Science.gov

Sample records for barrier oxidation dependence

  1. Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism.

    PubMed

    Dong, Wen-Wen; Liu, Yu-Jian; Lv, Zhou; Mao, Yan-Fei; Wang, Ying-Wei; Zhu, Xiao-Yan; Jiang, Lai

    2015-11-01

    High-mobility group box 1 (HMGB1) contributes to lung vascular hyperpermeability during ventilator-induced lung injury. We aimed to determine whether the natural antioxidant resveratrol protected against HMGB1-induced endothelial hyperpermeability both in vitro and in vivo. We found that HMGB1 decreased vascular endothelial (VE)-cadherin expression and increased endothelial permeability, leading to mitochondrial oxidative damage in primary cultured mouse lung vascular endothelial cells (MLVECs). Both the mitochondrial superoxide dismutase 2 mimetic MnTBAP and resveratrol blocked HMGB1-induced mitochondrial oxidative damage, VE-cadherin downregulation, and endothelial hyperpermeability. In in vivo studies, anesthetized male ICR mice were ventilated for 4h using low tidal volume (6 ml/kg) or high tidal volume (HVT; 30 ml/kg) ventilation. The mice were injected intraperitoneally with resveratrol immediately before the onset of ventilation. We found that resveratrol attenuated HVT-associated lung vascular hyperpermeability and HMGB1 production. HVT caused a significant increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and Nrf2 target gene expression in lung tissues, which was further enhanced by resveratrol treatment. HMGB1 had no effect on Nrf2 activation, whereas resveratrol treatment activated the Nrf2 signaling pathway in HMGB1-treated MLVECs. Moreover, Nrf2 knockdown reversed the inhibitory effects of resveratrol on HMGB1-induced mitochondrial oxidative damage and endothelial hyperpermeability. The inhibitory effect of resveratrol on cyclic stretch-induced HMGB1 mRNA expression in primary cultured MLVECs was also abolished by Nrf2 knockdown. In summary, this study demonstrates that resveratrol protects against lung endothelial barrier dysfunction initiated by HVT. Lung endothelial barrier protection by resveratrol involves inhibition of mechanical stretch-induced HMGB1 release and HMGB1-induced mitochondrial oxidative damage

  2. Controlling barrier penetration via exothermic iron oxidation.

    PubMed

    Wood, Daniel G; Brown, Marc B; Jones, Stuart A

    2011-02-14

    Exothermic iron oxidation is an elegant means to generate heat, with the potential to modulate barrier penetration if reaction kinetics can be controlled. This aim of this study was to gain a fundamental understanding of how these temperature change kinetics influenced barrier diffusion rate. Lidocaine transport through a hydrophilic carboxymethyl cellulose (CMC) gel was compared using two rapid iron oxidation reactions initiated by water (ExoRap(50), T(max)-47.7 ± 0.6 °C, t(max)-3.3 ± 0.6 min, ExoRap(60), T(max)-60.4 ± 0.3 °C, t(max)-9.3 ± 0.6 min) and a slower reaction initiated by oxygen (ExoSl(45)T(max)-ca. 44 °C, t(max) ca. 240 min). Temperature change induced by the oxygen initiated reaction (ExoSl(45)) was almost double those initiated by water (over 4h), but lidocaine diffusion was approximately 4 times higher for the latter (ExoRap(50), 555.61 ± 22.04 μg/cm(2)/h; ExoRap(60), 663.1 ± 50.95 μg/cm(2)/h; compared to ExoSl(45), 159.36 ± 29.44 μg/cm(2)/h). The large influence of temperature change kinetics on lidocaine diffusion suggested that transport was heavily dependent on temperature induced structural changes of the barrier. CMC, like many polymers adsorbs more water when exposed to moderate increases in temperature and this appeared to be a critical determinant of lidocaine barrier diffusion rate.

  3. The formation mechanism of aluminum oxide tunnel barriers.

    SciTech Connect

    Cerezo, A.; Petford-Long, A. K.; Larson, D. J.; Pinitsoontorn, S.; Singleton, E. W.; Materials Science Division; Univ. Oxford; Seagate Tech.

    2006-01-01

    The functional properties of magnetic tunnel junctions are critically dependant on the nanoscale morphology of the insulating barrier (usually only a few atomic layers thick) that separates the two ferromagnetic layers. Three-dimensional atom probe analysis has been used to study the chemistry of a magnetic tunnel junction structure comprising an aluminium oxide barrier formed by in situ oxidation, both in the under-oxidized and fully oxidized states and before and after annealing. Low oxidation times result in discrete oxide islands. Further oxidation leads to a more continuous, but still non-stoichiometric, barrier with evidence that oxidation proceeds along the top of grain boundaries in the underlying CoFe layer. Post-deposition annealing leads to an increase in the barrier area, but only in the case of the fully oxidized and annealed structure is a continuous planar layer formed, which is close to the stoichiometric Al:O ratio of 2:3. These results are surprising, in that the planar layers are usually considered unstable with respect to breaking up into separate islands. Analysis of the various driving forces suggests that the formation of a continuous layer requires a combination of factors, including the strain energy resulting from the expansion of the oxide during internal oxidation on annealing.

  4. Temperature-dependent electron microscopy study of Au thin films on Si (1 0 0) with and without a native oxide layer as barrier at the interface

    NASA Astrophysics Data System (ADS)

    Rath, A.; Dash, J. K.; Juluri, R. R.; Rosenauer, A.; Satyam, P. V.

    2011-03-01

    Real-time electron microscopy observation on morphological changes in gold nanostructures deposited on Si (1 0 0) surfaces as a function of annealing temperatures has been reported. Two types of interfaces with silicon substrates were used prior to gold thin film deposition: (i) without native oxide and on ultra-clean reconstructed Si surfaces and (ii) with native oxide covered Si surfaces. For ≈2.0 nm thick Au films deposited on reconstructed Si (1 0 0) surfaces using the molecular beam epitaxy method under ultra-high vacuum conditions, aligned four-fold symmetric nanogold silicide structures formed at relatively lower temperatures (compared with the one with native oxide at the interface). For this system, 82% of the nanostructures were found to be nanorectangle-like structures with an average length of ≈27 nm and aspect ratio of 1.13 at ≈700 °C. For ≈5.0 nm thick Au films deposited on Si (1 0 0) surface with native oxide at the interface, the formation of a rectangular structure was observed at higher temperatures (≈850 °C). At these high temperatures, desorption of gold silicide followed the symmetry of the substrate. Native oxide at the interface was found to act like a barrier for the inter-diffusion phenomena. Structural characterization was carried out using advanced electron microscopy methods.

  5. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption.

    PubMed

    Zehendner, Christoph M; Librizzi, Laura; Hedrich, Jana; Bauer, Nina M; Angamo, Eskedar A; de Curtis, Marco; Luhmann, Heiko J

    2013-01-01

    Re-canalization of cerebral vessels in ischemic stroke is pivotal to rescue dysfunctional brain areas that are exposed to moderate hypoxia within the penumbra from irreversible cell death. Goal of the present study was to evaluate the effect of moderate hypoxia followed by reoxygenation (MHR) on the evolution of reactive oxygen species (ROS) and blood-brain barrier (BBB) integrity in brain endothelial cells (BEC). BBB integrity was assessed in BEC in vitro and in microvessels of the guinea pig whole brain in situ preparation. Probes were exposed to MHR (2 hours 67-70 mmHg O2, 3 hours reoxygenation, BEC) or towards occlusion of the arteria cerebri media (MCAO) with or without subsequent reperfusion in the whole brain preparation. In vitro BBB integrity was evaluated using trans-endothelial electrical resistance (TEER) and transwell permeability assays. ROS in BEC were evaluated using 2',7'-dichlorodihydrofluorescein diacetate (DCF), MitoSox and immunostaining for nitrotyrosine. Tight-junction protein (TJ) integrity in BEC, stainings for nitrotyrosine and FITC-albumin extravasation in the guinea pig brain preparation were assessed by confocal microscopy. Diphenyleneiodonium (DPI) was used to investigate NADPH oxidase dependent ROS evolution and its effect on BBB parameters in BEC. MHR impaired TJ proteins zonula occludens 1 (ZO-1) and claudin 5 (Cl5), decreased TEER, and significantly increased cytosolic ROS in BEC. These events were blocked by the NADPH oxidase inhibitor DPI. MCAO with or without subsequent reoxygenation resulted in extravasation of FITC-albumin and ROS generation in the penumbra region of the guinea pig brain preparation and confirmed BBB damage. BEC integrity may be impaired through ROS in MHR on the level of TJ and the BBB is also functionally impaired in moderate hypoxic conditions followed by reperfusion in a complex guinea pig brain preparation. These findings suggest that the BBB is susceptible towards MHR and that ROS play a key role in this

  6. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness

    NASA Astrophysics Data System (ADS)

    Sood, A.; Salih, S.; Roh, D.; Lacharme-Lora, L.; Parry, M.; Hardiman, B.; Keehan, R.; Grummer, R.; Winterhager, E.; Gokhale, P. J.; Andrews, P. W.; Abbott, C.; Forbes, K.; Westwood, M.; Aplin, J. D.; Ingham, E.; Papageorgiou, I.; Berry, M.; Liu, J.; Dick, A. D.; Garland, R. J.; Williams, N.; Singh, R.; Simon, A. K.; Lewis, M.; Ham, J.; Roger, L.; Baird, D. M.; Crompton, L. A.; Caldwell, M. A.; Swalwell, H.; Birch-Machin, M.; Lopez-Castejon, G.; Randall, A.; Lin, H.; Suleiman, M.-S.; Evans, W. H.; Newson, R.; Case, C. P.

    2011-12-01

    The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.

  7. Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.

    PubMed

    Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog

    2015-10-01

    Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.

  8. Thermal fission rates with temperature dependent fission barriers

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  9. Low barrier kinetics: dependence on observables and free energy surface.

    PubMed

    Ma, Hairong; Gruebele, Martin

    2006-01-30

    Dynamics on free energy surfaces with high activation barriers are usually treated by few-state kinetics models, yielding characteristic rate coefficients and amplitudes depending on the connectivity of the states. When the barriers are low (< 3 kT), the assumption of instantaneous equilibration of the transition state, and hence, the few-state kinetics treatment, break down. Langevin dynamics is used here to explore the characteristic trends that occur in such cases, as a function of barrier height, number of barriers, dimensionality of the free energy surface, and switching functions that describe how spectroscopic probes vary from reactant to product. The result is a systematic phenomenological description of low barrier kinetics and dynamics.

  10. Diffusion Barriers to Increase the Oxidative Life of Overlay Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Lei, Jih-Fen

    1999-01-01

    Currently, most blades and vanes in the hottest section of aero gas turbine engines require some type of coating for oxidation protection. Newly developed single crystal superalloys have the mechanical potential to operate at increasingly higher component temperatures. However, at these elevated temperatures, coating/substrate interdiffusion can shorten the protective life of the coating. Diffusion barriers between overlay coatings and substrates are being examined to extend the protective life of the coating. A previously- developed finite-difference diffusion model has been modified to predict the oxidative life enhancement due to use of a diffusion barrier. The original diffusion model, designated COSIM, simulates Al diffusion in the coating to the growing oxide scale as well as Al diffusion into the substrate. The COSIM model incorporates an oxide growth and spalling model to provide the rate of Al consumption during cyclic oxidation. Coating failure is predicted when the Al concentration at the coating surface drops to a defined critical level. The modified COSIM model predicts the oxidative life of an overlay coating when a diffusion barrier is present eliminating diffusion of Al from the coating into the substrate. Both the original and the modified diffusion models have been used to predict the effectiveness of a diffusion barrier in extending the protective life of a NiCrAl overlay coating undergoing cyclic oxidation at 1100 C.

  11. Modeling of Carbon Nanotube Schottky Barrier Modulation Due to Oxidation

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A model is proposed for the experimentally observed lower Schottky barrier for holes in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. In oxidation occurring in air, the negatively charged oxygen molecules on a material usually enhance the surface dipole and provide stronger electron confinement within the bulk. Thus the CNT electron affinity will increase in air. Then the Schottky barrier for holes will have to increase according to the standard band-alignment theory, but this is against the experiment. In order to overcome this difficulty, we propose a new Schottky barrier model, assuming there is a transition region between the electrode and the CNT and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules, leading to a lower Schottky barrier for holes. This mechanism prevails for both p- and n-CNTs. The model consistently explains all the reported CNT device experiments.

  12. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  13. Silicon oxide permeation barrier coating of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  14. Scalability of Schottky barrier metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Jang, Moongyu

    2016-05-01

    In this paper, the general characteristics and the scalability of Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are introduced and reviewed. The most important factors, i.e., interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are estimated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are estimated as 1.5 × 1013 traps/cm2, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by N2 annealing. Based on the diode characteristics, various sizes of erbium-silicided/platinum-silicided n/p-type SB-MOSFETs are manufactured and analyzed. The manufactured SB-MOSFETs show enhanced drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are comparable with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

  15. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  16. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  17. Indium oxide diffusion barriers for Al/Si metallizations

    NASA Astrophysics Data System (ADS)

    Kolawa, E.; Garland, C.; Tran, L.; Nieh, C. W.; Molarius, J. M.; Flick, W.; Nicolet, M.-A.; Wei, J.

    1988-12-01

    Indium oxide (In2O3) films were prepared by reactive rf sputtering of an In target in O2/Ar plasma. We have investigated the application of these films as diffusion barriers in /In2O3/Al and /TiSi2.3/In2O3/Al metallizations. Scanning transmission electron microscopy together with energy dispersive analysis of x ray of cross-sectional Si/In2O3/Al specimens, and electrical measurements on shallow n+-p junction diodes were used to evaluate the diffusion barrier capability of In2O3 films. We find that 100-nm-thick In2O3 layers prevent the intermixing between Al and Si in /In2O3/Al contacts up to 650 °C for 30 min, which makes this material one of the best thin-film diffusion barriers on record between Al and Si. (The Si-Al eutectic temperature is 577 °C, Al melts at 660 °C.) When a contacting layer of titanium silicide is incorporated to form a /TiSi2.3/In2O3/Al metallization structure, the thermal stability of the contact drops to 600 °C for 30 min heat treatment.

  18. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is

  19. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    SciTech Connect

    Fiorentino, Giuseppe Morana, Bruno; Forte, Salvatore; Sarro, Pasqualina Maria

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  20. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier

    NASA Astrophysics Data System (ADS)

    George, Isabelle; Naudin, Grégoire; Boland, Sonja; Mornet, Stéphane; Contremoulins, Vincent; Beugnon, Karine; Martinon, Laurent; Lambert, Olivier; Baeza-Squiban, Armelle

    2015-02-01

    Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a tight epithelial barrier when grown on a porous membrane in a two compartment chamber were exposed to fluorescently labelled NPs to quantify the NP translocation. NP translocation and uptake by cells were also studied by confocal and transmission electron microscopy. Translocation was characterized according to NP size (16, 50, or 100 nm), surface charge (negative or positive SiO2), composition (SiO2 or TiO2), presence of proteins or phospholipids and in an inflammatory context. Our results showed that NPs can translocate through the Calu-3 monolayer whatever their composition (SiO2 or TiO2), but this translocation was increased for the smallest and negatively charged NPs. Translocation was not associated with an alteration of the integrity of the epithelial monolayer, suggesting a transcytosis of the internalized NPs. By modifying the NP corona, the ability of NPs to cross the epithelial barrier differed depending on their intrinsic properties, making positively charged NPs more prone to translocate. NP translocation can be amplified by using agents known to open tight junctions and to allow paracellular passage. NP translocation was also modulated when mimicking an inflammatory context frequently found in the lungs, altering the epithelial integrity and inducing transient tight junction opening. This in vitro evaluation of NP translocation could be extended to other inhaled NPs to predict their biodistribution.Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a

  1. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier.

    PubMed

    George, Isabelle; Naudin, Grégoire; Boland, Sonja; Mornet, Stéphane; Contremoulins, Vincent; Beugnon, Karine; Martinon, Laurent; Lambert, Olivier; Baeza-Squiban, Armelle

    2015-03-14

    Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a tight epithelial barrier when grown on a porous membrane in a two compartment chamber were exposed to fluorescently labelled NPs to quantify the NP translocation. NP translocation and uptake by cells were also studied by confocal and transmission electron microscopy. Translocation was characterized according to NP size (16, 50, or 100 nm), surface charge (negative or positive SiO2), composition (SiO2 or TiO2), presence of proteins or phospholipids and in an inflammatory context. Our results showed that NPs can translocate through the Calu-3 monolayer whatever their composition (SiO2 or TiO2), but this translocation was increased for the smallest and negatively charged NPs. Translocation was not associated with an alteration of the integrity of the epithelial monolayer, suggesting a transcytosis of the internalized NPs. By modifying the NP corona, the ability of NPs to cross the epithelial barrier differed depending on their intrinsic properties, making positively charged NPs more prone to translocate. NP translocation can be amplified by using agents known to open tight junctions and to allow paracellular passage. NP translocation was also modulated when mimicking an inflammatory context frequently found in the lungs, altering the epithelial integrity and inducing transient tight junction opening. This in vitro evaluation of NP translocation could be extended to other inhaled NPs to predict their biodistribution.

  2. Angular confinement and direction-dependent transmission in graphene nanostructures with magnetic barriers

    NASA Astrophysics Data System (ADS)

    Masir, M. Ramezani; Vasilopoulos, P.; Matulis, A.; Peeters, F. M.

    2010-01-01

    We evaluate the transmission through magnetic barriers in graphene-based nanostructures. Several particular cases are considered: a magnetic step, single and double barriers, δ -function barriers as well as barrier structures with inhomogeneous magnetic field profiles but with average magnetic field equal to zero. The transmission exhibits a strong dependence on the direction of the incident wave vector. In general the resonant structure of the transmission is significantly more pronounced for (Dirac) electrons with linear spectrum compared to that for electrons with a parabolic one.

  3. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  4. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  5. Temperature dependent barrier height and ideality factor of electrodeposited n-CdSe/Cu Schottky barrier diode

    SciTech Connect

    Mahato, S. Shiwakoti, N.; Kar, A. K.

    2015-06-24

    This article reports the measurement of temperature-dependent barrier height and ideality factor of n-CdSe/Cu Schottky barrier diode. The Cadmium Selenide (CdSe) thin films have been deposited by simple electrodeposition technique. The XRD measurements ravels the deposited single phase CdSe films are highly oriented on (002) plane and the average particle size has been calculated to be ~18 nm. From SEM characterization, it is clear that the surface of CdSe thin films are continuous, homogeneous and the film is well adhered to the substrate and consists of fine grains which are irregular in shape and size. Current-Voltage characteristics have been measured at different temperatures in the range (298 K – 353 K). The barrier height and ideality factor are found to be strongly temperature dependent. The inhomogenious barrier height increases and ideality factor decreases with increase in temperature. The expectation value has been calculated and its value is 0.30 eV.

  6. Dependence of Andreev reflection and Schottky barriers on GaMnAs/Nb interface treatment

    SciTech Connect

    Eid, K. F. Dahliah, D. F.; Abujeib, H. A.; Liu, X.; Furdyna, J. K.

    2015-05-07

    We studied the interfacial contact between GaMnAs and superconducting Nb micro-structures both with and without removing the native GaMnAs surface oxide. Our results show that a strong Schottky barrier forms at the interface when the oxide layer is left between Nb and GaMnAs. This barrier can be confused for Andreev Reflection and erroneously used to extract spin polarization. A simple acid etch is shown to remove the oxide film, thus decreasing the interface resistance, removing the Schottky barrier, and causing a clear Andreev reflection effect. One key recommendation for point contact Andreev reflection studies is to push the tip hard enough into contact and verify that the total resistance is not too high.

  7. In situ lifetimes and kinetics of a reductive whey barrier and an oxidative ORC barrier in the subsurface.

    PubMed

    Barcelona, M J; Xie, G

    2001-08-15

    Permeable reactive barriers (PRB) are being used to engineer favorable field conditions for in-situ remediation efforts. Two redox adjustment barriers were installed to facilitate a 10-month research effort on the fate and transport of MTBE (methyl tert-butyl ether) at a site called the Michigan Integrated Remediation Technology Laboratory (MIRTL). Thirty kilograms of whey were injected as a slurry into an unconfined aquifer to establish an upgradient reductive zone to reduce O2 concentration in the vicinity of a contaminant injection source. To minimize the impact of contaminant release, 363 kg of oxygen release compound (ORC) were placed in the aquifer as a downgradient oxidative barrier. Dissolved oxygen and other chemical species were monitored in the field to evaluate the effectiveness of this technology. A transient one-dimensional advective-dispersive-reaction (ADR) model was proposed to simulate the dissolved oxygen transport. The equations were solved with commonly encountered PRB initial and constant/variable boundary conditions. No similar previous solution was found in the literature. The in-situ lifetimes, based on variable source loading, were estimated to be 1,661 and 514 days for the whey barrier and ORC barrier, respectively. Estimates based on either maximum O2 consumption/production or measured O2 curves were found to under- or overestimate the lifetime of the barriers. The pseudo-first-order rate constant of whey depletion was estimated to be 0.303/d with a dissolution rate of 0.04/d. The oxygen release rate constant in the ORC barrier was estimated to be 0.03/d. This paper provides a means to design and predict the performance of reactive redox barriers, especially when only limited field data are available.

  8. A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks

    PubMed Central

    Petersen, Jennifer D.; Racz, Bence; Sheng, Morgan; Choquet, Daniel

    2014-01-01

    Excitatory glutamatergic synapses at dendritic spines exchange and modulate their receptor content via lateral membrane diffusion. Several studies have shown that the thin spine neck impedes the access of membrane and solute molecules to the spine head. However, it is unclear whether the spine neck geometry alone restricts access to dendritic spines or if a physical barrier to the diffusion of molecules exists. Here, we investigated whether a complex of septin cytoskeletal GTPases localized at the base of the spine neck regulates diffusion across the spine neck. We found that, during development, a marker of the septin complex, Septin7 (Sept7), becomes localized to the spine neck where it forms a stable structure underneath the plasma membrane. We show that diffusion of receptors and bulk membrane, but not cytoplasmic proteins, is slower in spines bearing Sept7 at their neck. Finally, when Sept7 expression was suppressed by RNA interference, membrane molecules explored larger membrane areas. Our findings indicate that Sept7 regulates membrane protein access to spines. PMID:25494357

  9. Lie-algebraic approach for pricing moving barrier options with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Lo, C. F.; Hui, C. H.

    2006-11-01

    In this paper we apply the Lie-algebraic technique for the valuation of moving barrier options with time-dependent parameters. The value of the underlying asset is assumed to follow the constant elasticity of variance (CEV) process. By exploiting the dynamical symmetry of the pricing partial differential equations, the new approach enables us to derive the analytical kernels of the pricing formulae straightforwardly, and thus provides an efficient way for computing the prices of the moving barrier options. The method is also able to provide tight upper and lower bounds for the exact prices of CEV barrier options with fixed barriers. In view of the CEV model being empirically considered to be a better candidate in equity option pricing than the traditional Black-Scholes model, our new approach could facilitate more efficient comparative pricing and precise risk management in equity derivatives with barriers by incorporating term-structures of interest rates, volatility and dividend into the CEV option valuation model.

  10. Barriers to Quitting Smoking Among Substance Dependent Patients Predict Smoking Cessation Treatment Outcome.

    PubMed

    Martin, Rosemarie A; Cassidy, Rachel N; Murphy, Cara M; Rohsenow, Damaris J

    2016-05-01

    For smokers with substance use disorders (SUD), perceived barriers to quitting smoking include concerns unique to effects on sobriety as well as usual concerns. We expanded our Barriers to Quitting Smoking in Substance Abuse Treatment (BQS-SAT) scale, added importance ratings, validated it, and then used the importance scores to predict smoking treatment response in smokers with substance use disorders (SUD) undergoing smoking treatment in residential treatment programs in two studies (n=184 and 340). Both components (general barriers, weight concerns) were replicated with excellent internal consistency reliability. Construct validity was supported by significant correlations with pretreatment nicotine dependence, smoking variables, smoking self-efficacy, and expected effects of smoking. General barriers significantly predicted 1-month smoking abstinence, frequency and heaviness, and 3-month smoking frequency; weight concerns predicted 1-month smoking frequency. Implications involve addressing barriers with corrective information in smoking treatment for smokers with SUD.

  11. Phase stability of thermal barrier oxides based on t'-zirconia with trivalent oxide additions

    NASA Astrophysics Data System (ADS)

    Rebollo Franco, Noemi Rosa

    Zirconia stabilized with 7+/-1 wt.% addition of yttria (7YSZ) is widely used for thermal barrier coatings (TBC's) on actively cooled gas turbine components, selected partly because of its superior durability under thermal cyclic conditions. As deposited, 7YSZ occurs as a metastable single-phase tetragonal solid solution (t') that is thermodynamically stable against the deleterious transformation to monoclinic upon cooling. However, at high temperatures t' is driven to decompose diffusionally into an equilibrium mixture of high-Y cubic and low-Y tetragonal; the latter becomes transformable to monoclinic compromising the mechanical integrity of the system. This dissertation explores the effects of trivalent stabilizers, including Y, Sc and selected rare-earth oxides (REO's), on the phase stability of the resulting solid solutions in zirconia. The REO additions are of interest because they can potentially enhance the insulation efficiency on the coating allowing higher operating temperatures. However, understanding of their effects on phase stability and potentially on cyclic durability at the projected use temperature in next generation engines (1200-1400°C) is insufficient to guide the design of coatings with the desirable combination of lower thermal conductivity and acceptable durability. Sc was also investigated because of previous reports on the higher phase stability of materials doped with Sc, and Y served as the baseline. The experimental approach is based on powders synthesized by reverse co-precipitation of precursor solutions, usually compacted and then subjected to a variety of heat treatments, following their evolution by means of X-ray diffractometry, dilatometry, transmission electron microscopy and Raman spectroscopy. The use of powders facilitated the synthesis of a wider range of compositions that would not have been possible by coating deposition approaches, and because the synthesis occurs at low temperature, it also enabled the starting

  12. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1990-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra-efficient and low-emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttria based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  13. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra efficient and low emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttna based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  14. Energy dependence of the nucleus-nucleus potential close to the Coulomb barrier

    SciTech Connect

    Washiyama, Kouhei; Lacroix, Denis

    2008-08-15

    The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory for the mass symmetric reactions {sup 16}O + {sup 16}O, {sup 40}Ca + {sup 40}Ca, and {sup 48}Ca + {sup 48}Ca and the mass asymmetric reactions {sup 16}O + {sup 40,} {sup 48}Ca, {sup 40}Ca + {sup 48}Ca, {sup 16}O + {sup 208}Pb, and {sup 40}Ca + {sup 90}Zr. When the c.m. energy is much higher than the Coulomb barrier energy, potentials deduced with the microscopic theory identify with the frozen density approximation. As the c.m. energy decreases and approaches the Coulomb barrier, potentials become energy dependent. This dependence indicates dynamical reorganization of internal degrees of freedom and leads to a reduction of the 'apparent' barrier felt by the two nuclei during fusion of the order of 2-3% compared to the frozen density case. Several examples illustrate that the potential landscape changes rapidly when the c.m. energy is in the vicinity of the Coulomb barrier energy. The energy dependence is expected to have a significant role on fusion around the Coulomb barrier.

  15. Coherent magnetotunneling based on (001) magnesium oxide barrier

    NASA Astrophysics Data System (ADS)

    Mazumdar, Dipanjan

    2007-12-01

    Spintronics (spin-based electronics) is an emerging field which relies on the electronic spin degree of freedom to create superior devices. In 2001, first-principles calculations predicted extremely large magnetoresistance (MR) of well over 1000% in magnetic tunnel junctions (MTJs) that used (001) MgO as the insulating barrier. This large effect is achieved when conduction electrons conserve their symmetry inside the barrier, leading to spin-coherent tunneling. Since then, a few experimental groups, which include our group at Brown, have successfully realized high MR values on such systems. I shall present our recent work on MTJs with (001) MgO tunnel barrier. After a brief introduction of the MR effect, I shall focus on the fabrication and room temperature transport properties of MgO-based MTJs with MR values of over 200%. Also, these MTJs are highly suitable for low magnetic field sensing. In the later half, I shall describe our investigations of the low frequency noise in these devices. Noise spectra are 1/f, and scales with the field sensitivity of the MTJ, indicating that the noise arises predominantly from intrinsic magnetization fluctuations. Special attention was paid to reduce the magnetic field noise level. We show that the application of an external hard-axis bias field significantly reduces this noise by suppressing the magnetic fluctuations.

  16. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site.

  17. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site. PMID:27131753

  18. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    SciTech Connect

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Scheid, Emmanuel; Veith, Gabriel M.; Vahlas, Constantin

    2015-12-02

    Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.

  19. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    DOE PAGES

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Scheid, Emmanuel; Veith, Gabriel M.; Vahlas, Constantin

    2015-12-02

    Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties butmore » an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.« less

  20. Temperature-dependent electrical transport properties of (Au/Ni)/n-GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Hulya; Elagoz, Sezai

    2014-09-01

    The temperature-dependent electrical properties of (Au/Ni)/n-GaN Schottky barrier diodes (SBDs)have been investigated in the wide temperature range of 40-400 K. The analysis of the main electrical characteristics such as zero-bias barrier height (ΦB0), ideality factor (n) and series resistance (Rs) were found strongly temperature dependent. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution (GD) of barrier heights (BHs) at the interface. It is evident that the diode parameters such as zero-bias barrier height increases and the ideality factor decreases with increasing temperature. The values of series resistance that are obtained from Cheung's method are decreasing with increasing temperature. The temperature dependence of Schottky barrier height (SBD) and ideality factor (n) are explained by invoking three sets of Gaussian distribution of (SBH) in the temperature ranges of 280-400 K, 120-260 K and 40-100 K, respectively. (Au/Ni)/n-GaN Schottky barrier diode have been shown a Gaussian distribution giving mean BHs (ΦbarB0) of 1.167, 0.652 and 0.356 eV and standard deviation σs of 0.178, 0.087 and 0.133 V for the three temperature regions. A modified ln(I0/T2)-q2σ2/2k2T2 vs. 1/kT plot have given ΦbarB0 and A* as 1.173 eV and 34.750 A/cm2 K2, 0.671 eV and 26.293 A/cm2 K2, 0.354 eV and 10.199 A/cm2 K2, respectively.

  1. Thin Oxides as a Cu Diffusion Barrier for NIF Be Ablator Capsules

    SciTech Connect

    Youngblood, Kelly P.; Huang, H.; Xu, H. W.; Hayes, J.; Moreno, K. A.; Wu, J. J.; Nikroo, A.; Alford, C. A.; Hamza, A. V.; Kucheyev, S. O.; Wang, Y. M.; Wu, K. J.

    2013-03-01

    The NIF point design uses a five-layer capsule to modify the X-ray absorption in order to achieve optimized shock timing. A stepped copper dopant design defines the layer structure. The production of the capsule involves pyrolysis to remove the inner plastic mandrel. Copper atoms diffuse radially and azimuthally throughout the capsule during pyrolysis. This diffusion significantly diminishes the capsule performance during implosion. Thermal and coated oxide barrier layers employed between layers mitigate the diffusion of copper during the mandrel removal process. The copper atoms do not diffuse through this barrier during pyrolysis. A capsule fabrication method that produces a capsule with a thin oxide layer will be discussed.

  2. Highly defective oxides as sinter resistant thermal barrier coating

    DOEpatents

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  3. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  4. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier.

    PubMed

    Hoff, Dan; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2013-01-01

    In the present study, the permeability of 11 different iron oxide nanoparticle (IONP) samples (eight fluids and three powders) was determined using an in vitro blood-brain barrier model. Importantly, the results showed that the ferrofluid formulations were statistically more permeable than the IONP powder formulations at the blood-brain barrier, suggesting a role for the presently studied in situ synthesized ferrofluid formulations using poly(vinyl) alcohol, bovine serum albumin, collagen, glutamic acid, graphene, and their combinations as materials which can cross the blood-brain barrier to deliver drugs or have other neurological therapeutic efficacy. Conversely, the results showed the least permeability across the blood-brain barrier for the IONP with collagen formulation, suggesting a role as a magnetic resonance imaging contrast agent but limiting IONP passage across the blood-brain barrier. Further analysis of the data yielded several trends of note, with little correlation between permeability and fluid zeta potential, but a larger correlation between permeability and fluid particle size (with the smaller particle sizes having larger permeability). Such results lay the foundation for simple modification of iron oxide nanoparticle formulations to either promote or inhibit passage across the blood-brain barrier, and deserve further investigation for a wide range of applications. PMID:23426527

  5. Asymmetric spin absorption across a low-resistance oxide barrier

    SciTech Connect

    Chen, Shuhan; Qin, Chuan; Ji, Yi

    2015-07-21

    An unconventional method of nonlocal spin detection is demonstrated in mesoscopic lateral spin valves at room temperature. Clear nonlocal spin signals are detected between the two ends of an extended ferromagnetic spin detector. This is different from the conventional method in which the nonlocal voltage is measured between the spin detector and the nonmagnetic channel. The results can be understood as spatially non-uniform absorption of a pure spin current into the spin detector across a low-resistance oxide interface.

  6. Time-dependent barrier passage of two-dimensional non-Ohmic damping system.

    PubMed

    Wang, Chun-Yang

    2009-08-01

    The time-dependent barrier passage of two-dimensional non-Ohmic damping system is studied in the framework of statistical Langevin reactive dynamics. The stationary transmission coefficient is found to be a nonmonotonic function of the exponent delta which reveals an intrinsic effect of the friction's non-Markovian character on the two-dimensional reactive process; the coupling between nonreactive and reactive modes results in an optimal path for the reactant in all cases of non-Ohmic friction. A big net flux resulted from the less barrier recrossing behavior in the two-dimensional non-Ohmic friction case. PMID:19673571

  7. Impermeable barrier films and protective coatings based on reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Su, Y.; Kravets, V. G.; Wong, S. L.; Waters, J.; Geim, A. K.; Nair, R. R.

    2014-09-01

    Flexible barrier films preventing permeation of gases and moistures are important for many industries ranging from food to medical and from chemical to electronic. From this perspective, graphene has recently attracted particular interest because its defect-free monolayers are impermeable to all atoms and molecules. However, it has been proved to be challenging to develop large-area defectless graphene films suitable for industrial use. Here we report barrier properties of multilayer graphitic films made by gentle chemical reduction of graphene oxide laminates with hydroiodic and ascorbic acids. They are found to be highly impermeable to all gases, liquids and aggressive chemicals including, for example, hydrofluoric acid. The exceptional barrier properties are attributed to a high degree of graphitization of the laminates and little structural damage during reduction. This work indicates a close prospect of graphene-based flexible and inert barriers and protective coatings, which can be of interest for numerous applications.

  8. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

    PubMed Central

    Arredondo Zamarripa, David; Díaz-Lezama, Nundehui; Meléndez García, Rodrigo; Chávez Balderas, Jesús; Adán, Norma; Ledesma-Colunga, Maria G.; Arnold, Edith; Clapp, Carmen; Thebault, Stéphanie

    2014-01-01

    Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies. PMID:25368550

  9. Field-dependent energy barriers in Co/CoO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Nieves, P.; Kechrakos, D.; Chubykalo-Fesenko, O.

    2016-02-01

    We perform atomistic modeling of Co/CoO nanoparticles with a diameter of a few nanometers and realistic values of the exchange and anisotropy parameters in order to study the field-dependent energy barriers under forward and backward reversal of the magnetization. The barriers are extracted from the constrained energy minimization using the integration of the Landau-Lifshitz-Gilbert equations and the Lagrange multiplier method. We show that the applied field and the interface exchange strength have opposite effects on the values of the energy barriers. In particular, while the backward (forward) energy barrier increases (decreases) linearly with the strength of the interface exchange coupling, it decreases (increases) almost quadratically with the applied magnetic field. Our results are in good agreement with the well-known Meiklejohn-Bean model of exchange bias, and allow us to analyze the limits of applicability of the macrospin approach to the study of energy barriers in core-shell Co/CoO nanoparticles.

  10. Both morph- and species-dependent asymmetries affect reproductive barriers between heterostylous species.

    PubMed

    Keller, Barbara; de Vos, Jurriaan M; Schmidt-Lebuhn, Alexander N; Thomson, James D; Conti, Elena

    2016-09-01

    The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre- versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre- and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co-occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species-dependent asymmetries, morph-dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short-styled flowers to stigmas of long-styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long-styled flowers to stigmas of short-styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long-styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore

  11. Both morph- and species-dependent asymmetries affect reproductive barriers between heterostylous species.

    PubMed

    Keller, Barbara; de Vos, Jurriaan M; Schmidt-Lebuhn, Alexander N; Thomson, James D; Conti, Elena

    2016-09-01

    The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre- versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre- and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co-occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species-dependent asymmetries, morph-dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short-styled flowers to stigmas of long-styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long-styled flowers to stigmas of short-styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long-styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore

  12. Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding

    PubMed Central

    Chahine, Jorge; Oliveira, Ronaldo J.; Leite, Vitor B. P.; Wang, Jin

    2007-01-01

    We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively. PMID:17804812

  13. Triggers and Effectors of Oxidative Stress at Blood-Brain Barrier Level: Relevance for Brain Ageing and Neurodegeneration

    PubMed Central

    2013-01-01

    As fundamental research advances, it is becoming increasingly clear that a clinically expressed disease implies a mixture of intertwining molecular disturbances. Oxidative stress is one of such pathogenic pathways involved in virtually all central nervous system pathologies, infectious, inflammatory, or degenerative in nature. Since brain homeostasis largely depends on integrity of blood-brain barrier (BBB), many studies focused lately on BBB alteration in a wide spectrum of brain diseases. The proper two-way molecular transfer through BBB depends on several factors, including the functional status of its tight junction (TJ) complexes of proteins sealing neighbour endothelial cells. Although there is abundant experimental work showing that oxidative stress associates BBB permeability alteration, less is known about its implications, at molecular level, in TJ protein expression or TJ-related cell signalling. In this paper, oxidative stress is presented as a common pathway for different brain pathogenic mechanisms which lead to BBB dysregulation. We revise here oxidative-induced molecular mechanisms of BBB disruption and TJ protein expression alteration, in relation to ageing and neurodegeneration. PMID:23533687

  14. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions

    NASA Astrophysics Data System (ADS)

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-07-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits.

  15. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions.

    PubMed

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-01-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits. PMID:27403611

  16. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions

    PubMed Central

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-01-01

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits. PMID:27403611

  17. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions.

    PubMed

    Zeng, Lunjie; Tran, Dung Trung; Tai, Cheuk-Wai; Svensson, Gunnar; Olsson, Eva

    2016-07-12

    Al/AlOx/Al Josephson junctions are the building blocks of a wide range of superconducting quantum devices that are key elements for quantum computers, extremely sensitive magnetometers and radiation detectors. The properties of the junctions and the superconducting quantum devices are determined by the atomic structure of the tunnel barrier. The nanoscale dimension and disordered nature of the barrier oxide have been challenges for the direct experimental investigation of the atomic structure of the tunnel barrier. Here we show that the miniaturized dimension of the barrier and the interfacial interaction between crystalline Al and amorphous AlOx give rise to oxygen deficiency at the metal/oxide interfaces. In the interior of the barrier, the oxide resembles the atomic structure of bulk aluminium oxide. Atomic defects such as oxygen vacancies at the interfaces can be the origin of the two-level systems and contribute to decoherence and noise in superconducting quantum circuits.

  18. Coefficient of thermal expansion dependent thermal stress analysis of thermal barrier coatings (TBCs) using finite element model

    NASA Astrophysics Data System (ADS)

    Coker, Omotola

    Thermal barrier coatings (TBCs) are highly sophisticated micro scale ceramic insulation applied on high temperature components such as gas turbine blades. TBCs create a large temperature drop between the gas turbine environment and the underlying metal blades. TBC lifetime is finite and influenced by several factors such as: Bond Coat (BC) oxidation, BC roughness, Coefficient of thermal expansion (CTE) mismatch between the layers, and creep properties of the TBC system. However, there is a lack of reliable methods of TBC life prediction which result in under utilization of these coatings. This research study focuses on modeling the steady state thermal stresses in TBC systems of various oxide thicknesses, and BC roughness, using Finite Element Analysis (FEA). The model factors into it the temperature dependent thermo mechanical properties of each layer, as well as the creep properties. The steady state model results show similar results to the existing transient models: an increase in tensile stresses as the oxide thickness increases, an increase in tensile stresses with BC roughness and stress relaxation in the ceramic BC interface due to creep. It also shows in each model, initially compressive stresses in the BC - Top Coat (TC) interface, and its evolution into higher tensile stresses which lead to crack formation and ultimately failure of the TBC by spallation.

  19. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  20. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGES

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  1. Dopant-segregated Schottky barrier MOSFETs with an insulated dielectric oxide

    NASA Astrophysics Data System (ADS)

    Shih, Chun-Hsing; Lin, Ching-Chang

    2010-06-01

    An insulated dielectric oxide (IDO) is presented for the dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to suppress the unwanted on- and off-state leakage currents in short-channel DS-SBMOS. The effects of the IDO on DS-SBMOS are investigated using two-dimensional device simulations. Although the dopant segregation technique can efficiently modify a Schottky barrier to improve Schottky barrier MOSFETs, the performance of scaled DS-SBMOS suffers from degraded short-channel behavior and ambipolar conduction from the extension of a heavily doped segregation layer. With sidewall IDO insulators between the heavily doped N+ segregation layer and P+ halo region, band-to-band and ambipolar leakage currents are simultaneously minimized. Thus, an optimal halo can be utilized to control the short-channel effect without any constraints in problematic leakage currents. Using the IDO architecture, DS-SBMOS can be successfully scaled as a promising candidate for next-generation CMOS devices.

  2. Thin Oxides as a Cu Diffusion Barrier for NIF Be Ablator Capsules

    DOE PAGES

    Youngblood, Kelly P.; Huang, H.; Xu, H. W.; Hayes, J.; Moreno, K. A.; Wu, J. J.; Nikroo, A.; Alford, C. A.; Hamza, A. V.; Kucheyev, S. O.; et al

    2013-03-01

    The NIF point design uses a five-layer capsule to modify the X-ray absorption in order to achieve optimized shock timing. A stepped copper dopant design defines the layer structure. The production of the capsule involves pyrolysis to remove the inner plastic mandrel. Copper atoms diffuse radially and azimuthally throughout the capsule during pyrolysis. This diffusion significantly diminishes the capsule performance during implosion. Thermal and coated oxide barrier layers employed between layers mitigate the diffusion of copper during the mandrel removal process. The copper atoms do not diffuse through this barrier during pyrolysis. A capsule fabrication method that produces a capsulemore » with a thin oxide layer will be discussed.« less

  3. Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2016-07-01

    This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

  4. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  5. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  6. Analytical energy-barrier-dependent Voc model for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Castro-Carranza, A.; Nolasco, J. C.; Reininghaus, N.; Geißendörfer, S.; Vehse, M.; Parisi, J.; Gutowski, J.; Voss, T.

    2016-07-01

    We show that the open circuit voltage (Voc) in hydrogenated amorphous silicon (a-Si:H) solar cells can be described by an analytical energy-barrier-dependent equation, considering thermionic emission as the physical mechanism determining the recombination current. For this purpose, the current-voltage characteristics of two device structures, i.e., a-Si:H(n)/a-Si:H(i)/a-Si:H(p)/AZO p-i-n solar cells with different p-doping concentrations and a-Si:H(n)/a-Si:H(i)/AZO Schottky structures with different intrinsic layer thicknesses, were analyzed in dark and under illumination, respectively. The calculated barrier in the p-i-n devices is consistent with the difference between the work function of the p-layer and the conduction band edge of the i-layer at the interface in thermal equilibrium.

  7. Spin-dependent shot noise in diluted magnetic semiconductor/semiconductor heterostructures with a nonmagnetic barrier

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Guo, Yong

    2014-05-01

    We investigate quantum size effect on the spin-dependent shot noise in the diluted magnetic semiconductor (DMS)/semiconductor heterostructure with a nonmagnetic semiconductor (NMS) barrier in the presence of external magnetic and electric fields. The results demonstrate that the NMS barrier plays a quite different role from the DMS layer in the electron transport process. It is found that spin-down shot noise shows relatively regular oscillations as the width of DMS layer increases, while the spin-up shot noise deceases monotonically. However, as the width of NMS layer increases, the spin-down shot noise displays irregular oscillations at first and then decreases while the spin-up shot noise decreases at a quite different rate. The results indicate that the shot noise can be used as a sensitive probe in detecting material type and its size.

  8. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  9. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  10. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Kho, Chang Won; Lee, Phil Young; Bae, Kwang-Hee; Kang, Sunghyun; Cho, Sayeon; Lee, Do Hee; Sun, Choong-Hyun; Yi, Gwan-Su; Park, Byoung Chul; Park, Sung Goo

    2008-02-01

    The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for H2O2-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3- dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, H2O2-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1. PMID:18309271

  11. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    NASA Astrophysics Data System (ADS)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  12. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch.

    PubMed

    Birukov, Konstantin G; Jacobson, Jeffrey R; Flores, Alejandro A; Ye, Shui Q; Birukova, Anna A; Verin, Alexander D; Garcia, Joe G N

    2003-10-01

    Ventilator-induced lung injury syndromes are characterized by profound increases in vascular leakiness and activation of inflammatory processes. To explore whether excessive cyclic stretch (CS) directly causes vascular barrier disruption or enhances endothelial cell sensitivity to edemagenic agents, human pulmonary artery endothelial cells (HPAEC) were exposed to physiologically (5% elongation) or pathologically (18% elongation) relevant levels of strain. CS produced rapid (10 min) increases in myosin light chain (MLC) phosphorylation, activation of p38 and extracellular signal-related kinase 1/2 MAP kinases, and actomyosin remodeling. Acute (15 min) and chronic (48 h) CS markedly enhanced thrombin-induced MLC phosphorylation (2.1-fold and 3.2-fold for 15-min CS at 5 and 18% elongation and 2.1-fold and 3.1-fold for 48-h CS at 5 and 18% elongation, respectively). HPAEC preconditioned at 18% CS, but not at 5% CS, exhibited significantly enhanced thrombin-induced reduction in transendothelial electrical resistance but did not affect barrier protective effect of sphingosine-1-phosphate (0.5 microM). Finally, expression profiling analysis revealed a number of genes, including small GTPase rho, apoptosis mediator ZIP kinase, and proteinase activated receptor-2, to be regulated by CS in an amplitude-dependent manner. Thus our study demonstrates a critical role for the magnitude of CS in regulation of agonist-mediated pulmonary endothelial cell permeability and strongly suggests phenotypic regulation of HPAEC barrier properties by CS. PMID:12639843

  13. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian; Huang, Wenyi; Cabrera, Eusebio; Castro, Jose; Lee, L. James

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier provided by the GO layer. These GP-GO-GP nanopapers can be readily coated onto plastic and composite substrates by thermal lamination and injection molding for various industrial applications such as fuel cell and natural gas containers.

  14. Adhesion Issues with Polymer/Oxide Barrier Coatings on Organic Displays

    SciTech Connect

    Matson, Dean W.; Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Hall, Michael G.; Mast, Eric S.; Bonham, Charles C.; Zumhoff, Mac R.; Rutherford, Nicole M.; Moro, Lorenza; Rosenblum, Martin; Praino, Robert F.; Visser, Robert J.

