiency, lifetime, and modeling are used to correlate device performance with the wide gap barrier composition. Decreases in dark current density and operating bias were observed as the conduction band of the wide gap barrier was lowered with respect to the absorber layer. The device achieved 95% of its maximum quantum efficiency at 0 V bias, and 100% by 0.05 V. This study demonstrates key device design parameters responsible for optimal performance of heterojunction based SLS LWIR detectors.

  16. MEMS infrared approaches to detector based on nonlinear oscillation and wavelength selective emitter using surface plasmon polariton

    NASA Astrophysics Data System (ADS)

    Sasaki, Minoru; Kumagai, Shinya

    2014-03-01

    The suspended MEMS structure is suitable for reducing the energy loss due to the thermal conduction. There is the possibility that IR photon energy can be well-controlled to generate some physical effects. A new method bases on the nonlinear oscillation for the detector. The thin film torsional spring exhibits a large hard spring effect when the deflection occurs in the out-of-plane direction of the film. When IR is absorbed, the resonator bends due to the thermal expansion. The torsional spring becomes harder increasing the resonant frequency. The frequency measurement is suited for the precise sensing. The device response is measured using the laser (wavelength of 650nm). The resonant frequency is 88-94kHz. Q factor is about 1600 in vacuum (1Pa). The sensitivity is -0.144[kHz/(kW/m2)]. As for the emitter, nondispersive IR gas sensor is considered. The molecules have their intrinsic absorptions. CO2 absorbs the wavelength 4.2- 4.3μm. The major incandescent light bulbs have the broad spectrum emitting IR which is not used for gas sensing. The wavelength selectivity at the gas bandwidth will improve the efficiency. A new principle uses the microheater placed facing to the grating. SPP is excited carrying IR energy on the grating surface. IR emission is the reverse process of excitation occurring at the output end. The emission spectra show SPP related peak having the width of 190nm. When the input power increases from 0.3 to 1.9W, the peak at wavelength of 3.5μm becomes clearer.

  17. High speed infrared radiation thermometer, system, and method

    DOEpatents

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  18. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    PubMed

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  19. Near-infrared spectroscopy system with non-contact source and detector for in vivo multi-distance measurement of deep biological tissue

    NASA Astrophysics Data System (ADS)

    Funane, Tsukasa; Atsumori, Hirokazu; Kiguchi, Masashi; Tanikawa, Yukari; Okada, Eiji

    2013-03-01

    A non-contact near-infrared spectroscopy (NIRS) scanning system with a phosphor cell placed on the skin for in vivo measurement of biological tissue was developed and evaluated. Because the phosphor is excited by the light that propagates in the tissue, and the excitation light is cut by optical filters, the light that propagates in the tissue is selectively detected. The non-contact system was extended to create a scanning system that can flexibly change source positions with a galvano scanner. The optical scanning system was used for non-contact measurement of the human forearm muscle, and the dependence of optical-density change (ΔOD) caused by the upper-arm occlusion and release on source-detector distance was observed. The obtained ΔOD demonstrates the effectiveness of using this system for multi-distance human-forearm measurement. Furthermore, a human forehead was measured with the system. To extract a deep-layer signal, a surface-layer subtraction method with short-distance regression was applied to measured data. On the basis of the correlation with a simultaneously measured laser-Doppler flowmetry signal, it was confirmed that the deep-layer signal was successfully extracted. The extraction result demonstrates that the optical scanning system can be used as a multi-distance NIRS system for measuring the human brain activity at the forehead.

  20. Multi-channel infrared thermometer

    DOEpatents

    Ulrickson, Michael A.

    1986-01-01

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  1. Multi-channel infrared thermometer

    DOEpatents

    Ulrickson, M.A.

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.

  2. La détection infrarouge avec les plans focaux non refroidis : état de l'artUncooled focal plane infrared detectors: the state of the art

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc

    2003-12-01

    The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J

  3. Type II superlattice technology for LWIR detectors

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  4. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  5. Use of reflectance near-infrared spectroscopy to investigate the effects of daily moisturizer application on skin optical response and barrier function.

    PubMed

    Qassem, Meha; Kyriacou, Panayiotis

    2014-08-01

    A number of noninvasive techniques and instruments have emerged over the years allowing much progress toward clarifying the structure and function of human skin and studying the effects of various applied substances. All of this research has provided great insight into the interactions between skin and various products through quantitative and qualitative measurements. Such methods include near-infrared spectroscopy (NIRS), a technique which has gained popularity over the years and has often been employed to accurately determine the moisture levels and water content of skin based on its sensitivity to hydrogen bonding. NIRS has also been applied in many studies to report the efficacy of moisturizing products and assess their benefits to the skin. However, many of these studies have reported an increase in skin water content following moisturizer application while some have challenged the benefits of long-term moisturizer use, particularly on normal skin, and even suggested that it can increase the skin's susceptibility to irritants. This paper reports the results of a pilot in vivo study carried out on the skin of 20 healthy volunteers, categorized into groups depending on their skin type and frequency of moisturizer use, in order to investigate the optical response of human skin after direct short-term contact with water followed by application of a moisturizer. The measurements were obtained using a highly advanced spectrophotometer in the region of 900 to 2100 nm equipped with a customized reflectance fiber optic handheld probe. Scatter graphs of group results and second derivative spectra have shown an interesting pattern between frequent users of moisturizers and individuals who do not use moisturizers, suggesting that long-term daily moisturization may have an effect on skin barrier function. The results also raise some questions regarding the optical characteristics of different skin types, as well as the varying response between different water bands in the

  6. Infrared detector device inspection system

    DOEpatents

    Soehnel, Grant; Bender, Daniel A.

