Adhesive flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John Donald; Weidner, William Kenneth
2013-02-05
An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.
Nitride based quantum well light-emitting devices having improved current injection efficiency
Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald
2014-12-09
A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Rongming; Cao, Yu; Li, Zijian
2018-02-20
A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.
Environmental barrier material for organic light emitting device and method of making
Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA
2003-02-18
An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.
Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy
2015-04-21
A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.
Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM
2011-05-24
Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.
Multi-layer light-weight protective coating and method for application
NASA Technical Reports Server (NTRS)
Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)
1992-01-01
A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.
Multilayer article having stabilized zirconia outer layer and chemical barrier layer
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Lee, Kang N. (Inventor)
2004-01-01
A multilayer article includes a substrate that includes at least one of a ceramic compound and a Si-containing metal alloy. An outer layer includes stabilized zirconia. Intermediate layers are located between the outer layer and the substrate and include a mullite-containing layer and a chemical barrier layer. The mullite-containing layer includes 1) mullite or 2) mullite and an alkaline earth metal aluminosilicate. The chemical barrier layer is located between the mullite-containing layer and the outer layer. The chemical barrier layer includes at least one of mullite, hafnia, hafnium silicate and rare earth silicate (e.g., at least one of RE.sub.2 SiO.sub.5 and RE.sub.2 Si.sub.2 O.sub.7 where RE is Sc or Yb). The multilayer article is characterized by the combination of the chemical barrier layer and by its lack of a layer consisting essentially of barium strontium aluminosilicate between the mullite-containing layer and the chemical barrier layer. Such a barium strontium aluminosilicate layer may undesirably lead to the formation of a low melting glass or unnecessarily increase the layer thickness with concomitant reduced durability of the multilayer article. In particular, the chemical barrier layer may include at least one of hafnia, hafnium silicate and rare earth silicate.
Multilayer thermal barrier coating systems
Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.
2000-01-01
The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.
Chemical solution deposition method of fabricating highly aligned MgO templates
Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2012-01-03
A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.
Anisotropic capillary barrier for waste site surface covers
Stormont, J.C.
1996-08-27
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.
Anisotropic capillary barrier for waste site surface covers
Stormont, John C.
1996-01-01
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.
Outer brain barriers in rat and human development
Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld
2015-01-01
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456
Outer brain barriers in rat and human development.
Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld
2015-01-01
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.
High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)
2015-01-01
A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.
Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.
Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog
2015-10-01
Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.
Protective coatings for sensitive materials
Egert, Charles M.
1997-01-01
An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.
LED structure with enhanced mirror reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Michael; Donofrio, Matthew; Heikman, Sten
2014-04-01
Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer andmore » adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.« less
Ocean barrier layers' effect on tropical cyclone intensification.
Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan
2012-09-04
Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.
Carlson, David E.
1980-01-01
Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.
Thermal barriers for compartments
Kreutzer, Cory J.; Lustbader, Jason A.
2017-10-17
An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.
Protective coatings for sensitive materials
Egert, C.M.
1997-08-05
An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.
Gas sensor with attenuated drift characteristic
Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT
2008-05-13
A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention
Complementary Barrier Infrared Detector (CBIRD) Contact Methods
NASA Technical Reports Server (NTRS)
Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.
2013-01-01
The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.
Ocean barrier layers’ effect on tropical cyclone intensification
Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan
2012-01-01
Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298
Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguru, Karthik; Chang, P.; Saravanan, R.
2012-09-04
Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less
Multi-layer waste containment barrier
Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.
1999-01-01
An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.
Water-retaining barrier and method of construction
Adams, Melvin R.; Field, Jim G.
1996-01-01
An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.
Water-retaining barrier and method of construction
Adams, M.R.; Field, J.G.
1996-02-20
An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.
Barrier layer for a MCrAlY basecoat superalloy combination
Sabol, Stephen M.; Goedjen, John G.; Vance, Steven J.
2001-01-01
A turbine component contains a substrate (22) such as a superalloy, a basecoat (24) of the type MCrAlY, and a continuous barrier layer (28) between the substrate and basecoat, where the barrier layer (28) is made of an alloy of (Re, Ta, Ru, Os)X, where X can be Ni, Co or their mixture, where the barrier layer is at least 2 micrometers thick and substantially prevents materials from both the basecoat and substrate from migrating through it.
Hoover, William R.; Mead, Keith E.; Street, Henry K.
1977-01-01
The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.
Planar varactor frequency multiplier devices with blocking barrier
NASA Technical Reports Server (NTRS)
Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)
1994-01-01
The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.
A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures
NASA Astrophysics Data System (ADS)
All Abbas, J. M.; Atmaca, G.; Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.
2017-08-01
Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger-Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.
Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng
2005-02-01
A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.
InGaP Heterojunction Barrier Solar Cells
NASA Technical Reports Server (NTRS)
Welser, Roger E. (Inventor)
2014-01-01
A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
Corrosion-resistant multilayer structures with improved reflectivity
Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.
2013-04-09
In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.
Single-Band and Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)
2015-01-01
Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
Single-Band and Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)
2017-01-01
Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
Vacuum barrier for excimer lasers
Shurter, Roger P.
1992-01-01
A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Method Producing an SNS Superconducting Junction with Weak Link Barrier
NASA Technical Reports Server (NTRS)
Hunt, Brian D. (Inventor)
1999-01-01
A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.
Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay
NASA Astrophysics Data System (ADS)
Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime
2010-03-01
Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.
Vacuum barrier for excimer lasers
Shurter, R.P.
1992-09-15
A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.
Application of diffusion barriers to high modulus fibers
NASA Technical Reports Server (NTRS)
Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.
1977-01-01
Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.
Apparatus and method of manufacture for an imager equipped with a cross-talk barrier
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.
Lessing, Paul A [Idaho Falls, ID
2008-07-22
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Lessing, Paul A.
2004-09-07
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Multilayer coatings for flexible high-barrier materials
NASA Astrophysics Data System (ADS)
Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike
2009-06-01
A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.
Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin
HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang
2012-01-01
Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746
Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)
2008-01-01
A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
Klem, John F; Kim, Jin K
2014-05-13
A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.
Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana
2015-07-29
Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
Roadblocks in the gut: barriers to enteric infection.
Gill, Navkiran; Wlodarska, Marta; Finlay, B Brett
2011-05-01
This review discusses the barriers an enteric pathogen encounters when establishing an infection in the intestinal tract. There are potential barriers in the lumen that increase competition for nutrients and space. The role of mucus layer, and the antimicrobial peptides and secretory IgA sequestered within it, are also significant barriers. After overcoming these defences, the pathogen encounters the epithelial layer. This layer can be broken down into various protective components including enterocytes, Paneth cells, goblet cells, M cells and pathogen recognition receptors. Collectively, these intestinal defences constitute significant barriers that pathogens must overcome to successfully colonize this important mucosal surface. © 2011 Blackwell Publishing Ltd.
Puncture detecting barrier materials
Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.
1998-03-31
A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.
Puncture detecting barrier materials
Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.
1998-01-01
A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-13
... Subtitle C barrier, a multi-layer barrier designed to provide 500-year protection. \\2\\ Under Tank Closure..., which means the tanks, ancillary equipment, and contaminated soil would be removed, and the remaining... Hanford barrier, a multi- layer barrier designed to provide 1,000-year protection. Alternative 6: All...
Underground waste barrier structure
Saha, Anuj J.; Grant, David C.
1988-01-01
Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.
Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)
2011-01-01
A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors
NASA Technical Reports Server (NTRS)
Xu, Jennifer C. (Inventor); Hunter, Gary W. (Inventor); Lukco, Dorothy (Inventor)
2008-01-01
A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
Graphene-based stretchable and transparent moisture barrier
NASA Astrophysics Data System (ADS)
Won, Sejeong; Van Lam, Do; Lee, Jin Young; Jung, Hyun-June; Hur, Min; Kim, Kwang-Seop; Lee, Hak-Joo; Kim, Jae-Hyun
2018-03-01
We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.
How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?
NASA Astrophysics Data System (ADS)
Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani
2017-11-01
In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium-nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (~2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1987-06-08
A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space. The layer thicknesses of the quantum well layers are selected to provide a superlattice L/sub 2D/-valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley. 2 figs.
Solar cells having integral collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.
NASA Technical Reports Server (NTRS)
Maier, R. D.; Scheuermann, C. M.; Andrews, C. W.
1981-01-01
A two-layer plasma-sprayed thermal barrier coating on a directionally solidified nickel-base eutectic alloy substrate was characterized prior to and after thermal cycling to 1095 C in an accelerated furnace test. The coating was comprised of an inner layer of Ni-16.4Cr-5.1Al-0.15Y (wt%) bond coat and an outer layer of ZrO2-7.9Y2O3 (wt%) thermal barrier. Characterization of the bond coat revealed that substantial amounts of yttrium and aluminum were oxidized during plasma-spraying in air. The oxidation of these elements reduced the protective capacity of the bond coat so that, on thermal exposure, severe degradation of the bond coat resulted and large amounts of nickel oxide formed. This nickel oxide was demonstrated to grow outward into the thermal barrier, which appears to have increased the stresses in the thermal barrier and contributed to its failure near the thermal barrier-bond coat interface.
Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.
Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C
2015-05-01
Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All high Tc edge-geometry weak links utilizing Y-Ba-Cu-O barrier layers
NASA Technical Reports Server (NTRS)
Hunt, B. D.; Foote, M. C.; Bajuk, L. J.
1991-01-01
High quality YBa2Cu3O(7-x) normal-metal/YBa2Cu3O(7-x) edge-geometry weak links have been fabricated using nonsuperconducting Y-Ba-Cu-O barrier layers deposited by laser ablation at reduced growth temperatures. Devices incorporating 25-100 A thick barrier layers exhibit current-voltage characteristics consistent with the resistively shunted junction model, with strong microwave and magnetic field response at temperatures up to 85 K. The critical currents vary exponentially with barrier thickness, and the resistances scale linearly with Y-Ba-Cu-O interlayer thickness and device area, indicating good barrier uniformity, with an effective mormal metal coherence length of 20 A.
NASA Astrophysics Data System (ADS)
Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong
2018-05-01
In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.
Specific features of waveguide recombination in laser structures with asymmetric barrier layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polubavkina, Yu. S., E-mail: polubavkina@mail.ru; Zubov, F. I.; Moiseev, E. I.
2017-02-15
The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm{sup 2}) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding layer. This can bemore » attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport.« less
Superlattice barrier varactors
NASA Technical Reports Server (NTRS)
Raman, C.; Sun, J. P.; Chen, W. L.; Munns, G.; East, J.; Haddad, G.
1992-01-01
SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented.
NASA Astrophysics Data System (ADS)
Tari, Alireza; Wong, William S.
2018-02-01
Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matvejeff, M., E-mail: mikko.matvejeff@picosun.com; Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo; Ahvenniemi, E.
We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.
Hydrogen-isotope permeation barrier
Maroni, Victor A.; Van Deventer, Erven H.
1977-01-01
A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.
Oxygen-Barrier Coating for Titanium
NASA Technical Reports Server (NTRS)
Clark, Ronald K.; Unnam, Jalaiah
1987-01-01
Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Silicon based substrate with calcium aluminosilicate/thermal barrier layer
NASA Technical Reports Server (NTRS)
Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)
2001-01-01
A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.
Silicon based substrate with environmental/thermal barrier layer
NASA Technical Reports Server (NTRS)
Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Narottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)
2002-01-01
A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.
Silicon based substrate with environmental/ thermal barrier layer
NASA Technical Reports Server (NTRS)
Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Nanottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)
2002-01-01
A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.
Chaffin, deceased, Roger J.; Dawson, Ralph; Fritz, Ian J.; Osbourn, Gordon C.; Zipperian, Thomas E.
1989-01-01
A field effect transistor comprises a semiconductor having a source, a drain, a channel and a gate in operational relationship. The semiconductor is a strained layer superlattice comprising alternating quantum well and barrier layers, the quantum well layers and barrier layers being selected from the group of layer pairs consisting of InGaAs/AlGaAs, InAs/InAlGaAs, and InAs/InAlAsP. The layer thicknesses of the quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice which has a superlattice conduction band energy level structure in k-vector space which includes a lowest energy .GAMMA.-valley and a next lowest energy L-valley, each k-vector corresponding to one of the orthogonal directions defined by the planes of said layers and the directions perpendicular thereto. The layer thicknesses of the quantum well layers are selected to provide a superlattice L.sub.2D -valley which has a shape which is substantially more two-dimensional than that of said bulk L-valley.
Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong
2015-11-01
Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.
Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer
NASA Technical Reports Server (NTRS)
Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)
2001-01-01
A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.
Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; ...
2015-08-28
Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less
Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan
2012-05-01
This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.
Controlled Thermal Expansion Coat for Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)
1999-01-01
A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.
On the performance of capillary barriers as landfill cover
NASA Astrophysics Data System (ADS)
Kämpf, M.; Montenegro, H.
Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.
Wu, Chang Mou; Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi
2018-05-09
The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials.
Thermal barrier coating resistant to sintering
Subramanian, Ramesh; Sabol, Stephen M.
2001-01-01
A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.
Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application
Hawkins, G.A.; Clarke, J.
1975-10-31
A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.
Metamorphic InAsSb-based Barrier Photodetectors for the Long Wave Infrared Region
2013-08-02
The character of the I–V for structures with AlInSb layer grown undoped reflects the complex nature of the potential profile in the valence band ...Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb substrates by...ABSTRACT InAs0.6Sb0.4/Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb
NASA Astrophysics Data System (ADS)
Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting
2018-02-01
To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.
NASA Astrophysics Data System (ADS)
Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.
2018-03-01
Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.
Stuffed MO layer as a diffusion barrier in metallizations for high temperature electronics
NASA Technical Reports Server (NTRS)
Boah, J. K.; Russell, V.; Smith, D. P.
1981-01-01
Auger electron spectroscopy was employed to characterize the diffusion barrier properties of molybdenum in the CrSi2/Mo/Au metallization system. The barrier action of Mo was demonstrated to persist even after 2000 hours annealing time at 300 C in a nitrogen ambient. At 340 C annealing temperature, however, rapid interdiffusion was observed to have occurred between the various metal layers after only 261 hours. The presence of controlled amounts of oxygen in the Mo layer is believed to be responsible for suppressing the short circuit interdiffusion between the thin film layers. Above 340 C, its is believed that the increase in the oxygen mobility led to deterioration of its stuffing action, resulting in the rapid interdiffusion of the thin film layers along grain boundaries.
NASA Astrophysics Data System (ADS)
Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.
2013-01-01
In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.
Electron transport through triangular potential barriers with doping-induced disorder
NASA Astrophysics Data System (ADS)
Elpelt, R.; Wolst, O.; Willenberg, H.; Malzer, S.; Döhler, G. H.
2004-05-01
Electron transport through single-, double-, and triple-barrier structures created by the insertion of suitably δ-doped layers in GaAs is investigated. The results are compared with experiments on barriers of similar shape, but obtained by linear grading of the Al fraction x in AlxGa1-xAs structures. In the case of the doping-induced space-charge potential it is found that the effective barrier height for transport is much lower than expected from a simple model, in which uniform distribution of the doping charge within the doped layers is assumed. This reduction is quantitatively explained by taking into account the random distribution of the acceptor atoms within the δp-doped layers, which results in large spatial fluctuations of the barrier potential. The transport turns out to be dominated by small regions around the energetically lowest saddle points of the random space-charge potential. Additionally, independent on the dimensionality of the transport [three-dimensional (3D) to 3D in the single barrier, from 3D through 2D to 3D in the double barrier, and from 3D through 2D through 2D to 3D in the triple-barrier structure], fingerprints of 2D subband resonances are neither experimentally observed nor theoretically expected in the doping-induced structures. This is attributed to the disorder-induced random spatial fluctuations of the subband energies in the n layers which are uncorrelated for neighboring layers. Our interpretations of the temperature-dependent current-voltage characteristics are corroborated by comparison with the experimental and theoretical results obtained from the corresponding fluctuation-free AlxGa1-xAs structures. Quantitative agreement between theory and experiment is observed in both cases.
Vision-based calibration of parallax barrier displays
NASA Astrophysics Data System (ADS)
Ranieri, Nicola; Gross, Markus
2014-03-01
Static and dynamic parallax barrier displays became very popular over the past years. Especially for single viewer applications like tablets, phones and other hand-held devices, parallax barriers provide a convenient solution to render stereoscopic content. In our work we present a computer vision based calibration approach to relate image layer and barrier layer of parallax barrier displays with unknown display geometry for static or dynamic viewer positions using homographies. We provide the math and methods to compose the required homographies on the fly and present a way to compute the barrier without the need of any iteration. Our GPU implementation is stable and general and can be used to reduce latency and increase refresh rate of existing and upcoming barrier methods.
Alternating-Composition Layered Ceramic Barrier Coatings
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Zhu, Dongming
2008-01-01
Ceramic thermal and environmental barrier coatings (T/EBCs) that contain multiple layers of alternating chemical composition have been developed as improved means of protecting underlying components of gas-turbine and other heat engines against both corrosive combustion gases and high temperatures.
Atomically Thin Al2O3 Films for Tunnel Junctions
NASA Astrophysics Data System (ADS)
Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.
2017-06-01
Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.
Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun
2016-12-01
For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.
Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.
1991-01-01
A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.
Optimized capping layers for EUV multilayers
Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA
2004-08-24
A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.
Impedance of Barrier-Type Oxide Layer on Aluminum
NASA Astrophysics Data System (ADS)
Oh, Han-Jun; Kim, Jung-Gu; Jeong, Yong-Soo; Chi, Choong-Soo
2000-12-01
The impedance characteristics of barrier-type oxide layers on aluminum was studied using impedance spectroscopy. Since anodic films on Al have a variable stoichiometry with a gradual reduction of oxygen deficiency towards the oxide-electrolyte interface, the interpretation of impedance spectra for oxide layers is complex and the impedance of surface layers differs from those of ideal capacitors. This frequency response of the layer with conductance gradients cannot be described by a single resistance-capacitance (RC) element. The oxide layers of Al are properly described by the Young model of dielectric constant with a vertical decay of conductivity.
Method and tool to reverse the charges in anti-reflection films used for solar cell applications
Sharma, Vivek; Tracy, Clarence
2017-01-31
A method is provided for making a solar cell. The method includes providing a stack including a substrate, a barrier layer disposed on the substrate, and an anti-reflective layer disposed on the barrier layer, where the anti-reflective layer has charge centers. The method also includes generating a corona with a charging tool and contacting the anti-reflective layer with the corona thereby injecting charge into at least some of the charge centers in the anti-reflective layer. Ultra-violet illumination and temperature-based annealing may be used to modify the charge of the anti-reflective layer.
NASA Astrophysics Data System (ADS)
Chen, G. S.; Chen, S. T.
2000-06-01
Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
Improved performance of high indium InGaAs photodetectors with InAlAs barrier
NASA Astrophysics Data System (ADS)
Du, Ben; Gu, Yi; Chen, Xing-You; Ma, Ying-Jie; Shi, Yan-Hui; Zhang, Jian; Zhang, Yong-Gang
2018-06-01
We report on the demonstration of an InP-based In0.83Ga0.17As photodetector with an In0.83Al0.17As barrier, which is lattice-matched to the absorption layer. According to the comprehensive comparison with the photodetector without the barrier, the dark current is markedly reduced by inserting the InAlAs barrier. Although the photoresponse slightly decreases for the device with the InAlAs barrier, the detectivity remains higher than that of the reference device at room temperature and significantly increases at lower temperatures. These results indicate that InAlAs is a promising barrier layer in high-indium InGaAs photodetectors.
Surface pre-treatment for barrier coatings on polyethylene terephthalate
NASA Astrophysics Data System (ADS)
Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.
2013-02-01
Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.
Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)
2000-01-01
An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.
Vertical transport in graphene-hexagonal boron nitride heterostructure devices
Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe
2015-01-01
Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656
Homoepitaxial graphene tunnel barriers for spin transport
NASA Astrophysics Data System (ADS)
Friedman, Adam
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the possibility that magnetic moments in the graphene tunnel barriers affect the spin transport of our devices.
Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi
2018-01-01
The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials. PMID:29747427
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Demasi, J. T.; Sheffler, K. D.
1986-01-01
The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.
On the Existence of Our Metals-Based Civilization: I. Phase Space Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.D. Macdonald
2005-06-22
The stability of the barrier layers of bilayer passive films that form on metal and alloy surfaces, when in contact with oxidizing aqueous environments, is explored within the framework of the Point Defect Model (PDM) using phase-space analysis (PSA), in which the rate of growth of the barrier layer into the metal, (dL{sup +}/dt), and the barrier layer dissolution rate, (dL{sup -}/dt), are plotted simultaneously against the barrier layer thickness. A point of intersection of dL{sup -}/dt with dL{sup +}/dt indicates the existence of a metastable barrier layer with a steady state thickness greater than zero. If dL{sup -}/dt >more » (dL{sup +}/dt){sub L=0}, where the latter quantity is the barrier layer growth rate at zero barrier layer thickness, the barrier layer cannot exist, even as a metastable phase, as the resulting thickness would be negative. Under these conditions, the surface is depassivated and the metal may corrode at a rapid rate. Depassivation may result from a change in the oxidation state of the cation upon dissolution of the barrier layer, such that the dissolution rate becomes highly potential dependent (as in the case of transpassive dissolution of chromium-containing alloys, for example, in which the reaction Cr{sub 2}O{sub 3} + 5H{sub 2}O {yields} 2CrO{sub 4}{sup 2-} + 10H {sup +} + 6e{sup -} results in the destruction of the film), or by the action of some solution-phase species (e.g., H{sup +}, Cl{sup -}) that enhances the dissolution rate to the extent that dL{sup -}/dt > (dL{sup +}/dt){sub L=0}. The boundaries for depassivation may be plotted in potential-pH space to develop Kinetic Stability Diagrams (KSDs) as alternatives to the classical Pourbaix diagrams for describing the conditions under which metals or alloys exist in contact with an aqueous environment. The advantage of KSDs is that they provide kinetic descriptions of the state of a metal or alloy that is in much closer concert with the kinetic phenomenon of passivity and depassivation than are equilibrium thermodynamic diagrams. Thus, KSDs more accurately account for the limits of passivity in highly acidic systems, where acid depassivation occurs, and at high potentials, where transition to the transpassive state may occur in some systems. In any event, phase space analysis of the PDM permits specification of the conditions over which reactive metals will remain passive in contact with aqueous systems and hence of the conditions that must be met for the existence of our metals-based civilization.« less
Role of interface layers on Tunneling Magnetoresistance
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.
2002-03-01
Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.
Gut barrier in health and disease: focus on childhood.
Viggiano, D; Ianiro, G; Vanella, G; Bibbò, S; Bruno, G; Simeone, G; Mele, G
2015-01-01
The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the immune tolerance and the immune response to pathogens. Other mechanisms, such as gastric juice and pancreatic enzymes (which both have antibacterial properties) participate in the luminal integrity of the gut barrier. From the outer layer to the inner layer, the physical barrier is composed of gut microbiota (that competes with pathogens to gain space and energy resources, processes the molecules necessary to mucosal integrity and modulates the immunological activity of deep barrier), mucus (which separates the intraluminal content from more internal layers and contains antimicrobial products and secretory IgA), epithelial cells (which form a physical and immunological barrier) and the innate and adaptive immune cells forming the gut-associated lymphoid tissue (which is responsible for antigen sampling and immune responses). Disruption of the gut barrier has been associated with many gastrointestinal diseases, but also with extra-intestinal pathological condition, such as type 1 diabetes mellitus, allergic diseases or autism spectrum disorders. The maintenance of a healthy intestinal barrier is therefore of paramount importance in children, for both health and economic reasons. Many drugs or compounds used in the treatment of gastrointestinal disorders act through the restoration of a normal intestinal permeability. Several studies have highlighted the role of probiotics in the modulation and reduction of intestinal permeability, considering the strong influence of gut microbiota in the modulation of the function and structure of gut barrier, but also on the immune response of the host. To date, available weapons for the maintenance and repair of gut barrier are however few, even if promising. Considerable efforts, including both a better understanding of the gut barrier features and mechanisms in health and disease, and the development of new pharmacological approaches for the modulation of gut barrier components, are needed for the prevention and treatment of gastrointestinal and extraintestinal diseases associated with gut barrier impairment.