    2005-01-01

    Multilayer polymer/oxide coatings are being developed to protect sensitive organic display devices, such as OLEDs, from oxygen and water vapor permeation. The coatings have permeation levels ~ 10-6 g/m2/d for water vapor and ~10-6 cc/m2/d for oxygen, and are deposited by vacuum polymer technology. The coatings consist of either a base Al2O3 or acrylate polymer adhesion layer followed by alternating Al2O3/polymer layers. The polymer is used to decouple the 30 nm-thick Al2O3 barrier layers. Adhesion of the barrier coating to the substrate and display device is critical for the operating lifetime of the device. The substrate material could be any transparent flexible plastic. The coating technology can also be used to encapsulate organic-based electronic devices to protect them from atmospheric degradation. Plasma pretreatment is also needed for good adhesion to the substrate, but if it is too aggressive, it will damage the organic display device. We report on the effects of plasma treatment on the adhesion of barrier coatings to plastic substrates and the performance of OLED devices after plasma treatment and barrier coating deposition. We find that initial OLED performance is not significantly affected by the deposition process and plasma treatment, as demonstrated by luminosity and I-V curves.

  15. Fluence dependence of deuterium retention in oxidized SS-316

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Suzuki, Sachiko; Matsuyama, Masao; Hayashi, Takumi; Yamanishi, Toshihiko; Asakura, Yamato; Okuno, Kenji

    2011-10-01

    The ion fluence dependence of deuterium retention in SS-316 during oxidation at a temperature of 673 K was studied to evaluate the dynamics of deuterium retention in the oxide layer of SS-316. The correlation between the chemical state of stainless steel and deuterium retention was evaluated using XPS and TDS. It was found that the major deuterium desorption temperatures were located at around 660 K and 935 K, which correspond to the desorption of deuterium trapped as hydroxide. The deuterium retention increased with increasing deuterium ion fluence, since the deuterium retention as hydroxide increased significantly. However, retention saturated at an ion fluence of ˜2.5 × 10 21 D + m -2. The XPS result showed that FeOOD was formed on the surface, although pure Fe also remained in the oxide layer. These facts indicate the nature of the oxide layer have a key role in deuterium trapping behavior.

  16. Superoxide-dependent oxidation of melatonin by myeloperoxidase.

    PubMed

    Ximenes, Valdecir F; Silva, Sueli de O; Rodrigues, Maria R; Catalani, Luiz H; Maghzal, Ghassan J; Kettle, Anthony J; Campa, Ana

    2005-11-18

    Myeloperoxidase uses hydrogen peroxide to oxidize numerous substrates to hypohalous acids or reactive free radicals. Here we show that neutrophils oxidize melatonin to N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) in a reaction that is catalyzed by myeloperoxidase. Production of AFMK was highly dependent on superoxide but not hydrogen peroxide. It did not require hypochlorous acid, singlet oxygen, or hydroxyl radical. Purified myeloperoxidase and a superoxide-generating system oxidized melatonin to AFMK and a dimer. The dimer would result from coupling of melatonin radicals. Oxidation of melatonin was partially inhibited by catalase or superoxide dismutase. Formation of AFMK was almost completely eliminated by superoxide dismutase but weakly inhibited by catalase. In contrast, production of melatonin dimer was enhanced by superoxide dismutase and blocked by catalase. We propose that myeloperoxidase uses superoxide to oxidize melatonin by two distinct pathways. One pathway involves the classical peroxidation mechanism in which hydrogen peroxide is used to oxidize melatonin to radicals. Superoxide adds to these radicals to form an unstable peroxide that decays to AFMK. In the other pathway, myeloperoxidase uses superoxide to insert dioxygen into melatonin to form AFMK. This novel activity expands the types of oxidative reactions myeloperoxidase can catalyze. It should be relevant to the way neutrophils use superoxide to kill bacteria and how they metabolize xenobiotics. PMID:16148002

  17. Effect of shot peening on the oxidation behavior of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Karaoglanli, Abdullah Cahit; Doleker, Kadir Mert; Demirel, Bilal; Turk, Ahmet; Varol, Remzi

    2015-11-01

    A conventional thermal barrier coating (TBC) system is made up of a multilayered coating system that comprises a metallic bond coat including oxidation-resistant MCrAlY and a thermally insulating ceramic top coat including yttria stabilized zirconia (YSZ). In this study, in order to improve the oxidation behavior in conventionally produced TBC systems, shot peening process is applied for modification of surface layer structure of atmospheric plasma spray (APS) bond coats. The oxidation behavior of TBCs, produced by the APS process and subjected to shot peening, was investigated. Oxidation tests were performed under isothermal conditions at 1000 °C for different time periods. The coatings produced by the APS process include high porosity and oxide content due to atmospheric production conditions as well as exposure to very high temperature. In this study, the coatings, produced by the APS process, subsequently subjected to shot-peening, were compared with the ones which were not shot peened. Following the application of the shot peening process, a dense structure is obtained due to the plastic deformation effect in the metallic bond coating structure at a certain distance from the surface. To this end, the effects of the shot-peening on the high temperature oxidation behavior of the coatings are investigated and evaluated.

  18. Analytical modeling of oxide thickness effects on residual stresses in thermal barrier coatings

    SciTech Connect

    Hsueh, C.H.; Fuller, E.R. Jr.

    2000-04-14

    During high temperature operation, an oxide scale forms along the irregular top coat/bond coat interface in the plasma-sprayed thermal barrier coating (TBC) system. The residual stresses in the system are affected by the presence of the thermally grown oxide (TGO). Along the irregular interface, the asperity can be convex or concave. Semicircular convex and concave asperities have been adopted for numerical simulations to examine the effects of the TGO thickness on residual thermal stresses. It was found that in the tip region of a convex asperity, the residual stress normal to the interface, {sigma}{sub y}, in the ceramic top coat is tensile for a thin oxide but becomes compressive for a thick oxide. In the tip region of a concave asperity, {sigma}{sub y} in the ceramic topcoat is compressive for a thin oxide and becomes less compressive for a thick oxide. The purpose of the present study was to explore the physical meaning of the trend of the stress state of {sigma}{sub y} in the ceramic topcoat with the variation of the TGO thickness. To achieve this, a simple analytical model of three concentric circles was adopted. First, the residual thermal stresses in the three-concentric-circles model were derived. Then, the results for residual radial stresses at the top coat/TGO and the TGO/bond coat interfaces as functions of the TGO thickness were presented. Also, the physical meaning of the above results was discussed.

  19. Ga0.5In0.5P Barrier Layer for Wet Oxidation of AlAs

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chang; Lee, Wei-I

    2000-05-01

    We study the stability of Ga0.5In0.5P and Al0.4Ga0.6As barrier layers for wet thermal oxidation of AlAs on GaAs. Samples with a Ga0.5In0.5P or Al0.4Ga0.6As barrier layer are oxidized in a water vapor environment under various oxidation conditions. The results of photoluminescence and secondary-ion mass spectrometry (SIMS) depth profile measurements indicate that the Ga0.5In0.5P barrier layer is more stable than the Al0.4Ga0.6As layer at higher oxidation temperatures and longer periods of oxidation time.

  20. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    SciTech Connect

    Herman, Michael F.

    2015-10-28

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p{sub 0{sup *}}, at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results.

  1. WT1-Dependent Sulfatase Expression Maintains the Normal Glomerular Filtration Barrier

    PubMed Central

    Schlötzer-Schrehardt, Ursula; Karumanchi, S. Ananth; Shi, Xiaofeng; Zaia, Joseph; Jeruschke, Stefanie; Zhang, Dongsheng; Pavenstaedt, Hermann; Drenckhan, Astrid; Amann, Kerstin; Ng, Carrie; Hartwig, Sunny; Ng, Kar-Hui; Ho, Jacqueline; Kreidberg, Jordan A.; Taglienti, Mary; Royer-Pokora, Brigitte; Ai, Xingbin

    2011-01-01

    Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteoglycans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms' Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix. Mice deficient in both Sulf1 and Sulf2 developed age-dependent proteinuria as a result of ultrastructural abnormalities in podocytes and endothelial cells, a phenotype similar to that observed in children with WT1 mutations and in Wt1+/− mice. These kidney defects associated with a decreased distribution of VEGFA in the glomerular basement membrane and on endothelial cells. Collectively, these data suggest that WT1-dependent sulfatase expression plays a critical role in maintaining the glomerular filtration barrier by modulating the bioavailability of growth factors, thereby promoting normal crosstalk between podocytes and endothelial cells. PMID:21719793

  2. Removal Of Nitric Oxide From Different Mixtures Of Gases Using Dielectric Barrier Discharge

    SciTech Connect

    Hashim, Siti Aiasah; San, Wong Chiow; Abas, Radzi

    2009-07-07

    Dielectric barrier discharge (DBD) is employed in this project as the processing medium to remove nitric oxide in gas stream. Gas stream containing different components was released continuously into a series of dielectric barrier discharge cells and the output gas was analyzed using a chemiluminescence's type NO analyzer. Almost complete removal (more than 99%) of NO was observed when the gas stream contained only NO and nitrogen. In the presence of SO{sub 2}, the removal rate was decreased to as low as 70%. Adding air into the stream gave a more erratic results. The removal rate was also affected by the number of DBD cell used and the flow rate of the input gas. However, In this paper, only results using 2 cells whilst varying the flow rate are presented.

  3. Targeting Transporters: Promoting Blood-Brain Barrier Repair in Response to Oxidative Stress Injury

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2015-01-01

    The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., endogenous transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. PMID:25796436

  4. Oxidation state-dependent conformational changes in cytochrome c.

    PubMed

    Berghuis, A M; Brayer, G D

    1992-02-20

    High-resolution three-dimensional structural analyses of yeast iso-1-cytochrome c have now been completed in both oxidation states using isomorphous crystalline material and similar structure determination methodologies. This approach has allowed a comprehensive comparison to be made between these structures and the elucidation of the subtle conformational changes occurring between oxidation states. The structure solution of reduced yeast iso-1-cytochrome c has been published and the determination of the oxidized protein and a comparison of these structures are reported herein. Our data show that oxidation state-dependent changes are expressed for the most part in terms of adjustments to heme structure, movement of internally bound water molecules and segmental thermal parameter changes along the polypeptide chain, rather than as explicit polypeptide chain positional shifts, which are found to be minimal. This result is emphasized by the retention of all main-chain to main-chain hydrogen bond interactions in both oxidation states. Observed thermal factor changes primarily affect four segments of polypeptide chain. Residues 37-39 show less mobility in the oxidized state, with Arg38 and its side-chain being most affected. In contrast, residues 47-59, 65-72 and 81-85 have significantly higher thermal factors, with maximal increases being observed for Asn52, Tyr67 and Phe82. The side-chains of two of these residues are hydrogen bonded to the internally bound water molecule, Wat166, which shows a large 1.7 A displacement towards the positively charged heme iron atom in the oxidized protein. Further analyses suggest that Wat166 is a major factor in stabilizing both oxidation states of the heme through differential orientation of dipole moment, shift in distance to the heme iron atom and alterations in the surrounding hydrogen bonding network. It also seems likely that Wat166 movement leads to the disruption of the hydrogen bond from the side-chain of Tyr67 to the Met80

  5. Correlation between Al grain size, grain boundary grooves and local variations in oxide barrier thickness of Al/AlOx/Al tunnel junctions by transmission electron microscopy.

    PubMed

    Nik, Samira; Krantz, Philip; Zeng, Lunjie; Greibe, Tine; Pettersson, Henrik; Gustafsson, Stefan; Delsing, Per; Olsson, Eva

    2016-01-01

    A thickness variation of only one Ångström makes a significant difference in the current through a tunnel junction due to the exponential thickness dependence of the current. It is thus important to achieve a uniform thickness along the barrier to enhance, for example, the sensitivity and speed of single electron transistors based on the tunnel junctions. Here, we have observed that grooves at Al grain boundaries are associated with a local increase of tunnel barrier thickness. The uniformity of the barrier thickness along the tunnel junction thus increases with increasing Al grain size. We have studied the effect of oxidation time, partial oxygen pressure and also temperature during film growth on the grain size. The implications are that the uniformity improves with higher temperature during film growth. PMID:27462515

  6. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-01

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical

  7. Drugs of abuse and blood-brain barrier endothelial dysfunction: A focus on the role of oxidative stress.

    PubMed

    Sajja, Ravi K; Rahman, Shafiqur; Cucullo, Luca

    2016-03-01

    Psychostimulants and nicotine are the most widely abused drugs with a detrimental impact on public health globally. While the long-term neurobehavioral deficits and synaptic perturbations are well documented with chronic use of methamphetamine, cocaine, and nicotine, emerging human and experimental studies also suggest an increasing incidence of neurovascular complications associated with drug abuse. Short- or long-term administration of psychostimulants or nicotine is known to disrupt blood-brain barrier (BBB) integrity/function, thus leading to an increased risk of brain edema and neuroinflammation. Various pathophysiological mechanisms have been proposed to underlie drug abuse-induced BBB dysfunction suggesting a central and unifying role for oxidative stress in BBB endothelium and perivascular cells. This review discusses drug-specific effects of methamphetamine, cocaine, and tobacco smoking on brain microvascular crisis and provides critical assessment of oxidative stress-dependent molecular pathways focal to the global compromise of BBB. Additionally, given the increased risk of human immunodeficiency virus (HIV) encephalitis in drug abusers, we have summarized the synergistic pathological impact of psychostimulants and HIV infection on BBB integrity with an emphasis on unifying role of endothelial oxidative stress. This mechanistic framework would guide further investigations on specific molecular pathways to accelerate therapeutic approaches for the prevention of neurovascular deficits by drugs of abuse. PMID:26661236

  8. Thin-film barrier performance of zirconium oxide using the low-temperature atomic layer deposition method.

    PubMed

    Duan, Yu; Sun, Fengbo; Yang, Yongqiang; Chen, Ping; Yang, Dan; Duan, Yahui; Wang, Xiao

    2014-03-26

    In this study, ZrO2 films deposited by the atomic layer deposition method, as the encapsulation layer for organic electronics devices, were characterized. Both the effects of tetrakis (dimethylamido) zirconium(IV) growth temperature and oxidants, such as water (H2O) and ozone (O3), were investigated. The X-ray diffraction analysis shows the amorphous characteristic of the 80-nm-thick films grown at 80 °C, the crystallinity of the films was much lower than those grown at 140 and 200 °C. The scanning electron microscopy analyses showed that the surface morphology strongly depended on the crystallinity of the film. The water vapor transmission rate of the 80 nm thick ZrO2 films can be reduced from 3.74 × 10(-3) g/(m(2) day) (80 °C-H2O as the oxidant) to 6.09 × 10(-4) g/(m(2) day) (80 °C-O3 as the oxidant) under the controlled environment of 20 °C and a relative humidity of 60%. Moreover, the organic light-emitting diodes integrated with 80 °C-O3-derived ZrO2 films were undamaged, and their luminance decay time changed considerably. This was attributed to the better barrier property of the low-temperature ZrO2 film to the amorphous microscopic bulk and almost homogeneous microscopic surface.

  9. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    PubMed

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB. PMID:27433737

  10. Oxidation and degradation of a plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.

    1996-04-01

    The isothermal oxidation behavior of thermal barrier coating (TBC) specimens consisting of single-crystal superalloy substrates, vacuum plasma-sprayed Ni-22Cr-10Al-1Y bond coatings and air plasma-sprayed 7.5 wt.% yttria stabilized zirconia top coatings was evaluated by thermogravimetric analysis at 1150{degrees}C for up to 200 hours. Coating durability was assessed by furnace cycling at 1150{degrees}C. Coatings and reaction products were identified by x-ray diffraction, field-emission scanning electron microscopy and energy dispersive spectroscopy.

  11. Highly robust transparent and conductive gas diffusion barriers based on tin oxide.

    PubMed

    Behrendt, Andreas; Friedenberger, Christian; Gahlmann, Tobias; Trost, Sara; Becker, Tim; Zilberberg, Kirill; Polywka, Andreas; Görrn, Patrick; Riedl, Thomas

    2015-10-21

    Transparent and electrically conductive gas diffusion barriers are reported. Tin oxide (SnOx ) thin films grown by atomic layer deposition afford extremely low water vapor transmission rates (WVTR) on the order of 10(-6) g (m(2) day)(-1) , six orders of magnitude better than that established with ITO layers. The electrical conductivity of SnOx remains high under damp heat conditions (85 °C/85% relative humidity (RH)), while that of ZnO quickly degrades by more than five orders of magnitude. PMID:26310881

  12. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-05-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  13. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites.

    PubMed

    Scherillo, Giuseppe; Lavorgna, Marino; Buonocore, Giovanna G; Zhan, Yanhu H; Xia, Hesheng S; Mensitieri, Giuseppe; Ambrosio, Luigi

    2014-02-26

    Self-assembling of reduced graphene oxide platelets, as a tailored interconnected network within a natural rubber matrix, is proposed as a mean for obtaining nanocomposites with improved gas barrier, as compared to neat natural rubber. Interestingly, this nanocomposite structure results to be much more effective than homogeneous dispersion of graphene platelike particles, even at low graphene loadings. Such behavior is interpreted on the grounds of a theoretical model describing permeability of heterogeneous systems specifically accounting for self-segregated graphene morphology. PMID:24490910

  14. Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.

    2008-01-01

    Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.

  15. CD44 regulates vascular endothelial barrier integrity via a PECAM-1 dependent mechanism.

    PubMed

    Flynn, Kelly M; Michaud, Michael; Canosa, Sandra; Madri, Joseph A

    2013-07-01

    Vascular integrity is a critical parameter in normal growth and development. Loss of appropriate vascular barrier function is present in various immune- and injury-mediated pathological conditions. CD44 is an adhesion molecule expressed by multiple cell types, including endothelial cells (EC). The goal of the present study was to examine how loss of CD44 affected vascular permeability. Using C57BL/6 WT and CD44-KO mice, we found no significant permeability to Evan's Blue in either strain at baseline. However, there was significantly increased histamine-induced permeability in CD44-deficient mice compared to WT counterparts. Similar results were observed in vitro, where CD44-deficient endothelial monolayers were also impermeable to 40kD-FITC dextran in the absence of vasoactive challenge, but exhibited enhanced and prolonged permeability following histamine. However, CD44-KO monolayers have reduced baseline barrier strength by electrical resistance, which correlated with increased permeability, at baseline, to smaller molecular weight 4-kD FITC-dextran, suggesting weakly formed endothelial junctions. The CD44-KO EC displayed several characteristics consistent with impaired barrier function/dysfunctional EC junctions, including differential expression, phosphorylation, and localization of endothelial junction proteins, increased matrix metalloprotease expression, and altered cellular morphology. Reduced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression by CD44-KO EC in vivo and in vitro was also observed. Reconstitution of murine CD44 or PECAM-1 restored these defects to near WT status, suggesting CD44 regulates vascular permeability and integrity through a PECAM-1 dependent mechanism.

  16. The advantages and barriers in the implementation of a substance dependence treatment information system (SDTIS).

    PubMed

    Ajami, Sima; Mellat-Karkevandi, Zahra

    2015-11-01

    Addiction is a phenomenon that causes structural changes in different systems of society. Studies show for planning of addiction prevention and treatment, it is necessary to create an information management system. Substance dependence information systems refer to systems which collect, analyse and report data related to substance dependence information. The aim of this study was to identify advantages and barriers to implement Substance Dependence Treatment Information System (SDTIS). This study was a narrative review. Our review divided into three phases: literature collection, assessing, and selection. We employed the following keywords and their combinations in different areas of articles. In this study, 22 of collected articles and reports were selected based on their relevancy. We found many advantages for a substance dependence treatment information system such as recording sufficient, complete and accurate information and easy and timely access to them and monitoring and enhancing the quality of care received by patients. But we may face some concerns for implementing this information system like taking time and funds from client services, being expensive or even problems regarding the quality of data contained in these information systems. There are some important problems in the way of implementing. In order to overcome these issues, we need to raise community awareness.

  17. The advantages and barriers in the implementation of a substance dependence treatment information system (SDTIS).

    PubMed

    Ajami, Sima; Mellat-Karkevandi, Zahra

    2015-11-01

    Addiction is a phenomenon that causes structural changes in different systems of society. Studies show for planning of addiction prevention and treatment, it is necessary to create an information management system. Substance dependence information systems refer to systems which collect, analyse and report data related to substance dependence information. The aim of this study was to identify advantages and barriers to implement Substance Dependence Treatment Information System (SDTIS). This study was a narrative review. Our review divided into three phases: literature collection, assessing, and selection. We employed the following keywords and their combinations in different areas of articles. In this study, 22 of collected articles and reports were selected based on their relevancy. We found many advantages for a substance dependence treatment information system such as recording sufficient, complete and accurate information and easy and timely access to them and monitoring and enhancing the quality of care received by patients. But we may face some concerns for implementing this information system like taking time and funds from client services, being expensive or even problems regarding the quality of data contained in these information systems. There are some important problems in the way of implementing. In order to overcome these issues, we need to raise community awareness. PMID:26941816

  18. The advantages and barriers in the implementation of a substance dependence treatment information system (SDTIS)

    PubMed Central

    Ajami, Sima; Mellat-Karkevandi, Zahra

    2015-01-01

    Addiction is a phenomenon that causes structural changes in different systems of society. Studies show for planning of addiction prevention and treatment, it is necessary to create an information management system. Substance dependence information systems refer to systems which collect, analyse and report data related to substance dependence information. The aim of this study was to identify advantages and barriers to implement Substance Dependence Treatment Information System (SDTIS). This study was a narrative review. Our review divided into three phases: literature collection, assessing, and selection. We employed the following keywords and their combinations in different areas of articles. In this study, 22 of collected articles and reports were selected based on their relevancy. We found many advantages for a substance dependence treatment information system such as recording sufficient, complete and accurate information and easy and timely access to them and monitoring and enhancing the quality of care received by patients. But we may face some concerns for implementing this information system like taking time and funds from client services, being expensive or even problems regarding the quality of data contained in these information systems. There are some important problems in the way of implementing. In order to overcome these issues, we need to raise community awareness. PMID:26941816

  19. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process.

    PubMed

    Ko, Kyung Bo; Byun, Youngchul; Cho, Moohyun; Namkung, Won; Shin, Dong Nam; Koh, Dong Jun; Kim, Kyoung Tae

    2008-04-01

    The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants. PMID:18313101

  20. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films.

    PubMed

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-19

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ∼160% compared to pristine chitosan, whereas their oxygen permeability reduces by ∼90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites. PMID:27168418

  1. Processing Methods Established To Fabricate Porous Oxide Ceramic Spheres for Thermal Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.

    2003-01-01

    As gas turbine technology advances, the demand for efficient engines and emission reduction requires a further increase in operating temperatures, but combustion temperatures are currently limited by the temperature capability of the engine components. The existing thermal barrier coating (TBC) technology does not provide sufficient thermal load reduction at a 3000 F (1649 C) operating condition. Advancement in thermal barrier coating technology is needed to meet this aggressive goal. One concept for improving thermal barrier coating effectiveness is to design coating systems that incorporate a layer that reflects or scatters photon radiation. This can be achieved by using porous structures. The refractive index mismatch between the solid and pore, the pore size, and the pore density can be engineered to efficiently scatter photon radiation. Under NASA s Ultra-Efficient Engine Technology (UEET) Program, processing methods to fabricate porous ceramic spheres suitable for scattering photon radiation at elevated temperatures have been established. A straightforward templating process was developed at the NASA Glenn Research Center that requires no special processing equipment. The template was used to define particle shape, particle size, and pore size. Spherical organic cation exchange resins were used as a structure-directing template. The cation exchange resins have dual template capabilities that can produce different pore architectures. This process can be used to fabricate both metal oxide and metal carbide spheres.

  2. "I'm not one of them": barriers to help-seeking among American Indians with alcohol dependence.

    PubMed

    Venner, Kamilla L; Greenfield, Brenna L; Vicuña, Belinda; Muñoz, Rosa; Bhatt, S; O'Keefe, Victoria

    2012-10-01

    The majority of people with alcohol use disorders do not seek formal treatment. Research on barriers to help-seeking have only recently focused on ethnic minority populations. The present study investigated the extent to which an adult American Indian (AI) sample experienced similar and/or unique barriers to help-seeking as have been reported in the literature. Using both qualitative and quantitative methods, 56 (54% male) AIs with lifetime alcohol dependence completed a semistructured face-to-face interview and a self-administered written survey. Interviews were tape recorded, transcribed, and coded for four major themes: personal barriers, pragmatic barriers, concerns about seeking help, and social network barriers. Quantitative data provided percentage endorsing each survey item and strength of each barrier, which were categorized according to the four major themes. In previous research, most barriers questionnaires have not queried for cultural concerns or how the specific type of help may be a mismatch from the client's perspective. Given the rapidly changing racial/ethnic demography in the United States, further research addressing cultural and spiritual concerns as well as more common barriers is indicated. (PsycINFO Database Record (c) 2012 APA, all rights reserved). PMID:22985245

  3. Pressure dependence of prototype structures of metastable niobium oxides

    NASA Astrophysics Data System (ADS)

    Obara, Kozo

    1993-03-01

    Faculty of Engineering, Kagoshima University, Korimoto, 1-21-40, Kagoshima 890, Japan Pressure dependences of prototypes of nonstoichiometric metastable niobium oxides formed by a magnetron sputtering system were investigated. The morphology of derived crystals depended strongly on the argon pressure. At argon pressure PAr< 0.2 Torr, thin microcrystals with five types of superlattice structures were derived. Observed lattice constants were transformed into one another by simple lattice deformations within 1% error. All types of superlattice structures were related to the cubic lattice a0 = 3.22 Å. At PAr > 0.3 Torr, metastable niobium oxide super-fine particles with a cubic lattice constant a = 3.44 Å were obtained. Unique relationships between lattice constants were found on the oxidized niobium super-fine particles, NbO and NbO2 formed above 0.3 Torr within 0.5% error. In this case, the lattice structure with a = 3.44 ,Å (BCC) is related to all structures. These lattices a0 = 3.22 ,Å and a = 3.44 Å seem to be the prototypes at PAr ≤ 0.2 Torr and PAr ≥ 0.3 Tort, respectively. These structural changes due to pressure difference depend on the density and the enthalpy of vacancies in as-grown crystals. The density of vacancies is related to the condensation rate of the crystals.

  4. Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Ding, Chunhua; Li, Hongqiang; Han, Zhihai; Ding, Bingjun; Wang, Tiejun; Yu, Lie

    2013-10-01

    In this work, Y2O3 stabilized zirconia-based thermal barrier coatings (TBCs) were deposited by conventional atmospheric plasma spraying (APS) and high efficiency supersonic atmospheric plasma spraying (SAPS), respectively. The effect of Al2O3 layer stability on the isothermal growth behavior of thermally grown oxides (TGOs) was studied. The results revealed that the Al2O3 layer experienced a three-stage change process, i.e., (1) instantaneous growth stage, (2) steady-state growth stage, and (3) depletion stage. The thickness of Al2O3 scale was proved to be an important factor for the growth rate of TGOs. The SAPS-TBCs exhibited a higher Al2O3 stability and better oxidation resistance as compared with the APS-TBCs. Additionally, it was found that inner oxides, especially nucleated on the top of the crest, continually grew and swallowed the previously formed Al2O3 layer, leading to the granulation and disappearance of continuous Al2O3 scale, which was finally replaced by the mixed oxides and spinel.

  5. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  6. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  7. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes

    NASA Astrophysics Data System (ADS)

    Carlson, Jacob C.; Li, Shengying; Gunatilleke, Shamila S.; Anzai, Yojiro; Burr, Douglas A.; Podust, Larissa M.; Sherman, David H.

    2011-08-01

    Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.

  8. Deferasirox Reduces Oxidative Stress in Patients With Transfusion Dependency

    PubMed Central

    Saigo, Katsuyasu; Kono, Mari; Takagi, Yuri; Takenokuchi, Mariko; Hiramatsu, Yasushi; Tada, Hiroshi; Hishita, Terutoshi; Misawa, Masahito; Imoto, Shion; Imashuku, Shinsaku

    2013-01-01

    Background Iron chelation therapy is useful against the over-accumulation of iron and is expected to reduce oxidative stress resulting from the Fenton reaction and Haber-Weiss reaction. We monitored oxidative status and serum ferritin levels after in vivo administration of deferasirox (DFS) and studied the in vitro effects of iron chelators on neutrophil function. Methods Nine patients suffering from transfusion dependency were recruited for this study, and derivatives of reactive oxygen metabolite (dROM) tests to detect serum hydroperoxide levels were evaluated in addition to serum ferritin levels. Human neutrophil reactive oxygen species (ROS) production was determined with flow cytometry. Results Ferritin levels decreased after DFS treatment (P = 0.068), and a significant reduction in dROM levels was measured (P = 0.031). Fifty microM DFS significantly inhibited ROS production induced by fMLP in vitro (P < 0.0001), and tended to inhibit that induced by PMA. On the other hand, deferioxamine failed to inhibit ROS production even at high concentrations. Conclusions In vivo administration of DFS resulted in the reduction of oxidative stress, and this effect was considered to depend not only on a reduction in iron storage but also on the ability of DFS to inhibit neutrophil ROS production in vitro at clinically relevant plasma levels. Further studies are needed to examine the effects of iron chelators. PMID:23390477

  9. Topiramate Treatment Protects Blood-Brain Barrier Pericytes from Hyperglycemia-Induced Oxidative Damage in Diabetic Mice

    PubMed Central

    Price, Tulin O.; Eranki, Vijay; Banks, William A.; Ercal, Nuran

    2012-01-01

    Diabetes mellitus causes cerebral microvasculature deterioration and cognitive decline. The specialized endothelial cells of cerebral microvasculature comprise the blood-brain barrier, and the pericytes (PC) that are in immediate contact with these endothelial cells are vital for blood-brain barrier integrity. In diabetes, increased mitochondrial oxidative stress is implicated as a mechanism for hyperglycemia-induced PC loss as a prerequisite leading to blood-brain barrier disruption. Mitochondrial carbonic anhydrases (CA) regulate the oxidative metabolism of glucose and thus play an important role in the generation of reactive oxygen species and oxidative stress. We hypothesize that the inhibition of mitochondrial CA would reduce mitochondrial oxidative stress, rescue cerebral PC loss caused by diabetes-induced oxidative stress, and preserve blood-brain barrier integrity. We studied the effects of pharmacological inhibition of mitochondrial CA activity on streptozotocin-diabetes-induced oxidative stress and PC loss in the mouse brain. At 3 wk of diabetes, there was significant oxidative stress; the levels of reduced glutathione were lower and those of 3-nitrotyrosine, 4-hydroxy-2-trans-nonenal, and superoxide dismutase were higher. Treatment of diabetic mice with topiramate, a potent mitochondrial CA inhibitor, prevented the oxidative stress caused by 3 wk of diabetes. A significant decline in cerebral PC numbers, at 12 wk of diabetes, was also rescued by topiramate treatment. These results provide the first evidence that inhibition of mitochondrial CA activity reduces diabetes-induced oxidative stress in the mouse brain and rescues cerebral PC dropout. Thus, mitochondrial CA may provide a new therapeutic target for oxidative stress related illnesses of the central nervous system. PMID:22109883

  10. Scale dependent behavior the foredune: Implications for barrier island response to storms and sea level rise

    NASA Astrophysics Data System (ADS)

    Houser, C.; Wernette, P. A.; Weymer, B. A.

    2015-12-01

    The impact of elevated storm surge on a barrier island tends to be considered from a single cross-shore dimension and dependent only on the relative elevations of the storm surge and dune. However, the foredune line is rarely uniform and can exhibit considerable variation in height and width alongshore at a range of length scales ranging from tens of meters to several kilometers. LiDAR data from Santa Rosa Island in northwest Florida, Padre Island, Texas and Assateague Island, Maryland are used to explore how the dune morphology varies alongshore and how this variability is altered by storms and post-storm recovery. While the alongshore variation in dune height can be approximated by a power law, there are scale-dependent variations in the dune that exhibit different responses to storm erosion and post-storm recovery. This suggests that the alongshore variation in dune morphology reflects the history of storm impact and recovery, and that changes in the variance magnitude through time may provide insight into whether the island will be resilient as it transgresses with rising sea level. The difference in variance magnitude at large spatial scales is associated with the framework geology unique to each island and a dominant control on island response to sea level rise.

  11. Quantum mechanical understanding of field dependence of the apex barrier of a single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Li, Zhibing; He, Chunshan; Deng, Shaozhi; Xu, Ningsheng; Zheng, Xiao; Chen, Guanhua

    2005-12-01

    The potential barrier at the apex of a single-wall carbon nanotube emitter is found to be strongly and nonlinearly dependent on the external applied field, due to a quantum mechanical mechanism instead of the correction of image potential in Fowler-Nordheim theory. The field enhancement factor depends on the applied field and is much smaller than that predicted by the classical theory. The field induced apex-vacuum barrier lowering is confirmed to be the essential mechanism for efficient field electron emission from capped carbon nanotubes.

  12. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.

    PubMed

    Son, Youngbae; Li, Jiabo; Peterson, Rebecca L

    2016-09-14

    Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices. PMID:27559750

  13. Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment.

    PubMed

    Wang, Jianqiang; Zhang, Pan; Liang, Bin; Liu, Yuxuan; Xu, Tao; Wang, Lifang; Cao, Bing; Pan, Kai

    2016-03-01

    A novel graphene oxide (GO)-based nanofiltration membrane on a highly porous polyacrylonitrile nanofibrous mat (GO@PAN) is prepared for water treatment applications. GO with large lateral size (more than 200 μm) is first synthesized through an improved Hummers method and then assembled on a highly porous nanofibrous mat by vacuum suction method. The prepared GO@PAN membrane is characterized by scanning electron microscopy, transmission electron microscopy, Raman spectrum, X-ray diffraction, and so forth. The results show that graphene oxide can form a barrier on the top of a PAN nanofibrous mat with controllable thickness. The obtained graphene oxide layer exhibits "ideal" pathways (hydrophobic nanochannel) for water molecules between the well-stacked GO nanosheets. Water flux under an extremely low external pressure (1.0 bar) significantly increased due to the unique structure of the GO layer and nanofibrous support. Furthermore, the GO@PAN membrane shows high rejection performance (nearly 100% rejection of Congo red and 56.7% for Na2SO4). A hydrophilic-hydrophobic "gate"-nanochannel model is presented for explaining the water diffusion mechanism through the GO layer. This method for fabrication of the GO membrane on a highly porous support may provide many new opportunities for high performance nanofiltration applications.

  14. Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment.

    PubMed

    Wang, Jianqiang; Zhang, Pan; Liang, Bin; Liu, Yuxuan; Xu, Tao; Wang, Lifang; Cao, Bing; Pan, Kai

    2016-03-01

    A novel graphene oxide (GO)-based nanofiltration membrane on a highly porous polyacrylonitrile nanofibrous mat (GO@PAN) is prepared for water treatment applications. GO with large lateral size (more than 200 μm) is first synthesized through an improved Hummers method and then assembled on a highly porous nanofibrous mat by vacuum suction method. The prepared GO@PAN membrane is characterized by scanning electron microscopy, transmission electron microscopy, Raman spectrum, X-ray diffraction, and so forth. The results show that graphene oxide can form a barrier on the top of a PAN nanofibrous mat with controllable thickness. The obtained graphene oxide layer exhibits "ideal" pathways (hydrophobic nanochannel) for water molecules between the well-stacked GO nanosheets. Water flux under an extremely low external pressure (1.0 bar) significantly increased due to the unique structure of the GO layer and nanofibrous support. Furthermore, the GO@PAN membrane shows high rejection performance (nearly 100% rejection of Congo red and 56.7% for Na2SO4). A hydrophilic-hydrophobic "gate"-nanochannel model is presented for explaining the water diffusion mechanism through the GO layer. This method for fabrication of the GO membrane on a highly porous support may provide many new opportunities for high performance nanofiltration applications. PMID:26849085

  15. Isothermal oxidation of physical vapor deposited partially stabilized zirconia thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Sohn, Y. H.; Biederman, R. R.; Sisson, R. D.

    1994-02-01

    Thermal barrier coatings (TBCs), consisting of physical vapor deposited (PVD) partially stabilized zirconia (PSZ, 8 wt.%Y2O3) and a diffusion aluminide bond coat, were characterized as a function of time after oxidative isothermal heat treatment at 1373 K in air. The experimental characterizations was conducted by X-ray diffraction analysis and scanning electron microscopy (SEM) with energy-dispersive spectroscopy. During cooling to room temperature, spallation of the PSZ ceramic coatings occurred after 200 and 350 h of isothermal heat treatment. This failure was always sudden and violent, with the TBC popping from the substrate. The monoclinic phase of zirconia was first observed on the bottom surface of the PVD PSZ after 200 h of isothermal heat treatment. The failure of TBCs occurred either in the bond coat oxidation products of αAl2O3 and rutile TiO2 or at the interface between the oxidation products and the diffusion aluminide bond coat or the PSZ coating.

  16. Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-03-01

    Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  17. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria

    PubMed Central

    Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

    2013-01-01

    We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3− to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3− by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3− ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3− reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2− to consumed NH4+ (ΔNO2−/ΔNH4+) and produced NO3− to consumed NH4+ (ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

  18. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  19. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and

  20. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  1. Exceptional oxygen barrier performance of pullulan nanocomposites with ultra-low loading of graphene oxide

    NASA Astrophysics Data System (ADS)

    Uysal Unalan, Ilke; Wan, Chaoying; Figiel, Łukasz; Olsson, Richard T.; Trabattoni, Silvia; Farris, Stefano

    2015-07-01

    Polymer nanocomposites are increasingly important in food packaging sectors. Biopolymer pullulan is promising in manufacturing packaging films or coatings due to its excellent optical clarity, mechanical strength, and high water-solubility as compared to other biopolymers. This work aims to enhance its oxygen barrier properties and overcome its intrinsic brittleness by utilizing two-dimensional planar graphene oxide (GO) nanoplatelets. It has been found that the addition of only 0.2 wt% of GO enhanced the tensile strength, Young’s modulus, and elongation at break of pullulan films by about 40, 44 and 52%, respectively. The light transmittance at 550 nm of the pullulan/GO films was 92.3% and haze values were within 3.0% threshold, which meets the general requirement for food packaging materials. In particular, the oxygen permeability coefficient of pullulan was reduced from 6337 to 2614 mL μm m-2 (24 h-1) atm-1 with as low as 0.05 wt% of GO loading and further to 1357 mL μm m-2 (24 h-1) atm-1 when GO concentration reached 0.3 wt%. The simultaneous improvement of the mechanical and oxygen barrier properties of pullulan was ascribed to the homogeneous distribution and prevalent unidirectional alignment of GO nanosheets, as determined from the characterization and theoretical modelling results. The exceptional oxygen barrier properties of pullulan/GO nanocomposites with enhanced mechanical flexibility and good optical clarity will add new values to high performance food packaging materials.

  2. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  3. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  4. A study on thermal barrier coatings including thermal expansion mismatch and bond coat oxidation

    NASA Technical Reports Server (NTRS)

    Chang, George C.; Phucharoen, Woraphat; Miller, Robert A.

    1986-01-01

    The present investigation deals with a plasma-sprayed thermal barrier coating (TBC) intended for high temperature applications to advanced gas turbine blades. Typically, this type of coating system consists of a zirconia-yttria ceramic layer with a nickel-chromium-aluminum bond coat on a superalloy substrate. The problem on hand is a complex one due to the fact that bond coat oxidation and thermal mismatch occur in the TBC. Cracking in the TBC has also been experimentally illustrated. A clearer understanding of the mechanical behavior of the TBC is investigated. The stress states in a model thermal barrier coating as it cools down in air is studied. The powerful finite element method was utilized to model a coating cylindrical specimen. Four successively refined finite element models were developed. Some results obtained using the first two models have been reported previously. The major accomplishment is the successful development of an elastic TBC finite element model known as TBCG with interface geometry between the ceramic layer and the bond coat. An equally important milestone is the near-completion of the new elastic-plastic TBC finite element model called TBCGEP which yielded initial results. Representative results are presented.

  5. Temperature dependent electrical transport of disordered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Muchharla, Baleeswaraiah; Narayanan, T. N.; Balakrishnan, Kaushik; Ajayan, Pulickel M.; Talapatra, Saikat

    2014-06-01

    We report on the simple route for the synthesis of chemically reduced graphene oxide (rGO) using ascorbic acid (a green chemical) as a reducing agent. Temperature-dependent electrical transport properties of rGO thin films have been studied in a wide range (50 K T 400 K) of temperature. Electrical conduction in rGO thin films was displayed in two different temperature regimes. At higher temperatures, Arrhenius-like temperature dependence of resistance was observed indicating a band gap dominating transport behavior. At lower temperatures, the rGO sample showed a conduction mechanism consistent with Mott's two-dimensional variable range hopping (2D-VRH). An unsaturated negative magnetoresistance (MR) was observed up to 3 T field. A decrease in negative MR at high temperatures is attributed to the phonon scattering of charge carriers.

  6. Pravastatin acute neuroprotective effects depend on blood brain barrier integrity in experimental cerebral ischemia.

    PubMed

    Carone, D; Librizzi, L; Cattalini, A; Sala, G; Conti, E; Cuccione, E; Versace, A; Cai, R; Monza, L; de Curtis, M; Ferrarese, C; Beretta, S

    2015-07-30

    Statins have since long been reported to exert acute neuroprotection in experimental stroke models. However, crucial questions still need to be addressed as far as the timing of their cerebral effects after intravascular administration and the role played by the blood brain barrier (BBB) crossing properties. We tested the effects of an hydrophilic statin (pravastatin, 100 nM), which poorly crosses BBB under physiological conditions. Pravastatin was administered either 90 min before or immediately after transient middle cerebral artery occlusion in the in vitro isolated guinea pig brain preparation. A multi-modal outcome assessment was performed, through electrophysiological and cerebral vascular tone recordings, MAP-2 immunohistochemistry, BBB evaluation via ZO-1/FITC-albumin analysis, AKT and ERK activation and whole-cell antioxidant capacity. Pravastatin pre-ischemic administration did not produce any significant effect. Pravastatin post-ischemic administration significantly prevented MAP-2 immunoreactivity loss in ischemic areas, increased ERK phosphorylation in the ischemic hemisphere and enhanced whole-cell antioxidant capacity. Electrophysiological parameters, vascular tone and AKT signaling were unchanged. In all tested ischemic brains, ZO-1 fragmentation and FITC albumin extravasation was observed, starting 30 min from ischemia onset, indicating loss of BBB integrity. Our findings indicate that the rapid anti-ischemic effects of intravascular pravastatin are highly dependent on BBB increased permeability after stroke.

  7. Role of codeposited impurities during growth. II. Dependence of morphology on binding and barrier energies

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.; Pimpinelli, A.; Einstein, T. L.

    2011-01-01

    In an accompanying article we showed that surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN) to Cu adatom and the diffusion barrier (Ed) of the impurity atom on Cu(0 0 1). Based on these two energy parameters, ENN and Ed, we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ⩽ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.

  8. Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li; Hwu, Jenn-Gwo

    2014-03-01

    A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO2 thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high and steady photosensitivity can also be approached by introducing HfO2 into dielectric stacks.

  9. Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes

    SciTech Connect

    Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li; Hwu, Jenn-Gwo

    2014-03-28

    A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO{sub 2} thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high and steady photosensitivity can also be approached by introducing HfO{sub 2} into dielectric stacks.

  10. Correlation between nicotine dependence and barriers to cessation between exclusive cigarette smokers and dual (water pipe) smokers among Arab Americans

    PubMed Central

    El-Shahawy, Omar; Haddad, Linda

    2015-01-01

    Background Evidence suggests that dual cigarette and water pipe use is growing among minority groups, particularly among Arab Americans. Differences in nicotine dependence and barriers to smoking cessation among such dual smokers have not been previously examined in this population. We examined potential differences that might exist between exclusive cigarette smokers and dual smokers (cigarette and water pipe) pertaining to nicotine dependence and barriers to cessation among Arab Americans. Methods We conducted a cross-sectional study using a convenience sample of self-identified Arab immigrant smokers (n=131) living in the Richmond, VA metropolitan area. Data were collected using four questionnaires: Demographic and Cultural Information questionnaire, Tobacco Use questionnaire, Fagerström Test for Nicotine Dependence (FTND) questionnaire, and Barriers to Cessation questionnaire. We examined differences in nicotine dependence and barriers to cessation between exclusive cigarette smokers and dual smokers of cigarettes and water pipe. Furthermore, we explored the correlations of these measures with select variables. Results There was a significant difference in the FTND scores between the exclusive cigarette smokers (mean M=2.55, standard deviation [SD] =2.10) and dual smokers (M=3.71, SD =2.42); t(129) = (2.51), P=0.0066. There was also a significant difference in the Barriers to Cessation scores between exclusive cigarette smokers (M=38.47, SD =13.07) and dual smokers (M=45.21, SD =9.27); t(129) = (2.56), P=0.0058. Furthermore, there was a highly significant correlation among FTND scores, Barriers to Cessation scores, and past quit attempts among dual smokers. Conclusion Water pipe tobacco smoking seems to be both adding to the dependence potential of cigarette smoking and enhancing barriers to cessation in our study sample. However, the high correlation between quit attempts, FTND, and barriers to cessation needs further investigation to ascertain the possible

  11. Low-index nanopatterned barrier for hybrid oxide-free III-V silicon conductive bonding.

    PubMed

    Bougot-Robin, Kristelle; Talneau, Anne; Benisty, Henri

    2014-09-22

    Oxide-free bonding of a III-V active stack emitting at 1300-1600 nm to a silicon-on-insulator wafer offers the capability to electrically inject lasers from the silicon side. However, a typical 500-nm-thick silicon layer notably attracts the fundamental guided mode of the silicon + III-V stack, a detrimental feature compared to established III-V Separate-Confinement Heterostructure (SCH) stacks. We experimentally probe with photoluminescence as an internal light source the guiding behavior for oxide-free bonding to a nanopatterned silicon wafer that acts as a low-index barrier. We use a sub-wavelength square array of small holes as an effective "low-index silicon" medium. It is weakly modulated along one dimension (superperiodic array) to outcouple the resulting guided modes to free space, where we use an angle-resolved spectroscopy study. Analysis of experimental branches confirms the capability to operate with a fundamental mode well localized in the III-V heterostructures.

  12. Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process

    NASA Astrophysics Data System (ADS)

    Guikai, Zhang; Ju, Li; Chang'an, Chen; Sanping, Dou; Guoping, Ling

    2011-10-01

    Aluminum rich coatings forming Al 2O 3 on surface are widely applied as tritium permeation barrier (TPB) on structural materials in fusion reactor. In this work, we proposed a new three-step method for preparing such aluminum rich coating on HR-2 steel: ambient temperature melts salt electroplating followed by heat treating and artificial oxidation at 700 °C. Al deposition from AlCl 3/EMIC was performed with a deposition rate of 15 μm/h. After heat treated for 2 h, the aluminized coating appeared homogeneous, with thickness of 11-13 μm and free of visible porosity, and exhibited a three-layer structure. After oxidized in 10 -2 Pa O 2 for 80 h, the finally fabricated coating showed a double-layered structure consisting of an outer γ-A1 2O 3 layer with thickness of 0.1 μm and inner (Fe,Cr,Mn,Ni)Al/(Fe,Cr,Mn,Ni) 3Al layer of 32 μm thickness, without any visible defects. The deuterium permeation rate through the coated HR-2 steel was reduced by 2-3 orders of magnitude at 600-727 °C.