    2016-08-09

    Methods and apparatuses for identifying carrier lifetimes are disclosed herein. In a general embodiment, a beam of light is sent to a group of locations on a material for an optical device. Photons emitted from the material are detected at each of the group of locations. A carrier lifetime is identified for each of the group of locations based on the photons detected from each of the group of locations.

  7. Correlation Between Band Structure and Magneto- Transport Properties in HgTe/CdTe Two-Dimensional Far-Infrared Detector Superlattice

    NASA Astrophysics Data System (ADS)

    Braigue, M.; Nafidi, A.; Idbaha, A.; Chaib, H.; Sahsah, H.; Daoud, M.; Marí Soucase, B.; Mollar García, M.; Chander Singh, K.; Hartiti, B.

    2013-06-01

    Theoretical calculations of the electronic properties of n-type HgTe/CdTe superlattices (SLs) have provided an agreement with the experimental data on the magneto-transport behaviour. We have measured the conductivity, Hall mobility, Seebeck and Shubnikov-de Haas effects and angular dependence of the magneto-resistance. Our sample, grown by MBE, had a period d= d 1+ d 2 (124 layers) of d1=8.6 nm (HgTe) /d2=3.2 nm (CdTe). Calculations of the spectras of energy E( d 2), E( k z ) and E( k p ), respectively, in the direction of growth and in plane of the superlattice; were performed in the envelope function formalism. The energy E( d 2, Γ,4.2 K), shown that when d 2 increase the gap E g decrease to zero at the transition semiconductor to semimetal conductivity behaviour and become negative accusing a semimetallic conduction. At 4.2 K, the sample exhibits n type conductivity, confirmed by Hall and Seebeck effects, with a Hall mobility of 2.5 × 105 cm2/ V s. This allowed us to observe the Shubnikov-de Haas effect with n=3.20×1012 cm-2. Using the calculated effective mass (m^{*}_{E1}(EF) = 0.05 m0) of the degenerated electrons gas, the Fermi energy (2D) was E F =88 meV in agreement with 91 meV of thermoelectric power α. In intrinsic regime, α˜ T -3/2 and R H T 3/2 indicates a gap E g = E 1- HH 1=101 meV in agreement with calculated E g ( Γ,300 K)=105 meV. The formalism used here predicts that the system is semiconductor for d 1/ d 2=2.69 and d 2<100 nm. Here, d 2=3.2 nm and E g ( Γ,4.2 K)=48 meV so this sample is a two-dimensional modulated nano-semiconductor and far-infrared detector (12 μm< λ c <28 μm).

  8. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  9. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale

    NASA Astrophysics Data System (ADS)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  10. Quantum Well Infrared Photodetectors (QWIP)

    NASA Technical Reports Server (NTRS)

    Levine, B. F.

    1990-01-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  11. Impact of high-conductivity n-type anti-debiasing layer on the photoresponse of "leaking" and "non-leaking" FPA elements in photovoltaic MCT-based n-on-p infrared FPA detectors

    NASA Astrophysics Data System (ADS)

    Vasiliev, V. V.; Vishnyakov, A. V.; Dvoretsky, S. A.; Predein, A. V.; Sabinina, I. V.; Sidorov, Yu. G.; Stuchinsky, V. A.

    2017-03-01

    Impact of high-conductivity n-type anti-debiasing layer (ADL) on the photoresponse of focal plane array (FPA) elements in mercury-cadmium-tellurium based photovoltaic n-on-p infrared FPA detectors is analyzed via consideration of, first, measured current-voltage characteristics of FPA elements with "leaking" and "non-leaking" array photodiodes and, second, spatial photoresponse profiles measured using FPA elements of both types. A most pronounced manifestation of the parasitic diode with the p-n junction at the absorber layer/ADL interface consists in the emergence of negative photoresponses produced by the "leaking" FPA elements.

  12. Infrared Astronomy with Arrays: The Next Generation; Sunset Village, Los Angeles, CA, Oct. 1993

    NASA Technical Reports Server (NTRS)

    Mclean, Ian S.

    1994-01-01

    Conference papers on infrared array techniques and methods for infrared astronomy are presented. Topics covered include the following: infrared telescopes; infrared spectrometers; spaceborne astronomy; astronomical observatories; infrared cameras; imaging techniques; sky surveys; infrared photography; infrared photometry; infrared spectroscopy; equipment specifications; data processing and analysis; control systems; cryogenic equipment; adaptive optics; image resolution; infrared detector materials; and focal plane arrays.