In-situ formation of multiphase deposited thermal barrier coatings
Subramanian, Ramesh
2004-01-13
A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.
NASA Astrophysics Data System (ADS)
Wang, Xing-Fu; Tong, Jin-Hui; Zhao, Bi-Jun; Chen, Xin; Ren, Zhi-Wei; Li, Dan-Wei; Zhuo, Xiang-Jing; Zhang, Jun; Yi, Han-Xiang; Li, Shu-Ti
2013-09-01
The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region, output power, and internal quantum efficiency are investigated. The simulation results show that the InGaN-based light-emitting diode with a p-InGaN layer inserted in the barriers has better performance over its conventional counterpart and the light emitting diode with p-GaN inserted in the barriers. The improvement is due to enhanced Mg acceptor activation and enhanced hole injection into the quantum wells.
Thick adherent dielectric films on plastic substrates and method for depositing same
Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.
2002-01-01
Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.
NASA Astrophysics Data System (ADS)
Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang
2017-03-01
Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ˜4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ˜1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O--Sm+ dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.
Endothelial glycocalyx: permeability barrier and mechanosensor.
Curry, F E; Adamson, R H
2012-04-01
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
Spacecraft outer thermal blankets as hypervelocity impact bumpers
NASA Astrophysics Data System (ADS)
Cour-Palais, B. G.
1996-05-01
A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M. (Inventor)
1981-01-01
A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.
Optically switched graphene/4H-SiC junction bipolar transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.
A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on amore » first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin
In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less
2014-01-01
We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances. PMID:24988469
Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer
NASA Technical Reports Server (NTRS)
Lee, Kang N. (Inventor)
2004-01-01
A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.
Review of Graphene as a Solid State Diffusion Barrier.
Morrow, Wayne K; Pearton, Stephen J; Ren, Fan
2016-01-06
Conventional thin-film diffusion barriers consist of 3D bulk films with high chemical and thermal stability. The purpose of the barrier material is to prevent intermixing or penetration from the two materials that encase it. Adhesion to both top and bottom materials is critical to the success of the barrier. Here, the effectiveness of a single atomic layer of graphene as a solid-state diffusion barrier for common metal schemes used in microelectronics is reviewed, and specific examples are discussed. Initial studies of electrical contacts to graphene show a distinct separation in behavior between metallic groups that strongly or weakly bond to it. The two basic classes of metal reactions with graphene are either physisorbed metals, which bond weakly with graphene, or chemisorbed metals, which bond strongly to graphene. For graphene diffusion barrier testing on Si substrates, an effective barrier can be achieved through the formation of a carbide layer with metals that are chemisorbed. For physisorbed metals, the barrier failure mechanism is loss of adhesion at the metal–graphene interface. A graphene layer encased between two metal layers, in certain cases, can increase the binding energy of both films with graphene, however, certain combinations of metal films are detrimental to the bonding with graphene. While the prospects for graphene's future as a solid-state diffusion barrier are positive, there are open questions, and areas for future research are discussed. A better understanding of the mechanisms which influence graphene's ability to be an effective diffusion barrier in microelectronic applications is required, and additional experiments are needed on a broader range of metals, as well as common metal stack contact structures used in microelectronic applications. The role of defects in the graphene is also a key area, since they will probably influence the barrier properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling
NASA Astrophysics Data System (ADS)
Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani
2017-02-01
Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Samant, Mahesh; Parkin, Stuart
2007-03-01
Giant tunneling magnetoresistance (TMR) in magnetic tunnel junctions formed with crystalline MgO tunnel barriers [1] have potential applications in a wide variety of spintronic devices. However, the relationship of the TMR to the detailed chemical and electronic structure of the MgO barrier and its interfaces with the ferromagnetic electrodes is not yet fully understood. We have carried out valence band photoemission spectroscopy and x-ray absorption spectroscopy to characterize the chemical state and electronic structure of sputter deposited, highly oriented, MgO (001) barriers and its interfaces with ferromagnetic electrodes. A large band gap of ˜7.5 eV is found even for ultrathin MgO layers. This is consistent with barrier heights found from fitting current versus voltage curves providing that very small effective electron masses are used. We discuss the role of thin Mg interface layers that we have used to reduce oxidation of the underlying ferromagnetic layer during the MgO layer formation [1]. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S.-H. Yang, Nature Materials 3, 862 (2004).
Hagen, David A; Saucier, Lauren; Grunlan, Jaime C
2014-12-24
Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.
Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.
Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Song, Eui Sang; Yu, Bin
2014-11-07
Schottky barriers formed by graphene (monolayer, bilayer, and multilayer) on 2D layered semiconductor tungsten disulfide (WS2) nanosheets are explored for solar energy harvesting. The characteristics of the graphene-WS2 Schottky junction vary significantly with the number of graphene layers on WS2, resulting in differences in solar cell performance. Compared with monolayer or stacked bilayer graphene, multilayer graphene helps in achieving improved solar cell performance due to superior electrical conductivity. The all-layered-material Schottky barrier solar cell employing WS2 as a photoactive semiconductor exhibits efficient photon absorption in the visible spectral range, yielding 3.3% photoelectric conversion efficiency with multilayer graphene as the Schottky contact. Carrier transport at the graphene/WS2 interface and the interfacial recombination process in the Schottky barrier solar cells are examined.
Moncelle, Michael E.
2003-01-01
An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.
Deng, Xiaolong; Yu Nikiforov, Anton; Coenye, Tom; Cools, Pieter; Aziz, Gaelle; Morent, Rino; De Geyter, Nathalie; Leys, Christophe
2015-01-01
An antimicrobial nano-silver non-woven polyethylene terephthalate (PET) fabric has been prepared in a three step process. The fabrics were first pretreated by depositing a layer of organosilicon thin film using an atmospheric pressure plasma system, then silver nano-particles (AgNPs) were incorporated into the fabrics by a dipping-dry process, and finally the nano-particles were covered by a second organosilicon layer of 10-50 nm, which acts as a barrier layer. Different surface characterization techniques like SEM and XPS have been implemented to study the morphology and the chemical composition of the nano-silver fabrics. Based on these techniques, a uniform immobilization of AgNPs in the PET matrix has been observed. The antimicrobial activity of the treated fabrics has also been tested using P. aeruginosa, S. aureus and C. albicans. It reveals that the thickness of the barrier layer has a strong effect on the bacterial reduction of the fabrics. The durability and stability of the AgNPs on the fabrics has also been investigated in a washing process. By doing so, it is confirmed that the barrier layer can effectively prevent the release of AgNPs and that the thickness of the barrier layer is an important parameter to control the silver ions release. PMID:25951432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong
2015-01-15
An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less
Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.
Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue
2015-08-10
Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Young, S. G.; Zellars, G. R.
1978-01-01
Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.
Turbulent entrainment in a strongly stratified barrier layer
NASA Astrophysics Data System (ADS)
Pham, H. T.; Sarkar, S.
2017-06-01
Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/
Plasma Oxidation Of Silver And Zinc In Low-Emissivity Stacks
NASA Astrophysics Data System (ADS)
Ross, R. C.; Sherman, R.,; Bunger, R. A.; Nadel, S. J.
1987-11-01
The oxidation of silver and zinc films was studied by exposing metallic films to low-power 02 plasmas and analyzing the reacted films. This type of oxidation is an important phenomenon near the barrier layer in sputter-deposited metal-oxide/Ag/metal-oxide low-emissivity (low-e) coatings. Barrier layers generally are deposited on the Ag layer to prevent its degradation during subsequent 02 reactive sputtering. Both individual layers and complete stacks were studied. In addition, the thermal stability of plasma-oxidized Ag was examined. There are several important findings for the individual layers. Ag oxidizes rapidly in the plasma, forming Ag≍1.70 after complete reaction. Relative to the original Ag, the 9ide has -l.7 times greater thick-ness, >10 times higher electrical resistiv-ity (p), and increased surface roughness. Zn oxidizes slowly, at only -1% to 0.1% times the rate for Ag, and is thus more difficult to characterize. The results for individual layers are discussed as they relate to practical pro-perties of low-e stacks: the difficulty of obtaining complete barrier layer oxidation without partially degrading the Ag layer as well as the effects of heat treatment and aging.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2015-07-28
Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.
Method for fabricating solar cells having integrated collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1979-01-01
A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.
El Gabaly Marquez, Farid; Talin, Albert Alec
2018-04-17
Devices and methods for non-volatile analog data storage are described herein. In an exemplary embodiment, an analog memory device comprises a potential-carrier source layer, a barrier layer deposited on the source layer, and at least two storage layers deposited on the barrier layer. The memory device can be prepared to write and read data via application of a biasing voltage between the source layer and the storage layers, wherein the biasing voltage causes potential-carriers to migrate into the storage layers. After initialization, data can be written to the memory device by application of a voltage pulse between two storage layers that causes potential-carriers to migrate from one storage layer to another. A difference in concentration of potential carriers caused by migration of potential-carriers between the storage layers results in a voltage that can be measured in order to read the written data.
Metal matrix coated fiber composites and the methods of manufacturing such composites
Weeks, Jr., Joseph K.; Gensse, Chantal
1993-01-01
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.
Metal matrix coated fiber composites and the methods of manufacturing such composites
Weeks, J.K. Jr.; Gensse, C.
1993-09-14
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.
Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asryan, L. V., E-mail: asryan@vt.edu; Zubov, F. I.; Kryzhanovskaya, N. V.
2016-10-15
The power characteristics of quantum-well lasers with asymmetric barrier layers, which represent a novel type of injection laser, are calculated on the basis of an extended model taking into account asymmetry in the filling of electron and hole states. The electron–hole asymmetry is shown to have no significant effect on the characteristics of these lasers. Even in the presence of intermediate layers (located between the quantum well and each of the two asymmetric barrier layers), where parasitic electron–hole recombination does occur, the internal differential quantum efficiency of such a laser exhibits only a weak dependence on the pump current andmore » remains close to unity; therefore, the light–current characteristic remains linear up to high pumping levels.« less
An oncological view on the blood-testis barrier.
Bart, Joost; Groen, Harry J M; van der Graaf, Winette T A; Hollema, Harry; Hendrikse, N Harry; Vaalburg, Willem; Sleijfer, Dirk T; de Vries, Elisabeth G E
2002-06-01
The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular wall, connected together with narrow tight junctions, and a myoid-cell layer around the seminiferous tubule. Second, an efflux-pump barrier that contains P-glycoprotein in the luminal capillary endothelium and on the myoid-cell layer; and multidrug-resistance associated protein 1 located basolaterally on Sertoli cells. Third, an immunological barrier, consisting of Fas ligand on Sertoli cells. Inhibition of P-glycoprotein function offers the opportunity to increase the delivery of cytotoxic drugs to the testis. In the future, visualisation of function in the blood-testis barrier may also be helpful to identify groups of patients in whom testis conservation is safe or to select drugs that are less harmful to fertility.
Growth of <111>-oriented Cu layer on thin TaWN films
NASA Astrophysics Data System (ADS)
Takeyama, Mayumi B.; Sato, Masaru
2017-07-01
In this study, we examine the growth of a <111>-oriented Cu layer on a thin TaWN ternary alloy barrier for good electromigration reliability. The strongly preferentially oriented Cu(111) layer is observed on a thin TaWN barrier even in the as-deposited Cu (100 nm)/TaWN (5 nm)/Si system. Also, this system tolerates annealing at 700 °C for 1 h without silicide reaction. It is revealed that the TaWN film is one of the excellent barriers with thermal stability and low resistivity. Simultaneously, the TaWN film is a candidate for a superior underlying material to achieve the Cu(111) preferential orientation.
Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fireman, Micha N.; Browne, David A.; Speck, James S.
The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditionsmore » that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.« less
Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin
NASA Astrophysics Data System (ADS)
Scherzer, Tom
1997-08-01
The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.
Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)
NASA Astrophysics Data System (ADS)
Friedman, Adam L.
2015-09-01
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).
The impact of a shallow biobarrier on water recharge patterns in a semi-arid environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laundre, J.W.
1997-12-31
This study attempted to measure the effect of a shallow biobarrier of gravel and cobble on water flow patterns during spring snow melt and recharge. The design consisted of 30 metal culverts 3 m in diameter and 1.6 m long, positioned on end. Test culverts contained 50-cm biobarrier of gravel or cobble and then an additional 50 cm of soil placed above the barrier layer. A neutron probe was used to measure soil moisture above and below the barrier. Measurements were made in the fall and again immediately after snow melt in the spring. During recharge, the biobarriers provided amore » capillary break which resulted in a pooling of water above the barrier layer. With sufficient snowmelt, the water can penetrate the break and possibly penetrate deeper than in the absence of the barrier layer.« less
Silicide Schottky Barrier For Back-Surface-Illuminated CCD
NASA Technical Reports Server (NTRS)
Hecht, Michael H.
1990-01-01
Quantum efficiency of back-surface-illuminated charge-coupled device (CCD) increased by coating back surface with thin layer of PtSi or IrSi on thin layer of SiO2. In its interaction with positively-doped bulk Si of CCD, silicide/oxide layer forms Schottky barrier that repels electrons, promoting accumulation of photogenerated charge carriers in front-side CCD potential wells. Physical principle responsible for improvement explained in "Metal Film Increases CCD Output" (NPO-16815).
NASA Astrophysics Data System (ADS)
Lee, Hyo Jun; Lee, Dong Uk; Kim, Eun Kyu; You, Hee-Wook; Cho, Won-Ju
2011-06-01
Nanocrystal-floating gate capacitors with WSi2 nanocrystals and high-k tunnel layers were fabricated to improve the electrical properties such as retention, programming/erasing speed, and endurance. The WSi2 nanocrystals were distributed uniformly between the tunnel and control gate oxide layers. The electrical performance of the tunnel barrier with the SiO2/HfO2/Al2O3 (2/1/3 nm) (OHA) tunnel layer appeared to be better than that with the Al2O3/HfO2/Al2O3 (2/1/3 nm) (AHA) tunnel layer. When ΔVFB is about 1 V after applying voltage at ±8 V, the programming/erasing speeds of AHA and OHA tunnel layers are 300 ms and 500 µs, respectively. In particular, the device with WSi2 nanocrystals and the OHA tunnel barrier showed a large memory window of about 7.76 V when the voltage swept from 10 to -10 V, and it was maintained at about 2.77 V after 104 cycles.
Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.
Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less
Zhu, Jun-You; Tang, Chuan-He; Yin, Shou-Wei; Yang, Xiao-Quan
2018-02-01
Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fu, Li; Wang, Zhanfeng; Dong, Shujun; Cai, Yan; Ni, Yuxin; Zhang, Tianshou; Wang, Lin; Zhou, Yanmin
2017-01-01
Guided bone regeneration (GBR) is one such treatment that reconstructs neo-bone tissue by using a barrier membrane to prevent the invasion of soft tissue and to create a space for guiding new bone growth into the bone defect. Herein, we report a novel functionally graded bilayer membrane (FGBM) for GBR application. To fabricate the novel membrane, the composites of poly(lactic-co-glycolic acid) and nano-hydroxyapatite were prepared by phase inversion for the dense layer and by electrospinning for another porous layer, and their corresponding properties were evaluated including surface morphology, mechanics, degradability, cell barrier function, and in vitro osteogenic bioactivity. The results showed that PLGA with 5% nHA in dense layer could meet the requirement of mechanical strength and have excellent barrier function even on condition of post-degradation. Furthermore, PLGA with 30% nHA in porous layer could achieve the good physical and chemical properties. In addition, 30% nHA incorporation would enhance the in vitro mineralization, and have superior capabilities of cell adhesion, proliferation and differentiation compared to other groups. Therefore, the designed FGBM could potentially serve as a barrier for preferential tissue ingrowth and achieve a desirable therapeutic result for bone tissue regeneration. PMID:28772618
Efficient Ga(As)Sb quantum dot emission in AlGaAs by GaAs intermediate layer
NASA Astrophysics Data System (ADS)
Loeber, Thomas Henning; Richter, Johannes; Strassner, Johannes; Heisel, Carina; Kimmle, Christina; Fouckhardt, Henning
2013-03-01
Ga(As)Sb quantum dots (QDs) are epitaxially grown in AlGaAs/GaAs in the Stranski-Krastanov mode. In the recent past we achieved Ga(As)Sb QDs in GaAs with an extremely high dot density of 9.8•1010 cm-2 by optimization of growth temperature, Sb/Ga flux pressure ratio, and coverage. Additionally, the QD emission wavelength could be chosen precisely with these growth parameters in the range between 876 and 1035 nm. Here we report a photoluminescence (PL) intensity improvement for the case with AlGaAs barriers. Again growth parameters and layer composition are varied. The aluminium content is varied between 0 and 90%. Reflectance anisotropy spectroscopy (RAS) is used as insitu growth control to determine growth rate, layer thickness, and AlGaAs composition. Ga(As)Sb QDs, directly grown in AlxGa1-xAs emit no PL signal, even with a very low x ≈ 0.1. With additional around 10 nm thin GaAs intermediate layers between the Ga(As)Sb QDs and the AlGaAs barriers PL signals are detected. Samples with 4 QD layers and AlxGa1-xAs/GaAs barriers in between are grown. The thickness and composition of the barriers are changed. Depending on these values PL intensity is more than 4 times as high as in the case with simple GaAs barriers. With these results efficient Ga(As)Sb QD lasers are realized, so far only with pure GaAs barriers. Our index-guided broad area lasers operate continuous-wave (cw) @ 90 K, emit optical powers of more than 2•50 mW and show a differential quantum efficiency of 54% with a threshold current density of 528 A/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr
2014-09-15
AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less
InGaP Heterojunction Barrier Solar Cells
NASA Technical Reports Server (NTRS)
Welser, Roger E.
2010-01-01
A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.
Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao
2014-07-23
Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.
NASA Astrophysics Data System (ADS)
Thellen, Christopher T.
The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.
Ceramic with preferential oxygen reactive layer
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
2001-01-01
An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.
DiGuilio, K M; Valenzano, M C; Rybakovsky, E; Mullin, J M
2018-01-05
Elevation of the transcription factor HIF-1 is a prominent mediator of not only processes that accompany hypoxia, but also the tumor microenvironment and tissue regeneration. This study uses mediators of "chemical hypoxia" to ask the question whether HIF-1α elevation in a healthy epithelial cell layer leads to leakiness in its tight junctional seals. Transepithelial electrical resistance and transepithelial diffusion of 14 C-D-mannitol and other radiolabeled probes are used as indicators of transepithelial barrier function of CaCo-2 BBe human gastrointestinal epithelial cell layers cultured on permeable supports. Western immunoblot analyses of integral tight junctional proteins (occludin and claudins) are used as further indicators of barrier function change. Cobalt, an inhibitor of the prolyl hydroxylase enzymes governing HIF-1α breakdown in the cell, induces transepithelial leakiness in CaCo-2 BBe cell layers in a time and concentration-dependent manner. This increased leakiness is accompanied by significant changes in certain specific integral tight junctional (TJ) proteins such as a decreased level of occludin and increased level of claudin-5. Similar results regarding barrier function compromise also occur with other chemical inhibitors of HIF-1α breakdown, namely ciclopiroxolamine (CPX) and dimethyloxalylglycine (DMOG). The increased leak is manifested by both decreased transepithelial electrical resistance (R t ) and increased paracellular diffusion of D-mannitol (J m ). The induced transepithelial leak shows significant size selectivity, consistent with induced effects on TJ permeability. Less-differentiated cell layers were significantly more affected than well-differentiated cell layers regarding induced transepithelial leak. A genetically modified CaCo-2 variant with reduced levels of HIF-1β, showed reduced transepithelial leak in response to cobalt exposure, further indicating that elevation of HIF-1α levels induced by agents of "chemical hypoxia" is responsible for the compromised barrier function of the CaCo-2 BBe cell layers. Exposure to inducers of chemical hypoxia elevated HIF-1α levels and increased transepithelial leak. The degree of epithelial differentiation has significant effects on this action, possibly explaining the varying effects of HIF-1 modulation in epithelial and endothelial barrier function in different physiological and pathophysiological conditions.
Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys
NASA Technical Reports Server (NTRS)
Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)
1994-01-01
A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
NASA Astrophysics Data System (ADS)
Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.
2003-11-01
The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.
Cuprous selenide and sulfide form improved photovoltaic barriers
NASA Technical Reports Server (NTRS)
1966-01-01
Photovoltaic barriers formed by depositing a layer of polycrystalline cuprous sulfide or cuprous selenide on gallium arsenide are chemically and electrically stable. The stability of these barrier materials is significantly greater than that of cuprous iodide.
Two-layer thermal barrier coating for turbine airfoils - furnace and burner rig test results
NASA Technical Reports Server (NTRS)
Stecura, S.
1976-01-01
A simple, two-layer plasma-sprayed thermal barrier coating system was developed which has the potential for protecting high temperature air-cooled gas turbine components. Of those coatings initially examined, the most promising system consisted of a Ni-16Cr-6Al-0.6Y (in wt%) thermal barrier coating (about 0.005 to 0.010 cm thick) and a ZrO2-12Y2O3 (in wt%) thermal barrier coating (about 0.025 to 0.064 cm thick). This thermal barrier substantially lowered the metal temperature of an air-cooled airfoil. The coating withstood 3,200 cycles (80 sec at 1,280 C surface temperature) and 275 cycles (1 hr at 1,490 C surface temperature) without cracking or spalling. No separation of the thermal barrier from the bond coating or the bond coating from the substrate was observed.
NASA Technical Reports Server (NTRS)
Gange, Robert Allen (Inventor)
1977-01-01
A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.
FAST TRACK COMMUNICATION: Interlayer exchange coupling across a ferroelectric barrier
NASA Astrophysics Data System (ADS)
Zhuravlev, M. Ye; Vedyayev, A. V.; Tsymbal, E. Y.
2010-09-01
A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer.
Ceramic thermal barrier coatings for electric utility gas turbine engines
NASA Technical Reports Server (NTRS)
Miller, R. A.
1986-01-01
Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.
NASA Technical Reports Server (NTRS)
Gange, Robert Allen (Inventor)
1977-01-01
A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.
Tu, M C; Lillywhite, H B; Menon, J G; Menon, G K
2002-10-01
A competent barrier to transepidermal water loss (TEWL) is essential for terrestrial life. In various vertebrates, epidermal water barriers composed of lipids prevent excessive TEWL, which varies inversely with habitat aridity. Little is known, however, about the mechanisms and regulation of permeability relative to natal transition from the 'aqueous' environments of gestation to the 'aerial' environments of terrestrial neonates. We investigated newly hatched California king snakes Lampropeltis getula to test the hypothesis that the first ecdysis is important for establishing the barrier to TEWL. We found that skin resistance to TEWL increases twofold following the first postnatal ecdysis, corresponding with a roughly twofold increase in thickness and deposition of lamellar lipids in the mesos layer, the site of the skin permeability barrier in snakes. In addition, novel observations on lipid inclusions within the alpha layer of epidermis suggest that this layer has functional similarities with avian epidermis. It appears that emergence of the integument from embryonic fluids, and its subsequent pan-body replacement following contact with air, are essential for completion of barrier competence in the newborn. These conditions provide a potentially useful model for investigations on the mechanism of barrier formation. We also found that hatchling snakes are transiently endothermic, with skin temperatures elevated by approximately 0.6 degrees C above ambient air temperature during the period of barrier formation. Behaviourally, hatchlings showed a higher tendency to seek humid microenvironments before the first ecdysis than after. The degree of water movement across the integument might explain the switch from reclusive to dispersive behaviours associated with postnatal ecdysis in snakes.
NASA Astrophysics Data System (ADS)
Mahato, Somnath; Puigdollers, Joaquim
2018-02-01
Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.