  13. Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions.

    PubMed

    Rydberg, Patrik; Lonsdale, Richard; Harvey, Jeremy N; Mulholland, Adrian J; Olsen, Lars

    2014-07-01

    Prediction of epoxide formation in drug metabolism is a difficult but important task, as epoxide formation is linked to drug toxicity. A comparison of the energy barriers for cytochrome P450 mediated epoxidation of alkenes to the barriers for the hydroxylation of an aliphatic carbon atom next to a double bond has been performed using B3LYP and B3LYP-D3. Relevant experimental data on oxidation selectivity has also been assessed. The results show that density functional theory, when using B3LYP-D3, does well in reproducing the experimental trends. Considering that the comparison involves chemical steps with quite different features this is remarkable. We also find that B3LYP consistently underestimates the hydrogen abstraction barriers relative to the epoxidation barriers, and that including a dispersion correction reduces this problem.

  14. Influence of the microstructure and topography on the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces.

    PubMed

    Barranco, V; Escudero, M L; García-Alonso, M C

    2011-06-01

    The long-term interfacial bond between an implant and bone may be improved by creating a rough surface on the implant in order to increase the surface area available for bone/implant apposition. A natural consequence of surface roughening is an increase in metal ion release, which is itself a surface dominated process. Based on this fact, the aim of this work is to study the influence of the microstructure and topography on the barrier properties of oxide scales thermally generated at 700 °C for 1h on Ti6Al4V surfaces after blasting with Al(2)O(3) particles (coarse) or SiO(2) and ZrO(2) particles (fine). The microstructural and topographical characterization of the thermally treated blasted surfaces has been studied by means of scanning electron microscopy coupled with energy dispersive X-ray analysis, contact profilometry and X-ray diffraction. The barrier properties and corrosion behaviour of the oxide layers have been studied by means of electrochemical impedance spectroscopy (EIS) in Hank's solution. Thermal treatment at 700 °C for 1h promotes the formation of oxide scales with different morphologies and crystalline structures depending on the degree of deformation of the blasted surface. The oxide scale grown on the finely blasted sample has a pine needle-like morphology which is mainly formed of anatase TiO(2). In contrast, the oxide scale grown on the coarsely blasted sample has a globular morphology formed mainly of rutile TiO(2). The differences in morphology, i.e. fine or coarse, of the oxide scales influence the corrosion response of the blasted thermally treated samples in Hank's solution. The EIS results permit evaluation of the different oxide scales from the capacitance and resistance values obtained in the high-frequency region and show a good correlation between the morphology and barrier properties. Oxidation treatment at 700 °C for 1h of Ti6Al4V samples coarsely blasted with Al(2)O(3) improves the corrosion behaviour due to an increase in the

  15. Barriers to community-based drug dependence treatment: implications for police roles, collaborations and performance indicators

    PubMed Central

    Ma, Yi; Du, Chunhua; Cai, Thomas; Han, Qingfeng; Yuan, Huanhuan; Luo, Tingyan; Ren, Guoliang; Mburu, Gitau; Wang, Bangyuan; Golichenko, Olga; Zhang, Chaoxiong

    2016-01-01

    Introduction Worldwide, people who use drugs (PWUD) are among the populations at highest risk for HIV infection. In China, PWUD are primarily sentenced to compulsory detainment centres, in which access to healthcare, including HIV treatment and prevention services, is limited or non-existent. In 2008, China's 2008 Anti-Drug Law encouraged the development and use of community-based drug dependence rehabilitation, yet there is limited evidence evaluating the efficacy and challenges of this model in China. In this study, we explore these challenges and describe how cooperation between law enforcement and health departments can meet the needs of PWUD. Methods In 2015, we conducted semi-structured, in-depth interviews with all four staff members and 16 clients of the Ping An Centre No. 1 for community-based drug treatment, three local police officers and three officials from the local Centre for Disease Control. Interviews explored obstacles in implementing community-based drug dependence treatment and efforts to resolve these difficulties. Transcripts were coded and analyzed with qualitative data analysis software (MAXQDA 11). Results We identified three challenges to community-based drug treatment at the Ping An Centre No. 1: (1) suboptimal coordination among parties involved, (2) a divergence in attitudes towards PWUD and harm reduction between law enforcement and health officials and (3) conflicting performance targets for police and health officials that undermine the shared goal of treatment. We also identified the take-home methadone maintenance treatment model at the Ping An Centre No. 1 as an example of an early successful collaboration between the police, the health department and PWUD. Conclusions To overcome barriers to effective community-based drug treatment, we recommend aligning the goals of law enforcement and public health agencies towards health-based performance indicators. Furthermore, tensions between PWUD and police need to be addressed and trust

  16. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  17. Cerebrospinal Fluid Secretory Ca2+-Dependent Phospholipase A2 Activity: A Biomarker of Blood-Cerebrospinal Fluid Barrier Permeability

    PubMed Central

    Chalbot, Sonia; Zetterberg, Henrik; Blennow, Kaj; Fladby, Tormod; Grundke-Iqbal, Inge; Iqbal, Khalid

    2010-01-01

    The blood-brain barrier, the blood-cerebrospinal fluid barrier (BCB) and other specialized brain barriers are increasingly recognized as a major obstacle to the treatment of most brain disorders. The impairment of these barriers has been implicated in neuropathology of several diseases, such as autism, ischemia, multiple sclerosis and Alzheimer disease. This dual function of the blood-neural barriers points out the importance and need for the development of techniques that can evaluate the nature and level of their integrity. Here we report the discovery of CSF secretory Ca2+-dependent phospholipase A2 (sPLA2) activity as a measure of BCB permeability. Lumbar CSF from BCB-impaired (n=26), multiple sclerosis (n=18) and healthy control (n=32) cases was analyzed using both a newly developed continuous fluorescence assay for CSF sPLA2 activity and CSF/Serum albumin ratio (QAlb), the most common and established method to evaluate BCB permeability. While both measurements showed no significant differences between multiple sclerosis and age-matched normal healthy cases, they were highly correlated. Though the CSF sPLA2 activity and QAlb had over 95 % agreement, the former was found to be more sensitive than the latter in measuring low levels of BCB impairment. PMID:20470866

  18. Barrier contraceptives and sexually transmitted diseases in women: a comparison of female-dependent methods and condoms.

    PubMed Central

    Rosenberg, M J; Davidson, A J; Chen, J H; Judson, F N; Douglas, J M

    1992-01-01

    INTRODUCTION. Most efforts at sexually transmitted disease (STD) protection center on condom use, but little is known about how condoms compare with other barrier methods, particularly those controlled by women. METHODS. To evaluate the effect of different barrier contraceptives on the prevalence of STDs and other vaginal infections, we retrospectively studied 5681 visits by women to an urban STD clinic. RESULTS. As compared with women using no contraceptive or with tubal ligations, women using the contraceptive sponge or diaphragm had at least 65% lower rates of infection with Neisseria gonorrhoeae and Trichomonas vaginalis, while condom users had 34% and 30% lower rates, respectively. For Chlamydia trachomatis, the reduction was 13% among sponge users, 72% among diaphragm users, and 3% among condom users, although these differences were not significant. When compared with women using condoms, women using female-dependent methods (sponge or diaphragm) had significantly lower rates of both gonorrhea and trichomoniasis. Vaginal candidiasis was more common among women using diaphragms but not other barrier methods, while rates of bacterial vaginosis were similar among all groups. CONCLUSIONS. Women using the contraceptive sponge or diaphragm experience protection from STDs to a greater extent than those relying on condoms. Female-dependent barrier contraceptives should receive more attention in STD risk-reduction programs. PMID:1566944

  19. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    SciTech Connect

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  20. SEMICONDUCTOR DEVICES: Exponential dependence of potential barrier height on biased voltages of inorganic/organic static induction transistor

    NASA Astrophysics Data System (ADS)

    Yong, Zhang; Jianhong, Yang; Xueyuan, Cai; Zaixing, Wang

    2010-04-01

    The exponential dependence of the potential barrier height phic on the biased voltages of the inorganic/organic static induction transistor (SIT/OSIT) through a normalized approach in the low-current regime is presented. It shows a more accurate description than the linear expression of the potential barrier height. Through the verification of the numerical calculated and experimental results, the exponential dependence of phic on the applied biases can be used to derive the I-V characteristics. For both SIT and OSIT, the calculated results, using the presented relationship, are agreeable with the experimental results. Compared to the previous linear relationship, the exponential description of phic can contribute effectively to reduce the error between the theoretical and experimental results of the I-V characteristics.

  1. Exact analytical evaluation of time dependent transmission coefficient from the method of reactive flux for an inverted parabolic barrier.

    PubMed

    Chakrabarti, Rajarshi

    2007-04-01

    The paper demonstrates an elegant way of combining the normal mode analysis and the method of reactive flux to evaluate the time dependent transmission coefficient for a classical particle coupled to a set of harmonic oscillators, surmounting a one dimensional barrier. The author's analysis reproduces the results of Kohen and Tannor [J. Chem. Phys. 103, 6013 (1995)] and Bao [J. Chem. Phys. 124, 114103 (2006)]. Moreover the use of normal mode analysis has a better physical meaning.

  2. Health Care Preferences Among Nursing Home Residents: Perceived Barriers and Situational Dependencies to Person-Centered Care.

    PubMed

    Bangerter, Lauren R; Abbott, Katherine; Heid, Allison R; Klumpp, Rachel E; Van Haitsma, Kimberly

    2016-02-01

    Although much research has examined end-of-life care preferences of nursing home (NH) residents, little work has examined resident preferences for everyday health care. The current study conducted interviews with 255 residents recruited from 35 NHs. Content analysis identified barriers (i.e., hindrances to the fulfillment of resident preferences) and situational dependencies (i.e., what would make residents change their mind about the importance of these preferences) associated with preferences for using mental health services, choosing a medical care provider, and choosing individuals involved in care discussions. Barriers and situational dependencies were embedded within the individual, facility environment, and social environment. Approximately one half of residents identified barriers to their preferences of choosing others involved in care and choosing a medical care provider. In contrast, the importance of mental health services was situationally dependent on needs of residents. Results highlight opportunities for improvement in practice and facility policies that promote person-centered care. [Journal of Gerontological Nursing, 42(2), 11-16.].

  3. Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein : A joint experimental and theoretical study.

    SciTech Connect

    Molina, L M.; Lee, S.; Sell, K.; Barcaro, G.; Fortunelli, A.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Barke, I.; von Oeynhausen, V.; Lei, Y.; Meyer, R. J.; Alonso, J. A.; Fraile-Rodriguez, A.; Kleibert, A.; Giorgio, S.; Henry, C. R.; Heinz Meiwes-Broer, K.; Vadja, S.; Univ. de Valladolid; Univ. Rostock; IPCF-CNR; Univ. of Illinois at Chicago; Swiss Light Source; CINaM-CNRS and Aix-Marseille Univ.; Yale Univ.

    2011-02-02

    Model silver nanocatalysts between 9 and 23 nm in size were prepared by size-selected cluster deposition from a free cluster beam on amorphous alumina films and their size-dependent catalytic performance studied in the partial oxidation of propylene under realistic reaction conditions. Smaller clusters preferentially produced acrolein, while the 23 nm particles were considerably more selective towards the formation of propylene oxide, at reaction rates far exceeding those previously reported for larger silver particles. The activity of clusters dropped significantly with increasing particle size. First-principle calculations, of the activation energies for oxygen adsorption and its dissociation, at variable surface coverage yielded surface energies which resulted in particle shapes resembling the experimentally observed shapes of partially oxidized silver clusters. The calculated activation barriers for propylene oxide and acrolein formation on various facets and on the edges of the nanoparticles provided detailed information about the energetics of the competing reaction pathways. The size- and corresponding morphology dependent theoretical activity and selectivity are in good accord with experimental observations.

  4. Gold-thickness-dependent Schottky barrier height for charge transfer in metal-assisted chemical etching of silicon

    PubMed Central

    2013-01-01

    Large-area, vertically aligned silicon nanowires with a uniform diameter along the height direction were fabricated by combining in situ-formed anodic aluminum oxide template and metal-assisted chemical etching. The etching rate of the Si catalyzed using a thick Au mesh is much faster than that catalyzed using a thin one, which is suggested to be induced by the charge transport process. The thick Au mesh in contact with the Si produces a low Au/Si Schottky barrier height, facilitating the injection of electronic holes from the Au to the Si, thus resulting in a high etching rate. PMID:23618313

  5. Nitric oxide, cholesterol oxides and endothelium-dependent vasodilation in plasma of patients with essential hypertension.

    PubMed

    Moriel, P; Sevanian, A; Ajzen, S; Zanella, M T; Plavnik, F L; Rubbo, H; Abdalla, D S P

    2002-11-01

    The objective of the present study was to identify disturbances of nitric oxide radical (.NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of.NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 +/- 9.7 years; blood pressure, 148.3 +/- 24.8/90.8 +/- 10.2 mmHg) and in 11 healthy subjects (N: 48.4 +/- 7.0 years; blood pressure, 119.4 +/- 9.4/75.0 +/- 8.0 mmHg). Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 +/- 26.0, N: 54.2 +/- 24.9 micro M), urate (H: 108.5 +/- 18.9, N: 156.4 +/- 26.3 micro M), beta-carotene (H: 1.1 +/- 0.8, N: 2.5 +/- 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 +/- 0.2, N: 0.7 +/- 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3beta,5,6beta-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 +/- 0.2, N: 0.7 +/- 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for.NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although.NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides. PMID:12426629

  6. Suppression of spin transport in ferromagnet/oxide/semiconductor junctions by magnetic impurities in the tunnel barrier

    NASA Astrophysics Data System (ADS)

    Spiesser, Aurélie; Saito, Hidekazu; Yuasa, Shinji; Jansen, Ron

    2016-10-01

    We have studied how the insertion of sub-monolayer amounts of Mn impurities in the middle of the oxide tunnel barrier of Fe/GeO2 on p-type Ge affects the spin transport, using three-terminal Hanle measurements. Strikingly, the magnitude of the Hanle spin voltage is strongly reduced by increasing the amount of Mn dopants and is even completely absent for devices having an amount of Mn impurities equivalent to a 0.2-nm-thick layer. This demonstrates that magnetic impurities in the tunnel barrier are detrimental to the spin transport in ferromagnet/oxide/semiconductor junctions, and that the localized states associated with such magnetic impurities do not produce three-terminal Hanle spin signals.

  7. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

    PubMed

    Yagoda, Nicholas; von Rechenberg, Moritz; Zaganjor, Elma; Bauer, Andras J; Yang, Wan Seok; Fridman, Daniel J; Wolpaw, Adam J; Smukste, Inese; Peltier, John M; Boniface, J Jay; Smith, Richard; Lessnick, Stephen L; Sahasrabudhe, Sudhir; Stockwell, Brent R

    2007-06-14

    Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.

  8. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  9. Nitric oxide dependent vasodilation in young spontaneously hypertensive rats.

    PubMed

    Radaelli, A; Mircoli, L; Mori, I; Mancia, G; Ferrari, A U

    1998-10-01

    Conflicting evidence exists on the possible impairment of tonic nitric oxide (NO) mediated vasodilation as a causative factor in the genesis of human as well as experimental hypertension. We evaluated the tonic NO-dependent vasodilation from the pressor response to NO synthesis inhibition by NG-monomethyl-L-arginine (L-NMMA) in 9 conscious, chronically instrumented spontaneously hypertensive rats (SHR) at 12 weeks of age, ie, during the early established hypertensive stage. Nine age-matched Wistar-Kyoto rats (WKY) were used as controls. The pressor responses to L-NMMA (100 mg . kg-1 IV bolus plus 1.5 mg . kg-1 . min-1 infusion for 60 minutes) as well as to non NO-dependent pressor stimuli, namely, vasopressin (2, 4, and 8 ng . kg-1) and phenylephrine (0.5, 1, and 2 microg . kg-1) given as IV boluses, were assessed both under control conditions and during suppression of autonomic reflexes by hexamethonium (30 mg . kg-1 IV bolus+1.5 mg . kg-1 . min-1 infusion). Rather than being reduced, the pressor responses to L-NMMA were 39% and 71% larger in the control and areflexic conditions, respectively, than those observed in WKY (both P<0.01). A similar pattern was observed for the pressor responses to vasopressin (+37% and +68% in the control and areflexic conditions, respectively; both P<0.01) and phenylephrine, (+20% and +52%; both P<0.05). Additional groups of 6-week-old prehypertensive SHR (n=11) and age-matched WKY (n=11) were subjected to an identical protocol: in these animals, the pressor responses to L-NMMA were similar in each strain, as were the pressor responses to vasopressin and phenylephrine in both control and areflexic conditions. In conclusion, our observations indicate that during the developmental phase of hypertension in the SHR model, namely, during the prehypertensive as well as the early established hypertensive stage, NO-dependent vasodilation is preserved (if not enhanced) so that a putative impairment of this function provides no significant

  10. Stress influence on high temperature oxide scale growth: Modeling and investigation on a thermal barrier coating system

    NASA Astrophysics Data System (ADS)

    Saillard, A.; Cherkaoui, M.; Capolungo, L.; Busso, E. P.

    2010-07-01

    In thermal barrier coating (TBC) systems, an oxide layer develops at high temperature below the ceramic coating, leading in the long term to the mechanical failure of the structure upon cooling. The mechanism of stress-affected oxidation likely to induce the growth of a non-uniform oxide scale detrimental to the TBC lifetime was investigated. A continuum thermodynamics formulation is derived accounting for the influence of the stress and strain situation at the sharp metal/oxide phase boundary on the local oxidation kinetics. It specially includes the contributions of the large volumetric strain and the mass consumption associated with metal oxidation. A continuum mechanics/mass diffusion framework is used along with the developed formulation for the interface evolution to study the growth of an oxide layer coupled with local stress development. The implementation of the model has required the development of a specific simulation tool, based on a finite element method completed with an external routine for the phase boundary propagation. Results on an electron-beam physical vapor deposited (EB-PVD) TBC case are presented. The processes resulting in a non-uniform oxide scale growth are analyzed and the main influences are discussed.

  11. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.

    PubMed

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-11-13

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides. PMID:26489518

  12. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.

    PubMed

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-11-13

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  13. The Ehrlich–Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    SciTech Connect

    Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2015-10-22

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich–Schwoebel (ES) barrier. In this study, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ~0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. In conclusion, these studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  14. The Ehrlich–Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    DOE PAGES

    Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2015-10-22

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich–Schwoebel (ES) barrier. In this study, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is usedmore » to reproduce the experimental data, and provides an estimate of the ES barrier as ~0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. In conclusion, these studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.« less

  15. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  16. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    NASA Astrophysics Data System (ADS)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  17. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels

    NASA Astrophysics Data System (ADS)

    Rosamond, Madeline S.; Thuss, Simon J.; Schiff, Sherry L.

    2012-10-01

    Nitrous oxide is a potent greenhouse gas, and it destroys stratospheric ozone. Seventeen per cent of agricultural nitrous oxide emissions come from the production of nitrous oxide in streams, rivers and estuaries, in turn a result of inorganic nitrogen input through leaching, runoff and sewage. The Intergovernmental Panel on Climate Change and global nitrous oxide budgets assume that riverine nitrous oxide emissions increase linearly with dissolved inorganic nitrogen loads, but data are sparse and conflicting. Here we report measurements over two years of nitrous oxide emissions in the Grand River, Canada, a seventh-order temperate river that is affected by agricultural runoff and outflow from a waste-water treatment plant. Emissions were disproportionately high in urban areas and during nocturnal summer periods. Moreover, annual emission estimates that are based on dissolved inorganic nitrogen loads overestimated the measured emissions in a wet year and underestimated them in a dry year. We found no correlations of nitrous oxide emissions with nitrate or dissolved inorganic nitrogen, but detected negative correlations with dissolved oxygen, suggesting that nitrate concentrations did not limit emissions. We conclude that future increases in nitrate export to rivers will not necessarily lead to higher nitrous oxide emissions, but more widespread hypoxia most likely will.

  18. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  19. Effect of Coating Process Condition on High-Temperature Oxidation and Mechanical Failure Behavior for Plasma Sprayed Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Yoshiba, Masayuki; Harada, Yoshio

    In order to clarify the thermal and/or mechanical failure behavior of the plasma sprayed thermal barrier coating (TBC) system in connection with their coating characteristics depending on the coating process condition, two kinds of the failure analytical tests were conducted for TBC systems processed under different conditions. One was the high-temperature oxidation test, which was conducted at 1100°C under both the isothermal and thermal cycle conditions. The other was the in-situ observation of mechanical failure behavior, which was conducted under the static loadings at ambient temperature; as the most fundamental aspect, by means of an optical microscopy. It was found that the thermal and mechanical failure behavior of TBC system depends strongly on the top-coat (TC)/bond-coat (BC) interfacial condition, the reheat-treatment (RHT) after spraying and so on. For the TBC system with vacuum plasma sprayed (VPS) BC as well as for that with atmospheric plasma sprayed (APS) BC, in particular, the RHT at an appropriate temperature in Ar atmosphere was found to be effective for improving the oxidation property. For the TBC system with APS-BC, however, it was impossible to prevent the crack growth into the BC interior under the tensile loading in spite of conducting the RHT, since the microdefects such as oxides within the APS-BC tend to provide an easy crack propagation path. Furthermore, it was clarified that the smoothening process on the BC surface is able to prevent perfectly the occurrence of the wart-like oxide during oxidation, but at the same time increases also the risk of the TC spalling under the mechanical loading.

  20. Isothermal Oxidation Behavior of VC and Columnar Structured Thermal Barrier Coatings Deposited by Suspension Plasma Spray Technology

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Yang, Qi; Huang, Xiao; Tang, Zhaolin

    2015-08-01

    The effects of different thermal barrier coating (TBC) top coat structures and substrate alloys on the isothermal oxidation behaviors of TBC systems were investigated at 1080 °C in lab air. The tested TBC systems consisted of two nickel-based superalloy substrates (CMSX-4 and IN738LC), a platinum aluminide bond coat and two 8YSZ top coats (vertical cracked and columnar structured). Samples with IN738LC substrate demonstrated longer isothermal oxidation lives than the counterparts with CMSX-4 substrate. Outward refractory elemental diffusion in coating systems with CMSX-4 substrate and void formation at the interface between thermally grown oxide and bond coat was found to be responsible for the early failure of TBCs. Columnar structured YSZ top coat seemed to provide better protection of the bond coating and substrate, marginally delaying the failure of the both coating systems with IN738LC and CMSX-4.

  1. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2012-12-28

    Graphene oxides (GOs) may offer extraordinary potential in the design of novel catalytic systems due to the presence of various oxygen functional groups and their unique electronic and structural properties. Using first-principles calculations, we explore the plausible mechanisms for the oxidative dehydrogenation (ODH) of propane to propene by GOs and the diffusion of the surface oxygen-containing groups under an external electric field. The present results show that GOs with modified oxygen-containing groups may afford high catalytic activity for the ODH of propane to propene. The presence of hydroxyl groups around the active sites provided by epoxides can remarkably enhance the C-H bond activation of propane and the activity enhancement exhibits strong site dependence. The sites of oxygen functional groups on the GO surface can be easily tuned by the diffusion of these groups under an external electric field, which increases the reactivity of GOs towards ODH of propane. The chemically modified GOs are thus quite promising in the design of metal-free catalysis. PMID:22801590

  2. Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state.

    PubMed

    Wibroe, Peter P; Petersen, Søren V; Bovet, Nicolas; Laursen, Bo W; Moghimi, S Moein

    2016-02-01

    Graphene oxide (GO) is believed to become applicable in biomedical products and medicine, thereby necessitating appropriate safety evaluation dependent on their applications and the route of administration. We have examined the effect of GO form (in solution versus immobilized) and oxidation state on two related elements of innate immunity: the complement system and interleukin-6 (IL-6) release in human blood. In solution, there was a decrease in GO-mediated complement activation with decreasing surface oxygen content (and altered oxygen functionality), whereas with immobilized GO complement response were reversed and increased with decreasing oxygen content. GO solutions, at concentrations below complement activating threshold, did not induce IL-6 release from human blood leukocytes, and further dampened lipopolysaccharide-induced IL-6 release in the whole blood. The latter effect became more profound with GO's having higher oxygen content. This protective role of GO solutions, however, disappeared at higher concentrations above complement-activating threshold. We discuss these results in relation to GO surface structure and properties, and implications for local administration and development of GO-based implantable devices.

  3. Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes.

    PubMed

    Piwkowska, Agnieszka; Rogacka, Dorota; Audzeyenka, Irena; Kasztan, Małgorzata; Angielski, Stefan; Jankowski, Maciej

    2015-08-01

    Podocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca²⁺-activated K⁺ channels (BKCa) were involved in insulin-mediated, PKGIα-dependent filtration barrier permeability. Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIα, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCa-PKGIα interaction was assessed with co-immunoprecipitation. RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming α subunit and four accessory β subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA. These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes. PMID:25952906

  4. The Effect of Interface Roughness and Oxide Film Thickness on the Inelastic Response of Thermal Barrier Coatings to Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob; Arnold, Steven M.

    1999-01-01

    The effects of interfacial roughness and oxide film thickness on thermally-induced stresses in plasma-sprayed thermal barrier coatings subjected to thermal cycling are investigated using the recently developed higher-order theory for functionally graded materials. The higher-order theory is shown to be a viable alternative to the finite-element approach, capable of modeling different interfacial roughness architectures in the presence of an aluminum oxide layer and capturing the high stress gradients that occur at the top coat/bond coat interface. The oxide layer thickness is demonstrated to have a substantially greater effect on the evolution of residual stresses than local variations in interfacial roughness. Further, the location of delamination initiation in the top coat is predicted to change with increasing oxide layer thickness. This result can be used to optimize the thickness of a pre-oxidized layer introduced at the top coat/bond coat interface in order to enhance TBC durability as suggested by some researchers. The results of our investigation also support a recently proposed hypothesis regarding delamination initiation and propagation in the presence of an evolving bond coat oxidation, while pointing to the importance of interfacial roughness details and specimen geometry in modeling this phenomenon.

  5. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Qian, Hui-Min; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Tang, Lan-Feng; Zhou, Dong; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Liao; Huang, Xiao-Ming

    2015-07-01

    The time and temperature dependence of threshold voltage shift under positive-bias stress (PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτstress = 0.72 eV for the PBS process and an average effective energy barrier Eτrecovery = 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

  6. Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts

    SciTech Connect

    Islam, Raisul Shine, Gautam; Saraswat, Krishna C.

    2014-11-03

    We report the experimental demonstration of Fermi level depinning using nickel oxide (NiO) as the insulator material in metal-insulator-semiconductor (M-I-S) contacts. Using this contact, we show less than 0.1 eV barrier height for holes in platinum/NiO/silicon (Pt/NiO/p-Si) contact. Overall, the pinning factor was improved from 0.08 (metal/Si) to 0.26 (metal/NiO/Si). The experimental results show good agreement with that obtained from theoretical calculation. NiO offers high conduction band offset and low valence band offset with Si. By reducing Schottky barrier height, this contact can be used as a carrier selective contact allowing hole transport but blocking electron transport, which is important for high efficiency in photonic applications such as photovoltaics and optical detectors.

  7. Role of Codeposited Impurities in Growth: Dependence of Morphology on Binding and Barrier Energies

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, Rajesh; Hamouda, A. Bh.; Pimpinelli, A.; Einstein, T. L.

    2010-03-01

    The previous talk showed that codeposition of impurity atoms during epitaxial growth could be used for nanostructuring of surfaces. Based on their lateral nearest-neighbor binding energies (ENN) to Cu and their diffusion barriers (Ed) on Cu(001), we classify the candidate impurity atoms into four sets. We find that codeposition of impurities from different sets produce qualitatively different surface morphologies both in the step-flow and the submonolayer (θ<= 0.7 ML) regimes. In the submonolayer regime, we characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.footnotetextA. Pimpinelli, T. L. Einstein, Phys. Rev. Lett. 99, 226102 (2007).

  8. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  9. Surface chemistry dependence of native oxidation formation on silicon nanocrystals

    SciTech Connect

    Liptak, R. W.; Campbell, S. A.; Kortshagen, U.

    2009-09-15

    The growth of silicon oxide on bare and SF{sub 6}-etched silicon nanocrystals (Si-NCs), which were synthesized by an all gas phase approach, was investigated by examining the surface chemistry and optical properties of the NCs over time. Consistent with previous work in the low temperature oxidation of silicon, the oxidation follows the Cabrera-Mott mechanism, and the measured data are well fitted to the Elovich equation. The use of the SF{sub 6} plasma is found to reduce the surface Si-H bond density and dramatically increase the monolayer growth rate. This is believed to be due to the much larger volatility of Si-F bonds compared to Si-H bonds on the surface of the NC.

  10. Size dependence of inter- and intra-cluster interactions in core-shell iron-iron oxide nanoclusters

    SciTech Connect

    Kaur, Maninder; McCloy, John S.; Jiang, Weilin; Yao, Qi; Qiang, You

    2012-06-15

    The room temperature magnetic properties of core-shell iron-iron oxide nanoclusters (NCs) synthesized by a cluster deposition system have been investigated, and their dependence on mean cluster size has been discussed. In this study, the surface/boundary spins of clusters were not frozen and were thermally activated during the measurements. The inter-cluster interactions between clusters and intra-cluster interactions between the iron core (ferromagnetic) and iron oxide shell (ferrimagnetic) have been investigated by field dependent isothermal remanent magnetization and dc demagnetization measurements at room temperature. The Henkel plot and delta M plot support the existence of dipolar inter-cluster interactions which become stronger with the growth of cluster size. The derivative of the initial magnetization curve implies that smaller clusters require less field and time than the bigger ones to overcome various energy barriers before aligning along the field direction. Coercive field and magnetization are also correlated with the interaction parameters. To compare the room temperature magnetic results, one system was studied at low temperature, where exchange coupling at the interface between the oxide and metallic phases was observed through bias effect and anisotropy enhancement.

  11. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress.

    PubMed

    Tong, Ling-Chang; Wang, Yue; Wang, Zhi-Bin; Liu, Wei-Ye; Sun, Sheng; Li, Ling; Su, Ding-Feng; Zhang, Li-Chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7-14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  12. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress

    PubMed Central

    Tong, Ling-chang; Wang, Yue; Wang, Zhi-bin; Liu, Wei-ye; Sun, Sheng; Li, Ling; Su, Ding-feng; Zhang, Li-chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  13. Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling

    NASA Astrophysics Data System (ADS)

    Indarto, Antonius

    2016-04-01

    Non-catalytic conversion of methane (CH4) and nitrogen dioxide (NO2) into methanol (CH3OH) has been conducted and presented in this paper. Experiments were carried out using dielectric barrier discharge as the reaction medium in atmospheric pressure and temperature conditions. High yield production of methanol was achieved (18-20% mol) by single-stage plasma reaction with maximum selectivity of 32% mol. Compared to other oxidants, such as O2, the presence of NO2 in the plasma reaction resulted in higher methanol selectivity. For better understanding of the reactions, density functional theory calculations were also performed and discussed.

  14. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  15. Compositionally Graded Thermal Barrier Coating by Hybrid Thermal Spraying Route and its Non-isothermal Oxidation Behavior

    NASA Astrophysics Data System (ADS)

    Nath, Subhasisa; Manna, Indranil; Dutta Majumdar, Jyotsna

    2013-08-01

    The present study concerns a detailed investigation of the characteristics and oxidation resistance property of a duplex and compositionally graded thermal barrier coating on Inconel 718. The duplex coating consists of a CoNiCrAlY bond coat layer sprayed on to sand-blasted Inconel 718 substrate (by high velocity oxy-fuel spraying) followed by deposition of a yttria-stabilized zirconia (YSZ) top coat by plasma spraying. The compositionally graded coating consists of several layers deposited by plasma spraying of pre-mixed CoNiCrAlY and YSZ powders in the weight ratios of 70:30, 50:50, 30:70, and 0:100 varying from the bond coat to the top surface, respectively. A detailed investigation of the microstructure, composition, and phases in the coating and its non-isothermal oxidation behavior from room temperature to 1250°C was performed. Oxidation proceeds by three stages in the as-received Inconel 718 and the compositionally graded coating, but by two stages in the duplex coating with a maximum activation energy for oxidation in the compositionally graded coating at high temperature (stage III). The kinetics and mechanism of oxidation were established.

  16. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...

  17. Obesity in Aging Exacerbates Blood–Brain Barrier Disruption, Neuroinflammation, and Oxidative Stress in the Mouse Hippocampus: Effects on Expression of Genes Involved in Beta-Amyloid Generation and Alzheimer’s Disease

    PubMed Central

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet–fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood–brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood–brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein–dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood–brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. PMID:24269929

  18. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    PubMed

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals.

  19. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice.

    PubMed

    Gamez-Mendez, Ana María; Vargas-Robles, Hilda; Ríos, Amelia; Escalante, Bruno

    2015-01-01

    Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.

  20. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria.

    PubMed

    Kanaparthi, Dheeraj; Conrad, Ralf

    2015-05-01

    Nitrate-dependent iron oxidation was discovered in 1996 and has been reported from various environments ever since. To date, despite the widespread nature of this process, all attempts to cultivate chemolithoautotrophic nitrate-dependent iron oxidizers have been unsuccessful. The present study was focused on understanding the influence of natural chelating agents of iron, like humic substances, on the culturability, activity, and enumeration, of these microorganisms. Pure culture studies conducted with Thiobacillus denitrificans showed a constant increase in cell mass with a corresponding nitrate-dependent iron oxidation activity only when Fe(II) was provided together with humic substances, compared to no growth in control incubations without humic substances. The presence of a relatively strong chelating agent, such as EDTA, inhibited the growth of Thiobacillus denitrificans. It was concluded that complex formation between humic substances and iron was required for chemolithoautotrophic nitrate-dependent iron oxidation. Most probable number enumerations showed that numbers of chemolithoautotrophic nitrate-dependent iron-oxidizing bacteria were one to three orders of magnitude higher in the presence of humic substances compared to media without. Similar results were obtained when potential nitrate-dependent iron oxidation activity was determined in soil samples. In summary, this study showed that humic substances significantly enhanced the growth and activity of autotrophic nitrate-dependent iron-oxidizing microorganisms, probably by chelation of iron.

  1. Tumor Necrosis Factor Disrupts Claudin-5 Endothelial Tight Junction Barriers in Two Distinct NF-κB-Dependent Phases

    PubMed Central

    Clark, Paul R.; Kim, Richard K.; Pober, Jordan S.; Kluger, Martin S.

    2015-01-01

    Capillary leak in severe sepsis involves disruption of endothelial cell tight junctions. We modeled this process by TNF treatment of cultured human dermal microvascular endothelial cell (HDMEC) monolayers, which unlike human umbilical vein endothelial cells form claudin-5-dependent tight junctions and a high-resistance permeability barrier. Continuous monitoring with electrical cell-substrate impedance sensing revealed that TNF disrupts tight junction-dependent HDMEC barriers in discrete steps: an ~5% increase in transendothelial electrical resistance over 40 minutes; a decrease to ~10% below basal levels over 2 hours (phase 1 leak); an interphase plateau of 1 hour; and a major fall in transendothelial electrical resistance to < 70% of basal levels by 8–10 hours (phase 2 leak), with EC50 values of TNF for phase 1 and 2 leak of ~30 and ~150 pg/ml, respectively. TNF leak is reversible and independent of cell death. Leak correlates with disruption of continuous claudin-5 immunofluorescence staining, myosin light chain phosphorylation and loss of claudin-5 co-localization with cortical actin. All these responses require NF-κB signaling, shown by inhibition with Bay 11 or overexpression of IκB super-repressor, and are blocked by H-1152 or Y-27632, selective inhibitors of Rho-associated kinase that do not block other NF-κB-dependent responses. siRNA combined knockdown of Rho-associated kinase-1 and -2 also prevents myosin light chain phosphorylation, loss of claudin-5/actin co-localization, claudin-5 reorganization and reduces phase 1 leak. However, unlike H-1152 and Y-27632, combined Rho-associated kinase-1/2 siRNA knockdown does not reduce the magnitude of phase 2 leak, suggesting that H-1152 and Y-27632 have targets beyond Rho-associated kinases that regulate endothelial barrier function. We conclude that TNF disrupts TJs in HDMECs in two distinct NF-κB-dependent steps, the first involving Rho-associated kinase and the second likely to involve an as yet

  2. Characterization of aluminum oxide tunnel barriers by combining transport measurements and transmission electron microscopy imaging

    SciTech Connect

    Aref, T.; Averin, A.; Nguyend, H. Q.; Pekola, J. P.; Dijken, S. van; Yao, L. D.; Ferring, A.; Koberidze, M.; Nieminen, R. M.

    2014-08-21

    We present two approaches for studying the uniformity of a tunnel barrier. The first approach is based on measuring single-electron and two-electron tunneling in a hybrid single-electron transistor. Our measurements indicate that the effective area of a conduction channel is about one order of magnitude larger than predicted by theoretical calculations. With the second method, transmission electron microscopy, we demonstrate that variations in the barrier thickness are a plausible explanation for the larger effective area and an enhancement of higher order tunneling processes.

  3. Temperature-Dependent Current-Voltage (I-V) and Capacitance-Voltage (C-V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Munikrishana Reddy, Y.; Nagaraj, M. K.; Siva Pratap Reddy, M.; Lee, Jung-Hee; Rajagopal Reddy, V.

    2013-04-01

    The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Ni/Cu/n-InP Schottky barrier diodes are studied over a wide temperature range, from 210 K to 420 K. The I-V characteristics display anomalous thermal behavior. The apparent barrier height decays, and the ideality factor grows at low temperatures, and the series resistances resulting from Cheung's and Norde's procedures are markedly temperature dependent. The nonlinearity of the Richardson plot and the strong temperature dependence of the Schottky-barrier parameters indicate that the interface is spatially inhomogeneous. Plots of the zero-bias barrier height as a function of 1/(2kT) points to a Gaussian distribution of barrier heights with 0.90 eV mean height and 0.014 eV standard deviation. When this distribution is accounted for, a Richardson of 6.5 A/(cm K)2 results, relatively close to the 9.4/(cm K)2 predicted by theory. We conclude that, combined with a Gaussian distribution of barrier heights, the thermionic-emission mechanism explains the temperature-dependent I-V and C-V characteristics of the studied Schottky-barrier diodes.

  4. In Situ Chemical Oxidation of Contaminated Ground Water: Permanganate Reactive Barrier Systems for the Long-Term Treatment of Contaminants

    SciTech Connect

    Li, X. David; Schwartz, Frank W.

    2004-03-31

    Oxidation of chlorinated solvents by permanganate has proven to be effective in destroying these compounds in the aqueous phase. A semi-passive, well-based permanganate reactive barrier system (PRBS) was designed in order for the long-term treatment of dissolved contaminant in the ground water. Results from laboratory experiments indicate the PRBS could deliver permanganate at a stable, constant and controllable rate. In this paper, different field designs of the PRBS are discussed. Numerical simulation was conducted to elucidate the parameters that will influence the field implementation of a PRBS. We investigated issues such as permanganate consumption by aquifer materials, variable density flow effect, as well as lateral spreading under different geological settings. Results from this study continue to point to the promise of an in situ chemical oxidation scheme. PRBS provides a potential treatment of the contaminated ground water at relatively low management cost as compared with other alternatives.

  5. Racial Differences in Nitric Oxide-Dependent Vasorelaxation

    PubMed Central

    Mata-Greenwood, Eugenia; Chen, Dong-Bao

    2008-01-01

    Along with the growing heterogeneity of the American population, ethnic/racial disparity is becoming a clear health issue in the United States. The awareness of ethnic/racial disparities has been growing because of considerable data gathered from recent clinical and epidemiological studies. These studies have highlighted the importance of addressing these differences in the diagnosis and treatment of various diseases potentially according to race. It is becoming particularly clear that there is a 2- to 3-fold racial difference in certain cardiovascular diseases (eg, preeclampsia) associated with dysfunctional nitric oxide–mediated vasodilation. In this review, the authors summarize the current literature on racial disparities in nitric oxide–mediated vasodilation in relation to cardiovascular health with an emphasis on vascular nitric oxide bioavailability as a balance between production via endothelial nitric oxide synthase and degradation through reactive oxygen species. The major hypotheses postulated on the biological basis of these differences are also highlighted. PMID:18212350

  6. Borate cross-linking chitosan/graphene oxide films: Toward the simultaneous enhancement of gases barrier and mechanical properties

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Buonocore, Giovanna G.; Tescione, Fabiana; Lavorgna, Marino; Xia, Hesheng; Ambrosio, Luigi

    2015-12-01

    Borate adducts, originated from hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan (CS) and graphene oxide (GO) nanosheets for the production of innovative composite sustainable materials. CS/GO film consisting of 10wt% borax and 1wt% GO exhibits a significant improvement of both toughness and oxygen barrier properties in comparison to pristine chitosan. In particular the tensile strength increases by about 100% and 150% after thermal annealing of samples at 90°C for 50min whereas the oxygen permeability reduces of about 90% compared to pristine chitosan. The enhancement of both mechanical and barrier properties is ascribed to the formation of a resistant network due to the chemical crosslinking, including borate orthoester bonds and hydroxyl moieties complexes, formed among borate ions, chitosan, and GO nanoplatelets. The crosslinked graphene-based chitosan material with its enhanced mechanical and barrier properties may significantly broad the range of applications of chitosan based-materials which presently are very limited and addressed only to packaging.

  7. Barriers to Effective Tobacco-Dependence Treatment for the Very Poor

    PubMed Central

    Christiansen, Bruce; Reeder, Kevin; Hill, Maureen; Baker, Timothy B.; Fiore, Michael C.

    2012-01-01

    Objective: People who live in poverty have a high prevalence of smoking, are less likely to engage in evidence-based treatment, and find it harder to quit. Their beliefs about smoking and quitting can serve as barriers to quitting. Little is known about the smoking and quitting beliefs of the very poor (about U.S. $15,000 or less annual family income) because they tend not to be included in research. This study sought to assess beliefs about smoking and quitting by the very poor in relation to past quitting behavior and intention to quit in the future. Method: A survey was administered in person to residents in randomly selected addresses in two very impoverished Milwaukee, WI, ZIP codes during the day to ensure the inclusion of the very poor. Results: Six hundred fifty-four people completed the survey, a response rate of 78.3%. Sixty-eight percent reported annual household incomes of less than $15,000 compared with 30.8% in the community as a whole and 13.0% of households nationally. Self-reported smoking prevalence was 42.1%. Specific beliefs about smoking and quitting were related to past quit attempts and intentions to quit in the future. Both race and income predicted beliefs and quitting-related variables independently and jointly. Conclusions: Continued tobacco-control progress requires addressing specific populations with known high tobacco use. One of these populations is those with low income. Efforts to engage them in treatment will have to address specific beliefs about smoking and quitting. PMID:23036204

  8. Thrombin enhances the barrier function of rat microvascular endothelium in a PAR-1-dependent manner.

    PubMed

    Troyanovsky, B; Alvarez, D F; King, J A; Schaphorst, K L

    2008-02-01

    Thrombin is a multifunctional coagulation protease with pro- and anti-inflammatory vascular effects. We questioned whether thrombin may have segmentally differentiated effects on pulmonary endothelium. In cultured rat endothelial cells, rat thrombin (10 U/ml) recapitulated the previously reported decrease in transmonolayer electrical resistance (TER), F-actin stress fiber formation, paracellular gap formation, and increased permeability. In contrast, in rat pulmonary microvascular endothelial cells (PMVEC), isolated on the basis of Griffonia simplicifolia lectin recognition, thrombin increased TER, induced fewer stress fibers, and decreased permeability. To assess for differential proteinase-activated receptor (PAR) expression as a basis for the different responses, PAR family expression was analyzed. Both pulmonary artery endothelial cells and PMVEC expressed PAR-1 and PAR-2; however, only PMVEC expressed PAR-3, as shown by both RT-PCR and Western analysis. PAR-1 activating peptides (PAR-APs: SFLLRN-NH(2) and TFLLRN-NH(2)) were used to confirm a role for the PAR-1 receptor. PAR-APs (25-250 muM) also increased TER, formed fewer stress fibers, and did not induce paracellular gaps in PMVEC in contrast to that shown in pulmonary artery endothelial cells. These results were confirmed in isolated perfused rat lung preparations. PAR-APs (100 mug/ml) induced a 60% increase in the filtration coefficient over baseline. However, by transmission electron microscopy, perivascular fluid cuffs were seen only along conduit veins and arteries without evidence of intra-alveolar edema. We conclude that thrombin exerts a segmentally differentiated effect on endothelial barrier function in vitro, which corresponds to a pattern of predominant perivascular fluid cuff formation in situ. This may indicate a distinct role for thrombin in the microcirculation. PMID:18083763

  9. Texture-dependent anaerobic microsites constrain soil carbon oxidation rates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Fendorf, Scott

    2016-04-01

    Soil texture, which is a product of parent material, climate and other soil forming factors, is a predictor for long-term storage of soil organic carbon (SOC) storage in many soil ecosystems. Positive correlation between texture (particularly clay content) and SOC storage have long been attributed to protective associations between clay minerals and organic compounds that prevent microbial and enzymatic access - a mechanism commonly referred to as 'mineral protection'. Texture therefore acts as the primary proxy for mineral protection in terrestrial ecosystem models used to assess SOC storage and its sensitivity to global change impacts. Here we show that this protective effect of texture is not only due to mineral protection, but also to the formation of anaerobic microsites. Combining micro-scale laboratory experiments with field-scale observations, we find that oxygen diffusion limitations within clay-rich domains create anaerobic microsites within seemingly well-aerated soils, shifting microbial metabolism to less efficient anaerobic SOC oxidation pathways. Kinetic and thermodynamic constraints reduce SOC oxidation rates within these anaerobic microsites by an order of magnitude relative to aerobic rates, and caused the preservation of bioavailable, polymeric and reduced organic compounds. Lifting these metabolic constraints through increased soil aeration (e.g., through changes in precipitation patterns or land use) may stimulate microbial oxidation of this inherently bioavailable SOC pool. Models that attribute the effects of texture merely to 'mineral protection' may therefore underestimate the vulnerability of soil C to global change impacts.

  10. Influence of thermally oxidized vegetable oils and animal fats on intestinal barrier function and immune variables in young pigs.