  13. Early infrared astronomy

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2009-07-01

    I present a short history of infrared astronomy, from the first scientific approaches of the ‘radiant heat’ in the seventeenth century to the 1970's, the time when space infrared astronomy was developing very rapidly. The beginning of millimeter and submillimeter astronomy is also covered. As the progress of infrared astronomy was strongly dependent on detectors, some details are given on their development.

  14. Infrared Solar Physics.

    PubMed

    Penn, Matthew J

    The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  15. Optimization of barrier layer thickness in MgSe/CdSe quantum wells for intersubband devices in the near infrared region

    SciTech Connect

    Chen, Guopeng; Shen, Aidong; Tamargo, Maria C.

    2015-10-28

    The authors report the optimization of MgSe barrier thickness in CdSe/MgSe multiple quantum well structures and its effect on structural, optical qualities and intersubband (ISB) transition characteristics. Three samples with the MgSe thicknesses of 2 nm, 3 nm, and 4 nm were grown on InP substrates by molecular beam epitaxy. X-ray diffraction and photoluminescence measurements showed that the thinner the MgSe barrier thickness the better the structural quality. However, ISB absorption was only observed in the sample with a MgSe thickness of 3 nm. Failing to observe ISB absorption in the sample with a thicker MgSe barrier (≥4 nm) is due to the deteriorated material quality while the missing of ISB transition in the sample with thinner barrier (≤2 nm) is due to the tunneling of electrons out of the CdSe wells. The optimized MgSe barrier thickness of around 3 nm is found to be able to suppress the electron tunneling while maintaining a good material quality of the overall structure.

  16. Demonstration of First 9 Micron cutoff 640 x 486 GaAs Based Quantum Well Infrared PhotoDetector (QWIP) Snap-Shot Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S. V.; Liu, J. K.; Hong, W.; Sundaram, M.; Maker, P. D.; Muller, R. E.

    1997-01-01

    In this paper, we discuss the development of this very sensitive long waelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in quantum efficiency, NEAT, uniformity, and operability.

  17. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    SciTech Connect

    Mitchel, W. C. Haugan, H. J.; Mou, Shin; Brown, G. J.; Elhamri, S.; Berney, R.

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  18. Choosing a Motion Detector.

    ERIC Educational Resources Information Center

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  19. Micromachined electron tunneling infrared sensors

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.

    1993-01-01

    The development of an improved Golay cell is reported. This new sensor is constructed entirely from micromachined silicon components. A silicon oxynitride (SiO(x)N(y)) membrane is deflected by the thermal expansion of a small volume of trapped gas. To detect the motion of the membrane, an electron tunneling transducer is used. This sensor detects electrons which tunnel through the classically forbidden barrier between a tip and a surface; the electron current is exponentially dependent on the separation between the tip and the surface. The sensitivity of tunneling transducers constructed was typically better than 10(exp -3) A/square root of Hz. Through use of the electron tunneling transducer, the scaling laws which have prevented the miniaturization of the Golay cell are avoided. This detector potentially offers low cost fabrication, compatibility with silicon readout electronics, and operation without cooling. Most importantly, this detector may offer better sensitivity than any other uncooled infrared sensor, with the exception of the original Golay cell.

  20. A cryogenic testbed for the characterisation of large detector arrays for astronomical and Earth-observing applications in the near to very-long-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Brien, Thomas L. R.; Ade, Peter A. R.; Haiml, Markus; Hargrave, Peter C.; Höhnemann, Holger; Pascale, Enzo; Sudiwala, Rashmi V.; Van Aken, Dirk

    2016-07-01

    In this paper we describe a cryogenic testbed designed to offer complete characterisation-via a minimal number of experimental configurations— of mercury cadmium telluride (MCT) detector arrays for low-photon background applications, including exoplanet science and solar system exploration. Specifically, the testbed offers a platform to measure the dark current of detector arrays at various temperatures, whilst also characterising their optical response in numerous spectral bands. The average modulation transfer function (MTF) can be found in both dimensions of the array along with the overall quantum efficiency. Working from a liquid-helium bath allows for measurement of arrays from 4.2 K and active-temperature control of the surface to which the array is mounted allows for characterisation of arrays at temperatures up to 80 K, with the temperature of the array holder known to an accuracy of at least 1 mK, with the same level of long-term stability.

  1. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  2. Drifts exhibited by cryogenically cooled InSb infrared filtered detectors and their importance to the ATSR-2 and Landsat-5 Earth observation missions.

    PubMed

    Theocharous, Evangelos

    2005-07-10

    The spectral responsivity of commercially available InSb detectors with low-pass cold filters attached to their cold shields for optimum operation in the 1.6-2.6 microm wavelength range is observed to drift slowly with time. These drifts are shown to arise because of a thin film of water-ice deposited on the cold low-pass filters mounted on the cold shields of the detectors. The temporal characteristics of these drifts are shown to strongly depend on wavelength. A model is proposed for the behavior of the water present in the Dewar vacuum, which can explain and predict the temporal characteristics of the observed drifts for all wavelengths. These observations are particularly relevant to space instruments that use cryogenically cooled IR filter radiometers for Earth observation. The temporal profile of drifts observed in missions such as Landsat-5 is identical to that observed in cryogenically cooled filtered InSb detectors during laboratory measurements. This study confirms that the deposition of a thin film of a material such as ice on the cold bandpass filters and windows is therefore the most likely source of the oscillatory drifts observed in the response of some of the channels of the ATSR-2, Landsat-4, and Landsat-5 Earth observation missions.