Ho, Thao T T; Zimmermann, Tanja; Ohr, Steffen; Caseri, Walter R
2012-09-26
Composites of trimethylammonium-modified nanofibrillated cellulose and layered silicates (TMA-NFC/LS) were prepared by high-shear homogenization followed by pressure filtration and vacuum hot-pressing, which gave rise to particularly homogeneous dispersion of the silicate particles. Thirteen different clays and micas were employed. Water vapor barrier and mechanical properties (tensile strength, E-modulus, strain at break) of the composite films were investigated, considering the effects of layered silicate types and their concentration (in the range of 0 to 85 wt %). Good interactions between TMA-NFC and LS were obtained due to electrostatic attraction between cationic fibrils and anionic silicate layers, and even favored by high-shear homogenization process. Furthermore, oriented TMA-NFC/LS composite structure was achieved. Layered silicates exerted a pronounced influence on the water vapor barrier and mechanical properties; however, there was no common trend reflecting their types. The transport of water molecules through TMA-NFC/LS composites was studied considering both diffusion and adsorption mechanisms. As a result, diffusion pathways were proposed based on two new and one well-known models: the "native network", "covered fiber composite", and "fiber-brick composite" models. Importantly, it was found that the insertion of layered silicate particles did not improve automatically the barrier properties as indicated by the commonly used "fiber-brick composite" model. Mica R120 at a 50 wt % loading in composites with TMA-NFC matrix showed 30-fold improved water vapor permeability and 5-fold higher E-modulus compared to commercially used base paper.
NASA Astrophysics Data System (ADS)
Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol
2018-02-01
The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.
NASA Technical Reports Server (NTRS)
Bailey, R. F.
1982-01-01
Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.
Subcritical crack growth in SiNx thin-film barriers studied by electro-mechanical two-point bending
NASA Astrophysics Data System (ADS)
Guan, Qingling; Laven, Jozua; Bouten, Piet C. P.; de With, Gijsbertus
2013-06-01
Mechanical failure resulting from subcritical crack growth in the SiNx inorganic barrier layer applied on a flexible multilayer structure was studied by an electro-mechanical two-point bending method. A 10 nm conducting tin-doped indium oxide layer was sputtered as an electrical probe to monitor the subcritical crack growth in the 150 nm dielectric SiNx layer carried by a polyethylene naphthalate substrate. In the electro-mechanical two-point bending test, dynamic and static loads were applied to investigate the crack propagation in the barrier layer. As consequence of using two loading modes, the characteristic failure strain and failure time could be determined. The failure probability distribution of strain and lifetime under each loading condition was described by Weibull statistics. In this study, results from the tests in dynamic and static loading modes were linked by a power law description to determine the critical failure over a range of conditions. The fatigue parameter n from the power law reduces greatly from 70 to 31 upon correcting for internal strain. The testing method and analysis tool as described in the paper can be used to understand the limit of thin-film barriers in terms of their mechanical properties.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1984-04-19
In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.
Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.
Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H
2018-02-09
Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, T.; Nishimoto, T.; Sawada, K.
1978-05-16
To simplify and thus reduce the cost of the secondary barrier for spherical LNG storage tanks onboard ocean-transport vessels, Japan's Hitachi Shipbuilding and Engineering Co., Ltd., has developed a new secondary-containment system that allows easy installation directly on the cargo hold's bottom plate beneath the spherical tank. The new system comprises at least two layers of rigid-foam synthetic resin sprayed on the hold plates and covered by a layer of glass mesh and adhesive. Alternatively, the layers of synthetic resin, glass mesh, and adhesive are applied to plywood attached to the hold plates by joists, thus forming an air spacemore » between the secondary barrier and the hold plates. Where the hold plates have a multisurface construction, (1) laminated rigid urethane foam blocks are butted end-to-end and are bonded to each other and to the plywood sheets at the corners between adjacent hold plates, (2) the spray-formed layers are applied between the blocks, and (3) the entire assembly is covered by a protective layer of glass mesh and adhesive.« less
Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G
2010-04-01
The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.
[Optical and electrical properties of NPB/Alq3 organic quantum well].
Huang, Jin-Zhao; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Wang, Yong
2007-04-01
In the present paper, the organic quantum-well device similar to the type-II quantum well of inorganic semiconductor material was prepared by heat evaporation. NPB (N, N'-di-[(1-naphthalenyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine) and Alq3 (Tris-(8-quinolinolato) aluminum) act as the potential barrier layer and the potential well layer respectively. Besides, the single layer structure of Alq3 was prepared. In the experiments, the Forster nonradiative resonant energy transfer from the barrier layer to the well layer was identified, and the quantum well luminescence device possesses a favorable current-voltage property. The narrowing of spectrum was observed, and the spectrum shifted to blue region continuously when the applied voltage increased.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R.; Bond, James A.
1994-01-01
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
NASA Astrophysics Data System (ADS)
Xie, Zheng-Wei; Li, Bo-Zang; Li, Yu-Xian
2003-10-01
Within the framework of the free-electron model, the tunneling magnetoresistance (TMR) and tunneling conductance (TC) in double magnetic tunnel junctions (DMTJ) with nonmagnetic cap layer, i.e. the NM/FM/I/NM/(FM)/I/FM/NM junction is investigated. FM, NM and I represent the ferromagnetic metal, nonmagnetic metal and insulator, respectively, NM(FM) indicates that the middle layer can be NM or FM. Our results show that, due to the spin-dependent interfacial potential barriers, the influences of the thickness of the FM layer on TC and TMR in DMTJ are large, and when the thicknesses of these two FM layers are suitable a large TMR can be obtained. (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xiao-Meng, E-mail: xiaomeng.shen@asu.edu; Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287; He, Zhao-Yu
2015-09-21
Mid-wave and long-wave infrared nBn photodetectors with absorbers consisting of InAs/InAsSb superlattices and barriers consisting of InAs/AlGaSb(As) superlattices were grown using molecular beam epitaxy. High-resolution X-ray diffraction showing significant differences in Ga composition in the barrier layer, and different dark current behavior at 77 K, suggested the possibility of different types of band alignments between the barrier layer and the absorber for the mid- and long-wave infrared samples. Examination of the barrier layers using off-axis electron holography showed the presence of positive charge with an estimated density of 1.8 × 10{sup 17}/cm{sup 3} in the mid-wave sample as a result of a type-IImore » band alignment, whereas negligible charge was detected in the long-wave sample, consistent with a type-I band alignment.« less
A randomized control hands-on defibrillation study-Barrier use evaluation.
Wampler, David; Kharod, Chetan; Bolleter, Scotty; Burkett, Alison; Gabehart, Caitlin; Manifold, Craig
2016-06-01
Chest compressions and defibrillation are the only therapies proven to increase survival in cardiac arrest. Historically, rescuers must remove hands to shock, thereby interrupting chest compressions. This hands-off time results in a zero blood flow state. Pauses have been associated with poorer neurological recovery. This was a blinded randomized control cadaver study evaluating the detection of defibrillation during manual chest compressions. An active defibrillator was connected to the cadaver in the sternum-apex configuration. The sham defibrillator was not connected to the cadaver. Subjects performed chest compressions using 6 barrier types: barehand, single and double layer nitrile gloves, firefighter gloves, neoprene pad, and a manual chest compression/decompression device. Randomized defibrillations (10 per barrier type) were delivered at 30 joules (J) for bare hand and 360J for all other barriers. After each shock, the subject indicated degree of sensation on a VAS scale. Ten subjects participated. All subjects detected 30j shocks during barehand compressions, with only 1 undetected real shock. All barriers combined totaled 500 shocks delivered. Five (1%) active shocks were detected, 1(0.2%) single layer of Nitrile, 3(0.6%) with double layer nitrile, and 1(0.2%) with the neoprene barrier. One sham shock was reported with the single layer nitrile glove. No shocks were detected with fire gloves or compression decompression device. All shocks detected barely perceptible (0.25(±0.05)cm on 10cm VAS scale). Nitrile gloves and neoprene pad prevent (99%) responder's detection of defibrillation of a cadaver. Fire gloves and compression decompression device prevented detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.
2015-12-01
The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedane, T.; Di Maio, L.; Scarfato, P.
The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less
Thermal barrier coating experience in the gas turbine engine
NASA Technical Reports Server (NTRS)
Bose, S.; Demasi-Marcin, J.
1995-01-01
Thermal Barrier Coatings (TBC), provide thermal insulation and oxidation resistance in an environment consisting of hot combustion gases. TBC's consist of a two layer system. The outer ceramic layer provides good thermal insulation due to the low thermal conductivity of the ceramic coatings used, while the inner metallic bond coat layer provides needed oxidation resistance to the underlying superalloy. Pratt & Whitney has over a decade of experience with several generations of TBC systems on turbine airfoils. This paper will focus on the latest TBC field experience along with a proposed durability model.
Bhaumik, Saikat; Pal, Amlan J
2014-07-23
We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.
Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.
The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less
Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing
NASA Astrophysics Data System (ADS)
Bulusu, S.
2014-12-01
Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.
Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs
NASA Technical Reports Server (NTRS)
Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.;
2002-01-01
Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.
Effects of plasma spray parameters on two layer thermal barrier
NASA Technical Reports Server (NTRS)
Stecura, S.
1981-01-01
The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.
NASA Astrophysics Data System (ADS)
Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.
2016-03-01
Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.
NASA Astrophysics Data System (ADS)
Lin, Wen-Chih; Li, Ying-Sih; Wu, Albert T.
2018-01-01
This paper investigates the interfacial reaction between Sn and Sn3Ag0.5Cu (SAC305) solder on n-type Bi2Te3 thermoelectric material. An electroless Ni-P layer successfully suppressed the formation of porous SnTe intermetallic compound at the interface. The formation of the layers between Bi2Te3 and Ni-P indicates that Te is the dominant diffusing species. Shear tests were conducted on both Sn and SAC305 solder on n- and p-type Bi2Te3 with and without a Ni-P barrier layer. Without a Ni-P layer, porous SnTe would result in a more brittle fracture. A comparison of joint strength for n- and p-type thermoelectric modules is evaluated by the shear test. Adding a diffusion barrier increases the mechanical strength by 19.4% in n-type and 74.0% in p-type thermoelectric modules.
230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji
2005-02-01
Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.
NASA Technical Reports Server (NTRS)
Miladinovich, Daniel S.; Zhu, Dongming
2011-01-01
Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.
Messin, Tiphaine; Follain, Nadège; Guinault, Alain; Sollogoub, Cyrille; Gaucher, Valérie; Delpouve, Nicolas; Marais, Stéphane
2017-08-30
Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO 2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.
Free-standing epitaxial graphene on silicon carbide and transport barriers in layered materials
NASA Astrophysics Data System (ADS)
Shivaraman, Shriram
This thesis is based on the topic of layered materials, in which different layers interact with each other via van der Waals forces. The majority of this thesis deals with epitaxial graphene (EG) obtained from silicon carbide (SiC). Free-standing epitaxial graphene (FSEG) structures are produced from EG using a photoelectrochemical (PEC) etching process developed for making suspended graphene structures on a large-scale. These structures are investigated for their mechanical and electrical properties. For doubly-clamped FSEG structures, a unique U-beam effect is observed which causes orders of magnitude increase in their mechanical resonance frequency compared to that expected using simple beam theory. Combined magnetotransport and Raman spectroscopy studies reveal that FSEG devices produced from nominally monolayer graphene on the Si-face of SiC exhibit properties of an inhomogeneously doped bilayer after becoming suspended. This suggests that the buffer layer which precedes graphene growth on the Si-face of SiC gets converted to a graphene layer after the PEC etching process. In the second theme of this thesis, transport barriers in layered materials are investigated. The EG-SiC interface is studied using a combination of electrical (I-V, C-V) and photocurrent spectroscopy techniques. It is shown that the interface may be described as having a Schottky barrier for electron transport with a Gaussian distribution of barrier heights. Another interface explored in this work is that between different layers of MoS 2, a layered material belonging to the class of transition metal dichalcogenides. This interface maybe thought of as a one-dimensional junction. Four-point transport measurements indicate the presence of a barrier for electron transport at this interface. A simple model of the junction as a region with an increased threshold voltage and degraded mobility is suggested. The final chapter is a collection of works based on the topic of layered materials, which are not related to the main theme of the thesis. They include fabrication and characterization details of a dual-gated bilayer graphene device, an investigation of the graphene-Si interface and hexagonal boron nitride-based membranes. These are presented in the hope that they may be useful for further investigations along those directions.
Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D
2010-04-01
Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
NASA Astrophysics Data System (ADS)
Tang, Fengzai; Lee, Kean B.; Guiney, Ivor; Frentrup, Martin; Barnard, Jonathan S.; Divitini, Giorgio; Zaidi, Zaffar H.; Martin, Tomas L.; Bagot, Paul A.; Moody, Michael P.; Humphreys, Colin J.; Houston, Peter A.; Oliver, Rachel A.; Wallis, David J.
2018-01-01
We investigate the impact of a fluorine plasma treatment used to obtain enhancement-mode operation on the structure and chemistry at the nanometer and atomic scales of an InAlN/GaN field effect transistor. The fluorine plasma treatment is successful in that enhancement mode operation is achieved with a +2.8 V threshold voltage. However, the InAlN barrier layers are observed to have been damaged by the fluorine treatment with their thickness being reduced by up to 50%. The treatment also led to oxygen incorporation within the InAlN barrier layers. Furthermore, even in the as-grown structure, Ga was unintentionally incorporated during the growth of the InAlN barrier. The impact of both the reduced barrier thickness and the incorporated Ga within the barrier on the transistor properties has been evaluated theoretically and compared to the experimentally determined two-dimensional electron gas density and threshold voltage of the transistor. For devices without fluorine treatment, the two-dimensional electron gas density is better predicted if the quaternary nature of the barrier is taken into account. For the fluorine treated device, not only the changes to the barrier layer thickness and composition, but also the fluorine doping needs to be considered to predict device performance. These studies reveal the factors influencing the performance of these specific transistor structures and highlight the strengths of the applied nanoscale characterisation techniques in revealing information relevant to device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. Fred
A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In thismore » design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.« less
Li, Cheng; Credgington, Dan; Ko, Doo-Hyun; Rong, Zhuxia; Wang, Jianpu; Greenham, Neil C
2014-06-28
The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.
Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less
Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N
2015-01-01
Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well as influence of microorganisms nature onto the interaction of between barrier layers and microorganisms.
Alumina Paste Layer as a Sublimation Suppression Barrier for Yb14MnSb11
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Caillat, Thierry
2010-01-01
Sublimation is a major cause of degradation of thermoelectric power generation systems. Most thermoelectric materials tend to have peak values at the temperature where sublimation occurs. A sublimation barrier is needed that is stable at operating temperatures, inert against thermoelectric materials, and able to withstand thermal cycling stress. A porous alumina paste layer is suitable as a sublimation barrier for Yb14MnSb11. It can accommodate stress generated by the thermal expansion discrepancy between the suppression layer and thermoelectric materials. Sublimation suppression is achieved by filling pores naturally with YbO2, a natural byproduct of sublimation. YbO2 generated during the sublimation of Yb14MnSb11 fills the porous structure of the alumina paste, causing sublimation to decrease with time as the pores become filled.
Thin film encapsulation for flexible AM-OLED: a review
NASA Astrophysics Data System (ADS)
Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang
2011-03-01
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
Engineering of highly ordered TiO2 nanopore arrays by anodization
NASA Astrophysics Data System (ADS)
Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng
2016-07-01
Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.
Beyond the Barrier: Communication in the Root through the Endodermis1
Robbins, Neil E.; Trontin, Charlotte; Duan, Lina; Dinneny, José R.
2014-01-01
The root endodermis is characterized by the Casparian strip and by the suberin lamellae, two hydrophobic barriers that restrict the free diffusion of molecules between the inner cell layers of the root and the outer environment. The presence of these barriers and the position of the endodermis between the inner and outer parts of the root require that communication between these two domains acts through the endodermis. Recent work on hormone signaling, propagation of calcium waves, and plant-fungal symbiosis has provided evidence in support of the hypothesis that the endodermis acts as a signaling center. The endodermis is also a unique mechanical barrier to organogenesis, which must be overcome through chemical and mechanical cross talk between cell layers to allow for development of new lateral organs while maintaining its barrier functions. In this review, we discuss recent findings regarding these two important aspects of the endodermis. PMID:25125504
Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C
2016-06-01
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors
NASA Astrophysics Data System (ADS)
Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.
2017-07-01
This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.
Corrosion resistant coatings suitable for elevated temperature application
Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX
2012-07-31
The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.
A Novel Multilayered Multidisk Oral Tablet for Chronotherapeutic Drug Delivery
Khan, Zaheeda; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Pillay, Viness
2013-01-01
A Multilayered Multidisk Tablet (MLMDT) comprising two drug-loaded disks enveloped by three drug-free barrier layers was developed for use in chronotherapeutic disorders, employing two model drugs, theophylline and diltiazem HCl. The MLMDT was designed to achieve two pulses of drug release separated by a lag phase. The polymer disk comprised hydroxyethylcellulose (HEC) and ethylcellulose (EC) granulated using an aqueous dispersion of EC. The polymeric barrier layers constituted a combination of pectin/Avicel (PBL) (1st barrier layer) and hydroxypropylmethylcellulose (HPMC) (HBL1 and HBL2) as the 2nd and 3rd barrier layers, respectively. Sodium bicarbonate was incorporated into the diltiazem-containing formulation for delayed drug release. Erosion and swelling studies confirmed the manner in which the drug was released with theophylline formulations exhibiting a maximum swelling of 97% and diltiazem containing formulations with a maximum swelling of 119%. FTIR spectra displayed no interactions between drugs and polymers. Molecular mechanics simulations were undertaken to predict the possible orientation of the polymer morphologies most likely affecting the MLMDT performance. The MLMDT provided two pulses of drug release, separated by a lag phase, and additionally it displayed desirable friability, hardness, and uniformity of mass indicating a stable formulation that may be a desirable candidate for chronotherapeutic drug delivery. PMID:24024200
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.
488-1D Ash Basin closure cap help modeling- Microdrain® liner option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J. A.
At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—60-mil low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head formore » the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.15 inches for a minimum slope equal to 3%, which is two orders of magnitude below the SCDHEC upper limit of 12 inches.« less
488-1D Ash basin closure cap help modeling-Microdrain® liner option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J.
At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—50-mil linear low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic headmore » for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.179 inches for a minimum slope equal to 3%, which is approximately two orders of magnitude below the SCDHEC upper limit of 12 inches.« less
NASA Astrophysics Data System (ADS)
Rahbardar Mojaver, Hassan; Gosselin, Jean-Lou; Valizadeh, Pouya
2017-06-01
A quaternary lattice-matched layer structure based on employing a bilayer barrier for improving the carrier confinement in the channel of enhancement-mode metal-face c-plane wurtzite AlInGaN/GaN hetero-structure field effect transistors (HFETs) is for the first time proposed. Using the commercial self-consistent Poisson-Schrödinger solver Nextnano, electronic properties of the proposed hetero-structure, including the sheet charge density and carrier confinement on the GaN side of the hetero-interface, are evaluated. Based on these evaluations, it is shown that while the proposed layer structure substantially improves the carrier confinement in the GaN channel layer, it also upholds the merits of employing a lattice-matched barrier towards achieving an enhancement-mode operation (i.e., in the absence of the piezoelectric effect). According to these simulations, in terms of maintaining the required positive threshold-voltage for the enhancement-mode operation, it is also shown that the proposed layer structure substantially outperforms the quaternary AlInGaN/GaN HFETs employing a thin AlN spacer layer.
NASA Astrophysics Data System (ADS)
Gyanathan, Ashvini; Yeo, Yee-Chia
2012-11-01
This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.
Continuous fiber reinforced mesh bond coat for environmental barrier coating system
Zhang, James; Das, Rupak; Roberts III, Herbert Chidsey; Delvaux, John McConnell
2017-09-26
A gas turbine blade may have a bond coat applied to its surface. A porous substrate may be applied to the bond layer and one or more protective layers may be applied to the bond layer such that the fiber mesh is embedded between the bond layer and the protective layer to prevent creep.
High energy storage capacitor by embedding tunneling nano-structures
Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B
2014-11-04
In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).
NASA Astrophysics Data System (ADS)
Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping
A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.
NASA Astrophysics Data System (ADS)
Prajoon, P.; Anuja Menokey, M.; Charles Pravin, J.; Ajayan, J.; Rajesh, S.; Nirmal, D.
2018-04-01
The advantage of InGaN multiple Quantum well (MQW) Light emitting diode (LED) on a SiC substrate with compositionally step graded GaN/InAlN/GaN multi-layer barrier (MLB) is studied. The Internal quantum efficiency, Optical power, current-voltage characteristics, spontaneous emission rate and carrier distribution profile in the active region are investigated using Sentaurus TCAD simulation. An analytical model is also developed to describe the QW carrier injection efficiency, by including carrier leakage mechanisms like carrier overflow, thermionic emission and tunnelling. The enhanced electron confinement, reduced carrier asymmetry, and suppressed carrier overflow in the active region of the MLB MQW LED leads to render a superior performance than the conventional GaN barrier MQW LED. The simulation result also elucidates the efficiency droop behaviour in the MLB MQW LED, it suggests that the efficiency droop effect is remarkably improved when the GaN barrier is replaced with GaN/InAlN/GaN MLB barrier. The analysis shows a dominating behaviour of carrier escape mechanism due to tunnelling. Moreover, the lower lattice mismatching of SiC substrate with GaN epitaxial layer is attributed with good crystal quality and reduced polarization effect, ultimately enhances the optical performance of the LEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.
2007-08-15
Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposuresmore » to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.« less
Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles
NASA Astrophysics Data System (ADS)
Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas
2017-01-01
Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1-5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces.
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Anh; Anh, Nguyen Tuan; Nga, Nguyen Tuyet; Tue, Nguyen Anh; Van Cuong, Giap
2016-06-01
The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1- x ( t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.
Thermal barrier coating resistant to sintering
Subramanian, Ramesh; Seth, Brij B.
2004-06-29
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.
An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis
Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi
2017-01-01
An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure. PMID:28098835
InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.
Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi
2012-11-07
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.
An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis.
Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi
2017-01-15
An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica , from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure.
InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers
2012-01-01
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721
NASA Astrophysics Data System (ADS)
Rehman, Mohammad Mutee ur; Kim, Kwang Tae; Na, Kyoung Hoan; Choi, Kyung Hyun
2017-11-01
In this study, organic polymer poly-vinyl acetate (PVA) and inorganic aluminum oxide (Al2O3) have been used together to fabricate a hybrid barrier thin film for the protection of PET substrate. The organic thin films of PVA were developed through roll to roll electrohydrodynamic atomization (R2R-EHDA) whereas the inorganic thin films of Al2O3 were grown by roll to roll spatial atmospheric atomic layer deposition (R2R-SAALD) for mass production. The use of these two technologies together to develop a multilayer hybrid organic-inorganic barrier thin films under atmospheric conditions is reported for the first time. These multilayer hybrid barrier thin films are fabricated on flexible PET substrate. Each layer of Al2O3 and PVA in barrier thin film exhibited excellent morphological, chemical and optical properties. Extremely uniform and atomically thin films of Al2O3 with average arithmetic roughness (Ra) of 1.64 nm and 1.94 nm respectively concealed the non-uniformity and irregularities in PVA thin films with Ra of 2.9 nm and 3.6 nm respectively. The optical transmittance of each layer was ∼ 80-90% while the water vapor transmission rate (WVTR) of hybrid barrier was in the range of ∼ 2.3 × 10-2 g m-2 day-1 with a total film thickness of ∼ 200 nm. Development of such hybrid barrier thin films with mass production and low cost will allow various flexible electronic devices to operate in atmospheric conditions without degradation of their properties.