    PubMed

    Liu, P; Kerr, B J; Weber, T E; Chen, C; Johnston, L J; Shurson, G C

    2014-07-01

    To evaluate the effect of feeding thermally oxidized lipids on metabolic oxidative status, gut barrier function, and immune response of young pigs, 108 barrows (6.67 ± 0.03 kg BW) were assigned to 12 dietary treatments in a 4 × 3 factorial arrangement in addition to a corn-soybean meal control diet. Main effects were 4 lipid sources (corn oil [CN], canola oil [CA], poultry fat [PF], and tallow [TL]) and 3 oxidation levels (original lipids [OL], slow oxidation [SO] of lipids heated for 72 h at 95°C, or rapid oxidation [RO] of lipids heated for 7 h at 185°C). Pigs were provided ad libitum access to diets for 28 d followed by controlled feed intake for 10 d. After a 24-h fast on d 38, serum was collected and analyzed for α-tocopherol (α-T), thiobarbituric acid reactive substances (TBARS), endotoxin, haptoglobin, IgA, and IgG. On the same day following serum collection, lactulose and mannitol were fed and subsequently measured in the urine to evaluate gut permeability. There was a source × peroxidation interaction for serum α-T concentration where pigs fed SO or RO had decreased (P < 0.05) serum α-T concentration compared with pigs fed OL in CA and CN diets but not in pigs fed PF and TL diets. There was no source × peroxidation interaction for serum TBARS, but among all lipid sources, pigs fed SO or RO lipids had increased (P < 0.05) serum TBARS compared with pigs fed OL. In addition, pigs fed CN or CA had greater (P < 0.05) serum TBARS compared with pigs fed PF or TL diets. There were no lipid source × peroxidation level interaction or lipid source or peroxidation level effects on serum endotoxin, haptoglobin, IgA, or IgG. Pigs fed lipid supplemented diets tended to have increased serum endotoxin (P = 0.06), IgA (P = 0.10), and IgG (P = 0.09) compared with pigs fed the control diet. There were no lipid source × peroxidation level interaction or lipid source or peroxidation level effects on urinary TBARS and lactulose to mannitol ratio. Compared with pigs

  11. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Yin, Li; Li, Xing; Tang, Meng; Zhang, Tao; Wang, Dayong

    2013-09-01

    Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged exposure to 0.5-100 mg L-1 of GO caused damage on functions of both primary (intestine) and secondary (neuron and reproductive organ) targeted organs. In the intestine, ROS production was significantly correlated with the formation of adverse effects on functions of both primary and secondary targeted organs. GO could be translocated into intestinal cells with loss of microvilli, and distributed to be adjacent to or surrounding mitochondria. Prolonged exposure to GO resulted in a hyper-permeable state of the intestinal barrier, an increase in mean defecation cycle length, and alteration of genes required for intestinal development and defecation behavior. Thus, our data suggest that prolonged exposure to GO may cause potential risk to environmental organisms after release into the environment. GO toxicity may be due to the combinational effects of oxidative stress in the intestinal barrier, enhanced permeability of the biological barrier, and suppressed defecation behavior in C. elegans.Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged

  12. Size- and Composition-Dependent Radio Frequency Magnetic Permeability of Iron Oxide Nanocrystals

    SciTech Connect

    Yun, H; Liu, XY; Paik, T; Palanisamy, D; Kim, J; Vogel, WD; Viescas, AJ; Chen, J; Papaefthymiou, GC; Kikkawa, JM; Allen, MG; Murray, CB

    2014-12-01

    We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mossbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.

  13. Size- and composition-dependent radio frequency magnetic permeability of iron oxide nanocrystals.

    PubMed

    Yun, Hongseok; Liu, Xiyu; Paik, Taejong; Palanisamy, Duraivelan; Kim, Jungkwun; Vogel, William D; Viescas, Arthur J; Chen, Jun; Papaefthymiou, Georgia C; Kikkawa, James M; Allen, Mark G; Murray, Christopher B

    2014-12-23

    We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mössbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.

  14. Oxidized phospholipids protect against lung injury and endothelial barrier dysfunction caused by heat-inactivated Staphylococcus aureus.

    PubMed

    Meliton, Angelo Y; Meng, Fanyong; Tian, Yufeng; Sarich, Nicolene; Mutlu, Gokhan M; Birukova, Anna A; Birukov, Konstantin G

    2015-03-15

    Increased endothelial cell (EC) permeability and vascular inflammation along with alveolar epithelial damage are key features of acute lung injury (ALI). Products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) showed protective effects against inflammatory signaling and vascular EC barrier dysfunction induced by gram-negative bacterial wall lipopolysaccharide (LPS). We explored the more general protective effects of OxPAPC and investigated whether delayed posttreatment with OxPAPC boosts the recovery of lung inflammatory injury and EC barrier dysfunction triggered by intratracheal injection of heat-killed gram-positive Staphylococcus aureus (HKSA) bacteria. HKSA-induced pulmonary EC permeability, activation of p38 MAP kinase and NF-κB inflammatory cascades, secretion of IL-8 and soluble ICAM1, fibronectin deposition, and expression of adhesion molecules ICAM1 and VCAM1 by activated EC were significantly attenuated by cotreatment as well as posttreatment with OxPAPC up to 16 h after HKSA addition. Remarkably, posttreatment with OxPAPC up to 24 h post-HKSA challenge dramatically accelerated lung recovery by restoring lung barrier properties monitored by Evans blue extravasation and protein content in bronchoalveolar lavage (BAL) fluid and reducing inflammation reflected by decreased MIP-1, KC, TNF-α, IL-13 levels and neutrophil count in BAL samples. These studies demonstrate potent in vivo and in vitro protective effects of posttreatment with anti-inflammatory oxidized phospholipids in the model of ALI caused by HKSA. These results warrant further investigations into the potential use of OxPAPC compounds combined with antibiotic therapies as a treatment of sepsis and ALI induced by gram-positive bacterial pathogens.

  15. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  16. Inhibition of vitamin B12-dependent microbial growth by nitrous oxide

    SciTech Connect

    Alston, T.A. )

    1991-01-01

    In methionine-free media, nitrous oxide inhibits the growth of an auxotrophic strain of Escherichia coli lacking a cobalamin-independent pathway for the de novo synthesis of methionine. Prototrophic E. coli is similarly inhibited by nitrous oxide if the cobalamin-independent pathway is selectively depressed by sulfanilamide. Nitrous oxide thus effectively inactivates cobalamin-dependent 5-methyltetrahydrofolate-homocysteine methyltransferase in intact bacteria.

  17. Size-dependent thermal oxidation of copper: single-step synthesis of hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Love, Christopher J.; Smith, J. David; Cui, Yuehua; Varanasi, Kripa K.

    2011-12-01

    Thermal oxidation of copper is a simple and scalable method to produce copper oxide nanowires. We report for the first time the formation of nanowires on copper powder during thermal oxidation and the resulting nanowire coverage that is dependent on the initial particle size. Systematic thermogravimetric analysis (TGA) and in situ X-ray diffraction (XRD) studies of thermal oxidation of particles of different sizes provide insights into the size-dependent process and evolution of the various phases of copper and copper oxide with time. Furthermore, we find that a large void is formed within these particles after oxidation and propose a mechanism based on the Kirkendall effect. The unique tunability of hierarchical features and hollow interior can be used to create new scalable structures for applications in a variety of areas including thermal management and catalysis.Thermal oxidation of copper is a simple and scalable method to produce copper oxide nanowires. We report for the first time the formation of nanowires on copper powder during thermal oxidation and the resulting nanowire coverage that is dependent on the initial particle size. Systematic thermogravimetric analysis (TGA) and in situ X-ray diffraction (XRD) studies of thermal oxidation of particles of different sizes provide insights into the size-dependent process and evolution of the various phases of copper and copper oxide with time. Furthermore, we find that a large void is formed within these particles after oxidation and propose a mechanism based on the Kirkendall effect. The unique tunability of hierarchical features and hollow interior can be used to create new scalable structures for applications in a variety of areas including thermal management and catalysis. Electronic supplementary information (ESI) available: SEM images, XRD spectra, and calculations. See DOI: 10.1039/c1nr10993f

  18. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence.

    PubMed

    Nunes, Sandra Odebrecht Vargas; Vargas, Heber Odebrecht; Prado, Eduardo; Barbosa, Decio Sabbatini; de Melo, Luiz Picoli; Moylan, Steven; Dodd, Seetal; Berk, Michael

    2013-09-01

    Nicotine dependence is common in people with mood disorders; however the operative pathways are not well understood. This paper reviews the contribution of inflammation and oxidative stress pathways to the co-association of depressive disorder and nicotine dependence, including increased levels of pro-inflammatory cytokines, increased acute phase proteins, decreased levels of antioxidants and increased oxidative stress. These could be some of the potential pathophysiological mechanisms involved in neuroprogression. The shared inflammatory and oxidative stress pathways by which smoking may increase the risk for development of depressive disorders are in part mediated by increased levels of pro-inflammatory cytokines, diverse neurotransmitter systems, activation the hypothalamic-pituitary-adrenal (HPA) axis, microglial activation, increased production of oxidative stress and decreased levels of antioxidants. Depressive disorder and nicotine dependence are additionally linked imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway that contribute to neuroprogression. These pathways provide a mechanistic framework for understanding the interaction between nicotine dependence and depressive disorder.

  19. Size Dependence of [n]Cycloparaphenylenes (n=5-12) in Electrochemical Oxidation.

    PubMed

    Kayahara, Eiichi; Fukayama, Kei; Nishinaga, Tohru; Yamago, Shigeru

    2016-06-21

    The oxidation processes of [n]cycloparaphenylenes ([n]CPPs) (n=5-12) were systematically investigated by cyclic and rotating disk electrode voltammetry. All CPPs underwent pseudo-reversible two-electron oxidation irrespective of ring size, forming the corresponding radical cations and then dications. The results were in sharp contrast to those observed for linear oligoparaphenylenes, which only undergo one-electron oxidation. The difference in the first and second oxidation potentials in the CPP oxidation was affected by the ring size and became more significant as the decrease of CPP size. In other words, while the first oxidation from neutral CPP to the radical cation occurred faster as the size of CPP becomes smaller, the second oxidation from the radical cation to dication exhibited opposite size dependence. PMID:27137132

  20. Size Dependence of [n]Cycloparaphenylenes (n=5-12) in Electrochemical Oxidation.

    PubMed

    Kayahara, Eiichi; Fukayama, Kei; Nishinaga, Tohru; Yamago, Shigeru

    2016-06-21

    The oxidation processes of [n]cycloparaphenylenes ([n]CPPs) (n=5-12) were systematically investigated by cyclic and rotating disk electrode voltammetry. All CPPs underwent pseudo-reversible two-electron oxidation irrespective of ring size, forming the corresponding radical cations and then dications. The results were in sharp contrast to those observed for linear oligoparaphenylenes, which only undergo one-electron oxidation. The difference in the first and second oxidation potentials in the CPP oxidation was affected by the ring size and became more significant as the decrease of CPP size. In other words, while the first oxidation from neutral CPP to the radical cation occurred faster as the size of CPP becomes smaller, the second oxidation from the radical cation to dication exhibited opposite size dependence.

  1. LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation.

    PubMed

    Iturbide, Ane; Pascual-Reguant, Laura; Fargas, Laura; Cebrià, Joan Pau; Alsina, Berta; García de Herreros, Antonio; Peiró, Sandra

    2015-06-01

    Protein function is often regulated and controlled by posttranslational modifications, such as oxidation. Although oxidation has been mainly considered to be uncontrolled and nonenzymatic, many enzymatic oxidations occur on enzyme-selected lysine residues; for instance, LOXL2 oxidizes lysines by converting the ε-amino groups into aldehyde groups. Using an unbiased proteomic approach, we have identified methylated TAF10, a member of the TFIID complex, as a LOXL2 substrate. LOXL2 oxidation of TAF10 induces its release from its promoters, leading to a block in TFIID-dependent gene transcription. In embryonic stem cells, this results in the inactivation of the pluripotency genes and loss of the pluripotent capacity. During zebrafish development, the absence of LOXL2 resulted in the aberrant overexpression of the neural progenitor gene Sox2 and impaired neural differentiation. Thus, lysine oxidation of the transcription factor TAF10 is a controlled protein modification and demonstrates a role for protein oxidation in regulating pluripotency genes.

  2. Blood-Brain Barrier Disruption Caused by Ultrasound Bursts Combined with Microbubbles Depends on Anesthesia

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2011-09-01

    Prior works on BBB disruption via inter-arterial infusions of osmotic agents have shown a strong dependence on anesthesia. Here, we investigated whether different anesthesia agents can affect ultrasound-induced BBB disruption. A piston transducer fired through a rubber aperture (frequency: 532 kHz, diameter: 4 cm, aperture diameter: 16 mm) was used to generate the ultrasound fields, and sonications combined with an ultrasound contrast agent were performed at 5 power levels. BBB disruption was quantified by measuring the MRI contrast enhancement in T1-weighted MRI, and erythrocyte extravasation characterized in light microscopy. For each exposure level tested, experiments performed with ketamine/xylazine resulted in significantly greater (P<0.05) enhancement than with isoflurane/oxygen. The onset of severe red blood cell extravasation occurred at lower power levels with ketamine/xylazine. These results suggest ultrasound-induced BBB disruption can depend on anesthesia agent, possibly due effects on the vasculature. These results suggest that care is needed in comparing experiments with different anesthesia agents and physiological factors need to be considered with ultrasound-induced BBB disruption.

  3. Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR).

    PubMed

    Blomberg, Margareta R A; Siegbahn, Per E M

    2016-07-15

    Quantum chemical calculations play an essential role in the elucidation of reaction mechanisms for redox-active metalloenzymes. For example, the cleavage and the formation of covalent bonds can usually not be described only on the basis of experimental information, but can be followed by the calculations. Conversely, there are properties, like reduction potentials, which cannot be accurately calculated. Therefore, computational and experimental data has to be carefully combined to obtain reliable descriptions of entire catalytic cycles involving electron and proton uptake from donors outside the enzyme. Such a procedure is illustrated here, for the reduction of nitric oxide (NO) to nitrous oxide and water in the membrane enzyme, cytochrome c dependent nitric oxide reductase (cNOR). A surprising experimental observation is that this reaction is nonelectrogenic, which means that no energy is conserved. On the basis of hybrid density functional calculations a free energy profile for the entire catalytic cycle is obtained, which agrees much better with experimental information on the active site reduction potentials than previous ones. Most importantly the energy profile shows that the reduction steps are endergonic and that the entire process is rate-limited by high proton uptake barriers during the reduction steps. This result implies that, if the reaction were electrogenic, it would become too slow when the gradient is present across the membrane. This explains why this enzyme does not conserve any of the free energy released. © 2016 Wiley Periodicals, Inc.

  4. Blood-Brain Barrier Disruption and Oxidative Stress in Guinea Pig after Systemic Exposure to Modified Cell-Free Hemoglobin

    PubMed Central

    Butt, Omer I.; Buehler, Paul W.; D'Agnillo, Felice

    2011-01-01

    Systemic exposure to cell-free hemoglobin (Hb) or its breakdown products after hemolysis or with the use of Hb-based oxygen therapeutics may alter the function and integrity of the blood-brain barrier. Using a guinea pig exchange transfusion model, we investigated the effect of a polymerized cell-free Hb (HbG) on the expression of endothelial tight junction proteins (zonula occludens 1, claudin-5, and occludin), astrocyte activation, IgG extravasation, heme oxygenase (HO), iron deposition, oxidative end products (4-hydroxynonenal adducts and 8-hydroxydeoxyguanosine), and apoptosis (cleaved caspase 3). Reduced zonula occludens 1 expression was observed after HbG transfusion as evidenced by Western blot and confocal microscopy. Claudin-5 distribution was altered in small- to medium-sized vessels. However, total expression of claudin-5 and occludin remained unchanged except for a notable increase in occludin 72 hours after HbG transfusion. HbG-transfused animals also showed increased astrocytic glial fibrillary acidic protein expression and IgG extravasation after 72 hours. Increased HO activity and HO-1 expression with prominent enhancement of HO-1 immunoreactivity in CD163-expressing perivascular cells and infiltrating monocytes/macrophages were also observed. Consistent with oxidative stress, HbG increased iron deposition, 4-hydroxynonenal and 8-hydroxydeoxyguanosine immunoreactivity, and cleaved caspase-3 expression. Systemic exposure to an extracellular Hb triggers blood-brain barrier disruption and oxidative stress, which may have important implications for the use of Hb-based therapeutics and may provide indirect insight on the central nervous system vasculopathies associated with excessive hemolysis. PMID:21356382

  5. Novel thermal barrier coatings (TBCs) that are resistant to high temperature attack by calcium oxide-magnesium oxide-silicon oxide-aluminum oxide (CMAS) glassy deposits

    NASA Astrophysics Data System (ADS)

    Aygun, Aysegul

    2008-10-01

    Higher performance and durability requirements of gas-turbine engines will require a new generation of thermal barrier coatings (TBCs). This is particularly true of engines operated at higher temperatures, where TBCs are subjected to attack by CaO-MgO-Al2O3-SiO 2 (CMAS) glassy deposits. In this work, a new approach for mitigating CMAS attack on TBCs is introduced, where up to 20 mol% Al2O 3 and 5 mol% TiO2 in the form of a solid solution is incorporated into Y2O3-stabilized ZrO2 (YSZ) TBCs. The fabrication of such TBCs with engineered chemistries is made possible by the solution-precursor plasma spray (SPPS) process, which is uniquely suited for depositing coatings of metastable ceramics with extended solid-solubilities. In the current work, the TBC serves as a reservoir of Al and Ti solutes, which are incorporated into the molten CMAS glass that is in contact with the TBC. An accumulation of Al concentration in the CMAS glass as it penetrates the TBC shifts the glass composition from the difficult-to-crystallize psuedowollastonite field to the easy-to-crystallize anorthite field. The incorporation of Ti in the glass promotes crystallization of the CMAS glass by serving as a nucleating agent. This combined effect results in the near-complete crystallization of the leading edge of the CMAS front into anorthite, essentially arresting the front. Both of these phenomena will help crystallize the CMAS glass, making it immobile and ineffective in penetrating the TBC. It is shown that incorporation of both Al and Ti in the CMAS glass is essential for this approach to be effective. Additionally, incorporation of Al and Ti as solutes is expected to alleviate thermal-expansion and thermal-conductivity issues associated with crystalline second phases used before. Moreover, the metastable nature of the Al and Ti solutes will make them more readily available for incorporation in the molten CMAS glass. CMAS interactions with SPPS TBCs of various metastable compositions are

  6. Structure-dependent mechanical properties of ultrathin zinc oxide nanowires

    PubMed Central

    2011-01-01

    Mechanical properties of ultrathin zinc oxide (ZnO) nanowires of about 0.7-1.1 nm width and in the unbuckled wurtzite (WZ) phase have been carried out by molecular dynamics simulation. As the width of the nanowire decreases, Young's modulus, stress-strain behavior, and yielding stress all increase. In addition, the yielding strength and Young's modulus of Type III are much lower than the other two types, because Type I and II have prominent edges on the cross-section of the nanowire. Due to the flexibility of the Zn-O bond, the phase transformation from an unbuckled WZ phase to a buckled WZ is observed under the tensile process, and this behavior is reversible. Moreover, one- and two-atom-wide chains can be observed before the ZnO nanowires rupture. These results indicate that the ultrathin nanowire possesses very high malleability. PMID:21711876

  7. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment

    NASA Astrophysics Data System (ADS)

    Norði, Katrin á.; Thamdrup, Bo

    2014-05-01

    Anaerobic oxidation of methane coupled to denitrification (DAOM) is a novel process of potential importance to the regulation of methane emissions from freshwater environments. We established nitrate-enriched microcosms of sediment from a freshwater pond in order to quantify the role of this process in a simulated natural redox zonation. The microcosms were allowed to acclimate to nitrate levels of 1-2 mmol L-1 in the overlying water for 16 months leading to a nitrate penetration of 4 cm. The nitrate enrichment significantly stimulated AOM relative to controls, and based on the similar concentrations of sulfate and reactive Fe(III) in the control sediment we conclude that the observed AOM was coupled to denitrification. DAOM occurred at rates that were two orders of magnitude lower than aerobic methane oxidation rates reported in freshwater sediments, and the process appeared to be limited by nitrate or nitrite even at millimolar nitrate concentrations. By contrast, ammonium was efficiently consumed at the base of the nitrate zone, presumably by the anammox process. Although DAOM was stimulated by nitrate enrichment, there were no significant differences between the methane emission from the control and nitrate-enriched microcosms. Our results provide the first experimental evaluation of the kinetics of DAOM in whole sediment cores and indicate that AOM coupled to denitrification can consume a substantial part of the methane flux in nitrate-rich environments. Because it is much less efficient in scavenging methane than its aerobic counterpart, the anaerobic process will, however, mainly be of significance in the regulation of methane emission from oxygen-depleted systems.

  8. Size-dependent electrical conductivity of indium zinc oxide deposited by RF magnetron sputtering.

    PubMed

    Heo, Young-Woo; Pearton, S J; Norton, D P

    2012-04-01

    We investigated the size-dependent electrical conductivities of indium zinc oxide stripes with different widths from 50 nm to 4 microm and with the same thickness of 50 nm deposited by RF magnetron sputtering. The size of the indium zinc oxide stripes was controlled by e-beam lithography. The distance of the two Ti/Au Ohmic electrodes along the indium zinc oxide stripes was kept constant at 25 microm. The electrical conductivity decreased as the size of the indium zinc oxide stripes decreased below a critical width (80 nm). The activation energy, derived from the electric conductivity versus temperature measurement, was dependent on the dimensions of indium zinc oxide stripes. These results can be understood as stemming from surface charge trapping from the absorption of oxygen and/or water vapor, which leads to an increase in the energy difference between the conduction energy band and the Fermi energy. PMID:22849102

  9. Large oxidation dependence observed in terahertz dielectric response for cytochrome c.

    PubMed

    Chen, J-Y; Knab, J R; Cerne, J; Markelz, A G

    2005-10-01

    Far infrared dielectric response is used to characterize the collective mode density of states for cytochrome c as a function of oxidation state and hydration using terahertz time domain spectroscopy. A strong absorbance and refractive index increase was observed with the oxidation. A simple phenomenological fitting using a continuous distribution of oscillators reproduces the frequency dependence of the complex dielectric response as well as demonstrates quantitative agreement with a uniform increase in either mode density or polarizability with oxidation in the 5-80 cm(-1) frequency range. Hydration dependence measurements find that a difference in the equilibrium water content for ferri and ferro cytochrome c is not sufficient to account for the large change in terahertz response. The large dielectric increase at terahertz frequencies with oxidation suggests either a significant global softening of the potential and/or a significant increase in polarizability with oxidation.

  10. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes.

    PubMed Central

    Bucala, R; Tracey, K J; Cerami, A

    1991-01-01

    Nitric oxide (an endothelium-derived relaxing factor) induces smooth muscle relaxation and is an important mediator in the regulation of vascular tone. Advanced glycosylation end products, the glucose-derived moieties that form nonenzymatically and accumulate on long-lived tissue proteins, have been implicated in many of the complications of diabetes and normal aging. We demonstrate that advanced glycosylation products quench nitric oxide activity in vitro and in vivo. Acceleration of the advanced glycosylation process in vivo results in a time-dependent impairment in endothelium-dependent relaxation. Inhibition of advanced glycosylation with aminoguanidine prevents nitric oxide quenching, and ameliorates the vasodilatory impairment. These results implicate advanced glycosylation products as important modulators of nitric oxide activity and endothelium-dependent relaxation. PMID:1991829

  11. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle.

    PubMed

    Bolotina, V M; Najibi, S; Palacino, J J; Pagano, P J; Cohen, R A

    1994-04-28

    Nitric oxide is the major endothelium-derived relaxing factor (EDRF), and it is thought to relax smooth muscle cells by stimulation of guanylate cyclase, accumulation of its product cyclic GMP, and cGMP-dependent modification of several intracellular processes, including activation of potassium channels through cGMP-dependent protein kinase. Here we present evidence that both exogenous nitric oxide and native EDRF can directly activate single Ca(2+)-dependent K+ channels (K+Ca) in cell-free membrane patches without requiring cGMP. Under conditions when guanylate cyclase was inhibited by methylene blue, considerable relaxation of rabbit aorta to nitric oxide persisted which was blocked by charybdotoxin, a specific inhibitor of K+Ca channels. These studies demonstrate a novel direct action of nitric oxide on K+Ca channels. PMID:7512692

  12. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage

    PubMed Central

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall’Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  13. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    PubMed

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall'Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  14. Kinetic-dependent Killing of Oral Pathogens with Nitric Oxide

    PubMed Central

    Backlund, C.J.; Worley, B.V.; Sergesketter, A.R.

    2015-01-01

    Nitric oxide (NO)–releasing silica nanoparticles were synthesized via the co-condensation of tetramethyl orthosilicate with aminosilanes and subsequent conversion of secondary amines to N-diazeniumdiolate NO donors. A series of ~150 nm NO-releasing particles with different NO totals and release kinetics (i.e., half-lives) were achieved by altering both the identity and mol% composition of the aminosilane precursors. Independent of identical 2 h NO-release totals, enhanced antibacterial action was observed against the periodontopathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis with extended NO-release kinetics at pH 7.4. Negligible bactericidal effect was observed against cariogenic Streptococcus mutans at pH 7.4, even when using NO-releasing silica particles with greater NO-release totals. However, antibacterial activity was observed against S. mutans at lower pH (6.4). This result was attributed to more rapid proton-initiated decomposition of the N-diazeniumdiolate NO donors and greater NO-release payloads. The data suggest a differential sensitivity to NO between cariogenic and periodontopathogenic bacteria with implications for the future development of NO-releasing oral care therapeutics. PMID:26078424

  15. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates.

    PubMed

    Sultana, Reshma; McBain, Andrew J; O'Neill, Catherine A

    2013-08-01

    In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain. PMID:23770906

  16. Strain-Dependent Augmentation of Tight-Junction Barrier Function in Human Primary Epidermal Keratinocytes by Lactobacillus and Bifidobacterium Lysates

    PubMed Central

    Sultana, Reshma; McBain, Andrew J.

    2013-01-01

    In this study, we investigated whether probiotic lysates can modify the tight-junction function of human primary keratinocytes. The keratinocytes were grown on cell culture inserts and treated with lysates from Bifidobacterium longum, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus fermentum, or Lactobacillus rhamnosus GG. With the exception of L. fermentum (which decreased cell viability), all strains markedly enhanced tight-junction barrier function within 24 h, as assessed by measurements of transepithelial electrical resistance (TEER). However, B. longum and L. rhamnosus GG were the most efficacious, producing dose-dependent increases in resistance that were maintained for 4 days. These increases in TEER correlated with elevated expression of tight-junction protein components. Neutralization of Toll-like receptor 2 abolished both the increase in TEER and expression of tight-junction proteins induced by B. longum, but not L. rhamnosus GG. These data suggest that some bacterial strains increase tight-junction function via modulation of protein components but the different pathways involved may vary depending on the bacterial strain. PMID:23770906

  17. DEPENDENCE OF NITRIC OXIDE EMISSIONS ON VEHICLE LOAD: RESULTS FROM THE GTRP INSTRUMENTED VEHICLE PROGRAM

    EPA Science Inventory

    The presentation discussed the dependence of nitric oxide (NO) emissions on vehicle load, bases on results from an instrumented-vehicle program. The accuracy and feasibility of modal emissions models depend on algorithms to allocate vehicle emissions based on a vehicle operation...

  18. Temperature and pressure dependent Mott potentials and their influence on self-limiting oxide film growth

    NASA Astrophysics Data System (ADS)

    Cai, Na; Zhou, Guangwen; Müller, Kathrin; Starr, David E.

    2012-10-01

    Classic Cabrera-Mott theory stipulates that the limited oxide-film growth results from electron tunneling from the metal through the oxide film to adsorbed oxygen. This leads to an electric field across the oxide film that assists ion migration for low-temperature oxide-film growth. Here, we show that the field-driven oxide-film growth can be manipulated via the temperature and pressure of oxidation. The magnitude of the self-generated electric field depends on the oxygen surface coverage that exhibits a Langmuir isotherm behavior with changes in temperature and oxygen pressure. These observations demonstrate the ability to tune an interfacial reaction via self-adaptation to its environment.

  19. The Endothelium-Dependent Nitric Oxide-cGMP Pathway.

    PubMed

    Mónica, F Z; Bian, K; Murad, F

    2016-01-01

    Nitric oxide (NO)-cyclic 3'-5' guanosine monophosphate (cGMP) signaling plays a critical role on smooth muscle tone, platelet activity, cardiac contractility, renal function and fluid balance, and cell growth. Studies of the 1990s established endothelium dysfunction as one of the major causes of cardiovascular diseases. Therapeutic strategies that benefit NO bioavailability have been applied in clinical medicine extensively. Basic and clinical studies of cGMP regulation through activation of soluble guanylyl cyclase (sGC) or inhibition of cyclic nucleotide phosphodiesterase type 5 (PDE5) have resulted in effective therapies for pulmonary hypertension, erectile dysfunction, and more recently benign prostatic hyperplasia. This section reviews (1) how endothelial dysfunction and NO deficiency lead to cardiovascular diseases, (2) how soluble cGMP regulation leads to beneficial effects on disorders of the circulation system, and (3) the epigenetic regulation of NO-sGC pathway components in the cardiovascular system. In conclusion, the discovery of the NO-cGMP pathway revolutionized the comprehension of pathophysiological mechanisms involved in cardiovascular and other diseases. However, considering the expression "from bench to bedside" the therapeutic alternatives targeting NO-cGMP did not immediately follow the marked biochemical and pathophysiological revolution. Some therapeutic options have been effective and released on the market for pulmonary hypertension and erectile dysfunction such as inhaled NO, PDE5 inhibitors, and recently sGC stimulators. The therapeutic armamentarium for many other disorders is expected in the near future. There are currently numerous active basic and clinical research programs in universities and industries attempting to develop novel therapies for many diseases and medical applications.

  20. Electrophoretic deposition of diffusion barrier titanium oxide coatings for nuclear reactor cladding applications

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Brechtl, Jamieson; Hauch, Benjamin; Sridharan, Kumar; Allen, Todd R.

    2013-10-01

    Development of TiO2 diffusion barrier coating by electrophoretic deposition (EPD) has been studied to mitigate fuel-cladding chemical interactions (FCCI). Important EPD deposition parameters, including solvent, additives, particle size and crystal structure, current, and voltage were optimized for coating deposition on flat T91 ferritic steel substrates. Post-deposition sintering in the range of 850-1050 °C was investigated. Diffusion characteristics of the coatings were evaluated by diffusion couple experiments at 575 °C for 100 h using cerium as one of the fission products responsible for FCCI. Results showed that the coated steel exhibited up to 83% reduction in solid state inter-diffusion with cerium. Heat transfer calculations showed that the fuel center-line temperature would increase slightly due to the addition of the TiO2 diffusion barrier coating; however, the maximum temperature still remains well below the melting point of uranium and is even lower than eutectic temperature between Fe2U and Fe2U6 at cladding centerline and cladding/fuel interface, respectively.

  1. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  2. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality.

    PubMed

    Meng, Xiangpeng; Ryu, Jina; Kim, Bumsik; Ko, Sanghoon

    2016-07-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

  3. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

    PubMed Central

    2016-01-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  4. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality.

    PubMed

    Meng, Xiangpeng; Ryu, Jina; Kim, Bumsik; Ko, Sanghoon

    2016-07-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  5. Temperature dependent optical properties of pentacene films on zinc oxide

    SciTech Connect

    Helzel, J.; Jankowski, S.; El Helou, M.; Witte, G.; Heimbrodt, W.

    2011-11-21

    The optical transitions of pentacene films deposited on ZnO have been studied by absorption spectroscopy as a function of temperature in the range of room temperature down to 10 K. The pentacene films were prepared with thicknesses of 10 nm, 20 nm, and 100 nm on the ZnO-O(000-1) surface by molecular beam deposition. A unique temperature dependence has been observed for the two Davydov components of the excitons for different film thicknesses. At room temperature, the energetic positions of the respective absorption bands are the same for all films, whereas the positions differ more than 20 meV at 10 K caused by the very different expansion coefficients of pentacene and ZnO. Although the pentacene is just bonded via van der Waals interaction to the ZnO substrate, the very first pentacene monolayer (adlayer) is forced to keep the initial position on the ZnO surface and suffering, therefore, a substantial tensile strain. For all the subsequent pentacene monolayers, the strain is reduced step by step resulting electronically in a strong potential gradient at the interface.

  6. Ultraviolet-oxidized mercaptan-terminated organosilane nanolayers as diffusion barriers at Cu-silica interfaces

    NASA Astrophysics Data System (ADS)

    Gandhi, D. D.; Tisch, U.; Singh, B.; Eizenberg, M.; Ramanath, G.

    2007-10-01

    We demonstrate the use of UV-exposed molecular nanolayers (MNLs) of 3-mercaptan-propyl-trimethoxysilane to inhibit copper-transport across Cu -SiO2 interfaces more efficiently than the pristine MNLs. Bias-thermal-annealing tests of Cu /MNL/SiO2/Si(001)/Al capacitors, with MNLs exposed to 254nm UV radiation, exhibit enhanced barrier properties to Cu diffusion, when compared with capacitors with MNLs not exposed to UV light. X-ray photoelectron spectroscopy reveals that UV exposure converts the mercaptan termini to sulfonates, which are more effective in inhibiting Cu diffusion. Our findings are of importance for tailoring the chemical and mechanical integrity of interfaces for use in applications such as nanodevice wiring and molecular electronics.

  7. A graphene-oxide-based thin coating on the separator: an efficient barrier towards high-stable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yunbo; Miao, Lixiao; Ning, Jing; Xiao, Zhichang; Hao, Long; Wang, Bin; Zhi, Linjie

    2015-06-01

    The electrochemical performance of lithium-sulfur (Li-S) batteries can be significantly improved by simply coating a thin barrier layer on the separator. The spray-coating of a mixture of graphene oxides (GO) and oxidized carbon nanotubes (o-CNT) can achieve a barrier coating of only 0.3 mg cm-2, which is much less than conventional interlayers and has no negative impact on the energy density but significantly enhances the electrochemical performances of the whole battery device. Due to the binding forces induced by functional groups on GO and the interconnected nanoscale channels provided by o-CNT, the thus fabricated Li-S batteries show dramatically improved specific discharge capacities of up to 750 mAh g-1 at 1 C even after 100 cycles, more than twice those of batteries without barrier coatings.

  8. Composition dependence of the photochemical reduction of Ag+ by as-grown Pb(ZrxTi1-x)O3 films on indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Jiang, Chunxiang; Dong, Wen; Zheng, Fengang; Fang, Liang; Su, Xiaodong; Shen, Mingrong

    2013-09-01

    Photochemical growth of metal particles on ferroelectric films has usually been found to depend on polarization effect solely. This research exploits the interplay of the film/electrode interface barrier and depolarization field on the photoreduction of Ag+ to Ag onto Pb(Zr,Ti)O3 (PZT) films deposited on indium tin oxide (ITO) electrodes. Ag nanoparticles are observed on the as-grown polycrystalline PZT films without poling, while the particle size and density are closely related to the concentration of Zr in PZT and the poling direction. The enhancement on the photoelectrochemical properties of the ITO/PZT photocathode by the decoration of Ag nanoparticles is finally demonstrated.

  9. Evaluation of the energy barrier for failure of Au atomic contact based on temperature dependent current-voltage characteristics.

    PubMed

    Aiba, Akira; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2016-08-01

    We investigated the mechanical stability of single gold atomic contacts at an applied bias voltage of 0-1 V using a nano-fabricated mechanically controllable break junction technique at 300-400 K under ambient conditions. The single atomic contact shows the quantized conductance (G0 = 2e(2)/h) and can carry considerably large current, which results in the current-induced failure of the contact. The contact failure behaviour under the applied bias conditions was studied by statistical analysis of the current-voltage (I-V) curves of the single Au contacts. We demonstrated that, at the elevated temperature of 300-400 K, the current-induced local heating effect is negligibly small and current-induced forces in the contact are responsible for the observed failure of the single gold contacts under the high bias voltage conditions (>0.4 V). Furthermore, based on the temperature dependence of the contact failure behaviour in the I-V curves, the energy barrier of the contact-failure was evaluated to be ca. 0.1 V. PMID:27427285

  10. Temperature-depended mechanical properties of microfabricated vanadium oxide mechanical resonators for thermal sensing

    NASA Astrophysics Data System (ADS)

    Inomata, Naoki; Pan, Libao; Toda, Masaya; Ono, Takahito

    2016-03-01

    This study describes our newly fabricated resonant thermal sensors based on vanadium oxide and investigates the temperature dependences of their resonant frequencies and Q factor. The suspended vanadium oxide resonators are microfabricated using Au or SiO2 as the sacrificial layer. The resonant frequency of the fabricated vanadium oxide resonators linearly varies with temperature, and the value of temperature coefficient of the resonant frequency is -1308 ppm/K in the range of 20-100 °C. The averaged Q factor in this range was 540. The temperature and thermal resolution of the vanadium oxide resonator are estimated as 1.7 mK/\\sqrt{\\text{Hz}} and 4.3 nW/\\sqrt{\\text{Hz}} , respectively, which are higher than those of a Si resonator having similar dimensions and under similar conditions. Therefore, the feasibility that vanadium oxide is a promising material for resonant thermal sensors is indicated.

  11. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe?

    PubMed Central

    2014-01-01

    Background Both active and passive tobacco smoke (TS) potentially impair the vascular endothelial function in a causative and dose-dependent manner, largely related to the content of reactive oxygen species (ROS), nicotine, and pro-inflammatory activity. Together these factors can compromise the restrictive properties of the blood–brain barrier (BBB) and trigger the pathogenesis/progression of several neurological disorders including silent cerebral infarction, stroke, multiple sclerosis and Alzheimer’s disease. Based on these premises, we analyzed and assessed the toxic impact of smoke extract from a range of tobacco products (with varying levels of nicotine) on brain microvascular endothelial cell line (hCMEC/D3), a well characterized human BBB model. Results Initial profiling of TS showed a significant release of reactive oxygen (ROS) and reactive nitrogen species (RNS) in full flavor, nicotine-free (NF, “reduced-exposure” brand) and ultralow nicotine products. This release correlated with increased oxidative cell damage. In parallel, membrane expression of endothelial tight junction proteins ZO-1 and occludin were significantly down-regulated suggesting the impairment of barrier function. Expression of VE-cadherin and claudin-5 were also increased by the ultralow or nicotine free tobacco smoke extract. TS extract from these cigarettes also induced an inflammatory response in BBB ECs as demonstrated by increased IL-6 and MMP-2 levels and up-regulation of vascular adhesion molecules, such as VCAM-1 and PECAM-1. Conclusions In summary, our results indicate that NF and ultralow nicotine cigarettes are potentially more harmful to the BBB endothelium than regular tobacco products. In addition, this study demonstrates that the TS-induced toxicity at BBB ECs is strongly correlated to the TAR and NO levels in the cigarettes rather than the nicotine content. PMID:24755281

  12. Microbubble-Size Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening in Mice In Vivo

    PubMed Central

    Choi, James J.; Feshitan, Jameel A.; Baseri, Babak; Wang, Shougang; Tung, Yao-Sheng; Borden, Mark A.; Konofagou, Elisa E.

    2014-01-01

    The therapeutic efficacy of neurological agents is severely limited, because large compounds do not cross the blood–brain barrier (BBB). Focused ultrasound (FUS) sonication in the presence of microbubbles has been shown to temporarily open the BBB, allowing systemically administered agents into the brain. Until now, polydispersed microbubbles (1–10 μm in diameter) were used, and, therefore, the bubble sizes better suited for inducing the opening remain unknown. Here, the FUS-induced BBB opening dependence on microbubble size is investigated. Bubbles at 1–2 and 4–5 μm in diameter were separately size-isolated using differential centrifugation before being systemically administered in mice (n = 28). The BBB opening pressure threshold was identified by varying the peak-rarefactional pressure amplitude. BBB opening was determined by fluorescence enhancement due to systemically administered, fluorescent-tagged, 3-kDa dextran. The identified threshold fell between 0.30 and 0.46 MPa in the case of 1–2 μm bubbles and between 0.15 and 0.30 MPa in the 4–5 μm case. At every pressure studied, the fluorescence was greater with the 4–5 μm than with the 1–2 μm bubbles. At 0.61 MPa, in the 1–2 μm bubble case, the fluorescence amount and area were greater in the thalamus than in the hippocampus. In conclusion, it was determined that the FUS-induced BBB opening was dependent on both the size distribution in the injected microbubble volume and the brain region targeted. PMID:19846365

  13. Oxidant stress stimulates mucin secretion and PLC in airway epithelium via a nitric oxide-dependent mechanism.

    PubMed

    Wright, D T; Fischer, B M; Li, C; Rochelle, L G; Akley, N J; Adler, K B

    1996-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide variety of respiratory diseases. We investigated mechanisms of ROS-induced mucin secretion by guinea pig tracheal epithelial (GPTE) cells in primary culture, and ROS-induced activation of the second messenger-producing enzyme phospholipase C (PLC), in GPTE cells and in a virally transformed cell line (BEAS-2B) derived from human bronchial epithelium. Mucin secretion was measured by a monoclonal antibody-based enzyme-linked immunosorbent assay, and PLC activation was assessed by anion exchange chromatography. ROS generated enzymatically by xanthine oxidase (XO, 500 microM) in the presence of purine (500 microM) enhanced release of mucin by GPTE cells and activated PLC in GPTE and BEAS cells. Hypersecretion of mucin and activation of PLC in response to purine + XO appeared to occur via an intracellular pathway(s) dependent on endogenously produced nitric oxide and possibly intracellularly generated oxidants. Both responses could be blocked or attenuated by preincubation of the cells with NG-monomethyl-L-arginine, an inhibitor of the enzyme nitric oxide synthase, or with dimethylthiourea, a compound that can react with a variety of intracellular oxidant species. Reactive nitrogen species generated chemically also stimulated secretion of mucin and activated PLC via a mechanism dependent (at least in part) on intracellular oxidant-mediated process(es). The results suggest that intracellularly generated radical species of nitrogen and oxygen may be important modulators of the response of airway epithelial cells to external oxidant stress.

  14. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    SciTech Connect

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  15. Failure Morphologies of Cyclically Oxidized ZrO2-Based Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Zhu, Dongming; Miller, Robert A.; Barrett, Charles A.

    2002-01-01

    Advanced and baseline thermal barrier coatings (TBCs) were thermal cycle tested in air at 1163 C until delamination or spallation of the ceramic top coat. The top coat of the advanced TBC s consisted of ZrO2 with various amounts of Y2O3, Yb2O3, Gd2O3, or Nd2O3 dopants. The composition of the top coat of the baseline TBC was ZrO2-8wt.%Y2O3. All top coats were deposited by air plasma spraying. A NiCrAlY or NiCoCrAlY bond coat was deposited by low pressure plasma spraying onto a single-crystal, Ni-base superalloy. The TBC lifetime for the baseline coatings was approximately 190 cycles (45 minutes at 1163 C per cycle) while the lifetime for the advanced coatings was as high as 425 cycles. The fracture surfaces and sample cross sections were examined after TBC failure by SEM and optical microscopy, and the top coats were further examined by X-ray diffraction. These post-test studies revealed that the fracture path largely followed splat boundaries with some trans-splat fracture. However, there were no obvious distinguishing features which explained the difference in TBC lifetimes between some of the advanced and baseline coatings.

  16. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  17. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    PubMed Central

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  18. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  19. Oxidative removal of implanted photoresists and barrier metals in semiconductor processing

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rajkumar

    Chemical systems containing oxidants are widely used at various stages in semiconductor processing, particularly for wet cleaning and polishing applications. This dissertation presents a series of studies related to oxidative removal of materials in the Front-End-Of-Line (FEOL) and Chemical Mechanical Planarization (CMP) processes during IC fabrication. In the first part of this study, stripping of photoresists exposed to high dose of ions (1E16 As/cm2) was investigated in activated hydrogen peroxide systems. Stripping of photoresists (PR) exposed to high dose (>1E15/cm2) ion beams is one of the most challenging steps in FEOL processing. This is due to unreactive crust layer that forms on the resist surface during ion implantation. The use of hydrogen peroxide systems activated by metal ion or UV light, for disrupting crust formed on deep UV resist to enable complete removal of crust as well as underlying photoresist was investigated. A systematic evaluation of variables such as hydrogen peroxide and metal ion concentration, UV intensity, temperature and time was conducted and an optimal formulation capable of attacking the crust was developed. A two step process involving pretreatment with activated hydrogen peroxide solution, followed by treatment with sulfuric acid-hydrogen peroxide mixture (SPM) was developed for complete removal of crusted resist films. In the second part of this study, electrochemically enhanced abrasive removal of Ta/TaN films was investigated in solutions containing 2,5 dihydroxy benzene sulfonic acid (DBSA) and potassium iodate (KIO3). This method known as Electrically-assisted Chemical Mechanical Planarization (ECMP) is generating a lot of interest in IC manufacturing. Ta/TaN films were abraded at low pressures (<0.5 psi) on a polyurethane pad under galvanostatic conditions. The effect of variables including pH, KIO3 concentration, and current density has been explored. In the optimized formulation, tantalum and tantalum nitride removal

  20. Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway.

    PubMed

    Park, Kwon Moo; Fogelgren, Ben; Zuo, Xiaofeng; Kim, Jinu; Chung, Daniel C; Lipschutz, Joshua H

    2010-03-01

    Cell-cell contacts are essential for epithelial cell function, and disruption is associated with pathological conditions including ischemic kidney injury. We hypothesize that the exocyst, a highly-conserved eight-protein complex that targets secretory vesicles carrying membrane proteins, is involved in maintaining renal epithelial barrier integrity. Accordingly, increasing exocyst expression in renal tubule cells may protect barrier function from oxidative stress resulting from ischemia and reperfusion (I/R) injury. When cultured on plastic, Madin-Darby canine kidney (MDCK) cells overexpressing Sec10, a central exocyst component, formed domes showing increased resistance to hydrogen peroxide (H2O2). Transepithelial electric resistance (TER) of Sec10-overexpressing MDCK cells grown on Transwell filters was higher than in control MDCK cells, and the rate of TER decrease following H2O2 treatment was less in Sec10-overexpressing MDCK cells compared with control MDCK cells. After removal of H2O2, TER returned to normal more rapidly in Sec10-overexpressing compared with control MDCK cells. In collagen culture MDCK cells form cysts, and H2O2 treatment damaged Sec10-overexpressing MDCK cell cysts less than control MDCK cell cysts. The MAPK pathway has been shown to protect animals from I/R injury. Levels of active ERK, the final MAPK pathway step, were higher in Sec10-overexpressing compared with control MDCK cells. U0126 inhibited ERK activation, exacerbated the H2O2-induced decrease in TER and cyst disruption, and delayed recovery of TER following H2O2 removal. Finally, in mice with renal I/R injury, exocyst expression decreased early and returned to normal concomitant with functional recovery, suggesting that the exocyst may be involved in the recovery following I/R injury.

  1. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    SciTech Connect

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  2. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  3. Cerebral nitric oxide represses choroid plexus NFκB-dependent gateway activity for leukocyte trafficking

    PubMed Central

    Baruch, Kuti; Kertser, Alexander; Porat, Ziv; Schwartz, Michal

    2015-01-01

    Chronic neuroinflammation is evident in brain aging and neurodegenerative disorders and is often associated with excessive nitric oxide (NO) production within the central nervous system (CNS). Under such conditions, increased NO levels are observed at the choroid plexus (CP), an epithelial layer that forms the blood–cerebrospinal fluid barrier (BCSFB) and serves as a selective gateway for leukocyte entry to the CNS in homeostasis and following injury. Here, we hypothesized that elevated cerebral NO levels interfere with CP gateway activity. We found that induction of leukocyte trafficking determinants by the CP and sequential leukocyte entry to the CSF are dependent on the CP epithelial NFκB/p65 signaling pathway, which was inhibited upon exposure to NO. Examining the CP in 5XFAD transgenic mouse model of Alzheimer's disease (AD-Tg) revealed impaired ability to mount an NFκB/p65-dependent response. Systemic administration of an NO scavenger in AD-Tg mice alleviated NFκB/p65 suppression at the CP and augmented its gateway activity. Together, our findings identify cerebral NO as a negative regulator of CP gateway activity for immune cell trafficking to the CNS. PMID:25940071

  4. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  5. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence.