  3. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  4. Detector Mount Design for IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Park, Kwijong; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyoung; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Jaffe, Daniel T.

    2014-06-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  5. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time (<< 1 μs). In the photon counting mode, the devices can be operated in the non-gated mode under a constant dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. We present the discrete amplification design approach used for the development of a solid state photomultiplier in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state photodetectors in the near infrared wavelength range. The measured devices have the following performance characteristics: gain > 2X105, excess noise factor < 1.05, rise time < 350ps, fall time < 500ps, dark current < 2X106 cps, operating voltage < 60V. These devices are ideal for researchers in the field of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  6. Infrared retina

    DOEpatents

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  7. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  8. Development of components for cost effective terahertz measurement system: terahertz quantum cascade laser and terahertz quantum well infrared photo-detector

    NASA Astrophysics Data System (ADS)

    Hosako, Iwao; Sekine, Norihiko; Patrashin, Mikhail; Yasuda, Hiroaki

    2007-09-01

    Terahertz imaging and spectroscopy have attracted a lot of attention in recent years, because monocycle terahertz radiation can be generated using an ultra-short pulse laser and semiconductor device technologies. The availability of monocycle terahertz radiation sources has encouraged innovative research and development activities worldwide in an extremely wide range of applications, from security to medical systems. However, the fundamental device technology, namely the semiconductor emitter, amplifier, modulator, focal plane array detector, and optical thin film among others, in the terahertz frequencies has not yet been fully established. Therefore, a measurement system in the terahertz range remains a costly alternative. We report in this paper our recent developments of a terahertz quantum cascade laser (THz-QCL) and a terahertz quantum well photo-detector (THz-QWIP). We believe that the combination of a semiconductor emitter (THz-QCL) and a semiconductor detector array (THz-QWIP) is a good choice for developing a cost-effective measurement system for a given terahertz range (from 1.5 THz to 5.0 THz), because both of these items are based on mass-production semiconductor fabrication techniques. We fabricated the THz-QCLs using a resonant longitudinal-optical phonon depopulation (RPD) scheme, which is made up of both a GaAs/AlGaAs material system and a GaSb/AlGaSb material system. The GaAs/AlGaAs THz-QCL has already successfully demonstrated a high peak power (about 30 milliwatts in pulsed operation) operation at 3.1 THz and a high operating temperature (123K). On the other hand, we have fabricated a THz-QWIP structure consisting of 20 periods of GaAs/Al 0.02Ga 0.98As quantum wells with a grating coupler on the top of detector devices, and successfully operated it at 3 THz with a responsivity of 13mA/W. We now believe we are ready to make a cost-effective measurement system, although both of the devices still require cryogenic coolers.

  9. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  10. The pyroelectric properties of TGS for application in infrared detection

    NASA Technical Reports Server (NTRS)

    Kroes, R. L.; Reiss, D.

    1981-01-01

    The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area.

  11. Pyroelectric Ceramics for Infrared Detection Applications

    NASA Technical Reports Server (NTRS)

    Guggilla, Padmaja; Batra, A. K.; Currie, J. R.; Aggarwal, M. D.; Penn, B.; Lal, R. B.

    2004-01-01

    Pyroelectric and dielectric properties of modified PZT and PZ have been studied for their use in infrared detectors. Various material figure-of-merits for their use in infrared detector are calculated including when the pyroelectric element is placed on heat-sink condition. The results are compared with exiting candidate materials.

  12. The utilization of an infrared imaging system as a cooling slot blockage detector in the inspection of a transpiration cooled nozzle

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; Wright, Robert E., Jr.; Alderfer, David W.; Whipple, Janet C.

    1990-01-01

    A comprehensive examination of the 8 foot temperature tunnel's transpiration cooled nozzle was completed using an infrared imaging radiometer to locate regions of cooling flow irregularities caused by obstruction of three or more adjacent cooling slots. Restrictions in the cooling flow were found and cataloged. Blockages found were due primarily to the presence of residual phosphoric acid being discharged from some of the cooling slots. This acid was used during construction of the nozzle components and was to have been purged prior to its delivery to the NASA Langley Research Center (LaRC). In addition, a radial displacement of one selection of discs located in the spool piece was inspected and cataloged for future reference. There did not seem to be a serious restriction of flow in this defect, but evidence from the infrared images indicated reduced slot activity within the gouge. The radiometer survey uncovered regions where closer inspection is recommended but did not cover the entire surface area of the three nozzle subsections due to equipment limitations. A list of areas with suspected problems is included in Appendix A.

  13. Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique.