2012-02-03
materials such as strained layer superlattice and HgCdTe . ___ ;,·~--·- 15. SUBJECT TERMS infrared , IR, detector , unipolar barrier, nBn 16. SECURITY...current and noise in infrared detectors . Unipolar barriers can be made in either of two types: hole-blocking or electron-blocking barriers. Our work has...SUPPLEMENTARY NOTES ---- - - .. 14. ABSTRACT A new type of infrared detector is designed and experimentally demonstrated, which uses "unipolar barriers
Layered CU-based electrode for high-dielectric constant oxide thin film-based devices
Auciello, Orlando
2010-05-11
A layered device including a substrate; an adhering layer thereon. An electrical conducting layer such as copper is deposited on the adhering layer and then a barrier layer of an amorphous oxide of TiAl followed by a high dielectric layer are deposited to form one or more of an electrical device such as a capacitor or a transistor or MEMS and/or a magnetic device.
Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals
NASA Astrophysics Data System (ADS)
Raghunath, P.; Huang, W. F.; Lin, M. C.
2013-04-01
Hydrogenation of TiO2 is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO2 hydrogenation through H and/or H2 diffusion from the surface into subsurface layers of anatase TiO2 (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H2 molecules can migrate from the crystal surface into TiO2 near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H2 on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H2 migration from the first layer of the subsurface Osub1 to the 2nd layer of the subsurface oxygen Osub2 requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H2 penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H2 from the cage by increasing its escaping barrier energy. The H2 molecule inside a cage can readily dissociate and form 2HO-species exothermically (ΔH = -31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H2O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H2 molecule. H2O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H2, and H2O appear prominently within the TiO2 band gap; in addition, the former induces a shift of the band gap position notably towards the conduction band. The thermochemistry for formation of the most stable sub-surface species (2HO and H2O) has been predicted. These results satisfactorily account for the photo-catalytic activity enhancement observed experimentally by hydrogenation at high temperatures and high pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maindron, Tony, E-mail: tony.maindron@cea.fr; Jullien, Tony; André, Agathe
2016-05-15
Al{sub 2}O{sub 3} [20 nm, atomic layer deposition (ALD)] and SiO films' [25 nm, physical vacuum deposition (PVD)] single barriers as well as hybrid barriers of the Al{sub 2}O{sub 3}/SiO or SiO/Al{sub 2}O{sub 3} have been deposited onto single 100 nm thick tris-(8-hydroxyquinoline) aluminum (AlQ{sub 3}) organic films made onto silicon wafers. The defects in the different barrier layers could be easily observed as nonfluorescent AlQ{sub 3} black spots, under ultraviolet light on the different systems stored into accelerated aging conditions (85 °C/85% RH, ∼2000 h). It has been observed that all devices containing an Al{sub 2}O{sub 3} layer present a lag time τ frommore » which defect densities of the different systems start to increase significantly. This is coherent with the supposed pinhole-free nature of fresh, ALD-deposited, Al{sub 2}O{sub 3} films. For t > τ, the number of defect grows linearly with storage time. For devices with the single Al{sub 2}O{sub 3} barrier layer, τ has been estimated to be 64 h. For t > τ, the defect occurrence rate has been calculated to be 0.268/cm{sup 2}/h. Then, a total failure of fluorescence of the AlQ{sub 3} film appears between 520 and 670 h, indicating that the Al{sub 2}O{sub 3} barrier has been totally degraded by the hot moisture. Interestingly, the device with the hybrid barrier SiO/Al{sub 2}O{sub 3} shows the same characteristics as the device with the single Al{sub 2}O{sub 3} barrier (τ = 59 h; 0.246/cm{sup 2}/h for t > τ), indicating that Al{sub 2}O{sub 3} ALD is the factor that limits the performance of the barrier system when it is directly exposed to moisture condensation. At the end of the storage period (1410 h), the defect density for the system with the hybrid SiO/Al{sub 2}O{sub 3} barrier is 120/cm{sup 2}. The best sequence has been obtained when Al{sub 2}O{sub 3} is passivated by the SiO layer (Al{sub 2}O{sub 3}/SiO). In that case, a large lag time of 795 h and a very low defect growth rate of 0.032/cm{sup 2}/h (t > τ) have been measured. At the end of the storage test (2003 h), the defect density remains very low, i.e., only 50/cm{sup 2}. On the other hand, the device with the single PVD-deposited SiO barrier layer shows no significant lag time (τ ∼ 0), and the number of defects grows linearly from initial time with a high occurrence rate of 0.517/cm{sup 2}/h. This is coherent with the pinhole-full nature of fresh, PVD-deposited, SiO films. At intermediate times, a second regime shows a lower defect occurrence rate of 0.062/cm{sup 2}/h. At a longer time span (t > 1200 h), the SiO barrier begins to degrade, and a localized crystallization onto the oxide surface, giving rise to new defects (occurrence rate 0.461/cm{sup 2}/h), could be observed. At the end of the test (2003 h), single SiO films show a very high defect density of 600/cm{sup 2}. Interestingly, the SiO surface in the Al{sub 2}O{sub 3}/SiO device does not appeared crystallized at a high time span, suggesting that the crystallization observed on the SiO surface in the AlQ{sub 3}/SiO device rather originates into the AlQ{sub 3} layer, due to high humidity ingress on the organic layer through SiO pinholes. This has been confirmed by atomic force microscopy surface imaging of the AlQ{sub 3}/SiO surface showing a central hole in the crystallization zone with a 60 nm depth, deeper than SiO thickness (25 nm). Using the organic AlQ{sub 3} sensor, the different observations made in this work give a quantitative comparison of defects' occurrence and growth in ALD-deposited versus PVD-deposited oxide films, as well as in their combination PVD/ALD and ALD/PVD.« less
The formation of hydrogen permeation barriers on steels by aluminising
NASA Astrophysics Data System (ADS)
Forcey, K. S.; Ross, D. K.; Wu, C. H.
1991-06-01
An extensive investigation has been carried out into the effectiveness of aluminised layers as permeation barriers on AISI 316L stainless and DIN 1.4914 martensitic steels. The study involved measurement of the hydrogen permeation rate through commercially aluminised steel discs of thicknesses in the range 1-1.6 mm, at temperatures between 250 and 600 °C and for an upstream hydrogen pressure of 10 5 Pa. The composition and structure of the aluminide layers were investigated by a number of techniques such as SEM, electron beam microprobe and X-ray diffraction. Accelerator based techniques such as RBS and NRA were employed to study the top micron or so of the surfaces of the samples. By these techniques it was found that the effectiveness of the permeation barrier depended on the formation of a thin surface oxide layer consisting of Al 2O 3. It was found that the permeation rate through the aluminised steels could be reduced by 3-4 orders of magnitude by forming a surface oxide layer up to a micron or so in thickness.
Qiu, Dongri; Kim, Eun Kyu
2015-09-03
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
NASA Astrophysics Data System (ADS)
Qiu, Dongri; Kim, Eun Kyu
2015-09-01
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
NASA Astrophysics Data System (ADS)
Kuntze, Thomas; Wollmann, Philipp; Klotzbach, Udo; Fledderus, Henri
2017-03-01
The proper long term operation of organic electronic devices like organic photovoltaics OPV depends on their resistance to environmental influences such as permeation of water vapor. Major efforts are spent to encapsulate OPV. State of the art is sandwich-like encapsulation between two ultra-barrier foils. Sandwich encapsulation faces two major disadvantages: high costs ( 1/3 of total costs) and parasitic intrinsic water (sponge effects of the substrate foil). To fight these drawbacks, a promising approach is to use the OPV substrate itself as barrier by integration of an ultra-barrier coating, followed by alternating deposition and structuring of OPV functional layers. In effect, more functionality will be integrated into less material, and production steps are reduced in number. All processing steps must not influence the underneath barrier functionality, while all electrical functionalities must be maintained. As most reasonable structuring tool, short and ultrashort pulsed lasers USP are used. Laser machining applies to three layers: bottom electrode made of transparent conductive materials (P1), organic photovoltaic operative stack (P2) and top electrode (P3). In this paper, the machining of functional 110…250 nm layers of flexible OPV by USP laser systems is presented. Main focus is on structuring without damaging the underneath ultra-barrier layer. The close-to-process machining quality characterization is performed with the analysis tool "hyperspectral imaging" (HSI), which is checked crosswise with the "gold standard" Ca-test. It is shown, that both laser machining and quality controlling, are well suitable for R2R production of OPV.
NASA Astrophysics Data System (ADS)
Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto
2018-04-01
In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.
Free energy barriers for escape of water molecules from protein hydration layer.
Roy, Susmita; Bagchi, Biman
2012-03-08
Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these "slow" water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung
Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and differentmore » crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.« less
Electron Tunneling in Junctions Doped with Semiconductors and Metals.
NASA Astrophysics Data System (ADS)
Bell, Lloyd Douglas, II
In this study, tunnel junctions incorporating thin layers of semiconductors and metals have been analyzed. Inelastic electron tunneling spectroscopy (IETS) was employed to yield high-resolution vibrational spectra of surface species deposited at the oxide-M_2 interface of M_1-M_1O _{rm x}-M _2 tunneling samples. Analysis was also performed on the elastic component of the tunneling current, yielding information on the tunnel barrier shape. The samples in this research exhibit a wide range of behavior. The IETS for Si, SiO_2, and Ge doped samples show direct evidence of SiH _{rm x} and GeH_ {rm x} formation. The particular species formed is shown to depend on the form of the evaporated dopant. Samples were also made with organic dopants deposited over the evaporated dopants. Many such samples show marked effects of the evaporated dopants on the inelastic peak intensities of the organic dopants. These alterations are correlated with the changed reactivity of the oxide surface coupled with a change in the OH dipole layer density on the oxide. Thicker organic dopant layers cause large changes in the elastic tunneling barrier due to OH layer alterations or the low barrier attributes of the evaporated dopant. In the cases of the thicker layers an extra current-carrying mechanism is shown to be contributing. Electron ejection from charge traps is proposed as an explanation for this extra current. The trend of barrier shape with dopant thickness is examined. Many of these dopants also produce a voltage-induced shift in the barrier shape which is stable at low temperature but relaxes at high temperature. This effect is similar to that produced by certain organic dopants and is explained by metastable bond formation between the surface OH and dopant. Other dopants, such as Al, Mg, and Fe, produce different effects. These dopants cause large I-V nonlinearity at low voltages. This nonlinearity is modeled as a giant zero-bias anomaly (ZBA) and fits are presented which show good agreement with theory. For some samples, poor fits result due to additional nonlinearity at higher voltages. This is explained in terms of a barrier lowering due to disruption of the OH layer or the small bandgap of the dopant.
NASA Astrophysics Data System (ADS)
Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.
2014-01-01
The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.
NASA Astrophysics Data System (ADS)
Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran
2018-01-01
Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.
Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier
NASA Astrophysics Data System (ADS)
Li, Q.; Yan, S. S.; Xu, J.; Li, S. D.; Zhao, G. X.; Long, Y. Z.; Shen, T. T.; Zhang, K.; Zhang, J.
2016-12-01
We proposed a nanocomposite barrier CoO-ZnO for magnetism manipulation in Co/CoO-ZnO/Ag heterojunctions. Both electrical control of magnetism and resistive switching were realized in this junction. An electrical tunable exchange bias of CoO1-v (v denotes O vacancies) on Co films was realized using voltages below 1 volt. The magnetism modulation associated with resistive switching can be attributed to the oxygen ions migration between the insulating CoO1-v layer and the semiconductive ZnO1-v layer, which can cause both ferromagnetic phase and resistance switching of CoO1-v layer.
Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films
NASA Astrophysics Data System (ADS)
Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya
Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
Preparation of Simulated LBL Defects for Round Robin Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Baldwin, Charles A.; Hunn, John D.
2016-01-01
A critical characteristic of the TRISO fuel design is its ability to retain fission products. During reactor operation, the TRISO layers act as barriers to release of fission products not stabilized in the kernel. Each component of the TRISO particle and compact construction plays a unique role in retaining select fission products, and layer performance is often interrelated. The IPyC, SiC, and OPyC layers are barriers to the release of fission product gases such as Kr and Xe. The SiC layer provides the primary barrier to release of metallic fission products not retained in the kernel, as transport across themore » SiC layer is rate limiting due to the greater permeability of the IPyC and OPyC layers to many metallic fission products. These attributes allow intact TRISO coatings to successfully retain most fission products released from the kernel, with the majority of released fission products during operation being due to defective, damaged, or failed coatings. This dominant release of fission products from compromised particles contributes to the overall source term in reactor; causing safety and maintenance concerns and limiting the lifetime of the fuel. Under these considerations, an understanding of the nature and frequency of compromised particles is an important part of predicting the expected fission product release and ensuring safe and efficient operation.« less
Barrier Engineered Quantum Dot Infrared Photodetectors
2015-06-01
dual-color detectors using InAs/GaSb strained layer superlattices ." In Lester Eastman Conference on High Performance Devices (LEC), 2012, pp. 1-4. IEEE...Gautam, S. S. Krishna, E. P. Smith, S. Johnson, and S. Krishna. "Dual-band pBp detectors based on InAs/GaSb strained layer superlattices ." Infrared ...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT INFRARED PHOTODETECTORS Sanjay Krishna Center for High Technology
Thermal barrier coating having high phase stability
Subramanian, Ramesh
2002-01-01
A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.
Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong
2018-01-23
Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.
Ceramic thermal barrier coating for rapid thermal cycling applications
Scharman, Alan J.; Yonushonis, Thomas M.
1994-01-01
A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.
Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G
2012-12-14
The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-02-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings
Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...
2012-07-24
Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.
NASA Technical Reports Server (NTRS)
Stecura, Stephan
1989-01-01
The effects of 21 bond and 2 ceramic coating compositions on the specific mass gain, internal crack location at failure, and life of a two-layer thermal barrier coating (TBC) were studied by cyclic testing in a furnace. MAR-M 200 + Hf alloy specimens were completely coated with bond and thermal barrier (ceramic) coatings. Both coatings were applied by air plasma spray deposition. Cyclic test data were obtained at 1110, 1160, and 1220 deg C. The data show that the specific mass gain and the TBC life are significantly affected by the composition of the bond coating and the temperature and only slightly affected by the composition of the ceramic coating.
Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys
NASA Technical Reports Server (NTRS)
Raj, Sai V. (Inventor)
2005-01-01
A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-05-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
Baek, David J.; Lu, Di; Hikita, Yasuyuki; ...
2016-12-22
Incorporating oxides with radically different physical and chemical properties into heterostructures offers tantalizing possibilities to derive new functions and structures. Recently, we have fabricated freestanding 2D oxide membranes using the water-soluble perovskite Sr 3Al 2O 6 as a sacrificial buffer layer. Here, with atomic-resolution spectroscopic imaging, we observe that direct growth of oxide thin films on Sr 3Al 2O 6 can cause complete phase transformation of the buffer layer, rendering it water-insoluble. More importantly, we demonstrate that an ultrathin SrTiO 3 layer can be employed as an effective barrier to preserve Sr 3Al 2O 6 during subsequent growth, thus allowingmore » its integration in a wider range of oxide heterostructures.« less
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1980-01-01
Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.
Thermal barrier coating for alloy systems
Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.
2000-01-01
An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.
NASA Astrophysics Data System (ADS)
Zhang, De-Lin; Schliep, Karl B.; Wu, Ryan J.; Quarterman, P.; Reifsnyder Hickey, Danielle; Lv, Yang; Chao, Xiaohui; Li, Hongshi; Chen, Jun-Yang; Zhao, Zhengyang; Jamali, Mahdi; Mkhoyan, K. Andre; Wang, Jian-Ping
2018-04-01
We studied the tunnel magnetoresistance (TMR) of L10-FePd perpendicular magnetic tunnel junctions (p-MTJs) with an FePd free layer and an inserted diffusion barrier. The diffusion barriers studied here (Ta and W) were shown to enhance the TMR ratio of the p-MTJs formed using high-temperature annealing, which are necessary for the formation of high quality L10-FePd films and MgO barriers. The L10-FePd p-MTJ stack was developed with an FePd free layer with a stack of FePd/X/Co20Fe60B20, where X is the diffusion barrier, and patterned into micron-sized MTJ pillars. The addition of the diffusion barrier was found to greatly enhance the magneto-transport behavior of the L10-FePd p-MTJ pillars such that those without a diffusion barrier exhibited negligible TMR ratios (<1.0%), whereas those with a Ta (W) diffusion barrier exhibited TMR ratios of 8.0% (7.0%) at room temperature and 35.0% (46.0%) at 10 K after post-annealing at 350 °C. These results indicate that diffusion barriers could play a crucial role in realizing high TMR ratios in bulk p-MTJs such as those based on FePd and Mn-based perpendicular magnetic anisotropy materials for spintronic applications.
NASA Astrophysics Data System (ADS)
Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy
2018-05-01
A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The substantial decrease in net heat flux along with entrainment cooling has been identified as causes for this behavior.
Suitability of polystyrene as a functional barrier layer in coloured food contact materials.
Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy
2015-01-01
Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.
Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor)
2017-01-01
The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.
Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers
NASA Astrophysics Data System (ADS)
Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun
2017-04-01
Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.
Demonstration of close-coupled barriers for subsurface containment of buried waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.
1996-05-01
A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less
Spin-Polarization in Quasi-Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Xie, Zheng-Wei; Li, Ling
2017-05-01
Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Maruyama, Yasutake; Fukuda, Katsutoshi
2012-02-01
The contributions and deposition conditions of ultrathin titania nanosheet (TN) crystallites were studied in an inverted bulk-heterojunction (BHJ) cell in indium tin oxide (ITO)/titania nanosheet/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic devices. Only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film deposited by the layer-by-layer deposition technique effectively decreased the leakage current and increased both open circuit voltage (VOC) and fill factor (FF), and power conversion efficiency (η) was increased nearly twofold by the insertion of two TN layers. The deposition of additional TN layers caused the reduction in FF, and the abnormal S-shaped curves above VOC for the devices with three and four TN layers were ascribed to the interfacial potential barrier at the ITO/TN interface and the series resistance across the multilayers of TN and PDDA. The performance of the BHJ cell with TN was markedly improved, and the S-shaped curves were eliminated following the the insertion of anatase-phase titanium dioxide between the ITO and TN layers owing to the decrease in the interfacial potential barrier.
Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide
NASA Astrophysics Data System (ADS)
Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.
2008-01-01
Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.
Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles
Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas
2017-01-01
Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1–5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces. PMID:28054589
Liquid crystalline composites containing phyllosilicates
Chaiko,; David, J [Naperville, IL
2007-05-08
The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.
Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.
Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A
2014-09-10
A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.
NASA Astrophysics Data System (ADS)
Shi, Lin Xing; Wang, Zi Shuai; Huang, Zengguang; Sha, Wei E. I.; Wang, Haoran; Zhou, Zhen
2018-02-01
Charge carrier recombination in the perovskite solar cells (PSCs) has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V) curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.
NASA Astrophysics Data System (ADS)
Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro
2017-04-01
Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.
Thick thermal barrier coatings for diesel components
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.
1991-01-01
An engineered thick thermal barrier coating consisting of multiple layers of zirconia and CoCrAlY with a zirconia top layer and having a system thermal conductance less than 410 w/m(exp 2)K exceeded the 100 hour engine durability goals set forth in this program. The thermal barrier coatings were intact at the test conclusion. Back to back single cylinder research engine tests were conducted with watercooled, metal hardware and oil-cooled, thermal barrier coating insulated hardware to determine apparent heat release and fuel economy. Apparent heat release data revealed that the insulated engine had a shorter ignition delay and a longer combustion duration than the metal engine. The insulated engine fuel economy was approximately two percent worse on average for this series of tests. There was no attempt to optimize engine efficiency of the insulated engine by modifying the engine timing, coating, or other techniques.
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)
2012-01-01
A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.
High efficiency yellow organic light-emitting diodes with optimized barrier layers
NASA Astrophysics Data System (ADS)
Mu, Ye; Zhang, Shiming; Yue, Shouzhen; Wu, Qingyang; Zhao, Yi
2015-12-01
High efficiency Iridium (III) bis (4-phenylthieno [3,2-c] pyridinato-N,C2‧) acetylacetonate (PO-01) based yellow organic light-emitting devices are fabricated by employing multiple emission layers. The efficiency of the device using 4,4‧,4″-tris(N-carbazolyl) triphenylamine (TCTA) as potential barrier layer (PBL) outperforms those devices based on other PBLs and detailed analysis is carried out to reveal the mechanisms. A forward-viewing current efficiency (CE) of 65.21 cd/A, which corresponds to a maximum total CE of 110.85 cd/A is achieved at 335.8 cd/m2 in the optimized device without any outcoupling enhancement structures.
Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.
We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.
Mechanically flexible organic electroluminescent device with directional light emission
Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc
2005-05-10
A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.
THE ANATOMIC SITE OF THE TRANSEPITHELIAL PERMEABILITY BARRIERS OF TOAD BLADDER
DiBona, Donald R.; Civan, Mortimer M.; Leaf, Alexander
1969-01-01
An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of the epithelium, they do not constitute an additional continuous cell layer. This finding is consistent with extensive physiological data which had assumed that the major permeability barriers of this epithelium were the apical and basal-lateral plasma membranes of a single layer of cells. PMID:5782445
Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; ...
2016-12-02
Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma- assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as amore » function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.« less
Laboratory-based observations of capillary barriers and preferential flow in layered snow
NASA Astrophysics Data System (ADS)
Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.
2015-12-01
Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
Riggs, G H; Schweitzer, L
1994-01-01
Various studies have suggested that glycoconjugates may influence connectivity and lamination in the developing central nervous system and may function as barriers to neuritic extension. It has been proposed that the peanut agglutinin lectin labels a glycoconjugate subserving a barrier function. We chose to investigate the distribution of this peanut-agglutinin-labelled glycoconjugate in the dorsal cochlear nucleus of the developing hamster since the development of the dorsal cochlear nucleus is well characterised and its axons obey laminar boundaries. The distribution of peanut agglutinin label throughout the cochlear nucleus delineated zones that cochlear axons fail to invade. In the dorsal cochlear nucleus, laminar differences were reduced on postnatal d 13 and virtually disappearing by postnatal d 23. Label in the molecular layer dissipated as axons and dendrites grew into this layer. These patterns of peanut agglutinin binding correspond to axonal ingrowth and are consistent with a barrier function for glycoconjugates in the molecular layer. Images Fig. 1 Fig. 2 Fig. 4 PMID:7961144
NASA Astrophysics Data System (ADS)
Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric
2014-01-01
The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.
Aqueous proton transfer across single-layer graphene
Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...
2015-03-17
Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.
1998-01-01
Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.
Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers
NASA Astrophysics Data System (ADS)
Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.
2006-09-01
Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.
Oxide Protective Coats for Ir/Re Rocket Combustion Chambers
NASA Technical Reports Server (NTRS)
Fortini, Arthur; Tuffias, Robert H.
2003-01-01
An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.
NASA Astrophysics Data System (ADS)
Yeon, Seongjin; Seo, Kwangseok
2008-04-01
We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.
NASA Astrophysics Data System (ADS)
Chu, In Chang; Song, Min Sung; Chun, Byong Sun; Lee, Seong Rae; Kim, Young Keun
2005-08-01
Magnetic tunnel junction (MTJ) structures based on underlayer (CoNbZr)/bufferlayer (CoFe)/antiferromagnet (IrMn)/pinned layer (CoFe)/tunnel barrier (AlO x)/free layer (CoFe)/capping (CoNbZr) have been prepared to investigate thermal degradation of magnetoresistive responses. Some junctions possess a nano-oxide layer (NOL) inside either in the underlayer or bufferlayer. The main purpose of the NOL inclusion was to control interdiffusion path of Mn from the antiferromagnet so that improved thermal stability could be achieved. The MTJs with NOLs were found to have reduced interfacial roughness, resulting in improved tunneling magnetoresistance (TMR) and reduced interlayer coupling field. We also confirmed that the NOL effectively suppressed the Mn interdiffusion toward the tunnel barrier by dragging Mn atoms toward NOL during annealing.
Optically controlled resonant tunneling in a double-barrier diode
NASA Astrophysics Data System (ADS)
Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.
1991-03-01
The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.
Polar semiconductor heterojunction structure energy band diagram considerations
NASA Astrophysics Data System (ADS)
Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong
2016-03-01
The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.
Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors
NASA Astrophysics Data System (ADS)
Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.