    PubMed

    Augustin, Matthias; Fenske, Daniela; Bardenhagen, Ingo; Westphal, Anne; Knipper, Martin; Plaggenborg, Thorsten; Kolny-Olesiak, Joanna; Parisi, Jürgen

    2015-01-01

    Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mn (x) (+) oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure-property relationships. The oxidation process related to the different MnO x species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnO x species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnO x species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species. PMID:25671151

  6. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    PubMed Central

    Fenske, Daniela; Bardenhagen, Ingo; Westphal, Anne; Knipper, Martin; Plaggenborg, Thorsten; Kolny-Olesiak, Joanna; Parisi, Jürgen

    2015-01-01

    Summary Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx + oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species. PMID:25671151

  7. Hydrogen peroxide mediates oxidant-dependent stimulation of arterial smooth muscle L-type calcium channels.

    PubMed

    Chaplin, Nathan L; Amberg, Gregory C

    2012-05-01

    Changes in calcium and redox homeostasis influence multiple cellular processes. Dysregulation of these signaling modalities is associated with pathology in cardiovascular, neuronal, endocrine, and other physiological systems. Calcium and oxidant signaling mechanisms are frequently inferred to be functionally related. To address and clarify this clinically relevant issue in the vasculature we tested the hypothesis that the ubiquitous reactive oxygen molecule hydrogen peroxide mediates oxidant-dependent stimulation of cerebral arterial smooth muscle L-type calcium channels. Using a combinatorial approach including intact arterial manipulations, electrophysiology, and total internal reflection fluorescence imaging, we found that application of physiological levels of hydrogen peroxide to isolated arterial smooth muscle cells increased localized calcium influx through L-type calcium channels. Similarly, oxidant-dependent stimulation of L-type calcium channels by the vasoconstrictor ANG II was abolished by intracellular application of catalase. Catalase also prevented ANG II from increasing localized subplasmalemmal sites of increased oxidation previously associated with colocalized calcium influx through L-type channels. Furthermore, catalase largely attenuated the contractile response of intact cerebral arterial segments to ANG II. In contrast, enhanced dismutation of superoxide to hydrogen peroxide with SOD had no effect on ANG II-dependent stimulation of L-type calcium channels. From these data we conclude that hydrogen peroxide is important for oxidant-dependent regulation of smooth muscle L-type calcium channels and arterial function. These data also support the emerging concept of hydrogen peroxide as a biologically relevant oxidant second messenger in multiple cell types with a diverse array of physiological functions.

  8. Silicon oxide barrier films deposited on PET foils in pulsed plasmas: influence of substrate bias on deposition process and film properties

    NASA Astrophysics Data System (ADS)

    Steves, S.; Ozkaya, B.; Liu, C.-N.; Ozcan, O.; Bibinov, N.; Grundmeier, G.; Awakowicz, P.

    2013-02-01

    A widely used plastic for packaging, polyethylene terephtalate (PET) offers limited barrier properties against gas permeation. For many applications of PET (from food packaging to micro electronics) improved barrier properties are essential. A silicon oxide barrier coating of PET foils is applied by means of a pulsed microwave driven low-pressure plasma. While the adjustment of the microwave power allows for a control of the ion production during the plasma pulse, a substrate bias controls the energy of ions impinging on the substrate. Detailed analysis of deposited films applying oxygen permeation measurements, x-ray photoelectron spectroscopy and atomic force microscopy are correlated with results from plasma diagnostics describing the deposition process. The influence of a change in process parameters such as gas mixture and substrate bias on the gas temperature, electron density, mean electron energy, ion energy and the atomic oxygen density is studied. An additional substrate bias results in an increase in atomic oxygen density up to a factor of 6, although plasma parameter such as electron density of ne = 3.8 ± 0.8 × 1017 m-3 and electron temperature of kBTe = 1.7 ± 0.1 eV are unmodified. It is shown that atomic oxygen densities measured during deposition process higher than nO = 1.8 × 1021 m-3 yield in barrier films with a barrier improvement factor up to 150. Good barrier films are highly cross-linked and show a smooth morphology.

  9. Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent Manner.

    PubMed

    Staleva, Liliana; Hall, Andrea; Orlow, Seth J

    2004-12-01

    Mating in haploid Saccharomyces cerevisiae occurs after activation of the pheromone response pathway. Biochemical components of this pathway are involved in other yeast signal transduction networks. To understand more about the coordination between signaling pathways, we used a "chemical genetic" approach, searching for compounds that would activate the pheromone-responsive gene FUS1 and RLM1, a reporter for the cell integrity pathway. We found that catecholamines (l-3,4-hydroxyphenylalanine [l-dopa], dopamine, adrenaline, and noradrenaline) elevate FUS1 and RLM1 transcription. N-Acetyl-cysteine, a powerful antioxidant in yeast, completely reversed this effect, suggesting that FUS1 and RLM1 activation in response to catecholamines is a result of oxidative stress. The oxidant hydrogen peroxide also was found to activate transcription of an RLM1 reporter. Further genetic analysis combined with immunoblotting revealed that Kss1, one of the mating mitogen-activated protein kinases (MAPKs), and Mpk1, an MAPK of the cell integrity pathway, participated in l-dopa-induced stimulation of FUS1 and RLM1 transcription. We also report that Mpk1 and Hog1, the high osmolarity MAPK, were phosphorylated upon induction by hydrogen peroxide. Together, our results demonstrate that cells respond to oxidative stress via different signal transduction machinery dependent upon the nature of the oxidant. PMID:15385622

  10. Lycium Barbarum Polysaccharides Reduce Neuronal Damage, Blood-Retinal Barrier Disruption and Oxidative Stress in Retinal Ischemia/Reperfusion Injury

    PubMed Central

    Li, Suk-Yee; Yang, Di; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2011-01-01

    Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for “eye health” according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature. PMID:21298100

  11. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.

    PubMed

    Soni, Bhawna; Hassan, El Barbary; Schilling, M Wes; Mahmoud, Barakat

    2016-10-20

    The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by incorporating TEMPO-oxidized cellulose nanofibers (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into a chitosan matrix. An aqueous suspension of chitosan (100-75wt%), sorbitol (25wt%) and TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs, 0-25wt%) were cast in an oven at 40°C for 2-4days. Films were preconditioned at 25°C and 50% RH for characterization. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermogravimetric analysis (TGA-DTG) and X-ray diffraction (XRD). Incorporation of TEMPO-CNFs enhanced the mechanical strength of the films due to the high aspect ratio (3-20nm width, and 10-100nm length) of TEMPO-CNFs and strong interactions with the chitosan matrix. Oxygen and water vapor transmission rates for films that are prepared with chitosan and TEMPO-CNFs (15-25wt%) were significantly reduced. Furthermore, these bionanocomposite films had good thermal stability. Use of TEMPO-CNFs in this method makes it possible to produce bionanocomposite films that are flexible, transparent, and thus have potential in food packaging applications.

  12. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.

    PubMed

    Soni, Bhawna; Hassan, El Barbary; Schilling, M Wes; Mahmoud, Barakat

    2016-10-20

    The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by incorporating TEMPO-oxidized cellulose nanofibers (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into a chitosan matrix. An aqueous suspension of chitosan (100-75wt%), sorbitol (25wt%) and TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs, 0-25wt%) were cast in an oven at 40°C for 2-4days. Films were preconditioned at 25°C and 50% RH for characterization. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermogravimetric analysis (TGA-DTG) and X-ray diffraction (XRD). Incorporation of TEMPO-CNFs enhanced the mechanical strength of the films due to the high aspect ratio (3-20nm width, and 10-100nm length) of TEMPO-CNFs and strong interactions with the chitosan matrix. Oxygen and water vapor transmission rates for films that are prepared with chitosan and TEMPO-CNFs (15-25wt%) were significantly reduced. Furthermore, these bionanocomposite films had good thermal stability. Use of TEMPO-CNFs in this method makes it possible to produce bionanocomposite films that are flexible, transparent, and thus have potential in food packaging applications. PMID:27474625

  13. Nitric Oxide Protects against Infection-Induced Neuroinflammation by Preserving the Stability of the Blood-Brain Barrier

    PubMed Central

    Olivera, Gabriela C.; Ren, Xiaoyuan; Vodnala, Suman K.; Lu, Jun; Coppo, Lucia; Leepiyasakulchai, Chaniya; Holmgren, Arne; Kristensson, Krister; Rottenberg, Martin E.

    2016-01-01

    Nitric oxide (NO) generated by inducible NO synthase (iNOS) is critical for defense against intracellular pathogens but may mediate inflammatory tissue damage. To elucidate the role of iNOS in neuroinflammation, infections with encephalitogenic Trypanosoma brucei parasites were compared in inos-/- and wild-type mice. Inos-/- mice showed enhanced brain invasion by parasites and T cells, and elevated protein permeability of cerebral vessels, but similar parasitemia levels. Trypanosome infection stimulated T cell- and TNF-mediated iNOS expression in perivascular macrophages. NO nitrosylated and inactivated pro-inflammatory molecules such as NF-κΒp65, and reduced TNF expression and signalling. iNOS-derived NO hampered both TNF- and T cell-mediated parasite brain invasion. In inos-/- mice, TNF stimulated MMP, including MMP9 activity that increased cerebral vessel permeability. Thus, iNOS-generated NO by perivascular macrophages, strategically located at sites of leukocyte brain penetration, can serve as a negative feed-back regulator that prevents unlimited influx of inflammatory cells by restoring the integrity of the blood-brain barrier. PMID:26915097

  14. Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood–brain barrier model

    PubMed Central

    Shi, Di; Mi, Gujie; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2016-01-01

    In the current study, an optimized in vitro blood–brain barrier (BBB) model was established using mouse brain endothelial cells (b.End3) and astrocytes (C8-D1A). Before measuring the permeability of superparamagnetic iron oxide nanoparticle (SPION) samples, the BBB was first examined and confirmed by an immunofluorescent stain and evaluating the transendothelial electrical resistance. After such confirmation, the permeability of the following five previously synthesized SPIONs was determined using this optimized BBB model: 1) GGB (synthesized using glycine, glutamic acid, and bovine serum albumin [BSA]), 2) GGC (glycine, glutamic acid, and collagen), 3) GGP (glycine, glutamic acid, and polyvinyl alcohol), 4) BPC (BSA, polyethylene glycol, and collagen), and 5) CPB (collagen, polyvinyl alcohol, and BSA). More importantly, after the permeability test, transmission electron microscopy thin section technology was used to investigate the mechanism behind this process. Transmission electron microscopy thin section images supported the hypothesis that collagen-coated CPB SPIONs displayed better cellular uptake than glycine and glutamine acid-coated GGB SPIONs. Such experimental data demonstrated how one can modify SPIONs to better deliver drugs to the brain to treat a wide range of neurological disorders. PMID:27799764

  15. The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor

    SciTech Connect

    Yin, S.E.; Sun, B.M.; Gao, X.D.; Xiao, H.P.

    2009-12-15

    The effect of O{sub 2} and H{sub 2}O vapor on the Nitric oxide (NO) removal rate, the NO{sub 2} generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20{sup o}). The results showed that the O{sub 2} present in the flue gas always hampered the removal of NO and the generation of N{sub 2}O, but that the O{sub 2} could enhance the generation of NO{sub 2} in the NO/N{sub 2}/O{sub 2} mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H{sub 2}O present in N-2/NO hindered the removal of NO and the generation of NO{sub 2} but had no impact on the average discharge current in the reactor in the NO/N{sub 2}/H{sub 2}O mixtures in which the HNO{sub 2} and HNO{sub 3} was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.

  16. Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor.

    PubMed

    Marotta, Ester; Ceriani, Elisa; Schiorlin, Milko; Ceretta, Claudio; Paradisi, Cristina

    2012-12-01

    Electric non-thermalizing discharges provide promising novel means to induce oxidation of organic pollutants in water. The decomposition of phenol in solutions prepared with deionized (milliQ) and tap water was studied and compared in a Dielectric Barrier Discharge (DBD) reactor. Interestingly, a significant rate increase was found in tap with respect to milliQ water. Control experiments proved that this was not the effect of conductivity or of traces of iron or of residual active chlorine from the depuration process operated in the aqueducts of Italian cities. The same increase in efficiency as observed in tap water was instead obtained when phenol was treated in solutions containing bicarbonate anions in the same concentration as present in tap water, an effect attributed to buffering of the solution pH. The role of pH has been investigated thoroughly by measuring the process efficiency over a wide pH range, from 2 to 10, by using different buffer systems to probe reactivity at near neutral pH, the most relevant for drinking water applications, and by testing the effect of different buffer concentrations. These latter experiments failed to detect any significant kinetic effect attributable to the well known reactivity of bicarbonate as quencher of OH radicals.

  17. Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-07-01

    A simple, rapid, and portable system consisted of a laboratory-built miniaturized dielectric barrier discharge atomic emission spectrometer and a microwave-assisted persulfate oxidation reactor was developed for sensitive flow injection analysis or continuous monitoring of total organic carbon (TOC) in environmental water samples. The standard/sample solution together with persulfate was pumped to the reactor to convert organic compounds to CO2, which was separated from liquid phase and transported to the spectrometer for detection of the elemental specific carbon atomic emission at 193.0 nm. The experimental parameters were systematically investigated. A limit of detection of 0.01 mg L(-1) (as C) was obtained based on a 10 mL sample injection volume, and the precision was better than 6.5% (relative standard deviation, RSD) at 0.1 mg L(-1). The system was successfully applied for TOC analysis of real environmental water samples. The obtained TOC value of 30 test samples agreed well with those by the standard high-temperature combustion coupled nondispersive infrared absorption method. Most importantly, the system showed good capability of in situ continuous monitoring of total organic carbon in environmental water.

  18. A photoemission study of the effectiveness of nickel, manganese, and cobalt based corrosion barriers for silicon photo-anodes during water oxidation

    NASA Astrophysics Data System (ADS)

    O'Connor, Robert; Bogan, Justin; McCoy, Anthony; Byrne, Conor; Hughes, Greg

    2016-05-01

    Silicon is an attractive material for solar water splitting applications due to its abundance and its capacity to absorb a large fraction of incident solar radiation. However, it has not received as much attention as other materials due to its tendency to oxidize very quickly in aqueous environments, particularly when it is employed as the anode where it drives the oxygen evolution reaction. In recent years, several works have appeared in the literature examining the suitability of thin transition metal oxide films grown on top of the silicon to act as a corrosion barrier. The film should be transparent to solar radiation, allow hole transport from the silicon surface to the electrolyte, and stop the diffusion of oxygen from the electrolyte back to the silicon. In this work, we compare Mn-oxide, Co-oxide, and Ni-oxide thin films grown using physical vapor deposition in order to evaluate which material offers the best combination of photocurrent and corrosion protection. In addition to the electrochemical data, we also present a detailed before-and-after study of the surface chemistry of the films using x-ray photoelectron spectroscopy. This approach allows for a comprehensive analysis of the mechanisms by which the corrosion barriers protect the underlying silicon, and how they degrade during the water oxidation reaction.

  19. Polarisation dependence of Schottky barrier heights at ferroelectric BaTiO3 / RuO2 interfaces: influence of substrate orientation and quality

    NASA Astrophysics Data System (ADS)

    Hubmann, Andreas H.; Li, Shunyi; Zhukov, Sergey; von Seggern, Heinz; Klein, Andreas

    2016-07-01

    In situ x-ray photoelectron spectroscopy was employed to examine the change in Schottky barrier height Δ {Φ\\text{B}} at BaTiO3/RuO2 interfaces upon polarisation reversal for [1 0 0], [1 1 0] and [1 1 1] oriented BaTiO3 single crystals. Compared to previous measurements on BaTiO3/RuO2 interfaces (Chen and Klein 2012 Phys. Rev. B 86 094105), the crystals exhibit a significantly reduced dependence of barrier height on polarisation direction. This is connected to a much higher polarisation of the present cystals, which is comparable to the accepted bulk polarisation of BaTiO3 of 26~μ \\text{C}~\\text{c}{{\\text{m}}-2} and which exhibit the expected dependence on crystal orientation. This indicates a much higher crystal quality in the present experiments, which is also confirmed by a Kolmogorov-Avrami-Ishibashi like polarisation switching dynamics. It is observed that Δ {Φ\\text{B}} is reduced for the [1 1 0] and [1 1 1] orientation and scales with polarisation as long as crystals from the same batch are used. The fact, that a poor polarisation hysteresis behaviour relates to a high polarisation dependence of Schottky barrier height, indicates that the electrode’s ability to screen ferroelectric polarisation charges depends sensitively on crystal and/or interface quality.

  20. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway.

    PubMed

    Liang, Hong-Yin; Chen, Tao; Yan, Hong-Tao; Huang, Zhu; Tang, Li-Jun

    2014-05-01

    Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.

  1. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    NASA Astrophysics Data System (ADS)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  2. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element.

    PubMed

    Cohen, Helit; Parekh, Palak; Sercan, Zeynep; Kotekar, Aparna; Weissman, Jocelyn D; Singer, Dinah S

    2009-08-26

    Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.

  3. When Free Is Not for Me: Confronting the Barriers to Use of Free Quitline Telephone Counseling for Tobacco Dependence

    PubMed Central

    Sheffer, Christine; Brackman, Sharon; Lercara, Charnette; Cottoms, Naomi; Olson, Mary; Panissidi, Luana; Pittman, Jami; Stayna, Helen

    2015-01-01

    Remarkable disparities in smoking rates in the United States contribute significantly to socioeconomic and minority health disparities. Access to treatment for tobacco use can help address these disparities, but quitlines, our most ubiquitous treatment resource, reach just 1%–2% of smokers. We used community-based participatory methods to develop a survey instrument to assess barriers to use of the quitline in the Arkansas Mississippi delta. Barriers were quitline specific and barriers to cessation more broadly. Over one-third (34.9%) of respondents (n = 799) did not have access to a telephone that they could use for the quitline. Respondents reported low levels of knowledge about the quitline, quitting, and trust in tobacco treatment programs as well as considerable ambivalence about quitting including significant concerns about getting sick if they quit and strong faith-based beliefs about quitting. These findings suggest quitlines are not accessible to all lower socioeconomic groups and that significant barriers to use include barriers to cessation. These findings suggest targets for providing accessible tobacco use treatment services and addressing concerns about cessation among lower income, ethnic minority, and rural groups. PMID:26703662

  4. When Free Is Not for Me: Confronting the Barriers to Use of Free Quitline Telephone Counseling for Tobacco Dependence.

    PubMed

    Sheffer, Christine; Brackman, Sharon; Lercara, Charnette; Cottoms, Naomi; Olson, Mary; Panissidi, Luana; Pittman, Jami; Stayna, Helen

    2016-01-01

    Remarkable disparities in smoking rates in the United States contribute significantly to socioeconomic and minority health disparities. Access to treatment for tobacco use can help address these disparities, but quitlines, our most ubiquitous treatment resource, reach just 1%-2% of smokers. We used community-based participatory methods to develop a survey instrument to assess barriers to use of the quitline in the Arkansas Mississippi delta. Barriers were quitline specific and barriers to cessation more broadly. Over one-third (34.9%) of respondents (n = 799) did not have access to a telephone that they could use for the quitline. Respondents reported low levels of knowledge about the quitline, quitting, and trust in tobacco treatment programs as well as considerable ambivalence about quitting including significant concerns about getting sick if they quit and strong faith-based beliefs about quitting. These findings suggest quitlines are not accessible to all lower socioeconomic groups and that significant barriers to use include barriers to cessation. These findings suggest targets for providing accessible tobacco use treatment services and addressing concerns about cessation among lower income, ethnic minority, and rural groups. PMID:26703662

  5. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress.

    PubMed

    Dietz, Karl-Josef

    2010-01-01

    Stress development intricately involves uncontrolled redox reactions and oxidative damage to functional macromolecules. Three phases characterize progressing abiotic stress and the stress strength; in the first phase redox-dependent deregulation in metabolism, in the second phase detectable development of oxidative damage and in the third phase cell death. Each phase is characterized by traceable biochemical features and specific molecular responses that reflect on the one hand cell damage but on the other hand indicate specific regulation and redox signalling aiming at compensation of stress impact. PMID:20387040

  6. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification.

    PubMed

    Carlson, Hans K; Clark, Iain C; Melnyk, Ryan A; Coates, John D

    2012-01-01

    The anaerobic oxidation of Fe(II) by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate-dependent iron oxidation. We suggest that anaerobic iron-oxidizing microorganisms likely exist along a continuum including: (1) bacteria that inadvertently oxidize Fe(II) by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g., denitrification) and suffer from toxicity or energetic penalty, (2) Fe(II) tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and (3) bacteria that efficiently accept electrons from Fe(II) to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed. PMID:22363331

  7. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling

    PubMed Central

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-01-01

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution. PMID:27000655

  8. The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder

    PubMed Central

    Cram, Dominic L.; Blount, Jonathan D.; Young, Andrew J.

    2015-01-01

    Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesized that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies. PMID:26582023

  9. The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder.

    PubMed

    Cram, Dominic L; Blount, Jonathan D; Young, Andrew J

    2015-11-22

    Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesized that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies.

  10. Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Gaowei, M.; Muller, E. M.; Rumaiz, A. K.; Weiland, C.; Cockayne, E.; Woicik, J. C.; Jordan-Sweet, J.; Smedley, J.

    2012-05-14

    Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

  11. Induction of size-dependent breakdown of blood-milk barrier in lactating mice by TiO2 nanoparticles.

    PubMed

    Zhang, Chengke; Zhai, Shumei; Wu, Ling; Bai, Yuhong; Jia, Jianbo; Zhang, Yi; Zhang, Bin; Yan, Bing

    2015-01-01

    This study aims to investigate the potential nanotoxic effects of TiO2 nanoparticles (TNPs) to dams and pups during lactation period. TiO2 nanoparticles are accumulated in mammary glands of lactating mice after i.v. administration. This accumulation of TiO2 NP likely causes a ROS-induced disruption of tight junction of the blood-milk barrier as indicated by the loss of tight junction proteins and the shedding of alveolar epithelial cells. Compared to larger TNPs (50 nm), smaller ones (8 nm) exhibit a higher accumulation in mammary glands and are more potent in causing perturbations to blood-milk barrier. An alarming finding is that the smaller TNPs (8 nm) are transferred from dams to pups through breastfeeding, likely through the disrupted blood-milk barrier. However, during the lactation period, the nutrient quality of milk from dams and the early developmental landmarks of the pups are not affected by above perturbations.

  12. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    SciTech Connect

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  13. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  14. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  15. Overexpression of endothelial nitric oxide synthase improves endothelium-dependent vasodilation in arteries infused with helper-dependent adenovirus.

    PubMed

    Jiang, Bo; Du, Liang; Flynn, Rowan; Dronadula, Nagadhara; Zhang, Jingwan; Kim, Francis; Dichek, David

    2012-11-01

    Adenoviral vectors (Ad) are useful tools for in vivo gene transfer into endothelial cells. However, endothelium-dependent vasodilation is impaired after Ad infusion, and this impairment is not prevented by use of advanced-generation "helper-dependent" (HD) Ad that lack all viral genes. We hypothesized that endothelium-dependent vasodilation could be improved in Ad-infused arteries by overexpression of endothelial nitric oxide synthase (eNOS). We tested this hypothesis in hyperlipidemic, atherosclerosis-prone rabbits because HDAd will likely be used for treating and preventing atherosclerosis. Moreover, the consequences of eNOS overexpression might differ in normal and atherosclerosis-prone arteries and could include atherogenic effects, as reported in transgenic mice. We cloned rabbit eNOS and constructed an HDAd that expresses it. HDAdeNOS increased NO production by cultured endothelial cells and increased arterial eNOS mRNA in vivo by ∼10-fold. Compared to arteries infused with a control HDAd, HDAdeNOS-infused arteries of hyperlipidemic rabbits had significantly improved endothelium-dependent vasodilation, and similar responses to phenylephrine and nitroprusside. Moreover, infusion of HDAdeNOS had local atheroprotective effects including large, significant decreases in intimal lipid accumulation and arterial tumor necrosis factor (TNF)-α expression (p≤0.04 for both). HDAdeNOS infusion yields a durable (≥2 weeks) increase in arterial eNOS expression, improves vasomotor function, and reduces artery wall inflammation and lipid accumulation. Addition of an eNOS expression cassette improves the performance of HDAd, has no harmful effects, and may reduce atherosclerotic lesion growth.

  16. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis.

    PubMed

    Sinha, Krishnendu; Das, Joydeep; Pal, Pabitra Bikash; Sil, Parames C

    2013-07-01

    Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.

  17. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    PubMed Central

    Simmons, Steven O; Fan, Chun-Yang; Yeoman, Kim; Wakefield, John; Ramabhadran, Ram

    2011-01-01

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this study, we describe the development of an Nrf2-specific reporter gene assay that can be used to study the oxidative stress response in multiple cell types. Using five different cell lines, the Nrf2-activating potency of twenty metals was assessed across a range of concentrations. While ten of the metals tested (cadmium, cobalt, copper, gold, iron, lead, mercury, silver, sodium arsenite and zinc) stimulated Nrf2-dependent transcriptional activity in at least three of the engineered cell lines, only three (cadmium, copper and sodium arsenite) were active in all five cell lines. A comparison of metal-induced Nrf2 transcriptional activation revealed significant differences in the absolute magnitude of activation as well as the relative potencies between the cell lines tested. However, there was no direct correlation between activity and potency. Taken together, these results show that the capacity to stimulate Nrf2 activity and relative potencies of these test compounds are highly dependent on the cell type tested. Since oxidative stress is thought to be involved in the mode of action of many toxicological studies, this observation may inform the design of paradigms for toxicity testing for toxicant prioritization and characterization. PMID:21643505

  18. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  19. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer. PMID:26726688

  20. Energy dependence of the trapping of uranium atoms by aluminum oxide surfaces

    NASA Technical Reports Server (NTRS)

    Librecht, K. G.

    1979-01-01

    The energy dependence of the trapping probability for sputtered U-235 atoms striking an oxidized aluminum collector surface at energies between 1 eV and 184 eV was measured. At the lowest energies, approximately 10% of the uranium atoms are not trapped, while above 10 eV essentially all of them stick. Trapping probabilities averaged over the sputtered energy distribution for uranium incident on gold and mica are also presented.

  1. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  2. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters

    NASA Astrophysics Data System (ADS)

    Tsunekawa, S.; Ito, S.; Kawazoe, Y.

    2004-10-01

    Cerium oxide nanocrystalline particles are synthesized and monodispersed in the size range from 2 to 8nm in diameter. The dependence of the lattice parameters on particle size is obtained by x-ray and electron diffraction analyses. The size dependence well coincides with the estimation based on the assumption that the surface is composed of one layer of Ce2O3 and the inside consists of CeO2. The effect of particle size on lattice parameters is discussed from the differences in the fabrication method and the surface structure.

  3. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    PubMed

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  4. Pyocyanin inhibits both nitric oxide-dependent and -independent relaxation in porcine coronary arteries.

    PubMed

    Hempenstall, Allison; Grant, Gary D; Anoopkumar-Dukie, Shailendra; Johnson, Peter J

    2015-02-01

    The effects of the Pseudomonas aeruginosa virulence factor pyocyanin (PCN) on the contractile function of porcine coronary arteries was investigated in vitro. Artery rings (5 mm) were suspended in organ baths containing Krebs' solution for the measurement of isometric tension. The effect of PCN on resting and precontracted coronary arteries was initially investigated with various agents. Arteries were precontracted with prostaglandin (PG) F2α or potassium chloride and endothelium-dependent relaxations were induced by various agents in the presence of PCN. Pyocyanin (0.1-10 μmol/L) evoked small-amplitude, dose-dependent contractions in resting porcine coronary arteries. In addition, PCN amplified the contractile response to PGF2α , but did not alter responses to carbachol. Pyocyanin (0.1-10 μmol/L) significantly inhibited endothelium-dependent relaxations evoked by neurokinin A. Pyocyanin also inhibited relaxations evoked by diethylamine nitric oxide (a nitric oxide donor), forskolin (an adenylate cyclase activator), dibuytyryl-cAMP (a cAMP analogue), 8-bromo-cGMP (a cGMP analogue) and P1075 (a KATP channel activator), but not isoprenaline (β-adrenoceceptor agonist). These results indicate that physiological concentrations of PCN interfere with multiple intracellular processes involved in vascular smooth muscle relaxation, in particular pathways downstream of nitric oxide release. Thus, PCN may alter normal vascular function in patients infected with P. aeruginosa.

  5. Dependence of the 0.7 anomaly on the curvature of the potential barrier in quantum wires

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Hamilton, A. R.; Kelly, M. J.; Smith, C. G.

    2015-06-01

    Ninety-eight one-dimensional channels defined using split gates fabricated on a GaAs/AlGaAs heterostructure are measured during one cooldown at 1.4 K. The devices are arranged in an array on a single chip and are individually addressed using a multiplexing technique. The anomalous conductance feature known as the "0.7 structure" is studied using statistical techniques. The ensemble of data shows that the 0.7 anomaly becomes more pronounced and occurs at lower values as the curvature of the potential barrier in the transport direction decreases. This corresponds to an increase in the effective length of the device. The 0.7 anomaly is not strongly influenced by other properties of the conductance related to density. The curvature of the potential barrier appears to be the primary factor governing the shape of the 0.7 structure at a given T and B .

  6. Temperature dependence of the inhomogeneous parameters of the Mo/4H–SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Latreche, A.; Ouennoughi, Z.; Weiss, R.

    2016-08-01

    The inhomogeneous parameters of Mo/4H–SiC Schottky barrier diodes were determined from current–voltage (I–V) characteristics in the temperature range of 303–498 K by using a general approach for the real Schottky diode. In this approach the total series resistances is divided into two resistances; the first one (R P) is the sum of the series resistances (r) of the particular diodes connected in parallel and the second is the common resistance (R C) to all particular diodes. The mean barrier height (\\bar{φ }) and the standard deviation (σ) decrease linearly with decreasing temperature and they are between the values for the diodes with the two limiting cases; no current spreading and full current spreading. The series resistance R C increases, while the series resistance R P slightly decreases with decreasing temperature.

  7. Efficient spin injection through a crystalline AlOx tunnel barrier prepared by the oxidation of an ultra-thin Al epitaxial layer on GaAs

    NASA Astrophysics Data System (ADS)

    Nishizawa, N.; Munekata, H.

    2013-07-01

    We report that an ultra-thin, post-oxidized aluminum epilayer grown on the AlGaAs surface works as a high-quality tunnel barrier for spin injection from a ferromagnetic metal to a semiconductor. One of the key points of the present oxidation method is the formation of the crystalline AlOx template layer without oxidizing the AlGaAs region near the Al/AlGaAs interface. The oxidized Al layer is not amorphous but show well-defined single crystalline feature reminiscent of the spinel γ-AlOx phase. A spin-light emitting diode consisting of a Fe layer, a crystalline AlOx barrier layer, and an AlGaAs-InGaAs double hetero-structure has exhibited circularly polarized electroluminescence with circular polarization of PEL ˜ 0.145 at the remnant magnetization state of the Fe layer, indicating the relatively high spin injection efficiency (≡2PEL/PFe) of 0.63.

  8. Induction of Size-Dependent Breakdown of Blood-Milk Barrier in Lactating Mice by TiO2 Nanoparticles

    PubMed Central

    Wu, Ling; Bai, Yuhong; Jia, Jianbo; Zhang, Yi; Zhang, Bin; Yan, Bing

    2015-01-01

    This study aims to investigate the potential nanotoxic effects of TiO2 nanoparticles (TNPs) to dams and pups during lactation period. TiO2 nanoparticles are accumulated in mammary glands of lactating mice after i.v. administration. This accumulation of TiO2 NP likely causes a ROS-induced disruption of tight junction of the blood-milk barrier as indicated by the loss of tight junction proteins and the shedding of alveolar epithelial cells. Compared to larger TNPs (50 nm), smaller ones (8 nm) exhibit a higher accumulation in mammary glands and are more potent in causing perturbations to blood-milk barrier. An alarming finding is that the smaller TNPs (8 nm) are transferred from dams to pups through breastfeeding, likely through the disrupted blood-milk barrier. However, during the lactation period, the nutrient quality of milk from dams and the early developmental landmarks of the pups are not affected by above perturbations. PMID:25849145

  9. Volatility and oxidative aging of aqueous maleic acid aerosol droplets and the dependence on relative humidity.

    PubMed

    Dennis-Smither, Benjamin J; Marshall, Frances H; Miles, Rachael E H; Preston, Thomas C; Reid, Jonathan P

    2014-07-31

    The microphysical structure and heterogeneous oxidation by ozone of single aerosol particles containing maleic acid (MA) has been studied using aerosol optical tweezers and cavity enhanced Raman spectroscopy. The evaporation rate of MA from aqueous droplets has been measured over a range of relative humidities and the pure component vapor pressure determined to be (1.7 ± 0.2) × 10(-3) Pa. Variation in the refractive index (RI) of an aqueous MA droplet with relative humidity (RH) allowed the subcooled liquid RI of MA to be estimated as 1.481 ± 0.001. Measurements of the hygroscopic growth are shown to be consistent with equilibrium model predictions from previous studies. Simultaneous measurements of the droplet composition, size, and refractive index have been made during ozonolysis at RHs in the range 50-80%, providing insight into the volatility of organic products, changes in the droplet hygroscopicity, and optical properties. Exposure of the aqueous droplets to ozone leads to the formation of products with a wide range of volatilities spanning from involatile to volatile. Reactive uptake coefficients show a weak dependence on ozone concentration, but no dependence on RH or salt concentration. The time evolving RI depends significantly on the RH at which the oxidation proceeds and can even show opposing trends; while the RI increases with ozone exposure at low relative humidity, the RI decreases when the oxidation proceeds at high relative humidity. The variations in RI are broadly consistent with a framework for predicting RIs for organic components published by Cappa et al. ( J. Geophys. Res. 2011 , 116 , D15204 ). Once oxidized, particles are shown to form amorphous phases on drying rather than crystallization, with slow evaporation kinetics of residual water. PMID:25003240

  10. Identification of inducible calmodulin-dependent nitric oxide synthase in the liver of rats.

    PubMed

    Iida, S; Ohshima, H; Oguchi, S; Hata, T; Suzuki, H; Kawasaki, H; Esumi, H

    1992-12-15

    A calmodulin-dependent nitric oxide synthase was significantly induced in the liver of rats treated intravenously with heat-killed Propionibacterium acnes and 5 days later with Escherichia coli lipopolysaccharide. The apparent calmodulin-dependent and -independent isozymes were separated by Mono Q column chromatography after their partial purification by 2',5'-ADP-agarose affinity chromatography. Both enzymes had a molecular weight of 125,000 as determined by SDS-polyacrylamide gel electrophoresis and required NADPH, tetrahydrobiopterin, and dithiothreitol as cofactors. Their activities were completely inhibited by the specific nitric oxide synthase inhibitors NG-monomethyl-L-arginine and N omega-nitro-L-arginine at 80 and 800 microM, respectively. The peptide maps of these two isozymes with lysylendopeptidase and their reverse-phase column chromatographic profiles were indistinguishable. In the presence of bovine calmodulin, the purified calmodulin-dependent isozyme behaved as a calmodulin-independent isozyme on Mono Q column chromatography. The purified calmodulin-independent isozyme was converted to a calmodulin-dependent isozyme by EDTA and EGTA. Calmodulin blot analysis using 125I-calmodulin showed that the two isozymes bound calmodulin equally efficiently.

  11. Influence of "Island-Like" Oxides in the Bond-Coat on the Stress and Failure Patterns of the Thermal-Barrier Coatings Fabricated by Atmospheric Plasma Spraying During Long-Term High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhao, Y. X.; Zhong, X. H.; Tao, S. Y.; Zhang, W.; Wang, Y.

    2014-02-01

    Thermal-barrier coatings (TBCs) are very important ceramic-coating materials due to their excellent performance at high temperature. The inner zone of the bond-coat is often easily endured oxidized (internal oxidation) in the process of thermal spraying and the long-time exposure to the high temperature, and the "island-like" oxides can be formed. Especially, when the bond-coat was fabricated by atmospheric plasma spraying (APS), this trend is more evident. In this paper, the stress distribution around the thermally grown oxide (TGO) has been calculated by the finite element method when the "island-like" oxides have been considered. The simulation results indicate that the maximum tensile stress and compressive stress existed in the TGO, and the existence of the "island-like" oxides will further decrease the maximum tensile stress level in the TGO. While the "island-like" oxides in the bond-coat will decrease the effective thickness of the TGO at the metallic layer/ceramic layer interface due to the oxidation of the metallic elements in the bond-coat. The crack propagation equation has been established and the failure mechanism of the TBC due to the formation and growth of the TGO has also been discussed in detail. The lifetime of the TBCs which have experienced high temperature oxidation has been predicted and the theoretical results agreed well with the experimental data.

  12. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  13. Thermoelectric properties of nano-granular indium-tin-oxide within modified electron filtering model with chemisorption-type potential barriers

    NASA Astrophysics Data System (ADS)

    Brinzari, V.; Nika, D. L.; Damaskin, I.; Cho, B. K.; Korotcenkov, G.

    2016-07-01

    In this work, an approach to the numerical study of the thermoelectric parameters of nanoscale indium tin oxide (ITO, Sn content<10 at%) based on an electron filtering model (EFM) was developed. Potential barriers at grain boundaries were assumed to be responsible for a filtering effect. In the case of the dominant inelastic scattering of electrons, the maximal distance between potential barriers was limited in this modified model. The algorithm for such characteristic length calculation was proposed, and its value was evaluated for ITO. In addition, the contributions of different scattering mechanisms (SMs) in electron transport were examined. It was confirmed that in bulk ITO, the scattering on polar optical phonons (POPs) and ionized impurities dominates, limiting electron transport. In the framework of the filtering model, the basic thermoelectric parameters (i.e., electrical conductivity, mobility, Seebeck coefficient, and power factor (PF)) were calculated for ITO in the temperature range of 100-500 °C as a function of potential barrier height. The results demonstrated a sufficient rise of the Seebeck coefficient with an increase in barrier height and specific behavior of PF. It was found that PF is very sensitive to barrier height, and at its optimal value for granular ITO, it may exceed the PF for bulk ITO by 3-5 times. The PF maximum was achieved by band bending, slightly exceeding Fermi energy. The nature of surface potential barriers in nano-granular ITO with specific grains is due to the oxygen chemisorption effect, and this can be observed despite of the degeneracy of the conduction band (CB). This hypothesis and the corresponding calculations are in good agreement with recent experimental studies [Brinzari et al. Thin Solid Films 552 (2014) 225].

  14. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  15. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    SciTech Connect

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-09-15

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  16. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    SciTech Connect

    Nordgren, Kendra K.S. Wallace, Kendall B.

    2014-01-01

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependent expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to

  17. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    PubMed

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-01

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.

  18. Effect of Oxidation Rate and Fe(II) State on Microbial Nitrate-Dependent Fe(III) Mineral Formation

    PubMed Central

    Senko, John M.; Dewers, Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems. PMID:16269756

  19. Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase.

    PubMed

    Pisliakov, Andrei V; Hino, Tomoya; Shiro, Yoshitsugu; Sugita, Yuji

    2012-01-01

    Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666-70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb(3) oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed. PMID:22956904

  20. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress

    PubMed Central

    Beites, Tiago; Oliveira, Paulo; Rioseras, Beatriz; Pires, Sílvia D. S.; Oliveira, Rute; Tamagnini, Paula; Moradas-Ferreira, Pedro; Manteca, Ángel; Mendes, Marta V.

    2015-01-01

    Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time. PMID:26256439

  1. Oxidative stress–dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration

    PubMed Central

    Wakatsuki, Shuji; Furuno, Akiko; Ohshima, Makiko

    2015-01-01

    Oxidative stress is a well-known inducer of neuronal apoptosis and axonal degeneration. We previously showed that the E3 ubiquitin ligase ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B activation. We now demonstrate that oxidative stress serves as an activator of the ubiquitin ligase activity of ZNRF1 by inducing epidermal growth factor receptor (EGFR)–mediated phosphorylation at the 103rd tyrosine residue and that the up-regulation of ZNRF1 activity by oxidative stress leads to neuronal apoptosis and Wallerian degeneration. We also show that nicotinamide adenine dinucleotide phosphate–reduced oxidase activity is required for the EGFR-dependent phosphorylation-induced activation of ZNRF1 and resultant AKT degradation via the ubiquitin proteasome system to induce Wallerian degeneration. These results indicate the pathophysiological significance of the EGFR–ZNRF1 pathway induced by oxidative stress in the regulation of neuronal apoptosis and Wallerian degeneration. A deeper understanding of the regulatory mechanism for ZNRF1 catalytic activity via phosphorylation will provide a potential therapeutic avenue for neurodegeneration. PMID:26572622

  2. Postanoxic oxidative injury in rat hepatocytes: lactate-dependent protection against tert-butylhydroperoxide.

    PubMed

    Kowalski, D P; Aw, T Y; Park, Y; Jones, D P

    1992-01-01

    Previous studies in this laboratory showed that hypoxia and anoxia enhance the susceptibility of hepatocytes to tert-butylhydroperoxide (TBH)-induced oxidative injury. To determine whether preceding exposure to anoxia affects postanoxic sensitivity to oxidative injury, viability was studied in hepatocytes incubated under anoxic conditions followed by reoxygenation without or with tert-butylhydroperoxide addition. Results showed that a preceding exposure to 60 min of anoxia substantially increased the vulnerability of cells to injury by the oxidant. Because substantial tissue lactate can accumulate during anoxia, the effect of increased lactate on postanoxic injury due to TBH was determined. Results showed that added lactate protected in a concentration-dependent manner. The TBH elimination rate was stimulated by lactate, and the pyruvate production rate approached the rate of TBH elimination. Thus, lactate protects against postanoxic oxidative injury by supplying reducing equivalents for peroxide reduction. This suggests that lactate accumulation during ischemia may be beneficial and that supplementation with lactate could be considered as a means to protect against postischemic injury. PMID:1563646

  3. Puromycin aminonucleoside increases podocyte permeability by modulating ZO-1 in an oxidative stress-dependent manner.

    PubMed

    Ha, Tae-Sun; Park, Hye-Young; Seong, Su-Bin; Ahn, Hee Yul

    2016-01-01

    Puromycin aminonucleoside (PAN)-induced nephrosis is a widely studied animal model of human idiopathic nephrotic syndrome because PAN injection into rats results in increased glomerular permeability with the characteristic ultrastructural changes in podocytes similar to human nephrosis. To investigate the role of zonula occludens (ZO)-1 and oxidative stress on PAN-induced podocyte phenotypical changes and hyperpermeability in vitro, we cultured rat and mouse podocytes and treated with various concentrations of PAN. PAN treatment increased oxidative stress level of podocytes significantly with the induction of Nox4. In addition, PAN changed the ultrastructure of podocytes, such as shortening and fusion of microvilli, and the separation of intercellular gaps, which were improved by anti-oxidative vitamin C and Nox4 siRNA. PAN also disrupted the intercellular linear ZO-1 staining and induced inner cytoplasmic re-localization of ZO-1 protein, resulting in increased podocyte intercellular permeability. PAN reduced ZO-1 protein amount and mRNA expression in a dose-dependent manner, which means that PAN could also modulate ZO-1 protein transcriptionally. However, the decreased ZO-1 protein of podocytes by PAN was improved by Nox4 siRNA transfection. Furthermore, vitamin C mitigated the quantitative and distributional disturbances of ZO-1 protein caused by PAN. Our results demonstrate that the phenotypical changes of intercellular ZO-1 by oxidative stress via Nox4 likely contribute to the glomerular hyperpermeability caused by PAN. PMID:26683996

  4. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  5. Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence

    SciTech Connect

    Miikkulainen, Ville Nilsen, Ola; Fjellvåg, Helmer; Li, Han; King, Sean W.; Laitinen, Mikko; Sajavaara, Timo

    2015-01-01

    Atomic layer deposition (ALD) holds markedly high potential of becoming the enabling method for achieving the three-dimensional all-solid-state thin-film lithium ion battery (LiB). One of the most crucial components in such a battery is the electrolyte that needs to hold both low electronic conductivity and at least fair lithium ion conductivity being at the same time pinhole free. To obtain these desired properties in an electrolyte film, one necessarily has to have a good control over the elemental composition of the deposited material. The present study reports on the properties of ALD lithium aluminum oxide (Li{sub x}Al{sub y}O{sub z}) thin films. In addition to LiB electrolyte applications, Li{sub x}Al{sub y}O{sub z} is also a candidate low dielectric constant (low-k) etch stop and diffusion barrier material in nanoelectronics applications. The Li{sub x}Al{sub y}O{sub z} films were deposited employing trimethylaluminum-O{sub 3} and lithium tert-butoxide-H{sub 2}O for Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, respectively. The composition was aimed to be controlled by varying the pulsing ratio of those two binary oxide ALD cycles. The films were characterized by several methods for composition, crystallinity and phase, electrical properties, hardness, porosity, and chemical environment. Regardless of the applied pulsing ratio of Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, all the studied ALD Li{sub x}Al{sub y}O{sub z} films of 200 and 400 nm in thickness were polycrystalline in the orthorhombic β-LiAlO{sub 2} phase and also very similar to each other with respect to composition and other studied properties. The results are discussed in the context of both fundamental ALD chemistry and applicability of the films as thin-film LiB electrolytes and low-k etch stop and diffusion barriers.

  6. CoFe alloy as middle layer for strong spin dependent quantum well resonant tunneling in double barrier magnetic tunnel junctions

    SciTech Connect

    Liu, R. S.; Yang, See-Hun; Jiang, Xin; Zhang, Xiaoguang; Rice, Philip M.; Canali, Carlo M.; Parkin, S. S. P.

    2013-01-01

    We report the spin-dependent quantum well resonant tunneling effect in CoFe/MgO/CoFe/MgO/CoFeB (CoFe) double barrier magnetic tunnel junctions. The dI/dV spectra reveal clear resonant peaks for the parallel magnetization configurations, which can be matched to quantum well resonances obtained from calculation. The differential TMR exhibits an oscillatory behavior with a sign change due to the formation of the spin-dependent QW states in the middle CoFe layer. Also, we observe pronounced TMR enhancement at resonant voltages at room temperature, suggesting that it is very promising to achieve high TMR using the spin-dependent QW resonant tunneling effect.

  7. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts.