    PubMed

    Huang, Lingxia; Zhou, Yibin; Meng, Liuwei; Wu, Di; He, Yong

    2017-06-01

    This study investigated the potential of using hyperspectral imaging technique in tandem with chemometrics for rapid and invasive predicting total anthocyanin content and antioxidant activity of mulberry fruit. Two calibration methods of partial least square regression and least-squares support vector machines and three wavelength selection algorithms of successive projections algorithm, uninformation variable elimination, and competitive adaptive reweighted sampling were applied. The best prediction models for the analysis of total anthocyanin content and antioxidant activity had Rval(2) of 0.959 and 0.995 respectively. The performances of two CCD detectors named silicon (Si) and indium gallium arsenide (InGaAs) were compared. The results show that hyperspectral imaging has a great potential for the assessment of total anthocyanin content and antioxidant activity of mulberry fruit.

  14. Multi-color tunneling quantum dot infrared photodetectors operating at room temperature

    NASA Astrophysics Data System (ADS)

    Ariyawansa, G.; Perera, A. G. U.; Su, X. H.; Chakrabarti, S.; Bhattacharya, P.

    2007-04-01

    Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.

  15. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  16. High Speed Buffered Injection Readout for Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Pain, B.; Shaw, T.; Eastwood, M.; Green, R. O.

    1998-01-01

    Design and operation of a high speed, low noise, wide dynamic range linear infrared multiplexer array for readout of infrared detectors with large detector capacitance is presented. Image lag related to abrupt transitions of signal currents is analyzed.

  17. Commercialization of Australian advanced infrared technology

    NASA Astrophysics Data System (ADS)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  18. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  19. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  20. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    SciTech Connect

    Vishnyakov, A. V.; Stuchinsky, V. A. Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  1. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    NASA Astrophysics Data System (ADS)

    Vishnyakov, A. V.; Stuchinsky, V. A.; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-01

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents jph being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at jph ≠ 0) charge-carrier diffusion length ld eff as a function of jph for jph → 0 inferred from our experimental data proved to be consistent with the behavior of ld eff vs jph as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  2. QWIP or other alternative for third generation infrared systems

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby

    2003-10-01

    Choosing the right detector technology for third generation thermal imaging systems is directly derived from the requirements of these new generation infrared imaging systems. It is now evident that third generation thermal imager will still need the higher resolution capabilities as well as capabilities in multispectral detection and polarization sensitivity. Four technologies candidates are analyzed; the field-proved HgCdTe (MCT), uncooled microbolometer technology, antimonide based materials and quantum well infrared photodetectors (QWIP). Taking into account the risks, maturity and technologies barrier of each technology, we claim that for non-strategic applications (not low background conditions), QWIP technology is the most favorite. The ternary and superlattice antimonide based materials group seems to be theoretically the best alternative, but are not recommended due to its immaturity and the high risk involved in this technology (passivation, doping control, etc.). We anticipate large penetration of the uncooled detectors to the low-end and medium-end market. The HgCdTe will still be in progress due to the inertia of the large funding and the strategic importance of this detectors technology.

  3. Microbunch Instability Observations from a THz Detector at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Shields, W.; Bartolini, R.; Boorman, G.; Karataev, P.; Lyapin, A.; Puntree, J.; Rehm, G.

    2012-05-01

    Diamond Light source is a third generation synchrotron facility dedicated to producing radiation of outstanding brightness, ranging from infra-red to x-rays. The short electron bunches that are accelerated around the storage ring are susceptible to the phenomenon of microbunching instabilities when the bunch charge exceeds a threshold. The primary feature of the microbunch instabilities is the onset of bursts of radiation in the THz range. The high frequencies involved in the emissions make detection and analysis challenging. A 60-90 GHz Schottky Barrier Diode detector was installed to investigate turn by turn evolution of the instabilities.

  4. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  5. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  6. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors.

    PubMed

    Zhang, Jingqing; Kruss, Sebastian; Hilmer, Andrew J; Shimizu, Steven; Schmois, Zeke; De La Cruz, Flor; Barone, Paul W; Reuel, Nigel F; Heller, Daniel A; Strano, Michael S

    2014-03-01

    Patients with chest pain account for 10% of US emergency room visits according to data from the Center for Disease Control and Prevention (2013). For triage of these patients, cardiac biomarkers troponin I and T are endorsed as standard indicators for acute myocardial infarction (AMI, or heart attack). Thus, there is significant interest in developing a rapid, point-of-care (POC) device for troponin detection. In this work, a rapid, quantitative, and label-free assay, which is specific for cardiac troponin T (cTnT) detection, using fluorescent single-walled carbon nanotubes (SWCNTs), is demonstrated. Chitosan-wrapped carbon nanotubes are cross-linked to form a thin gel that is further functionalized with nitrilotriacetic acid (NTA) moieties. Upon chelation of Ni(2+) , the Ni(2+) -NTA group binds to a hexa-histidine-modified troponin antibody, which specifically recognizes the target protein, troponin T. As the troponin T binds to the antibody, the local environment of the sensor changes, allowing direct troponin detection through intensity changes in SWCNT bandgap fluorescence. This platform represents the first near-infrared SWCNT sensor array for cTnT detection. Detection can be completed within 5 min, demonstrating a linear response to cTnT concentration and an experimental detection limit of 100 ng mL(-1) (2.5 nm). This platform provides a promising new tool for POC AMI detection in the future. Moreover, the work presents two new methods of quantifying the number of amines and carboxylic groups, respectively, in a carbon hydrogel matrices.