2006-09-01
Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.
Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si
Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo
2015-01-01
Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099
NASA Astrophysics Data System (ADS)
Fukagawa, Hirohiko; Morii, Katsuyuki; Hasegawa, Munehiro; Gouda, Shun; Tsuzuki, Toshimitsu; Shimizu, Takahisa; Yamamoto, Toshihiro
2015-10-01
The OLED is one of the key devices for realizing future flexible displays and lightings. One of the biggest challenges left for the OLED fabricated on a flexible substrate is the improvement of its resistance to oxygen and moisture. A high barrier layer [a water vapor transmission rate (WVTR) of about 10-6 g/m2/day] is proposed to be necessary for the encapsulation of conventional OLEDs. Some flexible high barrier layers have recently been demonstrated; however, such high barrier layers require a complex process, which makes flexible OLEDs expensive. If an OLED is prepared without using air-sensitive materials such as alkali metals, no stringent encapsulation is necessary for such an OLED. In this presentation, we will discuss our continuing efforts to develop an inverted OLED (iOLED) prepared without using alkali metals. iOLEDs with a bottom cathode are considered to be effective for realizing air-stable OLEDs since the electron injection layer (EIL) can be prepared by fabrication processes that might damage the organic layers, resulting in the enhanced range of materials suitable for EILs. We have demonstrated that a highly efficient and relatively air-stable iOLED can be realized by employing poly(ethyleneimine) as an EIL. Dark spot formation was not observed after 250 days in the poly(ethyleneimine)-based iOLED encapsulated by a barrier film with a WVTR of 10-4 g/m2/day. In addition, we have demonstrated the fabrication of a highly operational stable iOLED utilizing a newly developed EIL. The iOLED exhibits an expected half-lifetime of over 10,000 h from an initial luminance of 1,000 cd/m2.
NASA Astrophysics Data System (ADS)
Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.
2016-03-01
Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.
Lee, Brian; Sarin, Love; Johnson, Natalie C.; Hurt, Robert H.
2013-01-01
Compact fluorescent lamps contain small quantities of mercury, whose release can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nano-selenium as the reactive component. Multi-layer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of the three scenarios. The nano-selenium barriers also exhibit a unique indicator function that can reveal the location of Hg-contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nano-selenium and its reaction products. PMID:19731697
Performance of mid-wave T2SL detectors with heterojunction barriers
NASA Astrophysics Data System (ADS)
Asplund, Carl; Marcks von Würtemberg, Rickard; Lantz, Dan; Malm, Hedda; Martijn, Henk; Plis, Elena; Gautam, Nutan; Krishna, Sanjay
2013-07-01
A heterojunction T2SL barrier detector which effectively blocks majority carrier leakage over the pn-junction was designed and fabricated for the mid-wave infrared (MWIR) atmospheric transmission window. The layers in the barrier region comprised AlSb, GaSb and InAs, and the thicknesses were selected by using k · P-based energy band modeling to achieve maximum valence band offset, while maintaining close to zero conduction band discontinuity in a way similar to the work of Abdollahi Pour et al. [1] The barrier-structure has a 50% cutoff at 4.75 μm and 40% quantum efficiency and shows a dark current density of 6 × 10-6 A/cm2 at -0.05 V bias and 120 K. This is one order of magnitude lower than for comparable T2SL-structures without the barrier. Further improvement of the (non-surface related) bulk dark current can be expected with optimized doping of the absorber and barrier, and by fine tuning of the barrier layer design. We discuss the effect of barrier doping on dark current based on simulations. A T2SL focal plane array with 320 × 256 pixels, 30 μm pitch and 90% fill factor was processed in house using a conventional homojunction p-i-n photodiode architecture and the ISC9705 readout circuit. High-quality imaging up to 110 K was demonstrated with the substrate fully removed.
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
Scaffolding proteins in the development and maintenance of the epidermal permeability barrier.
Crawford, Melissa; Dagnino, Lina
2017-10-02
The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.
Homoepitaxial graphene tunnel barriers for spin transport
NASA Astrophysics Data System (ADS)
Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.
2016-05-01
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polster, S.; Jank, M. P. M.; Frey, L.
2016-01-14
The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less
Improved Barrier Properties in Flexible Plastic Substrates
2009-01-01
layer 2:1 sandwich is required to balance this charge deficit. The extra charge is provided by a layer of large cations, usually potassium or sodium...ions (K+).32,30 Each of the potassium ions in this interiayer is shared among 12 oxygen atoms and the electrostatic force between the potassium ion...layer. Potassium • Aluminum • Silicon • Oxygen {-* Hydroxyl pair b axfs" This tabulation giving the layer by layer population of elements
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
A numerical study on the charge transport in TPD/Alq3-based organic light emitting diodes.
Kim, K S; Hwang, Y W; Lee, H G; Won, T Y
2014-08-01
We report our simulation study on the charge transport characteristic of the multi-layer structure for organic light emitting diodes (OLEDs). We performed a numerical simulation on a multilayer structure comprising a hole transport layer (HTL), an emission layer (EML), and an electron transport layer (ETL) between both electrodes. The material of the HTL is TPD (N,N'-Bis (3-methylphenyl)-N,N'-bis(phenyl) benzidine), and the ETL includes Alq3 (Tris (8-hyroxyquinolinato) aluminium). Here, we investigated the parameters such as recombination rates which influence the efficiency of the charge transport between layers in bilayer OLEDs. We also analyzed a transient response during the turn on/off period and the carrier transport in accordance with the variation of the injection barrier and applied voltage. In addition, our numerical simulation revealed that the insertion of the EML affects the photonic characteristics in bilayer structure and also the efficiency due to the difference in the internal barrier height.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2013-12-17
A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).
Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications
NASA Astrophysics Data System (ADS)
Mutlu, Ilven; Yeniyol, Sinem; Oktay, Enver
2016-04-01
In this study, beta-type Ti-35Nb-10Cu alloy foams were produced by powder metallurgy method for dental implant applications. 35% Nb was added to stabilize the beta-Ti phase with low Young's modulus. Cu addition enhanced sinterability and gave precipitation hardening capacity to the alloy. Sintered specimens were precipitation hardened in order to enhance the mechanical properties. Electrochemical corrosion behavior of the specimens was examined by electrochemical impedance spectroscopy in artificial saliva. Electrochemical impedance spectroscopy results indicated that the oxide film on the surface of foam is a bi-layer structure consisting of outer porous layer and inner barrier layer. Impedance values of barrier layer were higher than porous layer. Corrosion resistance of specimens decreased at high fluoride concentrations and at low pH of artificial saliva. Corrosion resistance of alloys was slightly decreased with aging. Mechanical properties, microstructure, and surface roughness of the specimens were also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung
2014-02-21
Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less
Dinwoodie, Thomas L [Piedmont, CA
2008-02-12
A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. Water resistant junctions may be formed between the bases of adjacent shingle assemblies of an array of shingle assemblies. The base may include an insulation layer underlying a water barrier. The base may also include a waterproofing element; the width and height of the barrier may be shorter than the width and height of the waterproofing element.
In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
Subramanian, Ramesh
2001-01-01
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).
In Situ Clay Formation: Evaluation of a Proposed New Technology for Stable Containment Barriers
2004-03-01
situ layered double hydroxide precipitation........... 23 4.2.1 Solution preparation and column mixing...22 Table 4.2 Summary of in situ precipitation of layered double hydroxide (LDH...effect on permeability for the smallest volume precipitated is sheet silicates or layered -clay phases (hereafter called “clays”). In natural
Oxide film on metal substrate reduced to form metal-oxide-metal layer structure
NASA Technical Reports Server (NTRS)
Youngdahl, C. A.
1967-01-01
Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.
Scarfato, P; Garofalo, E; Di Maio, L; Incarnato, L
2017-06-01
Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to "Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging" by Garofalo et al. (2017) [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2], [3], [4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.
NASA Astrophysics Data System (ADS)
Ostermaier, Clemens; Pozzovivo, Gianmauro; Basnar, Bernhard; Schrenk, Werner; Carlin, Jean-François; Gonschorek, Marcus; Grandjean, Nicolas; Vincze, Andrej; Tóth, Lajos; Pécz, Bela; Strasser, Gottfried; Pogany, Dionyz; Kuzmik, Jan
2010-11-01
We have investigated an inductively coupled plasma etching recipe using SiCl4 and SF6 with a resulting selectivity >10 for GaN in respect to InAlN. The formation of an etch-resistant layer of AlF3 on InAlN required about 1 min and was noticed by a 4-times-higher initial etch rate on bare InAlN barrier high electron mobility transistors (HEMTs). Comparing devices with and without plasma-treatment below the gate showed no degradation in drain current and gate leakage current for plasma exposure durations shorter than 30 s, indicating no plasma-induced damage of the InAlN barrier. Devices etched longer than the required time for the formation of the etch-resistant barrier exhibited a slight decrease in drain current and an increase in gate leakage current which saturated for longer etching-time durations. Finally, we could prove the quality of the recipe by recessing the highly doped 6 nm GaN cap layer of a GaN/InAlN/AlN/GaN heterostructure down to the 2 nm thin InAlN/AlN barrier layer.
Saathoff, Manuela; Blum, Barbara; Quast, Thomas; Kirfel, Gregor; Herzog, Volker
2004-10-01
The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier. Copyright 2004 Elsevier Inc.
Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana
2015-10-14
Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.
Dense, layered membranes for hydrogen separation
Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.
2006-02-21
This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.
Khavinson, V Kh; Timofeeva, N M; Malinin, V V; Gordova, L A; Nikitina, A A
2002-12-01
Per os administration of Vilon (Lys-Glu) or Epithalon (Ala-Glu-Asp-Gly) to aged Wistar rats for 1 month significantly increased activity of membrane enzymes maltase and alkaline phosphatase in epithelial layer of the small intestine. In addition, Vilon significantly increased activity of cytosolic glycyl-L-leucine dipeptidase in the stromal and seromuscular layers of the small intestine in comparison with the control rats not treated with this agent. These findings suggest improvement of trophic and barrier functions of the small intestine and corroborate the hypothesis on the existence of not only epithelial, but also subepithelial enzymatic barrier supporting the enzyme system in the small intestine, especially in aged animals.
NASA Astrophysics Data System (ADS)
Li, Qun; Chen, Qian; Chong, Jing
2017-12-01
In InAlN/GaN heterostructures, alloy clustering-induced InAlN conduction band fluctuations interact with electrons penetrating into the barrier layers and thus affect the electron transport. Based on the statistical description of InAlN compositional distribution, a theoretical model of the conduction band fluctuation scattering (CBFS) is presented. The model calculations show that the CBFS-limited mobility decreases with increasing two-dimensional electron gas sheet density and is inversely proportional to the squared standard deviation of In distribution. The AlN interfacial layer can effectively suppress the CBFS via decreasing the penetration probability. This model is directed towards understanding the transport properties in heterostructure materials with columnar clusters.
New twinning route in face-centered cubic nanocrystalline metals.
Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong
2017-12-15
Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.
NASA Astrophysics Data System (ADS)
Wang, C. K.; Wang, Y. W.; Chiou, Y. Z.; Chang, S. H.; Jheng, J. S.; Chang, S. P.; Chang, S. J.
2017-06-01
In this study, the properties of 370-nm InGaN/AlGaN ultraviolet light emitting diodes (UV LEDs) with different thicknesses of un-doped Al0.3Ga0.7N insertion layer (IL) between the last quantum barrier and electron blocking layer (EBL) have been numerically simulated by Advance Physical Model of Semiconductor Devices (APSYS). The results show that the LEDs using the high Al composition IL can effectively improve the efficiency droop, light output power, and internal quantum efficiency (IQE) compared to the original structure. The improvements of the optical properties are mainly attributed to the energy band discontinuity and offset created by IL, which increase the potential barrier height of conduction band to suppress the electron overflow from the active region to the p-side layer.
A double-layer based model of ion confinement in electron cyclotron resonance ion source.
Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G
2014-02-01
The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...
2018-05-03
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. F.
Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within thismore » layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.« less
Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.
Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas
2017-02-01
In this work, we report on aluminum oxide (Al 2 O 3 ) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O 2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al 2 O 3 films show ultralow water vapor transmission rates (WVTR) on the order of 10 -6 gm -2 d -1 . In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.
Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization
NASA Astrophysics Data System (ADS)
Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi
2018-04-01
The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.
NASA Astrophysics Data System (ADS)
Romanov, I. S.; Prudaev, I. A.; Kopyev, V. V.
2018-06-01
The results of studying the effect of the thickness of GaN barrier layers in the active region of LED structures with InGaN/GaN quantum wells on the internal quantum efficiency (IQE) of photoluminescence are presented. It is shown that a decrease in the thickness of the GaN barrier layers from 15 to 3 nm leads to an increase in the maximum value of IQE and to a shift of the maximum to the region of high excitation powers. The result obtained is explained with consideration for the decrease in the Auger recombination rate due to a more uniform distribution of charge carriers over the active region in structures with a barrier thickness of 3 nm.
Heise, H M; Lampen, P; Stücker, M
2003-11-01
The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.
Shen, Liguo; Cui, Xia; Yu, Genying; Li, Fengquan; Li, Liang; Feng, Shushu; Lin, Hongjun; Chen, Jianrong
2017-05-15
In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
Geum, Dae-Myeong; Kim, SangHyeon; Kang, SooSeok; Kim, Hosung; Park, Hwanyeol; Rho, Il Pyo; Ahn, Seung Yeop; Song, Jindong; Choi, Won Jun; Yoon, Euijoon
2018-03-05
In this paper, InAs 0.81 Sb 0.19 -based hetero-junction photovoltaic detector (HJPD) with an In 0.2 Al 0.8 Sb barrier layer was grown on GaAs substrates. By using technology computer aided design (TCAD), a design of a barrier layer that can achieve nearly zero valance band offsets was accomplished. A high quality InAs 0.81 Sb 0.19 epitaxial layer was obtained with relatively low threading dislocation density (TDD), calculated from a high-resolution X-ray diffraction (XRD) measurement. This layer showed a Hall mobility of 15,000 cm 2 /V⋅s, which is the highest mobility among InAsSb layers with an Sb composition of around 20% grown on GaAs substrates. Temperature dependence of dark current, photocurrent response and responsivity were measured and analyzed for fabricated HJPD. HJPD showed the clear photocurrent response having a long cutoff wavelength of 5.35 μm at room temperature. It was observed that the dark current of HJPDs is dominated by the diffusion limited current at temperatures ranging from 200K to room temperature from the dark current analysis. Peak responsivity of HJPDs exhibited the 1.18 A/W and 15 mA/W for 83K and a room temperature under zero bias condition even without anti-reflection coating (ARC). From these results, we believe that HJPDs could be an appropriate PD device for future compact and low power dissipation mid-infrared on-chip sensors and imaging devices.
Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films
USDA-ARS?s Scientific Manuscript database
The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...
NASA Astrophysics Data System (ADS)
Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin
2016-11-01
A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan
2018-04-01
Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.
Waves propagating over a two-layer porous barrier on a seabed
NASA Astrophysics Data System (ADS)
Lin, Qiang; Meng, Qing-rui; Lu, Dong-qiang
2018-05-01
A research of wave propagation over a two-layer porous barrier, each layer of which is with different values of porosity and friction, is conducted with a theoretical model in the frame of linear potential flow theory. The model is more appropriate when the seabed consists of two different properties, such as rocks and breakwaters. It is assumed that the fluid is inviscid and incompressible and the motion is irrotational. The wave numbers in the porous region are complex ones, which are related to the decaying and propagating behaviors of wave modes. With the aid of the eigenfunction expansions, a new inner product of the eigenfunctions in the two-layer porous region is proposed to simplify the calculation. The eigenfunctions, under this new definition, possess the orthogonality from which the expansion coefficients can be easily deduced. Selecting the optimum truncation of the series, we derive a closed system of simultaneous linear equations for the same number of the unknown reflection and transmission coefficients. The effects of several physical parameters, including the porosity, friction, width, and depth of the porous barrier, on the dispersion relation, reflection and transmission coefficients are discussed in detail through the graphical representations of the solutions. It is concluded that these parameters have certain impacts on the reflection and transmission energy.
NASA Astrophysics Data System (ADS)
Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2016-02-01
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.
NASA Astrophysics Data System (ADS)
Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.
2014-12-01
A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.
Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Chu, R.; Li, R.
2016-03-14
In a vertical GaN Schottky barrier diode, the free electron concentration n in the 6-μm-thick drift layer was found to greatly impact the diode reverse leakage current, which increased from 2.1 × 10{sup −7} A to 3.9 × 10{sup −4} A as n increased from 7.5 × 10{sup 14 }cm{sup −3} to 6.3 × 10{sup 15 }cm{sup −3} at a reverse bias of 100 V. By capping the drift layer with an ultrathin 5-nm graded AlGaN layer, reverse leakage was reduced by more than three orders of magnitude with the same n in the drift layer. We attribute this to the increased Schottky barrier height with the AlGaN at the surface. Meanwhile, themore » polarization field within the graded AlGaN effectively shortened the depletion depth, which led to the formation of tunneling current at a relatively small forward bias. The turn-on voltage in the vertical Schottky diodes was reduced from 0.77 V to 0.67 V—an advantage in reducing conduction loss in power switching applications.« less
The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates
NASA Astrophysics Data System (ADS)
Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed
2014-03-01
This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.
NASA Astrophysics Data System (ADS)
Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey
2015-08-01
Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.
Electronic Devices with Diffusion Barrier and Process for Making Same
2001-05-09
conductivity metallization materials such as gold , silver, and platinum. As can be appreciated from the foregoing, a barrier film is needed which... gold ), as well as platinum. These metals are highly attractive 10 for interconnect strategies on account of there intrinsic low resistivity and...the monolayer portion of the barrier -7- material. The monolayer ( monoatomic ) layer of metal atoms and the homoepitaxial film of metal halide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolston, Nicholas; Printz, Adam D.; Hilt, Florian
Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less
Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...
2017-10-27
Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less
Development of Thermal Bridging Factors for Use in Energy Models
2015-06-20
assemblies. 5.2.2 Drainage : Drained systems Drained (Figure 5-6) and screened enclosures assume some rainwater will penetrate the outer surface...38 5.2.2 Drainage : Drained systems ...layer (e.g., drainage plane and gap or waterproofing) 2. Airflow control layer (e.g., an air barrier system ) 3. Thermal control layer (e.g., insulation
NASA Astrophysics Data System (ADS)
Akhtarianfar, S. F.; Ramazani, A.; Almasi-Kashi, M.; Montazer, A. H.
2018-05-01
Fabrication of different nanostructures based on template-assisted methods has become conventional, due to their numerous potential applications. In this paper, Fe nanowire arrays (NWAs) were fabricated using a pulsed electrodeposition in porous anodic alumina (PAA) templates. The effect of alumina barrier layer conditions such as barrier layer temperature (BLT) and Cu pre-plating at the dendritic sections of pores on the electrodeposition efficiency (EE) and magnetic properties of Fe NWAs in two pH regimes (2.6 and 4.0) has been investigated. At pH 4.0, BLT was changed from 4 to 32 °C, leading to an EE of approximately 60% for BLT 24 °C. Moreover, to overcome the problem of low EE 2% at the pH of 2.6, Cu pre-plating was performed with deposition current densities of 25 and 35 mA/cm2. This procedure increased the EE up to about 40%, providing a promising approach to enhance the EE in the fabrication of Fe NWAs. Furthermore, a nearly constant trend of magnetic properties was observed for highly crystalline Fe NWs.
[The photoluminescence characteristics of organic multilayer quantum wells].
Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong
2007-04-01
By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Liu, Yan; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao
2017-11-01
A method to determine the strain distribution of the AlGaN barrier layer after the device fabrication and the passivation process has been presented. By fitting the calculated parasitic source access resistance with the measured ones for the AlGaN/AlN/GaN HFETs and using the polarization Coulomb field scattering theory, the strain variation of the AlGaN barrier layer after the passivation process has been quantitatively studied. The results show that the tensile strain in the access regions of the AlGaN barrier layer has been increased by 4.62% for the 250 nm-Si3N4 passivated device, and has been decreased by 2.0% for the 400 nm-Si3N4 passivated device, compared to that of before the passivation, respectively. For the gate region of the two devices, the tensile strain has been decreased by 60.77% and increased by 3.60% after the passivation of different thicknesses, oppositely.
Variability of Tropical Cyclone Heat Potential and Barrier layers in the South Indian Ocean
NASA Astrophysics Data System (ADS)
Mawren, D.; Reason, C. J. C.
2016-02-01
This study investigates the influence of Tropical Cyclone Heat Potential (TCHP) as well as salinity stratification during the passage of intense tropical cyclones. Using in-situ observations, reanalysis data and ocean model simulations, this study indicates that TC intensification is affected by high TCHP values and deep barrier layers. TCHP computed from 1/5° resolution regional ocean model (ROMS) agrees well with that derived from Argo float data and SODA which extends over a longer period (1950-2010). Time series of TCHP in the South Indian Ocean shows strongest interannual variability during 1997-1998, 2003, 2007 and is relatively highly correlated at 1 month lag with ENSO (r = 0.67, significant at 95 %). The interannual variability of barrier layer thickness (BLT) was analyzed over the Seychelles-Chagos thermocline ridge (SCTR) and high-amplitude fluctuations in BLT appear to overlay with large positive TCHP values. Analysis also shows that both BLT and TCHP are modulated by the westward propagating Rossby waves. A case study of Category 5 Tropical cyclone BANSI that developed over and east of Madagascar during 11-18 Jan 2015 is presented.
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.
2013-01-01
Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.
Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode
NASA Astrophysics Data System (ADS)
Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.
2018-05-01
The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.
Apparatus for making environmentally stable reactive alloy powders
Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.
1996-12-31
Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.
Experimental visualization of the cathode layer in AC surface dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Kim, Sang-You; Lho, Taihyeop; Chung, Kyu-Sun
2018-06-01
A narrow etched polyimide line at the bottom edge of a biased electrode (BE) and a non-etched dielectric surface near the biased electrode were observed in an atmospheric AC flexible surface dielectric barrier discharge of polyimide dielectric. These findings are attributed to the bombardment of positive oxygen ions on the bottom edge of the BE and the electron breakdown trajectory not contacting the polyimide surface following the electric field lines formed between the BE edge and the surface charge layer on the dielectric. The length of the non-etched dielectric surface during the first micro-discharge was observed as 22 μm. This occurred, regardless of three different operating durations, which is in good agreement with the length of the cathode layer according to Paschen's law.
Stability of excitons in double quantum well: Through electron and holes transmission probabilities
NASA Astrophysics Data System (ADS)
Vignesh, G.; Nithiananthi, P.
2017-05-01
Stability of excitons has been analyzed using the transmission probability of its constituent particles in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) structure by varying well and barrier layer thickness. The effective mass approximation is used and anisotropy in material properties are also considered to get realistic situations. It is observed that tuning barrier layer avails many resonance peaks for the transmission and tuning well width admits maximum transmission at narrow well widths. Every saddle point of the observed transmission coefficients decides the formation, strength and transportation of excitons in DQW.
NASA Astrophysics Data System (ADS)
Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.
2008-06-01
We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.