    PubMed

    Cao, Shaowen; Tao, Franklin Feng; Tang, Yu; Li, Yuting; Yu, Jiaguo

    2016-08-22

    Heterogeneous catalysis is one of the most important chemical processes of various industries performed on catalyst nanoparticles with different sizes or/and shapes. In the past two decades, the catalytic performances of different catalytic reactions on nanoparticles of metals and oxides with well controlled sizes or shapes have been extensively studied thanks to the spectacular advances in syntheses of nanomaterials of metals and oxides. This review discussed the size and shape effects of catalyst particles on catalytic activity and selectivity of reactions performed at solid-gas or solid-liquid interfaces with a purpose of establishing correlations of size- and shape-dependent chemical and structural factors of surface of a catalyst with the corresponding catalytic performances toward understanding of catalysis at a molecular level.

  8. Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum?

    PubMed

    Montibus, Mathilde; Khosravi, Claire; Zehraoui, Enric; Verdal-Bonnin, Marie-Nöelle; Richard-Forget, Florence; Barreau, Christian

    2016-01-01

    This study aims to compare the role of the transcription factor Fgap1 in oxidative stress response for two Fusarium graminearum strains belonging to the two chemotypes DON/ADON and NIV/FX. While the response to H2O2 was shown to be chemotype dependent, an opposite result was observed for diamide: whatever the chemotype, the global level of TCTB (i.e. trichothecene B) production was strongly increased by the treatment with diamide. Fgap1 was shown to be involved in this regulation for both chemotypes. Our data show that the response to diamide is mediated by Fgap1 whatever the chemotype of the F. graminearum strains. However, the NIV/FX chemotype has developed higher antioxidant capacities in response to oxidative stress. But when this capacity is overwhelmed by an increment in the H2O2 level, the NIV/FX strains also responds by an increase in toxin accumulation.

  9. Calculating excess risk with age-dependent adjustment factors and cumulative doses: ethylene oxide case study.

    PubMed

    Sielken, Robert L; Flores, Ciriaco Valdez

    2009-10-01

    U.S. EPA's Supplemental Guidance in 2005 documented their procedure for incorporating age-dependent adjustment factors (ADAFs) into lifetime excess risk calculations. EPA's first attempt to implement an ADAF when the dose-response model had a cumulative dose metric was for ethylene oxide and that attempt (US EPA, 2006) failed to successfully follow EPA's own guidelines. The failure suggested that the incorporation of ADAFs would increase the lifetime excess risk for ethylene oxide by approximately 66%. However, if the procedure in the guidelines were followed correctly, then the increase would have only been 0.008% or approximately 8,000 fold less. Because cumulative exposure is a common dose metric in dose-response models of epidemiological data, a correct implementation of the guidelines is of widespread importance.

  10. Toxic Effects of Maternal Zearalenone Exposure on Intestinal Oxidative Stress, Barrier Function, Immunological and Morphological Changes in Rats

    PubMed Central

    Liu, Min; Gao, Rui; Meng, Qingwei; Zhang, Yuanyuan; Bi, Chongpeng; Shan, Anshan

    2014-01-01

    The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses. PMID:25180673

  11. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    NASA Astrophysics Data System (ADS)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen–Cooper–Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2‑xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen–Cooper–Schrieffer description.

  12. Dependence of the critical temperature in overdoped copper oxides on superfluid density.

    PubMed

    Božović, I; He, X; Wu, J; Bollinger, A T

    2016-08-18

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description. PMID:27535534

  13. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  14. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    NASA Astrophysics Data System (ADS)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  15. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells.

    PubMed

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-03-28

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)(+) ratio.

  16. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions. PMID:24671306

  17. Barriers to collaborative forest management and implications for building the resilience of forest-dependent communities in the Ashanti region of Ghana.

    PubMed

    Akamani, Kofi; Wilson, Patrick Impero; Hall, Troy Elizabeth

    2015-03-15

    Community resilience, the capacity of a community to adapt to change in ways that result in positive impacts on its well-being, is increasingly used as a framework for understanding and enhancing the sustainability of forest-dependent communities as social-ecological systems. However, studies linking community resilience to the implementation of forest management programs are limited. This study uses community resilience literature and analyzes data collected from interviews to study barriers of forest-dependent communities of collaborative forest management (CFM) in two forest-dependent communities in the Ashanti region of Ghana. Analysis revealed the barriers in community response to CFM programs in these two communities comprise institutional shortfalls in the design and implementation of the CFM program that have constrained the incentives, capacity and opportunities for communities to successfully adapt to the program. The paper offers recommendations on how the CFM program can contribute to building the resilience of communities in managing their forests. The first is to build institutional capacity of communities to play an active role in forest governance, and the second is the prioritization of well-being and livelihood enhancement as forest management goals.

  18. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    SciTech Connect

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-11-17

    Deuterium isotope effects (/sup D/(V/K)) and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of (1,1-/sup 2/H/sub 2/) ethanol at various concentrations, and a competitive method, where 1:1 mixtures of (1-/sup 13/C)- and (/sup 2/H/sub 6/) ethanol or (2,2,2-/sup 2/H/sub 3/)- and (1,1-/sup 2/H/sub 2/) ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM/sub 2/ oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-(1-/sup 2/H) ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C/sub 1/-H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed.

  19. Concentration dependences of elastooptic coefficients of germanate glasses containing lead and bismuth oxides

    SciTech Connect

    Rabukhin, A.I.

    1995-11-01

    Concentration dependences of elastooptic coefficients of lead - bismuth - germanate glasses with compositions from virtually the entire range of glass formation in the system PbO-Bi{sub 2}O{sub 3}-GeO{sub 2} are investigated. Partial elastooptic coefficients of the oxide ingredients of the investigated glasses are determined. The results are interpreted with consideration of the nature of the elastooptic interaction in glasses subjected to uniaxial stress. The data can be used for designing compositions of optical media for the light and acoustic lines of acoustooptical devices.

  20. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia

    PubMed Central

    Gonzales-Weimuller, Marcela; Zeisberger, Matthias; Krishnan, Kannan M.

    2015-01-01

    Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ~15nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously demonstrated, for the first time, that at a given frequency, heating rates of superparamagnetic particles are dependent on particle size, in agreement with earlier theoretical predictions. PMID:26405373

  1. Overexpression of actin-depolymerizing factor blocks oxidized low-density lipoprotein-induced mouse brain microvascular endothelial cell barrier dysfunction.

    PubMed

    Wang, Jun; Sun, Lu; Si, Yan-Fang; Li, Bao-Min

    2012-12-01

    The aim of present work was to elucidate the role of actin-depolymerizing factor (ADF), an important regulator of actin cytoskeleton, in the oxidized low-density lipoprotein (ox-LDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to ox-LDL. Treatment with LDL served as control. It was found that ADF mRNA level and protein expression were decreased when exposed to ox-LDL in MBMECs. Then, we investigated the influence of ADF overexpression on ox-LDL-treated MBMECs. Structurally, overexpression of ADF inhibited ox-LDL-induced F-actin formation. Functionally, overexpression of ADF attenuated ox-LDL-induced disruption of endothelial barrier marked by restoration of transendothelial electrical resistance, permeability of Evans Blue and expression of tight junction-associated proteins including ZO-1 and occludin, and blocked ox-LDL-induced oxidative stress marked by inhibition of reactive oxygen species (ROS) formation and activity of NADPH oxidase and Nox2 expression. However, overexpression of ADF in control cells had no significant effect on endothelial permeability and ROS formation. In conclusion, overexpression of ADF blocks ox-LDL-induced disruption of endothelial barrier. In addition, siRNA-mediated downregulation of ADF expression aggravated ox-LDL-induced disruption of endothelial barrier and ROS formation. These findings identify ADF as a key signaling molecule in the regulation of BBB integrity and suggest that ADF might be used as a target to modulate diseases accompanied by ox-LDL-induced BBB compromise.

  2. Impairment of nitric oxide synthase-dependent dilatation of cerebral arterioles during infusion of nicotine.

    PubMed

    Fang, Qin; Sun, Hong; Mayhan, William G

    2003-02-01

    The effects of nicotine on nitric oxide synthase (NOS)-dependent reactivity of cerebral arterioles remain uncertain. Our first goal was to examine whether infusion of nicotine alters NOS-dependent reactivity of cerebral arterioles. Our second goal was to examine the mechanisms that may account for the effects of nicotine on cerebral arterioles. We measured the diameter of pial arterioles to NOS-dependent (ADP and acetylcholine) and NOS-independent (nitroglycerin) agonists before and after the infusion of nicotine (2 microg x kg(-1) x min(-1) iv for 30 min, followed by a maintenance dose of 0.35 microg x kg(-1) x min(-1)). ADP- and acetylcholine-induced vasodilatation was impaired after the infusion of nicotine. In contrast, nicotine did not alter vasodilatation to nitroglycerin. Next, we examined whether the impaired responses of pial arterioles during infusion of nicotine may be related to oxygen radicals. We found that application of superoxide dismutase or tetrahydrobiopterin during infusion of nicotine could prevent impaired NOS-dependent vasodilatation. Thus acute exposure of cerebral vessels to nicotine specifically impairs NOS-dependent dilatation via the production of oxygen radicals possibly related to an alteration in the utilization of tetrahydrobiopterin.

  3. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism

    PubMed Central

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  4. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  5. Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique

    NASA Astrophysics Data System (ADS)

    Liao, Xue-Yang; Zhang, Kai; Zeng, Chang; Zheng, Xue-Feng; En, Yun-Fei; Lai, Ping; Hao, Yue

    2014-05-01

    Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters including trap density Dit, trap time constant τit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).

  6. Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Bobby, A.; Shiwakoti, N.; Verma, S.; Asokan, K.; Antony, B. K.

    2016-05-01

    The Ni/n-GaAs Schottky barrier diode having thin interfacial oxide layer was subjected to 25 MeV C4+ ion irradiation at selected fluences. The in-situ capacitance and dielectric properties were investigated in the 1 KHz to 5 MHz frequency range. The results show a decrease in capacitance with increase in ion fluence at low frequencies. Interestingly, a negative capacitance effect was also observed in this frequency range in all the samples. As a consequence, changes were observed in parameters like series resistance, conductance, dielectric loss, dielectric constant, loss tangent and ac electrical conductivity. At high frequencies, the capacitance reaches the geometric value 'C0'. The results were interpreted in terms of the generation of irradiation induced traps, carrier capture and emission from deep and shallow states and its frequency dependent saturation effects.

  7. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Ehrenwald, E.; Fox, P. L.

    1996-01-01

    Cultured vascular smooth muscle cells (SMC) and endothelial cells (EC) stimulate low density lipoprotein (LDL) oxidation by free radical-mediated, transition metal-dependent mechanisms. The physiological source(s) of metal ions is not known; however, purified ceruloplasmin, a plasma protein containing 7 coppers, oxidizes LDL in vitro. We now show that ceruloplasmin also increases LDL oxidation by vascular cells. In metal ion-free medium, human ceruloplasmin increased bovine aortic SMC- and EC-mediated LDL oxidation by up to 30- and 15-fold, respectively. The maximal response was at 100-300 microg ceruloplasmin/ml, a level at or below the unevoked physiological plasma concentration. Oxidant activity was dependent on protein structure as a specific proteolytic cleavage or removal of one of the seven ceruloplasmin copper atoms inhibited activity. Three lines of evidence indicated a critical role for cellular superoxide (O2.) in ceruloplasmin-stimulated oxidation. First, the rate of production of O2. by cells correlated with their rates of LDL oxidation. Second, superoxide dismutase effectively blocked ceruloplasmin-stimulated oxidation by both cell types. Finally, O2. production by SMC quantitatively accounted for the observed rate of LDL oxidation. To show this, the course of O2. production by SMC was simulated by repeated addition of xanthine and xanthine oxidase to culture medium under cell-free conditions. Neither ceruloplasmin nor O2. alone increased LDL oxidation, but together they completely reconstituted the oxidation rate of ceruloplasmin-stimulated SMC. These results are the first to show that ceruloplasmin stimulates EC- and SMC-mediated oxidation of LDL and that cell-derived O2. accounts quantitatively for metal-dependent, free radical-initiated oxidation of LDL by these cells.

  8. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection

    PubMed Central

    Hurt, K. Joseph; Sezen, Sena F.; Lagoda, Gwen F.; Musicki, Biljana; Rameau, Gerald A.; Snyder, Solomon H.; Burnett, Arthur L.

    2012-01-01

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor l-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction. PMID:23012472

  9. Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching

    SciTech Connect

    Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.

    2009-09-15

    The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

  10. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection.

    PubMed

    Hurt, K Joseph; Sezen, Sena F; Lagoda, Gwen F; Musicki, Biljana; Rameau, Gerald A; Snyder, Solomon H; Burnett, Arthur L

    2012-10-01

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor L-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction.

  11. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier.

    PubMed

    Rao, Yue-feng; Chen, Wei; Liang, Xing-guang; Huang, Yong-zhuo; Miao, Jing; Liu, Lin; Lou, Yan; Zhang, Xing-guo; Wang, Ben; Tang, Rui-kang; Chen, Zhong; Lu, Xiao-yang

    2015-01-14

    The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI-SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI-SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g(-1) . They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI-SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer.

  12. The Dependence of the Oxidation Enhancement of InP(100) Surface on the Coverage of the Adsorbed Cs

    SciTech Connect

    Sun, Yun

    2010-06-07

    We report the oxidation of the InP(100) surface promoted by adsorbed Cs by synchrotron radiation photoemission. Oxygen exposure causes reduction of the charge transferred to the InP substrate from Cs and the growth of indium oxide and phosphorous oxide. The oxide growth displays a clear dependence on the Cs coverage. The oxidation of phosphorous is negligible up to 1000 L of O{sub 2} exposure when the Cs coverage is less than half a monolayer (ML), but the formation of the second half monolayer of Cs greatly accelerates the oxidation. This different enhancement of the InP oxidation by the first and the second half monolayer of Cs is due to the double layer structure of the adsorbed Cs atoms, and consequently the higher 6s electron density in the Cs atoms when Cs coverage is larger than 0.5 ML.

  13. Article Including Environmental Barrier Coating System

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  14. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles.

    PubMed

    Byrne, James M; van der Laan, Gerrit; Figueroa, Adriana I; Qafoku, Odeta; Wang, Chongmin; Pearce, Carolyn I; Jackson, Michael; Feinberg, Joshua; Rosso, Kevin M; Kappler, Andreas

    2016-01-01

    The ability for magnetite to act as a recyclable electron donor and acceptor for Fe-metabolizing bacteria has recently been shown. However, it remains poorly understood whether microbe-mineral interfacial electron transfer processes are limited by the redox capacity of the magnetite surface or that of whole particles. Here we examine this issue for the phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas palustris TIE-1 and the Fe(III)-reducing bacteria Geobacter sulfurreducens, comparing magnetite nanoparticles (d ≈ 12 nm) against microparticles (d ≈ 100-200 nm). By integrating surface-sensitive and bulk-sensitive measurement techniques we observed a particle surface that was enriched in Fe(II) with respect to a more oxidized core. This enables microbial Fe(II) oxidation to occur relatively easily at the surface of the mineral suggesting that the electron transfer is dependent upon particle size. However, microbial Fe(III) reduction proceeds via conduction of electrons into the particle interior, i.e. it can be considered as more of a bulk electron transfer process that is independent of particle size. The finding has potential implications on the ability of magnetite to be used for long range electron transport in soils and sediments. PMID:27492680

  15. Composition-dependent structural and transport properties of amorphous transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Buchholz, D. Bruce; Chang, Robert P. H.; Medvedeva, Julia E.

    2015-05-01

    Structural properties of amorphous In-based oxides, In -X -O with X =Zn , Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In -X -O . At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XO x polyhedra in amorphous In -X -O , composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In -X -O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties.

  16. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles

    PubMed Central

    Byrne, James M.; van der Laan, Gerrit; Figueroa, Adriana I.; Qafoku, Odeta; Wang, Chongmin; Pearce, Carolyn I.; Jackson, Michael; Feinberg, Joshua; Rosso, Kevin M.; Kappler, Andreas

    2016-01-01

    The ability for magnetite to act as a recyclable electron donor and acceptor for Fe-metabolizing bacteria has recently been shown. However, it remains poorly understood whether microbe-mineral interfacial electron transfer processes are limited by the redox capacity of the magnetite surface or that of whole particles. Here we examine this issue for the phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas palustris TIE-1 and the Fe(III)-reducing bacteria Geobacter sulfurreducens, comparing magnetite nanoparticles (d ≈ 12 nm) against microparticles (d ≈ 100–200 nm). By integrating surface-sensitive and bulk-sensitive measurement techniques we observed a particle surface that was enriched in Fe(II) with respect to a more oxidized core. This enables microbial Fe(II) oxidation to occur relatively easily at the surface of the mineral suggesting that the electron transfer is dependent upon particle size. However, microbial Fe(III) reduction proceeds via conduction of electrons into the particle interior, i.e. it can be considered as more of a bulk electron transfer process that is independent of particle size. The finding has potential implications on the ability of magnetite to be used for long range electron transport in soils and sediments. PMID:27492680

  17. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles

    NASA Astrophysics Data System (ADS)

    Byrne, James M.; van der Laan, Gerrit; Figueroa, Adriana I.; Qafoku, Odeta; Wang, Chongmin; Pearce, Carolyn I.; Jackson, Michael; Feinberg, Joshua; Rosso, Kevin M.; Kappler, Andreas

    2016-08-01

    The ability for magnetite to act as a recyclable electron donor and acceptor for Fe-metabolizing bacteria has recently been shown. However, it remains poorly understood whether microbe-mineral interfacial electron transfer processes are limited by the redox capacity of the magnetite surface or that of whole particles. Here we examine this issue for the phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas palustris TIE-1 and the Fe(III)-reducing bacteria Geobacter sulfurreducens, comparing magnetite nanoparticles (d ≈ 12 nm) against microparticles (d ≈ 100–200 nm). By integrating surface-sensitive and bulk-sensitive measurement techniques we observed a particle surface that was enriched in Fe(II) with respect to a more oxidized core. This enables microbial Fe(II) oxidation to occur relatively easily at the surface of the mineral suggesting that the electron transfer is dependent upon particle size. However, microbial Fe(III) reduction proceeds via conduction of electrons into the particle interior, i.e. it can be considered as more of a bulk electron transfer process that is independent of particle size. The finding has potential implications on the ability of magnetite to be used for long range electron transport in soils and sediments.

  18. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms.

    PubMed

    Brameshuber, Mario; Sevcsik, Eva; Rossboth, Benedikt K; Manner, Christina; Deigner, Hans-Peter; Peksel, Begüm; Péter, Mária; Török, Zsolt; Hermetter, Albin; Schütz, Gerhard J

    2016-01-01

    We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents.

  19. Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies.

    PubMed

    Kaneti, Yusuf V; Zhang, Zhengjie; Yue, Jeffrey; Zakaria, Quadir M D; Chen, Chuyang; Jiang, Xuchuan; Yu, Aibing

    2014-06-21

    The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with exposed (0001) and (10̄10) crystal surfaces, respectively, were synthesized through facile solvothermal methods. The gas-sensing results show that sensitivity of the ZnO nanoplates toward ethanol is two times higher than that of the ZnO nanorods, at an optimum operating temperature of 300 °C. This could be attributed to the higher surface area and the exposed (0001) crystal surfaces. DFT (Density Functional Theory) simulations were carried out to study the adsorption of ethanol on the ZnO crystal planes such as (0001), (10̄10), and (11̄20) with adsorbed O(-) ions. The results reveal that the exposed (0001) planes of the ZnO nanoplates promote better ethanol adsorption by interacting with the surface oxygen p (O2p) orbitals and stretching the O-H bond to lower the adsorption energy, leading to the sensitivity enhancement of the nanoplates. These findings will be useful for the fabrication of metal oxide nanostructures with specifically exposed crystal surfaces for improved gas-sensing and/or catalytic performance. PMID:24801357

  20. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila

    PubMed Central

    Jindra, Marek; Gaziova, Ivana; Uhlirova, Mirka; Okabe, Masataka; Hiromi, Yasushi; Hirose, Susumu

    2004-01-01

    Basic leucine zipper proteins Jun and Fos form the dimeric transcription factor AP-1, essential for cell differentiation and immune and antioxidant defenses. AP-1 activity is controlled, in part, by the redox state of critical cysteine residues within the basic regions of Jun and Fos. Mutation of these cysteines contributes to oncogenic potential of Jun and Fos. How cells maintain the redox-dependent AP-1 activity at favorable levels is not known. We show that the conserved coactivator MBF1 is a positive modulator of AP-1. Via a direct interaction with the basic region of Drosophila Jun (D-Jun), MBF1 prevents an oxidative modification (S-cystenyl cystenylation) of the critical cysteine and stimulates AP-1 binding to DNA. Cytoplasmic MBF1 translocates to the nucleus together with a transfected D-Jun protein, suggesting that MBF1 protects nascent D-Jun also in Drosophila cells. mbf1-null mutants live shorter than mbf1+ controls in the presence of hydrogen peroxide (H2O2). An AP-1-dependent epithelial closure becomes sensitive to H2O2 in flies lacking MBF1. We conclude that by preserving the redox-sensitive AP-1 activity, MBF1 provides an advantage during oxidative stress. PMID:15306851

  1. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice.

    PubMed

    Yang, Lin; Kuang, Huijuan; Zhang, Wanyi; Aguilar, Zoraida P; Xiong, Yonghua; Lai, Weihua; Xu, Hengyi; Wei, Hua

    2015-01-14

    In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo. In this study, we investigated the size dependent in vivo biodistribution, toxicokinetics, and toxicity and gene expression changes of various sizes of carboxyl coated IOMNs (diameters of 10, 20, 30, and 40 nm). Our findings demonstrated that the various sizes of IOMNs accumulated primarily in the liver and spleen on the first day post-injection. Interestingly, size dependent biodistribution and transport were observed: the smallest IOMNs (10 nm) showed the highest uptake by the liver, whereas the largest IOMNs (40 nm) showed the highest uptake by the spleen. Moreover, the IOMNs with the smallest size (10 nm) were cleared faster from the liver and kidneys, but more readily entered the brain and the uterus. IOMNs with the largest size (40 nm) accumulated more readily but were easily eliminated in the spleen. However, the level of iron in the heart decreased in all IOMN exposed groups. In addition, blood biochemistry, hematological analyses and histological examination demonstrated that there was no apparent acute toxicity caused by IOMNs in mice. However, smaller IOMNs (10 nm and 20 nm) more effectively changed the expression level of sensitive genes related to oxidant stress, iron transport, metabolic process, apoptosis, and others.

  2. Myeloperoxidase-dependent Lipid Peroxidation Promotes the Oxidative Modification of Cytosolic Proteins in Phagocytic Neutrophils*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Magon, Nicholas J.; Harwood, D. Tim; Kettle, Anthony J.; Vissers, Margreet C.; Winterbourn, Christine C.; Hampton, Mark B.

    2015-01-01

    Phagocytic neutrophils generate reactive oxygen species to kill microbes. Oxidant generation occurs within an intracellular phagosome, but diffusible species can react with the neutrophil and surrounding tissue. To investigate the extent of oxidative modification, we assessed the carbonylation of cytosolic proteins in phagocytic neutrophils. A 4-fold increase in protein carbonylation was measured within 15 min of initiating phagocytosis. Carbonylation was dependent on NADPH oxidase and myeloperoxidase activity and was inhibited by butylated hydroxytoluene and Trolox, indicating a role for myeloperoxidase-dependent lipid peroxidation. Proteomic analysis of target proteins revealed significant carbonylation of the S100A9 subunit of calprotectin, a truncated form of Hsp70, actin, and hemoglobin from contaminating erythrocytes. The addition of the reactive aldehyde 4-hydroxynonenal (HNE) caused carbonylation, and HNE-glutathione adducts were detected in the cytosol of phagocytic neutrophils. The post-translational modification of neutrophil proteins will influence the functioning and fate of these immune cells in the period following phagocytic activation, and provides a marker of neutrophil activation during infection and inflammation. PMID:25697357

  3. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    NASA Astrophysics Data System (ADS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al2O3 (sapphire) and TiO2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al2O3. Results for MgO and α-Al2O3 show steep negative gradients from 10 to 370 K, whereas that for TiO2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al2O3, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO2, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  4. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.

    PubMed

    Wang, Yang-Gang; Cantu, David C; Lee, Mal-Soon; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-08-24

    We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations. PMID:27480512

  5. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  6. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers.

    PubMed

    Gao, Li; Jiang, Xin; Yang, See-Hun; Burton, J D; Tsymbal, Evgeny Y; Parkin, Stuart S P

    2007-11-30

    Tunneling anisotropic magnetoresistance (TAMR) is observed in tunnel junctions with transition metal electrodes as the moments are rotated from in-plane to out-of-plane in sufficiently large magnetic fields that the moments are nearly parallel to one another. A complex angular dependence of the tunneling resistance is found with twofold and fourfold components that vary strongly with bias voltage. Distinctly different TAMR behaviors are obtained for devices formed with highly textured crystalline MgO(001) and amorphous Al2O3 tunnel barriers. A tight-binding model shows that a fourfold angular dependence can be explained by the presence of an interface resonant state that affects the transmission of the contributing tunneling states through a spin-orbit interaction. PMID:18233308

  7. Nitric oxide-mediated endothlium-dependent vasodilation is impaired with borderline high-LDL cholesterol.

    PubMed

    Diehl, Kyle J; Stauffer, Brian L; Greiner, Jared J; Weil, Brian R; DeSouza, Christopher A

    2012-02-01

    The experimental aims of this study were to determine: (1) whether nitric oxide-mediated endothelium-dependent vasodilation is blunted in adult humans with borderline high plasma low-density lipoprotein (LDL)-cholesterol compared with adults with optimal/near optimal LDL-cholesterol levels; and, if so: (2) whether the magnitude of impairment in adults with borderline high LDL-cholesterol is similar to adults with high LDL-cholesterol. Forearm blood flow responses to intraarterial infusions of acetylcholine and sodium nitroprusside were measured in 50 middle-aged (43-64 year) adults: 20 in the optimal/near optimal LDL-cholesterol range (<130 mg/dL); 20 with borderline high LDL-cholesterol (130-159 mg/dL); and 10 with high LDL-cholesterol ($160 mg/dL). In addition, blood flow responses to acetylcholine were determined in the absence and presence of the endothelial nitric oxide synthase inhibitor N(G) -monomethyl-L-arginine (L-NMMA). Vasodilation to acetylcholine was ~20% lower (p < 0.05) in the borderline high (from 4.3 ± 0.2 to 12.3 ± 0.8 mL/100 mL tissue/min) and high (from 4.3 ± 0.3 to 12.0 ± 0.5 mL/100 mL tissue/min) LDL-cholesterol groups compared with the optimal/near optimal (from 4.4 ± 0.2 to 14.5 ± 0.5 mL/100 mL tissue/min) LDL-cholesterol group. L-NMMA significantly reduced (~30%) the vasodilator response to acetylcholine in the optimal/near optimal LDL-cholesterol group but not the borderline high or high LDL-cholesterol groups. Borderline high LDL-cholesterol is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation.

  8. Dietary restriction involves NAD⁺ -dependent mechanisms and a shift toward oxidative metabolism.

    PubMed

    Moroz, Natalie; Carmona, Juan J; Anderson, Edward; Hart, Anne C; Sinclair, David A; Blackwell, T Keith

    2014-12-01

    Interventions that slow aging and prevent chronic disease may come from an understanding of how dietary restriction (DR) increases lifespan. Mechanisms proposed to mediate DR longevity include reduced mTOR signaling, activation of the NAD⁺ -dependent deacylases known as sirtuins, and increases in NAD⁺ that derive from higher levels of respiration. Here, we explored these hypotheses in Caenorhabditis elegans using a new liquid feeding protocol. DR lifespan extension depended upon a group of regulators that are involved in stress responses and mTOR signaling, and have been implicated in DR by some other regimens [DAF-16 (FOXO), SKN-1 (Nrf1/2/3), PHA-4 (FOXA), AAK-2 (AMPK)]. Complete DR lifespan extension required the sirtuin SIR-2.1 (SIRT1), the involvement of which in DR has been debated. The nicotinamidase PNC-1, a key NAD⁺ salvage pathway component, was largely required for DR to increase lifespan but not two healthspan indicators: movement and stress resistance. Independently of pnc-1, DR increased the proportion of respiration that is coupled to ATP production but, surprisingly, reduced overall oxygen consumption. We conclude that stress response and NAD⁺ -dependent mechanisms are each critical for DR lifespan extension, although some healthspan benefits do not require NAD⁺ salvage. Under DR conditions, NAD⁺ -dependent processes may be supported by a DR-induced shift toward oxidative metabolism rather than an increase in total respiration.

  9. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  10. A planar Al-Si Schottky barrier metal-oxide-semiconductor field effect transistor operated at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Purches, W. E.; Rossi, A.; Zhao, R.; Kafanov, S.; Duty, T. L.; Dzurak, A. S.; Rogge, S.; Tettamanzi, G. C.

    2015-08-01

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  11. pH Dependent Mechanism of Nitric Oxide Release in Nitrophorins 2 and 4

    PubMed Central

    Swails, Jason M.; Meng, Yilin; Walker, F. Ann; Marti, Marcelo A.; Estrin, Dario A.; Roitberg, Adrian E.

    2009-01-01

    Nitrophorins are NO carrier proteins that transport and release NO through a pH dependent conformational change. They bind NO tightly in a low pH environment and release it in a higher pH environment. Experimental evidence shows that the increase in the NO dissociation equilibrium constant, Kd, is due mainly to an increase in the NO release rate. Structural and kinetic data strongly suggest that NPs control NO escape by modulating its migration from the active site to the solvent through a pH dependent conformational change. NP2 and NP4 are two representative proteins of the family displaying a 39% overall sequence identity and, interestingly, NP2 releases NO slower than NP4. The proposal that NPs' NO release relies mainly on the NO escape rate make NPs a very peculiar case among typical heme proteins. The connection between the pH dependent conformational change and ligand release mechanism is not fully understood and the structural basis for the pH induced structural transition and the different NO release patterns in NPs are unresolved, yet interesting issues. In this work we have used state of the art molecular dynamics simulations to study the NO escape process in NP2 and NP4 in both the low and high pH states. Our results show that both NPs modulate NO release by switching between a “closed” conformation in a low pH environment and an “open” conformation at higher pH. In both proteins the change is caused by the differential protonation of a common residue Asp30 in NP4 and Asp29 in NP2, and the NO escape route is conserved. Finally, our results show that in NP2, the conformational change to the “open” conformation is smaller than that for NP4 which results in a higher barrier for NO release. PMID:19159340

  12. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  13. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  14. Lipopolysaccharide-induced murine embryonic resorption involves nitric oxide-mediated inhibition of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase.

    PubMed

    Aisemberg, Julieta; Bariani, María V; Vercelli, Claudia A; Wolfson, Manuel L; Franchi, Ana M

    2012-10-01

    The initial inactivation of prostaglandins (PGs) is mediated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). PGs are potent mediators of several biological processes, including inflammation and reproduction. In uterus, PGs play a key role in infection-induced pregnancy loss, in which concentration of this mediator increased. This process is accompanied with the induction of nitric oxide synthase expression and a marked increase in uterine levels of nitric oxide. There is no information concerning nitric oxide contribution to potential changes in PG catabolism, but experimental evidence suggests that nitric oxide modulates PG pathways. The specific objectives of the study were to evaluate the protein expression of HPGD (15-PGDH) and to characterize the nitric oxide-dependent regulation of this enzyme in a model of lipopolysaccharide (LPS)-induced embryonic resorption. Results show that LPS decreased HPGD protein expression and augmented PGE synthase activity; therefore, PGE₂ levels increased in uterus in this inflammatory condition. Just as LPS, the treatment with a nitric oxide donor diminished HPGD protein expression in uterine tissue. In contrast, the inhibition of nitric oxide synthesis both in control and in LPS-treated mice increased 15-PGDH levels. Also, we have found that this enzyme and PGE₂ levels are not modulated by peroxynitrite, an oxidant agent derived from nitric oxide. This study suggests that LPS and nitric oxide promote a decrease in the ability of the uterus for PG catabolism during bacterially triggered pregnancy loss in mice. PMID:22843771

  15. Anaerobic, Nitrate-Dependent Oxidation of Uraninite by the Chemolithoautotroph Thiobacillus denitrificans: Cell Suspension and Whole-Genome Transcriptional Studies

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Chakicherla, A.; Legler, T. C.; Letain, T. E.; Coleman, M.; Kane, S. R.

    2005-12-01

    Background: In-situ, reductive immobilization of uranium in aquifers, whereby relatively soluble U(VI) species are reduced to poorly soluble uraninite (UO2) by aquifer bacteria, has been the subject of intensive research effort recently. This study explored the possibility that a widespread soil bacterium, Thiobacillus denitrificans, could catalyze anaerobic U re-oxidation in the presence of nitrate, a common co-contaminant with uranium at U.S. DOE sites. Whole-genome, cDNA microarray studies (representing all 2832 ORFs of the 2.9 Mb genome) were conducted to identify genes upregulated during nitrate-dependent U(IV) oxidation (relative to control conditions of nitrate-dependent thiosulfate oxidation). Methods: Washed cell suspension experiments were carried out under strictly anaerobic conditions and at circumneutral pH with UO2 and T. denitrificans cells grown under denitrifying conditions and harvested in late exponential phase. Experiments included both sterile controls and live, no-nitrate controls. For microarray analysis, RNA was isolated from cells exposed to either UO2 or thiosulfate under strictly anaerobic, denitrifying conditions. For all samples analyzed with microarrays, chemical analyses were used to confirm that the applicable metabolic activity [i.e., denitrification and either U(IV) or thiosulfate oxidation] was occurring. Reverse transcription, quantitative PCR was used to confirm selected microarray results. Results: In the cell suspension experiments, T. denitrificans cells oxidatively dissolved UO2 in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate ( P<0.01) and was strongly correlated to nitrate consumption (r2 = 0.98). However, U(IV) oxidation and denitrification appeared to be dependent on H2. The microarrays identified 333 genes as upregulated under U(IV)-oxidizing conditions using RMA statistical analysis and a 2-fold ( P<0.0001) cutoff. Notably, 16 of these genes, which were upregulated 5- to 22-fold, were

  16. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  17. Reduced Plasma Nitric Oxide End Products in Cocaine-dependent Men.

    PubMed

    Kaufman, Marc J; Streeter, Chris C; Barros, Tanya L; Sarid-Segal, Ofra; Afshar, Maryam; Tian, Hua; Rouse, Elizabeth D; Foy, Karen K B; Brimson, Melanie L; Archambault, Courtney A; Renshaw, Perry F; Ciraulo, Domenic A

    2007-06-01

    Chronic cocaine abusers experience brain and peripheral vascular dysfunction, the severity of which tends to be greater in men than women. The mechanisms underlying these effects of cocaine are unknown. Because nitric oxide (NO) abnormalities play key roles in development of vascular dysfunction in several disorders, we determined whether vascular nitric oxide end product (NOx) levels, which can serve as markers of systemic vascular NO production, are reduced in cocaine-dependent (CD) subjects. Plasma samples from 24 CD men, 12 CD women, and matched comparison subjects (19 men, 14 women) were analyzed with a Sievers 280i nitric oxide chemiluminescence detection analysis system. NOx levels in comparison in women and men were 24.9 ± 6.6 and 23.3 ± 5.7 μmol/L, and in CD women and men were 22.5 ± 8.4 and 13.0 ± 9.6 μmol/L, respectively. ANCOVA analysis, adjusted for lifetime smoking, indicated group (P < 0.0005) and sex (P = 0.04) effects, both of which survived posthoc Scheffe tests. Reduced NOx levels in CD men drove the group difference. These data suggest that chronic cocaine abuse is associated with reduced NOx levels in men, although the finding also may be attributable to factors indirectly related to cocaine abuse, including cohort differences in other drug use or lifestyle factors. These findings warrant additional studies to more directly characterize vascular NO turnover in cocaine abusers and to establish whether NO abnormalities contribute to cocaine-associated vascular dysfunction and to sex differences in cocaine's effects. PMID:21768941

  18. Cardioprotection by H2S Donors: Nitric Oxide-Dependent and ‑Independent Mechanisms.

    PubMed

    Chatzianastasiou, Athanasia; Bibli, Sofia-Iris; Andreadou, Ioanna; Efentakis, Panagiotis; Kaludercic, Nina; Wood, Mark E; Whiteman, Matthew; Di Lisa, Fabio; Daiber, Andreas; Manolopoulos, Vangelis G; Szabó, Csaba; Papapetropoulos, Andreas

    2016-09-01

    Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The present study compares the cardioprotective actions of representative H2S donors from different classes and studies their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 led to significant cytotoxicity, which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 [morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate], and AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl) triphenylphospho-nium bromide]. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of nitric oxide synthase (NOS) in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced the phosphorylation of endothelial NOS and vasodilator-associated phosphoprotein. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing the mitochondrial Ca(2+) retention capacity, which is evidence of decreased propensity to undergo permeability transition. We conclude that although all the H2S donors we tested limited infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening, and its action was nitric oxide dependent. In contrast, the cardioprotection exhibited by AP39 could result from a direct inhibitory effect on PTP acting at a site different than CypD. PMID:27342567

  19. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    SciTech Connect

    Chiueh, C.C. . E-mail: chiueh@tmu.edu.tw; Andoh, Tsugunobu; Chock, P. Boon

    2005-09-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation. Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against

  20. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Kuang, Huijuan; Zhang, Wanyi; Aguilar, Zoraida P.; Xiong, Yonghua; Lai, Weihua; Xu, Hengyi; Wei, Hua

    2014-12-01

    In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo. In this study, we investigated the size dependent in vivo biodistribution, toxicokinetics, and toxicity and gene expression changes of various sizes of carboxyl coated IOMNs (diameters of 10, 20, 30, and 40 nm). Our findings demonstrated that the various sizes of IOMNs accumulated primarily in the liver and spleen on the first day post-injection. Interestingly, size dependent biodistribution and transport were observed: the smallest IOMNs (10 nm) showed the highest uptake by the liver, whereas the largest IOMNs (40 nm) showed the highest uptake by the spleen. Moreover, the IOMNs with the smallest size (10 nm) were cleared faster from the liver and kidneys, but more readily entered the brain and the uterus. IOMNs with the largest size (40 nm) accumulated more readily but were easily eliminated in the spleen. However, the level of iron in the heart decreased in all IOMN exposed groups. In addition, blood biochemistry, hematological analyses and histological examination demonstrated that there was no apparent acute toxicity caused by IOMNs in mice. However, smaller IOMNs (10 nm and 20 nm) more effectively changed the expression level of sensitive genes related to oxidant stress, iron transport, metabolic process, apoptosis, and others.In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo. In this study, we investigated the size dependent in vivo biodistribution, toxicokinetics, and toxicity and gene expression changes of various sizes of carboxyl coated IOMNs (diameters of 10, 20, 30, and 40 nm). Our findings demonstrated that the various sizes of IOMNs accumulated primarily in the liver and spleen on the first day post-injection. Interestingly, size dependent biodistribution and transport

  1. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  2. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism.

    PubMed

    Sullivan, Matthew J; Gates, Andrew J; Appia-Ayme, Corinne; Rowley, Gary; Richardson, David J

    2013-12-01

    Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12.

  3. Denitrification and Nitrate-Dependent Fe(II) Oxidation in Various Pseudogulbenkiania Strains

    PubMed Central

    Ishii, Satoshi; Joikai, Kazuki; Otsuka, Shigeto; Senoo, Keishi; Okabe, Satoshi

    2016-01-01

    Pseudogulbenkiania is a relatively recently characterized genus within the order Neisseriales, class Betaproteobacteria. This genus contains several strains that are capable of anaerobic, nitrate-dependent Fe(II) oxidation (NDFO), a geochemically important reaction for nitrogen and iron cycles. In the present study, we examined denitrification functional gene diversities within this genus, and clarified whether other Pseudogulbenkiania sp. strains perform denitrification and NDFO. Seventy strains were analyzed, including two type strains, a well-characterized NDFO strain, and 67 denitrifying strains isolated from various rice paddy fields and rice-soybean rotation fields in Japan. We also attempted to identify the genes responsible for NDFO by mutagenesis. Our comprehensive analysis showed that all Pseudogulbenkiania strains tested performed denitrification and NDFO; however, we were unable to obtain NDFO-deficient denitrifying mutants in our mutagenesis experiment. This result suggests that Fe(II) oxidation in these strains is not enzymatic, but is caused by reactive N-species that are formed during nitrate reduction. Based on the results of the comparative genome analysis among Pseudogulbenkiania sp. strains, we identified low sequence similarity within the nos gene as well as different gene arrangements within the nos gene cluster, suggesting that nos genes were horizontally transferred. Since Pseudogulbenkiania sp. strains have been isolated from various locations around the world, their denitrification and NDFO abilities may contribute significantly to nitrogen and iron biogeochemical cycles. PMID:27431373

  4. A Third Subunit in Ancestral Cytochrome c-Dependent Nitric Oxide Reductases

    PubMed Central

    Bricio, C.; Alvarez, L.; San Martin, M.; Schurig-Briccio, L. A.; Gennis, R. B.

    2014-01-01

    Reduction of NO to N2O by denitrifiying bacteria is catalyzed either by a monomeric quinol-nitric oxide reductase (qNor) or by a heterodimeric cytochrome c-dependent nitric oxide reductase (cNor). In ancient thermophilic bacteria belonging to the Thermales and Aquificales phylogenetic groups, the cluster encoding the cNor includes a small third gene (norH), in addition to those encoding homologues to the subunits of a typical cNor (norC and norB). We show in Thermus thermophilus that the three genes are cotranscribed in a single mRNA from an inducible promoter. The isolation of individual nor mutants and the production in vivo of His-tagged NorH protein followed by immobilized-metal affinity chromatography (IMAC) allowed us to conclude that NorH constitutes a third subunit of the cNor from T. thermophilus, which is involved in denitrification in vivo, likely allowing more efficient electron transport to cNor. PMID:24907324

  5. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    PubMed

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)).

  6. Photo-isomerization and oxidation of bilirubin in mammals is dependent on albumin binding.

    PubMed

    Goncharova, Iryna; Jašprová, Jana; Vítek, Libor; Urbanová, Marie

    2015-12-01

    The bilirubin (BR) photo-conversion in the human body is a protein-dependent process; an effective photo-isomerization of the potentially neurotoxic Z,Z-BR as well as its oxidation to biliverdin in the antioxidant redox cycle is possible only when BR is bound on serum albumin. We present a novel analytical concept in the study of linear tetrapyrroles metabolic processes based on an in-depth mapping of binding sites in the structure of human serum albumin (HSA). A combination of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling methods was used for recognition of the binding site for BR, its derivatives (mesobilirubin and bilirubin ditaurate), and the products of the photo-isomerization and oxidation (lumirubin, biliverdin, and xanthobilirubic acid) on HSA. The CD spectra and fluorescent quenching of the Trp-HSA were used to calculate the binding constants. The results of the CD displacement experiments performed with hemin were interpreted together with the findings of molecular docking performed on the pigment-HSA complexes. We estimated that Z,Z-BR and its metabolic products bind on two independent binding sites. Our findings support the existence of a reversible antioxidant redox cycle for BR and explain an additional pathway of the photo-isomerization process (increase of HSA binding capacity; the excess free [unbound] BR can be converted and also bound to HSA).

  7. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica".

    PubMed

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-09-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of 'Ca. Kuenenia stuttgartiensis' have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of 'Ca. K. stuttgartiensis', however, 'Ca. Brocadia' lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from 'Ca. K. stuttgartiensis'. Here, we studied the anammox metabolism of 'Ca. Brocadia sinica'. (15) N-tracer experiments demonstrated that 'Ca. B. sinica' cells could reduce NO2- to NH2 OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2 H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified 'Ca. B. sinica' hydrazine synthase (Hzs) and intact cells. Both the 'Ca. B. sinica' Hzs and cells utilized NH2 OH and NH4+, but not NO and NH4+, for N2 H4 synthesis and further oxidized N2 H4 to N2 gas. Taken together, the metabolic pathway of 'Ca. B. sinica' is NH2 OH-dependent and different from the one of 'Ca. K. stuttgartiensis', indicating metabolic diversity of anammox bacteria.

  8. Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Wiesner, Philipp; Almazan, Felicidad; Kim, Jungsu; Miller, Yury I.

    2012-01-01

    Oxidative modification of low-density lipoprotein (LDL) turns it into an endogenous ligand recognized by pattern-recognition receptors. We have demonstrated that minimally oxidized LDL (mmLDL) binds to CD14 and mediates TLR4/MD-2-dependent responses in macrophages, many of which are MyD88-independent. We have also demonstrated that the mmLDL activation leads to recruitment of spleen tyrosine kinase (Syk) to TLR4 and TLR4 and Syk phosphorylation. In this study, we produced a macrophage-specific Syk knockout mouse and used primary Syk−/− macrophages in our studies. We demonstrated that Syk mediated phosphorylation of ERK1/2 and JNK, which in turn phosphorylated c-Fos and c-Jun, respectively, as assessed by an in vitro kinase assay. c-Jun phosphorylation was also mediated by IKKε. c-Jun and c-Fos bound to consensus DNA sites and thereby completed an AP-1 transcriptional complex and induced expression of CXCL2 and IL-6. These results suggest that Syk plays a key role in TLR4-mediated macrophage responses to host-generated ligands, like mmLDL, with subsequent activation of an AP-1 transcription program. PMID:22384232

  9. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica".

    PubMed

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-09-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of 'Ca. Kuenenia stuttgartiensis' have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of 'Ca. K. stuttgartiensis', however, 'Ca. Brocadia' lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from 'Ca. K. stuttgartiensis'. Here, we studied the anammox metabolism of 'Ca. Brocadia sinica'. (15) N-tracer experiments demonstrated that 'Ca. B. sinica' cells could reduce NO2- to NH2 OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2 H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified 'Ca. B. sinica' hydrazine synthase (Hzs) and intact cells. Both the 'Ca. B. sinica' Hzs and cells utilized NH2 OH and NH4+, but not NO and NH4+, for N2 H4 synthesis and further oxidized N2 H4 to N2 gas. Taken together, the metabolic pathway of 'Ca. B. sinica' is NH2 OH-dependent and different from the one of 'Ca. K. stuttgartiensis', indicating metabolic diversity of anammox bacteria. PMID:27112128

  10. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism

    PubMed Central

    Sullivan, Matthew J.; Gates, Andrew J.; Appia-Ayme, Corinne; Rowley, Gary; Richardson, David J.

    2013-01-01

    Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12. PMID:24248380

  11. Illumination Dependent Admittance Characteristics of Au/Zinc Acetate Doped Polyvinyl Alcohol (PVA:Zn)/n-Si Schottky Barrier Diodes (SBDs)

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, I.; Aydemir, U.; Altındal, Ş.; Tunç, T.

    2011-12-01

    This study presents the effect of illumination on main electrical parameters of Schottky barrier diode (SBD). The admittance (capacitance-voltage (C-V) and conductance-voltage (G/ω-V)) characteristics of Au/Zinc acetate doped polyvinyl alcohol (PVA:Zn)/n-Si SBD were investigated in dark and under various illumination intensities. Experimental results demonstrate that the C-V plots give a peak due to the illumination induced interface states or electron-hole pairs at metal/semiconductor (M/S) interface. The C-2-V plots were also drawn to determine main electrical parameters such as doping concentration (ND), depletion layer width (WD) and barrier height (ΦB(C-V)) of device. In addition, the voltage dependence Rs values were obtained from C-V and G/ω-V data by using Nicollian and Brews method. In order to obtain the real diode capacitance and conductance, the high frequency (1 MHz) Cm and Gm/w values were corrected for the effect of series resistance. All these observations confirm that both C-V and G/w-V characteristics were strongly affected by illumination.