  7. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  8. Infrared Astronomy with Arrays: The Next Generation; Sunset Village, LOS Angeles, CA, Oct. 1993

    NASA Astrophysics Data System (ADS)

    McLean, Ian S.

    Conference papers on infrared array techniques and methods for infrared astronomy are presented. Topics covered include the following: infrared telescopes; infrared spectrometers; spaceborne astronomy; astronomical observatories; infrared cameras; imaging techniques; sky surveys; infrared photography; infrared photometry; infrared spectroscopy; equipment specifications; data processing and analysis; control systems; cryogenic equipment; adaptive optics; image resolution; infrared detector materials; and focal plane arrays. For individual titles, see A95-62894 through A95-62970.

  9. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  10. Infrared tracker for a portable missile launcher

    SciTech Connect

    Carlson, J.J.

    1993-07-13

    An infrared beam tracker is described for arrangement to a housing that is unitary with a portable missile launcher, comprising: a rotating beam splitter positioned to intercept the infrared beam passing a first portion of the beam through the beam splitter along a first direction and reflecting the remaining portion along a different direction; a first infrared detector for receiving the beam reflected portion from the beam splitter and produce electric signals responsive thereto; a second infrared detector for receiving the beam portion that passes through the beam splitter and providing electric signals responsive thereto; and means interconnected to the first and second infrared detectors and responsive to the electric signals generated by said detectors for determining errors in missile flight direction and communicating course correction information to the missile.

  11. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  12. Infrared astronomy after IRAS

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Thompson, R. I.; Werner, M. W.; Witteborn, F. C.; Becklin, E. E.

    1986-01-01

    The development of infrared astronomy in the wake of IRAS is discussed. Attention is given to an overview of next generation infrared telescope technology, with emphasis on the Space Infrared Telescope Facility (SIRTF) which has been built to replace IRAS in the 1990s. Among the instruments to be included on SIRTF are: a wide-field high-resolution camera covering the infrared range 3-30 microns with large arrays of detectors; an imaging photometer operating in the range 3-700 microns; and a spectrograph covering the range 2.5-200 microns with resolutions of 2 and 0.1 percent. Observational missions for the SIRTF are proposed in connection with: planetary formation; star formation; cosmic energy sources; active galactic nuclei; and quasars.

  13. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  14. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  15. Selective leak-detector for natural gas

    SciTech Connect

    Bonne, U.

    1985-03-26

    An improved detector for combustible gases and which is able to discriminate between natural gas (methane and ethane) and other sources of methane (e.g. swamp gas, petrochemical and automotive) or other combustible gases by measuring the characteristic methane/ethane ratio of natural gas, based on infrared absorption of methane and ethane, in combination with another non-specific combustible gas detector.

  16. Quantum Dot Detectors with Plasmonic Structures

    DTIC Science & Technology

    2015-05-15

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0102 TR-2015-0102 QUANTUM DOT DETECTORS WITH PLASMONIC STRUCTURES Sanjay Krishna University of...SUBTITLE Quantum Dot Detectors with Plasmonic Structures 5a. CONTRACT NUMBER FA9453-12-1-0131 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63401F 6...characterization, of multi-spectral quantum dots-in-a-double well (DDWELL) infrared detectors, by the integration of a surface Plasmon (SP) assisted resonant

  17. Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases

    DOEpatents

    Owen, Thomas E.

    2005-11-29

    A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.

  18. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect

    Song, Yu Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire; Bhat, Rajaram; Zah, Chung-En

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  19. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  20. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  1. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  2. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  3. Advanced Infrared Photodetectors (Materials Review)

    DTIC Science & Technology

    1993-12-01

    rays by reducing the effective detector area (9]. The lens structure also offers a measure of mechanical protection. 2.3.2 Electronic non...ib.itio’ý I by Availability Codes Philip J. Picone Avail and/ornDist Special SUMMARY The present status of advanced infrared semiconductor detector materials... POSTAL ADDRESS: Director, Surveillance Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. SRL.0117-RR UNCLASSIFIED SRL - 0117 - RR

  4. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  5. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  6. Center for Research on Infrared Detectors (CENTROID)

    DTIC Science & Technology

    2006-09-30

    front face will increase. On the other hand, the radiant energy coming from the effusion cells (common to (ii) and (iii)) can increase the sample and...upper end of the optimized growth temperature region. They have been previously reported on the MCT surface by only one author?4 The cross- hatch...the low and high ends to a range from 0.7 to 5.0 eV (compared to the existing library range of 1.8 to 4.3 eV). We also used In as well as Sn to

  7. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  8. Ground based infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer.