NASA Astrophysics Data System (ADS)
Brown, Hayley Louise
The development of flexible lightweight OLED devices requires oxygen/moisture barrier layer thin films with water vapour transmission rates (WVTR) of < 10-6 g/m2/day. This thesis reports on single and multilayer architecture barrier layers (mostly based on SiO2, Al2O3 and TiO2) deposited onto glass, Si and polymeric substrates using remote plasma sputtering. The reactive sputtering depositions were performed on Plasma Quest S500 based sputter systems and the morphology, nanostructure and composition of the coatings have been examined using SEM, EDX, STEM, XPS, XRD and AFM. The WVTR has been determined using industry standard techniques (e.g. MOCON) but, for rapid screening of the deposited layers, an in-house permeation test was also developed. SEM, XRD and STEM results showed that the coatings exhibited a dense, amorphous structure with no evidence of columnar growth. However, all of the single and multilayer coatings exhibited relatively poor WVTRs of > 1 x 10-1 g/m2/day at 38 °C and 85 % RH. Further characterisation indicated that the barrier films were failing due to the presence of substrate asperities and airborne particulates. Different mechanisms were investigated in an attempt to reduce the density of film defects including incorporation of a getter layer, modification of growth kinetics, plasma treatment and polymer planarising, but none were successful in lowering the WVTR. Review of this issue indicated that the achievement of good barrier layers was likely to be problematic in commercial practice due to the cost implications of adequately reducing particulate density and the need to cover deliberately non-planar surfaces and fabricated 3D structures. Conformal coverage would therefore be required to bury surface structures and to mitigate particulate issues. Studies of the remote plasma system showed that it both inherently delivered an ionised physical vapour deposition (IPVD) process and was compatible with bias re-sputtering of substrates. Accordingly, a process using RF substrate bias to conformally coat surfaces was developed to encapsulate surface particulates and seal associated permeation paths. An order of magnitude improvement in WVTR (6.7 x 10-2 g/m2/day) was measured for initial Al2O3 coatings deposited with substrate bias. The development of substrate bias to enhance conformal coverage provides significant new commercial benefit. Furthermore, conformal coverage of 5:1 aspect ratio structures have been demonstrated by alternating the substrate bias between -222 V and -267 V, with a 50 % dwell time at each voltage. Further development and optimisation of the substrate bias technique is required to fully explore the potential for further improving barrier properties and conformal coverage of high aspect ratio and other 3D structures.
NASA Astrophysics Data System (ADS)
Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.
2018-06-01
In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.
A new stylolite classification scheme to estimate compaction and local permeability variations
NASA Astrophysics Data System (ADS)
Koehn, D.; Rood, M. P.; Beaudoin, N.; Chung, P.; Bons, P. D.; Gomez-Rivas, E.
2016-12-01
We modeled the geometrical roughening of bedding-parallel, mainly layer-dominated stylolites in order to understand their structural evolution, to present an advanced classification of stylolite shapes and to relate this classification to chemical compaction and permeability variations at stylolites. Stylolites are rough dissolution seams that develop in sedimentary basins during chemical compaction. In the Zechstein 2 carbonate units, an important lean gas reservoir in the southern Permian Zechstein basin in Germany, stylolites influence local fluid flow, mineral replacement reactions and hence the permeability of the reservoir. Our simulations demonstrate that layer-dominated stylolites can grow in three distinct stages: an initial slow nucleation phase, a fast layer-pinning phase and a final freezing phase if the layer is completely dissolved during growth. Dissolution of the pinning layer and thus destruction of the stylolite's compaction tracking capabilities is a function of the background noise in the rock and the dissolution rate of the layer itself. Low background noise needs a slower dissolving layer for pinning to be successful but produces flatter teeth than higher background noise. We present an advanced classification based on our simulations and separate stylolites into four classes: (1) rectangular layer type, (2) seismogram pinning type, (3) suture/sharp peak type and (4) simple wave-like type. Rectangular layer type stylolites are the most appropriate for chemical compaction estimates because they grow linearly and record most of the actual compaction (up to 40 mm in the Zechstein example). Seismogram pinning type stylolites also provide good tracking capabilities, with the largest teeth tracking most of the compaction. Suture/sharp peak type stylolites grow in a non-linear fashion and thus do not record most of the actual compaction. However, when a non-linear growth law is used, the compaction estimates are similar to those making use of the rectangular layer type stylolites. Simple wave-like stylolites are not useful for compaction estimates, since their growth is highly non-linear with a very low growth exponent. In the case where sealing material is collected at the tooth during dissolution, stylolites can act as barriers for local fluid flow as they intensify sealing capabilities of pinning layers. However, the development of teeth and spikes offsets and thus destroys continuous stylolite seams so that the permeability across the stylolite becomes very heterogeneous and they are no continuous barriers. This behavior is best shown in rectangular layer and seismogram pinning type stylolites that develop efficient fluid barriers at teeth tips but destroy sealing capabilities of layers by offsetting them at the flank, leading to a permeability anisotropy along 2-D stylolite planes. Suture/sharp peak stylolites can create fluid barriers if they collect enough sealing material. However, if the collecting material does not seal or if spikes offset the sealing material the stylolite leaks. We propose that our classification can be used to realistically estimate chemical compaction in reservoirs and gives an indication on how heterogeneous the permeability of stylolites can be.
Penetration of alkali atoms throughout a graphene membrane: theoretical modeling
NASA Astrophysics Data System (ADS)
Boukhvalov, D. W.; Virojanadara, C.
2012-02-01
Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.
Penetration of alkali atoms throughout a graphene membrane: theoretical modeling.
Boukhvalov, D W; Virojanadara, C
2012-03-07
Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.
Engineering an in vitro air-blood barrier by 3D bioprinting
Horváth, Lenke; Umehara, Yuki; Jud, Corinne; Blank, Fabian; Petri-Fink, Alke; Rothen-Rutishauser, Barbara
2015-01-01
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing. PMID:25609567
NASA Astrophysics Data System (ADS)
Reeves, Jodi Lynn
Microstructural barriers to supercurrent occur on many length scales in all high temperature oxide superconductors. Eliminating microstructural barriers is key to making these potentially valuable materials more favorable for commercial applications. In silver-sheathed Bi2Sr2CaCu 2Ox (Bi-2212) tapes and multifilaments, the principal barriers on the scale of 10--100's of micrometers are bubbling, porosity, second phase particles, and poorly aligned grains. In state-of-the-art YBa2 Cu3Ox (YBCO) coated conductors, supercurrent barriers on the 0.1--100mum scale are grain boundaries. This thesis work clarifies the role of grain boundaries in the nickel substrate of RABiTS (Rolling Assisted Biaxially Textured Substrate) coated conductors. Plan-view SEM imaging, focused ion beam cutting, magneto-optical imaging and grain orientation mapping were used to determine barriers to supercurrent. Experiments showed enhanced magnetic flux penetration, and hence reduced Jc, in the YBCO above nearly all nickel grain boundaries with misorientation angles (theta) greater than 5°, independent of the rotation axis. Monochromatic backscattered electron Kikuchi pattern percolation maps imply there is a fully connected current path through the YBCO microstructure within the chosen tolerance angle criterion of the map. However, it is the grain boundary map that displays the constrictions of the current path. Therefore, grain boundary maps are better tools for illustrating supercurrent barriers than percolation maps. Grain boundary maps and grain orientation maps were used to investigate how the texture of the substrate was transferred to the buffer layers and to the superconductor. Most grasp boundaries in the nickel were replicated in the buffer and superconductor layers with the same misorientation angle. Anisotropic growth and/or surface energy minimization may be responsible for the improvement in c-axis alignment in the YBCO over the buffer layer. However, the YBCO mosaic spread did not eliminate high angle grain boundaries, since >5° boundaries were still seen in YBCO grain boundary maps. The results of this study on microstructural current barriers show that Jc improvements in RABiTS-type coated conductors require eliminating theta > 5° boundaries in the nickel substrate.
Educational Opportunity: El Salvador's Barriers to Achieving Equality Persist.
ERIC Educational Resources Information Center
Rosekrans, Kristin
This paper analyzes barriers to educational equality in El Salvador, using a multi-layered framework of educational opportunity. To improve educational opportunity and give the most marginalized sectors of society the possibility of changing their life circumstances requires policies that go beyond mere access to formal schooling. The model…
USDA-ARS?s Scientific Manuscript database
Barrier treatments can be effective in reducing host seeking mosquito vectors and provide an additional layer of passive defense, reducing disease risk. Devices designed to release spatial repellents or direct application of spatial repellents to artificial surfaces can serve as efficient barriers r...
Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.
2001-01-01
A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.
Vocal Fold Epithelial Barrier in Health and Injury: A Research Review
ERIC Educational Resources Information Center
Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.
2014-01-01
Purpose: Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially…
Hindered settling and the formation of layered intrusions
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.
2015-04-01
Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015. Layered intrusions and traffic jams. Geology 43, 71-74 Lauder, W. 1964. Mat formation and crystal settling in magma. Nature 202, 1100-1101.
NASA Astrophysics Data System (ADS)
Gao, Feng
The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.
NASA Technical Reports Server (NTRS)
Amos, D. J.
1977-01-01
An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.
Metallic seal for thermal barrier coating systems
NASA Technical Reports Server (NTRS)
Miller, Robert A. (Inventor)
1990-01-01
The invention is particularly concerned with sealing thermal barrier coating systems of the type in use and being contemplated for use in diesel and other internal combustion engines. The invention also would find application in moderately high temperature regions of gas turbine engines and any other application employing a thermal barrier coating at moderate temperatures. Ni-35Cr-6Al-1Y, Ni-35Cr-6Al-1Yb, or other metallic alloy denoted as MCrAlx is applied over a zirconia-based thermal barrier overlayer. The close-out layer is glass-bead preened to densify its surface. This seals and protects the thermal barrier coating system.
Origin of hydrogen-inclusion-induced critical current deviation in Nb/AlOx/Al/Nb Josephson junctions
NASA Astrophysics Data System (ADS)
Hinode, Kenji; Satoh, Tetsuro; Nagasawa, Shuichi; Hidaka, Mutsuo
2010-04-01
We investigated the mechanisms that change the critical current density (Jc) of Nb/AlOx/Al/Nb Josephson junctions due to the inclusion of hydrogen in the Nb electrodes. Our investigations were performed according to three aspects: the superconductivity change, the change in thickness of the barrier layer, and the change in the barrier height due to the electronic effect. The results are as follows: (a) the hydrogen-inclusion-accompanied changes in the superconductivity parameters, such as the junction gap voltage, were much less than those of the critical current density, (b) the effect of hydrogen inclusion on Jc varied depending on the electrodes, i.e., the upper electrode above the barrier layer was the most affected, (c) the junctions with increased Ics due to hydrogen exclusion showed the identical amount of decrease in the junction resistance measured at room temperature, and (d) the hydrogen exclusion from the junction electrodes had no influence on the Nb/Al/AlOx/Al/Nb junctions, which had an extra Al layer. Based on these results we conclude that the Jc change is mainly caused by the change in junction resistance. A one order of magnitude smaller effect is caused by the superconductivity change. We believe the Jc change is caused by a Nb work function increase due to the hydrogen inclusion, resulting in an increase in barrier height.
Acoustic impact on the laminated plates placed between barriers
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Gazizullin, R. K.; Fedotenkov, G. V.
2016-11-01
On the basis of previously derived equations, analytical solutions are established on the forced vibrations of two-layer and three-layers rectangular plates hinged in an opening of absolutely rigid walls during the transmission of monoharmonic sound waves. It is assumed that the partition wall is situated between two absolutely rigid barriers, one of them by harmonic oscillation with a given displacements amplitude on the plate forms the incident sound wave, and the other is stationary and has a coating of deformable energy absorbing material with high damping properties. The behavior of acoustic environments in the spaces between the deformable plate and the barriers described by classical wave equation based on the ideal compressible fluid model. To describe the process of dynamic deformation of the energy absorbing coating of fixed barrier, two-dimensional equations of motion based on the use of models transversely soft layer are derived with a linear approximation of the displacement field in the thickness direction of the coating and taking into account the damping properties of the material and the hysteresis model for it. The influence of the physical and mechanical properties of the concerned mechanical system and the frequency of the incident sound wave on the parameters of its insulation properties of the plate, as well as on the parameters of the stress-strain state of the plate has been analyzed.
2015-09-30
effecting the salinity of the upper layer and the formation of the barrier layer (BL) within the isothermal layer. The BL in turn controls vertical mixing...daily values over a month with a 1° horizontal resolution [Reynolds et al., 2002]. Daily data (from Coriolis project) and Monthly gridded Argo
Functionally Graded Multifunctional Hybrid Composites for Extreme Environments
2010-02-01
Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn
NASA Astrophysics Data System (ADS)
Li, Ganglong; Wu, Houya; Luo, Honglong; Chen, Zhuo; Tay, Andrew A. O.; Zhu, Wenhui
2017-09-01
Three-dimensional (3D) integration technology using Cu interconnections has emerged as a promising solution to improve the performance of silicon microelectronic devices. However, Cu diffuses into SiO2 and requires a barrier layer such as Ta to ensure acceptable reliability. In this paper, the effects of temperature and strain normal to the interface on the inter-diffusion of Cu and Ta at annealing conditions are investigated using a molecular dynamics (MD) technique with embedded atomic method (EAM) potentials. Under thermal annealing conditions without strain, it is found that a Cu-rich diffusion region approximately 2 nm thick is formed at 1000 K after 10 ns of annealing. Ta is capable of diffusing into the interior of Cu but Cu hardly diffuses into the inner lattice of Ta. At the Cu side near the interface an amorphous structure is formed due to the process of diffusion. The diffusion activation energy of Cu and Ta are found to be 0.9769 and 0.586 eV, respectively. However, when a strain is applied, a large number of crystal defects are generated in the sample. As the strain is increased, extrinsic stacking faults (ESFs) and lots of Shockley partial dislocations appear. The density of the dislocations and the diffusion channels increase, promoting the diffusion of Cu atoms into the inner lattice of Ta. The thickness of the diffusion layer increases to 4 times the value when only a temperature load of 700 K is applied. The MD simulations demonstrated that Ta is very effective as a barrier layer under thermal loading only, and its effectiveness is impaired by tensile strain at the Cu/Ta interface. The simulations also clarified the mechanism that caused the impairment. The methodology and approach described in this paper can be followed further to study the effectiveness of barrier layers under various annealing and strain conditions, and to determine the minimum thickness of barrier layers required for a particular application.
Methods to improve the PVD coatability of brass by using diffusion barriers
NASA Astrophysics Data System (ADS)
Langer, Bernd
Previous work involving PVD coatings on brass has used a combination of multilayers consisting of electroplated films like nickel or chromium and deposited decorative PVD coatings like TiN, TiAIN or ZrN systems. The disadvantages of these systems are the combination of wet electrochemistry and high tech vacuum processes. Furthermore the allergic reaction to nickel and the toxic nature of Cr(VI) must be considered.There is a need for intermediate layers to 'seal-off the brass in order to avoid the evaporation of zinc in vacuum using a diffusion barrier. Furthermore the intermediate layers are required to act as a corrosion barrier.This thesis reports on the development of PVD coatings on heat sensitive brass substrate materials utilising ABS technology with Al, CuAl8 and Nb targets as vapour sources.The brass pretreatment includes careful grinding, polishing and cleaning steps as well as steered arc metal ion etching using the above target materials. The coatings are produced at temperatures between 100 and 250°C in the unbalanced magnetron mode, including layers made from Al, Al-Nb, CuA18, CuAl8-Nb and Nb.Scratch adhesion and Rockwell indentation tests are found not to be directly applicable to the system of soft brass and ductile coating(s). Therefore a new classification for both scratch and indentation tests was defined. The best adhesion was shown by the CuA18 coatings on brass. Corrosion tests showed good results for the Al coatings and poor results for the pure Nb coatings directly applied on brass. The best corrosion result was obtained with a CuAl8-Nb layer system. This layer system also offers very good barrier behaviour concerning Zn diffusion.Other investigations like Glow Discharge Optical Emission Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) imaging, Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) were undertaken to characterise the new coating systems for brass.
NASA Astrophysics Data System (ADS)
Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.
2018-05-01
A hybrid Landau Lifshitz Gilbert/kinetic Monte Carlo algorithm is used to simulate experimental magnetic hysteresis loops for dual layer exchange coupled composite media. The calculation of the rate coefficients and difficulties arising from low energy barriers, a fundamental problem of the kinetic Monte Carlo method, are discussed and the methodology used to treat them in the present work is described. The results from simulations are compared with experimental vibrating sample magnetometer measurements on dual layer CoPtCrB/CoPtCrSiO media and a quantitative relationship between the thickness of the exchange control layer separating the layers and the effective exchange constant between the layers is obtained. Estimates of the energy barriers separating magnetically reversed states of the individual grains in zero applied field as well as the saturation field at sweep rates relevant to the bit write speeds in magnetic recording are also presented. The significance of this comparison between simulations and experiment and the estimates of the material parameters obtained from it are discussed in relation to optimizing the performance of magnetic storage media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1
In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr
For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2}more » pinned layer. Thus, the TMR ratio peaked at t{sub Fe} = 0.4 nm: i.e., 120% at 29 Ωμm{sup 2}.« less
Gu, Chun-Hong; Wang, Jia-Jun; Yu, Yang; Sun, Hui; Shuai, Ning; Wei, Bing
2013-02-15
A layer-by-layer (LBL) approach was used to assemble alternating layers of sodium alginate (ALG)/polyethyleneimine (PEI) on biaxially oriented poly(lactic acid) (BOPLA) films in order to produce bio-based all-polymer thin films with low gas permeability. Increasing the depositing of ALG and PEI from 0 to 30 layers results in large thickness variations (from 0 to 3.92 μm). After 30 ALG/PEI layers are deposited, the resulting assembly has an OTR of 1.22 cm(3)/(m(2) day atm). When multiplied by thickness, the resulting oxygen permeability (OP) is found to be less than 3.8×10(-17) cm(3) cm/cm(2) s Pa, which is almost 3 orders of magnitude lower than that of uncoated BOPLA film (1.8×10(-14) cm(3)cm/cm(2) s Pa). At the same time, the resulting multilayer-coated BOPLA films maintain high optical clarity and tensile properties. This unique barrier thin film has become a promising alternative to non-biodegradable synthetic food packaging materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong
2014-12-21
Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.
The impact of aging on epithelial barriers.
Parrish, Alan R
2017-10-02
The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.
Willing, Ben; Petersson, Joel; Rang, Sara; Phillipson, Mia; Holm, Lena; Roos, Stefan
2012-01-01
Treatment with the probiotic bacterium Lactobacillus reuteri has been shown to prevent dextran sodium sulfate (DSS)-induced colitis in rats. This is partly due to reduced P-selectin-dependent leukocyte- and platelet-endothelial cell interactions, however, the mechanism behind this protective effect is still unknown. In the present study a combination of culture dependent and molecular based T-RFLP profiling was used to investigate the influence of L. reuteri on the colonic mucosal barrier of DSS treated rats. It was first demonstrated that the two colonic mucus layers of control animals had different bacterial community composition and that fewer bacteria resided in the firmly adherent layer. During DSS induced colitis, the number of bacteria in the inner firmly adherent mucus layer increased and bacterial composition of the two layers no longer differed. In addition, induction of colitis dramatically altered the microbial composition in both firmly and loosely adherent mucus layers. Despite protecting against colitis, treatment with L. reuteri did not improve the integrity of the mucus layer or prevent distortion of the mucus microbiota caused by DSS. However, L. reuteri decreased the bacterial translocation from the intestine to mesenteric lymph nodes during DSS treatment, which might be an important part of the mechanisms by which L. reuteri ameliorates DSS induced colitis. PMID:23029509
Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom
2013-08-14
The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.
Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
Carlson, David E.; Wronski, Christopher R.
1979-01-01
A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.
Surface Modification of Thermal Barrier Coatings by Single-Shot Defocused Laser Treatments
NASA Astrophysics Data System (ADS)
Akdoğan, Vakur; Dokur, Mehmet M.; Göller, Gültekin; Keleş, Özgül
2013-09-01
Thermal barrier coatings (TBC) consisting of atmospheric plasma-sprayed ZrO2-8 wt.% Y2O3 and a high velocity oxygen fuel-sprayed metallic bond coat were subjected to CO2 continuous wave laser treatments. The effects of laser power on TBCs were investigated as was the thermally grown oxide (TGO) layer development of all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. The effects of laser power on TBCs were investigated. TGO layer development was examined on all as-sprayed and laser-treated coatings after thermal oxidation tests in air environment for 50, 100, and 200 h at 1100 °C. Melted and heat-affected zone regions were observed in all the laser-treated samples. Oxidation tests showed a stable alumina layer and mixed spinel oxides in the TGO layers of the as-sprayed and laser-treated TBCs.
Photovoltaic driven multiple quantum well optical modulator
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.
NASA Technical Reports Server (NTRS)
Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.
2014-01-01
To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.
Anticorrosion efficiency of ultrasonically deposited silica coatings on titanium
NASA Astrophysics Data System (ADS)
Ertaş, Fatma Sinem; Kaş, Recep; Mikó, Annamária; Birer, Özgür
2013-07-01
We utilized high intensity ultrasound to prepare coatings of silica and organically modified silica composed of multiple layers of densely packed nanoparticles. Ultrasound was used to collide nanoparticles onto an activated titanium surface with high speed. Large areas could be homogeneously coated by this method. These coatings were characterized by spectroscopy and microscopy methods and the anticorrosion efficiency in NaCl solution was evaluated by electrochemical measurements. The results indicated that the composite coatings provided good quality barrier layer on bare titanium and decreased the anodic corrosion rate. It was found that increase in the organic content of the coating shifted the passivation potential towards more positive direction. The comparison of the impedance results recorded at the corrosion potential pointed out that in each case a good quality barrier layer was formed on the titanium surface. The outstanding corrosion resistance of the composite coatings with only ~200 nm thickness shows that ultrasound assisted deposition can be a competitive method to obtain corrosion protective layers.
Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides
NASA Astrophysics Data System (ADS)
Lu, Haichang; Guo, Yuzheng; Robertson, John
2016-08-01
The Schottky Barrier Heights (SBH) of metal layers on top of monolayer hexagonal X-nitrides (X = B, Al, Ga, and h-XN) are calculated using supercells and density functional theory so as to understand the chemical trends of contact formation on graphene and the 2D layered semiconductors such as the transition metal dichalcogenides. The Fermi level pinning factor S of SBHs on h-BN is calculated to be nearly 1, indicating no pinning. For h-AlN and h-GaN, the calculated pinning factor is about 0.63, less than for h-BN. We attribute this to the formation of stronger, chemisorptive bonds between the nitrides and the contact metal layer. Generally, the h-BN layer remains in a planar sp2 geometry and has weak physisorptive bonds to the metals, whereas h-AlN and h-GaN buckle out of their planar geometry which enables them to form the chemisorptive bonds to the metals.
NASA Astrophysics Data System (ADS)
Karbasian, Golnaz
The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam lithography and lift-off, while atomic layer deposition provides precise control over the thickness of the tunnel barrier and significantly increases the choices for barrier materials. As described below in detail, the fabrication of ultra-thin (~1nm) tunnel transparent barriers with PEALD is in fact challenging; we demonstrate that in fabrication of SETs with PEALD to form the barrier in the Ni-insulator-Ni tunnel junctions, additional NiO layers are parasitically formed in the Ni layers that form the top and bottom electrodes of the tunnel junctions. The NiO on the bottom electrode is formed due to oxidizing effect of the O 2 plasma used in the PEALD process, while the NiO on the bottom of the top electrode is believed to form during the metal deposition due to oxygen-containing contaminants on the surface of the deposited tunnel barrier. We also show that due to the presence of these surface parasitic layers of NiO, the resistance of Ni-insulator-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with the tunnel barrier in series with compound layers of NiO and possibly, NiSixOy. The parasitic component in the tunnel junctions results in conduction freeze-out at low temperatures, deviation of junction parameters from ideal model, and excessive noise in the device. The reduction of NiO to Ni is therefore necessary to restore the metal-insulator-metal structure of the junctions. We have studied forming gas anneal as well as H2 plasma treatment as techniques to reduce the NiO layers that are parasitically formed in the junctions. Using either of these two techniques, we reduced the NiO formed on the island after being covered with the PEALD dielectric and before defining the top source and drain. Later, the NiO formed on the bottom of the source/drain is reduced during a second reducing step after the source/drain are formed on the tunnel barrier. Electrical characterization of SETs that are made with the proposed reducing treatments enable us to study the effect of each reducing process on the properties of the constituent tunnel junctions. In comparison to the junctions annealed twice in forming gas at 400°C, we consistently observed a ~10x higher conductance in devices treated twice with H2 plasma at 300°C. The possible damage to the barrier during the plasma treatment and thermally induced film deformation during the anneal which respectively, is believed to increase and lower the conductance are among the possible cause of this difference. Although both types of treatments were effective in alleviating the effect of the activated components in the junctions, all the devices that were treated by two anneal steps or by two H2 plasma steps (for reducing the top and bottom NiO) show deviations from ideal simulated MIM SET model and suffer from significant random telegraph signal (RTS) noise. However, our results show that by using forming gas anneal for bottom NiO reduction and H2 plasma for the top NiO reduction, one can achieve devices close to ideal MIM SETs with significantly less noise.
Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal-Ceramic Interfaces
2001-01-01
these cases metal - metal bonds were stronger than metal - substrate bonds, thus predicting a 3D (cluster) growth mode as opposed to layer-by-layer...coat layer must be deposited. The top coat serves as the insulator and the bond coat mediates contact between the top coat and metal alloy substrate ...in thermomechanical properties between a YSZ top coat and a metal -alloy substrate is enough to require the introduction of an intermediate layer. This
Encapsulation methods and dielectric layers for organic electrical devices
Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan
2013-07-02
The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602
Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
NASA Astrophysics Data System (ADS)
Singh, Rohit; Arif Khan, Md; Sharma, Pankaj; Than Htay, Myo; Kranti, Abhinav; Mukherjee, Shaibal
2018-04-01
This work reports on the formation of high-density (~1013-1014 cm-2) two-dimensional electron gas (2DEG) in ZnO-based heterostructures, grown by a dual ion beam sputtering system. We probe 2DEG in bilayer MgZnO/ZnO and capped ZnO/MgZnO/ZnO heterostructures utilizing MgZnO barrier layers with varying thickness and Mg content. The effect of the ZnO cap layer thickness on the ZnO/MgZnO/ZnO heterostructure is also studied. Hall measurements demonstrate that the addition of a 5 nm ZnO cap layer results in an enhancement of the 2DEG density by about 1.5 times compared to 1.11 × 1014 cm-2 for the uncapped bilayer heterostructure with the same 30 nm barrier thickness and 30 at.% Mg composition in the barrier layer. From the low-temperature Hall measurement, the sheet carrier concentration and mobility are both found to be independent of the temperature. The capacitance-voltage measurement suggests a carrier density of ~1020 cm-3, confined in 2DEG at the MgZnO/ZnO heterointerface. The results presented are significant for the optimization of 2DEG for the eventual realization of cost-effective and large-area MgZnO/ZnO-based high-electron-mobility transistors.
Jiang, J S; Pearson, J E; Bader, S D
2011-04-15
Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J. S.; Pearson, J. E.; Bader, S. D.
2011-04-15
Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq{sub 3} with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Namsu, E-mail: nkim@keti.re.kr; Components and Materials Physics Research Center, #68 Yatop-dong, Korea Electronics Technology Institute, Bundang-gu, 463-816; Graham, Samuel
2014-10-15
Highlights: • High performance thin-film barrier structure for encapsulation was fabricated. • By annealing parylene in encapsulation structure, the barrier performance was improved. • The effective water vapor transmission rate is 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day. - Abstract: A multilayered barrier structure was fabricated by chemical vapor deposition of parylene and subsequent plasma-enhanced chemical vapor deposition of SiO{sub x} or SiN{sub x}. The barrier performance against water vapor ingress was significantly improved by annealing the parylene layer before the deposition of either SiO{sub x} or SiN{sub x}. The mechanism of this enhancement was investigated using atomic forcemore » microscopy, Raman spectroscopy, and X-ray diffraction. The surface roughness of the parylene before the deposition of either SiO{sub x} or SiN{sub x} was found to correlate closely with the barrier performance of the multilayered structures. In addition, removing absorbed water vapor in the film by annealing results in a lower water vapor transmission rate in the transient region and a longer lag time. Annealing the parylene leads to a large decrease in the effective water vapor transmission rate, which reaches 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day.« less
Environmentally stable reactive alloy powders and method of making same
Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.
1998-09-22
Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.
NASA Technical Reports Server (NTRS)
Lee, Kang N.; King, Deboran (Technical Monitor)
2001-01-01
Current environmental barrier coatings (EBCs) consist of multiple layers, with each layer having unique properties to meet the various requirements for successful EBCs. As a result, chemical and thermal expansion compatibility between layers becomes an important issue to maintaining durability. Key constituents in current EBCs are mullite (3Al2O3-2SiO2), BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2), and YSZ (ZrO2-8 wt.% Y2O3). The mullite-BSAS combination appears benign although significant diffusion occurs. Mullite-YSZ and BSAS-YSZ combinations do not react up to 1500 C. Thermally grown SiO2- BSAS and mullite-BSAS-YSZ combinations are most detrimental, forming low melting glasses. Thermal expansion mismatch between YSZ and mullite or BSAS causes severe cracking and delamination.
Molecular assemblies as protective barriers and adhesion promotion interlayer
King, David E.; Czanderna, Alvin W.; Kennedy, Cheryl E.
1996-01-01
A protective diffusion barrier having adhesive qualifies for metalized surfaces is provided by a passivating agent having the formula HS--(CH.sub.2).sub.11 --COOH Which forms a very dense, transparent organized molecular assembly or layer that is impervious to water, alkali, and other impurities and corrosive substances that typically attack metal surfaces.
Comparative study of I- V methods to extract Au/FePc/p-Si Schottky barrier diode parameters
NASA Astrophysics Data System (ADS)
Oruç, Çiğdem; Altındal, Ahmet
2018-01-01
So far, various methods have been proposed to extract the Schottky diode parameters from measured current-voltage characteristics. In this work, Schottky barrier diode with structure of Au/2(3),9(10),16(17),23(24)-tetra(4-(4-methoxyphenyl)-8-methylcoumarin-7 oxy) phthalocyaninatoiron(II) (FePc)/p-Si was fabricated and current-voltage measurements were carried out on it. In addition, current-voltage measurements were also performed on Au/p-Si structure, without FePc, to clarify the influence of the presence of an interface layer on the device performance. The measured current-voltage characteristics indicate that the interface properties of a Schottky barrier diode can be controlled by the presence of an organic interface layer. It is found that the room temperature barrier height of Au/FePc/p-Si structure is larger than that of the Au/p-Si structure. The obtained forward bias current-voltage characteristics of the Au/FePc/p-Si device was analysed by five different analytical methods. It is found that the extracted values of SBD parameters strongly depends on the method used.
An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings
Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang
2018-01-01
Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Kenji, E-mail: kkondo@es.hokudai.ac.jp
In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thicknessmore » and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle θ, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.« less
Light management in flexible OLEDs
NASA Astrophysics Data System (ADS)
Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan
2014-10-01
Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Paradis, E. L.; Veltri, R. D.
1973-01-01
A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.
Pujari, Vimal K.; Vartabedian, Ara; Collins, William T.; Woolley, David; Bateman, Charles
2012-12-18
The present invention relates generally to a multi-layered article suitable for service in severe environments. The article may be formed of a substrate, such as silicon carbide and/or silicon nitride. The substrate may have a first layer of a mixture of a rare earth silicate and Cordierite. The substrate may also have a second layer of a rare earth silicate or a mixture of a rare earth silicate and cordierite.
Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers
Chang, Y. Austin; Yang, Jianhua Joshua
2008-11-11
This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.
nBn Infrared Detector Containing Graded Absorption Layer
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.
2009-01-01
It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.
Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee
2017-02-08
As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS 2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO 2 ) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (α SC ) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO 2 provides the suppression of α SC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO 2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS 2 contact region.
Reactive composite compositions and mat barriers
Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.
2001-01-01
A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.
Metallographic techniques for evaluation of thermal barrier coatings
NASA Technical Reports Server (NTRS)
Brindley, William J.; Leonhardt, Todd A.
1990-01-01
The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.
Thermal barrier coatings for turbine components
Subramanian, Ramesh; Sabol, Stephen M.; Goedjen, John G.; Sloan, Kelly M.; Vance, Steven J.
2002-01-01
A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO.sub.3, NdAlO.sub.3, La.sub.2 Hf.sub.2 O.sub.7, Dy.sub.3 Al.sub.5 O.sub.12, HO.sub.3 Al.sub.3 O.sub.12, ErAlO.sub.3, GdAlO.sub.3, Yb.sub.2 Ti.sub.2 O.sub.7, LaYbO.sub.3, Gd.sub.2 Hf.sub.2 O.sub.7 or Y.sub.3 Al.sub.5 O.sub.12.
NASA Astrophysics Data System (ADS)
Chen, Sung-Te; Cheng, Yu-Syun; Chang, Yiu-Hsiang; Yang, Tzu-Ming; Lee, Jyun-Ting; Chen, Giin-Shan
2018-05-01
In this paper, we present the method and results of electroless plating of through-silicon via (TSV) contacts using Ni nanoparticle seeds on self-assembled monolayers (SAMs). This approach where the nanoparticles are evenly distributed and stabilized on the SAM allows the successive electroless metallization schemes such as Co-alloy barrier and Cu plug used typically in TSV as interconnects. The seeding was tested on SiO2 layers with surfaces functionalized by an amino-based aminopropyltrimethoxysilane (APTMS) SAM. APTMS-SAM after a suitable SC-1 treatment yielded a remarkably good barrier layer, with high adhesion strength (70 MPa) and low electrical resistivity (28 μΩ-cm). Moreover, the SAM assisted seeding protocol was followed by an ultrasonic-assisted (or mechanically agitated) electroless-plating stage together with a relatively simple plating solution. Conformal plating of Co-alloy barrier and seem/void-free Cu-plug filling into high-aspect-ratio TSVs (>10) was only achieved by using an ultrasonic-assisted plating process. The SAM layers were characterized by X-ray photoelectron spectroscopy to elucidate the surface functionalization effect.
Impact of humidity on functionality of on-paper printed electronics.
Bollström, Roger; Pettersson, Fredrik; Dolietis, Peter; Preston, Janet; Osterbacka, Ronald; Toivakka, Martti
2014-03-07
A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.
Oxidation behavior of thermal barrier coating systems with Al interlayer under isothermal loading
NASA Astrophysics Data System (ADS)
Ali, I.; Sokołowski, P.; Grund, T.; Pawłowski, L.; Lampke, T.
2018-06-01
In the present study, the phenomena related to the Thermally Grown Oxides (TGO) in atmospheric plasma sprayed Thermal Barrier Coatings (TBCs) are discussed. CoNiCrAlY bond coatings were sprayed on Inconel 600 substrates. Subsequently, thin Al layers were deposited by DC-Magnetron sputtering. Finally, yttria-stabilized zirconia (YSZ) top coatings were deposited to form a three-layered TBC system. The thus produced aluminum interlayer containing thermal barrier coatings (Al-TBC) were subjected to isothermal exposure with different holding times at 1150 °C and compared with reference TBCs of the same kind, but without Al interlayers (R-TBC). The oxide film formation in the interface between bond coating (BC) and top coating (TC) was investigated by scanning electron microscope (SEM) after 100 and 300 h of high temperature isothermal exposure. The growth of this oxide film as a function of the isothermal exposure time was studied. As a result, the designed Al-TBC system exhibited better oxidation resistance in the BC/TC interface than the two-layered R-TBC system. This was lead back to the Al enrichment, which slows down the formation rate of transition metal oxides during thermal loading.
Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures
NASA Astrophysics Data System (ADS)
Kuiri, Manabendra; Chakraborty, Biswanath; Paul, Arup; Das, Subhadip; Sood, A. K.; Das, Anindya
2016-02-01
MoTe2 with a narrow band-gap of ˜1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1 mA W-1). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of ˜20 mA W-1. The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be ˜(0.5-1) × 105. The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating.
Disease Localization in Multilayer Networks
NASA Astrophysics Data System (ADS)
de Arruda, Guilherme Ferraz; Cozzo, Emanuele; Peixoto, Tiago P.; Rodrigues, Francisco A.; Moreno, Yamir
2017-01-01
We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. At variance with what is observed in single-layer networks, we show that disease localization takes place on the layers and not on the nodes of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems, opening new possibilities for the study of spreading processes.
Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
David M. Dean
2012-10-30
Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is themore » key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.« less
Su, Jie; Feng, Liping; Zeng, Wei; Liu, Zhengtang
2017-06-08
Metal/insertion-MoS 2 sandwich interfaces are designed to reduce the Schottky barriers at metal-MoS 2 interfaces. The effects of geometric and electronic structures of two-dimensional (2D) insertion materials on the contact properties of metal/insertion-MoS 2 interfaces are comparatively studied by first-principles calculations. Regardless of the geometric and electronic structures of 2D insertion materials, Fermi level pinning effects and charge scattering at the metal/insertion-MoS 2 interface are weakened due to weak interactions between the insertion and MoS 2 layers, no gap states and negligible structural deformations for MoS 2 layers. The Schottky barriers at metal/insertion-MoS 2 interfaces are induced by three interface dipoles and four potential steps that are determined by the charge transfers and structural deformations of 2D insertion materials. The lower the electron affinities of 2D insertion materials, the more are the electrons lost from the Sc surface, resulting in lower n-type Schottky barriers at Sc/insertion-MoS 2 interfaces. The larger the ionization potentials and the thinner the thicknesses of 2D insertion materials, the fewer are the electrons that accumulate at the Pt surface, leading to lower p-type Schottky barriers at Pt/insertion-MoS 2 interfaces. All Sc/insertion-MoS 2 interfaces exhibited ohmic characters. The Pt/BN-MoS 2 interface exhibits the lowest p-type Schottky barrier of 0.52 eV due to the largest ionization potential (∼6.88 eV) and the thinnest thickness (single atomic layer thickness) of BN. These results in this work are beneficial to understand and design high performance metal/insertion-MoS 2 interfaces through 2D insertion materials.
Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, A. M., E-mail: zam@plasma.mephi.ru; Dvoichenkova, O. A.; Evsin, A. E.
The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.
NASA Astrophysics Data System (ADS)
Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.
2018-04-01
The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1- x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K
Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert
2002-01-01
A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.
High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1-x Te with a Converted Near-Surface Layer
NASA Astrophysics Data System (ADS)
Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.
2018-04-01
The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1-x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K
Wang, Hualin; Chen, Minmin; Jin, Chongyang; Niu, Baicheng; Jiang, Suwei; Li, Xingjiang; Jiang, Shaotong
2018-01-24
The objective of present work was to construct antibacterial [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized reduced graphene oxide/poly(ethylene-co-vinyl alcohol) (MTAC-rGO/EVOH) multilayer barrier films by using layer-by-layer assembly under a parallel electric field. Besides barrier and mechanical properties, the antibacterial activities of the film and cytotoxicity of MTAC-rGO nanosheets were extensively investigated. The functionalization of rGO was achieved by grafting MTAC onto a graphene framework through C (sp 3 )-C bonds. The assembly of MTAC-rGO on the EVOH matrix not only significantly improved film mechanical strength, but also endowed the targeting film with outstanding moisture barrier even under a relative humidity of 99% (e.g., 0.019 g m -2 s -1 atm -1 for (MTAC-rGO/EVOH) 20 ) besides good oxygen barrier (e.g., 0.07 cm 3 m -2 d -1 atm -1 for (MTAC-rGO/EVOH) 20 ). Among the testing films, MTAC-rGO/EVOH film had the best antibacterial activity, and the activity against S. aureus was better than E. coli. Meanwhile, the cytotoxicity of MTAC-rGO nanosheets was very low. Results suggest that MTAC-rGO/EVOH film may have great potential in food active packaging.
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2010-05-18
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Biochars impact on water infiltration and water quality through a compacted subsoil layer
USDA-ARS?s Scientific Manuscript database
Soils in the Southeastern United States Coastal Plain region frequently have a compacted subsoil layer, which is a barrier for water movement. Four different biochars were evaluated to increase water movement through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Ka...
Biochar impact on water infiltration and water quality through a compacted subsoil layer
Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic...
NASA Astrophysics Data System (ADS)
Gupta, Mohit; Kumara, Chamara; Nylén, Per
2017-08-01
Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
Molecular assemblies as protective barriers and adhesion promotion interlayer
King, D.E.; Czanderna, A.W.; Kennedy, C.E.
1996-01-30
A protective diffusion barrier having adhesive qualities for metalized surfaces is provided by a passivating agent having the formula HS--(CH{sub 2}){sub 11}--COOH which forms a very dense, transparent organized molecular assembly or layer that is impervious to water, alkali, and other impurities and corrosive substances that typically attack metal surfaces. 8 figs.
Plastic Schottky barrier solar cells
Waldrop, James R.; Cohen, Marshall J.
1984-01-24
A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.
Nb/Al-AlOx/Nb Edge Junctions for Distributed Mixers
NASA Astrophysics Data System (ADS)
Amos, R. S.; Lichtenberger, A. W.; Tong, C. E.; Blundell, R.; Pan, S.-K.; Kerr, A. R.
We have fabricated high quality Nb/Al-oxide/Al/Nb edge junctions using a Nb/SiO/sub 2/ bi-layer film as the base electrode, suitable for use as traveling wave mixers. An edge is cut in the bi-layer with an ion gun at a 45 degree angle using a photoresist mask. The wafer is then cleaned in-situ with a physical ion gun clean followed by the deposition of a thin Al (a1) film, which is then thermally oxidized, an optional second Al (a2) layer, and a Nb counter electrode. It was found that devices with an a2 layer resulted in superior electrical characteristics, though proximity effects increased strongly with a2 thickness. The counter electrode is defined with an SF/sub 6/+N/sub 2/ reactive ion etch, using the Al barrier layer as an etch stop. The Al barrier layer is then either removed with an Al wet etch to isolate the individual devices, or the devices are separated with an anodization process. Various ion gun cleaning conditions have been examined; in addition, both wet and plasma etch bi-layer edge surface pre-treatments were investigated. It was found that edge junctions with large widths (i.e., those more suitable for traveling wave mixers) typically benefited more from such treatments. Initial receiver results at 260 GHz have yielded a DSB noise temperature of 60 K.
Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding.
Ortega-Toro, Rodrigo; Morey, Iris; Talens, Pau; Chiralt, Amparo
2015-08-20
Bilayer films consisting of one layer of PCL with either one of thermoplastic starch (S) or one of thermoplastic starch with 5% PCL (S95) were obtained by compression molding. Before compression, aqueous solutions of ascorbic acid or potassium sorbate were sprayed onto the S or S95 layers in order to plasticize them and favor layer adhesion. S95 films formed bilayers with PCL with very good adhesion and good mechanical performance, especially when potassium sorbate was added at the interface. All bilayers enhanced their barrier properties to water vapour (up to 96% compared to net starch films) and oxygen (up to 99% compared to PCL pure). Bilayers consisting of PCL and starch containing 5% PCL, with potassium sorbate at the interface, showed the best mechanical and barrier properties and interfacial adhesion while having active properties, associated with the antimicrobial action of potassium sorbate. Copyright © 2015 Elsevier Ltd. All rights reserved.
High temperature cooling system and method
Loewen, Eric P.
2006-12-12
A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.
NASA Astrophysics Data System (ADS)
Chytiri, Stavroula; Goulas, Antonios E.; Badeka, Anastasia; Riganakos, Kyriakos A.; Petridis, Dimitrios; Kontominas, Michael G.
2008-09-01
Volatile and non-volatile radiolysis products and sensory changes of five-layer food packaging films have been determined after gamma irradiation (5-60 kGy). Barrier films were based on polyamide (PA) and low-density polyethylene (LDPE). Each film contained a middle buried layer of recycled LDPE or 100% virgin LDPE (control samples). Data showed that a large number of radiolysis products were produced such as hydrocarbons, alcohols, carbonyl compounds, carboxylic acid. These compounds were detected in the food simulant after contact with all films even at the lower absorbed doses of 5 and 10 kGy. The type and concentration of radiolysis products increased progressively with radiation dose, while no new compounds were detected as a result of the presence of recycled LDPE. In addition, irradiation dose appears to influence the sensory properties of table water in contact with films.
NASA Astrophysics Data System (ADS)
Choi, Wookjin; Inoue, Junichi; Tsutsui, Yusuke; Sakurai, Tsuneaki; Seki, Shu
2017-11-01
A unique concerted analysis comprising non-contact microwave conductivity measurements and impedance spectroscopy was developed to simultaneously assess the charge carrier mobility and injection barriers. The frequency dependence of the microwave conductivity as well as the electrical current was analyzed by applying sinusoidal voltage to determine the equivalent circuit parameters. Based on the temperature dependence of the circuit parameters, the energy of the injection barrier was estimated to be 0.4 eV with the Richardson-Schottky model, and the band-like transport was confirmed with the negative temperature coefficient with the β value of 1.4 in the intra-layer conduction of C8-BTBT. In contrast, the increase in the resistance of the C8-BTBT layer with decreasing temperature implied the occurrence of hopping-like transport in the inter-layer conduction of C8-BTBT.
NASA Technical Reports Server (NTRS)
Stecura, S.
1978-01-01
Currently proposed thermal barrier systems for aircraft gas turbine engines consist of NiCrAlY bond coating covered with an insulating oxide layer of yttria-stabilized zirconia. The effect of yttrium concentration (from 0.15 to 1.08 w/o) in the bond coating and the yttria concentration (4 to 24.4 w/o) in the oxide layer were evaluated. Furnace, natural gas-oxygen torch, and Mach 1.0 burner rig cyclic tests on solid specimens and air-cooled blades were used to identify trends in coating behavior. Results indicate that the combinations of yttrium levels between 0.15 - 0.35 w/o in the bond coating and the yttria concentration between 6 - 8 w/o in the zirconium oxide layer were the most adherent and resistant to high temperature cyclic exposure.
Increasing Saturated Electron-Drift Velocity in Donor-Acceptor Doped pHEMT Heterostructures
NASA Astrophysics Data System (ADS)
Protasov, D. Yu.; Gulyaev, D. V.; Bakarov, A. K.; Toropov, A. I.; Erofeev, E. V.; Zhuravlev, K. S.
2018-03-01
Field dependences of the electron-drift velocity in typical pseudomorphic high-electron-mobility transistor (pHEMT) heteroepitaxial structures (HESs) and in those with donor-acceptor doped (DApHEMT) heterostructures with quantum-well (QW) depth increased by 0.8-0.9 eV with the aid of acceptor layers have been studied by a pulsed technique. It is established that the saturated electron-drift velocity in DA-pHEMT-HESs is 1.2-1.3 times greater than that in the usual pHEMT-HESs. The electroluminescence (EL) spectra of DA-pHEMT-HESs do not contain emission bands related to the recombination in widebandgap layers (QW barriers). The EL intensity in these HESs is not saturated with increasing electric field. This is indicative of a suppressed real-space transfer of hot electrons from QW to barrier layers, which accounts for the observed increase in the saturated electron-drift velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.
A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity formore » the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.« less
Zhang, Chaoyang; Cao, Xia; Xiang, Bin
2012-04-01
We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.
Radiation-tolerant imaging device
Colella, N.J.; Kimbrough, J.R.
1996-11-19
A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO{sub 2} insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron`s generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO{sub 2} layer. 7 figs.
Radiation-tolerant imaging device
Colella, Nicholas J.; Kimbrough, Joseph R.
1996-01-01
A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO.sub.2 insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron's generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO.sub.2 layer.
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.
Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael
2015-10-01
It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi
2018-03-01
We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.
NASA Astrophysics Data System (ADS)
Rogilo, D. I.; Fedina, L. I.; Kosolobov, S. S.; Ranguelov, B. S.; Latyshev, A. V.