  12. Erythrocyte deformability and nitric oxide mobilization under pannexin-1 and PKC dependence.

    PubMed

    Silva-Herdade, A S; Freitas, T; Almeida, J Pedro; Saldanha, C

    2015-01-01

    The erythrocyte adenosine triphosphate (ATP) is utilised for protein phosphorylation and exported through the pannexin 1 hemichannel (Px1) in the microcirculation. The physiological stimuli for ATP release are dependent of blood shear rate level and of the tissue oxygen content. The deoxygenated and oxygenated states of haemoglobin are respectively bound and unbound to N terminal domain of the protein band 3 of the erythrocyte membrane in dependence of its degree of phosphorylation. The protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) contribute to the phosphorylation degree of band 3 and are modulated by protein kinase C (PKC). Chelerythrine (Che) is a competitive inhibitor of ATP for PKC and a negative modulator of erythrocyte deformability. The aim of this study was to assess the mobilization of nitric oxide (NO) in erythrocyte in absence and presence of Che and Px1 inhibitor (carbenoxolone). Erythrocyte deformability was evaluated in presence of carbenoxolone (Carb). Regarding the effects observed in the erythrocyte by presence of Che or Carb, the values of efflux of NO and the concentration of nitrosogluthatione are similar and with no changes in relation to their absence. Px1inhibition by Carb 10 μM ameliorates the erythrocyte deformability at a shear force of 0.6 and 1.2 Pa. The PKC inhibitor shows similar effects to the Carb on the mobilization of nitric oxide in erythrocyte. The blockage of ATP release by Carb from erythrocytes suggests a possible benefit to develop in ischemia reperfusion or in inflammatory response where will be needed to rescue the excess of NO present and ameliorate the red blood cell deformability at low shear rates. PMID:24595130

  13. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc.

  14. Acute dairy milk ingestion does not improve nitric oxide-dependent vasodilation in the cutaneous microcirculation.

    PubMed

    Alba, Billie K; Stanhewicz, Anna E; Kenney, W Larry; Alexander, Lacy M

    2016-07-01

    In epidemiological studies, chronic dairy milk consumption is associated with improved vascular health and reduced age-related increases in blood pressure. Although milk protein supplementation augments conduit artery flow-mediated dilation, whether or not acute dairy milk intake may improve microvascular function remains unclear. We hypothesised that dairy milk would increase direct measurement of endothelial nitric oxide (NO)-dependent cutaneous vasodilation in response to local skin heating. Eleven men and women (61 (sem 2) years) ingested two or four servings (473 and 946 ml) of 1 % dairy milk or a rice beverage on each of 4 separate study days. In a subset of five subjects, an additional protocol was completed after 473 ml of water ingestion. Once a stable blood flow occurred, 15 mm-N G -nitro-l-arginine methyl ester was perfused (intradermal microdialysis) to quantify NO-dependent vasodilation. Red-blood-cell flux (RBF) was measured by laser-Doppler flowmetry, and cutaneous vascular conductance (CVC=RBF/mean arterial pressure) was calculated and normalised to maximum (%CVCmax; 28 mm-sodium nitroprusside). Full expression of cutaneous vasodilation was not different among dairy milk, rice beverage and water, and there was no effect of serving size on the total vasodilatory response. Contrary to our hypothesis, NO-dependent vasodilation was lower for dairy milk than rice beverage (D: 49 (sem 5), R: 55 (sem 5) %CVCmax; P<0·01). Acute dairy milk ingestion does not augment NO-dependent vasodilation in the cutaneous microcirculation compared with a rice beverage control.

  15. Oxidation of methionine in PrP is dependent upon the oxidant and the amino acid two positions removed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Introduction. Methionine oxidation has been shown both to be associated with prion formation and implicated in the inhibition of amyloid formation in model systems. This work is based on model systems where hydrogen peroxide was used as an oxidant. Materials and Methods. We developed...

  16. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  17. Characterization of thermally oxidized Ta/GaAs Schottky barrier structures prepared by low energy RF sputtering with X-ray photoemission, TEM and optical transmittance measurements

    NASA Astrophysics Data System (ADS)

    Gladkov, P.; Varblianska, K.; Marinova, Ts.; Krastev, V.; Stoemenos, J.

    Schottky barrier Ta 2O 5/Ta/GaAs structures produced by RF magnetron sputtering of Ta onto "in situ" sputter etched GaAs substrates are the subject of the present investigation. The tantalum oxides formed directly during the process of thermal recovery of the structures contain predominantly Ta 2O 5 according to XPS data. The component distribution in these structures, formed under optimum recovery conditions with respect to the Schottky barrier parameters ( ΦB and η) has been studied by XPS and TEM. The applied conditions for thermal recovery and simultaneous oxidation are: isothermal annealing at temperatures 400-420°C for 100 min in an ambient of dry air and starting layers of 40 nm RF-sputtered Ta. The partial oxidation of the Ta layer during the heat treatment results in the formation of a thin layer of Ta 2O 5 on the top of the structure, followed by two layers: a mixture of Ta 2O 5 + Ta and a thin Schottky contact predominantly consisting of Ta. The total optical transmittance in the spectral range 0.7-1.1 μ of these three successive layers is ≥ 0.7. This result justifies the potential application of these structures in the creation of Schottky photodiodes in the visible and near-IR. It is established as well that at T ≥ 400°C GaAs and Ta start interacting resulting in the formation of intermetallic compounds of the type: Ta 5Ga, Ta 5Ga 3, and TaGa 3.

  18. Oxygen as Intermediate in Anoxic Environments: Nitrite-Dependent Methane Oxidation and Beyond

    NASA Astrophysics Data System (ADS)

    Ettwig, K. F.

    2014-12-01

    In recent years the known diversity of hydrocarbon activation mechanisms under anaerobic conditions has been extended by intra-aerobic denitrification, a process in which oxygen is derived from NO and used for substrate activation. For two phylogenetically unrelated bacterial species, the freshwater NC10 phylum bacterium Methylomirabilis oxyfera [1] and the marine γ-proteobacterial strain HdN1 [2] it has been shown that, under anoxic conditions with nitrate and/or nitrite, mono-oxygenases are used for methane and hexadecane oxidation, respectively. No degradation was observed with nitrous oxide (N2O) only. In the anaerobic methanotroph M. oxyfera, which lacks apparent nitrous oxide reductase in its genome, substrate activation in the presence of nitrite was directly associated with both O2 and N2 formation. These findings strongly argue for the role of nitric oxide (NO), or an oxygen species derived from it, in the activation reaction of methane. Although intracellular oxygen generation has been experimentally documented and elegantly explains the utilization of 'aerobic' pathways under anoxic conditions, research about the underlying molecular mechanism has just started. The proposed candidate enzymes for oxygen (or possibly another another reactive intermediate) production from NO, an NO dismutase (NOD) [3], related to quinol-dependent NO reductases (qNORs), is present and highly expressed in both M. oxyfera and strain HdN1. Besides that, several recently sequenced species from the Cytophaga-Flavobacterium-Bacteroides group harbor Nod/Nor genes, but experimential evidence is needed to show if these have NOD activity, are unusual but functional qNORs, or represent transition states between the two. Additionally, for several anaerobic hydrocarbon-degrading organisms the biochemical mechanism of substrate activation has not been elucidated yet: whereas signature genes of anaerobic degradation are missing, monooxygenase genes are present. Also these microorganisms

  19. The FBXO4 Tumor Suppressor Functions as a Barrier to BrafV600E-Dependent Metastatic Melanoma

    PubMed Central

    Lee, Eric K.; Lian, Zhaorui; D'Andrea, Kurt; Letrero, Richard; Sheng, WeiQi; Liu, Shujing; Diehl, J. Nathaniel; Pytel, Dariusz; Barbash, Olena; Schuchter, Lynn; Amaravaradi, Ravi; Xu, Xiaowei; Herlyn, Meenhard; Nathanson, Katherine L.

    2013-01-01

    Cyclin D1–cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16INK4A, an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16INK4A deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy. PMID:24019069

  20. The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma.

    PubMed

    Lee, Eric K; Lian, Zhaorui; D'Andrea, Kurt; Letrero, Richard; Sheng, WeiQi; Liu, Shujing; Diehl, J Nathaniel; Pytel, Dariusz; Barbash, Olena; Schuchter, Lynn; Amaravaradi, Ravi; Xu, Xiaowei; Herlyn, Meenhard; Nathanson, Katherine L; Diehl, J Alan

    2013-11-01

    Cyclin D1-cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16(INK4A), an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16(INK4A) deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy.

  1. Cellular localization and detergent dependent oligomerization of rice allene oxide synthase-1.

    PubMed

    Yoeun, Sereyvath; Kim, Jeong-Il; Han, Oksoo

    2015-01-01

    Allene oxide synthase-1 from Oryza sativa (OsAOS1) localizes to the chloroplast, but lacks a putative chloroplast targeting sequence typically found in dicot AOS. Here, kinetic parameters and the oligomerization state/subunit composition of OsAOS1 were characterized in vitro in the absence or presence of detergent micelles. The catalytic efficiency (k(cat)/K(m)) of OsAOS1 reached a maximum near the critical micelle concentration for polyoxyethylene 10 tridecyl ether. Native gel analysis showed that OsAOS1 exists as a multimer in the absence of detergent micelles. The multimeric form of OsAOS1 was stably cross-linked in the absence of detergents, while only monomeric OsAOS1 was detected in the presence of detergent micelles. Gel filtration analysis indicated that the oligomeric state of OsAOS1 depends strongly on the detergents and that the monomer becomes the predominant form in the presence of detergent micelles. These data suggest that the detergent-dependent oligomeric state of OsAOS1 is an important factor for the regulation of its catalytic efficiency.

  2. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    NASA Astrophysics Data System (ADS)

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-02-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2-x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors.

  3. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    DOE PAGES

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-17

    The physics of underdoped copper-oxide superconductors, including the pseudogap, spin and charge ordering, and their relation to superconductivity1-3, is intensely debated. The overdoped side is perceived as simpler, with strongly-correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer (BCS) behavior. Pioneering studies on a few overdoped samples4-11 indicated that the superfluid density was much smaller than expected, but this was attributed to pair-breaking, disorder, and phase separation. Here, we test this conjecture by studying how the magnetic penetration depth λ and the phase stiffness ρs depend on temperature and doping, scanning densely the entire overdoped side of the La2-xSrxCuO4 (LSCO)more » phase diagram. We have measured the absolute values of λ and ρs to the accuracy of ±1% in thousands of cuprate samples; the large statistics reveals clear trends and intrinsic properties. The films are quite homogeneous; variations in the critical temperature (Tc) within a film are very small (< 1 K). At every doping, ρs(T) decreases linearly with temperature. The Tc(ρ s0) dependence is linear but with an offset, (Tc - T0) ∝ ρs0 where T0 ≈ 7 K, except very close to the origin where Tc ∝ √ρ s0. This scaling law defies the standard BCS description, posing a challenge to theory.« less

  4. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    PubMed

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  5. Animal, In Vitro, and Ex Vivo Models of Flow-Dependent Atherosclerosis: Role of Oxidative Stress

    PubMed Central

    Rezvan, Amir; Ni, Chih-Wen; Alberts-Grill, Noah

    2011-01-01

    Abstract Atherosclerosis is an inflammatory disease preferentially occurring in curved or branched arterial regions, whereas straight parts of the arteries are protected, suggesting a close relationship between flow and atherosclerosis. However, evidence directly linking disturbed flow to atherogenesis is just emerging, thanks to the recent development of suitable animal models. In this article, we review the status of various animal, in vitro, and ex vivo models that have been used to study flow-dependent vascular biology and atherosclerosis. For animal models, naturally flow-disturbed regions such as branched or curved arterial regions as well as surgically created models, including arterio-venous fistulas, vascular grafts, perivascular cuffs, and complete, incomplete, or partial ligation of arteries, are used. Although in vivo models provide the environment needed to mimic the complex pathophysiological processes, in vitro models provide simple conditions that allow the study of isolated factors. Typical in vitro models use cultured endothelial cells exposed to various flow conditions, using devices such as cone-and-plate and parallel-plate chambers. Ex vivo models using isolated vessels have been used to bridge the gap between complex in vivo models and simple in vitro systems. Here, we review these flow models in the context of the role of oxidative stress in flow-dependent inflammation, a critical proatherogenic step, and atherosclerosis. Antioxid. Redox Signal. 15, 1433–1448. PMID:20712399

  6. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    PubMed Central

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-01-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses – the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2−x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors. PMID:26893175

  7. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria.

    PubMed

    Yoshida, Naoko; Miyata, Yasushi; Doi, Kasumi; Goto, Yuko; Nagao, Yuji; Tero, Ryugo; Hiraishi, Akira

    2016-01-01

    Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate could specifically enrich exoelectrogenic bacteria with Geobacter species predominating (51-68% of the total populations). Interestingly, bacteria in these cultures self-aggregated into a conductive hydrogel complex together with biologically reduced GO (rGO). A novel GO-respiring bacterium designated Geobacter sp. strain R4 was isolated from this hydrogel complex. This organism exhibited stable electricity production at >1000 μA/cm(3) (at 200 mV vs Ag/AgCl) for more than 60 d via rGO while temporary electricity production using graphite felt. The better electricity production depends upon the characteristics of rGO such as a large surface area for biofilm growth, greater capacitance, and smaller internal resistance. This is the first report to demonstrate GO-dependent growth of exoelectrogenic bacteria while forming a conductive hydrogel complex with rGO. The simple put-and-wait process leading to the formation of hydrogel complexes of rGO and exoelectrogens will enable wider applications of GO to bioelectrochemical systems. PMID:26899353

  8. The temperature dependence of H + OH recombination in phosphorus oxide containing post-combustion gases

    SciTech Connect

    Twarowski, A.

    1996-05-01

    The temperature dependence of the rate of H + OH recombination is experimentally investigated using laser photolysis of high-temperature (1,500--2,500 K) water vapor. Parametric adjustment of reaction rate constants to fit a simulated OH signal with the experimental OH decay data gives a three-body reaction rate constant for H + OH + M {yields} H{sub 2}O + M that is larger than expected at low temperature and lower at high temperatures. This result could have negative consequences for hypersonic propulsion systems since much of the thrust producing radical recombination occurs at high temperature. When POH{sub 3} combustion products are present in the photolyzed gas mixture at low concentration, the OH decay is much faster and dominated by catalytic reactions that include phosphorus oxides and acids. Parametric reaction rate analysis indicates that two reactions, H + PO{sub 2} {yields} HOPO and H + HOPO {yields} H{sub 2} + PO{sub 2} are responsible for the increase in the overall rate of H + OH recombination. The temperature dependence of the phosphine catalyzed recombination reaction is adequately described by the rate constant estimates previously reported.

  9. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria

    PubMed Central

    Yoshida, Naoko; Miyata, Yasushi; Doi, Kasumi; Goto, Yuko; Nagao, Yuji; Tero, Ryugo; Hiraishi, Akira

    2016-01-01

    Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate could specifically enrich exoelectrogenic bacteria with Geobacter species predominating (51–68% of the total populations). Interestingly, bacteria in these cultures self-aggregated into a conductive hydrogel complex together with biologically reduced GO (rGO). A novel GO-respiring bacterium designated Geobacter sp. strain R4 was isolated from this hydrogel complex. This organism exhibited stable electricity production at >1000 μA/cm3 (at 200 mV vs Ag/AgCl) for more than 60 d via rGO while temporary electricity production using graphite felt. The better electricity production depends upon the characteristics of rGO such as a large surface area for biofilm growth, greater capacitance, and smaller internal resistance. This is the first report to demonstrate GO-dependent growth of exoelectrogenic bacteria while forming a conductive hydrogel complex with rGO. The simple put-and-wait process leading to the formation of hydrogel complexes of rGO and exoelectrogens will enable wider applications of GO to bioelectrochemical systems. PMID:26899353

  10. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation

    PubMed Central

    Malmsjö, M; Edvinsson, L; Erlinge, D

    1998-01-01

    The dilator effect of extracellular adenosine triphosphate (ATP) has mainly been characterized as a direct effect on smooth muscle or as an endothelium-dependent effect mediated by nitric oxide (NO) or prostaglandins. We tested the hypothesis that endothelium-derived hyperpolarizing factor (EDHF) may also be involved. Dilator effects were studied in vitro by continuous recording of isomeric tension in cylindrical segments of rat blood vessels precontracted by noradrenaline (NA), in the presence of indomethacin (10 μM). By screening different blood vessels in the rat we found that both acetylcholine (ACh) and ATP dilate mesenteric arteries with a resting tone of 1 mN by an endothelium-dependent non-NO mechanism. With an increased resting tone (4 mN) the dilatation was mediated by NO. Thus by varying the resting tension the different dilator mechanisms could be examined. However, in the carotid artery the dilatation was solely mediated by an endothelium-dependent NO mechanism, even at different resting tones (1 and 4 mN). The N-nitro-L-arginine methyl ester (L-NAME)-resistant dilatation to ACh and ATP was further inhibited by the NO-scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), indicating L-NAME insensitive NO-synthesis. In carotid arteries and mesenteric arteries at high resting tones (4 mN) the ATP-dilatation was totally inhibited by endothelium removal or L-NAME (10−3 M). In mesenteric arteries at low resting tone (1 mN) the ATP, UTP (uridine-triphosphate) and 2-MeSATP (2methylthioATP)-dilatation was totally inhibited by endothelium removal. However, L-NAME in combination with indomethacin attenuated only 5% of the UTP dilatation, 70% of the ATP dilatation but all of the 2-MeSATP-dilatation. The inhibitors of Ca2+-activated K+ channels charybdotoxin (0.5×10−7 M) together with apamin (10−6 M), and the cytochrome P450 inhibitor, SKF 525A (10−4 M), each in combination with indomethacin, L-NAME and PTIO (0.5×10

  11. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation.

    PubMed

    Malmsjö, M; Edvinsson, L; Erlinge, D

    1998-02-01

    1. The dilator effect of extracellular adenosine triphosphate (ATP) has mainly been characterized as a direct effect on smooth muscle or as an endothelium-dependent effect mediated by nitric oxide (NO) or prostaglandins. We tested the hypothesis that endothelium-derived hyperpolarizing factor (EDHF) may also be involved. Dilator effects were studied in vitro by continuous recording of isomeric tension in cylindrical segments of rat blood vessels precontracted by noradrenaline (NA), in the presence of indomethacin (10 microM). 2. By screening different blood vessels in the rat we found that both acetylcholine (ACh) and ATP dilate mesenteric arteries with a resting tone of 1 mN by an endothelium-dependent non-NO mechanism. With an increased resting tone (4 mN) the dilatation was mediated by NO. Thus by varying the resting tension the different dilator mechanisms could be examined. However, in the carotid artery the dilatation was solely mediated by an endothelium-dependent NO mechanism, even at different resting tones (1 and 4 mN). 3. The N-nitro-L-arginine methyl ester (L-NAME)-resistant dilatation to ACh and ATP was further inhibited by the NO-scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), indicating L-NAME insensitive NO-synthesis. 4. In carotid arteries and mesenteric arteries at high resting tones (4 mN) the ATP-dilatation was totally inhibited by endothelium removal or L-NAME (10(-3) M). In mesenteric arteries at low resting tone (1 mN) the ATP, UTP (uridine-triphosphate) and 2-MeSATP (2methylthioATP)-dilatation was totally inhibited by endothelium removal. However, L-NAME in combination with indomethacin attenuated only 5% of the UTP dilatation, 70% of the ATP dilatation but all of the 2-MeSATP-dilatation. The inhibitors of Ca2+-activated K+ channels charybdotoxin (0.5 x 10(-7) M) together with apamin (10(-6) M), and the cytochrome P450 inhibitor, SKF 525A (10(-4) M), each in combination with indomethacin. L-NAME and PTIO (0.5 x 10

  12. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    SciTech Connect

    O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu; Beller, Harry; Zhou, Peng; Steefel, Carl

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  13. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy.

    PubMed

    House, Christopher H; Beal, Emily J; Orphan, Victoria J

    2011-11-18

    On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total

  14. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    PubMed Central

    House, Christopher H.; Beal, Emily J.; Orphan, Victoria J.

    2011-01-01

    On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total

  15. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    NASA Astrophysics Data System (ADS)

    House, Christopher H.; Beal, Emily J.; Orphan, Victoria J.

    2011-11-01

    On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total

  16. DFT investigations on AuVO3+, a barrier-free catalyst for oxidation of CO with O2

    NASA Astrophysics Data System (ADS)

    Zhang, Hao-Xu; Ding, Xun-Lei

    2016-08-01

    As an outstanding catalyst for CO oxidation at low temperatures, highly dispersed gold on metal oxides supports has long been the hot topic. And recently single-atom catalysts have attracted great interest. Thus here catalytic oxidation of CO with AuVO3+ was investigated with density functional theory calculations. The whole catalytic cycles can proceed naturally via the following processes: (i) AuVO3+ is subsequently reduced to AuVO2+ and AuVO+ under successive attacks from CO molecules trapped at the Au-site; (ii) AuVO+ can be oxidized by O2 trapped at the V-site, and the intermediate can be fully activated to regenerate AuVO3+ ; (iii) while for AuVO2+, successive attacks from a O2 molecule trapped at the V-site and a CO molecule trapped at the Au-site are required to finally regenerate AuVO3+. The single Au atom acts as both the favorable CO trapper and the electron reservoir during CO oxidation and O2 activation processes.

  17. Evidence for Diverging Barriers in the Disordered Vortex Solid in the (K,Ba)BiO3 Superconducting Oxide

    NASA Astrophysics Data System (ADS)

    Joumard, I.; Klein, T.; Marcus, J.

    2001-10-01

    Vortex dynamics has been investigated in the cubic (K,Ba)BiO 3 superconductor using ac susceptibility measurements on a large frequency range (0.03 Hz<ω<60 kHz). Power law diverging barriers have been obtained on both sides of the order-disorder transition line. The μ exponent remains close to 5/2 (elastic creep value) in some part of the disordered phase and finally decreases at high temperature and/or high field, in good agreement with the recent plastic collective creep theory [J. Kierfeld, H. Nordborg, and V. M. Vinokur, Phys. Rev. Lett., 85, 4948 (2000)].

  18. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the

  19. Time-dependent behavior in a transport-barrier model for the quasi-single helcity state

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Whelan, G. G.

    2014-09-01

    Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH) state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas 19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same helicity, and shows that strong magnetic and velocity shears in the structure suppress the nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation energies over wavenumber, we reduce the theory to a predator-prey model. The suppression of the nonlinear interaction is governed by the single helicity energy, which, for fixed radial structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma current which, in the theory, sets the shearing threshold for suppression. The model shows a limit cycle oscillation in which the system toggles between QSH and multiple helicity states, with the single helicity phase becoming increasingly long-lived relative to the multiple helicity phase as plasma current increases.

  20. Dependence of Heterogeneous OH Kinetics with Biomass Burning Aerosol Proxies on Oxidant Concentration and Relative Humidity

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Knopf, D. A.

    2013-12-01

    Chemical transformations of aerosol particles by heterogeneous reactions with trace gases such as OH radicals can influence particle physicochemical properties and lifetime, affect cloud formation, light scattering, and human health. Furthermore, OH oxidation can result in degradation of particle mass by volatilization reactions, altering the budget of volatile organic compounds (VOCs). However, the reactive uptake coefficient (γ) and particle oxidation degree can vary depending on several factors including oxidant concentration and relative humidity (RH). While RH can influence the extent of dissociation/ionization, it can also affect particle phase and thus oxidant diffusivity. Only one study so far has investigated the effect of RH on the rate of OH uptake to organic surfaces; however, the underlying processes affecting OH reactivity with organic aerosol under humidified conditions still remains elusive. Here, we determine the effect of RH on OH reactivity with laboratory-generated biomass burning aerosol (BBA) surrogate particles: levoglucosan and 4-methyl-5-nitrocatechol. The effect of OH concentration on γ for three common BBA molecular markers (levoglucosan, abietic acid, and nitroguaiacol) under dry conditions was investigated from [OH]≈107-1011 molecule cm-3, covering both [OH] in biomass burning plumes and [OH] commonly used in particle aging studies. Furthermore, key VOC reaction products and their production pathways resulting from BBA volatilization by OH were identified. OH radicals are produced using a microwave induced plasma (MIP) of H2 in He or Ar followed by reaction with O2, or by photolysis of O3 in the presence of H2O. A cylindrical rotating wall flow-tube reactor and fast-flow aerosol flow reactor are used for conducting kinetic studies. OH is detected using a Chemical Ionization Mass Spectrometer (CIMS) and a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) is employed for VOC analysis. γ decreases from 0.2-0.5 at

  1. Low-resistance magnetic tunnel junctions prepared by partial remote plasma oxidation of 0.9 nm Al barriers

    SciTech Connect

    Ferreira, Ricardo; Freitas, Paulo P.; MacKenzie, Maureen; Chapman, John N.

    2005-05-09

    Current perpendicular to the plane read-head elements suitable for high-density magnetic storage require low resistance while maintaining a reasonable magnetoresistive (MR) signal (RxA<1 {omega} {mu}m{sup 2} and MR>20% for areal densities >200 Gb/in{sup 2}). This letter shows that competitive low RxA junctions can be produced using underoxidized barriers starting from 0.9 nm thick Al layers. For as-deposited junctions, tunneling magnetoresistance (TMR) {approx}20% for RxA{approx}2-15 {omega} {mu}m{sup 2} is obtained, while in the RxA{approx}60-150 {omega} {mu}m{sup 2} range, TMR values between 40% to 45% are achieved. A limited number of junctions exhibits considerably lower RxA values with respect to the average, while keeping a similar MR (down to 0.44 {omega} {mu}m{sup 2} with TMR of 20% and down to 2.2 {omega} {mu}m{sup 2} with TMR of 52%). Experimental data suggest that current confinement to small regions (barrier defects/hot spots) may explain these results.

  2. Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®

    NASA Astrophysics Data System (ADS)

    Oda, Masaya; Tokuda, Rie; Kambara, Hitoshi; Tanikawa, Tomochika; Sasaki, Takahiro; Hitora, Toshimi

    2016-02-01

    Thin-film corundum-structured gallium oxide (α-Ga2O3) Schottky barrier diodes (SBDs) were fabricated by growing α-Ga2O3 layers on sapphire substrates by the safe, low-cost, and energy-saving MIST EPITAXY® technique, followed by lifting off the α-Ga2O3 layers from the substrates. The SBDs exhibited on-resistance and breakdown voltage of 0.1 mΩ·cm2 and 531 V (SBD1) or 0.4 mΩ·cm2 and 855 V (SBD2), respectively. These results will encourage the future evolution of low-cost and high-performance SBDs with α-Ga2O3.

  3. Room-temperature detection of spin accumulation in silicon across Schottky tunnel barriers using a metal-oxide-semiconductor field effect transistor structure (invited)

    NASA Astrophysics Data System (ADS)

    Hamaya, K.; Ando, Y.; Masaki, K.; Maeda, Y.; Fujita, Y.; Yamada, S.; Sawano, K.; Miyao, M.

    2013-05-01

    Using a metal-oxide-semiconductor field effect transistor structure with a high-quality CoFe/n+-Si contact, we systematically study spin injection and spin accumulation in a nondegenerated Si channel with a doping density of ˜4.5 × 1015 cm-3 at room temperature. By applying the gate voltage (VG) to the channel, we obtain sufficient bias currents (IBias) for creating spin accumulation in the channel and observe clear spin-accumulation signals even at room temperature. Whereas the magnitude of the spin signals is enhanced by increasing IBias, it is reduced by increasing VG interestingly. These features can be understood within the framework of the conventional spin diffusion model. As a result, a room-temperature spin injection technique for the nondegenerated Si channel without using insulating tunnel barriers is established, which indicates a technological progress for Si-based spintronic applications with gate electrodes.

  4. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  5. Effects of Ce and Si additions to CoNiCrAlY bond coat materials on oxidation behavior and crack propagation of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Ito, K.; Shoji, T.; Seo, D. W.; Tezuka, H.; Kato, H.

    2006-12-01

    In thermal barrier coating (TBC) systems, thermally grown oxide (TGO) forms at the interface between the top coat and the bond coat (BC) during service. Delamination or spallation at the interface occurs by the TGO formation and growth. Therefore, modifications of the BC materials are one means to inhibit the TGO formation and to improve the crack resistance of TBCs. In this study, morphologies of TGO were controlled by using Ce and Si additions to conventional CoNiCrAlY BC material. The evaluation of the crack resistance was carried out using acoustic emission methods under pure bending conditions. As a result, when the BCs of TBCs with Ce added were aged at 1373 K over 10 h, the morphologies of the TGO were changed drastically. The BC materials of TBCs coated with Ce added indicated an improved crack resistance with high-temperature exposure. It is expected that the morphologies can improve the crack resistance of TBCs.

  6. Effects of sintering and mixed oxide growth on the interface cracking of air-plasma-sprayed thermal barrier coating system at high temperature

    NASA Astrophysics Data System (ADS)

    Lv, Bowen; Xie, Hua; Xu, Rong; Fan, Xueling; Zhang, Weixu; Wang, T. J.

    2016-01-01

    Sintering and mixed oxide (MO) growth significantly affect the thermal and mechanical properties of thermal barrier coating system (TBCs) in gas turbine at high temperature. In this work, we numerically analyzed the effects of sintering and MO growth on the interface cracking of TBCs. A thermal-elasto-viscoplastic constitutive model was introduced, in which the effect of sintering was studied using a spherical shell model. Based on the same spherical shell model and our previous experimental observations, we theoretically derived the evolution of relative density and applied this constitutive model to the sintering of ceramic coating. The numerical results showed that viscosity, initial porosity of ceramic and the growth rate of MO had significant effects on interface cracking. In contrast, the influence of initial pore size of ceramic coating was neglectable. Suggestions were also made for the choice of material during TBCs design.

  7. Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta

    PubMed Central

    Andriambeloson, Emile; Kleschyov, Andrei L; Muller, Bernard; Beretz, Alain; Stoclet, Jean Claude; Andriantsitohaina, Ramaroson

    1997-01-01

    The aim of this work was to investigate the mechanism of vasorelaxation induced by red wine polyphenolic compounds (RWPC) and two defined polyphenols contained in wine, leucocyanidol and catechin. The role of the endothelium, especially endothelium-derived nitric oxide (NO), was also investigated.Relaxation produced by polyphenols was studied in rat aortic rings with and without functional endothelium, pre-contracted to the same extent with noradrenaline (0.3 and 0.1 μM, respectively). RWPC and leucocyanidol, but not catechin, produced complete relaxation of vessels with and without endothelium. However, 1000 fold higher concentrations were needed to relax endothelium-denuded rings compared to those with functional endothelium.High concentrations of catechin (in the range of 10−1 g l−1) only produced partial relaxation (maximum 30%) and had the same potency in rings with and without endothelium.The NO synthase inhibitor, Nω-nitro-L-arginine-methyl-ester (L-NAME, 300 μM) completely abolished the endothelium-dependent but not the endothelium-independent relaxations produced by all of the polyphenolic compounds.In contrast to superoxide dismutase (SOD, 100 u ml−1), neither RWPC nor leucocyanidol affected the concentration-response curve for the NO donor, SIN-1 (3-morpholino-sydnonimine) which also produces superoxide anion (O2−).In aortic rings with endothelium, RWPC (10−2 g l−1) produced a 7 fold increase in the basal production of guanosine 3′ : 5′-cyclic monophosphate (cyclic GMP) which was prevented by L-NAME (300 μM).Electron paramagnetic resonance (e.p.r.) spectroscopy studies with Fe2+-diethyldithiocarbamate as an NO spin trap demonstrated that RWPC and leucocyanidol increased NO levels in rat thoracic aorta about 2 fold. This NO production was entirely dependent on the presence of the endothelium and was abolished by L-NAME (300 μM).These results show that RWPC and leucocyanidol, but not the structurally closely

  8. Thermal barrier coating system

    NASA Technical Reports Server (NTRS)

    Stecura, S. (Inventor)

    1984-01-01

    A high temperature oxidation resistant, thermal barrier coating system is disclosed for a nickel cobalt, or iron base alloy substrate. An inner metal bond coating contacts the substrate, and a thermal barrier coating covers the bond coating. NiCrAlR, FeCrAlR, and CoCrAlR alloys are satisfactory as bond coating compositions where R=Y or Yb. These alloys contain, by weight, 24.9-36.7% chromium, 5.4-18.5% aluminum, and 0.05 to 1.55% yttrium or 0.05 to 0.53% ytterbium. The coatings containing ytterbium are preferred over those containing yttrium. An outer thermal barrier coating of partial stabilized zirconium oxide (zirconia) which is between 6% and 8%, by weight, of yttrium oxide (yttria) covers the bond coating. Partial stabilization provides a material with superior durability. Partially stabilized zirconia consists of mixtures of cubic, tetragonal, and monoclinic phases.

  9. C-Type Natriuretic Peptide Induces Anti-contractile Effect Dependent on Nitric Oxide, Oxidative Stress, and NPR-B Activation in Sepsis

    PubMed Central

    Pernomian, Laena; Prado, Alejandro F.; Silva, Bruno R.; Azevedo, Aline; Pinheiro, Lucas C.; Tanus-Santos, José E.; Bendhack, Lusiane M.

    2016-01-01

    Aims: To evaluate the role of nitric oxide, reactive oxygen species (ROS), and natriuretic peptide receptor-B activation in C-type natriuretic peptide-anti-contractile effect on Phenylephrine-induced contraction in aorta isolated from septic rats. Methods and Results: Cecal ligation and puncture (CLP) surgery was used to induce sepsis in male rats. Vascular reactivity was conducted in rat aorta and resistance mesenteric artery (RMA). Measurement of survival rate, mean arterial pressure (MAP), plasma nitric oxide, specific protein expression, and localization were evaluated. Septic rats had a survival rate about 37% at 4 h after the surgery, and these rats presented hypotension compared to control-operated (Sham) rats. Phenylephrine-induced contraction was decreased in sepsis. C-type natriuretic peptide (CNP) induced anti-contractile effect in aortas. Plasma nitric oxide was increased in sepsis. Nitric oxide-synthase but not natriuretic peptide receptor-B expression was increased in septic rat aortas. C-type natriuretic peptide-anti-contractile effect was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. Natriuretic peptide receptor-C, protein kinase-Cα mRNA, and basal nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ROS production were lower in septic rats. Phenylephrine and CNP enhanced ROS production. However, stimulated ROS production was low in sepsis. Conclusion: CNP induced anti-contractile effect on Phenylephrine contraction in aortas from Sham and septic rats that was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. PMID:27445832

  10. Integrins mediate mechanical compression-induced endothelium-dependent vasodilation through endothelial nitric oxide pathway.

    PubMed

    Lu, Xiao; Kassab, Ghassan S

    2015-09-01

    Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α5β1 or αvβ3 antibodies attenuated cyclic compression-induced vasodilation and NOx (NO(-)2 and NO(-)3) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression-induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading.

  11. Progressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans.

    PubMed

    Wray, D Walter; Witman, Melissa A H; Ives, Stephen J; McDaniel, John; Fjeldstad, Anette S; Trinity, Joel D; Conklin, Jamie D; Supiano, Mark A; Richardson, Russell S

    2011-03-01

    In the peripheral circulation, nitric oxide (NO) is released in response to shear stress across vascular endothelial cells. We sought to assess the degree to which NO contributes to exercise-induced vasodilation in the brachial artery (BA) and to determine the potential of this approach to noninvasively evaluate NO bioavailability. In eight young (25 ± 1 yr) healthy volunteers, we used ultrasound Doppler to examine BA vasodilation in response to handgrip exercise (4, 8, 12, 16, 20, and 24 kg) with and without endothelial NO synthase blockade [intra-arterial N(G)-monomethyl-L-arginine (L-NMMA), 0.48 mg · dl(-1) · min(-1)]. Higher exercise intensities evoked significant BA vasodilation (4-12%) that was positively correlated with the hyperemic stimulus (r = 0.98 ± 0.003, slope = 0.005 ± 0.001). During NO blockade, BA vasodilation at the highest exercise intensity was reduced by ∼70% despite similar exercise-induced increases in shear rate (control, +224 ± 30 s(-1); L-NMMA, +259 ± 46 s(-1)). The relationship and slope of BA vasodilation with increasing shear rate was likewise reduced (r = 0.48 ± 0.1, slope = 0.0007 ± 0.0005). We conclude that endothelial NO synthase inhibition with L-NMMA abolishes the relationship between shear stress and BA vasodilation during handgrip exercise, providing clear evidence of NO-dependent vasodilation in this experimental model. These results support this paradigm as a novel and valid approach for a noninvasive assessment of NO-dependent vasodilation in humans.

  12. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    SciTech Connect

    Su, Cunjin; Shi, Aiming; Cao, Guowen; Tao, Tao; Chen, Ruidong; Hu, Zhanhong; Shen, Zhu; Tao, Hong; Cao, Bin; Hu, Duanmin; Bao, Junjie

    2015-05-15

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.

  13. Disulfide bond-dependent mechanism of protection against oxidative stress in pyruvate-ferredoxin oxidoreductase of anaerobic Desulfovibrio bacteria.

    PubMed

    Vita, Nicolas; Hatchikian, E Claude; Nouailler, Matthieu; Dolla, Alain; Pieulle, Laetitia

    2008-01-22

    Oxidative decarboxylation of pyruvate forming acetyl-coenzyme A is a crucial step in many metabolic pathways. In most anaerobes, this reaction is carried out by pyruvate-ferredoxin oxidoreductase (PFOR), an enzyme normally oxygen sensitive except in Desulfovibrio africanus (Da), where it shows an abnormally high oxygen stability. Using site-directed mutagenesis, we have specified a disulfide bond-dependent protective mechanism against oxidative conditions in Da PFOR. Our data demonstrated that the two cysteine residues forming the only disulfide bond in the as-isolated PFOR are crucial for the stability of the enzyme in oxidative conditions. A methionine residue located in the environment of the proximal [4Fe-4S] cluster was also found to be essential for this protective mechanism. In vivo analysis demonstrated unambiguously that PFOR in Da cells as well as two other Desulfovibrio species was efficiently protected against oxidative stress. Importantly, a less active but stable Da PFOR in oxidized cells rapidly reactivated when returned to anaerobic medium. Our work demonstrates the existence of an elegant disulfide bond-dependent reversible mechanism, found in the Desulfovibrio species to protect one of the key enzymes implicated in the central metabolism of these strict anaerobes. This new mechanism could be considered as an adaptation strategy used by sulfate-reducing bacteria to cope with temporary oxidative conditions and to maintain an active dormancy. PMID:18161989

  14. Chloride Secretion Induced by Rotavirus Is Oxidative Stress-Dependent and Inhibited by Saccharomyces boulardii in Human Enterocytes

    PubMed Central

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics. PMID:24918938

  15. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  16. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte.

    PubMed

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-01-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948

  17. Substrate-dependent nitric oxide synthesis by secreted endoplasmic reticulum aminopeptidase 1 in macrophages.

    PubMed

    Goto, Yoshikuni; Ogawa, Kenji; Nakamura, Takahiro J; Hattori, Akira; Tsujimoto, Masafumi

    2015-06-01

    In this study, we examined the role of aminopeptidases with reference to endoplasmic reticulum aminopeptidase 1 (ERAP1) in nitric oxide (NO) synthesis employing murine macrophage cell line RAW264.7 cells activated by lipopolysaccharide (LPS) and interferon (IFN)-γ and LPS-activated peritoneal macrophages derived from ERAP1 knockout mouse. When NO synthesis was measured in the presence of peptides having N-terminal Arg, comparative NO synthesis was seen with that measured in the presence of Arg. In the presence of an aminopeptidase inhibitor amastatin, NO synthesis in activated RAW264.7 cells was significantly decreased. These results suggest that aminopeptidases are involved in the NO synthesis in activated RAW264.7 cells. Subsequently, significant reduction of NO synthesis was observed in ERAP1 knockdown cells compared with wild-type cells. This reduction was rescued by exogenously added ERAP1. Furthermore, when peritoneal macrophages prepared from ERAP1 knockout mouse were employed, reduction of NO synthesis in knockout mouse macrophages was also attributable to ERAP1. In the presence of amastatin, further reduction was observed in knockout mouse-derived macrophages. Taken together, these results suggest that several aminopeptidases play important roles in the maximum synthesis of NO in activated macrophages in a substrate peptide-dependent manner and ERAP1 is one of the aminopeptidases involved in the NO synthesis.

  18. Nomega-hydroxy-L-arginine homologues and hydroxylamine as nitric oxide-dependent vasorelaxant agents.

    PubMed

    Beranova, Petra; Chalupsky, Karel; Kleschyov, Andrei L; Schott, Christa; Boucher, Jean-Luc; Mansuy, Daniel; Munzel, Thomas; Muller, Bernard; Stoclet, Jean-Claude

    2005-06-15

    Endothelium-independent relaxant activities of N(omega)-hydroxy-L-arginine (L-NOHA) homologues and hydroxylamine, a possible intermediate in nitric oxide (NO) formation, were examined in rat aortic rings. Addition of one -CH(2)- group to the -(CH(2))(x)- chain between the alpha-amino acid and the hydroxyguanidine group (x=4) almost abolished-while deletion of one or two -CH(2)- (x=1 or 2) enhanced-the relaxant activity of L-NOHA homologues. N(omega)-hydroxy-nor-L-arginine- (x=2) and hydroxylamine-induced relaxations were blunted by a NO scavenger and by inhibitors of the guanylyl cyclase pathway, but not by NO synthase or cytochrome P(450) inhibitors (except 7-ethoxyresorufin). However, aortic NO formation was detected (using electron paramagnetic resonance) in the presence of concentrations of these compounds higher than those producing relaxation. These findings support the view that endothelium-independent vasorelaxations induced by both L-NOHA homologues with a required chain length xdependent activation of guanylyl cyclase, through a 7-ethoxyresorufin-inhibited mechanism.

  19. Size-Dependent Electrocatalytic Activity of Free Gold Nanoparticles for the Glucose Oxidation Reaction.

    PubMed

    Hebié, Seydou; Napporn, Teko W; Morais, Cláudia; Kokoh, K Boniface

    2016-05-18

    Understanding the fundamental relationship between the size and the structure of electrode materials is essential to design catalysts and enhance their activity. Therefore, spherical gold nanoparticles (GNSs) with a mean diameter from 4 to 15 nm were synthesized. UV/Vis spectroscopy, transmission electron microscopy, and under-potential deposition of lead (UPDPb ) were used to determine the morphology, size, and surface crystallographic structure of the GNSs. The UPDPb revealed that their crystallographic facets are affected by their size and the growth process. The catalytic properties of these GNSs toward glucose electrooxidation were studied by cyclic voltammetry, taking into account the scan rate and temperature effects. The results clearly show the size-dependent electrocatalytic activity for glucose oxidation reactions that are controlled by diffusion. Small GNSs with an average size of 4.2 nm exhibited high catalytic activity. This drastic increase in activity results from the high specific area and reactivity of the surface electrons induced by their small size. The reaction mechanism was investigated by in situ Fourier transform infrared reflectance spectroscopy. Gluconolactone and gluconate were identified as the intermediate and the final reaction product, respectively, of the glucose electrooxidation.

  20. Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes.

    PubMed

    Sahu, Devashri; Kannan, G M; Vijayaraghavan, R

    2014-01-01

    With the rapid development of nanomedicines, it is important to understand their potential immunotoxicity. Zinc oxide (ZnO) nanoparticles have several applications in the pharmaceutical and biomedicine industries. This study investigates the effect of particles size (nano and micro) of ZnO on viability, phagocytosis, and cytokine induction in human monocytes, THP-1 cells, a model of the innate immune system. Cells were incubated with nano (approximately 100 nm) and micro (approximately 5 μm) sized ZnO particles in a concentration range of 10-100 μg/ml. The parameters measured included the MTT assay, phagocytosis assay, enzyme-linked immunosorbent assay (ELISA), gene expression, and DNA analysis. ZnO particles significantly decreased cell viability in a size- and concentration-dependent manner associated with significant alterations in phagocytic capacity of monocytes. Exposure of THP-1 cells to both sizes of ZnO stimulated and increased release of proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6, as well as chemokine IL-8, and upregulated the expression of monocyte chemoattractant protein-1 and cyclooxygenase-2 genes. However, ZnO particles did not markedly affect monocytes DNA. Collectively, these results suggest higher propensity of nano ZnO particles in inducing cytotoxicity and inflammation in human monocytes regardless of micro size, and caution needs to be taken concerning their biological application. PMID:24555677

  1. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    PubMed Central

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-01-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948

  2. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation

    PubMed Central

    Cohen, E. Suzanne; Scott, Ian C.; Majithiya, Jayesh B.; Rapley, Laura; Kemp, Benjamin P.; England, Elizabeth; Rees, D. Gareth; Overed-Sayer, Catherine L.; Woods, Joanne; Bond, Nicholas J.; Veyssier, Christel Séguy; Embrey, Kevin J.; Sims, Dorothy A.; Snaith, Michael R.; Vousden, Katherine A.; Strain, Martin D.; Chan, Denice T. Y.; Carmen, Sara; Huntington, Catherine E.; Flavell, Liz; Xu, Jianqing; Popovic, Bojana; Brightling, Christopher E.; Vaughan, Tristan J.; Butler, Robin; Lowe, David C.; Higazi, Daniel R.; Corkill, Dominic J.; May, Richard D.; Sleeman, Matthew A.; Mustelin, Tomas

    2015-01-01

    In response to infections and irritants, the respiratory epithelium releases the alarmin interleukin (IL)-33 to elicit a rapid immune response. However, little is known about the regulation of IL-33 following its release. Here we report that the biological activity of IL-33 at its receptor ST2 is rapidly terminated in the extracellular environment by the formation of two disulphide bridges, resulting in an extensive conformational change that disrupts the ST2 binding site. Both reduced (active) and disulphide bonded (inactive) forms of IL-33 can be detected in lung lavage samples from mice challenged with Alternaria extract and in sputum from patients with moderate–severe asthma. We propose that this mechanism for the rapid inactivation of secreted IL-33 constitutes a ‘molecular clock' that limits the range and duration of ST2-dependent immunological responses to airway stimuli. Other IL-1 family members are also susceptible to cysteine oxidation changes that could regulate their activity and systemic exposure through a similar mechanism. PMID:26365875

  3. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems.

  4. In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte

    NASA Astrophysics Data System (ADS)

    Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh

    2016-02-01

    There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity.

  5. A seven-degree-of-freedom, time-dependent quantum dynamics study on the energy efficiency in surmounting the central energy barrier of the OH + CH3 → O + CH4 reaction.