  9. Language barriers

    PubMed Central

    Ngwakongnwi, Emmanuel; Hemmelgarn, Brenda R.; Musto, Richard; King-Shier, Kathryn M.; Quan, Hude

    2012-01-01

    Abstract Objective To assess use of regular medical doctors (RMDs), as well as awareness and use of telephone health lines or telehealth services, by official language minorities (OLMs) in Canada. Design Analysis of data from the 2006 postcensal survey on the vitality of OLMs. Setting Canada. Participants In total, 7691 English speakers in Quebec and 12 376 French speakers outside Quebec, grouped into those who experienced language barriers and those with no language barriers. Main outcome measures Health services utilization (HSU) by the presence of language barriers; HSU measures included having an RMD, use of an RMD’s services, and awareness of and use of telephone health lines or telehealth services. Multivariable models examined the associations between HSU and language barriers. Results After adjusting for age and sex, English speakers residing in Quebec with limited proficiency in French were less likely to have RMDs (adjusted odds ratio [AOR] 0.66, 95% CI 0.50 to 0.87) and to use the services of their RMDs (AOR 0.65, 95% CI 0.50 to 0.86), but were more likely to be aware of the existence of (AOR 1.50, 95% CI 1.16 to 1.93) and to use (AOR 1.43, 95% CI 0.97 to 2.11) telephone health lines or telehealth services. This pattern of having and using RMDs and telehealth services was not observed for French speakers residing outside of Quebec. Conclusion Overall we found variation in HSU among the language barrier populations, with lower use observed in Quebec. Age older than 45 years, male sex, being married or in common-law relationships, and higher income were associated with having RMDs for OLMs. PMID:23242902

  10. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  11. Intruder Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The shadowy prowler is attempting a break-in, unaware that his presence has already been detected and reported by the device in the lower left corner of the photo. It is part of a three-element ntruder Detecti on System developed by NASA's Ames Research Center from technology acquired in the Apollo lunar exploration program. Apollo astronauts left behind on the moon small portable seismic (shock) detectors to record subsurface vibrations and transmit to Earth data on the moon's density and thickness. A similar seismic detector is the key component of the lntruder Detection System. Encased in a stainless steel tube, the detector is implanted in the ground outside the facility being protected-home, bank, industrial or other facilities. The vibration-sensing detector picks up the footstep of anyone within a preset range. The detector is connected by cable to the transmitter, which relays the warning to a portable radio receiver. The radio alerts plant guards or home occupants by emitting an audible tone burst for each footstep.

  12. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  13. Infrared temperature maps of EHD lubrication

    NASA Technical Reports Server (NTRS)

    Sanborn, D. M.; Winer, W. O.

    1977-01-01

    Technique uses an infrared detector with two specially selected infrared filters, in separately mapping the contact-surface temperature and average oil-film temperature in an elastohydrodynamic conjunction. Apparatus includes conventional four-ball bearing tester and temperature controlled lubricant system.

  14. Passive infrared bullet detection and tracking

    SciTech Connect

    Karr, T.J.

    1994-12-31

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  15. Passive infrared bullet detection and tracking

    DOEpatents

    Karr, T.J.

    1997-01-21

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

  16. Passive infrared bullet detection and tracking

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  17. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  18. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  19. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  20. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  1. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  4. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  5. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    NASA Technical Reports Server (NTRS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  6. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  7. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  8. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  9. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  10. MIRI/JWST detector characterization

    NASA Astrophysics Data System (ADS)

    Bright, Stacey N.; Ressler, M. E.; Alberts, Stacey; Noriega-Crespo, Alberto; Morrison, Jane E.; García-Marín, Macarena; Fox, Ori; Rieke, G. H.; Glasse, Alistair C.; Wright, G. S.; Hines, Dean C.; Bouchet, P.; Dicken, D.

    2016-07-01

    We report on tests of the Mid-Infrared Instrument (MIRI) focal plane electronics (FPE) and detectors conducted at the Jet Propulsion Laboratory (JPL). The goals of these tests are to: characterize the performance of readout modes; establish subarray operations; characterize changes to performance when switching between subarrays and/or readout modes; fine tune detector settings to mitigate residual artifacts; optimize anneal effectiveness; and characterize persistence. The tests are part of a continuing effort to support the MIRI pipeline development through better understanding of the detector behavior. An extensive analysis to determine the performance of the readout modes was performed. We report specifically on the comparison of the fast and slow readout modes and subarray tests.

  11. Barrier Formation

    PubMed Central

    Lyaruu, D.M.; Medina, J.F.; Sarvide, S.; Bervoets, T.J.M.; Everts, V.; DenBesten, P.; Smith, C.E.; Bronckers, A.L.J.J.

    2014-01-01

    Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl− for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b−/− mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b−/− mice and was strongly correlated with Cl−. Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl− levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins. PMID:24170372

  12. Status of the isophot detector development

    NASA Technical Reports Server (NTRS)

    Wolf, J.; Lemke, D.; Burgdorf, M.; Groezinger, U.; Hajduk, CH.