2017-01-01
Initial and late stages of 2D Si island nucleation and growth (2DNG) on extra-large ( 100 μm) and medium size (1-10 μm) atomically flat Si(111)-(7×7) terraces bordered by step bunches have been studied by in situ REM at T =600-750 °С. At first, the layer-by-layer 2DNG takes place on whole terraces and 2D island concentration dependence on deposition rate R corresponds to critical nucleus size i =1. Continuous 2DNG triggers morphological instabilities: elongated pyramidlike waves and separate pyramids emerge on all terraces at T ≤720 °С and T =750 °С, respectively. Both instabilities arise due to the imbalance of uphill/downhill adatom currents related with large Ehrlich-Schwöbel (ES) barriers and permeability of straight [ 11 bar 2 ] -type step edges. However, the first one is initiated by dominant downhill adatom current to distant sinks: bunches, wave's step edges, and "vacancy" islands emerging on terraces due to 2D island coalescence. As a result, top layer size decreases to the critical terrace width λ where 2DNG takes place. From the analysis of λ ∝ R - χ / 2 scaling at T =650 °C, we have found that i increases from i =2 on a three-layer wave to i =6-8 on a six-layer wave. This authenticates the significance of downhill adatom sink to distant steps related to the step permeability. The second instability type at T >720 °C is related to the raising of uphill adatom current due to slightly larger ES barrier for step-up attachment comparing to the step-down one (EES- 0.9 eV [Phys. Rev. Lett. 111 (2013) 036105]). This leads to "second layer" 2D nucleation on top layers, which triggers the growth of separate pyramids. Because of small difference between ES barriers, net uphill/downhill adatom currents are nearly equivalent, and therefore layer coverage distributions of both instabilities display similar linear slopes.
NASA Astrophysics Data System (ADS)
Kawai, E.; Umeno, Y.
2017-05-01
As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhenyu, E-mail: jiangzhenyu1201@hotmail.com, E-mail: jianxu@engr.psu.edu; Liu, Yan; Mo, Chen
In an attempt to suppress the dark current, the barrier layer engineer for solution-processed PbSe colloidal quantum-dot (CQD) photodetectors has been investigated in the present study. It was found that the dark current can be significantly suppressed by implementing two types of carrier blocking layers, namely, hole blocking layer and electron blocking layer, sandwiched in between two active PbSe CQD layers. Meanwhile no adverse impact has been observed for the photo current. Our study suggests that this improvement resides on the transport pathway created via carrier recombination at intermediate layer, which provides wide implications for the suppression of dark currentmore » for infrared photodetectors.« less
Tunneling magnetoresistance sensors with different coupled free layers
NASA Astrophysics Data System (ADS)
Liu, Yen-Fu; Yin, Xiaolu; Yang, Yi; Ewing, Dan; De Rego, Paul J.; Liou, Sy-Hwang
2017-05-01
Large differences of magnetic coercivity (HC), exchange coupling field (HE), and tunneling magnetoresistance ratio (TMR) in magnetic tunnel junctions with different coupled free layers are discussed. We demonstrate that the magnetization behavior of the free layer is not only dominated by the interfacial barrier layer but also affected largely by the magnetic or non-magnetic coupled free layers. All these parameters are sensitively controlled by the magnetic nanostructure, which can be tuned also by the magnetic annealing process. The optimized sensors exhibit a large field sensitivity of up to 261%/mT in the region of the reversal synthetic ferrimagnet at the pinned layers.
High temperature insulation barrier composite
NASA Technical Reports Server (NTRS)
Onstott, Joseph W. (Inventor)
1989-01-01
A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S.; Dey, S.; Yu, K.
2016-01-01
Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yablonsky, A. N., E-mail: yablonsk@ipmras.ru; Zhukavin, R. Kh.; Bekin, N. A.
For SiGe/Si(001) epitaxial structures with two nonequivalent SiGe quantum wells separated by a thin Si barrier, the spectral and time characteristics of interband photoluminescence corresponding to the radiative recombination of excitons in quantum wells are studied. For a series of structures with two SiGe quantum wells different in width, the characteristic time of tunneling of charge carriers (holes) from the narrow quantum well, distinguished by a higher exciton recombination energy, to the wide quantum well is determined as a function of the Si barrier thickness. It is shown that the time of tunneling of holes between the Si{sub 0.8}5Ge{sub 0.15}more » layers with thicknesses of 3 and 9 nm steadily decreases from ~500 to <5 ns, as the Si barrier thickness is reduced from 16 to 8 nm. At intermediate Si barrier thicknesses, an increase in the photoluminescence signal from the wide quantum well is observed, with a characteristic time of the same order of magnitude as the luminescence decay time of the narrow quantum well. This supports the observation of the effect of the tunneling of holes from the narrow to the wide quantum well. A strong dependence of the tunneling time of holes on the Ge content in the SiGe layers at the same thickness of the Si barrier between quantum wells is observed, which is attributed to an increase in the effective Si barrier height.« less
NASA Technical Reports Server (NTRS)
1993-01-01
In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.
P-Compensated and P-Doped Superlattice Infrared Detectors
NASA Technical Reports Server (NTRS)
Khoshakhlagh, Arezou (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)
2017-01-01
Barrier infrared detectors configured to operate in the long-wave (LW) infrared regime are provided. The barrier infrared detector systems may be configured as pin, pbp, barrier and double heterostructrure infrared detectors incorporating optimized p-doped absorbers capable of taking advantage of high mobility (electron) minority carriers. The absorber may be a p-doped Ga-free InAs/InAsSb material. The p-doping may be accomplished by optimizing the Be doping levels used in the absorber material. The barrier infrared detectors may incorporate individual superlattice layers having narrower periodicity and optimization of Sb composition to achieve cutoff wavelengths of.about.10.mu.m.
Lightweight flywheel containment
Smith, James R.
2001-01-01
A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.
Lightweight flywheel containment
Smith, James R.
2004-06-29
A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.
Van Gordon, Samuel; Tyler, Karl; Kropp, Bradley; Towner, Rheal; Lin, HsuehKung; Marentette, John O.; McHowat, Jane; Mohammedi, Ehsan; Greenwood-Van Meerveld, Beverley
2016-01-01
Loss of integrity of the protective impermeability barrier in the urothelium has been identified as significant in bladder dysfunction. In this study, we tested the theory that the luminal layer of glycosaminoglycans (GAG) serves as an important component of barrier function. The peptide polycation protamine sulfate (PS), 1 mg/ml, was instilled intravesically for 10 min into rat bladders. Chondroitinase ABC (ChABC), 63 IU/ml, was instilled into an additional six rats for 30 min to digest the GAG layer. Unmanipulated controls and sham-injected controls were also performed. After 24 h, the rats were euthanized, the bladders were removed, and permeability was assessed in the Ussing chamber and by diffusion of FITC-labeled dextran (4 kDa) to measure macromolecular permeability. The status of tight junctions was assessed by immunofluorescence and electron microscopy. In control and sham treated rat bladders, the transepithelial electrical resistance were means of 2.5 ± 1.1 vs. 2.6 ± 1.1 vs 1.2 ± 0.5 and 1.01 ± 0.7 kΩ·cm2 in the PS-treated and ChABC-treated rat bladders (P = 0.0016 and P = 0.0039, respectively). Similar differences were seen in dextran permeability. Histopathology showed a mild inflammation following PS treatment, but the ChABC-treated bladders were indistinguishable from controls. Tight junctions generally remained intact. ChABC digestion alone induced bladder permeability, confirming the importance of the GAG layer to bladder barrier function and supports that loss of the GAG layer seen in bladder biopsies of interstitial cystitis patients could be a significant factor producing symptoms for at least some interstitial cystitis/painful bladder syndrome patients. PMID:26911855
Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.
Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P
2015-11-11
We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current.
Thermal barrier coating resistant to sintering
Subramanian, Ramesh; Seth, Brig B.
2005-08-23
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.
2015-07-01
phosphate) and renewable materials such as chitosan , phytic acid and graphene oxide [18–26]. However, polysiloxane containing FR materials have...98:627–634. 24. Laufer G, Kirkland C, Cain AA, Grunlan JC. Clay– chitosan nanobrick walls: completely renewable gas barrier and flame-retardant
NASA Astrophysics Data System (ADS)
Lin, Xiao; Yang, Xiaoming; Tan, Lili; Li, Mei; Wang, Xin; Zhang, Yu; Yang, Ke; Hu, Zhuangqi; Qiu, Jianhong
2014-01-01
Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.
Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C. H.; Cheng, Y. H.; Ko, C. W.
2015-10-12
This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed tomore » the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.« less
[Recent studies on corneal epithelial barrier function].
Liu, F F; Li, W; Liu, Z G; Chen, W S
2016-08-01
Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635).
NASA Astrophysics Data System (ADS)
Truman, James Kelly
1992-01-01
The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.
Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Zhu, Dongming
2005-01-01
Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.
Hurrell, Andrew M
2008-06-01
The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.
Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouchi, Ryo, E-mail: r-nouchi@21c.osakafu-u.ac.jp
2016-08-14
Ultrathin two-dimensional semiconductors obtained from layered transition-metal dichalcogenides such as molybdenum disulfide (MoS{sub 2}) are promising for ultimately scaled transistors beyond Si. Although the shortening of the semiconductor channel is widely studied, the narrowing of the channel, which should also be important for scaling down the transistor, has been examined to a lesser degree thus far. In this study, the impact of narrowing on mechanically exfoliated MoS{sub 2} flakes was investigated according to the channel-width-dependent Schottky barrier heights at Cr/Au contacts. Narrower channels were found to possess a higher Schottky barrier height, which is ascribed to the edge-induced band bendingmore » in MoS{sub 2}. The higher barrier heights degrade the transistor performance as a higher electrode-contact resistance. Theoretical analyses based on Poisson's equation showed that the edge-induced effect can be alleviated by a high dopant impurity concentration, but this strategy should be limited to channel widths of roughly 0.7 μm because of the impurity-induced charge-carrier mobility degradation. Therefore, proper termination of the dangling bonds at the edges should be necessary for aggressive scaling with layered semiconductors.« less
On electrode pinning and charge blocking layers in organic solar cells
NASA Astrophysics Data System (ADS)
Magen, Osnat; Tessler, Nir
2017-05-01
We use device modelling for studying the losses introduced by metallic electrodes in organic solar cells' device structure. We first discuss the inclusion of pinning at the integer charge transfer state in device models, with and without using the image charge potential. In the presence of disorder, the space charge introduced due to the image potential enhances the pinning by more than 0.2 eV. The explicit introduction of the image potential creates band-gap narrowing at the contact, thus affecting both dark leakage current and photo conversion efficiency. We find that there are two regimes in which the contacts may limit the performance. For low (moderate) barriers, the contacts introduce minority carrier recombination at the contacts that adds to the bulk recombination channels. Only for high barriers, the contacts directly limit the open circuit voltage and impose a value that is equal to the contact's energy difference. Examining the device structures with blocking layers, we find that these are mainly useful for the low to moderate contacts' barriers and that for the high barrier case, the enhancement of open circuit voltage may be accompanied by the introduction of serial resistance or S shape.
Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation
NASA Astrophysics Data System (ADS)
Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.
2006-11-01
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
Reducing the Schottky barrier between few-layer MoTe2 and gold
NASA Astrophysics Data System (ADS)
Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew
2017-12-01
Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yujue; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn
2015-01-21
InGaN-based light-emitting diodes (LEDs) with some specific designs on the quantum barrier layers by alternating InGaN barriers with GaN barriers are proposed and studied numerically. In the proposed structure, simulation results show that the carriers are widely dispersed in the multi-quantum well active region, and the radiative recombination rate is efficiently improved and the electron leakage is suppressed accordingly, due to the appropriate band engineering. The internal quantum efficiency and light-output power are thus markedly enhanced and the efficiency droop is smaller, compared to the original structures with GaN barriers or InGaN barriers. Moreover, the gradually decrease of indium compositionmore » in the alternating quantum barriers can further promote the LED performance because of the more uniform carrier distribution, which provides us a simple but highly effective approach for high-performance LED applications.« less
Making AlN(x) Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Kleinsasser, Alan; Bumble, Bruce; LeDuc, Henry; Lee, Karen
2005-01-01
A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlN(x)) for use as tunnel barriers in Nb/Al-AlN(x)/Nb superconductor/insulator/ superconductor (SIS) Josephson junctions. AlN(x) is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability. While ultra-thin AlN films with good thickness and stoichiometry control are easily formed using techniques such as reactive molecular beam epitaxy and chemical vapor deposition, growth temperatures of 900 C are necessary for the dissociative adsorption of nitrogen from either nitrogen (N2) or ammonia (NH3). These growth temperatures are prohibitively high for the formation of tunnel barriers on Nb films because interfacial reactions at temperatures as low as 200 to 300 C degrade device properties. Heretofore, deposition by reactive sputtering and nitridation of thin Al layers with DC and RF nitrogen plasmas have been successfully used to form AlN barriers in SIS junctions. However, precise control over critical current density Jc has proven to be a challenge, as is attaining adequate process reproducibility from system to system. The present ion-beam technique is an alternative to the plasma or reactive sputtering techniques as it provides a highly controlled arrival of reactive species, independent of the electrical conditions of the substrate or vacuum chamber. Independent and accurate control of parameters such as ion energy, flux, species, and direction promises more precise control of film characteristics such as stoichiometry and thickness than is the case with typical plasma processes. In particular, the background pressure during ion-beam nitride growth is 2 or 3 orders of magnitude lower, minimizing the formation of compounds with contaminants, which is critical in devices the performance of which is dictated by interfacial characteristics. In addition, the flux of incoming species can be measured in situ using ion probes so that the dose can be controlled accurately. The apparatus used in the present ion-beam technique includes a vacuum chamber containing a commercial collimated- ion-beam source, a supply of nitrogen and argon, and an ion probe for measuring the ion dose. Either argon or nitrogen can be used as the feed gases for the ion source, depending on whether cleaning of the substrate or growth of the nitride, respectively, is desired. Once the Nb base electrode and Al proximity layer have been deposited, the N2 gas line to the ion beam is vented and purged, and the ion-source is turned on until a stable discharge is obtained. The substrate is moved over the ion-beam source to expose the Al surface layer to the ion beam (see figure) for a specified duration for the formation of the nitride tunnel barrier. Next, the Nb counter-electrode layer is deposited on the nitride surface layer. The Nb/Al- AlN(x)/Nb-trilayer-covered substrate is then patterned into individual devices by use of conventional integrated-circuit processing techniques.
Advanced cooling techniques for high-pressure hydrocarbon-fueled engines
NASA Technical Reports Server (NTRS)
Cook, R. T.
1979-01-01
The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.
Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films
NASA Astrophysics Data System (ADS)
Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping
2012-02-01
Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.
Geonnotti, Anthony R; Katz, David F
2006-09-15
Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.
Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.
Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua
2018-02-01
As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.
Numerical analysis of similarity of barrier discharges in the 0.95 Ne/0.05 Xe mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avtaeva, S. V.; Kulumbaev, E. B.
2009-04-15
Established dynamic regimes of similar (with a scale factor of 10) barrier discharges in the 0.95 Ne/0.05 Xe mixture are simulated in a one-dimensional drift-diffusion model. The similarity is examined of barrier discharges excited in gaps of lengths 0.4 and 4 mm at gas pressures of 350 and 35 Torr and dielectric layer thicknesses of 0.2 and 2 mm, the frequencies of the 400-V ac voltage applied to the discharge electrodes being 100 and 10 kHz, respectively.
Short-period (AlAs)(GaAs) superlattice lasers grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blood, P.; Fletcher, E.D.; Foxon, C.T.
1988-07-25
We have used short-period all-binary (AlAs)(GaAs) superlattices with layers as thin as three monolayers to synthesize the barrier and cladding regions of GaAs quantum well lasers grown by molecular beam epitaxy. By studying the threshold current of single- and double-well devices as a function of cavity length and temperature, we conclude that the optical scattering losses are very low, that the gain-current characteristics are similar to alloy barrier devices, and that there is evidence for current leakage by recombination in the barriers.
Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun
2017-01-01
Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.
Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun
2017-01-01
Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275
Structural properties and diffusion processes of the Cu 3Au (0 0 1) surface
NASA Astrophysics Data System (ADS)
Wang, Fang; Zhang, Jian-Min; Zhang, Yan; Ji, Vincent
2010-09-01
The surface relaxation and surface energy of both the mixed AuCu and pure Cu terminated Cu 3Au (0 0 1) surfaces are simulated and calculated by using the modified analytical embedded-atom method. We find that the mixed AuCu termination is energetically preferred over the pure Cu termination thereby the mono-vacancy diffusion is also investigated in the topmost few layers of the mixed AuCu terminated Cu 3Au (0 0 1) surface. In the mixed AuCu terminated surface the relaxed Au atoms are raised above Cu atoms for 0.13 Å in the topmost layer. All the surface atoms displace outwards, this effect occurs in the first three layers and changes the first two inter-layer spacing. For mono-vacancy migration in the first layer, the migration energies of Au and Cu mono-vacancy via two-type in-plane displace: the nearest neighbor jump (NNJ) and the second nearest neighbor jump (2NNJ), are calculated and the results show that the NNJ requires a much lower energy than 2NNJ. For the evolution of the energy requirements for successive nearest neighbor jumps (SNNJ) along three different paths: circularity, zigzag and beeline, we find that the circularity path is preferred over the other two paths due to its minimum energy barriers and final energies. In the second layer, the NN jumps in intra- and inter-layer of the Cu mono-vacancy are investigated. The calculated energy barriers and final energies show that the vacancy prefer jump up to a proximate Cu site. This replacement between the Cu vacancy in the second layer and Cu atom in the first layer is remunerative for the Au atoms enrichment in the topmost layer.
NASA Astrophysics Data System (ADS)
Kirley, M. P.; Novakovic, B.; Sule, N.; Weber, M. J.; Knezevic, I.; Booske, J. H.
2012-03-01
We report experiments and analysis of field emission from metallic knife-edge cathodes, which are sputter-coated with thin films of lanthanum hexaboride (LaB6), a low-work function material. The emission current is found to depend sensitively on the thickness of the LaB6 layer. We find that films thinner than 10 nm greatly enhance the emitted current. However, cathodes coated with a thicker layer of LaB6 are observed to emit less current than the uncoated metallic cathode. This result is unexpected due to the higher work function of the bare metal cathode. We show, based on numerical calculation of the electrostatic potential throughout the structure, that the external (LaB6/vacuum) barrier is reduced with respect to uncoated samples for both thin and thick coatings. However, this behavior is not exhibited at the internal (metal/LaB6) barrier. In thinly coated samples, electrons tunnel efficiently through both the internal and external barrier, resulting in current enhancement with respect to the uncoated case. In contrast, the thick internal barrier in thickly coated samples suppresses current below the value for uncoated samples in spite of the lowered external barrier. We argue that this coating thickness variation stems from a relatively low (no higher than 1018 cm-3) free carrier density in the sputtered polycrystalline LaB6.
NASA Astrophysics Data System (ADS)
Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo
2015-12-01
In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL-TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL-TMBS rectifier compared with the performance of a conventional TMBS rectifier.
Improvement of barrier properties of rotomolded PE containers with nanoclay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca
Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylenemore » (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.« less
A double barrier memristive device
Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.
2015-01-01
We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits. PMID:26348823
Spin-dependent tunneling effects in magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Gao, Li
2009-03-01
It has long been known that current extracted from magnetic electrodes through ultra thin oxide tunnel barriers is spin polarized. This current gives rise to two important properties: tunneling magnetoresistance (TMR) when the tunnel barrier is sandwiched between two thin magnetic electrodes and, spin momentum transfer, which can be used to manipulate the magnetic state of the magnetic electrodes. In the first part of my talk I show how the structure of thin CoFe layers can be made amorphous by simply sandwiching them between two amorphous layers, one of them the tunnel barrier. No glass forming elements are needed. By slightly changing the thickness of these layers or by heating them above their glass transition temperature they become crystalline. Surprisingly, the TMR of the amorphous structure is significantly higher than of its crystalline counterpart. The tunneling anisotropic magnetoresistance, which has complex voltage dependence, is also discussed. In the second part of my talk I discuss the microwave emission spectrum from magnetic tunnel junctions induced by spin torque from spin polarized dc current passed through the device. We show that the spectrum is very sensitive to small variations in device structures, even in those devices which exhibit similarly high TMR (˜120%) and which have similar resistance-area products (˜4-10 φμm^2). We speculate that these variations are due to non-uniform spatial magnetic excitation arising from inhomogeneous current flow through the tunnel barrier. [In collaboration with Xin Jiang, M. Hayashi, Rai Moriya, Brian Hughes, Teya Topuria, Phil Rice, and Stuart S.P. Parkin
NASA Astrophysics Data System (ADS)
Kassem, Hachem; Thompson, Charlotte E. L.; Amos, Carl L.; Townend, Ian H.
2015-10-01
The suspension of sediments by oscillatory flows is a complex case of fluid-particle interaction. The aim of this study is to provide insight into the spatial (time) and scale (frequency) relationships between wave-generated boundary layer turbulence and event-driven sediment transport beneath irregular shoaling and breaking waves in the nearshore of a prototype sandy barrier beach, using data collected through the Barrier Dynamics Experiment II (BARDEX II). Statistical, quadrant and spectral analyses reveal the anisotropic and intermittent nature of Reynolds' stresses (momentum exchange) in the wave boundary layer, in all three orthogonal planes of motion. The fractional contribution of coherent turbulence structures appears to be dictated by the structural form of eddies beneath plunging and spilling breakers, which in turn define the net sediment mobilisation towards or away from the barrier, and hence ensuing erosion and accretion trends. A standing transverse wave is also observed in the flume, contributing to the substantial skewness of spanwise turbulence. Observed low frequency suspensions are closely linked to the mean flow (wave) properties. Wavelet analysis reveals that the entrainment and maintenance of sediment in suspension through a cluster of bursting sequence is associated with the passage of intermittent slowly-evolving large structures, which can modulate the frequency of smaller motions. Outside the boundary layer, small scale, higher frequency turbulence drives the suspension. The extent to which these spatially varied perturbation clusters persist is associated with suspension events in the high frequency scales, decaying as the turbulent motion ceases to supply momentum, with an observed hysteresis effect.
Adding EUV reflectance to aluminum-coated mirrors for space-based observation
NASA Astrophysics Data System (ADS)
Allred, David D.; Turley, R. Steven; Thomas, Stephanie M.; Willett, Spencer G.; Greenburg, Michael J.; Perry, Spencer B.
2017-09-01
Protective layers on aluminum mirror surfaces which can be removed via the use of atomic hydrogen or hydrogen plasmas at the point of use in space may allow an expansion of broad-band mirrors into the EUV. LUVOIR (large, UV-optical-IR telescope) is a potential NASA flagship space-based observatory of the 2020's or 30's. It would utilize the largest mirrors ever flown1 . Their reflective coating will almost certainly be aluminum, since such telescopes would profit from truly broad-band mirrors. To achieve reflectance over the broadest band, the top surface of such aluminum mirrors, however, needs to be bare, without the oxide layers that naturally form in air. This will open the 11 to 15 eV band. Since thin aluminum films are largely transparent between 15 and 70 eV an EUV mirror under the aluminum could make EUV bands such as 30.4 nm available for space-based astrophysics without sacrificing mirror IR, visible and UV reflectance. The local space environment for the observatory is sufficiently oxygen-free that the surface should remain bare for decades. We discuss protecting as-deposited aluminum mirrors with robust, oxygenimpenetrable, barrier layers applied in vacuo to the aluminum immediately after deposition and before air contact. The goal is that the barrier could also be cleanly, and relatively easily, removed once the mirror is in space. We propose hydrogen atoms as the means for removing the overcoat, since they can be expected to meet the criteria that the means is gentle enough to not roughen the mirror surface, and does not redeposit material on the mirror or other spacecraft components. We have investigated both organic and inorganic (such as, a-Si) hydrogen-removable films that can be applied to the aluminum immediately after its deposition have been investigated. We also examined the REVAP technique, using Cd and Zn. Agglomeration limited their effectiveness as barrier layers. That and dealing with the reevaporated atoms may limit their utility as barrier materials.
Field Performance of A Compacted Clay Landfill Final cover At A Humid Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, William H.; Benson, Craig H.; Gee, Glendon W.
A study was conducted in southern Georgia, USA to evaluate how the hydraulic properties of the compacted clay barrier layer in a landfill final cover changed over a 4-yr service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed CE Database subject headings: landfill, hydrogeology, compacted soils, lysimeters, desiccation continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the claymore » barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ? 10-7 to ? 10-4 cm s-1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be under-estimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.« less