    PubMed

    Yan, Pengxiu; Wang, Yuping; Li, Yida; Wang, Dunyou

    2015-04-28

    A time-dependent, quantum reaction dynamics calculation with seven degrees of freedom was carried out to study the energy efficiency in surmounting the approximate center energy barrier of OH + CH3. The calculation shows the OH vibration excitations greatly enhance the reactivity, whereas the vibrational excitations of CH3 and the rotational excitations hinder the reactivity. On the basis of equal amount of total energy, although this reaction has a slight early barrier, it is the OH vibrational energy that is the dominate force in promoting the reactivity, not the translational energy. The studies on both the forward O + CH4 and reverse OH + CH3 reactions demonstrate, for these central barrier reactions, a small change of the barrier location can significantly change the energy efficacy roles on the reactivity. The calculated rate constants agree with the experimental data.

  6. A seven-degree-of-freedom, time-dependent quantum dynamics study on the energy efficiency in surmounting the central energy barrier of the OH + CH{sub 3} → O + CH{sub 4} reaction

    SciTech Connect

    Yan, Pengxiu; Wang, Yuping; Li, Yida; Wang, Dunyou

    2015-04-28

    A time-dependent, quantum reaction dynamics calculation with seven degrees of freedom was carried out to study the energy efficiency in surmounting the approximate center energy barrier of OH + CH{sub 3}. The calculation shows the OH vibration excitations greatly enhance the reactivity, whereas the vibrational excitations of CH{sub 3} and the rotational excitations hinder the reactivity. On the basis of equal amount of total energy, although this reaction has a slight early barrier, it is the OH vibrational energy that is the dominate force in promoting the reactivity, not the translational energy. The studies on both the forward O + CH{sub 4} and reverse OH + CH{sub 3} reactions demonstrate, for these central barrier reactions, a small change of the barrier location can significantly change the energy efficacy roles on the reactivity. The calculated rate constants agree with the experimental data.

  7. Oral sapropterin acutely augments reflex vasodilation in aged human skin through nitric oxide-dependent mechanisms.

    PubMed

    Stanhewicz, Anna E; Alexander, Lacy M; Kenney, W Larry

    2013-10-01

    Functional constitutive nitric oxide synthase (NOS) and its cofactor tetrahydrobiopterin (BH4) are required for full reflex cutaneous vasodilation and are attenuated in primary aging. Acute, locally administered BH4 increases reflex vasodilation through NO-dependent mechanisms in aged skin. We hypothesized that oral sapropterin (Kuvan, shelf-stable pharmaceutical formulation of BH4) would augment reflex vasodilation in aged human skin during hyperthermia. Nine healthy human subjects (76 ± 1 yr) ingested sapropterin (10 mg/kg) or placebo in a randomized double-blind crossover design. Venous blood samples were collected prior to, and 3 h following, ingestion of sapropterin for measurement of plasma BH4. Three intradermal microdialysis fibers were placed in the forearm skin for local delivery of 1) lactated Ringer's solution, 2) 10 mM BH4, and 3) 20 mM N(G)-nitro-l-arginine methyl ester (l-NAME) to inhibit NOS. Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasodilation was induced using a water-perfused suit. At 1°C rise in oral temperature, mean body temperature was clamped and 20 mM l-NAME was perfused at each site. Cutaneous vascular conductance was calculated (CVC = LDF/MAP) and expressed as a percentage of maximum (%CVCmax 28 mM sodium nitroprusside and local heat 43°C). Plasma concentrations of BH4 were significantly elevated 3 h after ingestion of sapropterin (0 h: 19.1 ± 2 pmol/ml vs. 3 h: 43.8 ± 3 pmol/ml; P < 0.001). Sapropterin increased NO-dependent vasodilation at control site (placebo: 14 ± 1 %CVCmax vs. sapropterin: 25 ± 4 %CVCmax; P = 0.004). Local BH4 administration increased NO-dependent vasodilation compared with control in placebo trials only (control: 14 ± 1 %CVCmax vs. BH4-treated: 24 ± 3 %CVCmax; P = 0.02). These data suggest oral sapropterin increases bioavailable BH4 in aged skin microvasculature sufficiently to increase NO synthesis through NOS and that sapropterin may be a viable intervention to

  8. Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors. I. Analytical modeling of time-dependent characteristics

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.

    2014-06-01

    Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.

  9. The oxidative cost of reproduction depends on early development oxidative stress and sex in a bird species.

    PubMed

    Romero-Haro, A A; Sorci, G; Alonso-Alvarez, C

    2016-06-29

    In the early 2000s, a new component of the cost of reproduction was proposed: oxidative stress. Since then the oxidative cost of reproduction hypothesis has, however, received mixed support. Different arguments have been provided to explain this. Among them, the lack of a life-history perspective on most experimental tests was suggested. We manipulated the levels of a key intracellular antioxidant (glutathione) in captive zebra finches (Taeniopygia guttata) during a short period of early life and subsequently tested the oxidative cost of reproduction. Birds were allowed to mate freely in an outdoor aviary for several months. We repeatedly enlarged or reduced their broods to increase or reduce, respectively, breeding effort. Birds whose glutathione levels were reduced during growth showed higher erythrocyte resistance to free radical-induced haemolysis when forced to rear enlarged broods. This supports the hypothesis predicting the occurrence of developing programmes matching early and adult environmental conditions to improve fitness. Moreover, adult males rearing enlarged broods endured higher plasma levels of lipid oxidative damage than control males, whereas adult females showed the opposite trend. As most previous studies reporting non-significant or opposite results used females only, we also discuss some sex-related particularities that may contribute to explain unexpected results. PMID:27358368

  10. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship.

    PubMed

    Liu, Changhui; Chang, Victor W C; Gin, Karina Y H

    2014-10-01

    Concerns regarding perfluorinated chemicals (PFCs) have risen in recent years because of their ubiquitous presence and high persistency. However, data on the environmental impacts of PFCs on marine organisms are very limited. Oxidative toxicity has been suggested to be one of the major toxic pathways for PFCs to induce adverse effects on organisms. To investigate PFC-induced oxidative stress and oxidative toxicity, a series of antioxidant enzyme activities and oxidative damage biomarkers were examined to assess the adverse effects of the following 4 commonly detected compounds: perfluoro-octanesulfonate, perfluoro-ocanoic acid, perfluorononanoic acid, and perfluorodecanoic acid, on green mussel (Perna viridis). Quantitative structure-activity relationship (QSAR) models were also established. The results showed that all the tested PFCs are able to induce antioxidant response and oxidative damage on green mussels in a dose-dependent manner. At low exposure levels (0 µg/L-100 µg/L), activation of antioxidant enzymes (catalase [CAT] and superoxide dismutase [SOD]) was observed, which is an adaptive response to the excessive reactive oxygen species induced by PFCs, while at high exposure levels (100 µg/L-10 000 µg/L), PFCs were found to inhibit some enzyme activity (glutathione S-transferase and SOD) where the organism's ability to respond in an adaptive manner was compromised. The oxidative stress under high PFC exposure concentration also led to lipid and DNA damage. PFC-induced oxidative toxicity was found to be correlated with the bioaccumulation potential of PFCs. Based on this relationship, QSAR models were established using the bioaccumulation factor (BAF) as the molecular descriptor for the first time. Compared with previous octanol-water partition coefficient-dependent QSAR models, the BAF-dependent QSAR model is more suitable for the impact assessment of PFCs and thus provides a more accurate description of the toxic behavior of these compounds.

  11. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro.

    PubMed

    Hanot-Roy, Maïté; Tubeuf, Emilie; Guilbert, Ariane; Bado-Nilles, Anne; Vigneron, Pascale; Trouiller, Bénédicte; Braun, Anne; Lacroix, Ghislaine

    2016-06-01

    The health risks of nanoparticles remain a serious concern given their prevalence from industrial and domestic use. The primary route of titanium dioxide nanoparticle exposure is inhalation. The extent to which nanoparticles contribute to cellular toxicity is known to associate induction of oxidative stress. To investigate this problem further, the effect of titanium dioxide nanoparticles was examined on cell lines representative of alveolo-capillary barrier. The present study showed that all nanoparticle-exposed cell lines displayed ROS generation. Macrophage-like THP-1 and HPMEC-ST1.6R microvascular cells were sensitive to endogenous redox changes and underwent apoptosis, but not alveolar epithelial A549 cells. Genotoxic potential of titanium dioxide nanoparticles was investigated using the activation of γH2AX, activation of DNA repair proteins and cell cycle arrest. In the sensitive cell lines, DNA damage was persistent and activation of DNA repair pathways was observed. Moreover, western blot analysis showed that specific pathways associated with cellular stress response were activated concomitantly with DNA repair or apoptosis. Nanoparticles-induced oxidative stress is finally signal transducer for further physiological effects including genotoxicity and cytotoxicity. Within activated pathways, HSP27 and SAPK/JNK proteins appeared as potential biomarkers of intracellular stress and of sensitivity to endogenous redox changes, respectively, enabling to predict cell behavior.

  12. Polarity dependent thermochemical E-model for describing time dependent dielectric breakdown in metal-oxide-semiconductor devices with hyper-thin gate dielectrics

    NASA Astrophysics Data System (ADS)

    McPherson, J. W.

    2016-09-01

    The Lorentz factor L, which is used for describing the local electric fields in hyper-thin (<3.0 nm) gate dielectrics, is found to be polarity dependent for an inversion and accumulation-mode testing of Metal-Oxide-Semiconductor Field Effect Transistors. L is strongly impacted by the dipole layers that are induced in the depletion regions in the poly and silicon-substrate electrodes. While time dependent dielectric breakdown (TDDB) results are much improved with the inversion-mode testing, the reason for this is due to a smaller Lorentz factor (thus smaller Eloc). In fact, when compared at the same local electric field Eloc, there is no difference in TDDB between the inversion and accumulation mode testing. Thus, when properly corrected for the depletion effects in the MOS electrodes, the Thermochemical E-Model becomes polarity dependent and describes well both the inversion and accumulation-mode TDDB testing of the hyper-thin gate dielectrics.

  13. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation

    NASA Astrophysics Data System (ADS)

    Miot, Jennyfer; Li, Jinhua; Benzerara, Karim; Sougrati, Moulay Tahar; Ona-Nguema, Georges; Bernard, Sylvain; Jumas, Jean-Claude; Guyot, François

    2014-08-01

    Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4 months vs. 2 days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase

  14. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs

    PubMed Central

    Zhou, Lufang; Cabrera, Marco E; Huang, Hazel; Yuan, Celvie L; Monika, Duda K; Sharma, Naveen; Bian, Fang; Stanley, William C

    2007-01-01

    Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of pyruvate dehydrogenase, and a 50% increase in tissue NADH/NAD+. Simulations from a multicompartmental computational model of cardiac energy metabolism predicted that parallel activation of glycolysis and mitochondrial metabolism results in an increase in the NADH/NAD+ ratio in both cytosol and mitochondria. FAO was blocked by 75% in a third group of pigs, and a similar increase in and the NAHD/NAD+ ratio was observed. In conclusion, in the transition to a high cardiac workload there is rapid parallel activation of substrate oxidation that results in an increase in the NADH/NAD+ ratio. PMID:17185335

  15. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement.

    PubMed Central

    Curnutte, J T; Karnovsky, M L; Babior, B M

    1976-01-01

    Recent work has indicated that superoxide is involved in the manganese-stimulated oxidation of NADPH by crude granule preparations of guinea pig neutrophils. The characteristics of a model manganese-requiring NADPH-oxidizing system that employs a defined O2-generator have now been compared to the original neutrophil-granule system. With respect to pH dependence, cyanide sensitivity, and reduced pyridine nucleotide specificity, the properties of the two systems are very similar. Additional information has been obtained concerning cation specificity and the kinetics of the metal-catalyzed NADPH oxidation. From the similarities between the properties of the model and neutrophil particle systems, we postulate that the manganese-dependent NADPH oxidation observed in the presence of neutrophil granules represents in large part of nonenzymatic free radical chain involving the oxidation of NADPH to NADP, with O2- as both the chain initiator and one of the propagating species. In this reaction, the neutrophil particles serve only as a source of O2-. Further, the same changes in kinetics (decrease in apparent Km for NADPH) observed previously when granules from phagocytizing rather than resting cells were employed could be mimicked by varying the rate of O2-generation by the model system. We conclude from these results that it is unnecessary to invoke a manganese-requiring enzyme as a component of the phagocytically stimulated respiratory system of the neutrophil. PMID:7574

  16. Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Ma, Qingxin

    2008-04-01

    The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed.

  17. Nitrite Regulates Hypoxic Vasodilation via Myoglobin–Dependent Nitric Oxide Generation

    PubMed Central

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B.; Luedike, Peter; Berenbrink, Michael; Klare, Johann P.; Steinhoff, Heinz-Juergen; Semmler, Dominik; Shiva, Sruti; Williams, Daryl; Kipar, Anja; Gladwin, Mark T.; Schrader, Juergen; Kelm, Malte; Cossins, Andrew R.; Rassaf, Tienush

    2012-01-01

    Background Hypoxic vasodilation is a physiological response to low oxygen (O2) tension that increases blood supply to match metabolic demands. While this response has been characterized for more than 100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin (deoxyMb) in the heart can reduce nitrite to nitric oxide (NO˙) and thereby contribute to cardiomyocyte NO˙ signaling during ischemia. Based on recent observations that Mb is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular Mb to form NO˙. Methods and Results We here show that Mb is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO˙ from nitrite reduction by deoxyMb activates canonical soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO˙ and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin (Mb−/−). Hypoxic vasodilation studies in Mb, endothelial and inducible NO synthase knockout models (eNOS−/−, iNOS−/−) suggest that only Mb contributes to systemic hypoxic vasodilatory responses in mice. Conclusions Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO˙ via the heme globin Mb enhances blood flow and matches O2 supply to increased metabolic demands under hypoxic conditions. PMID:22685116

  18. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance.

    PubMed

    Rakhi, R B; Chen, Wei; Cha, Dongkyu; Alshareef, H N

    2012-05-01

    A scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector. The fabricated electrodes offer the desired properties of macroporosity to allow facile electrolyte flow, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics. Co(3)O(4) nanowires grown on carbon fiber paper collectors self-organize into a brush-like morphology with the nanowires completely surrounding the carbon microfiber cores. In comparison, Co(3)O(4) nanowires grown on planar graphitized carbon paper collectors self-organize into a flower-like morphology. In three electrode configuration, brush-like and flower-like morphologies exhibited specific capacitance values of 1525 and 1199 F/g, respectively, at a constant current density of 1 A/g. In two electrode configuration, the brush-like nanowire morphology resulted in a superior supercapacitor performance with high specific capacitances of 911 F/g at 0.25 A/g and 784 F/g at 40 A/g. In comparison, the flower-like morphology exhibited lower specific capacitance values of 620 F/g at 0.25 A/g and 423 F/g at 40 A/g. The Co(3)O(4) nanowires with brush-like morphology exhibited high values of specific power (71 kW/kg) and specific energy (81 Wh/kg). Maximum energy and power densities calculated for Co(3)O(4) nanowires with flower-like morphology were 55 Wh/kg and 37 kW/kg respectively. Both electrode designs exhibited excellent cycling stability by retaining ∼91-94% of their maximum capacitance after 5000 cycles of continuous charge-discharge. PMID:22494065

  19. Superoxide-dependent consumption of nitric oxide in biological media may confound in vitro experiments.

    PubMed

    Keynes, Robert G; Griffiths, Charmaine; Garthwaite, John

    2003-01-15

    NO functions ubiquitously as a biological messenger but has also been implicated in various pathologies, a role supported by many reports that exogenous or endogenous NO can kill cells in tissue culture. In the course of experiments aimed at examining the toxicity of exogenous NO towards cultured cells, we found that most of the NO delivered using a NONOate (diazeniumdiolate) donor was removed by reaction with the tissue-culture medium. Two NO-consuming ingredients were identified: Hepes buffer and, under laboratory lighting, the vitamin riboflavin. In each case, the loss of NO was reversed by the addition of superoxide dismutase. The effect of Hepes was observed over a range of NONOate concentrations (producing up to 1 microM NO). Furthermore, from measurements of soluble guanylate cyclase activity, Hepes-dependent NO consumption remained significant at the low nanomolar NO concentrations relevant to physiological NO signalling. The combination of Hepes and riboflavin (in the light) acted synergistically to the extent that, instead of a steady-state concentration of about 1 microM being generated, NO was undetectable (<10 nM). Again, the consumption could be inhibited by superoxide dismutase. A scheme is proposed whereby a "vicious cycle" of superoxide radical (O(2)(.-)) formation occurs as a result of oxidation of Hepes to its radical species, fuelled by the subsequent reaction of O(2)(.-) with NO to form peroxynitrite (ONOO(-)). The inadvertent production of ONOO(-) and other reactive species in biological media, or the associated loss of NO, may contribute to the adverse effects, or otherwise, of NO in vitro.

  20. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide.

    PubMed

    Banoujaafar, Hayat; Monnier, Alice; Pernet, Nicolas; Quirié, Aurore; Garnier, Philippe; Prigent-Tessier, Anne; Marie, Christine

    2016-09-01

    Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production. PMID:27306299

  1. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism.

    PubMed

    Dubey, Megha; Nagarkoti, Sheela; Awasthi, Deepika; Singh, Abhishek K; Chandra, Tulika; Kumaravelu, J; Barthwal, Manoj K; Dikshit, Madhu

    2016-01-01

    Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway. PMID:27584786

  2. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

    PubMed Central

    Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie

    2015-01-01

    Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples. PMID

  3. Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.

    PubMed

    Gali, Pradeep; Sapkota, Gopal; Syllaios, A J; Littler, Chris; Philipose, U

    2013-06-01

    The effect of stoichiometry of single crystalline In2O3 nanowires on electrical transport and gas sensing was investigated. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80 to 100 nm and lengths between 10 and 20 μm, with a growth direction of [001]. Transport measurements revealed n-type conduction, attributed to the presence of oxygen vacancies in the crystal lattice. As-grown In2O3 nanowires were shown to have a carrier concentration of ≈5 × 10(17) cm(-3), while nanowires that were annealed in wet O2 showed a reduced carrier concentration of less than 10(16) cm(-3). Temperature dependent conductivity measurements on the as-grown nanowires and analysis of the thermally activated Arrhenius conduction for the temperature range of 77-350 K yielded an activation energy of 0.12 eV. This is explained on the basis of carrier exchange that occurs between the surface states and the bulk of the nanowire, resulting in a depleted surface layer of thickness of the order of the Debye length (LD), estimated to be about 3-4 nm for the as-grown nanowires and about 10 times higher for the more stoichiometric nanowires. Significant changes in the electrical conductance of individual In2O3 nanowires were also observed within several seconds of exposure to NH3 and O2 gas molecules at room temperature, thus demonstrating the potential use of In2O3 nanowires as efficient miniaturized chemical sensors. The sensing mechanism is dominated by the nanowire channel conductance, and a simple energy band diagram is used to explain the change in conductivity when gas molecules adsorbed on the nanowire surface influence its electrical properties. Less stoichiometric nanowires were found to be more sensitive to oxidizing gases while more stoichiometric nanowires showed significantly enhanced response to reducing gases.

  4. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    PubMed Central

    Muñoz, Manuel F.; Puebla, Mariela; Figueroa, Xavier F.

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process

  5. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism

    PubMed Central

    Dubey, Megha; Nagarkoti, Sheela; Awasthi, Deepika; Singh, Abhishek K; Chandra, Tulika; Kumaravelu, J; Barthwal, Manoj K; Dikshit, Madhu

    2016-01-01

    Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway. PMID:27584786

  6. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    SciTech Connect

    Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; Yadava, N.; Chandra, D.

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  7. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; et al

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS

  8. Compositional dependence of elastic moduli for transition-metal oxide spinels

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.

    2012-12-01

    Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.

  9. Adaptation to Ephemeral Habitat May Overcome Natural Barriers and Severe Habitat Fragmentation in a Fire-Dependent Species, the Bachman's Sparrow (Peucaea aestivalis)

    PubMed Central

    Cerame, Blain; Cox, James A.; Brumfield, Robb T.; Tucker, James W.; Taylor, Sabrina S.

    2014-01-01

    Bachman's Sparrow (Peucaea aestivalis) is a fire-dependent species that has undergone range-wide population declines in recent decades. We examined genetic diversity in Bachman's Sparrows to determine whether natural barriers have led to distinct population units and to assess the effect of anthropogenic habitat loss and fragmentation. Genetic diversity was examined across the geographic range by genotyping 226 individuals at 18 microsatellite loci and sequencing 48 individuals at mitochondrial and nuclear genes. Multiple analyses consistently demonstrated little genetic structure and high levels of genetic variation, suggesting that populations are panmictic. Based on these genetic data, separate management units/subspecies designations or translocations to promote gene flow among fragmented populations do not appear to be necessary. Panmixia in Bachman's Sparrow may be a consequence of an historical range expansion and retraction. Alternatively, high vagility in Bachman's Sparrow may be an adaptation to the ephemeral, fire-mediated habitat that this species prefers. In recent times, high vagility also appears to have offset inbreeding and loss of genetic diversity in highly fragmented habitat. PMID:25180939

  10. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines.

    PubMed

    Momeny, Majid; Saunus, Jodi M; Marturana, Flavia; McCart Reed, Amy E; Black, Debra; Sala, Gianluca; Iacobelli, Stefano; Holland, Jane D; Yu, Dihua; Da Silva, Leonard; Simpson, Peter T; Khanna, Kum Kum; Chenevix-Trench, Georgia; Lakhani, Sunil R

    2015-02-28

    HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment.

  11. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): Application to normal controls and chronic exertional compartment syndrome patients

    PubMed Central

    Sigmund, Eric E.; Novikov, Dmitry S.; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Babb, James S.; Liu, Kecheng; Feiweier, Thorsten; Kwon, Jane; Mcgorty, KellyAnne; Bencardino, Jenny; Fieremans, Els

    2014-01-01

    Purpose To collect diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3-T scanner at rest and after treadmill exertion at 4 different diffusion times. Radial diffusion values λrad were computed for each of 7 different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D0, fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. Results All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D0 showed significant (p<0.05) increases with exercise for volunteers, and a increased significantly (p<0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p=0.07), and larger permeability increases (p=0.07) than controls. Conclusions Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be

  12. Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor–Dependent Mechanism

    PubMed Central

    Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.

    2013-01-01

    Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224

  13. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    EPA Science Inventory

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  14. Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Alialy, S.; Altındal, Ş.; Tanrıkulu, E. E.; Yıldız, D. E.

    2014-08-01

    In order to determine the effective current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal-insulator semiconductor) type Schottky barrier diodes (SBDs), their current-voltage (I-V) measurements were carried out in the temperature range of 200-380 K. Some electrical parameters, such as ideality factor (n), zero-bias barrier height (BH) (ΦBo), series and shunt resistances (Rs, Rsh), were obtained as 5.09, 0.81 eV, 37.43 Ω, and 435 kΩ at 200 K and 2.68, 0.95 eV, 5.99 Ω, and 73 kΩ at 380 K, respectively. The energy density distribution profile of surface states (Nss) was extracted from the forward-bias I-V data by taking into account voltage dependent of the ideality factor (nV), effective BH (Φe), and Rs for 200, 300, and 380 K. The Ln(I) vs V plots are completely parallel in the intermediate bias voltages, which may be well explained by field emission (FE) mechanism for each temperature. On the other hand, the high value of n cannot be explained with this mechanism. Therefore, to explain the change in BH and n with temperature, ΦBo vs q/2kT plot was drawn to obtain an evidence of a Gaussian distribution (GD) of the BHs and thus the mean value of BH (Φ¯Bo) and standard deviation (σso) values were found from this plot as 1.396 eV and 0.176 V, respectively. The Φ¯Bo and Richardson constant (A*) values were found as 1.393 eV and 145.5 A.cm-2 K-2 using modified Ln(Io/T2)-(q2σs2/2k2T2) vs q/kT plot, respectively. It is clear that all of the obtained main electrical parameters were found as a strong function of temperature. These results indicated that the current conduction mechanism in Au/TiO2/n-4 H-SiC (SBD) well obey the FE and GD mechanism rather than other mechanisms.

  15. The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica).

    PubMed

    Bonisoli-Alquati, Andrea; Møller, Anders Pape; Rudolfsen, Geir; Saino, Nicola; Caprioli, Manuela; Ostermiller, Shanna; Mousseau, Timothy A

    2011-06-01

    Sperm are highly susceptible to reactive oxygen species (ROS) that can damage sperm DNA and structure, resulting in reduced fertilizing capacity. Exposure to radioactive contamination can also impair sperm swimming behavior and fertilizing ability, both through a reduction of sperm DNA integrity and via an increased generation of reactive oxygen species (ROS). However, the relationship between individual oxidative status and sperm swimming behavior has never been investigated in any wild population of animals exposed to radioactive contamination. We studied the motility of sperm collected from barn swallows, Hirundo rustica, breeding under different levels of radioactive contamination following the Chernobyl accident in 1986, in relation to individual oxidative status. We tested the hypothesis that the degree of impairment of sperm swimming behavior by radioactive contamination depended on plasma antioxidant capacity, the level of reactive oxygen metabolites (ROMs) and oxidative stress (sensu Costantini et al. 2006), a better oxidative status being associated with higher sperm motility. Sperm behavior parameters were subjected to principal component (PC) analysis, which extracted four PCs explaining 86% of the variance in sperm motility. PC2, representing sperm with high track velocity and ample lateral head displacement, was significantly predicted by the interaction between radiation level and either oxidative damage or oxidative stress. Contrary to our predictions, the highest values of PC2 were associated with relatively high radiation levels, particularly for high levels of either ROMs or oxidative stress. In addition, there was a tendency for values of PC3 (representing the percent of motile sperm) and PC4 (representing slow sperm with high beat cross frequency) to depend on the interaction between radiation level and total plasma antioxidant protection. Our results confirm the importance of oxidative status in determining the genetic and physiological

  16. Barrier Integrity of Electroless Diffusion Barriers and Organosilane Monolayer against Copper Diffusion under Bias Temperature Stress

    NASA Astrophysics Data System (ADS)

    Mitsumori, Akiyoshi; Fujishima, Shota; Ueno, Kazuyoshi

    2012-05-01

    Barrier integrity of electroless NiB and CoWP/NiB thin layers against copper (Cu) diffusion was evaluated by time-dependent dielectric breakdown (TDDB) under bias temperature stress (BTS) using metal oxide semiconductor (MOS) test structures. The BTS tests were carried out also for an approximately 2.2-nm-thick organosilane monolayer (OSML), which has been used as the underlayer of the electroless barrier layers (EBLs). It was found that the barrier integrity of the EBLs was NiB 40 nm > NiB 10 nm > CoWP/NiB 40 nm = CoWP/NiB 10 nm in this order. The field acceleration parameter of the TDDB lifetime was almost the same for all EBLs. Initial failures and wide lifetime distributions were observed for CoWP/NiB when the NiB catalyst layer for CoWP was not thick enough, which is considered to be due to the large surface roughness. In addition, the OSML was found to have some barrier properties. Although the reliability of OSML was inferior to electroless NiB and CoWP/NiB barrier layers, it is considered that the barrier integrity of the EBLs was partially supported by the OSML.

  17. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization

    PubMed Central

    Zhang, Li; Sun, Yang; Fei, Mingjian; Tan, Cheng; Wu, Jing; Zheng, Jie; Tang, Jiqing; Sun, Wei; Lv, Zhaoliang; Bao, Jiandong; Xu, Qiang; Yu, Huixin

    2014-01-01

    Oxidative stress has been implicated in both normal aging and various neurodegenerative disorders and it may be a major cause of neuronal death. Chaperone-mediated autophagy (CMA) targets selective cytoplasmic proteins for degradation by lysosomes and protects neurons against various extracellular stimuli including oxidative stress. MEF2A (myocyte enhancer factor 2A), a key transcription factor, protects primary neurons from oxidative stress-induced cell damage. However, the precise mechanisms of how the protein stability and the transcriptional activity of MEF2A are regulated under oxidative stress remain unknown. In this study, we report that MEF2A is physiologically degraded through the CMA pathway. In pathological conditions, mild oxidative stress (200 μM H2O2) enhances the degradation of MEF2A as well as its activity, whereas excessive oxidative stress (> 400 μM H2O2) disrupts its degradation process and leads to the accumulation of nonfunctional MEF2A. Under excessive oxidative stress, an N-terminal HDAC4 (histone deacetylase 4) cleavage product (HDAC4-NT), is significantly induced by lysosomal serine proteases released from ruptured lysosomes in a PRKACA (protein kinase, cAMP-dependent, catalytic, α)-independent manner. The production of HDAC4-NT, as a MEF2 repressor, may account for the reduced DNA-binding and transcriptional activity of MEF2A. Our work provides reliable evidence for the first time that MEF2A is targeted to lysosomes for CMA degradation; oxidative stress-induced lysosome destabilization leads to the disruption of MEF2A degradation as well as the dysregulation of its function. These findings may shed light on the underlying mechanisms of pathogenic processes of neuronal damage in various neurodegenerative-related diseases. PMID:24879151

  18. Thermal barrier coating system

    NASA Technical Reports Server (NTRS)

    Stecura, S. (Inventor)

    1985-01-01

    An oxide thermal barrier coating comprises ZrO3-Yb2O3 that is plasma sprayed onto a previously applied bond coating. The zirconia is partially stabilized with about 124 w/o ytterbia to insure cubic, monoclinic, and terragonal phases.

  19. Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities.

    PubMed

    Bernardo, Ivan; Bozinovski, Steven; Vlahos, Ross

    2015-11-01

    Chronic obstructive pulmonary disease (COPD) is an incurable global health burden and is characterised by progressive airflow limitation and loss of lung function. In addition to the pulmonary impact of the disease, COPD patients often develop comorbid diseases such as cardiovascular disease, skeletal muscle wasting, lung cancer and osteoporosis. One key feature of COPD, yet often underappreciated, is the contribution of oxidative stress in the onset and development of the disease. Patients experience an increased burden of oxidative stress due to the combined effects of excess reactive oxygen species (ROS) and nitrogen species (RNS) generation, antioxidant depletion and reduced antioxidant enzyme activity. Currently, there is a lack of effective treatments for COPD, and an even greater lack of research regarding interventions that treat both COPD and its comorbidities. Due to the involvement of oxidative stress in the pathogenesis of COPD and many of its comorbidities, a unique therapeutic opportunity arises where the treatment of a multitude of diseases may be possible with only one therapeutic target. In this review, oxidative stress and the roles of ROS/RNS in the context of COPD and comorbid cardiovascular disease, skeletal muscle wasting, lung cancer, and osteoporosis are discussed and the potential for therapeutic benefit of anti-oxidative treatment in these conditions is outlined. Because of the unique interplay between oxidative stress and these diseases, oxidative stress represents a novel target for the treatment of COPD and its comorbidities. PMID:26297673

  20. TEMPO-mediated oxidation on galactomannan: Gal/Man ratio and chain flexibility dependence.

    PubMed

    Sakakibara, Caroline Novak; Sierakowski, Maria Rita; Lucyszyn, Neoli; de Freitas, Rilton Alves

    2016-11-20

    Guar (GG) and locust bean (LBG) galactomannans (GMs) oxidation at C-6 was performed with catalyst TEMPO, in which the reaction progress was monitored by consume of NaOH solution. The products were characterized by spectroscopic analysis, infrared, and (1)H-nuclear magnetic resonance, confirming the presence of aldehydes groups as intermediate of reaction to carboxylic acid. From high performance anion exchange chromatography with pulsed amperometric detection Man/Gal molar ratio was determined and demonstrated a preference to oxidize Man during the reaction on both GMs, following a first order kinetics of oxidation. The comparative macromolecular behavior of native and oxidized GMs was obtained through the analysis by high performance size exclusion chromatography, and the persistence length (Lp) was 6nm and 4nm to native LBG and GG, respectively. A more accessible OH-6 at mannose residue in LBG could be related with a two times faster reaction than GG. The selective oxidation with catalyst TEMPO proved to be efficient to increase the flexibility of the GMs during oxidation. Short reaction time and β-elimination process were mainly observed to LBG, probably due to a more favorable oxidation access to the polysaccharide main chain. PMID:27561508

  1. TEMPO-mediated oxidation on galactomannan: Gal/Man ratio and chain flexibility dependence.

    PubMed

    Sakakibara, Caroline Novak; Sierakowski, Maria Rita; Lucyszyn, Neoli; de Freitas, Rilton Alves

    2016-11-20

    Guar (GG) and locust bean (LBG) galactomannans (GMs) oxidation at C-6 was performed with catalyst TEMPO, in which the reaction progress was monitored by consume of NaOH solution. The products were characterized by spectroscopic analysis, infrared, and (1)H-nuclear magnetic resonance, confirming the presence of aldehydes groups as intermediate of reaction to carboxylic acid. From high performance anion exchange chromatography with pulsed amperometric detection Man/Gal molar ratio was determined and demonstrated a preference to oxidize Man during the reaction on both GMs, following a first order kinetics of oxidation. The comparative macromolecular behavior of native and oxidized GMs was obtained through the analysis by high performance size exclusion chromatography, and the persistence length (Lp) was 6nm and 4nm to native LBG and GG, respectively. A more accessible OH-6 at mannose residue in LBG could be related with a two times faster reaction than GG. The selective oxidation with catalyst TEMPO proved to be efficient to increase the flexibility of the GMs during oxidation. Short reaction time and β-elimination process were mainly observed to LBG, probably due to a more favorable oxidation access to the polysaccharide main chain.

  2. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.

    PubMed

    Rubbo, H; Parthasarathy, S; Barnes, S; Kirk, M; Kalyanaraman, B; Freeman, B A

    1995-12-01

    Lipoxygenase-induced lipid oxidation contributes to plasma lipoprotein oxidation and may be an underlying pathogenic mechanism of atherogenesis. Since inactivation of the vasorelaxant actions of nitric oxide (.NO) plays a critical role in the impaired function of atherosclerotic vessels and because .NO reacts rapidly with other radical species, we assessed the influence of .NO on lipoxygenase-catalyzed oxidation of linoleic and linolenic acid, 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PC) liposomes, hypercholesterolemic rabbit beta-very-low-density lipoprotein, and human low-density lipoprotein. Soybean lipoxygenase (SLO)-induced lipid oxidation was assessed by accumulation of conjugated dienes, formation of lipid hydroperoxides, oxygen consumption, and liquid chromatography-mass spectrometry. Different rates of delivery of .NO to lipid oxidation systems were accomplished either by infusion of .NO gas equilibrated with anaerobic buffer or via .NO released from S-nitrosoglutathione. Nitric oxide alone did not induce lipid peroxidation, while exposure to SLO yielded significant oxidation of fatty acids, PC liposomes, or lipoproteins in a metal ion-independent mechanism. Low concentrations of .NO, which did not significantly inhibit the activity of the iron-containing lipoxygenase, induced potent inhibition of lipid peroxidation in a dose-dependent manner. Mass spectral analysis of oxidation products showed formation of nitrito-, nitro-, nitrosoperoxo-, and/or nitrated lipid oxidation adducts, demonstrating that .NO serves as a potent terminator of radical chain propagation reactions. The formation of Schiff's base fluorescent conjugates between SLO-oxidized linoleic or linolenic acid and bovine serum albumin (BSA) was also inhibited by .NO via reaction with lipid hydroperoxyl radicals (LOO.), thus preventing the reaction of LOO. with polypeptide amino groups. Mass spectrometry analysis showed that both lipid peroxidation products and nitrogen

  3. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge.

    PubMed

    Song, Z-H; Ke, Y-L; Xiao, K; Jiao, L-F; Hong, Q-H; Hu, C-H

    2015-04-01

    The present study evaluated the beneficial effect of diosmectite-zinc oxide composite (DS-ZnO) on improving intestinal barrier restoration in piglets after acetic acid challenge and explored the underlying mechanisms. Twenty-four 35-d-old piglets (Duroc × Landrace × Yorkshire), with an average weight of 8.1 kg, were allocated to 4 treatment groups. On d 1 of the trial, colitis was induced via intrarectal injection of acetic acid (10 mL of 10% acetic acid [ACA] solution for ACA, DS-ZnO, and mixture of diosmectite [DS] and ZnO [DS+ZnO] groups) and the control group was infused with saline. Twenty-four hours after challenged, piglets were fed with the following diets: 1) control group (basal diet), 2) ACA group (basal diet), 3) DS-ZnO group (basal diet supplemented with DS-ZnO), and 4) DS+ZnO group (mixture of 1.5 g diosmectite [DS]/kg and 500 mg Zn/kg from ZnO [equal amount of DS and ZnO in the DS-ZnO treatment group]). On d 8 of the trial, piglets were sacrificed. The results showed that DS-ZnO supplementation improved (P < 0.05) ADG, ADFI, and transepithelial electrical resistance and decreased (P < 0.05) fecal scores, crypt depth, and fluorescein isothiocyanate-dextran 4 kDa (FD4) influx as compared with ACA group. Moreover, DS-ZnO increased (P < 0.05) occludin, claudin-1, and zonula occluden-1 expressions; reduced (P < 0.05) caspase-9 and caspase-3 activity and Bax expression; and improved (P < 0.05) Bcl2, XIAP, and PCNA expression. Diosmectite-zinc oxide composite supplementation also increased (P < 0.05) TGF-β1 expression and ERK1/2 and Akt activation. These results suggest that DS-ZnO attenuates the acetic acid-induced colitis by improving mucosa barrier restoration, inhibiting apoptosis, and improving intestinal epithelial cells proliferation and modulation of TGF-β1 and ERK1/2 and Akt signaling pathway.

  4. Endothelial Cells Derived from the Blood-Brain Barrier and Islets of Langerhans Differ in their Response to the Effects of Bilirubin on Oxidative Stress Under Hyperglycemic Conditions.

    PubMed

    Kapitulnik, Jaime; Benaim, Clara; Sasson, Shlomo

    2012-01-01

    Unconjugated bilirubin (UCB) is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS). High glucose levels (hyperglycemia) generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB). In the current study we show that UCB (1-40 μM) induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM) levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langerhans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM) glucose levels. While UCB (0.1-40 μM) did not alter ROS production in cells exposed to normal glucose, relatively low ("physiological") UCB concentrations (0.1-5 μM) attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20-40 μM) increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.

  5. Endothelial Cells Derived from the Blood-Brain Barrier and Islets of Langerhans Differ in their Response to the Effects of Bilirubin on Oxidative Stress Under Hyperglycemic Conditions.

    PubMed

    Kapitulnik, Jaime; Benaim, Clara; Sasson, Shlomo

    2012-01-01

    Unconjugated bilirubin (UCB) is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS). High glucose levels (hyperglycemia) generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB). In the current study we show that UCB (1-40 μM) induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM) levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langerhans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM) glucose levels. While UCB (0.1-40 μM) did not alter ROS production in cells exposed to normal glucose, relatively low ("physiological") UCB concentrations (0.1-5 μM) attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20-40 μM) increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions

  6. Vertical barriers with increased sorption capacities

    SciTech Connect

    Bradl, H.B.

    1997-12-31

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed {open_quotes}tailor-made{close_quotes} depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents.

  7. Analysis of Nitric Oxide-Dependent Antimicrobial Actions in Macrophages and Mice

    PubMed Central

    Vazquez-Torres, Andrés; Stevanin, Tania; Jones-Carson, Jessica; Castor, Margaret; Read, Robert C.; Fang, Ferric C.

    2009-01-01

    Nitric oxide (NO•) is a critical component of mammalian host defense that is produced in macrophages and other cells comprising the innate immune system. Isolated mammalian macrophages have been utilized to measure the kinetics of NO production and to demonstrate NO-related antimicrobial actions. Some microorganisms possess enzymes to detoxify nitrogen oxides, and mutant strains lacking these enzymes can be used to demonstrate the importance of these mechanisms for intracellular bacterialsurvival. This chapter describes techniques with which to analyze the antimicrobial actions of nitric oxide in murine and human macrophages and in laboratory mice. PMID:18433645

  8. Elucidation of barrier homogeneity in ZnO/P3HT:PCBM junctions through temperature dependent I-V characteristics

    NASA Astrophysics Data System (ADS)

    Khare, Neeraj; Zubair Ansari, Mohd; Hoye, Robert L. Z.; Iza, Diana C.; MacManus-Driscoll, Judith L.

    2016-07-01

    The current-voltage (I-V) characteristics of ZnO/P3HT:PCBM junctions using as-deposited ZnO and 300 °C-annealed ZnO (prior to device fabrication) were probed as a function of temperature. The ZnO films were synthesized using two scalable, low temperature methods: Atmospheric pressure spatial atomic layer deposition (AP-SALD) and electrodeposition (ED). In both cases the zero bias Schottky barrier height ({Φ\\text{B}} ) decreases and ideality factor (n) increases with a reduction in the operating temperature of the junctions. This was attributed to the presence of barrier inhomogeneities at the interface from surface states/defects in the ZnO causing a localized variation of work function. For the as-deposited ZnO junctions, two mean barrier heights, arising from a large density of surface states was observed. For the annealed ZnO junction one mean barrier height was observed, indicating reduction in the inhomogeneities of barrier height at the interface for the annealed ZnO. The photoresponce of ZnO/P3HT:PCBM junction was higher for the annealed ZnO which is due to the higher mean barrier height and lower value of ideality factor. This demonstrates that moderate annealing of chemically grown ZnO is crucial for reducing surface defects and barrier inhomogeneities.

  9. Analysis of temperature-dependant current-voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Mayimele, M. A.; van Rensburg, J. P. Janse; Auret, F. D.; Diale, M.

    2016-01-01

    We report on the analysis of current voltage (I-V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80-320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I-V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung's method in the extraction of the series resistance with Ohm's law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm-2 K-2 were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  10. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial α2-adrenoceptor activation

    PubMed Central

    Figueroa, Xavier F; Poblete, M Inés; Boric, Mauricio P; Mendizábal, Victoria E; Adler-Graschinsky, Edda; Huidobro-Toro, J Pablo

    2001-01-01

    To assess the involvement of endothelial α2-adrenoceptors in the clonidine-induced vasodilatation, the mesenteric artery of Sprague Dawley rats was cannulated and perfused with Tyrode solution (2 ml min−1). We measured perfusion pressure, nitric oxide (NO) in the perfusate using chemiluminescence, and tissue cyclic GMP by RIA.In phenylephrine-precontracted mesenteries, clonidine elicited concentration-dependent vasodilatations associated to a rise in luminal NO. One hundred nM rauwolscine or 100 μM Lω-nitro-L-arginine antagonized the clonidine-induced vasodilatation. Guanabenz, guanfacine, and oxymetazoline mimicked the clonidine-induced vasorelaxation.In non-contracted mesenteries, 100 nM clonidine elicited a maximal rise of NO (123±13 pmol); associated to a peak in tissue cyclic GMP. Endothelium removal, Lω-nitro-L-arginine, or rauwolscine ablated the rise in NO. One hundred nM aminoclonidine, guanfacine, guanabenz, UK14,304 and oxymetazoline mimicked the clonidine-induced surge of NO. Ten μM ODQ obliterated the clonidine-induced vasorelaxation and the associated tissue cyclic GMP accumulation; 10 – 100 nM sildenafil increased tissue cyclic GMP accumulation without altering the clonidine-induced NO release.α2-Adrenergic blockers antagonized the clonidine-induced rise in NO. Consistent with a preferential α2D-adrenoceptor activation, the KBs for yohimbine, rauwolscine, phentolamine, WB-4101, and prazosin were: 6.8, 24, 19, 165, and 1489 nM, respectively.Rat pretreatment with 100 mg kg−1 6-hydroxydopamine reduced 95% tissue noradrenaline and 60% neuropeptide Y. In these preparations, 100 nM clonidine elicited a rise of 91.9±15.5 pmol NO. Perfusion with 1 μM guanethidine or 1 μM guanethidine plus 1 μM atropine did not modify the NO surge evoked by 100 nM clonidine.Clonidine and congeners activate endothelial α2D-adrenoceptors coupled to the L-arginine pathway, suggesting that the antihypertensive action of

  11. Sperm Oxidative Stress Is Detrimental to Embryo Development: A Dose-Dependent Study Model and a New and More Sensitive Oxidative Status Evaluation

    PubMed Central

    de Castro, Letícia S.; de Assis, Patrícia M.; Siqueira, Adriano F. P.; Hamilton, Thais R. S.; Mendes, Camilla M.; Losano, João D. A.; Nichi, Marcílio; Visintin, José A.; Assumpção, Mayra E. O. A.

    2016-01-01

    Our study aimed to assess the impact of sperm oxidative stress on embryo development by means of a dose-dependent model. In experiment 1, straws from five bulls were subjected to incubation with increasing H2O2 doses (0, 12.5, 25, and 50 μM). Motility parameters were evaluated by Computed Assisted System Analysis (CASA). Experiment 2 was designed to study a high (50 μM) and low dose (12.5 μM) of H2O2 compared to a control (0 μM). Samples were incubated and further used for in vitro fertilization. Analyses of motility (CASA), oxidative status (CellROX green and 2'-7' dichlorofluorescein diacetate), mitochondrial potential (JC-1), chromatin integrity (AO), and sperm capacitation status (chlortetracycline) were performed. Embryos were evaluated based on fast cleavage (30 h.p.i.), cleavage (D = 3), development (D = 5), and blastocyst rates (D = 8). We observed a dose-dependent deleterious effect of H2O2 on motility and increase on the percentages of positive cells for CellROX green, capacitated sperm, and AO. A decrease on cleavage and blastocyst rates was observed as H2O2 increased. Also, we detected a blockage on embryo development. We concluded that sperm when exposed to oxidative environment presents impaired motility traits, prooxidative status, and premature capacitation; such alterations resulting in embryo development fail. PMID:26770658

  12. Sperm Oxidative Stress Is Detrimental to Embryo Development: A Dose-Dependent Study Model and a New and More Sensitive Oxidative Status Evaluation.

    PubMed

    de Castro, Letícia S; de Assis, Patrícia M; Siqueira, Adriano F P; Hamilton, Thais R S; Mendes, Camilla M; Losano, João D A; Nichi, Marcílio; Visintin, José A; Assumpção, Mayra E O A

    2016-01-01

    Our study aimed to assess the impact of sperm oxidative stress on embryo development by means of a dose-dependent model. In experiment 1, straws from five bulls were subjected to incubation with increasing H2O2 doses (0, 12.5, 25, and 50 μM). Motility parameters were evaluated by Computed Assisted System Analysis (CASA). Experiment 2 was designed to study a high (50 μM) and low dose (12.5 μM) of H2O2 compared to a control (0 μM). Samples were incubated and further used for in vitro fertilization. Analyses of motility (CASA), oxidative status (CellROX green and 2'-7' dichlorofluorescein diacetate), mitochondrial potential (JC-1), chromatin integrity (AO), and sperm capacitation status (chlortetracycline) were performed. Embryos were evaluated based on fast cleavage (30 h.p.i.), cleavage (D = 3), development (D = 5), and blastocyst rates (D = 8). We observed a dose-dependent deleterious effect of H2O2 on motility and increase on the percentages of positive cells for CellROX green, capacitated sperm, and AO. A decrease on cleavage and blastocyst rates was observed as H2O2 increased. Also, we detected a blockage on embryo development. We concluded that sperm when exposed to oxidative environment presents impaired motility traits, prooxidative status, and premature capacitation; such alterations resulting in embryo development fail. PMID:26770658

  13. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  14. Ferrous-iron-dependent uptake of L-glutamate by a mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9.

    PubMed

    Inoue, Takao; Kamimura, Kazuo; Sugio, Tsuyoshi

    2002-10-01

    Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+