    1989-01-01

    ISOPHOT is one of the four focal plane experiments of the European Space Agency's Infrared Space Observatory (ISO). Scheduled for a 1993 launch, it will operate extrinsic silicon and germanium photoconductors at low temperature and low background during the longer than 18 month mission. These detectors cover the wavelength range from 2.5 to 200 microns and are used as single elements and in arrays. A cryogenic preamplifier was developed to read out a total number of 223 detector pixels.

  13. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  14. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  15. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  16. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  17. Measurement approach and design of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Rider, David; Rud, Mayer; Ting, David; Yee, Karl

    2016-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) will measure upwelling infrared radiation of the Earth in the MWIR region of the spectrum from space on a CubeSat. The observed radiances have information of potential value to weather forecasting agencies and can be used to retrieve lower tropospheric temperature and water vapor globally for weather and climate science investigations. Multiple units can be flown to improve temporal coverage or in formation to provide new data products including 3D atmospheric motion vector winds. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS has no moving parts and includes an immersion grating to reduce the volume and reduce distortion. The third key technology is an infrared blackbody fabricated with black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The CIRAS is the first step towards the development of an Earth Observation Nanosatellite Infrared (EON-IR) capable of operational readiness to mitigate a potential loss of CrIS on JPSS or complement the current observing system with different orbit crossing times.

  18. Characterization of MODIS VIS/NIR Spectral Band Detector-to-Detector Difference

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Sun, J.; Meister, G.; Kwiakowska, E.

    2008-01-01

    MODIS has 36 spectral bands with wavelengths in the visible (VIS), near-infrared (NIR), shortwave infrared (SWTR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). It makes observations at three nadir spatial resolutions: 0,25km for bands 1-2 with 40 detectors per band, 0.5km for bands 3-7 with 20 detectors per band, and 1km for bands 8-36 with 10 detectors per band. The VIS, NIR, and S\\VIR spectral bands are the reflective solar bands (RSB), which are calibrated on-orbit by a solar diffuser (SD). In addition, MODIS lunar observations are used to track the RSB calibration stability. In this study, we examine detector-to-detector calibration difference for the VIStNIR spectral bands using the SD and lunar observations. The results will be compared with an independent analysis with additional information, such as polarization correction, derived from standard ocean color data products. The current MODIS RSB calibration approach only carries a band-averaged RVS (response versus scan angle) correction. The results from this study suggest that a detector-based RVS correction should be used to improve the L1B data quality, especially for several VIS bands in Terra MODIS due to large changes of the scan mirror's optical properties in recent years.

  19. Comparative NIR Detector Characterization for NGST

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew (Technical Monitor); Figer, Donald

    2004-01-01

    List of publications for final perfomance report are: Detectors for the JWST Near-Infrared Spectrometer Rauscher, B.J., Strada, P., Regan, M.W., Figer, D.F., Jakobsen, P., Moseley, H.S., & Boeker, T. 2004, SPIE Detectors for the JWST Near-Infrared Spectrometer Rauscher, B.J., Strada, P., Regan, M.W., Figer, D.F., Jakobsen, P., Moseley, H.S., & Boeker, T. 2004, AAS, 203, 124.07 Independent Testing of JWST Detector Prototypes Figer, D.F., Rauscher, B. J., Regan, M. W., Morse, E., Balleza, J., Bergeron, L., & Stockman, H. S. 2003 , SPIE, 5 167 The Independent Detector Testing Laboratory and the NGST Detector Program Figer, D.F., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Rauscher, B. J., Reeves, T., Regan, M. W., Sharma, U., Stockman, H. S. 2003, SPIE, 4850,981 Intra-Pixel Sensitivity in NIR Detectors for NGST Sharma, U., Figer, D.F., Sivaramakrishnan, A., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Rauscher, B. J., Reeves, T., Regan, M. W., Stockman, H. S. 2003, SPIE, 4850,1001 NIRCAM Image Simulations for NGST Wavefiont SensinglPS A. Sivaramakrishnan, D. Figer, H. Bushouse, H. S. Stockman (STScI),C. Ohara , D. Redding (JPL), M. Im (IPAC), & J. Offenberg (Raytheon) 2003, SPIE, 4850,388 Ultra-Low Background Operation of Near-Infrared Detectors for NGS Rauscher, B. J., Figer, D. F., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Reeves, T., Regan, M. W., Sharma, U., Stockman, H. S. 2003, SPIE, 4850,962 The Independent Detector Testing Laboratory and the JWST Detector Program Figer, D.F. et a1.2003, AAS201, #131.05

  20. Recipes for high resolution time-of-flight detectors

    SciTech Connect

    Anz, S.J. |; Felter, T.E.; Hess, B.V.; Daley, R.S.; Roberts, M.L.; Williams, R.S.

    1995-01-01

    The authors discuss the dynamics, construction, implementation and benefits of a time-of-flight (TOF) detector with count rates an order of magnitude higher and resolution three to four times better than that obtainable with a surface barrier detector. The propose use of design criteria for a time-of-flight detector is outlined, and the determination of a TOF detector`s total relative timing error and how this value determines the mass resolution are illustrated using a graphical analysis. They present simulation and experimental examples employing light ions and discuss advantages and pitfalls of medium-energy heavy ion TOF spectrometry.